Science.gov

Sample records for intracellular antioxidant enzymes

  1. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21

    PubMed Central

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  2. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21.

    PubMed

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  3. Upregulation of intracellular antioxidant enzymes in brain and heart during estivation in the African lungfish Protopterus dolloi.

    PubMed

    Page, Melissa M; Salway, Kurtis D; Ip, Yuen Kwong; Chew, Shit F; Warren, Sarah A; Ballantyne, James S; Stuart, Jeffrey A

    2010-03-01

    The African slender lungfish, Protopterus dolloi, is highly adapted to withstand periods of drought by secreting a mucous cocoon and estivating for periods of months to years. Estivation is similar to the diapause and hibernation of other animal species in that it is characterized by negligible activity and a profoundly depressed metabolic rate. As is typically observed in quiescent states, estivating P. dolloi are resistant to environmental stresses. We tested the hypothesis that P. dolloi enhances stress resistance during estivation by upregulating intracellular antioxidant defences in brain and heart tissues. We found that most of the major intracellular antioxidant enzymes, including the mitochondrial superoxide dismutase, cytosolic superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were upregulated in brain tissue of lungfish that had estivated for 60 days. Several of these enzymes were also elevated in heart tissue of estivators. These changes were not due to food deprivation, as they did not occur in a group of fish that were deprived of food but maintained in water for the same period of time. We found little evidence of tissue oxidative damage in estivators. Products of lipid peroxidation (4-hydroxynonenal adducts) and oxidative protein damage (carbonylation) were similar in estivating and control lungfish. However, protein nitrotyrosine levels were elevated in brain tissue of estivators. Taken together, these data indicate that estivating P. dolloi have enhanced oxidative stress resistance in brain and heart due to a significant upregulation of intracellular antioxidant capacity. PMID:19888582

  4. Intracellular antioxidant enzymes are not globally upregulated during hibernation in the major oxidative tissues of the 13-lined ground squirrel Spermophilus tridecemlineatus.

    PubMed

    Page, Melissa M; Peters, Craig W; Staples, James F; Stuart, Jeffrey A

    2009-01-01

    Hibernating mammals exhibit oxidative stress resistance in brain, liver and other tissues. In many animals, cellular oxidative stress resistance is associated with enhanced expression of intracellular antioxidant enzymes. Intracellular antioxidant capacity may be upregulated during hibernation to protect against oxidative damage associated with the ischemia-reperfusion that occurs during transitions between torpor and arousal. We tested the hypothesis that the 13-lined ground squirrel (Spermophilus tridecemlineatus), upregulates intracellular antioxidant enzymes in major oxidative tissues during hibernation. The two major intracellular isoforms of superoxide dismutase (MnSOD and CuZnSOD), which catalyze the first step in superoxide detoxification, were quantified in heart, brain and liver tissue using immunodetection and an in-gel activity assay. However, no differences in SOD protein expression or activity were found between active and hibernating squirrels. Measurements of glutathione peroxidase and glutathione reductase, which catalyze hydrogen peroxide removal, were not broadly upregulated during hibernation. The activity of catalase, which catalyzes an alternative hydrogen peroxide detoxification pathway, was higher in heart and brain of torpid squirrels, but lower in liver. Taken together, these data do not support the hypothesis that hibernation is associated with enhanced oxidative stress resistance due to an upregulation of intracellular antioxidant enzymes in the major oxidative tissues. PMID:18948223

  5. Menstrual cycle and reproductive aging alters immune reactivity, NGF expression, antioxidant enzyme activities, and intracellular signaling pathways in the peripheral blood mononuclear cells of healthy women.

    PubMed

    Priyanka, Hannah P; Sharma, Utsav; Gopinath, Srinivasan; Sharma, Varun; Hima, Lalgi; ThyagaRajan, Srinivasan

    2013-08-01

    Reproductive senescence in women is a process that begins with regular menstrual cycles and culminates in menopause followed by gradual development of diseases such as autoimmune diseases, osteoporosis, neurodegenerative diseases, and hormone-dependent cancers. The age-associated impairment in the functions of neuroendocrine system and immune system results in menopause which contributes to subsequent development of diseases and cancer. The aim of this study is to characterize the alterations in immune responses, compensatory factors such as nerve growth factor (NGF) and antioxidant enzyme activities, and the molecular mechanisms of actions in the peripheral blood mononuclear cells (PBMCs) of young (follicular and luteal phases), middle-aged, and old healthy women. Peripheral blood mononuclear cells were isolated from young women in follicular and luteal phases of the menstrual cycle (n=20; 22.6±2.9 yrs), middle-aged women (n=19; 47.1±3.8 yrs; perimenopausal) and old (n=16; 63.2±4.7 yrs; post-menopausal) women and analyzed for Concanavalin (Con A)-induced proliferation of lymphocytes and cytokine (IL-2 and IFN-γ) production, expression of NGF, p-NF-κB, p-ERK, p-CREB, and p-Akt, antioxidant enzymes [superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx), glutathione-S-transferase (GST)], extent of lipid peroxidation, and nitric oxide (NO) production. Serum gonadal hormones (17β-estradiol and progesterone) were also measured. A characteristic age- and menstrual cycle-related change was observed in the serum gonadal hormone secretion (estrogen and progesterone), T lymphocyte proliferation and IFN-γ production. Salient features include the age-related decline observed in target-derived growth factors (lymphocyte NGF expression), signaling molecules (p-ERK/ERK and p-CREB/CREB ratios) and compensatory factors such as the activities of plasma and PBMC antioxidant enzymes (SOD and catalase) and NO production. Further, an age-associated increase in p

  6. Targeting Cellular Antioxidant Enzymes for Treating Atherosclerotic Vascular Disease

    PubMed Central

    Kang, Dong Hoon; Kang, Sang Won

    2013-01-01

    Atherosclerotic vascular dysfunction is a chronic inflammatory process that spreads from the fatty streak and foam cells through lesion progression. Therefore, its early diagnosis and prevention is unfeasible. Reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerotic vascular disease. Intracellular redox status is tightly regulated by oxidant and antioxidant systems. Imbalance in these systems causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, and leads to dysregulation. Paradoxically, large clinical trials have shown that non-specific ROS scavenging by antioxidant vitamins is ineffective or sometimes harmful. ROS production can be locally regulated by cellular antioxidant enzymes, such as superoxide dismutases, catalase, glutathione peroxidases and peroxiredoxins. Therapeutic approach targeting these antioxidant enzymes might prove beneficial for prevention of ROS-related atherosclerotic vascular disease. Conversely, the development of specific antioxidant enzyme-mimetics could contribute to the clinical effectiveness. PMID:24009865

  7. Two complementary approaches for intracellular delivery of exogenous enzymes

    PubMed Central

    Rust, Aleksander; Hassan, Hazirah H. A.; Sedelnikova, Svetlana; Niranjan, Dhevahi; Hautbergue, Guillaume; Abbas, Shaymaa A.; Partridge, Lynda; Rice, David; Binz, Thomas; Davletov, Bazbek

    2015-01-01

    Intracellular delivery of biologically active proteins remains a formidable challenge in biomedical research. Here we show that biomedically relevant enzymes can be delivered into cells using a new DNA transfection reagent, lipofectamine 3000, allowing assessment of their intracellular functions. We also show that the J774.2 macrophage cell line exhibits unusual intracellular uptake of structurally and functionally distinct enzymes providing a convenient, reagent-free approach for evaluation of intracellular activities of enzymes. PMID:26207613

  8. Two complementary approaches for intracellular delivery of exogenous enzymes.

    PubMed

    Rust, Aleksander; Hassan, Hazirah H A; Sedelnikova, Svetlana; Niranjan, Dhevahi; Hautbergue, Guillaume; Abbas, Shaymaa A; Partridge, Lynda; Rice, David; Binz, Thomas; Davletov, Bazbek

    2015-01-01

    Intracellular delivery of biologically active proteins remains a formidable challenge in biomedical research. Here we show that biomedically relevant enzymes can be delivered into cells using a new DNA transfection reagent, lipofectamine 3000, allowing assessment of their intracellular functions. We also show that the J774.2 macrophage cell line exhibits unusual intracellular uptake of structurally and functionally distinct enzymes providing a convenient, reagent-free approach for evaluation of intracellular activities of enzymes. PMID:26207613

  9. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System.

    PubMed

    Huang, Yanyan; Liu, Zhen; Liu, Chaoqun; Ju, Enguo; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-06-01

    In this work, for the first time, we constructed a novel multi-nanozymes cooperative platform to mimic intracellular antioxidant enzyme-based defense system. V2 O5 nanowire served as a glutathione peroxidase (GPx) mimic while MnO2 nanoparticle was used to mimic superoxide dismutase (SOD) and catalase (CAT). Dopamine was used as a linker to achieve the assembling of the nanomaterials. The obtained V2 O5 @pDA@MnO2 nanocomposite could serve as one multi-nanozyme model to mimic intracellular antioxidant enzyme-based defense procedure in which, for example SOD, CAT, and GPx co-participate. In addition, through assembling with dopamine, the hybrid nanocomposites provided synergistic antioxidative effect. Importantly, both in vitro and in vivo experiments demonstrated that our biocompatible system exhibited excellent intracellular reactive oxygen species (ROS) removal ability to protect cell components against oxidative stress, showing its potential application in inflammation therapy. PMID:27098681

  10. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    PubMed

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-01

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway. PMID:26755859

  11. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes

    PubMed Central

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-01

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway. PMID:26755859

  12. Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity.

    PubMed

    Wen, Lingrong; You, Lijun; Yang, Xiaoman; Yang, Jiali; Chen, Feng; Jiang, Yueming; Yang, Bao

    2015-07-01

    Litchi leaf is a good resource for phenolics, which are good candidates for medicines. In this work, three phenolics were isolated from litchi leaf by column chromatography. Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy as secoisolariciresinol 9'-O-β-D-xyloside (1), 4,7,7',8',9,9'-hexahydroxy-3,3'-dimethoxy-8,4'-oxyneolignan (2), and cinnamtannin B1 (3). Cinnamtannin B1 showed better extra- and intracellular antioxidant activities than Compounds 1 and 2. The intracellular antioxidant activity of cinnamtannin B1 was related to the upregulation of endogenous antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase), and inhibition of ROS generation. Furthermore, cinnamtannin B1 exhibited strong antiproliferative effects against HepG2 and Siha cell lines with no significant cytotoxicities. In the case of the HepG2 cell line, cell cycle arrest and apoptosis induction were the underlying anticancer mechanisms of cinnamtannin B1. The results indicated that cinnamtannin B1 was a potent cancer cell proliferation inhibitor and a good intracellular antioxidant. PMID:25857215

  13. Dynamic Reorganization of Metabolic Enzymes into Intracellular Bodies

    PubMed Central

    O’Connell, Jeremy D.; Zhao, Alice; Ellington, Andrew D.; Marcotte, Edward M.

    2013-01-01

    Both focused and large-scale cell biological and biochemical studies have revealed that hundreds of metabolic enzymes across diverse organisms form large intracellular bodies. These proteinaceous bodies range in form from fibers and intracellular foci—such as those formed by enzymes of nitrogen and carbon utilization and of nucleotide biosynthesis—to high-density packings inside bacterial microcompartments and eukaryotic microbodies. Although many enzymes clearly form functional mega-assemblies, it is not yet clear for many recently discovered cases whether they represent functional entities, storage bodies, or aggregates. In this article, we survey intracellular protein bodies formed by metabolic enzymes, asking when and why such bodies form and what their formation implies for the functionality—and dysfunctionality—of the enzymes that comprise them. The panoply of intracellular protein bodies also raises interesting questions regarding their evolution and maintenance within cells. We speculate on models for how such structures form in the first place and why they may be inevitable. PMID:23057741

  14. Antioxidant enzymes activities in obese Tunisian children

    PubMed Central

    2013-01-01

    Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls), aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx). Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p < 0.05). Mean activities of anti-radical GPx and CAT enzymes were not affected by the BMI increase. Although, total cholesterol levels were statistically higher in the obese group, there was no significant association with the SOD activity. Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response. PMID:23360568

  15. The Assessments of the Intracellular Antioxidant Protection of the Organism after LLLT Irradiation

    SciTech Connect

    Freitinger-Skalicka, Zuzana; Navratil, Leos; Zolzer, Friedo; Hon, Zdenek

    2009-06-19

    The antioxidants are chemical compounds that can bind to free oxygen radicals preventing these radicals from damaging healthy cells. Low levels of antioxidants, or inhibition of the antioxidant enzymes causes oxidative stress and may damage or kill cells. The purpose of this project was to establish the changes at intracellular antioxidant protection of the organism after LLLT irradiation. We used female mice of the strain CD1. The mice were exposed in the abdomen region to laser light. From the blood was assessment the Glutathione peroxidase, Reduced Glutathione and Plasma Antioxidant Capacity. The results obtained in the present study demonstrated that in vivo irradiation of the mice with low level lasers did not cause any statistically significant changes in superoxide dismutase and Glutathione peroxidase but we found changes in Reduced Glutathione and Plasma Antioxidant Capacity after exposing the mice to the LLLT during the 30 minutes after irradiation, as well on the 4th day. Do not replace the word ''abstract,'' but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your ''Enter'' key. You may want to print this page and refer to it as a style sample before you begin working on your paper.

  16. A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: superoxide dismutase.

    PubMed

    Chen, Yi-Ping; Chen, Chien-Tsu; Hung, Yann; Chou, Chih-Ming; Liu, Tsang-Pai; Liang, Ming-Ren; Chen, Chao-Tsen; Mou, Chung-Yuan

    2013-01-30

    We developed mesoporous silica nanoparticle (MSN) as a multifunctional vehicle for enzyme delivery. Enhanced transmembrane delivery of a superoxide dismutase (SOD) enzyme embedded in MSN was demonstrated. Conjugation of the cell-penetrating peptide derived from the human immunodeficiency virus 1 (HIV) transactivator protein (TAT) to mesoporous silica nanoparticle is shown to be an effective way to enhance transmembrane delivery of nanoparticles for intracellular and molecular therapy. Cu,Zn-superoxide dismutase (SOD) is a key antioxidant enzyme that detoxifies intracellular reactive oxygen species, ROS, thereby protecting cells from oxidative damage. In this study, we fused a human Cu,Zn-SOD gene with TAT in a bacterial expression vector to produce a genetic in-frame His-tagged TAT-SOD fusion protein. The His-tagged TAT-SOD fusion protein was expressed in E. coli using IPTG induction and purified using FMSN-Ni-NTA. The purified TAT-SOD was conjugated to FITC-MSN forming FMSN-TAT-SOD. The effectiveness of FMSN-TAT-SOD as an agent against ROS was investigated, which included the level of ROS and apoptosis after free radicals induction and functional recovery after ROS damage. Confocal microscopy on live unfixed cells and flow cytometry analysis showed characteristic nonendosomal distribution of FMSN-TAT-SOD. Results suggested that FMSN-TAT-SOD may provide a strategy for the therapeutic delivery of antioxidant enzymes that protect cells from ROS damage. PMID:23289802

  17. Approach To Deliver Two Antioxidant Enzymes with Mesoporous Silica Nanoparticles into Cells.

    PubMed

    Lin, Yu-Hsuan; Chen, Yi-Ping; Liu, Tsang-Pai; Chien, Fan-Ching; Chou, Chih-Ming; Chen, Chien-Tsu; Mou, Chung-Yuan

    2016-07-20

    Reactive oxygen species (ROS) are important factors in many clinical diseases. However, direct delivery of antioxidant enzymes into cells is difficult due to poor cell uptake. A proper design of delivery of enzymes by nanoparticles is very desirable for therapeutic purposes. To overcome the cell barrier problem, a designed mesoporous silica nanoparticle (MSN) system with attached TAT-fusion denatured enzyme for enhancing cell membrane penetration has been developed. Simultaneous delivery of two up-downstream antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase(GPx), reveals synergistic efficiency of ROS scavenging, compared to single antioxidant enzyme delivery. TAT peptide conjugation provided a facile nonendocytosis cell uptake and escape from endosome while moving and aggregating along the cytoskeleton that would allow them to be close to each other at the same time, resulting in the cellular antioxidation cascade reaction. The two-enzyme delivery shows a significant synergistic effect for protecting cells against ROS-induced cell damage and cell cycle arrest. The nanocarrier strategy for enzyme delivery demonstrates that intracellular anti-ROS cascade reactions could be regulated by multifunctional MSNs carrying image fluorophore and relevant antioxidation enzymes. PMID:27353012

  18. Effect of isoorientin on intracellular antioxidant defence mechanisms in hepatoma and liver cell lines.

    PubMed

    Yuan, Li; Wang, Jing; Wu, Wanqiang; Liu, Qian; Liu, Xuebo

    2016-07-01

    Isoorientin (ISO) is considered one of the most important flavonoid-like compounds responsible for health benefits, including the prevention of liver damage as well as antioxidant, anti-inflammatory, and anti-nociceptive activities. Our previous study showed that ISO inhibited the proliferation of hepatoma cells through increasing intracellular ROS levels. Interestingly, ISO protects rat liver cells against hydrogen peroxide-induced oxidation stress by decreasing intracellular ROS levels. Why are there different effects of ISO on ROS in different physiological and pathophysiological circumstances? The present study investigated the effect of ISO on mitochondrial respiratory chain complexes and phase II detoxifying enzyme activities in human hepatoblastoma cancer cells (HepG2), buffalo rat liver cells (BRL-3A) and human liver cancer cells (HL-7702). The results showed that intracellular ROS levels and the protein expression of the respiratory chain complexes was significantly (p<0.01) higher in the HepG2 cells than in the BRL-3A and HL-7702 cells. Additionally, ISO notably (p<0.01) increased ROS levels in the HepG2 cells, while no significance was found in the BRL-3A and HL-7702 cells. Furthermore, in the HepG2 cells, the protein expression of the respiratory chain complexes and the phase II detoxifying enzyme activities and GSH content were decreased by ISO (p<0.01), while ISO, in a certain range, enhanced the expression of the protein complexes and the phase II detoxifying enzyme activities and GSH content in BRL-3A and HL-7702 cells. All of these results demonstrated, for the first time, that ISO possesses a notable hepatoprotective effect, which might be mediated through the respiratory chain complexes and phase II detoxifying enzyme activities. PMID:27261613

  19. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications.

    PubMed

    Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R; Holmgren, Arne; Arnér, Elias S J

    2016-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways. PMID:26681794

  20. Antioxidant and hepatoprotective activities of intracellular polysaccharide from Pleurotus eryngii SI-04.

    PubMed

    Zhang, Chen; Li, Shangshang; Zhang, Jianjun; Hu, Chunlong; Che, Gen; Zhou, Meng; Jia, Le

    2016-10-01

    In present study, the intracellular polysaccharide (IPS) and its two fractions of IPS-1 and IPS-2 were obtained and purified by DEAE-52 cellulose chromatography from Pleurotus eryngii SI-04 mycelia, and their hepatoprotective effects were also investigated. The results showed that the IPS-2 had superior hepatoprotective effects by increasing the serum enzyme activities and bilirubin (BIL) levels, decreasing the serum albumin (ALB) and triglyceride (TG) levels, improving the hepatic antioxidant status, and ameliorating the hepatic structure damage. Furthermore, the monosaccharide composition and main bond types were also analyzed. These conclusions demonstrated that the both IPS and its fractions might be suitable for functional foods and natural drugs in preventing the acute liver damage. PMID:27259648

  1. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation.

    PubMed

    Dzamukova, Maria R; Naumenko, Ekaterina A; Lvov, Yuri M; Fakhrullin, Rawil F

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  2. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  3. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    PubMed

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics. PMID:27507440

  4. Intracellular localization of mevalonate-activating enzymes in plant cells

    PubMed Central

    Rogers, L. J.; Shah, S. P. J.; Goodwin, T. W.

    1966-01-01

    Mevalonate-activating enzymes are shown to be present in the chloroplasts of French-bean leaves. The chloroplast membrane is impermeable to mevalonic acid. Mevalonate-activating enzymes also appear to be found outside the chloroplast. These results support the view that terpenoid biosynthesis in the plant cell is controlled by a combination of enzyme segregation and specific membrane permeability. ImagesFig. 1.Fig. 2. PMID:5947149

  5. Antioxidant enzymes as redox-based biomarkers: a brief review

    PubMed Central

    Yang, Hee-Young; Lee, Tae-Hoon

    2015-01-01

    The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208] PMID:25560698

  6. Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The changes in antioxidant capacity, enzyme activity and decay inhibition in strawberry fruit (Fragaria x ananassa) illuminated with different UV-C dosages were investigated. Three UV-C illumination durations and dosages, 1 min, 5 min and 10 min, (0.43, 2.15 and 4.30 kJ m-2) tested promoted the anti...

  7. [The influence of natural dicarbonils on the antioxidant enzymes activity in vitro and in vivo].

    PubMed

    Lankin, V Z; Konovalova, G G; Tikhaze, A K; Nedosugova, L V

    2012-01-01

    Natural dicarbonyls, which may be accumulated during oxidative stress in atherosclerosis (e.g. malondialdehyde) or carbonyl stress in diabetes mellitus (glyoxal and methylglyoxal) effectively inhibited the activities of commercial preparations of antioxidant enzymes: catalase, Cu, Zn-superoxide dismutase (Cu, Zn-SOD) and Se-contained glutathione peroxidase from human and bovine erythrocytes and also rat liver glutathione-S-transferase. After incubation of human erythrocytes with 10 mM of each investigated dicarbonyls the decrease of intracellular Cu, Zn-SOD was observed. The decreased activity of erythrocyte Cu, Zn-SOD was also detected in diabetic patients with carbohydrate metabolism disturbance but effective sugar-lowered therapy was accompanied by the increase of this enzyme activity. The increase of erythrocytes activity of Cu, Zn-SOD of diabetic patients theated with metformin (which may utilize methylglyoxal) was higher than in erythrocytase of diabetic patients subjected to traditional therapy. PMID:23350204

  8. Purification and Characterization of a Novel Intracellular Sucrase Enzyme of Leishmania donovani Promastigotes

    PubMed Central

    Singh, Arpita; Mandal, Debjani

    2016-01-01

    The promastigote stage of Leishmania resides in the sand fly gut, enriched with sugar molecules. Recently we reported that Leishmania donovani possesses a sucrose uptake system and a stable pool of intracellular sucrose metabolizing enzyme. In the present study, we purified the intracellular sucrase nearly to its homogeneity and compared it with the purified extracellular sucrase. The estimated size of intracellular sucrase is ~112 kDa by gel filtration chromatography, native PAGE, and substrate staining. However, in SDS-PAGE, the protein is resolved at ~56 kDa, indicating the possibility of a homodimer in its native state. The kinetics of purified intracellular sucrase shows its higher substrate affinity with a K m of 1.61 mM than the extracellular form having a K m of 4.4 mM. The highly specific activity of intracellular sucrase towards sucrose is optimal at pH 6.0 and at 30°C. In this report the purification and characterization of intracellular sucrase provide evidence that sucrase enzyme exists at least in two different forms in Leishmania donovani promastigotes. This intracellular sucrase may support further intracellular utilization of transported sucrose. PMID:27190649

  9. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion.

    PubMed

    Sato, H; Shibata, M; Shimizu, T; Shibata, S; Toriumi, H; Ebine, T; Kuroi, T; Iwashita, T; Funakubo, M; Kayama, Y; Akazawa, C; Wajima, K; Nakagawa, T; Okano, H; Suzuki, N

    2013-09-17

    Because of its high oxygen demands, neural tissue is predisposed to oxidative stress. Here, our aim was to clarify the cellular localization of antioxidant enzymes in the trigeminal ganglion. We found that the transcriptional factor Sox10 is localized exclusively in satellite glial cells (SGCs) in the adult trigeminal ganglion. The use of transgenic mice that express the fluorescent protein Venus under the Sox10 promoter enabled us to distinguish between neurons and SGCs. Although both superoxide dismutases 1 and 2 were present in the neurons, only superoxide dismutase 1 was identified in SGCs. The enzymes relevant to hydrogen peroxide degradation displayed differential cellular localization, such that neurons were endowed with glutathione peroxidase 1 and thioredoxin 2, and catalase and thioredoxin 2 were present in SGCs. Our immunohistochemical finding showed that only SGCs were labeled by the oxidative damage marker 8-hydroxy-2'-deoxyguanosine, which indicates that the antioxidant systems of SGCs were less potent. The transient receptor potential vanilloid subfamily member 1 (TRPV1), the capsaicin receptor, is implicated in inflammatory hyperalgesia, and we demonstrated that topical capsaicin application causes short-lasting mechanical hyperalgesia in the face. Our cell-based assay revealed that TRPV1 agonist stimulation in the presence of TRPV1 overexpression caused reactive oxygen species-mediated caspase-3 activation. Moreover, capsaicin induced the cellular demise of primary TRPV1-positive trigeminal ganglion neurons in a dose-dependent manner, and this effect was inhibited by a free radical scavenger and a pancaspase inhibitor. This study delineates the localization of antioxidative stress-related enzymes in the trigeminal ganglion and reveals the importance of the pivotal role of reactive oxygen species in the TRPV1-mediated caspase-dependent cell death of trigeminal ganglion neurons. Therapeutic measures for antioxidative stress should be taken to prevent

  10. Nigella sativa fixed and essential oil improves antioxidant status through modulation of antioxidant enzymes and immunity.

    PubMed

    Sultan, Muhammad Tauseef; Butt, Masood Sadiq; Karim, Roselina; Ahmad, Nisar; Ahmad, Rabia Shabbir; Ahmad, Waqas

    2015-03-01

    The onset of 21st century witnessed the awareness among the masses regarding the diet-health linkages. The researchers attempted to explore traditional products/plants were in the domain of pharmacy and nutrition focussing on their health benefits. In the present research intervention, we investigate the role of Nigella sativa fixed oil (NSFO) and essential oil (NSEO) in improving antioxidant status and modulation of enzymes. The National Institute of Health (NIH) provided us 30 Sprague Dawley rats that were equally placed in three groups. The groups were fed on their respective diets (56 days) two experimental diets i.e. D2 (NSFO @ 4.0%) and D3 (NSEO @ 0.30%) and control. The indices pertaining to antioxidant status, antioxidant enzymes, and parameters pertaining to immunity were evaluated at 4 weeks interval. The experimental diets (NSFO@ 4.0% & NSEO@ 0.30%) modulated the activities of antioxidant enzymes i.e., catalase (CAT), superoxide dismutase (SOD), glutathione transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx), positively. Indices of antioxidant status like tocopherols and glutathione were in linear relationship with that of GPx, GR and GST (P<0.01). Myeloperoxidase activities were in negative correlation with GST (P<0.01) but positive correlation with some other parameters. In the nutshell, the fixed and essential oil of Nigella sativa are effective in improving the indices pertaining to antioxidant status, however, the immune boosting potential needs further clarification. However, authors are of the view that there is need to explore the molecular targets of Nigella sativa fixed and essential oils. Findings from such studies would be useful to validate this instant study for health promoting potential against diabetes mellitus and cardiovascular disorders. PMID:25730812

  11. Regulation of antioxidant enzymes in lung after oxidant injury.

    PubMed Central

    Quinlan, T; Spivack, S; Mossman, B T

    1994-01-01

    Studies have implicated active oxygen species (AOS) in the pathogenesis of various lung diseases. Many chemical and physical agents in the environment are potent generators of AOS, including ozone, hyperoxia, mineral dusts, paraquat, etc. These agents produce AOS by different mechanisms, but frequently the lung is the primary target of toxicity, and exposure results in damage to lung tissue to varying degrees. The lung has developed defenses to AOS-mediated damage, which include antioxidant enzymes, the superoxide dismutases [copper-zinc (CuZnSOD) and manganese-containing (MnSOD)], catalase, and glutathione peroxidase (GPX). In this review, antioxidant defenses to environmental stresses in the lung as well as in isolated pulmonary cells following exposure to a number of different oxidants, are summarized. Each oxidant appears to induce a different pattern of antioxidant enzyme response in the lung, although some common trends, i.e., induction of MnSOD following oxidants inducing inflammation or pulmonary fibrosis, in responses to oxidants occur. Responses may vary between the different cell types in the lung as a function of cell-cycle or other factors. Increases in MnSOD mRNA or immunoreactive protein in response to certain oxidants may serve as a biomarker of AOS-mediated damage in the lung. Images Figure 3. PMID:7523104

  12. Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola.

    PubMed

    Hao, Limin; Sheng, Zhicun; Lu, Jike; Tao, Ruyu; Jia, Shiru

    2016-05-01

    Fomitopsis pinicola (F. pinicola) is a kind of medicinal fungi, and few studies has been carried out on F. pinicola polysaccharides from liquid submerged cultivation. The characterization and antioxidant activities of extracellular polysaccharide (EPS) and intracellular polysaccharide (IPS) isolated from F. pinicola were investigated. The results showed that the molecular weight of EPS was 2.30×10(4)Da, and EPS was composed of mannose, rhamnose, xylose and galactose with the molar ratio of 0.1:1.0:0.3:0.5. The molecular weight of IPS was 4.07×10(5)Da, and the monosaccharide compositions included glucose, mannose, rhamnose, xylose and galactose with the molar ratio of 1.0:0.9:0.9:0.8:1.1. Antioxidant activities of both EPS and IPS including in vitro scavenging activities on 1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals, cellular protective effects on yeast cells from ultraviolet (UV) radiation and H2O2 oxidative damage were tested. Both EPS and IPS showed antioxidant activities in a dose dependent manner, and IPS had higher antioxidant activity than EPS. So EPS and IPS could be potential novel antioxidants for functional food. PMID:26876995

  13. The Role of Genetic Polymorphisms in Antioxidant Enzymes and Potential Antioxidant Therapies in Neonatal Lung Disease

    PubMed Central

    Poggi, Chiara

    2014-01-01

    Abstract Significance: Oxidative stress is involved in the development of newborn lung diseases, such as bronchopulmonary dysplasia and persistent pulmonary hypertension of the newborn. The activity of antioxidant enzymes (AOEs), which is impaired as a result of prematurity and oxidative injury, may be further affected by specific genetic polymorphisms or an unfavorable combination of more of them. Recent Advances: Genetic polymorphisms of superoxide dismutase and catalase were recently demonstrated to be protective or risk factors for the main complications of prematurity. A lot of research focused on the potential of different antioxidant strategies in the prevention and treatment of lung diseases of the newborn, providing promising results in experimental models. Critical Issues: The effect of different genetic polymorphisms on protein synthesis and activity has been poorly detailed in the newborn, hindering to derive conclusive results from the observed associations with adverse outcomes. Therapeutic strategies that aimed at enhancing the activity of AOEs were poorly studied in clinical settings and partially failed to produce clinical benefits. Future Directions: The clarification of the effects of genetic polymorphisms on the proteomics of the newborn is mandatory, as well as the assessment of a larger number of polymorphisms with a possible correlation with adverse outcome. Moreover, antioxidant treatments should be carefully translated to clinical settings, after further details on optimal doses, administration techniques, and adverse effects are provided. Finally, the study of genetic polymorphisms could help select a specific high-risk population, who may particularly benefit from targeted antioxidant strategies. Antioxid. Redox Signal. 21, 1863–1880. PMID:24382101

  14. FREE RADICAL SCAVENGING CAPACITY AND ANTIOXIDANT ENZYME ACTIVITY IN DEERBERRY (Vaccinium stamineum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit from three genotypes (B-76, B-59 and SHF-3A) of deerberry [Vaccinium stamineum L.] were evaluated for fruit quality, total anthocyanin and phenolic contents, antioxidants, antioxidant capacity, and antioxidant enzyme activity. The fruit soluble solids, titratable acids, total anthocyanins, an...

  15. Tandem antioxidant enzymes confer synergistic protective responses in experimental filariasis.

    PubMed

    Prince, P R; Madhumathi, J; Anugraha, G; Jeyaprita, P J; Reddy, M V R; Kaliraj, P

    2014-12-01

    Helminth parasites use antioxidant defence strategies for survival during oxidative stress due to free radicals in the host. Accordingly, tissue-dwelling filarial parasites counteract host responses by releasing a number of antioxidants. Targeting these redox regulation proteins together, would facilitate effective parasite clearance. Here, we report the combined effect of protective immune responses trigged by recombinant Wuchereria bancrofti thioredoxin (WbTRX) and thioredoxin peroxidase (WbTPX) in an experimental filarial model. The expression of WbTRX and WbTPX in different stages of the parasite and their cross-reactivity were analysed by enzyme-linked immunosorbent assay (ELISA). The immunogenicity of recombinant proteins and their protective efficacy were studied in animal models when immunized in single or cocktail mode. The antigens showed cross-reactive epitopes and induced high humoral and cellular immune responses in mice. Further, parasite challenge against Brugia malayi L3 larvae in Mastomys coucha conferred significant protection of 57% and 62% against WbTRX and WbTPX respectively. The efficacy of L3 clearance was significantly higher (71%) (P <  0.001) when the antigens were immunized together, showing a synergistic effect in multiple-mode vaccination. Hence, the study suggests WbTRX and WbTPX to be attractive vaccine candidates when immunized together and provides a tandem block for parasite elimination in the control of lymphatic filariasis. PMID:23676147

  16. Dieckol enhances the expression of antioxidant and detoxifying enzymes by the activation of Nrf2-MAPK signalling pathway in HepG2 cells.

    PubMed

    Lee, Min-Sup; Lee, Bonggi; Park, Kyoung-Eun; Utsuki, Tadanobu; Shin, Taisun; Oh, Chul Woong; Kim, Hyeung-Rak

    2015-05-01

    Dieckol was previously reported to exhibit antioxidant and anticancer activities in vitro studies. In this study, we characterised the mechanism underlying the dieckol-mediated expression of antioxidant and detoxifying enzymes. Dieckol suppressed the production of intracellular reactive oxygen species in the presence or absence of H2O2 and increased glutathione level in HepG2 cells. Dieckol enhanced the activities of antioxidant enzymes, and the expression of detoxifying enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO1), and glutathione S-transferase (GST) in HepG2 cells. Enhanced expression of antioxidant and detoxifying enzymes by dieckol was presumed to be the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2) demonstrated by its nuclear translocation and transcriptional activity via activation of mitogen-activated protein kinases in HepG2 cells. Furthermore, we demonstrated dieckol induced the expression of HO-1 in mouse liver. These results demonstrate that the dieckol-mediated cytoprotection in HepG2 cells is mediated through a ROS-independent up-regulation of antioxidant and detoxifying enzymes via Nrf2 activation as well as its intrinsic antioxidant activity, suggesting that dieckol may be used as a natural cytoprotective agent. PMID:25529716

  17. GST-TAT-SOD: Cell Permeable Bifunctional Antioxidant Enzyme-A Potential Selective Radioprotector.

    PubMed

    Pan, Jianru; He, Huocong; Su, Ying; Zheng, Guangjin; Wu, Junxin; Liu, Shutao; Rao, Pingfan

    2016-01-01

    Superoxide dismutase (SOD) fusion of TAT was proved to be radioprotective in our previous work. On that basis, a bifunctional recombinant protein which was the fusion of glutathione S-transferase (GST), SOD, and TAT was constructed and named GST-TAT-SOD. Herein we report the investigation of the cytotoxicity, cell-penetrating activity, and in vitro radioprotective effect of GST-TAT-SOD compared with wild SOD, single-function recombinant protein SOD-TAT, and amifostine. We demonstrated that wild SOD had little radioprotective effect on irradiated L-02 and Hep G2 cells while amifostine was protective to both cell lines. SOD-TAT or GST-TAT-SOD pretreatment 3 h prior to radiation protects irradiated normal liver cells against radiation damage by eliminating intracellular excrescent superoxide, reducing cellular MDA level, enhancing cellular antioxidant ability and colony formation ability, and reducing apoptosis rate. Compared with SOD-TAT, GST-TAT-SOD was proved to have better protective effect on irradiated normal liver cells and minimal effect on irradiated hepatoma cells. Besides, GST-TAT-SOD was safe for normal cells and effectively transduced into different organs in mice, including the brain. The characteristics of this protein suggest that it may be a potential radioprotective agent in cancer therapy better than amifostine. Fusion of two antioxidant enzymes and cell-penetrating peptides is potentially valuable in the development of radioprotective agent. PMID:27313832

  18. Protection of Cells against Oxidative Stress by Nanomolar Levels of Hydroxyflavones Indicates a New Type of Intracellular Antioxidant Mechanism

    PubMed Central

    Hájek, Jan; Staňková, Veronika; Filipský, Tomáš; Balducci, Valentina; De Vito, Paolo; Leone, Stefano; Bavavea, Eugenia I.; Silvestri, Ilaria Proietti; Righi, Giuliana; Luly, Paolo; Saso, Luciano; Bovicelli, Paolo; Pedersen, Jens Z.; Incerpi, Sandra

    2013-01-01

    Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous

  19. Potential Degradation of Swainsonine by Intracellular Enzymes of Arthrobacter sp. HW08

    PubMed Central

    Wang, Yan; Li, Yanhong; Hu, Yanchun; Li, Jincheng; Yang, Guodong; Kang, Danju; Li, Haili; Wang, Jianhua

    2013-01-01

    Swainsonine (SW) is a toxin produced by locoweeds and harmful to the livestock industry. Degrading SW by Arthrobacter sp. HW08 was demonstrated as a promising way to deal with SW poisoning. However, it is unknown which part of the subcellular enzymes in Arthrobacter sp. HW08 is responsible for biodegrading SW and whether the metabolites are atoxic. In this study, intracellular and extracellular enzymes of Arthrobacter sp. HW08 were isolated and their enzyme activity was evaluated. The metabolites were fed to mice, and physiological and histological properties of the treated mice were investigated. The results showed that only intracellular enzyme of Arthrobacter sp. HW08 (IEHW08) could degrade SW efficiently. Compared with mice in SW treatment group, mice in SW + IEHW08 treatment group (1) increased their body weights; (2) showed higher number of platelets and lower number of white blood cells; (3) decreased the levels of creatinine, urea nitrogen, alanine transaminase and aspartate aminotransferase in serum; (4) reduced the number of vacuolated cells in cerebellum, liver and kidney. All these data demonstrate that IEHW08 was potentially safe for mice, while keeping the capacity of degrading SW. This study indicates a possible application of IEHW08 as an additive in the livestock industry to protect animals from SW poisoning. PMID:24240642

  20. Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal alpha-amylase enzymes.

    PubMed

    van der Kaaij, R M; Janecek, S; van der Maarel, M J E C; Dijkhuizen, L

    2007-12-01

    Currently known fungal alpha-amylases are well-characterized extracellular enzymes that are classified into glycoside hydrolase subfamily GH13_1. This study describes the identification, and phylogenetic and biochemical analysis of novel intracellular fungal alpha-amylases. The phylogenetic analysis shows that they cluster in the recently identified subfamily GH13_5 and display very low similarity to fungal alpha-amylases of family GH13_1. Homologues of these intracellular enzymes are present in the genome sequences of all filamentous fungi studied, including ascomycetes and basidiomycetes. One of the enzymes belonging to this new group, Amy1p from Histoplasma capsulatum, has recently been functionally linked to the formation of cell wall alpha-glucan. To study the biochemical characteristics of this novel cluster of alpha-amylases, we overexpressed and purified a homologue from Aspergillus niger, AmyD, and studied its activity product profile with starch and related substrates. AmyD has a relatively low hydrolysing activity on starch (2.2 U mg(-1)), producing mainly maltotriose. A possible function of these enzymes in relation to cell wall alpha-glucan synthesis is discussed. PMID:18048915

  1. Photosynthesis and antioxidant enzymes of phyllodes of Acacia mangium.

    PubMed

    Yu; Ong

    2000-10-16

    Physiological processes are influenced by environmental factors and plant characteristics. The distribution of photosynthetic capacity of phyllodes of Acacia mangium Willd. seedlings was studied in relation to the in vivo photosystem II (PSII) function, photosynthetic gas exchange, chlorophyll fluorescence and activities of antioxidant enzymes (superoxide dismutase (SOD) and ascorbate peroxidase (APX)) of phyllodes at different positions on seedlings. There was a vertical gradient in photosynthetic capacity of phyllodes along the shoot. Phyllode 1 (at the apex) showed negative carbon uptake at PPFD lower than 400 µmol m(-2) s(-1). High photosynthetic capacities, chlorophyll concentrations, DeltaF/F'(m), and q(P) were observed in phyllodes 4, 6 and 8. The high photosynthetic capacities of mature phyllodes could be attributed to the enhanced availability of CO(2) and the high efficiency of PSII in energy absorption and utilization. Total SOD and APX activities (on a dry weight basis) were highest at phyllode 1 and decreased as the phyllodes matured. The high photosynthetic capacity and low respiration loss in mature phyllodes could be important factors, responsible for the rapid establishment and fast growth of A. mangium in reforestation programs. PMID:11011098

  2. Renin, angiotensins, and angiotensin-converting enzyme in neuroblastoma cells: evidence for intracellular formation of angiotensins.

    PubMed Central

    Okamura, T; Clemens, D L; Inagami, T

    1981-01-01

    The mechanism of formation of various peptide hormones in neuronal cells in the brain is not clear. The question of whether brain angiotensin II is formed by an extracellular mechanism as in the peripheral system or by an intracellular mechanism can be answered by using cloned cells in culture. We have screened several neuroblastoma cell lines of rat and mouse origin and found at least three cell lines that contain renin (EC 3.4.99.19), angiotensin-converting enzyme (dipeptidyl carboxypeptidase; peptidyldipeptide hydrolase, EC 3.4.15.1), and angiotensins I and II. This finding was interpreted to indicate that in these cells angiotensin formation takes place by an intracellular mechanism, in contrast to the extracellular mechanism well known to occur in plasma. This study also demonstrates the existence of viable and cloned cell lines that produce renin. PMID:6273896

  3. Antioxidant enzyme expression in rat lungs during hyperoxia.

    PubMed

    Ho, Y S; Dey, M S; Crapo, J D

    1996-05-01

    To understand the molecular mechanisms that upregulate the activities of pulmonary antioxidant enzymes in adult rats during exposure to 85% oxygen, the relative contents of corresponding mRNA in normal and hyperoxic lungs were determined. Hyperoxic exposure drastically induced the expression of lung manganese-containing superoxide dismutase (MnSOD) mRNA. Maximal induction of MnSOD mRNA occurred at days 3 and 5 of exposure to hyperoxia, reaching a 600 and a 340% increase over the levels of air-exposed rats, respectively. In addition, hyperoxia induced lung mRNA for glucose-6-phosphate dehydrogenase, glutathione peroxidase, glyceraldehyde-3-phosphate dehydrogenase, alpha-tubulin, and gamma-actin to different extends at various days of exposure. Hyperoxia had little or no effect on the levels of mRNA for copper/zinc-containing superoxide dismutase (CuZnSOD), catalase, heat shock protein (HSP70), and creatine kinase. Nuclear run-on experiments showed that the transcriptional rate of the MnSOD gene is enhanced in hyperoxic rat lungs by approximately 400% at day 3 of exposure compared with that of controls. The specific activities of CuZnSOD and MnSOD in these lung samples per unit of lung protein or DNA were also determined. The activity of CuZnSOD in hyperoxic lungs was found to be unchanged compared with controls, except a 20% decrease at day 7 of exposure when standardized against protein content of lung homogenate. Changes of CuZnSOD activity were more dramatic in hyperoxic lungs (a 40% increase at days 3, 5, 7, and 14 of exposure) when enzyme activity was normalized using lung DNA content. Surprisingly, no proportional increase of lung MnSOD enzyme activity was observed at days 3 and 5 of oxygen exposure. The increase of MnSOD activity per unit of lung protein also did not parallel the increase in MnSOD protein content at days 5, 7, and 14 of exposure. These data suggest that, in addition to transcriptional activation, translational and/or posttranslational

  4. Effect of inhibitors of arachidonic acid metabolism on efflux of intracellular enzymes from skeletal muscle following experimental damage.

    PubMed Central

    Jackson, M J; Wagenmakers, A J; Edwards, R H

    1987-01-01

    The role of arachidonic acid metabolism in the efflux of intracellular enzymes from damaged skeletal muscle has been examined in vitro using inhibitors of cyclo-oxygenase and lipoxygenase enzymes. Damage to skeletal muscle induced by either calcium ionophore A23187 (25 microM) or dinitrophenol (1 mM) caused an increase in the efflux of prostaglandins E2 and F2 alpha together with a large efflux of intracellular creatine kinase. Use of a cyclo-oxygenase inhibitor completely prevented the efflux of prostaglandins, but had no effect on creatine kinase efflux. However, several agents having the ability to inhibit lipoxygenase enzymes dramatically reduced creatine kinase efflux following damage. These data suggest that a product or products of lipoxygenase enzymes may be mediators of the changes in plasma membrane integrity which permit efflux of intracellular enzymes as a consequence of skeletal muscle damage. PMID:3109374

  5. Hydrogel microspheres for stabilization of an antioxidant enzyme: effect of emulsion cross-linking of a dual polysaccharide system on the protection of enzyme activity.

    PubMed

    Tang, Deh-Wei; Yu, Shu-Huei; Wu, Wen-Shin; Hsieh, Hao-Ying; Tsai, Yi-Chin; Mi, Fwu-Long

    2014-01-01

    Catalase is an antioxidant enzyme abundant in natural resources. However, the enzyme is usually inactivated by gastric acid and digestive enzymes after oral ingestion. In this study, carboxymethyl chitosan (CM-chitosan) and hyaluronic acid (HA) conjugate hydrogel microspheres have been prepared by an emulsion cross-linking technique to retain the activity of catalase in simulated gastrointestinal (GI) fluids. Cross-linking reduced the swelling capability and increased the resistance toward hyaluronidase digestion of prepared HA-CM-chitosan hydrogel microspheres. Catalase entrapped in the hydrogel microspheres exhibited superior stability over a wide pH range (pH 2.0 and 6.0-8.0) as compared to the native enzyme. The entrapped catalase was also protected against degradation by digestive enzymes. Following the treatments, the catalase-loaded microspheres, in contrast to native catalase, could effectively decrease the intracellular H2O2 level and protect HT-29 colonic epithelial cells against H2O2-induced oxidative damage to preserve cell viability. These results suggested that the HA-CM-chitosan hydrogel microspheres can be used for entrapment, protection and intestinal delivery of catalase for H2O2 scavenging. PMID:24055882

  6. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    PubMed Central

    Nakchat, Oranuch; Nalinratana, Nonthaneth; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-01-01

    Objective To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat. PMID:25182723

  7. Rapid upregulation of heart antioxidant enzymes during arousal from estivation in the Giant African snail (Achatina fulica).

    PubMed

    Salway, Kurtis D; Tattersall, Glenn J; Stuart, Jeffrey A

    2010-11-01

    Estivation is an adaptive response to environments characterized by elevated temperatures and desiccative stress, as may occur during summer dry seasons. Similar to diapause and hibernation, it is characterized by low levels of activity, a drastically suppressed metabolic rate and enhanced stress resistance. We tested the hypothesis that Achatina fulica, a pulmonate land snail, enhances stress resistance during estivation and/or arousal by upregulating intracellular antioxidant defenses in the heart, kidney, hepatopancreas and foot tissues. No statistically significant changes in mitochondrial or cytosolic superoxide dismutase levels or activities, or glutathione peroxidase, glutathione reductase or catalase activities were associated with estivation in any tissue, however. In contrast, during arousal from estivation, activities of several antioxidant enzymes increased in heart, hepatopancreas and foot. In heart, a rapid increase in MnSOD protein levels was observed that peaked at 2h post arousal, but no such change was observed in CuZnSOD protein levels. Glutathione peroxidase activity was upregulated at 1h post arousal and remained elevated until 8h post arousal in heart tissue. Glutathione peroxidase was also upregulated at 24h post arousal in foot tissue. Glutathione reductase activity was upregulated at 4h post arousal in heart and foot tissues whereas catalase activity showed no changes. Markers of lipid peroxidation and protein damage revealed no significant increases during estivation or arousal. Therefore, antioxidant enzymes may play a role in oxidative stress defense specifically during arousal from estivation in A. fulica. PMID:20621194

  8. Role of antioxidant enzymes in bacterial resistance to organic acids.

    PubMed

    Bruno-Bárcena, Jose M; Azcárate-Peril, M Andrea; Hassan, Hosni M

    2010-05-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach. PMID:20305033

  9. Disturbance of Antioxidant Enzymes and Purine Metabolism in the Ejaculate of Men Living in Disadvantaged Areas of Kyzylorda Region

    PubMed Central

    Kislitskaya, Valentihna N.; Kenzhin, Zhandos D.; Kultanov, Berikbay Zh.; Dosmagambetova, Raushan S.; Turmuhambetova, Anar A.

    2015-01-01

    AIM: Objective of the study was to evaluate the state of the main indicators of antioxidant status and enzymes of purine metabolism in the germ cells of men living in the zone of ecological catastrophe Aral Sea region. METHODS: The criterion for inclusion is the stay of an adult in the Aral Sea area is not less than 5 years, employment in occupations with no more than 2 hazard class. Determination of the activity of adenosine deaminase (ADA) was conducted in semen by the method of Nemechek et al., 1993. Determination of the activity of catalase (CAT) was performed according by the method of Korolyuk et al., 1988. RESULTS: Results of the study indicate a change in the activity of catalase and adenosine deaminase, due to increased levels of oxidative stress and the development of the pathological process. CONCLUSIONS: According to the results of study, it was put the influence of negative factors of the Aral Sea region in men’s sperm of reproductive age gives to disability free-radical processes, that proves changing of ferments of ant oxidative protection Catalase and adenosine deaminase (ADA). This disturbance in men’s sperm of reproductive age leading to increased level of oxidative stress and impaired activity of antioxidant enzymes and purine metabolism, responsible for the abnormal transmembrane and intracellular processes, reflecting the degree of imbalance of enzymes.

  10. Studies on antioxidant activity of teasaponins after hydrolyzed by enzyme

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Zhao, Sen; Xu, Longquan; Fei, Xu; Wang, Xiuying; Wang, Yi

    The biological activity of teasaponins and their molecular structure are closely related, and the activity of saponins may be increased with the change of their molecular structure. In this report, teasaponins were hydrolyzed by Aspergillus niger for increasing the antioxidant activity. The antioxidant activity of teasaponins before and after hydrolyzed was tested by DPPH, and the result showed four new teasaponins were produced after hydrolysis, and their antioxidant activity was increased significantly than the original teasaponins before hydrolysis, the radical scavenging capacity (RSC) was partly up to 95 %.

  11. Cationic triblock copolymer micelles enhance antioxidant activity, intracellular uptake and cytotoxicity of curcumin.

    PubMed

    Yoncheva, Krassimira; Kamenova, Katya; Perperieva, Teodora; Hadjimitova, Vera; Donchev, Petar; Kaloyanov, Kaloyan; Konstantinov, Spiro; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar

    2015-07-25

    The aim of the present study was to develop curcumin loaded cationic polymeric micelles and to evaluate their loading, preservation of curcumin antioxidant activity and intracellular uptake ability. The micelles were prepared from a triblock copolymer consisting of poly(ϵ-caprolactone) and very short poly(2-(dimethylamino) ethyl methacrylate) segments (PDMAEMA9-PCL70-PDMAEMA9). The micelles showed monomodal size distribution, mean diameter of 145 nm, positive charge (+72 mV), critical micellar concentration around 0.05 g/l and encapsulation efficiency of 87%. The ability of the micellar curcumin to scavenge the ABTS radical and hypochlorite ions was higher than that of the free curcumin. Confocal microscopy revealed that the uptake of curcumin by chronic myeloid leukemia derived K-562 cells and human multiple myeloma cells U-266 was more intensive when curcumin was loaded into the micelles. These results correlated with the higher cytotoxicity of the micellar curcumin compared to free curcumin. Intraperitoneal treatment of Wistar rats indicated that PDMAEMA-PCL-PDMAEMA copolymer, comprising very short cationic chains, did not change the levels of malondialdehyde and glutathione in livers indicating an absence of oxidative stress. Thus, PDMAEMA-PCL-PDMAEMA triblock micelles could be considered efficient and safe platform for curcumin delivery. PMID:26026253

  12. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.

  13. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  14. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus

    PubMed Central

    Becker, Stephen C.; Roach, Dwayne R.; Chauhan, Vinita S.; Shen, Yang; Foster-Frey, Juli; Powell, Anne M.; Bauchan, Gary; Lease, Richard A.; Mohammadi, Homan; Harty, William J.; Simmons, Chad; Schmelcher, Mathias; Camp, Mary; Dong, Shengli; Baker, John R.; Sheen, Tamsin R.; Doran, Kelly S.; Pritchard, David G.; Almeida, Raul A.; Nelson, Daniel C.; Marriott, Ian; Lee, Jean C.; Donovan, David M.

    2016-01-01

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics. PMID:27121552

  15. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus.

    PubMed

    Becker, Stephen C; Roach, Dwayne R; Chauhan, Vinita S; Shen, Yang; Foster-Frey, Juli; Powell, Anne M; Bauchan, Gary; Lease, Richard A; Mohammadi, Homan; Harty, William J; Simmons, Chad; Schmelcher, Mathias; Camp, Mary; Dong, Shengli; Baker, John R; Sheen, Tamsin R; Doran, Kelly S; Pritchard, David G; Almeida, Raul A; Nelson, Daniel C; Marriott, Ian; Lee, Jean C; Donovan, David M

    2016-01-01

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics. PMID:27121552

  16. Intracellular Antioxidant Activity of Grape Skin Polyphenolic Extracts in Rat Superficial Colonocytes: In situ Detection by Confocal Fluorescence Microscopy.

    PubMed

    Giordano, M Elena; Ingrosso, Ilaria; Schettino, Trifone; Caricato, Roberto; Giovinazzo, Giovanna; Lionetto, M Giulia

    2016-01-01

    Colon is exposed to a number of prooxidant conditions and several colon diseases are associated with increased levels of reactive species. Polyphenols are the most abundant antioxidants in the diet, but to date no information is available about their absorption and potential intracellular antioxidant activity on colon epithelial cells. The work was addressed to study the intracellular antioxidant activity of red grape polyphenolic extracts on rat colon epithelium experimentally exposed to prooxidant conditions. The experimental model chosen was represented by freshly isolated colon explants, which closely resemble the functional, and morphological characteristics of the epithelium in vivo. The study was carried out by in situ confocal microscopy observation on CM-H2DCFDA charged explants exposed to H2O2 (5, 10, and 15 min). The qualitative and quantitative polyphenolic composition of the extracts as well as their in vitro oxygen radical absorbing capacity (ORAC) was determined. The incubation of the explants with the polyphenolic extracts for 1 h produced a significant decrease of the H2O2 induced fluorescence. This effect was more pronounced following 15 min H2O2 exposure with respect to 5 min and it was also more evident for extracts obtained from mature grapes, which showed an increased ORAC value and qualitative peculiarities in the polyphenolic composition. The results demonstrated the ability of red grape polyphenols to cross the plasma membrane and exert a direct intracellular antioxidant activity in surface colonocytes, inducing a protection against pro-oxidant conditions. The changes in the polyphenol composition due to ripening process was reflected in a more effective antioxidant protection. PMID:27303304

  17. Intracellular Antioxidant Activity of Grape Skin Polyphenolic Extracts in Rat Superficial Colonocytes: In situ Detection by Confocal Fluorescence Microscopy

    PubMed Central

    Giordano, M. Elena; Ingrosso, Ilaria; Schettino, Trifone; Caricato, Roberto; Giovinazzo, Giovanna; Lionetto, M. Giulia

    2016-01-01

    Colon is exposed to a number of prooxidant conditions and several colon diseases are associated with increased levels of reactive species. Polyphenols are the most abundant antioxidants in the diet, but to date no information is available about their absorption and potential intracellular antioxidant activity on colon epithelial cells. The work was addressed to study the intracellular antioxidant activity of red grape polyphenolic extracts on rat colon epithelium experimentally exposed to prooxidant conditions. The experimental model chosen was represented by freshly isolated colon explants, which closely resemble the functional, and morphological characteristics of the epithelium in vivo. The study was carried out by in situ confocal microscopy observation on CM-H2DCFDA charged explants exposed to H2O2 (5, 10, and 15 min). The qualitative and quantitative polyphenolic composition of the extracts as well as their in vitro oxygen radical absorbing capacity (ORAC) was determined. The incubation of the explants with the polyphenolic extracts for 1 h produced a significant decrease of the H2O2 induced fluorescence. This effect was more pronounced following 15 min H2O2 exposure with respect to 5 min and it was also more evident for extracts obtained from mature grapes, which showed an increased ORAC value and qualitative peculiarities in the polyphenolic composition. The results demonstrated the ability of red grape polyphenols to cross the plasma membrane and exert a direct intracellular antioxidant activity in surface colonocytes, inducing a protection against pro-oxidant conditions. The changes in the polyphenol composition due to ripening process was reflected in a more effective antioxidant protection. PMID:27303304

  18. Thioredoxin 1 in Prostate Tissue Is Associated with Gleason Score, Erythrocyte Antioxidant Enzyme Activity, and Dietary Antioxidants

    PubMed Central

    Vance, Terrence M.; Azabdaftari, Gissou; Pop, Elena A.; Lee, Sang Gil; Su, L. Joseph; Fontham, Elizabeth T. H.; Bensen, Jeannette T.; Steck, Susan E.; Arab, Lenore; Mohler, James L.; Chen, Ming-Hui; Koo, Sung I.; Chun, Ock K.

    2015-01-01

    Background. Prostate cancer is the most common noncutaneous cancer and second leading cause of cancer-related mortality in men in the US. Growing evidence suggests that oxidative stress is involved in prostate cancer. Methods. In this study, thioredoxin 1 (Trx 1), an enzyme and subcellular indicator of redox status, was measured in prostate biopsy tissue from 55 men from the North Carolina-Louisiana Prostate Cancer Project. A pathologist blindly scored levels of Trx 1. The association between Trx 1 and the Gleason score, erythrocyte antioxidant enzyme activity, and dietary antioxidant intake was determined using Fisher's exact test. Results. Trx 1 levels in benign prostate tissue in men with incident prostate cancer were positively associated with the Gleason score (P = 0.01) and inversely associated with dietary antioxidant intake (P = 0.03). In prostate cancer tissue, Trx 1 levels were associated with erythrocyte glutathione peroxidase activity (P = 0.01). No association was found for other erythrocyte enzymes. Greater Gleason score of malignant tissue corresponds to a greater difference in Trx 1 levels between malignant and benign tissue (P = 0.04). Conclusion. These results suggest that the redox status of prostate tissue is associated with prostate cancer grade and both endogenous and exogenous antioxidants. PMID:26357575

  19. Thioredoxin 1 in Prostate Tissue Is Associated with Gleason Score, Erythrocyte Antioxidant Enzyme Activity, and Dietary Antioxidants.

    PubMed

    Vance, Terrence M; Azabdaftari, Gissou; Pop, Elena A; Lee, Sang Gil; Su, L Joseph; Fontham, Elizabeth T H; Bensen, Jeannette T; Steck, Susan E; Arab, Lenore; Mohler, James L; Chen, Ming-Hui; Koo, Sung I; Chun, Ock K

    2015-01-01

    Background. Prostate cancer is the most common noncutaneous cancer and second leading cause of cancer-related mortality in men in the US. Growing evidence suggests that oxidative stress is involved in prostate cancer. Methods. In this study, thioredoxin 1 (Trx 1), an enzyme and subcellular indicator of redox status, was measured in prostate biopsy tissue from 55 men from the North Carolina-Louisiana Prostate Cancer Project. A pathologist blindly scored levels of Trx 1. The association between Trx 1 and the Gleason score, erythrocyte antioxidant enzyme activity, and dietary antioxidant intake was determined using Fisher's exact test. Results. Trx 1 levels in benign prostate tissue in men with incident prostate cancer were positively associated with the Gleason score (P = 0.01) and inversely associated with dietary antioxidant intake (P = 0.03). In prostate cancer tissue, Trx 1 levels were associated with erythrocyte glutathione peroxidase activity (P = 0.01). No association was found for other erythrocyte enzymes. Greater Gleason score of malignant tissue corresponds to a greater difference in Trx 1 levels between malignant and benign tissue (P = 0.04). Conclusion. These results suggest that the redox status of prostate tissue is associated with prostate cancer grade and both endogenous and exogenous antioxidants. PMID:26357575

  20. The alteration of intracellular enzymes. III. The effect of temperature on the kinetics of altered and unaltered yeast catalase.

    PubMed

    FRASER, M J; KAPLAN, J G

    1955-03-20

    1. The very large increase in catalase activity (Euler effect) which follows treatment of yeast cells with CHCl(3), UV and n-propanol is accompanied by highly significant changes in kinetic properties. With respect to the enzymatic decomposition of H(2)O(2), the thermodynamic constants of the activation process micro, DeltaHdouble dagger, DeltaSdouble dagger, DeltaFdouble dagger, decrease, following treatment of the intracellular enzyme, by 4.5 kcal., 4.5 kcal., 10.1 e.u. and 1.7 kcal., respectively, all these differences being significant at the 1 per cent level. 2. Similar differences exist between the untreated, intracellular enzyme on the one hand, and the extracted yeast and crystalline beef liver catalases on the other. Significant differences in these thermodynamic constants do not exist among the treated intracellular, extracted yeast, and crystalline liver catalases. 3. These data provide unequivocal confirmation of the phenomenon of enzyme alteration reported previously, and confirm previous evidence that the extracted and crystalline enzymes have also undergone enzyme alteration and have properties which are identical with, or very similar to, those of the catalase altered in situ. 4. With respect to the process of heat destruction of catalase, the greatly diminished stability to heat of the altered enzymes, previously reported, has been confirmed. The thermodynamic constants of activation of this process have likewise changed following alteration, in the case of micro, DeltaHdouble dagger, and DeltaSdouble dagger an increase of 20.6 kcal., 20.6 kcal., and 70 e.u., respectively, and of DeltaFdouble dagger a decrease of 2.8 kcal. 5. All these data have been shown to be consistent with, and in some cases predictable from, the interfacial hypothesis, which states that the unaltered catalase exists within the cell adsorbed to some interface, in a partially, but reversibly, unfolded configuration of relatively low specificity; enzyme alteration consists, in

  1. [Effects of macrophytes pyrolysis bio-oil on Skeletonema costatum antioxidant enzyme activities].

    PubMed

    Yao, Yuan; Li, Feng-Min; Li, Yuan-Yuan; Shan, Shi; Li, Jie; Wang, Zhen-Yu

    2013-02-01

    In order to reveal the preliminary inhibition mechanisms of aquatic plants bio-oils on Skeletonema costatum, effects of Arundo donax L. 300 degees C, Ph. australis Trin. 400 degrees C and Typha orientalis Pres1 400 degrees C bio-oils on the concentration change of malondialdehyde (MDA) and the activity of antioxidant enzymes system (SOD, POD and CAT) were evaluated. The results showed that the higher Ihe Bio-oil concentrations, the higher the MDA contents in Skeletonema costatum was, and when the Bio-oil concentration was 10 mg.L-1 the MDA concentration increased with the reaction time. Superoxide dismutase (SOD) activity also increased with the increase of bio-oil concentration. For Arundo donax L 300 degrees C and Typha orientalis Presl 400 degrees C bio-oil, when the reaction time was longer, the S0D activity of Skeletonema costatum first increased and then decreased, and in both cases the maximum SOD activity was measured at 24 h. reaching 93.6 U (10(7) cells)-1 and 8.23 U (10(7) cells)-1, respectively. For Ph. australis Trin 400 degrees C bio-oil, the SOD activity kept increasing within 72 h. The peroxidase ( POD) activity of Skeletonema costatum also increased with the increase of bio-il concentrations. In the presence of Arundo donax L. 300 degrees C and Ph. australis Trin 400 degrees C bio-oil, the POD activity of Skeletonma, costatum first increased and then decreased, while with Typha orientalis Presl 400 degrees C bio-oil the POD activity increased with fluctuations. For all the three bio-oils, the catalase (CAT) activities increased first and then decreased when the reaction time was prolonged, and the higher the bio-oils concentration, the greater the CAT activity was. Pyrolysis bio-oils enhance the activity of antioxidant enzymes, leading to intracellular oxidative stress in the algae, which seems to be the main inhibitory mechanism for algae PMID:23668127

  2. Imidocarb dipropionate in the treatment of Anaplasma marginale in cattle: Effects on enzymes of the antioxidant, cholinergic, and adenosinergic systems.

    PubMed

    Doyle, Rovaina L; Fritzen, Alexandro; Bottari, Nathieli B; Alves, Mariana S; da Silva, Aniélen D; Morsch, Vera M; Schetinger, Maria Rosa C; Martins, João R; Santos, Julsan S; Machado, Gustavo; da Silva, Aleksandro S

    2016-08-01

    Anaplasmosis is a worldwide hemolytic disease in cattle caused by a gram-negative obligatory intracellular bacterium, characterized by anemia and jaundice. Among the treatments used for anaplasmosis is a drug called imidocarb dipropionate, also indicated as an immunomodulator agent. However, it causes side effects associated with increased levels of acetylcholine. In view of this, the effects of imidocarb dipropionate on the purinergic system, and antioxidant enzymes in animals naturally infected by Anaplasma marginale were evaluated. Young cattle (n = 22) infected by A. marginale were divided into two groups: the Group A consisted of 11 animals used as controls; and the Group B composed of 11 animals. Imidocarb dipropionate (5 mg/kg) was used subcutaneously to treat both groups (the Group A on day 6 and the Group B on day 0). The treatment reduced acetylcholinesterase (AChE), and adenosine deaminase (ADA) activities, and increased the dismutase superoxide and catalase activities. No changes on lipid peroxidation (TBARS levels) and BChE activities were noticed. These results suggest that imidocarb dipropionate used to treat A. marginale infection in cattle has effect on antioxidant enzymes, and significantly inhibits the enzymatic activities of ADA and AChE. PMID:27301742

  3. Systemic reduction of rice blast by inhibitors of antioxidant enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic acquired disease resistance (SAR) of plants may result from an oxidative burst in their tissues caused by both increased production of ROS and decreased antioxidant activity, in particular, enzymatic. Here we tested whether the exogenous inhibitors of superoxide dismutase (SOD) and catalase...

  4. Correlation of antioxidants and antioxidant enzymes to oxygen radical scavenging activities in berries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Berry fruits contain high levels of antioxidant compounds. In addition to the usual nutrients such as vitamins and minerals, berry fruits are also rich in flavonols, anthocyanidins, proanthocyanidins, catechins, flavones, and their glycosides. These antioxidants are capable of performing a number of...

  5. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide

    NASA Astrophysics Data System (ADS)

    Abbas, Aadil; Murtaza, Shahzad; Tahir, Muhammad Nawaz; Shamim, Saima; Sirajuddin, Muhammad; Rana, Usman Ali; Naseem, Khadija; Rafique, Hummera

    2016-08-01

    A series of novel N-benzylated derivatives of sulfonamide were synthesized and characterized by FT-IR, NMR and XRD analysis. The synthesized compounds were assayed for their biological potential. The biological studies involved antioxidant, enzyme inhibition, and DNA interaction studies. Antioxidant potential was investigated by Ferric Reducing Antioxidant Power assay (FRAP) and DPPH free radical scavenging method, the capacity of synthesized compounds to inhibit the enzyme's activity was assayed by using the well-known Elman method whereas DNA interaction studies were carried out with the help UV-Vis absorption titration method. Moreover, a direct correlation between enzyme inhibition activity and concentration of the compounds was observed both in experimental and molecular docking studies. DNA interaction studies of the synthesized compounds showed weak interaction.

  6. Sucrase-isomaltase deficiency in humans. Different mutations disrupt intracellular transport, processing, and function of an intestinal brush border enzyme.

    PubMed Central

    Naim, H Y; Roth, J; Sterchi, E E; Lentze, M; Milla, P; Schmitz, J; Hauri, H P

    1988-01-01

    Eight cases of congenital sucrase-isomaltase deficiency were studied at the subcellular and protein level with monoclonal antibodies against sucrase-isomaltase. At least three phenotypes were revealed: one in which sucrase-isomaltase protein accumulated intracellularly probably in the endoplasmic reticulum, as a membrane-associated high-mannose precursor, one in which the intracellular transport of the enzyme was apparently blocked in the Golgi apparatus, and one in which catalytically altered enzyme was transported to the cell surface. All patients expressed electrophoretically normal or near normal high-mannose sucrase-isomaltase. The results suggest that different, probably small, mutations in the sucrase-isomaltase gene lead to the synthesis of transport-incompetent or functionally altered enzyme which results in congenital sucrose intolerance. Images PMID:3403721

  7. Costus afer Possesses Carbohydrate Hydrolyzing Enzymes Inhibitory Activity and Antioxidant Capacity In Vitro

    PubMed Central

    Tchamgoue, Armelle D.; Tchokouaha, Lauve R. Y.; Tarkang, Protus A.; Kuiate, Jules-Roger; Agbor, Gabriel A.

    2015-01-01

    Diabetes mellitus is a metabolic disorder of glucose metabolism which correlates with postprandial hyperglycemia and oxidative stress. Control of blood glucose level is imperative in the management of diabetes. The present study tested the hypothesis that Costus afer, an antihyperglycemic medicinal plant, possesses inhibitory activity against carbohydrate hydrolyzing enzymes. Hexane, ethyl acetate, methanol, and water extracts were prepared from the leaf, stem, and rhizome of C. afer and subjected to phytochemical screening, assayed for α-amylase and α-glucosidase inhibitory activities and antioxidant capacity (determined by total phenolic and total flavonoids contents, ferric reducing antioxidant power (FRAP), and DPPH radical scavenging activity). All extracts inhibited α-amylase and α-glucosidase activities. Ethyl acetate rhizome and methanol leaf extracts exhibited the best inhibitory activity against α-amylase and α-glucosidase (IC50: 0.10 and 5.99 mg/mL), respectively. Kinetic analysis revealed two modes of enzyme inhibition (competitive and mixed). All extracts showed antioxidant capacity, with hexane extracts exhibiting the best activity. DPPH assay revealed that methanol leaf, rhizome, and ethyl acetate stem extracts (IC50 < 5 mg/mL) were the best antioxidants. The presence of bioactive compounds such as flavonoids, alkaloids, phenols, and tannins may account for the antioxidant capacity and carbohydrate hydrolyzing enzyme inhibitory activity of C. afer. PMID:26246844

  8. Antioxidant enzyme changes in neem, pigeonpea and mulberry leaves in two stages of maturity

    PubMed Central

    Goud, Prashanth B.; Kachole, Manvendra S.

    2012-01-01

    Differential expression of antioxidant enzymes in various growth and differentiation stages has been documented in several plant species. We studied here, the difference in the levels of protein content and antioxidant enzymes activity at two stages of maturity, named young and mature in neem (Azadirachta indica A. Juss), pigeonpea (Cajanus cajan (L.) mill sp) and mulberry (Morus Alba L.) leaves. The results showed that detached neem and pigeonpea mature leaves possessed higher activities of catalase (CAT) and peroxidase (POD) and lower activities of polyphenol oxidase (PPO) and ascorbate peroxidase (APX) as compared with young leaves. However, glutathione reductase (GR) showed higher activity in mature leaves of neem, whereas no change in its activity was observed in pigeonpea. On the other hand, antioxidant enzymes in mulberry showed either positive (PPO) or negative (POD, GR, APX) correlation with the progression of leaf maturity. Apparently the trend of changes in antioxidant enzymes activity during leaf development is species-specific: their activity higher at mature stage in some plants and lower in others. PMID:22895104

  9. Association of Age-Related Macular Degeneration with Erythrocyte Antioxidant Enzymes Activity and Serum Total Antioxidant Status

    PubMed Central

    Plestina-Borjan, Ivna; Katusic, Damir; Medvidovic-Grubisic, Maria; Supe-Domic, Daniela; Bucan, Kajo; Tandara, Leida; Rogosic, Veljko

    2015-01-01

    The aim was to estimate association of the oxidative stress with the occurrence of age-related macular degeneration (AMD). The activities of erythrocyte antioxidant enzymes: superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and additionally serum total antioxidant status (TAS) were used as indicators of the oxidative stress level. 57 AMD patients (32 early and 25 late AMD) and 50 healthy, age and gender matched controls were included. GPx activity (P < 0.001) and serum TAS (P = 0.015) were significantly lower in AMD patients. The difference was not significant for SOD or CAT activities. Significant interaction between GPx and SOD was detected (P = 0.003). At high levels of SOD activity (over 75th percentile), one standard deviation decrease in GPx increases the odds for AMD for six times (OR = 6.22; P < 0.001). ROC analysis revealed that combined values of GPx activity and TAS are significant determinants of AMD status. Accuracy, sensitivity, specificity, and positive and negative predictive values were 75%, 95%, 52%, 69%, and 90%, respectively. The study showed that low GPx activity and TAS are associated with AMD. SOD modulates the association of GPx and AMD. The results suggest that erythrocyte antioxidant enzymes activity and serum TAS could be promising markers for the prediction of AMD. PMID:25815109

  10. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    PubMed

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress. PMID:7926607

  11. Lycium chinensis Mill attenuates glutamate induced oxidative toxicity in PC12 cells by increasing antioxidant defense enzymes and down regulating ROS and Ca(2+) generation.

    PubMed

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2016-03-11

    Lycium chinensis Mill is a famous traditional Chinese medicine which displays several medicinal activities including antioxidant and neuroprotective activities. However, the mechanism of action towards the neuroprotective action has not been fully elucidated. This work was aimed at investigating the neuroprotective effects of L. chinensis Mill against glutamate-induced oxidative neurotoxicity in PC12 cells. Oxidative cell death was induced with 5mM glutamate in PC12 cells. Cell viability, LDH release, intracellular Ca(2+) concentration, reactive oxygen species (ROS) accumulation, GSH-Px, CAT and SOD antioxidant enzyme levels were measured. Our results indicated that pretreatment of PC12 cells with L. chinensis Mill extracts markedly attenuated the loss of cell viability, the release of lactate dehydrogenase (LDH), Ca(2+) overload, ROS generation, and cell apoptosis induced by glutamate toxicity. Furthermore, L. chinensis Mill extracts also significantly increased the levels of innate antioxidant enzymes GSH-Px, SOD and CAT in glutamate-induced PC12 cells. Conclusively, our results provided substantial evidence that L. chinensis Mill protected PC12 cells against glutamate-induced cell death by attenuating ROS generation, Ca(2+) influx, and increased the antioxidant defense capacity of PC12 cells against oxidative stress damages, suggesting the possible potential of extracts from the plant as sources of bioactive molecules in the treatment of neurodegenerative disorders. PMID:26536075

  12. Drug-metabolizing and antioxidant enzymes in monosodium L-glutamate obese mice.

    PubMed

    Matoušková, Petra; Bártíková, Hana; Boušová, Iva; Levorová, Lucie; Szotáková, Barbora; Skálová, Lenka

    2015-02-01

    The prevalence of obesity is rapidly increasing across the world. Physiologic alterations associated with obesity are known to alter enzyme expression and/or activities. As drug-metabolizing and antioxidant enzymes serve as defense system against potentially toxic compounds, their modulation might have serious consequences. In this work, we studied selected antioxidant and drug-metabolizing enzymes (DME) in monosodium glutamate-mouse model of obesity. Specific activities, protein, and mRNA expressions of these enzymes in liver as well as in small intestine were compared in obese male mice and in their lean counterparts. Furthermore, expression of the NF-E2-related factor 2 (Nrf2) and its relation to obesity were tested. Obtained results showed that obesity affects expression and/or activities of some DME and antioxidant enzymes. In obese mice, upregulation of UDP-glucuronosyltransferases 1A (UGT1A), NAD(P)H:quinone oxidoreductase 1 (NQO1), nuclear transcription factor Nrf2, and downregulation of some isoforms of glutathione S-transferases (GST) were observed. Most of these changes were tissue and/or isoform specific. NQO1 seems to be regulated transcriptionally via Nrf2, but other enzymes might be regulated post-transcriptionally and/or post-translationally. Enhanced expression of Nrf2 in livers of obese mice is expected to play a role in protective adaptation. In contrast, elevated activities of NQO1 and UGT1A may cause alterations in drug pharmacokinetics in obese individuals. Moreover, decreased capacity of GST in obese animals indicates potentially reduced antioxidant defense and weaker chemoprotection. PMID:25473020

  13. The influence of cadmium on the antioxidant enzyme activities in polychaete Perinereis aibuhitensis Grube (Annelida: Polychaeta)

    NASA Astrophysics Data System (ADS)

    Yuan, Xiutang; Chen, Aihua; Zhou, Yibing; Liu, Haiying; Yang, Dazuo

    2010-07-01

    The infaunal polychaete Perinereis aibuhitensis Grube, distributed widely along Asian coasts and estuaries, is considered a useful animal model in ecotoxicological tests and a promising candidate in biomonitoring programs. This paper deals with the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GSH-Px) in infaunal polychaete P. aibuhitensis exposed to a series of sublethal water-bound cadmium (Cd) concentrations (0, 0.34, 1.72, 3.44, 6.89, and 17.22 mg L-1) under a short-term exposure (1-8 d). The results indicate that the SOD and GSH-Px activities in P. aibuhitensis are stimulated first and then renewed to the original level. The CAT activity of worms decreases at an earlier exposure time but increases to the control values at a later exposure time. Our study suggests that Cd can interfere with the antioxidant defense system of P. aibuhitensis. However, the changes in antioxidant enzyme activities for this species do not show the best promise as biomarkers in Cd biomonitoring of estuarine and coastal zones because weak or non-dose-effect relationships between the antioxidant enzymes activities and Cd levels are found.

  14. Extract from Eugenia punicifolia is an antioxidant and inhibits enzymes related to metabolic syndrome.

    PubMed

    Lopes Galeno, Denise Morais; Carvalho, Rosany Piccolotto; Boleti, Ana Paula de Araújo; Lima, Arleilson Sousa; Oliveira de Almeida, Patricia Danielle; Pacheco, Carolina Carvalho; Pereira de Souza, Tatiane; Lima, Emerson Silva

    2014-01-01

    The present study aimed to investigate in vitro biological activities of extract of Eugenia punicifolia leaves (EEP), emphasizing the inhibitory activity of enzymes related to metabolic syndrome and its antioxidant effects. The antioxidant activity was analyzed by free radicals scavengers in vitro assays: DPPH·, ABTS(·+), O2(·−), and NO· and a cell-based assay. EEP were tested in inhibitory colorimetric assays using α-amylase, α-glucosidase, xanthine oxidase, and pancreatic lipase enzymes. The EEP exhibited activity in ABTS(·+), DPPH·, and O2(·−) scavenger (IC50 = 10.5 ± 1.2, 28.84 ± 0.54, and 38.12 ± 2.6 μg/mL), respectively. EEP did not show cytotoxic effects, and it showed antioxidant activity in cells in a concentration-dependent manner. EEP exhibited inhibition of α-amylase, α-glucosidase, and xanthine oxidase activities in vitro assays (IC50 = 122.8 ± 6.3; 2.9 ± 0.1; 23.5 ± 2.6), respectively; however, EEP did not inhibit the lipase activity. The findings supported that extract of E. punicifolia leaves is a natural antioxidant and inhibitor of enzymes, such as α-amylase, α-glucosidase, and xanthine oxidase, which can result in a reduction in the carbohydrate absorption rate and decrease of risks factors of cardiovascular disease, thereby providing a novel dietary opportunity for the prevention of metabolic syndrome. PMID:24078187

  15. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    PubMed Central

    Chang, Dong; Zhang, Xuefei; Rong, Shengzhong; Sha, Qian; Liu, Peipei; Han, Tao; Pan, Hongzhi

    2013-01-01

    Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and oxidation degradation products of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), conjugated diene (CD), advanced oxidation protein products (AOPP), protein carbonyl (PC), and 8-hydroxydeoxyguanosine (8-OHdG). Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P < 0.05). The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P < 0.05, P < 0.01). Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P < 0.01). And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis. PMID:23781296

  16. CHANGES OF LIPOPEROXIDATION AND ANTIOXIDATIVE ENZYMES DURING CRUSH-SYNDROME MODELLING.

    PubMed

    Gamkrelidze, N; Sanikidze, T; Pavliashvili, N; Petriashvili, T; Topuridze, M

    2016-02-01

    Crush-syndrome (CS) is characterized by numerous pathological deviations due to the soft tissue damage and their further reperfusion. The aim of the study was to investigate pro- and antioxidative processes during different regimens of crush syndrome. The experiment was carried out on randomly selected 200-250gr. mass 50 laboratory rats using crush syndrome modeling classical method. Investigations were conducted at various stages of compression and decompression period. Activity of antioxidant enzymes - total ceruloplasmin, oxidized ceruloplasmin was determined in blood serum. LOO. and free oxygen species were as well determined with the use of relevant methods. According to our findings we can conclude that: - Lipoperoxidation intensity increases in compliance with crush syndrome duration; - Short-term (3-hour) compression causes enhancement of lipoperoxidation however, in further 1 hour decompression there is revealed a trend toward normalization of processes. Lipoperoxides and free oxygen species content decreases and the antioxidant enzymes activity is almost restored; - Long lasting compression (6 hours) leads to severe disorders in the body (total ceruloplasmin impaired production and after 6 hours from decompression antioxidant enzymes inactivation). PMID:27001791

  17. Antioxidant enzymes attenuate myocardial stunning in the conscious dog

    SciTech Connect

    Triana, J.F.; Unisa, A.; Bolli, R. )

    1990-02-26

    Several studies have shown that postischemic myocardial dysfunction (myocardial stunning) is attenuated by antioxidants, implying a pathogenetic role of oxy-radicals in this phenomenon. However, since all these studies have been performed in open-chest preparations, artifacts due to anesthesia, trauma, and other nonphysiologic conditions cannot be excluded. Accordingly, chronically instrumented dogs underwent a 15-minute occlusion (o) of the left anterior descending artery followed by reperfusion. Dogs received i.v. either saline or superoxide dismutase (SOD) plus catalase (CAT) (16,000 U/kg and 55,000 U/kg, respectively, over 1 hour starting 15 minutes before O). Regional myocardial function was assessed as systolic wall thickening (WTh) using a pulsed Doppler probe. WTh after reperfusion was significantly greater in treated dogs, and this difference could not be ascribed to differences in collateral flow or hemodynamics. The authors conclude that SOD plus catalase attenuate myocardial stunning in the conscious dog, indicating that oxy-radicals play a pathogenetic role in this phenomenon under physiologic conditions.

  18. Antioxidant enzymes and lipid peroxidation in endometrium of patients with polyps, myoma, hyperplasia and adenocarcinoma

    PubMed Central

    2009-01-01

    Background Oxidative stress and impaired antioxidant system have been proposed as a potential factors involved in the pathophysiology of diverse disease states, including carcinogenesis. In this study, we explored the lipid peroxidation levels and antioxidant enzyme activities in women diagnosed with different forms of gynecological diseases in order to evaluate the antioxidant status in endometrium of such patients. Methods Endometrial tissues of gynecological patients with different diagnoses were collected and subjected to assays for superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and lipid hydroperoxides. Results Superoxide dismutase activity was significantly decreased (50% in average) in hyperplastic and adenocarcinoma patients. Activities of both glutathione peroxidase and glutathione reductase were increased 60% and 100% on average, in hyperplastic patients, while in adenocarcinoma patients only glutathione reductase activity was elevated 100%. Catalase activity was significantly decreased in adenocarcinoma patients (47%). Lipid hydroperoxides level was negatively correlated to superoxide dismutase and catalase activities, and positively correlated to glutathione peroxidase and glutathione reductase activities. Conclusions This study provided the first comparison of antioxidant status and lipid peroxidation in endometrial tissues of patients with polyps, myoma, hyperplasia and adenocarcinoma. The results showed that patients with premalignant (hyperplastic) and malignant (adenocarcinoma) lesions had enhanced lipid peroxidation and altered uterine antioxidant enzyme activities than patients with benign uterine diseases, polyps and myoma, although the extent of disturbance varied with the diagnosis. Further investigation is needed to clarify the mechanisms responsible for the observed alterations and whether lipid hydroperoxide levels and antioxidant enzyme activities in uterus of gynecological patients might be used as

  19. Effects of Omega-3 Fatty Acids Supplement on Antioxidant Enzymes Activity in Type 2 Diabetic Patients

    PubMed Central

    TOORANG, Fatemeh; DJAZAYERY, Abolghassem; DJALALI, Mahmoud

    2016-01-01

    Background: Diabetes is a major cause of death. Oxidative stress mainly caused by hyperglycemia is the primary reason of related complications. Omega-3 fatty acids are prescribed in diabetes but the effect on antioxidant defense is controversial. This study investigated effects of omega-3 supplementation on antioxidant enzymes activity in type 2 diabetic patients. Methods: A randomized, placebo controlled, double blind clinical trial was performed on 90 type2 diabetic patients. The treatment group took, daily, three capsules of omega-3 for two mo, which totally provided 2714mg omega-3 (EPA=1548 mg, DHA=828 mg and 338 mg of other omega=3 fatty acids). Placebo contained 2100 mg sunflower oil (12% SFA, 65% linoleic acid, 23% MUFA), which is the main oil used in the study population. Food intakes, anthropometric and demographic characteristics, and therapeutic regimen data were recorded before and after the intervention. Fasting blood samples were taken before and after the intervention to measure super oxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity in erythrocytes. Results: A total of 81 subjects completed the study. Two study groups were similar as regards duration of diabetes, age and the enzymes at baseline. Energy and macro- and micronutrients intakes, weight and hypoglycemic agent consumption were similar in the two groups at baseline and did not change. Supplementation had no effect on antioxidant enzyme status. Glycated hemoglobin showed a significant reduction by supplementation. Conclusion: Daily supplementation of 2714 mg mega-3 for two mo results in a significant reduction in HbA1c level in type2 diabetic patients with no effects on antioxidant enzymes activity. PMID:27141496

  20. Antioxidant enzyme dysfunction in monocytes and CSF of Hispanic women with HIV-associated cognitive impairment

    PubMed Central

    Velázquez, Ixane; Plaud, Marinés; Wojna, Valerie; Skolasky, Richard; Laspiur, Juliana Pérez; Meléndez, Loyda M.

    2010-01-01

    HIV-associated cognitive neurological disorders (HAND) prevail in the antiretroviral therapy era. Proteomics analysis of CSF revealed expression of Cu/Zn superoxide dismutase (Cu/Zn SOD) in Hispanic women with cognitive impairment (CI). We tested the hypothesis that there is reduced capacity of antioxidant enzymes in CI by measures of expression and activity of Cu/Zn SOD, catalase, and Se-glutathione peroxidase in HAND. Our results showed that the function of these antioxidants was decreased in the CSF and monocytes of women with CI. These findings have important implications regarding their possible contribution to oxidative stress and in the diagnosis and therapy for HAND. PMID:19101040

  1. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles.

    PubMed

    Chorny, Michael; Hood, Elizabeth; Levy, Robert J; Muzykantov, Vladimir R

    2010-08-17

    Antioxidant enzymes have shown promise as a therapy for pathological conditions involving increased production of reactive oxygen species (ROS). However the efficiency of their use for combating oxidative stress is dependent on the ability to achieve therapeutically adequate levels of active enzymes at the site of ROS-mediated injury. Thus, the implementation of antioxidant enzyme therapy requires a strategy enabling both guided delivery to the target site and effective protection of the protein in its active form. To address these requirements we developed magnetically responsive nanoparticles (MNP) formed by precipitation of calcium oleate in the presence of magnetite-based ferrofluid (controlled aggregation/precipitation) as a carrier for magnetically guided delivery of therapeutic proteins. We hypothesized that antioxidant enzymes, catalase and superoxide dismutase (SOD), can be protected from proteolytic inactivation by encapsulation in MNP. We also hypothesized that catalase-loaded MNP applied with a high-gradient magnetic field can rescue endothelial cells from hydrogen peroxide toxicity in culture. To test these hypotheses, a family of enzyme-loaded MNP formulations were prepared and characterized with respect to their magnetic properties, enzyme entrapment yields and protection capacity. SOD- and catalase-loaded MNP were formed with average sizes ranging from 300 to 400 nm, and a protein loading efficiency of 20-33%. MNP were strongly magnetically responsive (magnetic moment at saturation of 14.3 emu/g) in the absence of magnetic remanence, and exhibited a protracted release of their cargo protein in plasma. Catalase stably associated with MNP was protected from proteolysis and retained 20% of its initial enzymatic activity after 24h of exposure to pronase. Under magnetic guidance catalase-loaded MNP were rapidly taken up by cultured endothelial cells providing increased resistance to oxidative stress (62+/-12% cells rescued from hydrogen peroxide induced

  2. Effect of cold adaptation on activities of relevant enzymes and antioxidant system in rats

    PubMed Central

    Xing, Ji-Qing; Zhou, Yang; Chen, Jian-Feng; Li, Shang-Bin; Fang, Wei; Yang, Jun

    2014-01-01

    Exercise in cold environments can cause significant metabolic regulation and antioxidant behavior. For discussing enzymatic responses towards cold adaptation, we investigated enzyme activities of adenylate cyclase (AC) and phosphodiesterase (PDE) in liver, skeletal muscle, and brown adipose tissue (BAT), as well as Na+·K+ ATPase and Na+/K+ ratio in blood. Malondialdehyde (MDA) and superoxide dismutase (SOD) activity in blood were also studied to address the effect of cold adaptation on oxidative damage and antioxidant system. Experimental results indicated that enzyme activities in liver, skeletal muscle and BAT maintained relatively constant for the control group. For the cold adaptation group, enzyme activities in liver and skeletal muscle were in high levels at the beginning, and then gradually decreased to similar values with the control group. However, enzyme activities in BAT performed an increasing trend and significantly higher than the control at the end. In addition, decreased oxidative damage and activated antioxidant system was observed along with the cold adaptation process. PMID:25550936

  3. Age composition and antioxidant enzyme activities in blood of Black Sea teleosts.

    PubMed

    Rudneva, Irina I; Skuratovskaya, Ekaterina N; Kuzminova, Natalya S; Kovyrshina, Tatyana B

    2010-03-01

    Age composition and age-related trends of antioxidant enzyme activities superoxide dismutase (SOD), catalase (CAT), peroxidase (PER), glutathione reductase (GR) and glutathione-S-transferase (GST) in the blood of seven Black Sea teleosts (Carangidae, Centracanthidae, Gadidae, Mullidae, Gobiidae and Scorpaenidae) collected in marine coastal area of Sevastopol (Ukraine) were studied. In the catches the animals of 1-2 years of age dominated while in the Scorpaena porcus population the number of relatively elder individuals belonging to classes of 3-4 years was the highest. The trends of antioxidant enzyme activities in blood were not uniform. Three types of age-dependent responses were indicated in fish blood: 1. enzymatic activity did not change with age; 2. enzymatic activity decreased with age and 3. enzyme activity increased with age or varied unclearly. The interspecies differences of age-related enzymatic activities associated with the specificity of fish biology and ecology were indicated. Despite no clear evidence of age-related differences between fish species belonging to different ecological groups both benthic forms exhibited similar age-dependent trends of SOD and PER. The correlations between blood antioxidant enzyme activities in fish belonging to suprabenthic and benthic/pelagic groups demonstrated the intermediate values as compared to the benthic and pelagic forms. The results suggest the importance of age trends for biomarkers in fish monitoring studies. PMID:19897051

  4. Solar simulated irradiation modulates gene expression and activity of antioxidant enzymes in cultured human dermal fibroblasts.

    PubMed

    Leccia, M T; Yaar, M; Allen, N; Gleason, M; Gilchrest, B A

    2001-08-01

    Exposure of skin to solar irradiation generates reactive oxygen species that damage DNA, membranes, mitochondria and proteins. To protect against such damage, skin cells have evolved antioxidant enzymes including glutathione peroxidase (GSH-Px), copper and zinc-dependent superoxide dismutase (SOD1), the mitochondrial manganese-dependent superoxide dismutase (SOD2), and catalase. This report examines the effect of a single low or moderate dose exposure to solar-simulating combined UVB and UVA irradiation on the gene expression and activities of these antioxidant enzymes in cultured normal human fibroblasts. We find that both doses initially decrease GSH-Px, SOD2 and catalase activities, but within 5 days after irradiation the activities of the enzymes return to pre-irradiation level (catalase) or are induced slightly (SOD1, GSH-Px) or substantially (SOD2) above the basal level. For SOD1, SOD2 and catalase, the higher dose also detectably modulates the mRNA level of these enzymes. Our results indicate that the effects of a single physiologic solar simulated irradiation dose persist for at least several days and suggest that skin cells prepare for subsequent exposure to damaging irradiation by upregulating this antioxidant defense system, in particular the mitochondrial SOD2. Our findings are consistent with the existence of a broad-based SOS-like response in irradiated human skin. PMID:11493316

  5. Effects of Oxygen Limitation on Xylose Fermentation, Intracellular Metabolites, and Key Enzymes of Neurospora crassa AS3.1602

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihua; Qu, Yinbo; Zhang, Xiao; Lin, Jianqiang

    The effects of oxygen limitation on xylose fermentation of Neurospora crassa AS3.1602 were studied using batch cultures. The maximum yield of ethanol was 0.34 g/g at oxygen transfer rate (OTR) of 8.4 mmol/L·h. The maximum yield of xylitol was 0.33 g/g at OTR of 5.1 mmol/L·h. Oxygen limitation greatly affected mycelia growth and xylitol and ethanol productions. The specific growth rate (μ) decreased 82% from 0.045 to 0.008 h-1 when OTR changed from 12.6 to 8.4 mmol/L·h. Intracellular metabolites of the pentose phosphate pathway, glycolysis, and tricarboxylic acid cycle were determined at various OTRs. Concentrations of most intracellular metabolites decreased with the increase in oxygen limitation. Intracellular enzyme activities of xylose reductase, xylitol dehydrogenase, and xylulokinase, the first three enzymes in xylose metabolic pathway, decreased with the increase in oxygen limitation, resulting in the decreased xylose uptake rate. Under all tested conditions, transaldolase and transketolase activities always maintained at low levels, indicating a great control on xylose metabolism. The enzyme of glucose-6-phosphate dehydrogenase played a major role in NADPH regeneration, and its activity decreased remarkably with the increase in oxygen limitation.

  6. Modulation of antioxidant enzymes in bleomycin-treated rats by vitamin C and beta-carotene.

    PubMed

    Desai, V G; Lyn-Cook, L E; Aidoo, A; Casciano, D A; Feuers, R J

    1997-01-01

    Bleomycin (BLM), an antineoplastic drug, is known to induce DNA strand breaks and is also mutagenic in mammalian cells; however, its mechanism of action is not well understood. It has been proposed that BLM cytotoxicity is mediated through the generation of reactive oxygen species. We have determined the effects of BLM on endogenous hepatic antioxidant enzymes such as glutathione peroxidase (GPx), glutathione reductase, and glucose-6-phosphate dehydrogenase in rats exposed to BLM in conjunction with dietary vitamins, vitamin C and beta-carotene (BC). Male Fischer 344 rats of two different age groups were treated with BLM in the presence or absence of antioxidant vitamins. In control animals, an age-associated decrease in GPx activity was noted (p < 0.05). The decrease in GPx activity observed in BLM-treated old animals given vitamin C was significant (p < 0.05) compared with BLM-treated young animals fed vitamin C. BC moderately induced GPx and glutathione reductase activities in old BLM-treated animals; however, the increase in GPx was statistically significant (p < 0.05) only compared with old controls. A similar increase was noted in the activities of all the enzymes examined in young animals. Our results indicate that BLM exposure was accompanied by alterations in the activities of endogenous antioxidant enzymes, with a profound increase in activities occurring in old animals. In addition, the observed enzyme activities were modulated by antioxidant vitamin administration. The observation that both vitamins displayed differential effects on the enzyme activities also suggests that vitamin C and BC exert their effects by separate mechanisms. PMID:9427975

  7. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905.

    PubMed

    Wang, Chao; Wang, Xun; Wang, Peifang; Chen, Bin; Hou, Jun; Qian, Jin; Yang, Yangyang

    2016-10-01

    Toxic cyanobacterial blooms have occurred in various water bodies during recent decades and made serious health hazards to plants, animals and humans. Iron is an important micronutrient for algal growth and recently, the concentration of which has increased remarkably in freshwaters. In this paper, the cyanobacterium Microcystis aeruginosa FACHB-905 was cultivated under non-iron (0μM), iron-limited (10μM) and iron-replete (100μM) conditions to investigate the effects of iron on growth, antioxidant enzyme activity, EPS and microcystin production. The results showed that algal cell density and chlorophyll-a content were maximal at the highest iron concentration. Antioxidant enzymes activity increased notably under all three conditions in the early stage of experiment, of which the SOD activity recovered soon from oxidative stress in 10μM group. The productions of some protein-like substances and humic acid-like substances of bound EPS were inhibited in iron-containing groups in the early stage of experiment while promoted after the adaptation period of Microcystis aeruginosa. Iron addition is a factor affecting the formation of cyanobacterial blooms through its impact on the content of LB-EPS and the composition of TB-EPS. The intracellular MC-LR concentration and the productivity potential of MC-LR were the lowest in 0μM group and highest in 10μM group. No obvious extracellular release of MC-LR was observed during the cultivation time. Therefore, iron addition can promote the physiological activities of M. aeruginosa, but a greater harm could be brought into environment under iron-limited (10μM) condition than under iron-replete (100μM) condition. PMID:27337497

  8. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress.

    PubMed

    Li, Yunbo; Cao, Zhuoxiao; Zhu, Hong

    2006-01-01

    Resveratrol (3,4',5-trihydroxystilbene), a polyphenolic compound found in mulberries, grapes and red wine has been demonstrated to be capable of protecting against oxidative cardiovascular pathophysiology. However, the underlying cellular and biochemical mechanisms remain to be elucidated. This study was undertaken to determine if resveratrol could upregulate endogenous antioxidants and phase 2 enzymes in cultured aortic smooth muscle cells (ASMCs), and if such increased cellular defenses could provide protection against oxidative and electrophilic vascular cell injury. Incubation of rat ASMCs with resveratrol at low micromolar concentrations resulted in a significant induction of a scope of cellular antioxidants and phase 2 enzymes in a concentration- and/or time-dependent fashion. These cytoprotective factors include superoxide dismutase, catalase, glutathione, glutathione reductase, glutathione peroxidase, glutathione S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NOQ1). Notably, induction of catalase, GST, and NOQ1 was most remarkable among the above resveratrol-inducible antioxidants and phase 2 enzymes. Moreover, resveratrol treatment also significantly increased the mRNA expression of catalase, GSTA1, and NQO1 in a time-dependent manner. Pretreatment of ASMCs with resveratrol afforded a remarkable protection against xanthine oxidase (XO)/xanthine- or 4-hydroxy-2-nonenal-induced cytotoxicity, as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Resveratrol pretreatment also led to a marked reduction in intracellular accumulation of reactive oxygen species in ASMCs after incubation with XO/xanthine. Taken together, this study demonstrates that a scope of key endogenous antioxidants and phase 2 enzymes in cultured ASMCs can be upregulated by resveratrol at low micromolar concentrations, and that such chemically-elevated cellular defenses rendered cells increased resistance to oxidative and electrophilic

  9. Moringa oleifera Enhances Liver Antioxidant Status via Elevation of Antioxidant Enzymes Activity and Counteracts Paracetamol-induced Hepatotoxicity.

    PubMed

    Uma, N; Fakurazi, S; Hairuszah, I

    2010-08-01

    This study investigated the role of antioxidant enzyme system following crude hydroethanolic extract of Moringa oleifera leaves (MO) in acute paracetamol (PCM) induced hepatotoxicity. Hydroethanolic extract (80%) of MO (200 mg/kg and 800 mg/kg; p.o) was pre-administered before a single oral dose of 3 g/kg PCM intoxication to male Sprague-Dawley rats. Pre-treatment of the extract was found to have reduced lipid peroxidation level when compared to the group treated with PCM only. The level of glutathione peroxidase (GPx), glutathione-Stransferase (GST) and glutathione reductase (GR) was restored to near normal in groups that were pre-treated with MO. Histopathological studies have further confirmed the hepatoprotective activity of MO compared to group treated with PCM only. The results obtained were comparable to silymarin (200 mg/kg; p.o). The MO extract was found to have significantly protected the liver against toxicity following PCM intoxication by enhancing the level of antioxidant enzyme activity. PMID:22691934

  10. Role of antioxidant enzymes and antioxidant compound probucol in antiradical protection of pancreatic beta-cells during alloxan-induced diabetes.

    PubMed

    Lankin, V Z; Korchin, V I; Konovalova, G G; Lisina, M O; Tikhaze, A K; Akmaev, I G

    2004-01-01

    The severity of disturbances in carbohydrate metabolism in rats with alloxan-induced diabetes depended on activity of antioxidant enzymes in the target organ (pancreas). Damage to the pancreas is related to intensive generation of reactive oxygen species, free radicals, and lipid peroxides. Alloxan-induced diabetes in rats is a free radical disease, which in vivo serves as a useful model for the search for pharmacological preparations with antiradical and antioxidant properties. The antioxidant compound probucol indirectly increased activity of antioxidant enzymes in the pancreas and prevented the development of alloxan-induced diabetes in rats. Our results indicate that different sensitivity of laboratory animals of various species (rats and guinea pigs) to the influence of alloxan is associated with abnormal variations in activity of enzymes utilizing reactive oxygen species and lipid peroxides in mammalian pancreatic cells. PMID:15085236

  11. Changes in Nutrient Composition, Antioxidant Properties, and Enzymes Activities of Snake Tomato (Trichosanthes cucumerina) during Ripening.

    PubMed

    Badejo, Adebanjo Ayobamidele; Adebowale, Adeyemi Philips; Enujiugha, Victor Ndigwe

    2016-06-01

    Snake tomato (Trichosanthes cucumerina) has been cultivated and used as a replacement for Lycopersicum esculentum in many Asian and African diets. Matured T. cucumerina fruits were harvested at different ripening stages and separated into coats and pulps for analyses to determine their suitability for use in culinary. They were analyzed for the nutritional composition and antioxidant potential using different biochemical assays [1,1-diphenyl-2-picrylhydrazyl, 2,2'-azinobis( 3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities, and ferric reducing antioxidant power] and antioxidative enzymes activities. The nutritional composition revealed that T. cucumerina contains over 80% water and is very rich in fiber, thus it can serve as a good natural laxative. The lycopene and β-carotene contents were especially high in the ripe pulp with values of 21.62±1.22 and 3.96±0.14 mg/100 g, respectively. The ascorbic acid content was highest in the pulp of unripe fruit with a value of 56.58±1.08 mg/100 g and significantly (P<0.05) decreased as ripening progressed. The antioxidant potential of the fruits for the 3 assays showed that unripe pulp> ripe coat> ripe pulp> unripe coat. There were decreases in the antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) activities, with the exception of catalase, as ripening progressed in the fruits. These decreased activities may lead to the softening of the fruit during ripening. Harnessing the antioxidative potential of T. cucumerina in culinary through consumption of the coats and pulps will alleviate food insecurity and help maintain good health among many dwellers in sub-Saharan Africa and Southeast Asia. PMID:27390724

  12. Changes in Nutrient Composition, Antioxidant Properties, and Enzymes Activities of Snake Tomato (Trichosanthes cucumerina) during Ripening

    PubMed Central

    Badejo, Adebanjo Ayobamidele; Adebowale, Adeyemi Philips; Enujiugha, Victor Ndigwe

    2016-01-01

    Snake tomato (Trichosanthes cucumerina) has been cultivated and used as a replacement for Lycopersicum esculentum in many Asian and African diets. Matured T. cucumerina fruits were harvested at different ripening stages and separated into coats and pulps for analyses to determine their suitability for use in culinary. They were analyzed for the nutritional composition and antioxidant potential using different biochemical assays [1,1-diphenyl-2-picrylhydrazyl, 2,2′-azinobis( 3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities, and ferric reducing antioxidant power] and antioxidative enzymes activities. The nutritional composition revealed that T. cucumerina contains over 80% water and is very rich in fiber, thus it can serve as a good natural laxative. The lycopene and β-carotene contents were especially high in the ripe pulp with values of 21.62±1.22 and 3.96±0.14 mg/100 g, respectively. The ascorbic acid content was highest in the pulp of unripe fruit with a value of 56.58±1.08 mg/100 g and significantly (P<0.05) decreased as ripening progressed. The antioxidant potential of the fruits for the 3 assays showed that unripe pulp> ripe coat> ripe pulp> unripe coat. There were decreases in the antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) activities, with the exception of catalase, as ripening progressed in the fruits. These decreased activities may lead to the softening of the fruit during ripening. Harnessing the antioxidative potential of T. cucumerina in culinary through consumption of the coats and pulps will alleviate food insecurity and help maintain good health among many dwellers in sub-Saharan Africa and Southeast Asia. PMID:27390724

  13. Enzyme Inhibitory Properties, Antioxidant Activities, and Phytochemical Profile of Three Medicinal Plants from Turkey.

    PubMed

    Zengin, Gokhan; Guler, Gokalp Ozmen; Aktumsek, Abdurrahman; Ceylan, Ramazan; Picot, Carene Marie Nancy; Mahomoodally, M Fawzi

    2015-01-01

    We aimed to investigate the inhibitory potential of three medicinal plants (Hedysarum varium, Onobrychis hypargyrea, and Vicia truncatula) from Turkey against key enzymes involved in human pathologies, namely, diabetes (α-amylase and α-glucosidase), neurodegenerative disorders (tyrosinase, acetylcholinesterase, and butyrylcholinesterase), and hyperpigmentation (tyrosinase). The antioxidant potential, phenolic and flavonoid content of ethyl acetate, and methanolic and aqueous extracts were investigated using in vitro assays. The total antioxidant capacity (TAC), β-carotene/linoleic acid bleaching activity, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH(•)), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(•+)), cupric ion reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), and metal chelating activity on ferrous ions were used to evaluate the antioxidant capabilities of the extracts. The half-maximal inhibitory concentrations (IC50) of the extracts on cholinesterase, tyrosinase, and α-amylase were significantly higher than the references, galantamine, kojic acid, and acarbose, respectively. The half-maximal effective concentrations (EC50) of the extracts on TAC, CUPRAC, and FRAP were significantly higher than trolox. The phenol and flavonoid contents of the plant extracts were in the range 20.90 ± 0.190-83.25 ± 0.914 mg gallic acid equivalent/g extract and 1.45 ± 0.200-39.71 ± 0.092 mg rutin equivalent/g extract, respectively. The plants were found to possess moderate antioxidant capacities and interesting inhibitory action against key enzymes. PMID:26798334

  14. Enzyme Inhibitory Properties, Antioxidant Activities, and Phytochemical Profile of Three Medicinal Plants from Turkey

    PubMed Central

    Zengin, Gokhan; Guler, Gokalp Ozmen; Aktumsek, Abdurrahman; Ceylan, Ramazan; Picot, Carene Marie Nancy; Mahomoodally, M. Fawzi

    2015-01-01

    We aimed to investigate the inhibitory potential of three medicinal plants (Hedysarum varium, Onobrychis hypargyrea, and Vicia truncatula) from Turkey against key enzymes involved in human pathologies, namely, diabetes (α-amylase and α-glucosidase), neurodegenerative disorders (tyrosinase, acetylcholinesterase, and butyrylcholinesterase), and hyperpigmentation (tyrosinase). The antioxidant potential, phenolic and flavonoid content of ethyl acetate, and methanolic and aqueous extracts were investigated using in vitro assays. The total antioxidant capacity (TAC), β-carotene/linoleic acid bleaching activity, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH•), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), cupric ion reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), and metal chelating activity on ferrous ions were used to evaluate the antioxidant capabilities of the extracts. The half-maximal inhibitory concentrations (IC50) of the extracts on cholinesterase, tyrosinase, and α-amylase were significantly higher than the references, galantamine, kojic acid, and acarbose, respectively. The half-maximal effective concentrations (EC50) of the extracts on TAC, CUPRAC, and FRAP were significantly higher than trolox. The phenol and flavonoid contents of the plant extracts were in the range 20.90 ± 0.190–83.25 ± 0.914 mg gallic acid equivalent/g extract and 1.45 ± 0.200–39.71 ± 0.092 mg rutin equivalent/g extract, respectively. The plants were found to possess moderate antioxidant capacities and interesting inhibitory action against key enzymes. PMID:26798334

  15. Growth, osmolyte concentration and antioxidant enzymes in the leaves of Sesuvium portulacastrum L. under salinity stress.

    PubMed

    Kannan, P Ramesh; Deepa, S; Kanth, Swarna V; Rengasamy, R

    2013-12-01

    In this study, growth and osmolyte concentration in the leaves of halophyte, Sesuvium portulacastrum, were studied with respect to salinity. Therefore, the changes in shoot growth, leaf tissue water content, osmolyte concentration (proline content, glycine betaine) and antioxidant enzymes [polyphenol oxidase (PPO), superoxide dismutase (SOD) and catalase (CAT)] were investigated. The 30-day old S. portulacastrum plants were subjected to 100, 200, 300, 400, 500 and 600 mM NaCl for 28 days. The plant growth was steadily increased up to 500 mM NaCl stress at 28 days. TWC was higher in 300 mM NaCl treated leaves than that of 600 mM NaCl. Salinity stress induced the accumulation of osmolyte concentration when compared to control during the study period. The antioxidant enzymes PPO, CAT and SOD were increased under salinity. PMID:24013859

  16. Effect of hypobaric storage on quality, antioxidant enzyme and antioxidant capability of the Chinese bayberry fruits

    PubMed Central

    2013-01-01

    Background The Chinese bayberry (Myrica rubra Sieb. and Zucc.) is a subtropical fruit native to China, with unique flavor, sweet and sour taste, and high nutrition and health values. The fruit is highly perishable and susceptible to mechanical injury, physiological deterioration and fungal decay once harvested. This study was to investigate the effect of hypobaric storage on the quality of Chinese bayberry fruit and then develop storage technology to prolong the supply of the fruit. Results The fruit stored under hypobaric conditions exhibited lower decay, higher titratable acidity and total phenolics compared with those stored under normal atmospheric conditions. Hypobaric storage significantly reduced malonaldehyde accumulation, respiratory rate and maintained high catalase and peroxidase activities of Chinese bayberry fruit. Ferric reducing antioxidant power was also higher in the fruit stored under hypobaric condition than those under normal atmospheric conditions. Conclusion Hypobaric storage improved the metabolism, antioxidant system and postharvest quality of Chinese bayberry fruit and provided an effective alternative method to prolong the storage life of this fruit. PMID:23311675

  17. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    PubMed Central

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862

  18. Effects of smokeless dipping tobacco (Naswar) consumption on antioxidant enzymes and lipid profile in its users.

    PubMed

    Sajid, Faiza; Bano, Samina

    2015-09-01

    Dipping tobacco, traditionally referred to as moist snuff, is a type of finely ground, moistened smokeless tobacco product. Naswar is stuffed in the floor of the mouth under the lower lip, or inside the cheek, for extended periods of time. Tobacco use causes dyslipidemia and also induces oxidative stress, leading to alteration in levels of antioxidant enzymes. Dyslipidemia and oxidative stress in turn play a vital role in the development of cardiovascular disease (CVD). Studies conducted on smokeless tobacco products reveal contradictory findings regarding its effects on lipid profile and antioxidant enzymes. As use of Naswar is quite common in Pakistan, the current study aimed to evaluate levels of the antioxidant enzymes viz glutathione per oxidase (GPx) and super oxide dismutase (SOD), alongside lipid profile parameters such as total cholesterol, triglycerides, High density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C) to assess the risk of adverse cardiovascular events in Naswar users.90 Healthy males aged 16-43 years, who consumed Naswar daily, were selected for the study, alongside 68 age-matched non-tobacco users as controls. Both GPx and SOD levels as well as serum HDL-C were significantly reduced (P<0.01) in Naswar users, whereas serum total cholesterol, LDL-C, triglycerides and LDL-C/HDL-C ratio were significantly increased (P<0.01) in Naswar consumers compared to controls. Our findings indicate deleterious effects of Naswar usage on health by causing altered lipid profile and antioxidant enzymes thereby placing its consumers at an increased risk of cardiovascular disease. PMID:26525023

  19. Antioxidant enzyme activity in endemic Baikalean versus Palaearctic amphipods: tagma- and size-related changes.

    PubMed

    Timofeyev, M A

    2006-03-01

    The activities of key antioxidant enzymes in two endemic Baikalean amphipod species: Pallasea cancelloides (Gerstf), Eulimnogammarus verrucosus (Gerstf) and the widely distributed Palearctic species Gammarus lacustris (Sars) were studied. This work was done to prove or disprove the hypothesis that Baikalean endemics have specifics in antioxidants system different from Palearctic species. The activities of antioxidant enzymes peroxidase, catalase and glutathione-S-transferase were measured in different sections (tagmata) of the amphipods' bodies as well as in different size groups. Well expressed tagma-related differences in peroxidase activity as well as smaller differences in catalase activity were shown in all studied species. There were no measured differences in glutathione-S-transferase activity among body sections. The existence of size-related changes in some antioxidant enzymes and the difference in such changes between Baikalean and Palearctic amphipods were noted. A significant increase in peroxidase activity with the size was found in both Baikalean species while a significant decrease in peroxidase activity was observed in the Palearctic G. lacustris. In Baikalean P. cancelloides, a significant decrease of catalase activity with the increase in age of crustaceans was noted, while in E. verrucosus no such relationship was found. In the Palearctic G. lacustris, a significant increase in catalase activity with the increase in size was noted. All species are shown to have no size-related differences in glutathione-S-transferase activity. The differences between species as well as between both different tagmata and size-classes within a particular species were estimated. It was assumed that the estimated differences in enzymes activity most likely depend on interspecific variation, rather than on conditional specifics in Lake Baikal. PMID:16460977

  20. Hepatic biotransformation and antioxidant enzyme activities in Mediterranean fish from different habitat depths.

    PubMed

    Ribalta, C; Sanchez-Hernandez, J C; Sole, M

    2015-11-01

    Marine fish are threatened by anthropogenic chemical discharges. However, knowledge on adverse effects on deep-sea fish or their detoxification capabilities is limited. Herein, we compared the basal activities of selected hepatic detoxification enzymes in several species (Solea solea, Dicentrarchus labrax, Trachyrhynchus scabrus, Mora moro, Cataetix laticeps and Alepocehalus rostratus) collected from the coast, middle and lower slopes of the Blanes Canyon region (Catalan continental margin, NW Mediterranean Sea). The xenobiotic-detoxifying enzymes analysed were the phase-I carboxylesterases (CbEs), and the phase-II conjugation activities uridine diphosphate glucuronyltransferase (UDPGT) and glutathione S-transferase (GST). Moreover, some antioxidant enzyme activities, i.e., catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR), were also included in this comparative study. Because CbE activity is represented by multiple isoforms, the substrates α-naphthyl acetate (αNA) and ρ-nitrophenyl acetate (ρNPA) were used in the enzyme assays, and in vitro inhibition kinetics with dichlorvos were performed to compare interspecific CbE sensitivity. Activity of xenobiotic detoxification enzymes varied among the species, following a trend with habitat depth and body size. Thus, UDPGT and some antioxidant enzyme activities decreased in fish inhabiting lower slopes of deep-sea, whereas UDPGT and αNA-CbE activities were negatively related to fish size. A trend between CbE activities and the IC50 values for dichlorvos suggested S. solea and M. moro as potentially more sensitive to anticholinesterasic pesticides, and T. scabrus as the most resistant one. A principal component analysis considering all enzyme activities clearly identified the species but this grouping was not related to habitat depth or phylogeny. Although these results can be taken as baseline levels of the main xenobiotic detoxification enzymes in Mediterranean fish, further research is

  1. Effect of Cross-Sex Hormonal Replacement on Antioxidant Enzymes in Rat Retroperitoneal Fat Adipocytes

    PubMed Central

    Velázquez Espejel, Rodrigo; Cabrera-Orefice, Alfredo; Uribe-Carvajal, Salvador; Pavón, Natalia

    2016-01-01

    We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2 exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2 deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.

  2. A potential link among antioxidant enzymes, histopathology and trace elements in canine visceral leishmaniasis

    PubMed Central

    Souza, Carolina C; Barreto, Tatiane de O; da Silva, Sydnei M; Pinto, Aldair W J; Figueiredo, Maria M; Ferreira Rocha, Olguita G; Cangussú, Silvia D; Tafuri, Wagner L

    2014-01-01

    Canine visceral leishmaniasis (CVL) is a severe and fatal systemic chronic inflammatory disease. We investigated the alterations in, and potential associations among, antioxidant enzymes, trace elements and histopathology in CVL. Blood and tissue levels of Cu-Zn superoxide dismutase, catalase and glutathione peroxidase were measured in mixed-breed dogs naturally infected with Leishmania infantum chagasi, symptomatic (n = 19) and asymptomatic (n = 11). Serum levels of copper, iron, zinc, selenium and nitric oxide, and plasma lipid peroxidation were measured. Histological and morphometric analyses were conducted of lesions in liver, spleen and lymph nodes. We found lower blood catalase and glutathione peroxidase activity to be correlated with lower iron and selenium respectively. However, higher activity of Cu-Zn superoxide dismutase was not correlated with the increase in copper and decreased in zinc observed in infected animals compared to controls. Organ tissue was characterized by lower enzyme activity in infected dogs than in controls, but this was not correlated with trace elements. Lipid peroxidation was higher in symptomatic than in asymptomatic and control dogs and was associated with lesions such as chronic inflammatory reaction, congestion, haemosiderin and fibrosis. Systemic iron deposition was observed primarily in the symptomatic dogs showing a higher tissue parasite load. Dogs with symptomatic CVL displayed enhanced LPO and Fe tissue deposition associated with decreased levels of antioxidant enzymes. These results showed new points in the pathology of CVL and might open new treatment perspectives associated with antioxidants and the role of iron in the pathogenesis of CVL. PMID:24766461

  3. A potential link among antioxidant enzymes, histopathology and trace elements in canine visceral leishmaniasis.

    PubMed

    Souza, Carolina C; Barreto, Tatiane de O; da Silva, Sydnei M; Pinto, Aldair W J; Figueiredo, Maria M; Rocha, Olguita G Ferreira; Cangussú, Silvia D; Tafuri, Wagner L

    2014-08-01

    Canine visceral leishmaniasis (CVL) is a severe and fatal systemic chronic inflammatory disease. We investigated the alterations in, and potential associations among, antioxidant enzymes, trace elements and histopathology in CVL. Blood and tissue levels of Cu-Zn superoxide dismutase, catalase and glutathione peroxidase were measured in mixed-breed dogs naturally infected with Leishmania infantum chagasi, symptomatic (n = 19) and asymptomatic (n = 11). Serum levels of copper, iron, zinc, selenium and nitric oxide, and plasma lipid peroxidation were measured. Histological and morphometric analyses were conducted of lesions in liver, spleen and lymph nodes. We found lower blood catalase and glutathione peroxidase activity to be correlated with lower iron and selenium respectively. However, higher activity of Cu-Zn superoxide dismutase was not correlated with the increase in copper and decreased in zinc observed in infected animals compared to controls. Organ tissue was characterized by lower enzyme activity in infected dogs than in controls, but this was not correlated with trace elements. Lipid peroxidation was higher in symptomatic than in asymptomatic and control dogs and was associated with lesions such as chronic inflammatory reaction, congestion, haemosiderin and fibrosis. Systemic iron deposition was observed primarily in the symptomatic dogs showing a higher tissue parasite load. Dogs with symptomatic CVL displayed enhanced LPO and Fe tissue deposition associated with decreased levels of antioxidant enzymes. These results showed new points in the pathology of CVL and might open new treatment perspectives associated with antioxidants and the role of iron in the pathogenesis of CVL. PMID:24766461

  4. Antioxidant enzymes expression and activity in liver of stressed wistar rat

    NASA Astrophysics Data System (ADS)

    Djordjević, J.; Nićiforović, A.; Radojčić, M. B.

    2009-09-01

    Altered activities of antioxidant defence system enzymes and the levels of free radicals scavengers have been found to correlate with various physiological or pathological conditions, including stress. The aim of this study was to determine the effects of chronic 21 day isolation stress on antioxidant enzymes (AOEs) expression and activity in Wistar rat liver tissue. The serum corticosterone (CORT) and glucose (GLU) levels were also measured, as one of the most important indicators of stress. Our data revealed that in chronic stress conditions, when both CORT and GLU were low, the AOEs expression was markedly induced. This increase in MnSOD, CuZnSOD, and catalase exhibited similar trend implying efficient detoxification of O_2^{ - .} and H2O2. However, this trend was not followed by the respective enzyme activity. While the total SOD activity was induced by the stress, catalase activity remained unaltered. This discrepancy led us to a conclusion that chronic isolation stress may cause oxidant-antioxidant imbalance in rat liver tissue, favoring H2O2 accumulation.

  5. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    PubMed

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. PMID:26631806

  6. GENOTYPIC THERMOTOLERANCE IS ASSOCIATED WITH ELEVATED PRE-STRESS ANTIOXIDANT ENZYME ACTIVITY IN COTTON LEAVES AND PISTILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous studies have illustrated the need for antioxidant enzymes in acquired photosynthetic thermotolerance, but information on their possible role in promoting innate thermotolerance in either leaves or reproductive tissues is limited for cotton. We investigated the hypothesis that genotypic diff...

  7. Protopanaxatriol Ginsenoside Rh1 Upregulates Phase II Antioxidant Enzyme Gene Expression in Rat Primary Astrocytes: Involvement of MAP Kinases and Nrf2/ARE Signaling

    PubMed Central

    Jung, Ji-Sun; Lee, Sang-Yoon; Kim, Dong-Hyun; Kim, Hee-Sun

    2016-01-01

    Oxidative stress activates several intracellular signaling cascades that may have deleterious effects on neuronal cell survival. Thus, controlling oxidative stress has been suggested as an important strategy for prevention and/or treatment of neurodegenerative diseases. In this study, we found that ginsenoside Rh1 inhibited hydrogen peroxide-induced reactive oxygen species generation and subsequent cell death in rat primary astrocytes. Rh1 increased the expression of phase II antioxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1, superoxide dismutase-2, and catalase, that are under the control of Nrf2/ARE signaling pathways. Further mechanistic studies showed that Rh1 increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to the antioxidant response element (ARE), and increased the ARE-mediated transcription activities in rat primary astrocytes. Analysis of signaling pathways revealed that MAP kinases are important in HO-1 expression, and act by modulating ARE-mediated transcriptional activity. Therefore, the upregulation of antioxidant enzymes by Rh1 may provide preventive therapeutic potential for various neurodegenerative diseases that are associated with oxidative stress. PMID:26759699

  8. Intracellular Redox State as Target for Anti-Influenza Therapy: Are Antioxidants Always Effective?

    PubMed Central

    Sgarbanti, Rossella; Amatore, Donatella; Celestino, Ignacio; Marcocci, Maria Elena; Fraternale, Alessandra; Ciriolo, Maria Rosa; Magnani, Mauro; Saladino, Raffaele; Garaci, Enrico; Palamara, Anna Teresa; Nencioni, Lucia

    2014-01-01

    Influenza virus infections represent a big issue for public health since effective treatments are still lacking. In particular, the emergence of strains resistant to drugs limits the effectiveness of anti-influenza agents. For this reason, many efforts have been dedicated to the identification of new therapeutic strategies aimed at targeting the virus-host cell interactions. Oxidative stress is a characteristic of some viral infections including influenza. Because antioxidants defend cells from damage caused by reactive oxygen species induced by different stimuli including pathogens, they represent interesting molecules to fight infectious diseases. However, most of the available studies have found that these would-be panaceas could actually exacerbate the diseases they claim to prevent, and have thus revealed "the dark side" of these molecules. This review article discusses the latest opportunities and drawbacks of the antioxidants used in anti-influenza therapy and new perspectives. PMID:25478883

  9. Lipoamide Acts as an Indirect Antioxidant by Simultaneously Stimulating Mitochondrial Biogenesis and Phase II Antioxidant Enzyme Systems in ARPE-19 Cells.

    PubMed

    Zhao, Lin; Liu, Zhongbo; Jia, Haiqun; Feng, Zhihui; Liu, Jiankang; Li, Xuesen

    2015-01-01

    In our previous study, we found that pretreatment with lipoamide (LM) more effectively than alpha-lipoic acid (LA) protected retinal pigment epithelial (RPE) cells from the acrolein-induced damage. However, the reasons and mechanisms for the greater effect of LM than LA are unclear. We hypothesize that LM, rather than the more direct antioxidant LA, may act more as an indirect antioxidant. In the present study, we treated ARPE-19 cells with LA and LM and compared their effects on activation of mitochondrial biogenesis and induction of phase II enzyme systems. It is found that LM is more effective than LA on increasing mitochondrial biogenesis and inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its translocation to the nucleus, leading to an increase in expression or activity of phase II antioxidant enzymes (NQO-1, GST, GCL, catalase and Cu/Zn SOD). Further study demonstrated that mitochondrial biogenesis and phase II enzyme induction are closely coupled via energy requirements. These results suggest that LM, compared with the direct antioxidant LA, plays its protective effect on oxidative damage more as an indirect antioxidant to simultaneously stimulate mitochondrial biogenesis and induction of phase II antioxidant enzymes. PMID:26030919

  10. Lipoamide Acts as an Indirect Antioxidant by Simultaneously Stimulating Mitochondrial Biogenesis and Phase II Antioxidant Enzyme Systems in ARPE-19 Cells

    PubMed Central

    Zhao, Lin; Liu, Zhongbo; Jia, Haiqun; Feng, Zhihui; Liu, Jiankang; Li, Xuesen

    2015-01-01

    In our previous study, we found that pretreatment with lipoamide (LM) more effectively than alpha-lipoic acid (LA) protected retinal pigment epithelial (RPE) cells from the acrolein-induced damage. However, the reasons and mechanisms for the greater effect of LM than LA are unclear. We hypothesize that LM, rather than the more direct antioxidant LA, may act more as an indirect antioxidant. In the present study, we treated ARPE-19 cells with LA and LM and compared their effects on activation of mitochondrial biogenesis and induction of phase II enzyme systems. It is found that LM is more effective than LA on increasing mitochondrial biogenesis and inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its translocation to the nucleus, leading to an increase in expression or activity of phase II antioxidant enzymes (NQO-1, GST, GCL, catalase and Cu/Zn SOD). Further study demonstrated that mitochondrial biogenesis and phase II enzyme induction are closely coupled via energy requirements. These results suggest that LM, compared with the direct antioxidant LA, plays its protective effect on oxidative damage more as an indirect antioxidant to simultaneously stimulate mitochondrial biogenesis and induction of phase II antioxidant enzymes. PMID:26030919

  11. State of the antioxidative enzymes of rat bone marrow cells after irradiation, fractures, and a combination of both

    SciTech Connect

    Bogdanova, I.A.; Ovchinnikov, K.G.; Torbenko, V.P.; Gerasimov, A.M.

    1987-11-01

    The authors study bone marrow levels of antioxidative (antiradical) defensive systems (ADS) enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GP), glutathione reductase (GR), and glutathione: dehydroascorbate oxidoreductase (GDAR), rats and changes in their activity in the bone marrow at various times after irradiation, mechanical trauma, and a combination of both. Development of acute radiation sickness as a result of a single irradiation was accompanied by marked changes in the enzymic antioxidative system of rat bone marrow cells.

  12. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation

    PubMed Central

    Hood, Elizabeth D.; Chorny, Michael; Greineder, Colin F.; Alferiev, Ivan; Levy, Robert J.; Muzykantov, Vladimir R.

    2015-01-01

    Endothelial-targeted delivery of antioxidant enzymes, catalase and superoxide dismutase (SOD), is promising strategy for protecting organs and tissues from inflammation and oxidative stress. Here we describe Protective Antioxidant Carriers for Endothelial Targeting (PACkET), the first carriers capable of targeted endothelial delivery of both catalase and SOD. PACkET formed through controlled precipitation loaded ~30% enzyme and protected it from proteolytic degradation, whereas attachment of PECAM monoclonal antibodies to surface of the enzyme-loaded carriers, achieved without adversely affecting their stability and functionality, provided targeting. Isotope tracing and microscopy showed that PACkET exhibited specific endothelial binding and internalization in vitro. Endothelial targeting of PACkET was validated in vivo by specific (vs IgG-control) accumulation in the pulmonary vasculature after intravenous injection achieving 33% of injected dose at 30 min. Catalase loaded PACkET protects endothelial cells from killing by H2O2 and alleviated the pulmonary edema and leukocyte infiltration in mouse model of endotoxin-induced lung injury, whereas SOD-loaded PACkET mitigated cytokine-induced endothelial pro-inflammatory activation and endotoxin-induced lung inflammation. These studies indicate that PACkET offers a modular approach for vascular targeting of therapeutic enzymes. PMID:24480537

  13. Peroxiredoxin II Is an Antioxidant Enzyme That Negatively Regulates Collagen-stimulated Platelet Function*

    PubMed Central

    Jang, Ji Yong; Wang, Su Bin; Min, Ji Hyun; Chae, Yun Hee; Baek, Jin Young; Yu, Dae-Yeul; Chang, Tong-Shin

    2015-01-01

    Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis. PMID:25802339

  14. Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence

    PubMed Central

    Piacenza, L.; Zago, M.P.; Peluffo, G.; Alvarez, M.N.; Basombrio, M.A.; Radi, R.

    2013-01-01

    Virulence of Trypanosoma cruzi depends on a variety of genetic and biochemical factors. It has been proposed that components of the parasites' antioxidant system may play a key part in this process by pre-adapting the pathogen to the oxidative environment encountered during host cell invasion. Using several isolates (10 strains) belonging to the two major phylogenetic lineages (T. cruzi-I and T. cruzi-II), we investigated whether there was an association between virulence (ranging from highly aggressive to attenuated isolates at the parasitemia and histopathological level) and the antioxidant enzyme content. Antibodies raised against trypanothione synthetase (TcTS), ascorbate peroxidase (TcAPX), mitochondrial and cytosolic tryparedoxin peroxidases (TcMPX and TcCPX) and trypanothione reductase (TcTR) were used to evaluate the antioxidant enzyme levels in epimastigote and metacyclic trypomastigote forms in the T. cruzi strains. Levels of TcCPX, TcMPX and TcTS were shown to increase during differentiation from the non-infective epimastigote to the infective metacyclic trypomastigote stage in all parasite strains examined. Peroxiredoxins were found to be present at higher levels in the metacyclic infective forms of the virulent isolates compared with the attenuated strains. Additionally, an increased resistance of epimastigotes from virulent T. cruzi populations to hydrogen peroxide and peroxynitrite challenge was observed. In mouse infection models, a direct correlation was found between protein levels of TcCPX, TcMPX and TcTS, and the parasitemia elicited by the different isolates studied (Pearson's coefficient: 0.617, 0.771, 0.499; respectively, P < 0.01). No correlation with parasitemia was found for TcAPX and TcTR proteins in any of the strains analyzed. Our data support that enzymes of the parasite antioxidant armamentarium at the onset of infection represent new virulence factors involved in the establishment of disease. PMID:19505468

  15. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea.

    PubMed

    Ahmad, Parvaiz; Abdel Latef, Arafat A; Hashem, Abeer; Abd Allah, Elsayed F; Gucel, Salih; Tran, Lam-Son P

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  16. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    PubMed Central

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  17. Flavonoids in Juglans regia L. Leaves and Evaluation of In Vitro Antioxidant Activity via Intracellular and Chemical Methods

    PubMed Central

    Zhao, Ming-Hui; Liu, Tao; Li, Rong

    2014-01-01

    Flavonoids are rich in Juglans regia L. leaves. They have potent antioxidant properties, which have been related to regulating immune function and enhancing anticancer activity. Herein, qualitative and quantitative determination of flavonoids from J. regia leaves was carried out using high performance liquid chromatography coupled with tandem mass spectrometry with electrospray ionization and negative ion detection (HPLC-ESI-MS/MS) by comparison of the retention times and mass spectral fragments with standard substances or related literatures. Seventeen compounds were identified and major components are quercetin-3-O-rhamnoside (453.11 μg/g, dry weight), quercetin-3-O-arabinoside (73.91 μg/g), quercetin-3-O-xyloside (70.04 μg/g), kaempferol-O-pentoside derivative (49.04 μg/g), quercetin-3-O-galactoside (48.61 μg/g), and kaempferol-O-pentoside (48.46 μg/g). The in vitro intracellular antioxidation indicated that flavonoids from J. regia leaves could reduce the reactive oxygen species (ROS) level in RAW264.7 cells and showed good radical scavenging activities. These results proved to be more related to the flavonoids that could be considered in the design of new formulations of dietary supplements or functional foods. PMID:25133218

  18. Measuring Intracellular Enzyme Concentrations: Assessing the Effect of Oxidative Stress on the Amount of Glyoxalase I

    ERIC Educational Resources Information Center

    Miranda, Hugo Vicente; Ferreira, Antonio E. N.; Quintas, Alexandre; Cordeiro, Carlos; Freire, Ana Ponces

    2008-01-01

    Enzymology is one of the fundamental areas of biochemistry and involves the study of the structure, kinetics, and regulation of enzyme activity. Research in this area is often conducted with purified enzymes and extrapolated to "in vivo" conditions. The specificity constant, k[subscript S], is the ratio between k[subscript cat] (the catalytic…

  19. Role of intracellular labile iron, ferritin, and antioxidant defence in resistance of chronically adapted Jurkat T cells to hydrogen peroxide

    PubMed Central

    Al-Qenaei, Abdullah; Yiakouvaki, Anthie; Reelfs, Olivier; Santambrogio, Paolo; Levi, Sonia; Hall, Nick D.; Tyrrell, Rex M.; Pourzand, Charareh

    2014-01-01

    To examine the role of intracellular labile iron pool (LIP), ferritin (Ft), and antioxidant defence in cellular resistance to oxidative stress on chronic adaptation, a new H2O2-resistant Jurkat T cell line “HJ16” was developed by gradual adaptation of parental “J16” cells to high concentrations of H2O2. Compared to J16 cells, HJ16 cells exhibited much higher resistance to H2O2-induced oxidative damage and necrotic cell death (up to 3 mM) and had enhanced antioxidant defence in the form of significantly higher intracellular glutathione and mitochondrial ferritin (FtMt) levels as well as higher glutathione-peroxidase (GPx) activity. In contrast, the level of the Ft H-subunit (FtH) in the H2O2-adapted cell line was found to be 7-fold lower than in the parental J16 cell line. While H2O2 concentrations higher than 0.1 mM fully depleted the glutathione content of J16 cells, in HJ16 cells the same treatments decreased the cellular glutathione content to only half of the original value. In HJ16 cells, H2O2 concentrations higher than 0.1 mM increased the level of FtMt up to 4-fold of their control values but had no effect on the FtMt levels in J16 cells. Furthermore, while the basal cytosolic level of LIP was similar in both cell lines, H2O2 treatment substantially increased the cytosolic LIP levels in J16 but not in HJ16 cells. H2O2 treatment also substantially decreased the FtH levels in J16 cells (up to 70% of the control value). In contrast in HJ16 cells, FtH levels were not affected by H2O2 treatment. These results indicate that chronic adaptation of J16 cells to high concentrations of H2O2 has provoked a series of novel and specific cellular adaptive responses that contribute to higher resistance of HJ16 cells to oxidative damage and cell death. These include increased cellular antioxidant defence in the form of higher glutathione and FtMt levels, higher GPx activity, and lower FtH levels. Further adaptive responses include the significantly reduced

  20. Antioxidant Activity and Induction of mRNA Expressions of Antioxidant Enzymes in HEK-293 Cells of Moringa oleifera Leaf Extract.

    PubMed

    Vongsak, Boonyadist; Mangmool, Supachoke; Gritsanapan, Wandee

    2015-08-01

    The leaves of Moringa oleifera, collected in different provinces in Thailand, were determined for the contents of total phenolics, total flavonoids, major components, and antioxidant activity. The extract and its major active components were investigated for the inhibition of H2O2-induced reactive oxygen species production and the effects on antioxidant enzymes mRNA expression. The extract, crypto-chlorogenic acid, isoquercetin and astragalin, significantly reduced the reactive oxygen species production inducing by H2O2 in HEK-293 cells. Treatment with isoquercetin significantly increased the mRNA expression levels of antioxidant enzymes such as superoxide dismutase, catalase and heme oxygenase 1. These results confirm that M. oleifera leaves are good sources of natural antioxidant with isoquercetin as an active compound. PMID:26166137

  1. Zinc, copper and antioxidant enzyme activities in healthy elderly Tunisian subjects.

    PubMed

    Sfar, Sonia; Jawed, Abdelhafidh; Braham, Hamadi; Amor, Salah; Laporte, François; Kerkeni, Abdelhamid

    2009-12-01

    Trace elements like zinc and copper play an important role in maintaining metabolic homeostasis in elderly subjects and is therefore expected to have a crucial effect on antioxidant mechanism. The objective of the present study was to investigate age-related variations of zinc, copper and antioxidant enzyme activities (superoxide dismutase: SOD, glutathione peroxidase: GPx and catalase: CAT) taking into account gender differences in a Tunisian elderly population. A group of 100 healthy elderly subjects (55-85 years old) were then separated in three sub-groups according to age intervals. A control group of 100 adults aged between 30 and 45 years was considered. The obtained results confirmed the decrease of plasma zinc level with age increase in both men and women. Moreover, prevalence of zinc deficiency increased with age: normal zinc concentration was obtained in about 60% of adults and only in 35% of the elderly subjects over 75 years old. No significant variation was obtained for copper concentration. GPx and SOD activities were lower in aged subjects in comparison to adults. Zinc and antioxidant enzyme activities were found to be negatively correlated to age. However, an investigation on a large size sample with various health and well-controlled dietary statuses should be conducted for a better understanding of the zinc or copper metabolism and their effect on oxidant stress during aging. PMID:19836441

  2. Effect of spaceflight on oxidative and antioxidant enzyme activity in rat diaphragm and intercostal muscles

    NASA Technical Reports Server (NTRS)

    Lee, Mona D.; Tuttle, Ronald; Girten, Beverly

    1995-01-01

    There are limited data regarding changes in oxidative and antioxidant enzymes induced by simulated or actual weightlessness, and any additional information would provide insight into potential mechanisms involving other changes observed in muscles from animals previously flown in space. Thus, the NASA Biospecimen Sharing Program was an opportunity to collect valuable information. Oxidative and antioxidant enzyme levels, as well as lipid peroxidation, were measured in respiratory muscles from rates flown on board Space Shuttle mission STS-54. The results indicated that there was an increasing trend in citrate synthase activity in the flight diaphragm when compared to ground based controls, and there were no significant changes observed in the intercostal muscles for any of the parameters. However, the lipid peroxidation was significantly (p less than 0.05) decreased in the flight diaphragm. These results indicate that 6 day exposure to microgravity may have a different effect on oxidative and antioxidant activity in rat respiratory muscles when compared to data from previous 14 day hindlimb suspension studies.

  3. Effects of Acifluorfen on Endogenous Antioxidants and Protective Enzymes in Cucumber (Cucumis sativus L.) Cotyledons

    PubMed Central

    Kenyon, William H.; Duke, Stephen O.

    1985-01-01

    The herbicide acifluorfen (2-chloro-4-(trifluoromethyl)phenoxy-2-nitrobenzoate) causes strong photooxidative destruction of pigments and lipids in sensitive plant species. Antioxidants and oxygen radical scavengers slow the bleaching action of the herbicide. The effect of acifluorfen on glutathione and ascorbate levels in cucumber (Cucumis sativus L.) cotyledon discs was investigated to assess the relationship between herbicide activity and endogenous antioxidants. Acifluorfen decreased the levels of glutathione and ascorbate over 50% in discs exposed to less than 1.5 hours of white light (450 microeinsteins per square meter per second). Coincident increases in dehydroascorbate and glutathione disulfide were not observed. Acifluorfen also caused the rapid depletion of ascorbate in far-red light grown plants which were photosynthetically incompetent. Glutathione reductase, dehydroascorbate reductase, superoxide dismutase, ascorbate oxidase, ascorbate free radical reductase, peroxidase, and catalase activities rapidly decreased in acifluorfen-treated tissue exposed to white light. None of the enzymes were inhibited in vitro by the herbicide. Acifluorfen causes irreversible photooxidative destruction of plant tissue, in part, by depleting endogenous antioxidants and inhibiting the activities of protective enzymes. PMID:16664506

  4. Effect of antioxidants on enzyme-catalysed biodegradation of carbon nanotubes†

    PubMed Central

    Kotchey, Gregg P.; Gaugler, James A.; Kapralov, Alexander A.; Kagan, Valerian E.

    2013-01-01

    The growing applications of carbon nanotubes (CNTs) inevitably increase the risk of exposure to this potentially toxic nanomaterial. In an attempt to address this issue, research has been implemented to study the biodegradation of CNTs. In particular, myeloperoxidase (MPO), an enzyme expressed by inflammatory cells of animals including humans, catalyse the degradation of oxidized carbon nanomaterials. While reactive intermediates generated by MPO efficiently degrade oxidized single-walled carbon nanotubes (o-SWCNTs); the exact mechanism of enzyme-catalysed biodegradation remains ambiguous. In this work, we tried to explain enzymatic oxidation in terms of redox potentials by employing competitive substrates for MPO such as chloride, which is oxidized by MPO to form a strong oxidant (hypochlorite), and antioxidants that have lower redox potentials than CNTs. Employing transmission electron microscopy, Raman spectroscopy, and vis-NIR absorption spectroscopy, we demonstrate that the addition of antioxidants, L-ascorbic acid and L-glutathione, with or without chloride significantly mitigates MPO-catalysed biodegradation of o-SWCNTs. This study focuses on a fundamental understanding of the mechanisms of enzymatic biodegradation of CNTs and the impact of antioxidants on these pathways. PMID:23626907

  5. Emerging Roles of Nrf2 and Phase II Antioxidant Enzymes in Neuroprotection

    PubMed Central

    Zhang, Meijuan; An, Chengrui; Gao, Yanqin; Leak, Rehana K.; Chen, Jun; Zhang, Feng

    2013-01-01

    Phase II metabolic enzymes are a battery of critical proteins that detoxify xenobiotics by increasing their hydrophilicity and enhancing their disposal. These enzymes have long been studied for their preventative and protective effects against mutagens and carcinogens and for their regulation via the Keap1 (Kelch-like ECH associated protein 1) / Nrf2 (Nuclear factor erythroid 2 related factor 2) / ARE (antioxidant response elements) pathway. Recently, a series of studies have reported the altered expression of phase II genes in postmortem tissue of patients with various neurological diseases. These observations hint at a role for phase II enzymes in the evolution of such conditions. Furthermore, promising findings reveal that overexpression of phase II genes, either by genetic or chemical approaches, confers neuroprotection in vitro and in vivo. Therefore, there is a need to summarize the current literature on phase II genes in the central nervous system (CNS). This should help guide future studies on phase II genes as therapeutic targets in neurological diseases. In this review, we first briefly introduce the concept of phase I, II and III enzymes, with a special focus on phase II enzymes. We then discuss their expression regulation, their inducers and executors. Following this background, we expand our discussion to the neuroprotective effects of phase II enzymes and the potential application of Nrf2 inducers to the treatment of neurological diseases. PMID:23025925

  6. Age-related protective effect of deprenyl on changes in the levels of diagnostic marker enzymes and antioxidant defense enzymes activities in cerebellar tissue in Wistar rats

    PubMed Central

    James, T. J.

    2010-01-01

    Antioxidants are free radical scavengers and protect living organisms against oxidative damage to tissues. Experimental evidence implicates oxygen-derived free radicals as important causative agents of aging and the present study was designed to evaluate the age-related effects of deprenyl on the antioxidant defense in the cerebellum of male Wistar rats. Experimental rats of three age groups (6, 12, and 18 months old) were administered with liquid deprenyl (2 mg/kg body weight/day for a period of 15 days i.p) and levels of diagnostic marker enzymes (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase) in plasma, lipid peroxides, reduced glutathione and activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (catalase and superoxide dismutase) in the cerebellar tissue were determined. Intraperitonial administration of deprenyl (2 mg/kg body weight/day for a period of 15 days) significantly (p < 0.05) attenuated the age-related alterations noted in the levels of diagnostic marker enzymes plasma of experimental animals. Deprenyl also exerted an antioxidant effect against aging process by hindering lipid peroxidation to an extent. Moderate rise in the levels of reduced glutathione and activities of glutathione-dependent antioxidant enzymes and antiperoxidative enzymes was also observed. The results of the present investigation indicated that the protective potential of deprenyl was probably due to the increase of the activity of the free radical scavenging enzymes or to a counteraction of free radicals by its antioxidant nature or to a strengthening of neuronal membrane by its membrane-stabilizing action. Histopathological observations also confirmed the protective effect of deprenyl against the age-related aberrations in rat cerebellum. These data on the effect of deprenyl on parameters of normal aging provides new additional

  7. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes.

    PubMed

    Sinha, Sarita; Saxena, Rohit; Singh, Shraddha

    2005-02-01

    In the plant, Pistia stratiotes L., the effect of different concentrations of chromium (0, 10, 40, 80 and 160 microM) applied for 48, 96 and 144 h was assessed by measuring changes in the chlorophyll, protein, malondialdehyde (MDA), cysteine, non-protein thiol, ascorbic acid contents and superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) activity of the plants. Both in roots and leaves, an increase in MDA content was observed with increase in metal concentration and exposure periods. In roots, the activity of antioxidant enzymes viz. SOD and APX increased at all the concentrations of Cr at 144 h than their controls. The GPX activity of the treated roots increased with increase in Cr concentration at 48 and 96 h of exposures, however, at 144 h its activity was found declined beyond 10 microM Cr. The level of antioxidants in the roots of the treated plant viz. cysteine and ascorbic acid was also found increased at all the concentrations of Cr at 144 h than their respective controls, however, an increase in the non-protein thiol content was recorded up to 40 microM Cr followed by decrease. The chlorophyll content decreased with increase in Cr concentrations and exposure periods. However, the protein content of both roots and leaves were found decreased with increase in Cr concentrations at all the exposure periods except an increase was recorded at 10 microM Cr at 48 h. In Cr treated plants, the no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for leaves chlorophyll and protein contents were 40 and 80 microM Cr, respectively after 48 h exposure while NOEC and LOEC for root protein content were 10 and 40 microM, respectively after 48 h. The analysis of correlation coefficient data revealed that the metal accumulation in the roots of the plant was found positively correlated with antioxidant parameters except SOD after 48 h of exposure, however, negatively correlated with most of all the parameters

  8. Sulphydryl groups and their relation to the antioxidant enzymes of chelonian red blood cells.

    PubMed

    Torsoni, M A; Viana, R I; Ogo, S H

    1998-09-01

    Thiol groups of hemoglobin and blood glutathione are higher in Geochelone carbonaria than in Geochelone denticulata. Exposure of stripped hemolysate of both tortoises to terc-butyl hydroperoxide, resulted in a higher ferroheme oxidation of G. denticulata hemoglobin. In this example glutathione reductase and glutathione peroxidase, were not active due to the absence of GSH and NADPH, suggesting that the thiol groups of G. carbonaria hemoglobin act as antioxidant, similar to GSH. In the total hemolysate, however, where the antioxidant enzymes are active, both species showed similar levels of hemoglobin oxidation, suggesting that the protective effect of thiol groups of hemoglobin are less effective for heme protection. The activity of glutathione reductase and glutathione peroxidase was higher in erythrocytes of G. denticulata and the activity of catalase and superoxide dismutase was higher in erythrocytes of G. carbonaria. PMID:9784849

  9. Effects of dietary menadione on the activity of antioxidant enzymes in abalone, Haliotis discus hannai Ino

    NASA Astrophysics Data System (ADS)

    Fu, Jinghua; Xu, Wei; Mai, Kangsen; Zhang, Wenbing; Feng, Xiuni; Liufu, Zhiguo

    2012-01-01

    A 240-day growth experiment in a re-circulating water system was conducted to investigate the effects of dietary menadione on the growth and antioxidant responses of abalone Haliotis discus hannai Ino. Triplicate groups of juvenile abalone (initial weight: 1.19 ± 0.01 g; shell length: 19.23 ± 0.01 mm) were fed to satiation with 3 semi-purified diets containing 0, 10, and 1 000 mg menadione sodium bisulfite (MSB)/kg, respectively. Results show that there were no significant differences in the rate of weight gain or in the daily increment in shell length of abalone among different treatments. Activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR) in viscera were significantly decreased with dietary menadione. However, activities of these enzymes except for GPX in muscle were increased. Therefore, antioxidant responses of abalone were increased in muscle and decreased in viscera by dietary menadione.

  10. Mcy protein, a potential antidiabetic agent: evaluation of carbohydrate metabolic enzymes and antioxidant status.

    PubMed

    Marella, Saritha; Maddirela, Dilip Rajasekhar; Kumar, E G T V; Tilak, Thandaiah Krishna; Badri, Kameswara Rao; Chippada, Apparao

    2016-05-01

    The objective of the present study is to elucidate the long-term effects of anti-hyperglycemic active principle, Mcy protein (MCP), isolated from the fruits of Momordica cymbalaria on carbohydrate metabolism and oxidative stress in experimental diabetic rats. We used streptozotocin induced diabetic rats for the current studies. Our studies showed that MCP (2.5mg/kg.b.w) treatment significantly normalized the deranged activities of critical carbohydrate metabolizing enzymes, hexokinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase and fructose-1,6-bis phosphatase. In addition MCP showed inhibitory activity on α-glucosidase and aldose reductase enzymes in in vitro assays. Further MCP treatment improved the antioxidant defensive mechanism by preventing deleterious oxidative products of cellular metabolism, which initiates the lipid peroxidation and by normalizing the antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) activities. Additional structural studies using circular dichroism spectroscopy indicate that MCP contains majorly α-helix. Our findings suggest MCP regulates blood glucose and better manage diabetes mellitus associated complications by regulating carbohydrate metabolism and by protecting from the deleterious effects of oxidative stress. PMID:26826289

  11. Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits.

    PubMed

    Nie, Huang; Xiong, Lize; Lao, Ning; Chen, Shaoyang; Xu, Ning; Zhu, Zhenghua

    2006-05-01

    The present study examined the hypothesis that spinal cord ischemic tolerance induced by hyperbaric oxygen (HBO) preconditioning is triggered by an initial oxidative stress and is associated with an increase of antioxidant enzyme activities as one effector of the neuroprotection. New Zealand White rabbits were subjected to HBO preconditioning, hyperbaric air (HBA) preconditioning, or sham pretreatment once daily for five consecutive days before spinal cord ischemia. Activities of catalase (CAT) and superoxide dismutase were increased in spinal cord tissue in the HBO group 24 h after the last pretreatment and reached a higher level after spinal cord ischemia for 20 mins followed by reperfusion for 24 or 48 h, in comparison with those in control and HBA groups. The spinal cord ischemic tolerance induced by HBO preconditioning was attenuated when a CAT inhibitor, 3-amino-1,2,4-triazole,1 g/kg, was administered intraperitoneally 1 h before ischemia. In addition, administration of a free radical scavenger, dimethylthiourea, 500 mg/kg, intravenous, 1 h before each day's preconditioning, reversed the increase of the activities of both enzymes in spinal cord tissue. The results indicate that an initial oxidative stress, as a trigger to upregulate the antioxidant enzyme activities, plays an important role in the formation of the tolerance against spinal cord ischemia by HBO preconditioning. PMID:16136055

  12. Drought Tolerance Is Correlated with the Activity of Antioxidant Enzymes in Cerasus humilis Seedlings.

    PubMed

    Ren, Jing; Sun, Li Na; Zhang, Qiu Yan; Song, Xing Shun

    2016-01-01

    Cerasus humilis, grown in the northern areas of China, may experience water deficit during their life cycle, which induces oxidative stress. Our present study was conducted to evaluate the role of oxidative stress management in the leaves of two C. humilis genotypes, HR (drought resistant) and ND4 (drought susceptible), when subjected to a long-term soil drought (WS). The HR plants maintained lower membrane injury due to low ROS and MDA accumulation compared to ND4 plants during a long-term WS. This is likely attributed to global increase in the activities of superoxide dismutase (SOD) isoenzymes and enzymes of the ascorbate-glutathione (AsA-GSH) cycle and maintenance of ascorbate (AsA) levels. Consistent closely with enzymes activities, the expression of cytosolic ascorbate peroxidase (cAPX) and dehydroascorbate reductase (DHAR) followed a significant upregulation, indicating that they were regulated at the transcriptional level for HR plants exposed to WS. In contrast, ND4 plants exhibited high ROS levels and poor antioxidant enzyme response, leading to enhanced membrane damage during WS conditions. The present study shows that genotypic differences in drought tolerance could be likely attributed to the ability of C. humilis plants to induce antioxidant defense under drought conditions. PMID:27047966

  13. Drought Tolerance Is Correlated with the Activity of Antioxidant Enzymes in Cerasus humilis Seedlings

    PubMed Central

    Ren, Jing; Sun, Li Na; Zhang, Qiu Yan

    2016-01-01

    Cerasus humilis, grown in the northern areas of China, may experience water deficit during their life cycle, which induces oxidative stress. Our present study was conducted to evaluate the role of oxidative stress management in the leaves of two C. humilis genotypes, HR (drought resistant) and ND4 (drought susceptible), when subjected to a long-term soil drought (WS). The HR plants maintained lower membrane injury due to low ROS and MDA accumulation compared to ND4 plants during a long-term WS. This is likely attributed to global increase in the activities of superoxide dismutase (SOD) isoenzymes and enzymes of the ascorbate-glutathione (AsA-GSH) cycle and maintenance of ascorbate (AsA) levels. Consistent closely with enzymes activities, the expression of cytosolic ascorbate peroxidase (cAPX) and dehydroascorbate reductase (DHAR) followed a significant upregulation, indicating that they were regulated at the transcriptional level for HR plants exposed to WS. In contrast, ND4 plants exhibited high ROS levels and poor antioxidant enzyme response, leading to enhanced membrane damage during WS conditions. The present study shows that genotypic differences in drought tolerance could be likely attributed to the ability of C. humilis plants to induce antioxidant defense under drought conditions. PMID:27047966

  14. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly.

    PubMed

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-08-19

    Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and D-peptide allows intracellular esterase to trigger intracellular self-assembly of the D-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly. PMID:26235707

  15. Taurine Boosts Cellular Uptake of Small d-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly

    PubMed Central

    2016-01-01

    Due to their biostability, d-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, d-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small d-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and d-peptide allows intracellular esterase to trigger intracellular self-assembly of the d-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly. PMID:26235707

  16. Microbial responses to membrane cleaning using sodium hypochlorite in membrane bioreactors: Cell integrity, key enzymes and intracellular reactive oxygen species.

    PubMed

    Han, Xiaomeng; Wang, Zhiwei; Wang, Xueye; Zheng, Xiang; Ma, Jinxing; Wu, Zhichao

    2016-01-01

    Sodium hypochlorite (NaClO) is a commonly used reagent for membrane cleaning in membrane bioreactors (MBRs), while it, being a kind of disinfectant (oxidant), may impair viability of microbes or even totally inactivate them upon its diffusion into mixed liquor during membrane cleaning. In this study, we systematically examine the effects of NaClO on microorganisms in terms of microbial cell integrity, metabolism behaviours (key enzymes), and intracellular reactive oxygen species (ROS) under various NaClO concentrations. Different proportions of microbial cells in activated sludge were damaged within several minutes dependent on NaClO dosages (5-50 mg/g-SS), and correspondingly organic matters were released to bulk solution. Inhibition of key enzymes involved in organic matter biodegradation, nitrification and denitrification was observed in the presence of NaClO above 1 mg/g-SS, and thus organic matter and nitrogen removal efficiencies were decreased. It was also demonstrated that intracellular ROS production was increased with the NaClO dosage higher than 1 mg/g-SS, which likely induced further damage to microbial cells. PMID:26512807

  17. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery.

    PubMed

    McClung, Joseph M; Deruisseau, Keith C; Whidden, Melissa A; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S; Powers, Scott K

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force-frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm(-2)) at stimulation frequencies of 20-300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in microm(2)) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with

  18. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ting; He, Weiwei; Wamer, Wayne G.; Hu, Xiaona; Wu, Xiaochun; Lo, Y. Martin; Yin, Jun-Jie

    2013-01-01

    Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods.Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge

  19. Potent AChE enzyme inhibition activity of Zizyphus oxyphylla: A new source of antioxidant compounds.

    PubMed

    Mazhar, Farhana; Khanum, Raisa; Ajaib, Muhammad; Jahangir, Muhammad

    2015-11-01

    The purpose of this study was to assess the antioxidant potential and enzyme inhibition of various fractions of Zizyphus oxyphylla. The plant metabolites were extracted in methanol and partitioned with n-hexane, chloroform, ethyl acetate and n-butanol successively. Phytochemical screening showed presence of alkaloids, terpenoids and flavonoids in ethyl acetate and n-butanol fractions. The antioxidant potential and acetylcholine esterase assay of all these fractions and remaining aqueous fraction was evaluated by using reported methods. The results revealed that chloroform soluble fraction exhibited highest percent inhibition of DPPH radical as compared to other fractions. It showed 95.01 ± 0.37% inhibition of DPPH radical at a concentration of 120 μg/mL. The IC₅₀ of this fraction was 13.20 ± 0.27 μg/mL, relative to butylated hydroxytoluene (BHT, a reference standard), having IC₅₀ of 12.10 ± 0.29 μg/mL. It also showed highest total antioxidant activity i.e. 1.723 ± 0.34 as well as highest FRAP value (339.5 ± 0.57 TE μm/mL) and highest total phenolic contents (142.65 ± 1.20 GAE mg/g) as compared to the other studied fractions. The fractions were also studied for Acetylcholine esterase enzyme (AChE) enzyme inhibition activity and n-butanol soluble fraction exhibited maximum inhibition (95.5 ± 0.13 mg/mL with IC50 =9.58 ± 0.08 mg/mL relative to galanthamine (13.26 ± 0.73 mg/mL), while n- hexane soluble fraction (165.15 ± 0.94 mg/mL) showed non-significant. We are still working to isolate pure compounds for active fractions targeting potent inhibition responsible for some activities. PMID:26639499

  20. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots

    PubMed Central

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  1. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  2. Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis.

    PubMed

    Liu, Nan; Lin, Zhifang; Guan, Lanlan; Gaughan, Gerald; Lin, Guizhu

    2014-01-01

    Previous research has focused on the involvement of reactive oxygen species (ROS) in cell wall loosening and cell extension in plant vegetative growth, but few studies have investigated ROS functions specifically in plant reproductive organs. In this study, ROS levels and antioxidant enzyme activities were assessed in Pisum sativum and Brassica chinensis pods at five developmental stages. In juvenile pods, the high levels of O2.- and .OH indicates that they had functions in cell wall loosening and cell elongation. In later developmental stages, high levels of .OH were also related to increases in cell wall thickness in lignified tissues. Throughout pod development, most of the O2.- was detected on plasma membranes of parenchyma cells and outer epidermis cells of the mesocarp, while most of the H2O2 was detected on plasma membranes of most cells throughout the mesocarp. This suggests that these sites are presumably the locations of ROS generation. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) apparently contributed to ROS accumulation in pod wall tissues. Furthermore, specifically SOD and POD were found to be associated with pod growth through the regulation of ROS generation and transformation. Throughout pod development, O2.- decreases were associated with increased SOD activity, while changes in H2O2 accumulation were associated with changes in CAT and POD activities. Additionally, high POD activity may contribute to the generation of(.)OH in the early development of pods. It is concluded that the ROS are produced in different sites of plasma membranes with the regulation of antioxidant enzymes, and that substantial ROS generation and accumulation are evident in cell elongation and cell wall loosening in pod wall cells. PMID:24503564

  3. Lipid peroxidation and antioxidant enzymes activity in Plasmodium vivax malaria patients evolving with cholestatic jaundice

    PubMed Central

    2013-01-01

    Background Plasmodium vivax infection has been considered a benign and self-limiting disease, however, recent studies highlight the association between vivax malaria and life-threatening manifestations. Increase in reactive oxygen species has already been described in vivax malaria, as a result of the increased metabolic rate triggered by the multiplying parasite, and large quantities of toxic redox-active byproducts generated. The present study aimed to study the oxidative stress responses in patients infected with P. vivax, who developed jaundice (hyperbilirubinaemia) in the course of the disease, a common clinical complication related to this species. Methods An evaluation of the lipid peroxidation and antioxidant enzymes profile was performed in 28 healthy individuals and compared with P. vivax infected patients with jaundice, i.e., bilirubin < 51.3 μmol/L (8 patients) or without jaundice (34 patients), on day 1 (D1) and day 14 (D14) after anti-malarial therapy. Results Hyperbilirubinaemia was more frequent among women and patients experiencing their first malarial infection, and lower haemoglobin and higher lactate dehydrogenase levels were observed in this group. Malondialdehyde levels and activity of celuroplasmin and glutathione reductase were increased in the plasma from patients with P. vivax with jaundice compared to the control group on D1. However, the activity of thioredoxin reductase was decreased. The enzymes glutathione reductase, thioredoxin reductase, thiols and malondialdehyde also differed between jaundiced versus non-jaundiced patients. On D14 jaundice and parasitaemia had resolved and oxidative stress biomarkers were very similar to the control group. Conclusion Cholestatic hyperbilirubinaemia in vivax malaria cannot be totally disassociated from malaria-related haemolysis. However, significant increase of lipid peroxidation markers and changes in antioxidant enzymes in patients with P. vivax-related jaundice was observed. These results

  4. Biomonitoring of air pollution using antioxidative enzyme system in two genera of family Pottiaceae (Bryophyta).

    PubMed

    Bansal, Pooja; Verma, Sonam; Srivastava, Alka

    2016-09-01

    Bryophyte particularly mosses, have been found to serve as reliable indicators of air pollution and can serve as bryometers-biological instruments for measuring air pollution. They are remarkable colonizers, as they have the ability to survive in adverse environments and are also particular in their requirement of environmental conditions, which makes them appropriate ecological indicators. The purpose of this study was to evaluate the activity of antioxidative enzymes in two mosses viz., Hyophila rosea R.S. Williams and Semibarbula orientalis (Web.) Wijk. & Marg. and assess their suitability as biomonitors. Three different locations viz., Lucknow University, Residency (contaminated sites) and Dilkusha Garden (reference site) within Lucknow city with different levels of air pollutants were used for comparison. Our results indicate that air pollution caused marked enhancement in activity of antioxidative enzymes viz., catalase, peroxidase and superoxide dismutase. All the three are capable of scavenging reactive oxygen species. In the genus S. orientalis, catalase, peroxidase and superoxide dismutase activity was minimum at the reference site Dilkusha Garden and was significantly higher at the two contaminated sites for catalase and peroxidase, whereas the difference was non significant for superoxide dismutase. In H. rosea the activity of catalase and peroxidase at the three locations was almost similar, however superoxide dismutase activity showed a significant increase in the two contaminated sites when compared to the reference site, the value being highest for Lucknow University site. It was thus observed that the two genera, from the same location, showed difference in the activity of the antioxidative enzymes. Based on our results, we recommend bryophytes as good monitors of air pollution. PMID:27321879

  5. Assessment of antioxidant enzyme activities in erythrocytes of pre-hypertensive and hypertensive women

    PubMed Central

    Amirkhizi, Farshad; Siassi, Fereydoun; Djalali, Mahmoud; Foroushani, Abbas Rahimi

    2010-01-01

    BACKGROUND: Few studies that have investigated hypertension have considered a state of oxidative stress that can contribute to the development of atherosclerosis and other hypertension induced organ damage. The aim of this study was to investigate whether pre-hypertension and hypertension status is associated with activities of erythrocyte antioxidant enzymes in a random sample of cardiovascular disease-free women. METHODS: In this case-control study, 53 pre-hypertensive women, 32 hypertensive women and 75 healthy controls were included. General information was gathered using questionnaires and face-to-face interviews. Blood pressure and anthropometric measurements were measured for each subject. Venous blood samples were drawn from subjects and plasma was separated. Activities of erythrocyte antioxidant enzymes were also evaluated by measuring activities of copper zinc-superoxide dismutase (CuZn-SOD), glutathione peroxidase (GPX) and catalase (CAT) in selected subjects. RESULTS: Fifty-three (33.1%) and 32 (20%) participants were pre-hypertensive and hypertensive, respectively. The hypertensive and pre-hypertensive women had lower CuZn-SOD (p < 0.001) and GPX (p < 0.01) activities compared to normotensives. Furthermore, hypertensive women had lower CAT activity compared to pre-hypertensive and normotensive women (p < 0.001). Moreover, significant differences were also observed between hypertensive and pre-hypertensive women in erythrocyte CAT activity (p < 0.01). CONCLUSIONS: The present findings show that activities of erythrocyte antioxidant enzymes decrease in pre-hypertensive and hypertensive women, which may eventually lead to atherosclerosis and other high blood pressure related health problems. PMID:21526095

  6. Induction of the expressions of antioxidant enzymes by luteinizing hormone in the bovine corpus luteum.

    PubMed

    Kawaguchi, Syota; Sakumoto, Ryosuke; Okuda, Kiyoshi

    2013-01-01

    Luteoprotective mechanisms of luteinizing hormone (LH) involved in the maintenance of bovine corpus luteum (CL) function have not been completely clarified. Since antioxidant enzymes are well documented as antiapoptotic factors in the CL of many mammals, we hypothesized that the luteoprotective action of LH is mediated by stimulating the local production and action of antioxidant enzymes. To test the above hypothesis, in the present study, we examined the mechanisms involved in the luteoprotective actions of LH. Cultured bovine luteal cells obtained from the CL at the mid-luteal stage (days 8-12 of the estrous cycle) were treated with LH (10 ng/ml), onapristone (OP; a specific progesterone receptor antagonist, 100 μM) and diethyldithiocarbamate [DETC; an inhibitor of superoxide dismutase (SOD), 100 μM] for 24 h. LH in combination with or without OP significantly increased the mRNA and protein expressions of manganese SOD (Mn-SOD) and catalase (CATA) and SOD activity. While LH alone significantly increased the mRNA and protein expressions of SOD containing copper and zinc (Cu,Zn-SOD), OP in combination with or without LH significantly decreased the mRNA and protein expressions of Cu,Zn-SOD. In addition, Cu,Zn-SOD, Mn-SOD and CATA mRNA expressions were higher at the mid luteal phase than the other luteal phases. LH in combination with DETC significantly decreased LH-increased cell viability. The overall results suggest that LH increases cell viability by LH-increased antioxidant enzymes, resulting in maintenance of CL function during the luteal phase in cattle. PMID:23386101

  7. Interactive effect of salicylic acid on some physiological features and antioxidant enzymes activity in ginger (Zingiber officinale Roscoe).

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E

    2013-01-01

    The effect of foliar salicylic acid (SA) applications (10⁻³ and 10⁻⁵ M) on activities of nitrate reductase, guaiacol peroxidase (POD), superoxide dismutases (SOD), catalase (CAT) and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO₂ concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10⁻⁵ M SA, with significant increases observed in CAT (20.1%), POD (45.2%), SOD (44.1%) and proline (43.1%) activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO₂ supply. Our results support the idea that low SA concentrations (10⁻⁵ M) may induce nitrite reductase synthesis by mobilizing intracellular NO³⁻ and can provide protection to nitrite reductase degradation in vivo in the absence of NO³⁻. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H₂O₂ quenching. PMID:23698049

  8. A new bifunctional chitosanase enzyme from Streptomyces sp. and its application in production of antioxidant chitooligosaccharides.

    PubMed

    Sinha, Sujata; Tripathi, Pushplata; Chand, Subhash

    2012-07-01

    Chitosanases produced by microbes and plants are getting attention to explore vastly available marine waste. Chitooligosaccharides and glucosamine can be produced using chitosanase enzyme and have applications in food, pharma and other industries. A potential microbial chitosanase source was found after isolation and screening of chitosan degrading microbes from garden soil. An isolate, designated as C6 produced chitosanase enzyme upon induction by chitosan substrates. Production of 6 U/ml of chitosanase enzyme was achieved from this isolate on chitosan minimal salt broth medium at 32 °C after 3 days of growth. The enzyme was able to hydrolyse both chitosan and cellulosic substrates. Enzymatic production of D -glucosamine and chitooligosaccharides were studied with various chitosan substrates using crude enzyme. The yield of glucosamine was found to be 40% after 2 h of reaction at 40 °C, and chitosan oligomers were produced having two to six polymerizations at 60 °C reaction temperature. The hydrolysates showed 50% antioxidant activity as compared to ascorbic acid. PMID:22322828

  9. Changes in nitrogen metabolism and antioxidant enzyme activities of maize tassel in black soils region of northeast China

    PubMed Central

    Xu, Hongwen; Lu, Yan; Xie, Zhiming; Song, Fengbin

    2014-01-01

    Two varieties of maize (Zea mays L.) grown in fields in black soils of northeast China were tested to study the dynamic changes of nitrogen metabolism and antioxidant enzyme activity in tassels of maize. Results showed that antioxidant enzyme activity in tassels of maize increased first and then decreased with the growing of maize, and reached peak value at shedding period. Pattern of proline was consistent with antioxidant enzyme activity, showing that osmotic adjustment could protect many enzymes, which are important for cell metabolism. Continuous reduction of soluble protein content along with the growing of maize was observed in the study, which indicated that quantitative material and energy were provided for pollen formation. Besides, another major cause was that a large proportion of nitrogen was used for the composition of structural protein. Nitrate nitrogen concentrations of tassels were more variable than ammonium nitrogen, which showed that nitrate nitrogen was the favored nitrogen source for maize. PMID:25324855

  10. Optimization of enzyme assisted extraction of Fructus Mori polysaccharides and its activities on antioxidant and alcohol dehydrogenase.

    PubMed

    Deng, Qingfang; Zhou, Xin; Chen, Huaguo

    2014-10-13

    In the present study, enzyme assisted extraction of Fructus Mori polysaccharides (FMPS) from F. mori using four kinds of enzymes and three compound enzymes were examined. Research found that glucose oxidase offered a better performance in enhancement of the extraction yields of FMPS, antioxidant and activate alcohol dehydrogenase activities. The glucose oxidase assisted extraction process was further optimized by using response surface method (RSM) to obtain maximum yield of crude FMPS. The results showed that optimized extraction conditions were ratio of enzyme amount 0.40%, enzyme treated time 38 min, treated temperature 58 °C and liquid-solid radio 11.0. Under these conditions, the mean experimental value of extraction yield (16.16 ± 0.14%) corresponded well with the predicted values and increased 160% than none enzyme treated ones. Pharmacological verification tests showed that F. mori crude polysaccharides had good antioxidant and activate alcohol dehydrogenase activities in vitro. PMID:25037415

  11. Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L.

    PubMed

    Li, Yong; Zhang, Shanshan; Jiang, Wusheng; Liu, Donghua

    2013-02-01

    The aquatic plant Pistia stratiotes L. (water lettuce) was studied due to its capability of absorption of contaminants in water and its subsequent use in wetlands constructed for wastewater treatment. The effects of Cd on root growth, accumulation of Cd, antioxidant enzymes, and malondialdehyde (MDA) content in P. stratiotes were investigated. The results indicated that P. stratiotes has considerable ability to accumulate Cd. Cadmium induced higher superoxide dismutase (SOD) and peroxidase (POD) activities than catalase activity, suggesting that SOD and POD provided a better defense mechanism against Cd-induced oxidative damage. The accumulation of Cd promoted MDA production. PMID:22791349

  12. Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin

    PubMed Central

    Ishii, Satoshi; Chang, Hui-Hwa; Kawasaki, Kunito; Yasuda, Kayo; Wu, Hui-Li; Garman, Scott C.; Fan, Jian-Qiang

    2007-01-01

    Fabry disease is a lysosomal storage disorder caused by the deficiency of α-Gal A (α-galactosidase A) activity. In order to understand the molecular mechanism underlying α-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal Km and Vmax values. The degradation of all mutants (except E59K) was partially inhibited by treatment with kifunensine, a selective inhibitor of ER (endoplasmic reticulum) α-mannosidase I. Metabolic labelling and subcellular fractionation studies in COS-7 cells expressing the L166V and R301Q α-Gal A mutants indicated that the mutant protein was retained in the ER and degraded without processing. Addition of DGJ (1-deoxygalactonojirimycin) to the culture medium of COS-7 cells transfected with a large set of missense mutant α-Gal A cDNAs effectively increased both enzyme activity and protein yield. DGJ was capable of normalizing intracellular processing of mutant α-Gal A found in both classic (L166V) and variant (R301Q) Fabry disease patients. In addition, the residual enzyme activity in fibroblasts or lymphoblasts from both classic and variant hemizygous Fabry disease patients carrying a variety of missense mutations could be substantially increased by cultivation of the cells with DGJ. These results indicate that a large proportion of mutant enzymes in patients with residual enzyme activity are kinetically active. Excessive degradation in the ER could be responsible for the deficiency of enzyme activity in vivo, and the DGJ approach may be broadly applicable to Fabry disease patients with missense mutations. PMID:17555407

  13. Chemomodulation of carcinogen metabolising enzymes, antioxidant profiles and skin and forestomach papillomagenesis by Spirulina platensis.

    PubMed

    Dasgupta, T; Banejee, S; Yadav, P K; Rao, A R

    2001-10-01

    Numerous reports have revealed an inverse association between consumption of some selective natural products and risk of developing cancer. In the present study the effect of 250 and 500 mg/kg body wt. of Spirulina was examined on drug metabolising phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of 7-week-old Swiss albino mice. The implications of these biochemical alterations have been further evaluated adopting the protocol of benzo(a)pyrene induced forestomach and 7,12 dimethylbenz(a)anthracene (DMBA) initiated and croton oil promoted skin papillomagenesis. Our primary findings reveal the 'Monofunctional' nature of Spirulina as deduced from its potential to induce only the phase II enzyme activities associated mainly with carcinogen detoxification. The glutathione S-transferase and DT-diaphorase specific activities were induced in hepatic and all the extrahepatic organs examined (lung, kidney and forestomach) by Spirulina pretreatment (significance level being from p < 0.05 to p < 0.005) except for the low dose treatment in forestomach. With reference to antioxidant enzymes viz., superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione were increased significantly by both the chosen doses of Spirulina from p < 0.01 to p < 0.005. Chemopreventive response was quantitated by the average number of papillomas per effective mouse (tumor burden) as well as percentage of tumor bearing animals. There was a significant inhibition of tumor burden as well as tumor incidence in both the tumor model systems studied. In the skin tumor studies tumor burden was reduced from 4.86 to 1.20 and 1.15 by the low and high dose treatment respectively. In stomach tumor studies tumor burden was 2.05 and 1.73 by the low and high doses of Spirulina treatment against 3.73 that of control. PMID:11768236

  14. The Relationship between Coenzyme Q10, Oxidative Stress, and Antioxidant Enzymes Activities and Coronary Artery Disease

    PubMed Central

    Lee, Bor-Jen; Lin, Yi-Chin; Huang, Yi-Chia; Ko, Ya-Wen; Hsia, Simon; Lin, Ping-Ting

    2012-01-01

    A higher oxidative stress may contribute to the pathogenesis of coronary artery disease (CAD). The purpose of this study was to investigate the relationship between coenzyme Q10 concentration and lipid peroxidation, antioxidant enzymes activities and the risk of CAD. Patients who were identified by cardiac catheterization as having at least 50% stenosis of one major coronary artery were assigned to the case group (n = 51). The control group (n = 102) comprised healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, malondialdehyde (MDA) and antioxidant enzymes activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx)) were measured. Subjects with CAD had significant lower plasma coenzyme Q10, CAT and GPx activities and higher MDA and SOD levels compared to those of the control group. The plasma coenzyme Q10 was positively correlated with CAT and GPx activities and negatively correlated with MDA and SOD. However, the correlations were not significant after adjusting for the potential confounders of CAD with the exception of SOD. A higher level of plasma coenzyme Q10 (≥0.52 μmol/L) was significantly associated with reducing the risk of CAD. Our results support the potential cardioprotective impact of coenzyme Q10. PMID:22645453

  15. Toxic effects of nitenpyram on antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers.

    PubMed

    Yan, Saihong; Wang, Jinhua; Zhu, Lusheng; Chen, Aimei; Wang, Jun

    2015-12-01

    Nitenpyram is one of the most commonly used neonicotinoid pesticide worldwide and was found to be toxic to non-target aquatic organisms. Therefore, the purpose of this study was to investigate the oxidative stress, changes in the detoxifying system and DNA damage in zebrafish induced by nitenpyram. In the present study, zebrafish (Danio rerio) were exposed to four concentrations (0.6, 1.2, 2.5, and 5.0 mg L(-1)) for 28 d and then sampled in triplicate on days 7, 14, 21 and 28. Superoxide dismutase (SOD) and catalase (CAT) activities were dramatically inhibited at most exposure times compared with the control group, except SOD at low concentration (0.6 mg L(-1)) of nitenpyram and CAT on day 21. This difference is due to the excess reactive oxygen species (ROS) produced and increased malondialdehyde (MDA) content in zebrafish livers. The activity of glutathione S-transferase (GST) increased in in the treatment groups at a higher concentration compared with the control group. We found that nitenpyram exposure could affect the antioxidant enzymes and DNA damage in the exposed zebrafish livers. Additionally, the changes in the antioxidant enzyme activities could be an adaptive response protecting against the toxicity induced by nitenpyram. PMID:26202306

  16. Effect of Yeast Probiotic on Growth, Antioxidant Enzyme Activities and Malondialdehyde Concentration of Broiler Chickens

    PubMed Central

    Aluwong, Tagang; Kawu, Mohammed; Raji, Moshood; Dzenda, Tavershima; Govwang, Felix; Sinkalu, Victor; Ayo, Joseph

    2013-01-01

    The aim of the study was to determine the effect of yeast probiotic on body weight, and the activities of anti-oxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and malondialdehyde (MDA) concentration of broiler chickens. The experiment was carried out on hybrid Hubbard broiler chickens (n = 200). Two-hundred day-old chicks were randomly selected and distributed into four groups of 50 day-old chicks each: Control, C, and treatment groups comprising T1, T2 and T3 administered with 0.25 mL, 0.5 mL and 1.0 mL yeast probiotic, respectively. Chicks were fed a commercial starter diet for the first 28 days of age, followed by pelleted finisher diet from 29 to 42 days. Chickens in T1 had a significantly (p < 0.01) higher body weight at 4th week of age when compared with the control. SOD activity in all treatment groups was not significantly (p > 0.05) different when compared with the control. GPx activity was significantly (p < 0.01) higher in T1, when compared with the control. GPx activity in T2 was higher (p < 0.01) when compared with the control. There was no significant (p > 0.05) difference in MDA level in all the treatment groups. In conclusion, administering yeast probiotic supplement increased body weight and enhanced serum anti-oxidant enzyme activities of broiler chickens. PMID:26784468

  17. Tocopherol Succinate: Modulation of Antioxidant Enzymes and Oncogene Expression, and Hematopoietic Recovery

    SciTech Connect

    Singh, Vijay K.; Parekh, Vaishali I.; Brown, Darren S.; Kao, Tzu-Cheg; Mog, Steven R.

    2011-02-01

    Purpose: A class of naturally occurring isoforms of tocopherol (tocols) was shown to have varying degrees of protection when administered before radiation exposure. We recently demonstrated that {alpha}-tocopherol succinate (TS) is a potential radiation prophylactic agent. Our objective in this study was to further investigate the mechanism of action of TS in mice exposed to {sup 60}Co {gamma}-radiation. Methods and Materials: We evaluated the effects of TS on expression of antioxidant enzymes and oncogenes by quantitative RT-PCR in bone marrow cells of {sup 60}Co {gamma}-irradiated mice. Further, we tested the ability of TS to rescue and repopulate hematopoietic stem cells by analyzing bone marrow cellularity and spleen colony forming unit in spleen of TS-injected and irradiated mice. Results: Our results demonstrate that TS modulated the expression of antioxidant enzymes and inhibited expression of oncogenes in irradiated mice at different time points. TS also increased colony forming unit-spleen numbers and bone marrow cellularity in irradiated mice. Conclusions: Results provide additional support for the observed radioprotective efficacy of TS and insight into mechanisms.

  18. Antioxidant enzyme activities in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Zhang, Shicui; Wang, Changfa; Pang, Qiuxiang

    2007-01-01

    Information regarding antioxidant enzymes in amphioxus remains lacking, and this study was carried out to examine the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense. Results show that (1) CuZn-SOD, CAT and GPX activities in the whole amphioxus B. belcheri tsingtauense were basically at the same levels in male and female amphioxus, whereas both T-SOD and Mn-SOD activities in male amphioxus were significantly higher than that in the female ( P<0.05); (2) The testis had significantly higher T-SOD and CuZn-SOD activities than the ovary ( P<0.05); (3) CuZn-SOD activity was undetectable in the guts of male and female amphioxus; (4) For both male and female amphioxus, the activities of CAT and GPX in the gonads including testis and ovary were the lowest ( P<0.05) among the tissues examined; (5) The gut and gill had the same level GPX activities while the gut had a higher CAT activity; (6) There was no clear difference in CAT and GPX activities in the corresponding tissues between male and female amphioxus. The study on SOD, CAT and GPX activities in different genders and tissues of the protochordate provides data for future comparison of amphioxus antioxidant enzymes with those of invertebrates and vertebrates.

  19. Widening and Elaboration of Consecutive Research into Therapeutic Antioxidant Enzyme Derivatives.

    PubMed

    Maksimenko, Alexander V

    2016-01-01

    Undiminishing actuality of enzyme modification for therapeutic purposes has been confirmed by application of modified enzymes in clinical practice and numerous research data on them. Intravenous injection of the superoxide dismutase-chondroitin sulfate-catalase (SOD-CHS-CAT) conjugate in preventive and medicative regimes in rats with endotoxin shock induced with a lipopolysaccharide bolus has demonstrated that antioxidant agents not only effectively prevent damage caused by oxidative stress (as believed previously) but also can be used for antioxidative stress therapy. The results obtained emphasize the importance of investigation into the pathogenesis of vascular damage and the role of oxidative stress in it. The effects of intravenous medicative injection of SOD-CHS-CAT in a rat model of endotoxin shock have demonstrated a variety in the activity of this conjugate in addition to prevention of NO conversion in peroxynitrite upon interaction with O2 (∙-) superoxide radical. Together with the literature data, these findings offer a prospect for the study of NO-independent therapeutic effects of SOD-CHS-CAT, implying the importance of a better insight into the mechanisms of the conjugate activity in modeled cardiovascular damage involving vasoactive agents other than NO. PMID:27148430

  20. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    PubMed Central

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501

  1. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport.

    PubMed

    Abraham, Gerard; Dhar, Dolly Wattal

    2010-09-01

    Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl. PMID:20422236

  2. Influence of environmental static electric field on antioxidant enzymes activities in hepatocytes of mice.

    PubMed

    Wu, S X; Xu, Y Q; Di, G Q; Jiang, J H; Xin, L; Wu, T Y

    2016-01-01

    With the increasing voltage of direct current transmission line, the intensity of the environmental static electric field has also increased. Thus, whether static electric fields cause biological injury is an important question. In this study, the effects of chronic exposure to environmental static electric fields on some antioxidant enzymes activities in the hepatocytes of mice were investigated. Male Institute of Cancer Research mice were exposed for 35 days to environmental static electric fields of different electric field intensities of 9.2-21.85 kV/m (experiment group I, EG-I), 2.3-15.4 kV/m (experiment group II, EG-II), and 0 kV/m (control group, CG). On days 7, 14, 21, and 35 of the exposure cycle, liver homogenates were obtained and the activities of antioxidant enzymes like superoxide dismutase, glutathione S-transferase, and glutathione peroxidase were determined, as well as the concentration of malonaldehyde. The results revealed a significant increase in superoxide dismutase activity in both EG-I and EG-II on the 7th (P < 0.05) and 35th days (P < 0.01) of the exposure cycle compared to that in the control group. However, the other test indices such as glutathione S-transferase, glutathione peroxidase, and malonaldehyde showed only minimal changes during the exposure cycle. These results revealed a weak relationship between the exposure to environmental static electric fields and hepatic oxidative stress in living organisms. PMID:27525865

  3. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance.

    PubMed

    Goswami, Sunayana; Das, Suchismita

    2016-04-01

    Cu phytoremediation potential of an ornamental plant, Calandula officinalis, was explored in terms of growth responses, photosynthetic activities and antioxidant enzymes such as SOD, CAT and GPX. The results showed that this plant had high Cu tolerance of up to 400 mg/kg, which is far above the phytotoxic range for non hyperaccumulators. It grew normally in soils at all the doses (150-400 mg/kg) without showing external signs of phytotoxicity. At 150 mg/kg, flowering was augmented; root and shoot biomass, root lengths and leaf soluble protein contents remained same as that of the control. However, chlorophyll and carotenoid pigment contents declined significantly along with significant elevations in lipid peroxidation, at all the doses. Elevations of antioxidant enzymes reflected stress as well as probable mitigation of reactive oxygen species due to Cu stress. Except for the highest conc. (400 mg/kg), leaf accumulation of Cu was higher than root accumulations. The Cu accumulation peaked at 300 mg/kg Cu in soil, with leaf and root accumulations to be respectively, 4675 and 3995 µg/g dry wt., far more than the minimum of 1000 µg/g dry wt. for a Cu hyperaccumulator. The plant root at all the doses tolerated Cu, with the tolerance index ranging from 94-62.7. The soil to plant metal uptake capacity, indicated by extraction coefficient and the root to shoot translocation, indicated by translocation factor, at all the doses of Cu were >1, pointed towards efficient phytoremediation potential. PMID:26773830

  4. Amelioration of municipal sludge by Pistia stratiotes L.: role of antioxidant enzymes in detoxification of metals.

    PubMed

    Tewari, Anamika; Singh, Ragini; Singh, Naveen Kumar; Rai, U N

    2008-12-01

    Pistia stratiotes when exposed to mixture of municipal sludge and effluent accumulated substantial amount of metals in the fronds and roots. With the increase in the metal accumulation by the plants, a reduction in the concentration of metals was found in leachates. The treated plants showed reduced level in chlorophylls but enhanced level of carotenoids and protein. The plant showed a concomitant increase in the activities of antioxidant enzymes; superoxide dismutase, guiacol peroxidase and also an enhanced level of lipid peroxidation. The activities were more in the root tissues as compared to frond. Initially a reduced level of cysteine content in roots of sludge treated plant as compared to control was found, but with time duration it increased progressively. The level of non-protein thiols also increased gradually at all the durations in both fronds and roots. Thus, beside the reduction of metals from municipal sludge, the ability of P. stratiotes to combat metal generated damages by induced synthesis of antioxidant enzymes and other metal binding ligands shows its suitability for the phytoremediation of the waste. PMID:18499446

  5. Widening and Elaboration of Consecutive Research into Therapeutic Antioxidant Enzyme Derivatives

    PubMed Central

    2016-01-01

    Undiminishing actuality of enzyme modification for therapeutic purposes has been confirmed by application of modified enzymes in clinical practice and numerous research data on them. Intravenous injection of the superoxide dismutase-chondroitin sulfate-catalase (SOD-CHS-CAT) conjugate in preventive and medicative regimes in rats with endotoxin shock induced with a lipopolysaccharide bolus has demonstrated that antioxidant agents not only effectively prevent damage caused by oxidative stress (as believed previously) but also can be used for antioxidative stress therapy. The results obtained emphasize the importance of investigation into the pathogenesis of vascular damage and the role of oxidative stress in it. The effects of intravenous medicative injection of SOD-CHS-CAT in a rat model of endotoxin shock have demonstrated a variety in the activity of this conjugate in addition to prevention of NO conversion in peroxynitrite upon interaction with O2∙− superoxide radical. Together with the literature data, these findings offer a prospect for the study of NO-independent therapeutic effects of SOD-CHS-CAT, implying the importance of a better insight into the mechanisms of the conjugate activity in modeled cardiovascular damage involving vasoactive agents other than NO. PMID:27148430

  6. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits.

    PubMed

    Ali, Sajid; Khan, Ahmad Sattar; Malik, Aman Ullah; Shahid, Muhammad

    2016-09-01

    'Gola' litchi fruits were stored under ten different CA-combinations at 5±1°C to investigate its effects on pericarp browning, biochemical quality and antioxidative activities. Control fruit turned completely brown after 28days of storage and were excluded from the study. Fruit-stored under CA7-combination (1% O2+5% CO2) showed reduced weight loss, pericarp browning, membrane leakage and malondialdehyde contents. Soluble solid contents, titratable acidity and ascorbic acid contents were higher in CA7-stored fruit. Activities of catalase and superoxide dismutase enzymes, levels of total anthocyanins, DPPH radical-scavenging-activity and phenolic contents were significantly higher in CA7-stored litchi fruit. In contrast, activities of polyphenol oxidase and peroxidase enzymes were substantially lower in fruit kept under CA7-combination. Fruit subjected to CA7-conditions also maintained higher organoleptic quality. In conclusion, 1% O2+5% CO2 CA-conditions delayed pericarp browning, maintained antioxidative activities and biochemical characteristics along with better organoleptic quality of litchi fruit for 35days. PMID:27041293

  7. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  8. Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes.

    PubMed

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2016-04-01

    Epigenetic modifications influence DNA damage response (DDR). In this study we explored the role of DNA methylation and histone acetylation in DDR in cells challenged with acute or chronic oxidative stress. We used retinal pigment epithelial cells (ARPE-19), which natively are exposed to oxidative stress due to permanent exposure to light and high blood flow. We employed a DNA methyltransferase inhibitor - RG108 (RG), or a histone deacetylase inhibitor - valproic acid (VA). ARPE-19 cells were exposed to tert-butyl hydroperoxide, an acute oxidative stress inducer, or glucose oxidase, which slowly liberates low-doses of hydrogen peroxide in the presence of glucose, creating chronic conditions. VA and RG reduced level of intracellular reactive oxygen species and DNA damage in ARPE-19 cells in normal condition and in oxidative stress. This protective effect of VA and RG was associated with the up-regulated expression of antioxidant enzyme genes: CAT, GPx1, GPx4, SOD1 and SOD2. RG decreased the number of cells in G2/M checkpoint in response to chronic oxidative stress. Neither RG nor VA changed the DNA repair or apoptosis induced by oxidative stress. Therefore, certain epigenetic manipulations may protect ARPE-19 cells from detrimental effects of oxidative stress by modulation of antioxidative enzyme gene expression, which may be further explored in pharmacological studies on oxidative stress-related eye diseases. PMID:26899469

  9. Green tea diet decreases PCB 126-induced oxidative stress in mice by upregulating antioxidant enzymes

    PubMed Central

    Newsome, Bradley J; Petriello, Michael C; Han, Sung Gu; Murphy, Margaret O; Eske, Katryn E; Sunkara, Manjula; Morris, Andrew J; Hennig, Bernhard

    2013-01-01

    Superfund chemicals such as polychlorinated biphenyls pose a serious human health risk due to their environmental persistence and link to multiple diseases. Selective bioactive food components such as flavonoids have been shown to ameliorate PCB toxicity, but primarily in an in vitro setting. Here, we show that mice fed a green tea-enriched diet and subsequently exposed to environmentally relevant doses of coplanar PCB exhibit decreased overall oxidative stress primarily due to the upregulation of a battery of antioxidant enzymes. C57BL/6 mice were fed a low fat diet supplemented with green tea extract (GTE) for 12 weeks and exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg-day) on weeks 10, 11 and 12 (total body burden: 4.9 mg/kg). F2-Isoprostane and its metabolites, established markers of in vivo oxidative stress, measured in plasma via HPLC-MS/MS exhibited five-fold decreased levels in mice supplemented with GTE and subsequently exposed to PCB compared to animals on a control diet exposed to PCB. Livers were collected and harvested for both mRNA and protein analyses, and it was determined that many genes transcriptionally controlled by AhR and Nrf2 proteins were upregulated in PCB-exposed mice fed the green tea supplemented diet. An increased induction of genes such as SOD1, GSR, NQO1 and GST, key antioxidant enzymes, in these mice (green tea plus PCB) may explain the observed decrease in overall oxidative stress. A diet supplemented with green tea allows for an efficient antioxidant response in the presence of PCB 126 which supports the emerging paradigm that healthful nutrition may be able to bolster and buffer a physiological system against the toxicities of environmental pollutants. PMID:24378064

  10. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    PubMed

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  11. ANTIOXIDANT ENZYME ACTIVITY AMONG ORPHANS INFECTED WITH INTESTINAL PARASITES IN PATHUM THANI PROVINCE, THAILAND.

    PubMed

    Mahittikorn, Aongart; Prasertbun, Rapeepan; Mori, Hirotake; Popruk, Supaluk

    2014-11-01

    Intestinal parasitic infections can negatively impact growth and nutrition in children. The infections can induce oxidative stress, resulting in a variety of illnesses. We measured antioxidant enzyme levels in orphan children infected with intestinal parasites to investigate the influence of nutritional status on antioxidant enzymes. This cross sectional study was conducted at an orphanage in Thailand. Stool samples were obtained from each subject and examined for intestinal parasites. Anthropometric measurements, complete blood count and biochemical parameters, including serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, were obtained from studied subjects. One hundred twenty-eight children were included in the study. Intestinal parasites were found on microscopic examination of the stools in 36.7% (47/128); 18% (23/128) had a mixed parasite infection. Intestinal protozoa were found in 34.4% of subjects and intestinal helminthes were found in 2.3%. The median GPx level in children infected with intestinal parasites (2.3 ng/ml) was significantly lower than in non-infected children (7.7 ng/ml) (p < 0.05). However, there was no significant difference in SOD levels between the two groups. When comparing GPx levels in children with 1) pathogenic parasites, 2) non-pathogenic parasites and 3) no intestinal parasite infection, GPx levels differed significantly among three groups (2.2 ng/ml, 2.4 ng/ml and 7.7 ng/ml, respectively) (p < 0.05). When separating children by BMI and type of infection, the median SOD level in underweight children infected with pathogenic parasites (107.2 ng/ml) was significantly higher than in underweight children infected with non-pathogenic parasites (68.6 ng/ml) and without intestinal parasite infections (72.2 ng/ml). The present study identified two key findings: low GPx levels in children with intestinal parasitic infections, and the potential impact of malnutrition on some antioxidants. PMID:26466411

  12. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  13. Angiotensin-converting enzyme inhibitory and antioxidant activities of enzymatically synthesized phenolic and vitamin glycosides.

    PubMed

    Charles, Rajachristu Einstein; Ponrasu, Thangavel; Sivakumar, Ramaiah; Divakar, Soundar

    2009-03-01

    Amyloglucosidase from Rhizopus mould and beta-glucosidase from sweet almond were employed for the preparation of phenolic and vitamin glycosides of vanillin, N-vanillylnonanamide, DL-dopa, dopamine, curcumin, alpha-tocopherol (vitamin E), pyridoxine (vitamin B(6)), ergocalciferol (vitamin D(2)), thiamin (vitamin B(1)) and riboflavin (vitamin B(2)). Approx. 20 enzymatically prepared phenolic and vitamin glycosides were subjected to ACE (angiotensin-converting enzyme) inhibition activity measurements, and 14 glycosides were tested for antioxidant activities. Both phenolic and vitamin glycosides exhibited IC(50) values for ACE inhibition in the 0.52+/-0.03-3.33+/-0.17 mM range and antioxidant activities ranging from 0.8+/-0.04 to 1.18+/-0.06 mM. Comparable ACE inhibition values were observed between free phenols and vitamin glycosides. However, antioxidant activities of glycosides were, in general, lesser than those of free phenols. Best IC(50) value for ACE inhibition were observed for 11-O-(D-fructofuranosyl)thiamin (0.52+/-0.03 mM), 3-hydroxy-4-O-(6-D-sorbitol)phenylalanine (0.56+/-0.03 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.61+/-0.03 mM), 4-O-(D-galactopyranosyl)vanillin (0.61+/-0.03 mM) and pyridoxine-D-glucoside (0.84+/-0.04 mM). Similarly, best IC(50) values for antioxidant activity were observed for 1,7-O-(bis-beta-D-glucopyranosyl)curcumin (0.8+/-0.04 mM), 4-O-(beta-D-glucopyranosyl)vanillin (0.9+/-0.05 mM), 3-hydroxy-4-O-(beta-D-galactopyranosyl-(1'-->4)beta-D-glucopyranosyl)phenylalanine (0.9+/-0.05 mM), 20-O-(D-glucopyranosyl)ergocalciferol (0.9+/-0.05 mM) and dopamine-D-galactoside (0.93+/-0.05 mM). PMID:18547170

  14. Hepatoprotective effects of Nigella sativa L and Urtica dioica L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats

    PubMed Central

    Kanter, Mehmet; Coskun, Omer; Budancamanak, Mustafa

    2005-01-01

    AIM: To investigate the effects of Nigella sativa L (NS) and Urtica dioica L (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats. METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals. All groups received CCl4 (0.8 mL/kg of body weight, sc, twice a week for 60 d). In addition, B, C and D groups also received daily i.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand, received only 2 mL/kg normal saline solution for 60 d. Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment. RESULTS: The CCl4 treatment for 60 d increased the lipid peroxidation and liver enzymes, and also decreased the antioxidant enzyme levels. NS or UD treatment (alone or combination) for 60 d decreased the elevated lipid peroxidation and liver enzyme levels and also increased the reduced antioxidant enzyme levels. The weight of rats decreased in group A, and increased in groups B, C and D. CONCLUSION: NS and UD decrease the lipid per-oxidation and liver enzymes, and increase the anti-oxidant defense system activity in the CCl4-treated rats. PMID:16425366

  15. Effect of Cytotoxic Compounds on Activity of Antioxidant Enzyme System in MCF-7 and H1299 Cells.

    PubMed

    Mumyatova, V A; Balakina, A A; Filatova, N V; Sen', V D; Korepin, A G; Terentev, A A

    2016-05-01

    We studied the function of the antioxidant system in tumor cell lines MCF-7 and H1299 that differ by the state of tumor suppressor gene p53. Exposure to different classes of cytotoxic compounds induced several types of antioxidant system responses that depend on the type of cell line. The effects of platinum(II) and platinum(IV) complexes on activity of antioxidant enzymes vary, which can be explained by differences in their accumulation and biotransformation in tumor cells. Triazole and oxazolidinone derivatives had little effect on activity of superoxide dismutase and catalase in H1299 cells, but increased superoxide dismutase activity in MCF-7 cells. PMID:27265137

  16. Gated magnetic mesoporous silica nanoparticles for intracellular enzyme-triggered drug delivery.

    PubMed

    An, Na; Lin, Huiming; Yang, Chunyu; Zhang, Ting; Tong, Ruihan; Chen, Yuhua; Qu, Fengyu

    2016-12-01

    The targeting drug release is significant to the anticancer treatment. In this context, the redox-responsive drug delivery has attracted most attention owing to the intracellular reductive environment, such as the high concentration of glutathione reductase in many cancer cells. Herein, a glutathione sensitive drug delivery nanoplatform was constructed by using core-shell mesoporous silica nanocomposite (Fe3O4@mSiO2) as carrier. By a simple silane coupling reaction, the glutathione cleavable diselenide linker has been prepared and grafted on to Fe3O4@mSiO2 to insure the encapsulation of anticancer drug doxorubicin. The detail release kinetics studies reveal the glutathione triggered drug release, which could be further adjusted by varying the amount of diselenide linker. To improve the tumor-targeting, folic acid was grafted. The cellular uptake and drug release investigation was carried out using HeLa (cervical cancer cell line) as the model cancer cell and L02 and HUVEC (human hepatic cell line and human umbilical vein endothelial cells, non-cancerous cell lines) as control, indicating the enhanced cytotoxicity toward HeLa cells that benefits from the fast endocytosis and enhanced cellular drug release owing to their overexpressing folic acid receptors and high concentration of glutathione. Associating with the magnetic targeting, these novel nanomaterials are expected to be promising in the potential application of tumor-targeting therapy. PMID:27612716

  17. Analysis of the Relationship between Antioxidant Enzyme Gene Polymorphisms and Their Activity in Post-Traumatic Gonarthrosis.

    PubMed

    Vnukov, V V; Panina, S B; Milyutina, N P; Krolevets, I V; Zabrodin, M A

    2016-05-01

    Analysis of polymorphisms of genes encoding antioxidant enzymes SOD1 (G7958A), SOD2 (T58C), CAT (C-262T), and GSTP1 (Ile105Val) in 93 patients with post-traumatic gonarthrosis showed that GSTP1 Ile105Val polymorphism is often associated with heterozygous mutation in catalase gene CAT C-262T. In gonarthrosis, catalase activity in peripheral blood mononuclear cells in patients with CT genotype of the C-262T locus of CAT gene more than 2-fold surpassed that in CC genotype and more than 50% surpassed the normal. Changes in the balance of activity of antioxidant enzymes can affect viability of mononuclear cells. PMID:27270931

  18. Effect of sunlight-exposure on antioxidants and antioxidant enzyme activities in 'd'Anjou' pear in relation to superficial scald development.

    PubMed

    Zhao, Jing; Xie, Xingbin; Shen, Xiang; Wang, Yan

    2016-11-01

    Influence of preharvest sunlight exposure on superficial scald development in 'd'Anjou' pears during cold storage was investigated. The biochemical changes related to scald including α-farnesene, conjugated trienols (CTols), antioxidants, antioxidant enzyme activities were monitored among separated blushed and shaded peels of unbagged fruit as well as the whole peel of bagged fruit. In unbagged fruit, scald symptom was restricted to shaded peel; while there was no difference in α-farnesene between blushed and shaded peels, CTols increased significantly in shaded peel along with scald development after 3months storage. Bagging treatment increased both α-farnesene and CTols significantly and enhanced scald. Preharvest sunlight exposure significantly increased certain antioxidant contents and antioxidant enzyme activities in blushed peel at harvest and during storage. These results reveal a direct role of CTols during development of scald, however, antioxidant systems may play an important role in α-farnesene oxidation to CTols and scald susceptibility in 'd'Anjou pears. PMID:27211615

  19. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.

    PubMed Central

    Rao, M V; Paliyath, G; Ormrod, D P

    1996-01-01

    Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. PMID:8587977

  20. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana

    SciTech Connect

    Rao, M.V.; Paliyath, G.; Ormrod, D.P.

    1996-01-01

    Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O{sub 3}) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O{sub 3}-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O{sub 3} exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O{sub 3} exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O{sub 3}, enhanced the activation oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O{sub 3} exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O{sub 3}, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. 10 figs., 4 tabs.

  1. Molecular Basis for Antioxidant Enzymes in Mediating Copper Detoxification in the Nematode Caenorhabditis elegans

    PubMed Central

    Song, Shaojuan; Zhang, Xueyao; Wu, Haihua; Han, Yan; Zhang, Jianzhen; Ma, Enbo; Guo, Yaping

    2014-01-01

    Antioxidant enzymes play a major role in defending against oxidative damage by copper. However, few studies have been performed to determine which antioxidant enzymes respond to and are necessary for copper detoxification. In this study, we examined both the activities and mRNA levels of SOD, CAT, and GPX under excessive copper stress in Caenorhabditis elegans, which is a powerful model for toxicity studies. Then, taking advantage of the genetics of this model, we assessed the lethal concentration (LC50) values of copper for related mutant strains. The results showed that the SOD, CAT, and GPX activities were significantly greater in treated groups than in controls. The mRNA levels of sod-3, sod-5, ctl-1, ctl-2, and almost all gpx genes were also significantly greater in treated groups than in controls. Among tested mutants, the sod-5, ctl-1, gpx-3, gpx-4, and gpx-6 variants exhibited hypersensitivity to copper. The strains with SOD or CAT over expression were reduced sensitive to copper. Mutations in daf-2 and age-1, which are involved in the insulin/insulin-like growth factor-1 signaling pathway, result in reduced sensitivity to stress. Here, we showed that LC50 values for copper in daf-2 and age-1 mutants were significantly greater than in N2 worms. However, the LC50 values in daf-16;daf-2 and daf-16;age-1 mutants were significantly reduced than in daf-2 and age-1 mutants, implying that reduced copper sensitivity is influenced by DAF-16-related functioning. SOD, CAT, and GPX activities and the mRNA levels of the associated copper responsive genes were significantly increased in daf-2 and age-1 mutants compared to N2. Additionally, the activities of SOD, CAT, and GPX were greater in these mutants than in N2 when treated with copper. Our results not only support the theory that antioxidant enzymes play an important role in copper detoxification but also identify the response and the genes involved in these processes. PMID:25243607

  2. The intracellular location of lysosomal enzymes in developing Dictyostelium discoideum cells

    SciTech Connect

    Lenhard, J.M.

    1989-01-01

    The author has found that developing Dictyostelium cells contain two distinct acid hydrolase-containing organelles. Vesicles from cells at different stages of development were separated using Percoll density gradients. The lower density vesicles (LDVs or lysosomes) were present in nourished and starved cells. The higher density vesicles (HDVs) arose during starvation-induced differentiation. HDVs lacked two prestalk cell-specific lysosomal enzymes which were contained in LDVs. Prespore cell-specific spore coat proteins were detected in HDVs by ELISA. ({sup 35}S)sulfate labeling revealed that HDVs contained newly made glycoproteins as well as glycoproteins found in preexisting LDVs. Pulse-chase experiments using ({sup 35}S)methionine revealed that {alpha}-mannosidase from pre-existing LDVs an newly made {alpha}-mannosidase had entered HDVs. These data suggest that prespore LDVs mature to become HDVs. He has obtained evidence that HDVs are identical to prespore vesicles. Prespore vesicles are specialized secretory organelles which arise during prespore cell differentiation and which secrete their contents during terminal differentiation. As prespore vesicles secreted their contents, there was a co-incidental increase in extracellular acid hydrolase activity and a decrease in HDV-associated enzyme activity. Electron micrographs revealed that prespore cells contained two acid phosphatase-staining organelles, one of which appeared to be identical to lysosomes from nourished cells and a second which had features similar to prespore vesicles. Ricin-gold affinity electron microscopy was used to label the mucopolysaccharide component of prespore vesicles and the spore coat. Immunoelectron microscopy revealed co-localization of {alpha}-mannosidase with ricin-gold in prespore vesicles and the spore coat.

  3. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome.

    PubMed

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-01-01

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086

  4. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome

    PubMed Central

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-01-01

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086

  5. Association of erythrocytes antioxidant enzymes and their cofactors with markers of oxidative stress in patients with sickle cell anemia

    PubMed Central

    Al-Naama, Lamia M.; Hassan, Mea'ad K.; Mehdi, Jawad K.

    2015-01-01

    Background: Sickle cell anemia (SCA) is an inherited blood disease with known complications as a result of certain pathophysiological dysfunctions. It has been suggested that an increase in oxidative stress contributes to the incidence of these changes. Objectives: This study investigated the oxidant/antioxidant status of patients with SCA, and evaluated the effect of SCA on antioxidant enzymes and their cofactors. Methods: The study included 42 patients with SCA (in steady state), and a control group of 50 age-matched individuals without SCA. Serum malondialdehyde (MDA), copper, zinc, ferritin and iron levels, red blood cell (RBC) superoxide dismutase (SOD) and catalase levels were measured for the SCA and control groups. Results: Significantly lower levels of antioxidant enzymes (RBC SOD and catalase) and higher serum MDA levels (biomarker of oxidative stress) were found in SCA patients compared to the control group (all p < 0.001). Increased levels of serum ferritin, iron and copper and decreased zinc concentrations were also found in the SCA patients compared to the control group (all p < 0.001). In the SCA group, there were significant negative correlations between MDA levels and RBC SOD, RBC catalase, and serum zinc levels (p < 0.01), while a significant positive correlation between MDA with serum copper and iron levels (p < 0.01) was observed. Conclusion: SCA is associated with alterations in markers of oxidative stress including an increased MDA level, decreased antioxidant enzyme levels, and altered levels of enzyme cofactors (zinc, copper, and iron). This suggests that these antioxidant enzymes could be used as effective therapeutic targets for the treatment of this disease and supplementation of patients with substances with antioxidant properties may reduce the complications of this disease. PMID:26835411

  6. Glutathione recycling and antioxidant enzyme activities in erythrocytes of term and preterm newborns at birth.

    PubMed

    Frosali, Simona; Di Simplicio, Paolo; Perrone, Serafina; Di Giuseppe, Danila; Longini, Mariangela; Tanganelli, Donatella; Buonocore, Giuseppe

    2004-01-01

    We previously demonstrated a high susceptibility of neonatal red blood cells (RBC) to oxidative stress at birth. The aim of this study was to compare the RBC antioxidant capacity and redox cycle enzyme activities as well as glutathione (GSH) recycling in full-term and preterm infants at birth and in normal adults. GSH and GSH disulfide (GSSG) concentrations, GSH/GSSG ratio, and the activities of glucose-6-phosphate dehydrogenase (G-6-PDH), GSH peroxidase, GSH reductase (GR), catalase (CAT), superoxide dismutase (SOD), and hexokinase (HK) were measured in RBC of 25 healthy adults and 56 newborns (23 term, 33 preterm) at birth. The GSH recycling was measured in adult and newborn RBC exposed to oxidative stress (1 mM tert-butylhydroperoxide). The RBC of term and preterm babies showed higher GSH, GSSG, G-6-PDH, GR, and HK levels/activities and lower GSH/GSSG ratios and higher GSH-recycling rates than those of adults. In preterm babies significant correlations were found between G-6-PDH and CAT, GSH, GSH/GSSG ratio, and GSSG (r = -0.67, r = 0.71, r = -0.66, p < 0.01; r = 0.71, p < 0.05, respectively). In term newborns, statistically significant correlations were observed between G-6-PDH and CAT, SOD, and GSH (r = -0.65, r = -0.65, r = -0.69, p < 0.01, respectively). The results indicate the central role of the G-6-PDH activity in antioxidant defenses. We speculate that preterm babies have prompter involvement of antioxidant defenses than term babies. PMID:14707431

  7. The use of antioxidant enzymes in freshwater biofilms: temporal variability vs. toxicological responses.

    PubMed

    Bonnineau, Chloé; Tlili, Ahmed; Faggiano, Leslie; Montuelle, Bernard; Guasch, Helena

    2013-07-15

    This study aims to investigate the potential of antioxidant enzyme activities (AEA) as biomarkers of oxidative stress in freshwater biofilms. Therefore, biofilms were grown in channels for 38 days and then exposed to different concentrations (0-150 μg L(-1)) of the herbicide oxyfluorfen for 5 more weeks. Under control conditions, the AEA of biofilms were found to change throughout time with a significant increase in ascorbate peroxidase (APX) activity during the exponential growth and a more important role of catalase (CAT) and glutathione reductase (GR) activities during the slow growth phase. Chronic exposure to oxyfluorfen led to slight variations in AEA, however, the ranges of variability of AEA in controls and exposed communities were similar, highlighting the difficulty of a direct interpretation of AEA values. After 5 weeks of exposure to oxyfluorfen, no clear effects were observed on chl-a concentration or on the composition of other pigments suggesting that algal group composition was not affected. Eukaryotic communities were structured clearly by toxicant concentration and both eukaryotic and bacterial richness were reduced in communities exposed to the highest concentration. In addition, during acute exposure tests performed at the end of the chronic exposure, biofilms chronically exposed to 75 and 150 μg L(-1) oxyfluorfen showed a higher CAT activity than controls. Chronic exposure to oxyfluorfen provoked then structural changes but also functional changes in the capacity of biofilm CAT activity to respond to a sudden increase in concentration, suggesting a selection of species with higher antioxidant capacity. This study highlighted the difficulty of interpretation of AEA values due to their temporal variation and to the absence of absolute threshold value indicative of oxidative stress induced by contaminants. Nevertheless, the determination of AEA pattern throughout acute exposure test is of high interest to compare oxidative stress levels

  8. Effect of Oenanthe Javanica Extract on Antioxidant Enzyme in the Rat Liver

    PubMed Central

    Lee, Choong-Hyun; Park, Joon-Ha; Cho, Jeong-Hwi; Kim, In-Hye; Ahn, Ji-Hyeon; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Bae, Eun Joo; Kang, Il-Jun; Won, Moo-Ho; Kim, Jong-Dai

    2015-01-01

    Background: Oenanthe javanica (O. javanica) has been known to have high antioxidant properties via scavenging reactive oxygen species. We examined the effect of O. javanica extract (OJE) on antioxidant enzymes in the rat liver. Methods: We examined the effect of the OJE on copper, zinc-superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPx) in the rat liver using immunohistochemistry and western blot analysis. Sprague-Dawley rats were randomly assigned to three groups; (1) normal diet fed group (normal-group), (2) diet containing ascorbic acid (AA)-fed group (AA-group) as a positive control, (3) diet containing OJE-fed group (OJE-group). Results: In this study, no histopathological finding in the rat liver was found in all the experimental groups. Numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells and their protein levels were significantly increased in the AA-fed group compared with those in the normal-group. On the other hand, in the OJE-group, numbers of SOD1, SOD2, CAT, and GPx immunoreactive cells in the liver were significantly increased by about 190%, 478%, 685%, and 346%, respectively, compared with those in the AA-group. In addition, protein levels of SOD1, SOD2, CAT, and GPx in the OJE-group were also significantly much higher than those in the AA-group. Conclusion: OJE significantly increased expressions of SOD1 and SOD2, CAT, and GPx in the liver cells of the rat, and these suggests that significant enhancements of endogenous enzymatic antioxidants by OJE might be a legitimate strategy for decreasing oxidative stresses in the liver. PMID:26063368

  9. The Protective Roles of the Antioxidant Enzymes Superoxide Dismutase and Catalase in the Green Photosynthetic Bacterium Chloroflexus Aurantiacus

    NASA Technical Reports Server (NTRS)

    Blankenship, Robert E.; Rothschild, Lynn (Technical Monitor)

    2004-01-01

    The purpose of this study was to examine the biochemical response of the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus to oxidative stress. Lab experiments focused primarily on characterizing the antioxidant enzyme superoxide dismutase and the response of this organism to oxidative stress. Experiments in the field at the hotsprings in Yellowstone National Park focused on the changes in the level of these enzymes during the day in response to oxidants and to the different types of ultraviolet radiation.

  10. Interactions of temperature, salinity and diesel oil on antioxidant defense enzymes of the limpet Nacella concinna.

    PubMed

    Feijó de Oliveira, Mariana; Rodrigues Júnior, Edson; Suda, Cecília N K; Vani, Gannabathula S; Donatti, Lucélia; Rodrigues, Edson; Lavrado, Helena P

    2015-08-15

    The intertidal and subtidal environments in the Antarctic Peninsula are vulnerable to pollutants, such as diesel oil, a commonly used fuel. Nacella concinna is capable of accumulating polycyclic aromatic hydrocarbons and is a potential biomonitor of diesel oil contamination. This work investigates the interaction of diesel oil, temperature and salinity on the activity of antioxidants enzymes defense of the gills, foot muscle and digestive glands. Upregulation of superoxide dismutase occurred in the three tissues by warming. The foot muscle catalase and the gill glutathione reductase were upregulated only by diesel. The inability to upregulate catalase and glutathione S-transferase in the digestive gland, as well as the increase of lipoperoxidation, suggested that this gland is more susceptible to the deleterious effects from oxidative stress. PMID:26077159

  11. Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit.

    PubMed

    Cao, Shifeng; Yang, Zhenfeng; Cai, Yuting; Zheng, Yonghua

    2014-11-15

    Two cultivars of loquat fruit were stored at 20°C for 10days to investigate the relationship between disease resistance, and fatty acid composition and activities of endogenous antioxidant enzymes. The results showed that decay incidence increased with storage time in both cultivars. A significantly lower disease incidence was observed in 'Qingzhong' fruit than in 'Fuyang', suggesting 'Qingzhong' had increased disease resistance. Meanwhile, 'Qingzhong' fruit also had lower levels of superoxide radical and hydrogen peroxide, and lower lipoxygenase activity, but higher levels of linolenic and linoleic acids and higher activities of catalase (CAT) and ascorbate peroxidase (APX) compared with 'Fuyang'. These results suggest that the higher levels of linolenic and linoleic acids and the higher activity of CAT and APX have a role in disease resistance of postharvest loquat fruit. PMID:24912701

  12. The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots

    PubMed Central

    Gomes, Bruno Ribeiro; Siqueira-Soares, Rita de Cássia; dos Santos, Wanderley Dantas; Marchiosi, Rogério; Soares, Anderson Ricardo; Ferrarese-Filho, Osvaldo

    2014-01-01

    In the current work, we investigated the effects of dopamine, an neurotransmitter found in several plant species on antioxidant enzyme activities and ROS in soybean (Glycine max L. Merrill) roots. The effects of dopamine on SOD, CAT and POD activities, as well as H2O2, O2•−, melanin contents and lipid peroxidation were evaluated. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.1 to 1.0 mM dopamine, in a growth chamber (25°C, 12 h photoperiod, irradiance of 280 μmol m−2 s−1) for 24 h. Significant increases in melanin content were observed. The levels of ROS and lipid peroxidation decreased at all concentrations of dopamine tested. The SOD activity increased significantly under the action of dopamine, while CT activity was inhibited and POD activity was unaffected. The results suggest a close relationship between a possible antioxidant activity of dopamine and melanin and activation of SOD, reducing the levels of ROS and damage on membranes of soybean roots. PMID:25482756

  13. Bipolar disorder course, impaired glucose metabolism and antioxidant enzymes activities: A preliminary report.

    PubMed

    Mansur, Rodrigo B; Rizzo, Lucas B; Santos, Camila M; Asevedo, Elson; Cunha, Graccielle R; Noto, Mariane N; Pedrini, Mariana; Zeni-Graiff, Maiara; Gouvea, Eduardo S; Cordeiro, Quirino; Reininghaus, Eva Z; McIntyre, Roger S; Brietzke, Elisa

    2016-09-01

    This study aimed to examine the role of oxidative stress in bipolar disorder (BD) by evaluating the relationship among antioxidant enzymes activities, impaired glucose metabolism (IGM) and illness course. We measured the activities of plasma superoxide dismutase (SOD) and glutathione peroxidase (GPx) in individuals with BD (N = 55) and healthy controls (N = 28). Information related to current and past psychiatric/medical history, as well as prescription of any pharmacological treatments was captured. Impaired glucose metabolism was operationalized as pre-diabetes or type 2 diabetes mellitus. Our results showed that, after adjustment for age, gender, alcohol use, smoking and current medication, both BD (p < 0.001) and IGM (p = 0.019) were associated with increased GPx activity, whereas only BD was associated with decreased SOD activity (p = 0.008). We also observed an interaction between BD and IGM on SOD activity (p = 0.017), whereas the difference between BD and controls was only significant in individuals with IGM (p = 0.009). IGM, GPx and SOD activity were independently associated with variables of illness course. Moreover, IGM moderated the association between SOD activity and number of mood episodes (p < 0.001), as a positive correlation between SOD activity and mood episodes was observed only in participants with IGM. In conclusion, BD and IGM are associated with independent and synergistic effects on markers of oxidative stress. The foregoing observations suggest that the heterogeneity observed in previous studies evaluating antioxidant enzymes in BD may be a function of concurrent IGM; and that imbalances in the oxidative system may subserve the association between BD and IGM, as well as its relationship with illness course. PMID:27281261

  14. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues.

    PubMed

    Jahns, Franziska; Wilhelm, Anne; Jablonowski, Nadja; Mothes, Henning; Greulich, Karl Otto; Glei, Michael

    2015-04-01

    The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth. PMID:24677319

  15. Effects of Microgravity On Oxidative and Antioxidant Enzymes In Mouse Hindlimb Muscle

    NASA Technical Reports Server (NTRS)

    Girten, B.; Hoopes, R.; Steele, M.; Morony, S.; Bateman, T. A.; Sun, S. (Technical Monitor)

    2002-01-01

    Gastrocnemius muscle of mice were analyzed in order to examine the effects of 12 days of microgravity on the oxidative enzyme climate synthase (CS) and the antioxidant enzyme superoxide dismutase (SOD). The female C57BL/6J mice utilized for this study were part of the Commercial Biomedical Testing Module (CBTM) payload that flew aboard STS-108. Mice were housed in Animal Enclosure Modules (AEMs) provided by NASA Ames. The flight (FLT) group and the ground control (CON) group each had 12 mice per group. The AEMs that held the CON group operated on a 48-hour delay from the FLT group and were located inside the Orbital Environmental Simulator (OES) at Kennedy Space Center. The temperature, CO2 and relative humidity inside the OES was regulated based on downlinked information from the shuttle middeck. Student T tests were used to compare groups and a p < 0.05 was used to determine statistical significance. Results indicated that CS levels for the FLT group were significantly lower than the CON group while the SOD levels were significantly higher. The CS FLT mean was 19% lower and the SOD FLT mean was 17% higher than the respective CON group means. Although these findings are among the first muscle enzyme values reported for mice from a shuttle mission, these results are similar to some results previously reported for rats exposed to microgravity or hindlimb suspension. The changes seen during the CBTM payload are reflective of the deconditioning that takes place with disuse of the hindlimbs and indicate that muscle enzyme changes induced by disuse deconditioning are similar in both rodent species.

  16. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates.

    PubMed

    Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2015-01-01

    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117

  17. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates

    PubMed Central

    Ghanbari, Raheleh; Zarei, Mohammad; Ebrahimpour, Afshin; Abdul-Hamid, Azizah; Ismail, Amin; Saari, Nazamid

    2015-01-01

    In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions. PMID:26690117

  18. DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway.

    PubMed

    Yan, Yu-Feng; Yang, Wen-Jie; Xu, Qiang; Chen, He-Ping; Huang, Xiao-Shan; Qiu, Ling-Yu; Liao, Zhang-Ping; Huang, Qi-Ren

    2015-09-01

    DJ-1 protein, as a multifunctional intracellular protein, has an important role in transcriptional regulation and anti-oxidant stress. A recent study by our group showed that DJ-1 can regulate the expression of certain anti‑oxidant enzymes and attenuate hypoxia/re‑oxygenation (H/R)‑induced oxidative stress in the cardiomyocyte cell line H9c2; however, the detailed molecular mechanisms have remained to be elucidated. Nuclear factor erythroid 2‑like 2 (Nrf2) is an essential transcription factor that regulates the expression of several anti‑oxidant genes via binding to the anti‑oxidant response element (ARE). The present study investigated whether activation of the Nrf2 pathway is responsible for the induction of anti‑oxidative enzymes by DJ‑1 and contributes to the protective functions of DJ‑1 against H/R‑induced oxidative stress in H9c2 cells. The results demonstrated that DJ‑1‑overexpressing H9c2 cells exhibited anti‑oxidant enzymes, including manganese superoxide dismutase, catalase and glutathione peroxidase, to a greater extent and were more resistant to H/R‑induced oxidative stress compared with native cells, whereas DJ‑1 knockdown suppressed the induction of these enzymes and further augmented the oxidative stress injury. Determination of the importance of Nrf2 in DJ‑1‑mediated anti‑oxidant enzymes induction and cytoprotection against oxidative stress induced by H/R showed that overexpression of DJ‑1 promoted the dissociation of Nrf2 from its cytoplasmic inhibitor Keap1, resulting in enhanced levels of nuclear translocation, ARE‑binding and transcriptional activity of Nrf2. Of note, Nrf2 knockdown abolished the DJ‑1‑mediated induction of anti‑oxidant enzymes and cytoprotection against oxidative stress induced by H/R. In conclusion, these findings indicated that activation of the Nrf2 pathway is a critical mechanism by which DJ-1 upregulates anti-oxidative enzymes and attenuates H/R-induced oxidative stress in H9c2

  19. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    PubMed Central

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  20. Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress.

    PubMed

    Jahantigh, Omolbanin; Najafi, Farzaneh; Badi, Hassanali Naghdi; Khavari-Nejad, Ramazan Ali; Sanjarian, Forough

    2016-06-01

    The relationships between salt stress and antioxidant enzymes activities, proline, phenol and anthocyanine contents in Hyssopus officinalis L. plants in growth stage were investigated. The plants were subjected to five levels of saline irrigation water, 0.37 (tap water as control) with 2, 4, 6, 8 and 10 dSm(-1) of saline water. After two months the uniform plants were harvested for experimental analysis. Antioxidant enzymes activities and proline, phenol and anthocyanine contents of the plants were examinated. Enhanced activities of peroxidase, catalase and superoxide dismutase were determined by increasing salinity that plays an important protective role in the ROS-scavenging process. Proline, phenol and anthocyanine contents increased significantly with increasing salinity. These results suggest that salinity tolerance of Hyssopus officinalis plants might be closely related with the increased capacity of antioxidative system to scavenge reactive oxygen species and with the accumulation of osmoprotectant proline, phenol and anthocyanine contents under salinity conditions. PMID:27165530

  1. Effect of allyl isothiocyanate on antioxidant enzyme activities, flavonoids and fruit quality of blueberry (Vaccinium corymbosum L., cv. Duke)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of allyl isothiocyanate (AITC) on antioxidant enzyme activities, flavonoid content, and fruit quality of blueberries var. Duke (Vaccinium corymbosum L.) was evaluated. Results from this study showed that AITC was effective in maintaining higher amounts of sugars and lower organic acids co...

  2. Interplay Between Oncoproteins and Antioxidant Enzymes in Esophageal Carcinoma Treated Without and With Chemoradiotherapy: A Prospective Study

    SciTech Connect

    Kaur, Tranum; Gupta, Rajesh; Vaiphei, Kim; Kapoor, Rakesh; Gupta, N.M.; Khanduja, K.L.

    2008-02-01

    Purpose: To analyze p53, bcl-2, c-myc, and cyclooxygenase-2 protein expression changes and examine their relationship with various antioxidant enzymes in esophageal carcinoma patients. Methods and Materials: Patients in Group 1 underwent transhiatal esophagectomy and those in Group 2 were administered chemoradiotherapy followed by surgery after 4 weeks of neoadjuvant therapy. Results: The relationship analysis among the various protein markers and antioxidant enzymes showed an inverse correlation between bcl-2 and superoxide dismutase/catalase in tumor tissues, irrespective of the treatment arm followed. An important positive association was observed between bcl-2 and reduced glutathione levels in the tumor tissue of patients receiving neoadjuvant therapy. Another apoptosis-modulating marker, c-myc, in the tumor tissue of Group 2 patients showed similar pattern levels (high and low) as that of superoxide dismutase/catalase. The association of cyclooxygenase-2 and p53 with various antioxidant enzymes showed a significant positive correlation between cyclooxygenase-2 expression and catalase activity and an inverse trend between p53 expression and superoxide dismutase and catalase activity in the tumor tissue of patients given neoadjuvant therapy. In addition, patients with overexpressed p53 protein levels had lower glutathione peroxidase enzyme levels and vice versa in the tumor tissue of patients who had undergone surgery as their main mode of treatment. Conclusion: The results of this study broaden the insight into the relationships shared among oncoproteins and the antioxidant defense system, and this could be helpful in the clinical management of esophageal carcinoma.

  3. Correlation between Antioxidant Enzyme Activity, Free Iron Content and Lipid Oxidation in Four Lines of Korean Native Chicken Meat

    PubMed Central

    Kim, Hye-Kyung; Cho, Chang-Yeon; Lee, Cheol-Koo

    2016-01-01

    This study was conducted to observe the association between antioxidant enzyme activity, free iron content and lipid oxidation of Korean native chicken (KNC) meat during refrigerated storage. Four lines of KNC (Yeonsan ogye, Hyunin black, Hoengseong yakdak and Hwangbong) were raised under similar conditions. A total of 16 roosters were randomly sampled and slaughtered at the age of 12 mon. The breast and thigh meats were stored aerobically for 10 d at 4℃. Although thigh meat had higher antioxidant enzyme activity, it was more susceptible to lipid oxidation and released more iron during storage than breast meat. Aerobic refrigerated storage for 10 d significantly decreased the activity of antioxidant enzymes and increased the amount of free iron and malondialdehyde. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were negatively correlated with lipid oxidation, whereas that of catalase was not. The amount of free iron was positively associated with lipid oxidation. We concluded that chicken line did not affect strongly on antioxidant enzyme activity and lipid oxidation in breast meat of KNC. However, the thigh meat of Hwangbong and Hyunin black had higher SOD and GSH-Px activity, respectively, and lower malondialdehyde contents than that of other chickens. SOD, GSH-Px and free iron play significant roles in meat lipid oxidation during refrigerated storage. PMID:27499663

  4. The role of antioxidant enzymes in adaptive responses to sheath blight infestation under different fertilization rates and hill densities.

    PubMed

    Wu, Wei; Wan, Xuejie; Shah, Farooq; Fahad, Shah; Huang, Jianliang

    2014-01-01

    Sheath blight of rice, caused by Rhizoctonia solani, is one of the most devastating rice diseases worldwide. No rice cultivar has been found to be completely resistant to this fungus. Identifying antioxidant enzymes activities (activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) and malondialdehyde content (MDA) responding to sheath blight infestation is imperative to understand the defensive mechanism systems of rice. In the present study, two inoculation methods (toothpick and agar block method) were tested in double-season rice. Toothpick method had greater lesion length than agar block method in late season. A higher MDA content was found under toothpick method compared with agar block method, which led to greater POD and SOD activities. Dense planting caused higher lesion length resulting in a higher MDA content, which also subsequently stimulated higher POD and SOD activity. Sheath blight severity was significantly related to the activity of antioxidant enzyme during both seasons. The present study implies that rice plants possess a system of antioxidant protective enzymes which helps them in adaptation to sheath blight infection stresses. Several agronomic practices, such as rational use of fertilizers and optimum planting density, involved in regulating antioxidant protective enzyme systems can be regarded as promising strategy to suppress the sheath blight development. PMID:25136671

  5. Induction of Heat Shock Proteins and Antioxidant Enzymes in 2,3,7,8-TCDD-Induced Hepatotoxicity in Rats

    PubMed Central

    Kim, Hyun-Sook; Park, So-Young; Yoo, Ki-Yeol

    2012-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an environmental toxicant with a polyhalogenated aromatic hydrocarbon structure and is one of the most toxic man-made chemicals. Exposure to 2,3,7,8-TCDD induces reproductive toxicity, immunotoxicity, and hepatotoxicity. In this study, we evaluated how 2,3,7,8-TCDD-induced hepatotoxicity affect the expression of heat shock proteins and antioxidant enzymes using the real-time polymerase chain reaction (PCR) in rat. 2,3,7,8-TCDD increased heat shock protein (Hsp27, α-B-crystallin, Mortalin, Hsp105, and Hsp90s) and antioxidant enzymes (SOD-3, GST and catalase) expression after a 1 day exposure in livers of rats, whereas heat shock protein (α-B-crystallin, Hsp90, and GRP78) and antioxidant enzymes (SOD-1, SOD-3, catalase, GST, and GPXs) expression decreased on day 2 and then slowly recovered back to control levels on day 8. These results suggest that heat shock proteins and antioxidant enzymes were induced as protective mechanisms against 2,3,7,8-TCDD induced hepatotoxicity, and that prolonged exposure depressed their levels, which recovered to control levels due to reduced 2,3,7,8-TCDD induced hepatotoxicity. PMID:23269910

  6. Correlation between Antioxidant Enzyme Activity, Free Iron Content and Lipid Oxidation in Four Lines of Korean Native Chicken Meat.

    PubMed

    Utama, Dicky Tri; Lee, Seung Gyu; Baek, Ki Ho; Kim, Hye-Kyung; Cho, Chang-Yeon; Lee, Cheol-Koo; Lee, Sung Ki

    2016-01-01

    This study was conducted to observe the association between antioxidant enzyme activity, free iron content and lipid oxidation of Korean native chicken (KNC) meat during refrigerated storage. Four lines of KNC (Yeonsan ogye, Hyunin black, Hoengseong yakdak and Hwangbong) were raised under similar conditions. A total of 16 roosters were randomly sampled and slaughtered at the age of 12 mon. The breast and thigh meats were stored aerobically for 10 d at 4℃. Although thigh meat had higher antioxidant enzyme activity, it was more susceptible to lipid oxidation and released more iron during storage than breast meat. Aerobic refrigerated storage for 10 d significantly decreased the activity of antioxidant enzymes and increased the amount of free iron and malondialdehyde. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were negatively correlated with lipid oxidation, whereas that of catalase was not. The amount of free iron was positively associated with lipid oxidation. We concluded that chicken line did not affect strongly on antioxidant enzyme activity and lipid oxidation in breast meat of KNC. However, the thigh meat of Hwangbong and Hyunin black had higher SOD and GSH-Px activity, respectively, and lower malondialdehyde contents than that of other chickens. SOD, GSH-Px and free iron play significant roles in meat lipid oxidation during refrigerated storage. PMID:27499663

  7. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. PMID:23871020

  8. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity1

    PubMed Central

    Delles, Rebecca M.; Xiong, Youling L.; True, Alma D.; Ao, Touying; Dawson, Karl A.

    2014-01-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P < 0.05) with an antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P < 0.05) in antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  9. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity.

    PubMed

    Delles, Rebecca M; Xiong, Youling L; True, Alma D; Ao, Touying; Dawson, Karl A

    2014-06-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P < 0.05) with an antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P < 0.05) in antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  10. Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase

    PubMed Central

    Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio

    2011-01-01

    Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a

  11. Antioxidant capacity and angiotensin I converting enzyme inhibitory activity of a melon concentrate rich in superoxide dismutase.

    PubMed

    Carillon, Julie; Del Rio, Daniele; Teissèdre, Pierre-Louis; Cristol, Jean-Paul; Lacan, Dominique; Rouanet, Jean-Max

    2012-12-01

    Antioxidant capacity and angiotensin 1-converting enzyme (ACE) inhibitory activity of a melon concentrate rich in superoxide dismutase (SOD-MC) were investigated in vitro. The total antioxidant capacity (TAC) was measured by the Trolox equivalent antioxidant capacity assay (TEAC), the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, and the ferric reducing antioxidant power assay (FRAP). The ability of the extract to scavenge three specific reactive oxygen species (superoxide radical anion (O(2)(-)), hydroxyl radical (HO()) and hydrogen peroxide (H(2)O(2))) was also investigated in order to better evaluate its antioxidant properties. Even if the measures of TAC were relatively low, results clearly established an antioxidant potential of SOD-MC that exhibited the highest radical-scavenging activity towards O(2)(-), with a IC(50) 12-fold lower than that of H(2)O(2) or HO(). This lets hypothesis that the antioxidant potential of SOD-MC could be mainly due to its high level of SOD. Moreover, for the first time, an ACE inhibitory activity of SOD-MC (IC(50)=2.4±0.1mg/mL) was demonstrated, showing that its use as a functional food ingredient with potential preventive benefits in the context of hypertension may have important public health implications and should be carefully considered. PMID:22953857

  12. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities.

    PubMed

    Les, Francisco; Prieto, Jose M; Arbonés-Mainar, Jose Miguel; Valero, Marta Sofía; López, Víctor

    2015-06-01

    Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antiproliferative effects of the juice were measured on HeLa and PC-3 cells by the MTT assay and pharmacologically relevant enzymes (cyclooxygenases, xanthine oxidase, acetylcholinesterase and monoamine oxidase A) were selected for enzymatic inhibition assays. Pomegranate juice showed significant protective effects against hydrogen peroxide induced toxicity in the Artemia salina and HepG2 models; these effects may be attributed to radical scavenging properties of pomegranate as the juice was able to reduce DPPH and superoxide radicals. Moderate antiproliferative activities in HeLa and PC-3 cancer cells were observed. However, pomegranate juice was also able to inhibit COX-2 and MAO-A enzymes. This study reveals some mechanisms by which pomegranate juice may have interesting and beneficial effects in human health. PMID:26030005

  13. Isozymes of antioxidative enzymes during ripening and storage of ber ( Ziziphus mauritiana Lamk.).

    PubMed

    Kumar, Sunil; Yadav, Praduman; Jain, Veena; Malhotra, Sarla P

    2014-02-01

    Isozyme profile of antioxidative enzymes viz. superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and ascorbate peroxidase (APX) was studied during ripening and storage of two cultivars of ber fruit (Ziziphus mauritiana Lamk.) differing in their shelf-lives viz. Umran (shelf-life, 8-9 d) and Kaithali (shelf-life, 4-5 d). The profile revealed that Umran variety exhibited three bands each of SOD and POX while in Kaithali, these enzymes had two isoenzymes throughout ripening. CAT and APX, however, showed two isozymes each during ripening of both the varieties and the pattern remained the same at all the stages of ripening except at the initial stage i.e immature green stage where single CAT isozyme was visible. During storage, one extra band each of SOD and POX present only in Umran got disappeared at later stages of storage, whereas in Kaithali, the pattern remained unchanged. Also, there was no change in the pattern of CAT and APX isozymes during storage of both the varieties. One isozyme of CAT could be considered as ripening related while one isozyme each of SOD and POX could be related to higher shelf life of fruits. PMID:24493891

  14. Molecular Insights into the Potential Toxicological Interaction of 2-Mercaptothiazoline with the Antioxidant Enzyme-Catalase.

    PubMed

    Huang, Zhenxing; Huang, Ming; Mi, Chenyu; Wang, Tao; Chen, Dong; Teng, Yue

    2016-01-01

    2-mercaptothiazoline (2-MT) is widely used in many industrial fields, but its residue is potentially harmful to the environment. In this study, to evaluate the biological toxicity of 2-MT at protein level, the interaction between 2-MT and the pivotal antioxidant enzyme-catalase (CAT) was investigated using multiple spectroscopic techniques and molecular modeling. The results indicated that the CAT fluorescence quenching caused by 2-MT should be dominated by a static quenching mechanism through formation of a 2-MT/CAT complex. Furthermore, the identifications of the binding constant, binding forces, and the number of binding sites demonstrated that 2-MT could spontaneously interact with CAT at one binding site mainly via Van der Waals' forces and hydrogen bonding. Based on the molecular docking simulation and conformation dynamic characterization, it was found that 2-MT could bind into the junctional region of CAT subdomains and that the binding site was close to enzyme active sites, which induced secondary structural and micro-environmental changes in CAT. The experiments on 2-MT toxicity verified that 2-MT significantly inhibited CAT activity via its molecular interaction, where 2-MT concentration and exposure time both affected the inhibitory action. Therefore, the present investigation provides useful information for understanding the toxicological mechanism of 2-MT at the molecular level. PMID:27537873

  15. Change of antioxidant enzymes activity of hazel (Corylus avellana L.) cells by AgNPs.

    PubMed

    Jamshidi, Mitra; Ghanati, Faezeh; Rezaei, Ayatollah; Bemani, Ebrahim

    2016-05-01

    Elicitation effect of silver nano particles (AgNPs) and triggering of defence system by production of hydrogen peroxide (H2O2) as a signaling molecule in the regulation of the activity of stress-related enzymes and production of Taxol was evaluated in suspension- cultured hazel cells (Corylus avellana L.). The cells were treated with different concentrations of AgNPs (0, 2.5, 5, and 10 ppm), in their logarithmic growth phase (d7) and were harvested after 1 week. Treatment of hazel cells with AgNPs decreased the viability of the cells. Also the results showed that while the activity of certain radical scavenging enzymes in particular of catalase and peroxidase increased by 2.5 and 5 ppm AgNPs, the activity of superoxide dismutase decreased in these treatments. The highest activity of ascorbate peroxidase was observed in 10 ppm AgNPs treatments. This treatment also showed the highest contents of H2O2 and phenolic compounds, as well as the highest activity of phenylalanine ammonialyase. According to the results, 5 ppm AgNPs was the best concentration for elicitation of hazel cells to produce efficient amounts of H2O2 in order for stimulation of antioxidant defence system, production of Taxol at the highest capacity of the cells, meanwhile reserving their viability. PMID:25404256

  16. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

    PubMed Central

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-01-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354

  17. Antioxidants

    MedlinePlus

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  18. Effect of Sodium Fluoride Ingestion on Malondialdehyde Concentration and the Activity of Antioxidant Enzymes in Rat Erythrocytes

    PubMed Central

    Morales-González, José A.; Gutiérrez-Salinas, José; García-Ortiz, Liliana; del Carmen Chima-Galán, María; Madrigal-Santillán, Eduardo; Esquivel-Soto, Jaime; Esquivel-Chirino, César; González-Rubio, Manuel García-Luna y

    2010-01-01

    Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF) treatment on malondialdehyde (MDA) levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress. PMID:20640162

  19. Complex of vitamins and antioxidants protects low-density lipoproteins in blood plasma from free radical oxidation and activates antioxidants enzymes in erythrocytes from patients with coronary heart disease.

    PubMed

    Konovalova, G G; Lankin, V Z; Tikhaze, A K; Nezhdanova, I B; Lisina, M O; Kukharchuk, V V

    2003-08-01

    We studied the effect of a complex containing antioxidant vitamins C and E, provitamin A, and antioxidant element selenium on the contents of primary (lipid peroxides) and secondary products (malonic dialdehyde) of free radical lipid oxidation in low-density lipoproteins isolated from the plasma of patients with coronary heart disease and hypercholesterolemia by means of preparative ultracentrifugation. Activity of key antioxidant enzymes in the blood was measured during treatment with the antioxidant preparation. Combination treatment with antioxidant vitamins and antioxidant element selenium sharply decreased the contents of primary and secondary free radical oxidation products in circulating low-density lipoproteins and increased activity of antioxidant enzymes in erythrocytes. Activities of superoxide dismutase and selenium-containing glutathione peroxidase increased 1 and 2 months after the start of therapy, respectively. PMID:14631494

  20. Evaluation of the Activities of Antioxidant Enzyme and Lysosomal Enzymes of the Longissimus dorsi Muscle from Hanwoo (Korean Cattle) in Various Freezing Conditions

    PubMed Central

    2014-01-01

    This study was conducted to evaluate the activities of antioxidant enzyme (glutathione peroxidase (GSH-Px)) and lysosomal enzymes (alpha-glucopyranosidase (AGP) and beta-N-acetyl-glucosaminidase (BNAG)) of the longissimus dorsi (LD) muscle from Hanwoo (Korean cattle) in three freezing conditions. Following freezing at -20, -60, and -196℃ (liquid nitrogen), LD samples (48 h post-slaughter) were treated as follows: 1) freezing for 14 d, 2) 1 to 4 freeze-thaw cycles (2 d of freezing in each cycle), and 3) refrigeration (4℃) for 7 d after 7 d of freezing. The control was the fresh (non-frozen) LD. Freezing treatment at all temperatures significantly (p<0.05) increased the activities of GSH-Px, AGP, and BNAG. The -196 ℃ freezing had similar effects to the -20℃ and -60℃ freezing. Higher (p<0.05) enzymes activities were sustained in frozen LD even after 4 freeze-thaw cycles and even for 7 d of refrigeration after freezing. These findings suggest that freezing has remarkable effects on the activities of antioxidant enzyme and lysosomal enzymes of Hanwoo beef in any condition. PMID:26761669

  1. Evaluation of the Activities of Antioxidant Enzyme and Lysosomal Enzymes of the Longissimus dorsi Muscle from Hanwoo (Korean Cattle) in Various Freezing Conditions.

    PubMed

    Kang, Sun Moon; Kang, Geunho; Seong, Pil-Nam; Park, Beomyoung; Kim, Donghun; Cho, Soohyun

    2014-01-01

    This study was conducted to evaluate the activities of antioxidant enzyme (glutathione peroxidase (GSH-Px)) and lysosomal enzymes (alpha-glucopyranosidase (AGP) and beta-N-acetyl-glucosaminidase (BNAG)) of the longissimus dorsi (LD) muscle from Hanwoo (Korean cattle) in three freezing conditions. Following freezing at -20, -60, and -196℃ (liquid nitrogen), LD samples (48 h post-slaughter) were treated as follows: 1) freezing for 14 d, 2) 1 to 4 freeze-thaw cycles (2 d of freezing in each cycle), and 3) refrigeration (4℃) for 7 d after 7 d of freezing. The control was the fresh (non-frozen) LD. Freezing treatment at all temperatures significantly (p<0.05) increased the activities of GSH-Px, AGP, and BNAG. The -196 ℃ freezing had similar effects to the -20℃ and -60℃ freezing. Higher (p<0.05) enzymes activities were sustained in frozen LD even after 4 freeze-thaw cycles and even for 7 d of refrigeration after freezing. These findings suggest that freezing has remarkable effects on the activities of antioxidant enzyme and lysosomal enzymes of Hanwoo beef in any condition. PMID:26761669

  2. Effect of benzo[a]pyrene on detoxification and the activity of antioxidant enzymes of marine microalgae

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Miao, Jingjing; Li, Yun; Pan, Luqing

    2016-04-01

    The objective of this study was to examine the effect of benzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxification enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P. subcordiformis in all BaP-treated groups. In I. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then decreased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in I. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P. subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P. subcordiformis in all BaPtreated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.

  3. Age-Related Changes in Antioxidant and Glutathione S-Transferase Enzyme Activities in the Asian Clam.

    PubMed

    Vranković, J

    2016-03-01

    Aging is accompanied by increased production of free oxygen radicals and impairment of normal cellular functions. The aim of this work was to provide preliminary data on age-related differences in the activities of antioxidant enzymes and phase II biotransformation enzyme glutathione S-transferase (GST) in a wild population of the Asian clam Corbicula fluminea. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and GST were assessed in visceral mass of four age classes (0+-, 1+-, 2+-, and 3+-year-old) of C. fluminea clams. Age-related changes were seen in antioxidant enzyme status: levels of total SOD (totSOD) (P < 0.05), MnSOD, and CuZnSOD (P < 0.05) activities increased progressively during aging from younger to older clams. Changes in CAT and GR activities with advancing age were found, the levels being the highest in age class II, then being lower in age classes III and IV (P < 0.05). Activities of GPX and GST were lower in the senescent individuals (2+- and 3+-year-old clams) compared with young individuals (0+- and 1+-year-old clams). Overall, the decline of glutathione-dependent enzyme activities, coupled with higher and lower activities of totSOD and CAT, respectively, as the individual grows older, may render the older animals more susceptible to oxidative stress. Data reported here are not intended to be exhaustive since they concern only age/size structure of the population at one locality, so more detailed studies on both the developmental stages and levels of antioxidant enzymes of this new alien species in Serbian rivers are required. PMID:27262191

  4. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation.

    PubMed

    Turan, Satpal; Tripathy, Baishnab C

    2013-02-01

    Crop yield is severely affected by soil salinity, as salt levels that are harmful to plant growth occur in large terrestrial areas of the world. The present investigation describes the studies of enzymatic activities, in-gel assays, gene expression of some of the major antioxidative enzymes, tocopherol accumulation, lipid peroxidation, ascorbate and dehydroascorbate contents in a salt-sensitive rice genotype PB1, and a relatively salt-tolerant cultivar CSR10 in response to 200 mM NaCl. Salt solution was added to the roots of hydroponically grown 5-day-old etiolated rice seedlings, 12 h prior to transfer to cool white fluorescent + incandescent light (100 μmol photons m(-2) s(-1)). Total tocopherol and ascorbate contents declined in salt-stressed rice seedlings. Among antioxidative enzymes, an increase in the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), and their gene expression was observed in both cultivars in response to salt stress. The salt-tolerant cultivar CSR10 resisted stress due to its early preparedness to combat oxidative stress via upregulation of gene expression and enzymatic activities of antioxidative enzymes and a higher redox status of the antioxidant ascorbate even in a non-stressed environment. PMID:22434153

  5. Adenanthin, a new inhibitor of thiol-dependent antioxidant enzymes, impairs the effector functions of human natural killer cells

    PubMed Central

    Siernicka, Marta; Winiarska, Magdalena; Bajor, Malgorzata; Firczuk, Malgorzata; Muchowicz, Angelika; Bobrowicz, Malgorzata; Fauriat, Cyril; Golab, Jakub; Olive, Daniel; Zagozdzon, Radoslaw

    2015-01-01

    Natural killer (NK) cells are considered critical components of the innate and adaptive immune responses. Deficiencies in NK cell activity are common, such as those that occur in cancer patients, and they can be responsible for dysfunctional immune surveillance. Persistent oxidative stress is intrinsic to many malignant tumours, and numerous studies have focused on the effects of reactive oxygen species on the anti-tumour activity of NK cells. Indeed, investigations in animal models have suggested that one of the most important thiol-dependent antioxidant enzymes, peroxiredoxin 1 (PRDX1), is essential for NK cell function. In this work, our analysis of the transcriptomic expression pattern of antioxidant enzymes in human NK cells has identified PRDX1 as the most prominently induced transcript out of the 18 transcripts evaluated in activated NK cells. The change in PRDX1 expression was followed by increased expression of two other enzymes from the PRDX-related antioxidant chain: thioredoxin and thioredoxin reductase. To study the role of thiol-dependent antioxidants in more detail, we applied a novel compound, adenanthin, to induce an abrupt dysfunction of the PRDX-related antioxidant chain in NK cells. In human primary NK cells, we observed profound alterations in spontaneous and antibody-dependent NK cell cytotoxicity against cancer cells, impaired degranulation, and a decreased expression of activation markers under these conditions. Collectively, our study pinpoints the unique role for the antioxidant activity of the PRDX-related enzymatic chain in human NK cell functions. Further understanding this phenomenon will prospectively lead to fine-tuning of the novel NK-targeted therapeutic approaches to human disease. PMID:26094816

  6. Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E

    2013-01-01

    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals. PMID:23884129

  7. Protective Potential of Antioxidant Enzymes as Vaccines for Schistosomiasis in a Non-Human Primate Model.

    PubMed

    Carvalho-Queiroz, Claudia; Nyakundi, Ruth; Ogongo, Paul; Rikoi, Hitler; Egilmez, Nejat K; Farah, Idle O; Kariuki, Thomas M; LoVerde, Philip T

    2015-01-01

    Schistosomiasis remains a major cause of morbidity in the world. The challenge today is not so much in the clinical management of individual patients, but rather in population-based control of transmission in endemic areas. Despite recent large-scale efforts, such as integrated control programs aimed at limiting schistosomiasis by improving education and sanitation, molluscicide treatment programs and chemotherapy with praziquantel, there has only been limited success. There is an urgent need for complementary approaches, such as vaccines. We demonstrated previously that anti-oxidant enzymes, such as Cu-Zn superoxide dismutase (SOD) and glutathione S peroxidase (GPX), when administered as DNA-based vaccines induced significant levels of protection in inbred mice, greater than the target 40% reduction in worm burden compared to controls set as a minimum by the WHO. These results led us to investigate if immunization of non-human primates with antioxidants would stimulate an immune response that could confer protection as a prelude study for human trials. Issues of vaccine toxicity and safety that were difficult to address in mice were also investigated. All baboons in the study were examined clinically throughout the study and no adverse reactions occurred to the immunization. When our outbred baboons were vaccinated with two different formulations of SOD (SmCT-SOD and SmEC-SOD) or one of GPX (SmGPX), they showed a reduction in worm number to varying degrees, when compared with the control group. More pronounced, vaccinated animals showed decreased bloody diarrhea, days of diarrhea, and egg excretion (transmission), as well as reduction of eggs in the liver tissue and in the large intestine (pathology) compared to controls. Specific IgG antibodies were present in sera after immunizations and 10 weeks after challenge infection compared to controls. Peripheral blood mononuclear cells, mesenteric, and inguinal node cells from vaccinated animals proliferated and

  8. Protective Potential of Antioxidant Enzymes as Vaccines for Schistosomiasis in a Non-Human Primate Model

    PubMed Central

    Carvalho-Queiroz, Claudia; Nyakundi, Ruth; Ogongo, Paul; Rikoi, Hitler; Egilmez, Nejat K.; Farah, Idle O.; Kariuki, Thomas M.; LoVerde, Philip T.

    2015-01-01

    Schistosomiasis remains a major cause of morbidity in the world. The challenge today is not so much in the clinical management of individual patients, but rather in population-based control of transmission in endemic areas. Despite recent large-scale efforts, such as integrated control programs aimed at limiting schistosomiasis by improving education and sanitation, molluscicide treatment programs and chemotherapy with praziquantel, there has only been limited success. There is an urgent need for complementary approaches, such as vaccines. We demonstrated previously that anti-oxidant enzymes, such as Cu–Zn superoxide dismutase (SOD) and glutathione S peroxidase (GPX), when administered as DNA-based vaccines induced significant levels of protection in inbred mice, greater than the target 40% reduction in worm burden compared to controls set as a minimum by the WHO. These results led us to investigate if immunization of non-human primates with antioxidants would stimulate an immune response that could confer protection as a prelude study for human trials. Issues of vaccine toxicity and safety that were difficult to address in mice were also investigated. All baboons in the study were examined clinically throughout the study and no adverse reactions occurred to the immunization. When our outbred baboons were vaccinated with two different formulations of SOD (SmCT-SOD and SmEC-SOD) or one of GPX (SmGPX), they showed a reduction in worm number to varying degrees, when compared with the control group. More pronounced, vaccinated animals showed decreased bloody diarrhea, days of diarrhea, and egg excretion (transmission), as well as reduction of eggs in the liver tissue and in the large intestine (pathology) compared to controls. Specific IgG antibodies were present in sera after immunizations and 10 weeks after challenge infection compared to controls. Peripheral blood mononuclear cells, mesenteric, and inguinal node cells from vaccinated animals proliferated and

  9. Formaldehyde induces lung inflammation by an oxidant and antioxidant enzymes mediated mechanism in the lung tissue.

    PubMed

    Lino-dos-Santos-Franco, Adriana; Correa-Costa, Matheus; Durão, Ana Carolina Cardoso dos Santos; de Oliveira, Ana Paula Ligeiro; Breithaupt-Faloppa, Ana Cristina; Bertoni, Jônatas de Almeida; Oliveira-Filho, Ricardo Martins; Câmara, Niels Olsen Saraiva; Marcourakis, Tânia; Tavares-de-Lima, Wothan

    2011-12-15

    Formaldehyde (FA) is an indoor and outdoor pollutant widely used by many industries, and its exposure is associated with inflammation and oxidative stress in the airways. Our previous studies have demonstrated the role of reactive oxygen species (ROS) in lung inflammation induced by FA inhalation but did not identify source of the ROS. In the present study, we investigate the effects of FA on the activities and gene expression of glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST), superoxide dismutase (SOD) 1 and 2, catalase (CAT), nitric oxide synthase (iNOS and cNOS) and cyclooxygenase (COX) 1 and 2. The hypothesized link between NADPH-oxidase, nitric oxide synthase and cyclooxygenase, the lung inflammation after FA inhalation was also investigated. For experiments, male Wistar rats were submitted to FA inhalation (1%, 90 min daily) for 3 consecutive days. The treatments with apocynin and indomethacin before the FA exposure reduced the number of neutrophils recruited into the lung. Moreover, the treatments with apocynin and indomethacin blunted the effect of FA on the generation of IL-1β, while the treatments with L-NAME and apocynin reduced the generation of IL-6 by lung explants when compared to the untreated group. FA inhalation increased the levels of NO and hydrogen peroxide by BAL cells cultured and the treatments with apocynin and l-NAME reduced these generations. FA inhalation did not modify the activities of GPX, GR, GST and CAT but reduced the activity of SOD when compared to the naïve group. Significant increases in SOD-1 and -2, CAT, iNOS, cNOS and COX-1 expression were observed in the FA group compared to the naïve group. The treatments with apocynin, indomethacin and L-NAME reduced the gene expression of antioxidant and oxidant enzymes. In conclusion, our results indicate that FA causes a disruption of the physiological balance between oxidant and antioxidant enzymes in lung tissue, most likely favoring the

  10. Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes

    PubMed Central

    2012-01-01

    Background More than 15,000 marine products have been described up to now; Sponges are champion producers, concerning the diversity of products that have been found. Most bioactive compounds from sponges were classified into anti-inflammatory, antitumor, immuno- or neurosurpressive, antiviral, antimalarial, antibiotic, or antifouling. Evaluation of in vitro inhibitory effects of different extracts from four marine sponges versus some antioxidants indices and carbohydrate hydrolyzing enzymes concerned with diabetes mellitus was studied. The chemical characterizations for the extracts of the predominating sponges; SP1 and SP3 were discussed. Methods All chemicals served in the biological study were of analytical grade and purchased from Sigma, Merck and Aldrich. All kits were the products of Biosystems (Spain), Sigma Chemical Company (USA), Biodiagnostic (Egypt). Carbohydrate metabolizing enzymes; α-amylase, α-glucosidase, and β-galactosidase (EC3.2.1.1, EC3.2.1.20, and EC3.2.1.23, respectively) were obtained from Sigma Chemical Company (USA). Results Four marine sponges; Smenospongia (SP1), Callyspongia (SP2), Niphates (SP3), and Stylissa (SP4), were collected from the Red Sea at Egyptian coasts, and taxonomically characterized. The sponges' extracts exhibited diverse inhibitory effects on oxidative stress indices and carbohydrate hydrolyzing enzymes in linear relationships to some extent with concentration of inhibitors (dose dependant). The extracts of sponges (3, 1, and 2) showed, respectively, potent-reducing power. Purification and Chemical characterization of sponge 1 using NMR and mass spectroscopy, recognized the existence of di-isobutyl phthalate (1), di-n-butyl phthalate (2), linoleic acid (3), β-sitosterol (4), and cholesterol (5). Sponge 3 produced bis-[2-ethyl]-hexyl-phthylester (6) and triglyceride fatty acid ester (7). Conclusion Marine sponges are promising sources for delivering of bioactive compounds. Four marine sponges, collected from

  11. Temperature stress, anti-oxidative enzyme activity and virus acquisition in Bemisia tabaci (Hemiptera: Aleyrodidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In most eukaryotic systems, antioxidants provide protection when cells are exposed to stressful environmental conditions. Antioxidants, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase, function in a stepwise series with SOD initially preventing oxidative damage by conve...

  12. Superoxide dismutase and ascorbate peroxidase are constitutively more thermotolerant than other antioxidant enzymes in Chenopodium album.

    PubMed

    Khanna-Chopra, Renu; Semwal, Vimal Kumar

    2011-10-01

    Thermal stability of antioxidant defense enzymes was investigated in leaf and inflorescence of heat adaptive weed Chenopodium album. Leaf samples were taken at early and late seedling stage in December (LD, 20 °C/4 °C) and March (LM, 31 °C/14 °C). Young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). LD, LM and INF crude protein extracts were subjected to elevated temperatures (5 to 100 °C) for 30'. Superoxide dismutase (SOD) was the most heat stable enzyme followed by Ascorbate peroxidase (APX). Two heat stable SOD isozymes were visible on native-PAGE at 100 °C in both leaf and INF. Some heat stable APX isozymes were more abundant in INF than leaf. Thermostability of catalase (CAT) increased with age and increasing ambient temperatures in leaves. CAT activity was observed up to 60 °C in leaves and INF while peroxidase (POX) retained activity up to 100 °C in INF due to one thermostable isozyme. Glutathione reductase (GR), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR) showed activity up to 70 °C in both leaves and INF. DHAR activity was stable up to 60 °C while GR and MDHAR declined sharply after 40 °C. Constitutive heat stable isozymes of SOD and APX in leaves and INF may contribute towards heat tolerance in C. album. PMID:23573027

  13. Antioxidant Properties of the Extracts of Talinum Triangulare and its Effect on Antioxidant enzymes in Tissue Homogenate of Swiss Albino Rat

    PubMed Central

    Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun

    2014-01-01

    Objectives: This study was designed to put into consideration both the in vitro and in vivo investigations on Talinum triangulare (Tt), an herbaceous perennial plant that is a native of tropical America and one of the most important vegetables in Nigeria. Methods: Total phenolic contents in (mg GAE/100 g), flavonoid contents, the ferric reducing antioxidant properties (FRAP), 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl free radical scavenging ability (OH-) and iron chelating ability were carried out in vivo using standard described methods while GSH, GPx, catalase and SOD were determined in vivo using standard described methods. Results: In the three different solvents extraction of T. triangulare that were studied in vitro, it was noted that ethyl acetate and ethanolic fractions of T. triangulare showed potent antioxidant activity against DPPH and iron chelating property with high phenolic content except Hydroxyl free radical scavenging ability that showed highest value in the aqueous extract, while the Reduced GSH indicated the highest in the parameter determined in vivo. Conclusion: The antioxidant properties showed in this solvent extractable component probably could have been the basis for the enhanced activities of antioxidant enzymes at very lower dose in the examined tissue homogenates. Therefore, T. triangulare can thereby serve as a means of Preventing some of major degenerative diseases challenging Humans PMID:25948971

  14. Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+: a model experiment.

    PubMed

    Sakanashi, Yoko; Oyama, Keisuke; Matsui, Hiroko; Oyama, Toshihisa B; Oyama, Tomohiro M; Nishimura, Yumiko; Sakai, Hitomi; Oyama, Yasuo

    2008-08-01

    Quercetin is known to protect the cells suffering from oxidative stress. The oxidative stress elevates intracellular Ca(2+) concentration, one of the phenomena responsible for cell death. Therefore, we hypothesized that quercetin would protect the cells suffering from overload of intracellular Ca(2+). To test the hypothesis, the effects of quercetin on the cells suffering from oxidative stress and intracellular Ca(2+) overload were examined by using a flow cytometer with appropriate fluorescence probes (propidium iodide, fluo-3-AM, and annexin V-FITC) and rat thymocytes. The concentrations (1-30 microM) of quercetin to protect the cells suffering from intracellular Ca(2+) overload by A23187, a calcium ionophore, were similar to those for the cells suffering from oxidative stress by H(2)O(2). The cell death respectively induced by H(2)O(2) and A23187 was significantly suppressed by removal of external Ca(2+). Furthermore, quercetin greatly delayed the process of Ca(2+)-dependent cell death although it did not significantly affect the elevation of intracellular Ca(2+) concentration by H(2)O(2) and A23187, respectively. It is concluded that quercetin can protect the cells from oxidative injury in spite of increased concentration of intracellular Ca(2+). Results suggest that quercetin is also used for protection of cells suffering from overload of intracellular Ca(2+). PMID:18586279

  15. Antioxidant enzyme level response to prooxidant allelochemicals in larvae of the southern armyworm moth, Spodoptera eridania.

    PubMed

    Pritsos, C A; Ahmad, S; Elliott, A J; Pardini, R S

    1990-01-01

    Larvae of the southern armyworm, Spodoptera eridania, are highly polyphagous feeders which frequently encounter and feed upon plants containing high levels of prooxidant allelochemicals. While ingestion of moderate quantities of prooxidants can be tolerated by these larvae, ingestion of larger quantities can result in toxicity. Studies were conducted to assess the role of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in the protection of S. eridania against redox active prooxidant plant allelochemicals. Dietary exposure of mid-fifth-instar larvae to either quercetin (a flavonoid) or xanthotoxin (a photoactive furanocoumarin), which generate superoxide radical, and singlet oxygen, respectively, resulted in an increase in SOD levels. CAT levels increased in all groups of S. eridania including control insects. This may have been due to the sudden exposure to food following an extended fast of 18 h (to insure that larvae would not reject the diet because of the prooxidants' bitter taste) with an eventual lowering of CAT values with time. GR activities did not significantly change except for a slight inhibition at the highest prooxidant concentrations used at 12-h post-ingestion. The data from these studies suggest that SOD responds to prooxidant challenges in these insects and together with CAT and GR contributes to the insect's defense against potentially toxic prooxidant compounds. PMID:2161387

  16. Chemomodulatory efficacy of lycopene on antioxidant enzymes and carcinogen-induced cutaneum carcinoma in mice.

    PubMed

    Shen, Cunsi; Wang, Siliang; Shan, Yunlong; Liu, Zhaoguo; Fan, Fangtian; Tao, Li; Liu, Yuping; Zhou, Liang; Pei, Changsong; Wu, Hongyan; Tian, Chao; Ruan, Junshan; Chen, Wenxing; Wang, Aiyun; Zheng, Shizhong; Lu, Yin

    2014-07-25

    Oxidative stress has been implicated in various pathological processes, including skin tumourigenesis. Cutaneum carcinoma is commonly responsible for considerable morbidity and mortality, and treatments have not progressed substantially in recent years. Alternative strategies, such as chemoprevention, are being considered. In this study, we investigated the chemomodulatory potential of lycopene against 9,10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative stress and skin carcinogenesis in female ICR mice. Pretreatment with lycopene at various doses significantly delayed tumour formation and growth. These treatments markedly reduced the tumour incidence and tumour volume. Moreover, lycopene inhibited the formation of reactive oxygen species and malondialdehyde, prevented the loss of glutathione, and affected the activities of a battery of oxidant enzymes in the skin of mice. Furthermore, mice that were administered lycopene exhibited higher levels of translocation of nuclear-factor-erythroid-2-related factor 2 into the nucleus compared with the vehicle-treated and model mice. Collectively, these results indicated that lycopene exerts a protective effect against DMBA/TPA-induced cutaneum carcinoma through antioxidant defence. PMID:24781038

  17. Antioxidant enzymes are induced by phenol in the marine microalga Lingulodinium polyedrum.

    PubMed

    Martins, P L G; Marques, L G; Colepicolo, P

    2015-06-01

    Knowing the impacts of different anthropogenic activities on ecosystems promotes preservation of aquatic organisms. Aiming to facilitate the identification of polluted or contaminated areas, the study of microalga Lingulodinium polyedrum in phenol-containing medium comprises the determination of toxic and metabolic phenol effects, featuring a possible use of this microorganism as bioindicator for this pollutant. Marine microalga L. polyedrum exposure to phenol increases superoxide dismutase (SOD) and catalase (CAT) activities. The 20% and 50% inhibitory concentrations (IC20 and IC50) of cells exposed to phenol were 40 μmol L(-1) and 120 μmol L(-1), respectively. Phenol biodegradation by L. polyedrum was 0.02 μmol h(-1)cell(-1), and its biotransformation was catalyzed by glutathione S-transferase (GST), phenol hydroxylase and catechol 2,3-dihydroxygenase metabolic pathways. Phenol exposure produced the metabolites 2-hydroxymuconic semialdehyde acid, 1,2-dihydroxybenzene (catechol), and 2-oxo-4-pentenoic acid; also, it induced the activity of key antioxidant biomarker enzymes SOD and CAT by three folds compared to that in the controls. Further, phenol decreased the glutathione/oxidized glutathione ratio (GSH/GSSG), highlighting the effective glutathione oxidation in L. polyedrum. Overall, our results suggest that phenol alters microalga growth conditions and microalgae are sensitive bioindicators to pollution by phenol in marine environments. PMID:25770655

  18. Insulin, catecholamines, glucose and antioxidant enzymes in oxidative damage during different loads in healthy humans.

    PubMed

    Koska, J; Blazícek, P; Marko, M; Grna, J D; Kvetnanský, R; Vigas, M

    2000-01-01

    Exercise, insulin-induced hypoglycemia and oral glucose loads (50 g and 100 g) were used to compare the production of malondialdehyde and the activity of antioxidant enzymes in healthy subjects. Twenty male volunteers participated in the study. Exercise consisted of three consecutive work loads on a bicycle ergometer of graded intensity (1.5, 2.0, and 2.5 W/kg, 6 min each). Hypoglycemia was induced by insulin (Actrapid MC Novo, 0.1 IU/kg, i.v.). Oral administration of 50 g and 100 g of glucose was given to elevate plasma glucose. The activity of superoxide dismutase (SOD) was determined in red blood cells, whereas glutathione peroxidase (GSH-Px) activity was measured in whole blood. The concentration of malondialdehyde (MDA) was determined by HPLC, catecholamines were assessed radioenzymatically and glucose was measured by the glucose-oxidase method. Exercise increased MDA concentrations, GSH-Px and SOD activities as well as plasma noradrenaline and adrenaline levels. Insulin hypoglycemia increased plasma adrenaline levels, but the concentrations of MDA and the activities of GSH-Px and SOD were decreased. Hyperglycemia increased plasma MDA concentrations, but the activities of GSH-Px and SOD were significantly higher after a larger dose of glucose only. Plasma catecholamines were unchanged. These results indicate that the transient increase of plasma catecholamine and insulin concentrations did not induce oxidative damage, while glucose already in the low dose was an important triggering factor for oxidative stress. PMID:10984077

  19. Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with ε-poly-L-lysine.

    PubMed

    Mondragón, Laura; Mas, Núria; Ferragud, Vicente; de la Torre, Cristina; Agostini, Alessandro; Martínez-Máñez, Ramón; Sancenón, Félix; Amorós, Pedro; Pérez-Payá, Enrique; Orzáez, Mar

    2014-04-25

    The synthesis and characterization of two new capped silica mesoporous nanoparticles for controlled delivery purposes are described. Capped hybrid systems consist of MCM-41 nanoparticles functionalized on the outer surface with polymer ε-poly-L-lysine by two different anchoring strategies. In both cases, nanoparticles were loaded with model dye molecule [Ru(bipy)3](2+). An anchoring strategy involved the random formation of urea bonds by the treatment of propyl isocyanate-functionalized MCM-41 nanoparticles with the lysine amino groups located on the ε-poly-L-lysine backbone (solid Ru-rLys-S1). The second strategy involved a specific attachment through the carboxyl terminus of the polypeptide with azidopropyl-functionalized MCM-41 nanoparticles (solid Ru-tLys-S1). Once synthesized, both nanoparticles showed a nearly zero cargo release in water due to the coverage of the nanoparticle surface by polymer ε-poly-L-lysine. In contrast, a remarkable payload delivery was observed in the presence of proteases due to the hydrolysis of the polymer's amide bonds. Once chemically characterized, studies of the viability and the lysosomal enzyme-controlled release of the dye in intracellular media were carried out. Finally, the possibility of using these materials as drug-delivery systems was tested by preparing the corresponding ε-poly-L-lysine capped mesoporous silica nanoparticles loaded with cytotoxic drug camptothecin (CPT), CPT-rLys-S1 and CPT-tLys-S1. Cellular uptake and cell-death induction were studied. The efficiency of both nanoparticles as new potential platforms for cancer treatment was demonstrated. PMID:24700694

  20. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of the predatory mite, Neoseiulus cucumeris (Acari: Phytoseiidae).

    PubMed

    Zhang, Guo-Hao; Liu, Huai; Wang, Jin-Jun; Wang, Zi-Ying

    2014-01-01

    Changes in temperature are known to cause a variety of physiological stress responses in insects and mites. Thermal stress responses are usually associated with the increased generation of reactive oxygen species (ROS), resulting in oxidative damage. In this study, we examined the time-related effect (durations for 1, 2, 3, and 5 h) of thermal stress conditions-i.e., relatively low (0, 5, 10, and 15 °C) or high (35, 38, 41, and 44 °C) temperatures-on the activities of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), peroxidase (POX), glutathione S-transferases (GSTs), and total antioxidant capacity (T-AOC) of the predatory mite Neoseiulus cucumeris. Also the lipid peroxidation (LPO) levels of the predatory mite were measured under thermal stress conditions. The results confirmed that thermal stress results in a condition of so-called oxidative stress and the four antioxidant enzymes play an important role in combating the accumulation of ROS in N. cucumeris. CAT and POX activity changed significantly when the mites were exposed to cold and heat shock, respectively. The elevated levels of SOD and GSTs activity, expressed in a time-dependent manner, may have an important role in the process of antioxidant response to thermal stress. However, the levels of LPO in N. cucumeris were high, serving as an important signal that these antioxidant enzyme-based defense mechanisms were not always adequate to counteract the surplus ROS. Thus, we hypothesize that thermal stress, especially extreme temperatures, may contribute much to the generation of ROS in N. cucumeris, and eventually to its death. PMID:24687176

  1. Seasonal variations of melatonin in ram seminal plasma are correlated to those of testosterone and antioxidant enzymes

    PubMed Central

    2010-01-01

    Background Some breeds of sheep are highly seasonal in terms of reproductive capability, and these changes are regulated by photoperiod and melatonin secretion. These changes affect the reproductive performance of rams, impairing semen quality and modifying hormonal profiles. Also, the antioxidant defence systems seem to be modulated by melatonin secretion, and shows seasonal variations. The aim of this study was to investigate the presence of melatonin and testosterone in ram seminal plasma and their variations between the breeding and non-breeding seasons. In addition, we analyzed the possible correlations between these hormones and the antioxidant enzyme defence system activity. Methods Seminal plasma from nine Rasa Aragonesa rams were collected for one year, and their levels of melatonin, testosterone, superoxide dismutase (SOD), glutathione reductase (GRD), glutathione peroxidase (GPX) and catalase (CAT) were measured. Results All samples presented measurable quantities of hormones and antioxidant enzymes. Both hormones showed monthly variations, with a decrease after the winter solstice and a rise after the summer solstice that reached the maximum levels in October-November, and a marked seasonal variation (P < 0.01) with higher levels in the breeding season. The yearly pattern of GRD and catalase was close to that of melatonin, and GRD showed a significant seasonal variation (P < 0.01) with a higher activity during the breeding season. Linear regression analysis between the studied hormones and antioxidant enzymes showed a significant correlation between melatonin and testosterone, GRD, SOD and catalase. Conclusions These results show the presence of melatonin and testosterone in ram seminal plasma, and that both hormones have seasonal variations, and support the idea that seasonal variations of fertility in the ram involve interplay between melatonin and the antioxidant defence system. PMID:20540737

  2. Chemical stress induced by heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes.

    PubMed

    Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat

    2008-03-15

    The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes. PMID:18814656

  3. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    PubMed Central

    Karthikeyan, B.; Jaleel, C.A.; Gopi, R.; Deiveekasundaram, M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters. There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximum of 50% germination, whereas Azospirillum and Azotobacter were on par with C. roseus with respect to their vigour index. There was significant difference in the population of total diazotrophs. Azospirillum and Azotobacter between rhizosphere and non-rhizosphere soils of C. roseus had the same trend and were observed at various locations of the study. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased to a significant extent due to the treatment with diazotrophs. PMID:17610323

  4. Antidiabetic effect of Punica granatum flowers: effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes.

    PubMed

    Bagri, Priyanka; Ali, Mohd; Aeri, Vidhu; Bhowmik, Malay; Sultana, Shahnaz

    2009-01-01

    The present study investigated the effects of Punica granatum aqueous extract (PgAq) on streptozotocin (STZ) induced diabetic rats by measuring fasting blood glucose, lipid profiles (atherogenic index), lipid peroxidation (LPO) and activities of both non-enzymatic and enzymatic antioxidants. Diabetes was induced by single intraperitoneal injection of STZ (60 mg/kg) to albino Wistar rats. The increase in blood glucose level, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), very low density lipoprotein (VLDL), LPO level with decrease in high density lipoprotein cholesterol (HDL-C), reduced glutathione (GSH) content and antioxidant enzymes namely, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) were the salient features observed in diabetic rats. On the other hand, oral administration of PgAq at doses of 250 mg/kg and 500 mg/kg for 21 days resulted in a significant reduction in fasting blood glucose, TC, TG, LDL-C, VLDL-C and tissue LPO levels coupled with elevation of HDL-C, GSH content and antioxidant enzymes in comparison with diabetic control group. The results suggest that PG could be used, as a dietary supplement, in the treatment of chronic diseases characterized by atherogenous lipoprotein profile, aggravated antioxidant status and impaired glucose metabolism and also in their prevention. PMID:18950673

  5. RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind.

    PubMed

    Mushtaq, Muhammad; Sultana, Bushra; Bhatti, Haq Nawaz; Asghar, Muhammad

    2015-08-01

    Enzyme assisted solvent extraction (EASE) of phenolic compounds from watermelon (C. lanatus) rind (WMR) was optimized using Response Surface Methodology (RSM) with Rotatable Central Composite Design (RCCD). Four variables each at five levels i.e. enzyme concentration (EC) 0.5-6.5 %, pH 6-9, temperature (T) 25-75 °C and treatment time (t) 30-90 min, were augmented to get optimal yield of polyphenols with maximum retained antioxidant potential. The polyphenol extracts obtained under optimum conditions were evaluated for their in-vitro antioxidant activities and characterized for individual phenolic profile by RP-HPLC-DAD. The results obtained indicated that optimized EASE enhanced the liberation of antioxidant phenolics up to 3 folds on fresh weight basis (FW) as compared to conventional solvent extraction (CSE), with substantial level of total phenolics (173.70 mg GAE/g FW), TEAC 279.96 mg TE/g FW and DPPH radical scavenging ability (IC50) 112.27 mg/mL. Chlorogenic acid (115.60-1611.04), Vanillic acid (26.13-2317.01) and Sinapic acid (113.01-241.12 μg/g) were major phenolic acid found in EASEx of WMR. Overall, it was concluded that EASE might be efficient and green technique to revalorize under-utilized WMR into potent antioxidant phenolic for their further application in food and nutraceutical industries. PMID:26243925

  6. Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities.

    PubMed

    Fontoura, Roberta; Daroit, Daniel J; Correa, Ana P F; Meira, Stela M M; Mosquera, Mauricio; Brandelli, Adriano

    2014-09-25

    The antioxidant and antihypertensive activities of feather hydrolysates obtained with the bacterium Chryseobacterium sp. kr6 were investigated. Keratin hydrolysates were produced with different concentrations of thermally denatured feathers (10-75 g l(-1)) and initial pH values (6.0-9.0). Soluble proteins accumulated in high amounts in media with 50 and 75 g l(-1) of feathers, reaching values of 18.5 and 22 mg ml(-1), respectively, after 48 hours of cultivation. In media with 50 g l(-1) of feathers, initial pH had minimal effect after 48 hours. Maximal protease production was observed after 24 hours of cultivation, and feather concentration and initial pH values showed no significant effect on enzyme yields at this time. Feather hydrolysates displayed in vitro antioxidant properties, and optimal antioxidant activities were observed in cultures with 50 g l(-1) feathers, at initial pH 8.0, after 48 hours growth at 30°C. Also, feather hydrolysates were demonstrated to inhibit the angiotesin I-converting enzyme by 65% and dipeptidyl peptidase-IV by 44%. The bioconversion of an abundant agroindustrial waste such as chicken feathers can be utilized as a strategy to obtain hydrolysates with antioxidant and antihypertensive activities. Feather hydrolysates might be employed as supplements in animal feed, and also as a potential source of bioactive molecules for feed, food and drug development. PMID:25038398

  7. Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants.

    PubMed

    Liu, Xiaofang; Hou, Fen; Li, Guangke; Sang, Nan

    2015-08-01

    Nitrogen dioxide (NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species (ROS) production and antioxidant enzyme activity in Arabidopsis thaliana (Col-0) exposed to 1.7, 4, 8.5, and 18.8 mg/m(3) NO2. The results indicate that NO2 exposure affected plant growth and chlorophyll (Chl) content, and increased oxygen free radical (O2(-)) production rate in Arabidopsis shoots. Furthermore, NO2 elevated the levels of lipid peroxidation and protein oxidation, accompanied by the induction of antioxidant enzyme activities and change of ascorbate (AsA) and glutathione (GSH) contents. Following this, we mimicked nitric acid mist under experimental conditions, and confirmed the antioxidant mechanism of the plant to the stress. Our results imply that NO2 and its acid mist caused pollution risk to plant systems. During the process, increased ROS acted as a signal to induce a defense response, and antioxidant status played an important role in plant protection against NO2/nitric acid mist-caused oxidative damage. PMID:26257351

  8. Antioxidant Enzyme Activity, Iron Content and Lipid Oxidation of Raw and Cooked Meat of Korean Native Chickens and Other Poultry.

    PubMed

    Muhlisin; Utama, Dicky Tri; Lee, Jae Ho; Choi, Ji Hye; Lee, Sung Ki

    2016-05-01

    This study was conducted to observe antioxidant enzyme activity, iron content and lipid oxidation of Korean native chickens and other poultry. The breast and thigh meat of three Korean native chicken breeds including Woorimatdak, Hyunin black and Yeonsan ogye, and three commercial poultry breeds including the broiler, White Leghorn and Pekin duck (Anasplatyrhyncos domesticus) were studied. The analyses of the antioxidant enzymes activity, iron content and lipid oxidation were performed in raw and cooked samples. The activity of catalase (CAT) in the thigh meat was higher than that of the breast meat of three Korean native chickens and the broiler, respectively. The activity of glutathione peroxidase (GPx) in the uncooked thigh meat of three Korean native chickens was higher than that of the breasts. The breast meat of Woorimatdak and Pekin duck had higher superoxide dismutase (SOD) activity than the others, while only the thigh meat of Pekin duck had the highest activity. Cooking inactivated CAT and decreased the activity of GPx and SOD. The thigh meat of Woorimatdak, White Leghorn, Yeonsan ogye and Hyunin black contained more total iron than the breast meat of those breeds. The heme-iron lost during cooking ranged from 3.2% to 14.8%. It is noted that the thigh meat had higher thiobarbituric acid reactive substances values than the breast in all chicken breeds. Though Woorimatdak showed higher antioxidant enzyme activity and lower released-iron percentage among Korean native chickens, no differences were found on lipid oxidation. We confirm that the dark meat of poultry exhibited higher antioxidant enzyme activity and contained more iron than the white meat. PMID:26954148

  9. Influence of broccoli extract and various essential oils on performance and expression of xenobiotic- and antioxidant enzymes in broiler chickens.

    PubMed

    Mueller, Kristin; Blum, Nicole M; Kluge, Holger; Mueller, Andreas S

    2012-08-01

    The aim of our present study was to examine the regulation of xenobiotic- and antioxidant enzymes by phytogenic feed additives in the intestine and the liver of broilers. A total of 240 male Ross-308 broiler chickens (1 d old) were fed a commercial starter diet for 2 weeks. On day 15, the birds were assigned to six treatment groups of forty birds each. The control (Con) group was fed a diet without any additive for 3 weeks. The diet of group sulforaphane (SFN) contained broccoli extract providing 0.075 g/kg SFN, whereas the diets of the other four groups contained 0.15 g/kg essential oils from turmeric (Cuo), oregano (Oo), thyme and rosemary (Ro). Weight gain and feed conversion were slightly impaired by Cuo and Oo. In the jejunum SFN, Cuo and Ro increased the expression of xenobiotic enzymes (epoxide hydrolases 1 and 2 and aflatoxin B1 aldehyde reductase) and of the antioxidant enzyme haeme oxygenase regulated by an 'antioxidant response element' (ARE) compared to group Con. In contrast to our expectations in the liver, the expression of these enzymes was decreased by all the additives. Nevertheless, all the additives increased the Trolox equivalent antioxidant capacity of the jejunum and the liver and reduced Fe-induced lipid peroxidation in the liver. We conclude that the up-regulation of ARE genes in the small intestine reduces oxidative stress in the organism and represents a novel mechanism by which phytogenic feed additives improve the health of farm animals. PMID:22085616

  10. Antioxidant Enzyme Activity, Iron Content and Lipid Oxidation of Raw and Cooked Meat of Korean Native Chickens and Other Poultry

    PubMed Central

    Muhlisin; Utama, Dicky Tri; Lee, Jae Ho; Choi, Ji Hye; Lee, Sung Ki

    2016-01-01

    This study was conducted to observe antioxidant enzyme activity, iron content and lipid oxidation of Korean native chickens and other poultry. The breast and thigh meat of three Korean native chicken breeds including Woorimatdak, Hyunin black and Yeonsan ogye, and three commercial poultry breeds including the broiler, White Leghorn and Pekin duck (Anasplatyrhyncos domesticus) were studied. The analyses of the antioxidant enzymes activity, iron content and lipid oxidation were performed in raw and cooked samples. The activity of catalase (CAT) in the thigh meat was higher than that of the breast meat of three Korean native chickens and the broiler, respectively. The activity of glutathione peroxidase (GPx) in the uncooked thigh meat of three Korean native chickens was higher than that of the breasts. The breast meat of Woorimatdak and Pekin duck had higher superoxide dismutase (SOD) activity than the others, while only the thigh meat of Pekin duck had the highest activity. Cooking inactivated CAT and decreased the activity of GPx and SOD. The thigh meat of Woorimatdak, White Leghorn, Yeonsan ogye and Hyunin black contained more total iron than the breast meat of those breeds. The heme-iron lost during cooking ranged from 3.2% to 14.8%. It is noted that the thigh meat had higher thiobarbituric acid reactive substances values than the breast in all chicken breeds. Though Woorimatdak showed higher antioxidant enzyme activity and lower released-iron percentage among Korean native chickens, no differences were found on lipid oxidation. We confirm that the dark meat of poultry exhibited higher antioxidant enzyme activity and contained more iron than the white meat. PMID:26954148

  11. Effects of ghrelin on protein expression of antioxidative enzymes and iNOS in the rat liver

    PubMed Central

    Dobutovic, Branislava; Sudar, Emina; Tepavcevic, Snezana; Djordjevic, Jelena; Djordjevic, Ana; Radojcic, Marija

    2014-01-01

    Introduction We investigated the effects of ghrelin on protein expression of the liver antioxidant enzymes superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), nuclear factor κB (NFκB) and inducible nitric oxide synthase (iNOS). Furthermore, we aimed to investigate whether extracellular regulated protein kinase (ERK1/2) and protein kinase B (Akt) are involved in ghrelin-regulated liver antioxidant enzymes and iNOS protein expression. Material and methods Male Wistar rats were treated with ghrelin (0.3 nmol/5 µl) injected into the lateral cerebral ventricle every 24 h for 5 days, and 2 h after the last treatment the animals were sacrificed and the liver excised. The Western blot method was used to determine expression of antioxidant enzymes, iNOS, phosphorylation of Akt, ERK1/2 and nuclear factor κB (NFκB) subunits 50 and 65. Results There was significantly higher protein expression of CuZnSOD (p < 0.001), MnSOD (p < 0.001), CAT (p < 0.001), GPx, (p < 0.001), and GR (p < 0.01) in the liver isolated from ghrelin-treated animals compared with control animals. In contrast, ghrelin significantly (p < 0.01) reduced protein expression of iNOS. In addition, phosphorylation of NFκB subunits p65 and p50 was significantly (p < 0.001 for p65; p < 0.05 for p50) reduced by ghrelin when compared with controls. Phosphorylation of ERK1/2 and of Akt was significantly higher in ghrelin-treated than in control animals (p < 0.05 for ERK1/2; p < 0.01 for Akt). Conclusions The results show that activation of Akt and ERK1/2 is involved in ghrelin-mediated regulation of protein expression of antioxidant enzymes and iNOS in the rat liver. PMID:25276168

  12. Evaluation of the Inhibition of Carbohydrate Hydrolyzing Enzymes, the Antioxidant Activity, and the Polyphenolic Content of Citrus limetta Peel Extract

    PubMed Central

    Flores-Fernandez, José Miguel; Owolabi, Moses S.; Villanueva-Rodríguez, Socorro

    2014-01-01

    Type 2 diabetes mellitus is one of the most frequent causes of death in Mexico, characterized by chronic hyperglycemia. One alternative strategy for this metabolic abnormality is inhibiting the enzymes responsible for the metabolism of carbohydrates. We evaluated whether the aqueous Citrus limetta peel extract could inhibit the metabolism of carbohydrates. We found that this extract inhibited primarily the enzyme α-amylase by 49.6% at a concentration of 20 mg/mL and to a lesser extent the enzyme α-glucosidase with an inhibition of 28.2% at the same concentration. This inhibition is likely due to the high polyphenol content in the Citrus limetta peel (19.1 mg GAE/g). Antioxidant activity of the Citrus limetta peel demonstrated dose-dependent antioxidant activity, varying from 6.5% at 1.125 mg/mL to 42.5% at 20 mg/mL. The study of these polyphenolic compounds having both antihyperglycemic and antioxidant activities may provide a new approach to the management of type 2 diabetes mellitus. PMID:25587557

  13. What is the main driver of ageing in long-lived winter honeybees: antioxidant enzymes, innate immunity, or vitellogenin?

    PubMed

    Aurori, Cristian M; Buttstedt, Anja; Dezmirean, Daniel S; Mărghitaş, Liviu A; Moritz, Robin F A; Erler, Silvio

    2014-06-01

    To date five different theories compete in explaining the biological mechanisms of senescence or ageing in invertebrates. Physiological, genetical, and environmental mechanisms form the image of ageing in individuals and groups. Social insects, especially the honeybee Apis mellifera, present exceptional model systems to study developmentally related ageing. The extremely high phenotypic plasticity for life expectancy resulting from the female caste system provides a most useful system to study open questions with respect to ageing. Here, we used long-lived winter worker honeybees and measured transcriptional changes of 14 antioxidative enzyme, immunity, and ageing-related (insulin/insulin-like growth factor signaling pathway) genes at two time points during hibernation. Additionally, worker bees were challenged with a bacterial infection to test ageing- and infection-associated immunity changes. Gene expression levels for each group of target genes revealed that ageing had a much higher impact than the bacterial challenge, notably for immunity-related genes. Antimicrobial peptide and antioxidative enzyme genes were significantly upregulated in aged worker honeybees independent of bacterial infections. The known ageing markers vitellogenin and IlP-1 were opposed regulated with decreasing vitellogenin levels during ageing. The increased antioxidative enzyme and antimicrobial peptide gene expression may contribute to a retardation of senescence in long-lived hibernating worker honeybees. PMID:24077437

  14. Coal-burning endemic fluorosis is associated with reduced activity in antioxidative enzymes and Cu/Zn-SOD gene expression.

    PubMed

    Wang, Qi; Cui, Kang-ping; Xu, Yuan-yuan; Gao, Yan-ling; Zhao, Jing; Li, Da-sheng; Li, Xiao-lei; Huang, Hou-jin

    2014-02-01

    To study the effect of fluorine on the oxidative stress in coal-burning fluorosis, we investigated the environmental characteristics of coal-burning endemic fluorosis combined with fluorine content surveillance in air, water, food, briquette, and clay binder samples from Bijie region, Guizhou Province, southwest of China. The activities of antioxidant enzymes including copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and level of lipid peroxidation such as malondialdehyde (MDA) were measured in serum samples obtained from subjects residing in the Bijie region. Expression of the Cu/Zn-SOD gene was assessed by quantitative reverse transcriptase PCR (qRT-PCR). Our results showed that people suffering from endemic fluorosis (the high and low exposure groups) had much higher MDA level. Their antioxidant enzyme activities and Cu/Zn-SOD gene expression levels were lower when compared to healthy people (the control group). Fluorosis can decrease the activities of antioxidant enzymes, which was associated with exposure level of fluorine. Down-regulation of Cu/Zn-SOD expression may play an important role in the aggravation of oxidative stress in endemic fluorosis. PMID:23567976

  15. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.)

    PubMed Central

    Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease. PMID:27065102

  16. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.).

    PubMed

    Ding, Xiaotao; Jiang, Yuping; Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease. PMID:27065102

  17. Effects of Chronic Swimming Training and Oestrogen Therapy on Coronary Vascular Reactivity and Expression of Antioxidant Enzymes in Ovariectomized Rats

    PubMed Central

    Claudio, Erick R. G.; Endlich, Patrick W.; Santos, Roger L.; Moysés, Margareth R.; Bissoli, Nazaré S.; Gouvêa, Sônia A.; Silva, Josiane F.; Lemos, Virginia S.; Abreu, Glaucia R.

    2013-01-01

    The aim of this study was to evaluate the effects of swimming training (SW) and oestrogen replacement therapy (ERT) on coronary vascular reactivity and the expression of antioxidant enzymes in ovariectomized rats. Animals were randomly assigned to one of five groups: sham (SH), ovariectomized (OVX), ovariectomized with E2 (OE2), ovariectomized with exercise (OSW), and ovariectomized with E2 plus exercise (OE2+SW). The SW protocol (5×/week, 60 min/day) and/or ERT were conducted for 8 weeks; the vasodilator response to bradykinin was analysed (Langendorff Method), and the expression of antioxidant enzymes (SOD-1 and 2, catalase) and eNOS and iNOS were evaluated by Western blotting. SW and ERT improved the vasodilator response to the highest dose of bradykinin (1000 ng). However, in the OSW group, this response was improved at 100, 300 and 1000 ng when compared to OVX (p<0,05). The SOD-1 expression was increased in all treated/trained groups compared to the OVX group (p<0,05), and catalase expression increased in the OSW group only. In the trained group, eNOS increased vs. OE2, and iNOS decreased vs. SHAM (p<0,05). SW may represent an alternative to ERT by improving coronary vasodilation, most likely by increasing antioxidant enzyme and eNOS expression and augmenting NO bioavailability. PMID:23755145

  18. Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture.

    PubMed

    Mofeed, Jelan; Mosleh, Yahia Y

    2013-09-01

    Laboratory studies were conducted to determine the effects of different concentrations of fenhexamid and atrazine (25, 50 and 100 µg L(-1)) on growth and oxidative stress on Scenedesmus obliquus (microalgae) after exposure for 24, 48, and 96 h. In addition, residues of fenhexamid and atrazine were determined in the culture medium after 96 h; 52%, 44% and 43% of fenhexamid remained in the medium for the lowest, middle and highest concentrations, respectively. Atrazine concentration decreased significantly in the medium with time. The reduction was faster with the lowest concentration (-53%), than in the highest concentration (-46%), while it was intermediate with 50 µg L(-1) (-47%). The antioxidative enzyme activities were used as biomarkers to evaluate the toxic effects of fenhexamid and atrazine on the microalgae. Enzymatic activities were measured in the presence of each compound alone after 24, 48 and 96 h and also in mixture after 24h exposure. The results showed that fenhexamid and atrazine induced antioxidative enzyme activities (GST, CAT and GR) at different concentrations. Catalase activities (CAT) in both pesticides treated-algae were significantly increased. Additionally, an increase in gulathione-S-transferase (GST) was observed in algae after 24, 48 and 96 h of exposure to both fenhexamid and atrazine. Antioxidative enzymes in fenhexamid and atrazine mixture treatment showed an antagonistic interaction after 24h of exposure in algae. PMID:23796667

  19. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. PMID:23911531

  20. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature.

    PubMed

    Hu, Zhengrong; Fan, Jibiao; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2016-04-01

    The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system

  1. Human Vitamin K 2,3-Epoxide Reductase Complex Subunit 1-like 1 (VKORC1L1) Mediates Vitamin K-dependent Intracellular Antioxidant Function*

    PubMed Central

    Westhofen, Philipp; Watzka, Matthias; Marinova, Milka; Hass, Moritz; Kirfel, Gregor; Müller, Jens; Bevans, Carville G.; Müller, Clemens R.; Oldenburg, Johannes

    2011-01-01

    Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1), expressed in HEK 293T cells and localized exclusively to membranes of the endoplasmic reticulum, was found to support both vitamin K 2,3-epoxide reductase (VKOR) and vitamin K reductase enzymatic activities. Michaelis-Menten kinetic parameters for dithiothreitol-driven VKOR activity were: Km (μm) = 4.15 (vitamin K1 epoxide) and 11.24 (vitamin K2 epoxide); Vmax (nmol·mg−1·hr−1) = 2.57 (vitamin K1 epoxide) and 13.46 (vitamin K2 epoxide). Oxidative stress induced by H2O2 applied to cultured cells up-regulated VKORC1L1 expression and VKOR activity. Cell viability under conditions of no induced oxidative stress was increased by the presence of vitamins K1 and K2 but not ubinquinone-10 and was specifically dependent on VKORC1L1 expression. Intracellular reactive oxygen species levels in cells treated with 2,3-dimethoxy-1,4-naphthoquinone were mitigated in a VKORC1L1 expression-dependent manner. Intracellular oxidative damage to membrane intrinsic proteins was inversely dependent on VKORC1L1 expression and the presence of vitamin K1. Taken together, our results suggest that VKORC1L1 is responsible for driving vitamin K-mediated intracellular antioxidation pathways critical to cell survival. PMID:21367861

  2. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits.

    PubMed

    Rushworth, Gordon F; Megson, Ian L

    2014-02-01

    N-acetyl-l-cysteine (NAC) has long been used therapeutically for the treatment of acetaminophen (paracetamol) overdose, acting as a precursor for the substrate (l-cysteine) in synthesis of hepatic glutathione (GSH) depleted through drug conjugation. Other therapeutic uses of NAC have also emerged, including the alleviation of clinical symptoms of cystic fibrosis through cysteine-mediated disruption of disulfide cross-bridges in the glycoprotein matrix in mucus. More recently, however, a wide range of clinical studies have reported on the use of NAC as an antioxidant, most notably in the protection against contrast-induced nephropathy and thrombosis. The results from these studies are conflicting and a consensus is yet to be reached regarding the merits or otherwise of NAC in the antioxidant setting. This review seeks to re-evaluate the mechanism of action of NAC as a precursor for GSH synthesis in the context of its activity as an "antioxidant". Results from recent studies are examined to establish whether the pre-requisites for effective NAC-induced antioxidant activity (i.e. GSH depletion and the presence of functional metabolic pathways for conversion of NAC to GSH) have received adequate consideration in the interpretation of the data. A key conclusion is a reinforcement of the concept that NAC should not be considered to be a powerful antioxidant in its own right: its strength is the targeted replenishment of GSH in deficient cells and it is likely to be ineffective in cells replete in GSH. PMID:24080471

  3. Aging lowers steady-state antioxidant enzyme and stress protein expression in primary hepatocytes.

    PubMed

    Hall, D M; Sattler, G L; Sattler, C A; Zhang, H J; Oberley, L W; Pitot, H C; Kregel, K C

    2001-06-01

    It has been reported that the isolation and culture of primary hepatocytes can compromise cellular ability to constituitively express antioxidant enzyme (AE) genes, making it difficult to study their regulation ex vivo. In the present study, the steady-state expression of manganese-containing superoxide dismutase, copper- and zinc-containing superoxide dismutase, catalase, and glutathione peroxidase was assessed in primary hepatocytes isolated from young and senescent rats and cultured in MATRIGEL: There was no change in steady-state superoxide dismutase protein or activity levels in cells collected from young animals and cultured for 7 days. Catalase expression was initially increased, and then it declined 30%. In contrast, superoxide dismutase expression declined 60% and catalase expression declined 50% in cells from senescent animals. Constitutive and inducible 70-kDa heat shock protein expression increased coincident with declining AE levels in the young cells but not senescent cells. For both age groups, electron micrographs showed rounded hepatocytes with abundant rough endoplasmic reticulum, mitochondria, and peroxisomes. Hepatocytes were organized into clusters of 6-12 cells surrounding a large central lumen devoid of microvilli. Each cluster also contained smaller microvilli-lined lumens between adjacent hepatocytes that resembled canniculi. The plasma membranes of these lumens were sealed from the extracellular space by junctional complexes. Gap junctions in the plasma membrane suggest that hepatocytes were capable of intercellular communication. We conclude that the Matrigel system can be used to study AE regulation in primary hepatocytes from young and senescent animals, provided that experiments can be conducted within a time frame of 5-7 days in culture. These data also support the hypothesis that aging compromises hepatocellular ability to maintain AE status and upregulate stress protein expression. PMID:11382788

  4. Determination of oxidative stress and activities of antioxidant enzymes in guinea pigs treated with haloperidol

    PubMed Central

    GUMULEC, JAROMIR; RAUDENSKA, MARTINA; HLAVNA, MARIAN; STRACINA, TIBOR; SZTALMACHOVA, MARKETA; TANHAUSEROVA, VERONIKA; PACAL, LUKAS; RUTTKAY-NEDECKY, BRANISLAV; SOCHOR, JIRI; ZITKA, ONDREJ; BABULA, PETR; ADAM, VOJTECH; KIZEK, RENE; NOVAKOVA, MARIE; MASARIK, MICHAL

    2013-01-01

    Guinea pigs (Cavia porcellus) were treated with haloperidol (HP), and free radical (FR) and ferric reducing antioxidant power (FRAP) assays were used to determine oxidative stress levels. Furthermore, the superoxide dismutase (SOD), glutathione reductase (GR) and glutathione-S-transferase (GST) activity levels were detected and glucose levels and the reduced and oxidized glutathione (GSH/GSSG) ratio were measured in HP-treated and untreated guinea pigs. The present study demonstrated that the administration of HP causes significant oxidative stress in guinea pigs (P=0.022). In animals treated with HP, the activity of GST was significantly increased compared with a placebo (P= 0.007). The elevation of SOD and GR activity levels and increase in the levels of glutathione (GSH) in HP-treated animals were not statistically significant. In the HP-untreated animals, a significant positive correlation was observed between oxidative stress detected by the FR method and GST (r=0.88, P=0.008) and SOD (r=0.86, P= 0.01) activity levels, respectively. A significant negative correlation between the levels of plasma glucose and oxidative stress detected by the FRAP method was observed (r=−0.78, P=0.04). Notably, no significant correlations were observed in the treated animals. In the HP-treated group, two subgroups of animals were identified according to their responses to oxidative stress. The group with higher levels of plasma HP had higher enzyme activity and reactive oxygen species production compared with the group with lower plasma levels of HP. The greatest difference in activity (U/μl) between the two groups of animals was for GR. PMID:23403848

  5. Influence of thermal treatment on color, enzyme activities, and antioxidant capacity of innovative pastelike parsley products.

    PubMed

    Kaiser, Andrea; Brinkmann, Maike; Carle, Reinhold; Kammerer, Dietmar R

    2012-03-28

    Conventional spice powders are often characterized by low sensory quality and high microbial loads. Furthermore, genuine enzymes are only inhibited but not entirely inactivated upon drying, so that they may regain their activity upon rehydration of dried foods. To overcome these problems, initial heating was applied in the present study as the first process step for the production of innovative pastelike parsley products. For this purpose, fresh parsley was blanched (80, 90, and 100 °C for 1-10 min) and subsequently comminuted to form a paste. Alternatively, mincing was carried out prior to heat treatment. Regardless of temperature, the color of the latter product did not show any change after heating for 1 min. With progressing exposure time the green color turned to olive hues due to marked pheophytin formation. Inactivation of genuine peroxidase (POD) and polyphenol oxidase (PPO) was achieved at all temperature-time regimes applied. In contrast, the parsley products obtained after immediate water-blanching were characterized by brighter green colors and enhanced pigment retention. With the exception of the variants water-blanched at 80 °C, POD and PPO were completely inactivated at any of the thermal treatments. Furthermore, in water-blanched samples, antioxidant capacities as determined by the TEAC and FRAP assays were even enhanced compared to unheated parsley, whereas a decrease of phenolic contents could not be prevented. Consequently, the innovative process presented in this study allows the production of novel herb and spice products characterized by improved sensory quality as compared to conventional spice products. PMID:22375822

  6. Aluminum-sensitive degradation of amyloid beta-protein 1-40 by murine and human intracellular enzymes.

    PubMed

    Banks, W A; Maness, L M; Banks, M F; Kastin, A J

    1996-01-01

    Both amyloid beta protein (A beta) and aluminum (A1) have been implicated in Alzheimer's disease. Recently, A beta has been found to be produced by peripheral tissues as well as by the CNS and to cross and accumulate in the vascular bed of the brain, which comprises the blood-brain barrier (BBB). This raises the possibility that blood-borne A beta may be a source of A beta within the CNS. Al has been shown to alter the structure and function of A beta, to inhibit the class of enzymes (metalloproteases) associated with the processing and degradation of A beta, and to alter the permeability of the BBB to peptides of similar size to A beta. Therefore, Al could alter the access of blood-borne A beta to the CNS either by changing the permeability of the BBB or by affecting enzymatic degradation. We examined the effect of Al on both of these parameters and found that Al did not alter the permeability of the BBB to A beta radioactively labeled with 125I (I-A beta) ever after correction for in vivo degradation. However, Al did enhance clearance and degradation of I-A beta in the circulation but not in the brain. Alterations in clearance can indirectly affect the CNS accumulation of circulating substances by modifying their presentation to the brain. In vitro studies of intracellular enzymatic activity of lysates of mouse and human erythrocytes (RBC) showed that Al could inhibit degradation of I-A beta through a mechanism antagonized by calcium and dependent on the concentrations of RBC lysate and Al. Analysis by high performance liquid chromatography showed that Al acted primarily by inhibiting the initial degradation of I-A beta to a peptide intermediate without inducing the aggregation of I-A beta under the conditions of these studies. No difference was found in sensitivity to Al between RBCs from patients with Alzheimer's disease and age- and sex-matched controls. The ability of Al to alter the degradation of A beta suggests a way in which these two potentially

  7. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    PubMed

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes. PMID:25194133

  8. Selective increase of antioxidant enzyme activity in the alveolar macrophages from cigarette smokers and smoke-exposed hamsters.

    PubMed

    McCusker, K; Hoidal, J

    1990-03-01

    Oxidants from cigarette smoke or those produced by phagocytes are implicated in the pathogenesis of emphysema. We reasoned that augmentation of antioxidant enzymes in cigarette smokers may be important in restricting direct and indirect oxidant damage to alveolar structures. Accordingly, we studied the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSHPx), in alveolar macrophages (AM) from cigarette smokers and from smoke-exposed hamsters. The activities of these antioxidant enzymes were compared with the activities found in AM from nonsmoking control subjects. The activities of SOD and CAT from AM of smokers and smoke-exposed hamsters were twice that found in control subjects (p less than 0.01), but there was no change in the activity of GSHPx. Using the hamster model, we found that filtration of smoke attenuated the increase in antioxidant activities, and that after smoking cessation, the increased activities had returned to those found with control subjects. An adaptive response was further suggested by prolonged survival of smoke-exposed hamsters in normobaric hyperoxia (O2 greater than 95%). Chronic smoke exposure in humans or hamsters causes increased SOD and CAT activities in AM. This augmented activity may serve as a mechanism to limit oxidant-mediated damage to alveolar structures. PMID:2310098

  9. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.

    PubMed

    Tanyolaç, Deniz; Ekmekçi, Yasemin; Unalan, Seniz

    2007-02-01

    Changes in photosynthetic and antioxidant activities in maize (Zea mays L.) leaves of cultivars 3223 and 31G98 exposed to excess copper (Cu) were investigated. Cu treatment reduced the shoot and root length of both cultivars. No significant difference of Cu accumulation in the roots of both cultivars was observed while the cultivar 3223 accumulated significantly higher Cu in leaves than 31G98. The observed decreases in effective quantum efficiency of PSII, ETR and qP indicate an over excitation of photochemical system in 3223 compared to 31G98. The leaf chlorophyll and carotenoid contents of both cultivars decreased with increasing Cu concentration. A far higher production of anthocyanins in 31G98 has been observed than that of 3223. At 1.5 mM Cu concentration, all antioxidant enzyme activities increased in leaves of the cultivar 31G98 while there were no significant changes in SOD and GR activities in 3223 compared to the control except increased APX and POD activities. The lower Cu accumulation in leaves and higher antioxidant enzyme activities in 31G98 suggested an enhanced tolerance capacity of this cultivar to protect the plant from oxidative damage. PMID:17109927

  10. Ambient particulate air pollution and circulating antioxidant enzymes: A repeated-measure study in healthy adults in Beijing, China.

    PubMed

    Wu, Shaowei; Wang, Bin; Yang, Di; Wei, Hongying; Li, Hongyu; Pan, Lu; Huang, Jing; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2016-01-01

    The association of systemic antioxidant activity with ambient air pollution has been unclear. A panel of 40 healthy college students underwent repeated blood collection for 12 occasions under three exposure scenarios before and after relocating from a suburban area to an urban area in Beijing, China in 2010-2011. We measured various air pollutants including fine particles (PM2.5) and determined circulating levels of antioxidant enzymes extracellular superoxide dismutase (EC-SOD) and glutathione peroxidase 1 (GPX1) in the laboratory. An interquartile range increase of 63.4 μg/m(3) at 3-d PM2.5 moving average was associated with a 6.3% (95% CI: 0.6, 12.4) increase in EC-SOD and a 5.5% (95% CI: 1.3, 9.8) increase in GPX1. Several PM2.5 chemical constituents, including negative ions (nitrate and chloride) and metals (e.g., iron and strontium), were consistently associated with increases in EC-SOD and GPX1. Our results support activation of circulating antioxidant enzymes following exposure to particulate air pollution. PMID:26074023

  11. Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis

    PubMed Central

    Mugoni, Vera; Postel, Ruben; Catanzaro, Valeria; De Luca, Elisa; Turco, Emilia; Digilio, Giuseppe; Silengo, Lorenzo; Murphy, Michael P.; Medana, Claudio; Stainier, Didier Y.R.; Bakkers, Jeroen; Santoro, Massimo M.

    2013-01-01

    Summary Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity. PMID:23374346

  12. Copper-stress induced alterations in protein profile and antioxidant enzymes activities in the in vitro grown Withania somnifera L.

    PubMed

    Rout, Jyoti R; Ram, Shidharth S; Das, Ritarani; Chakraborty, Anindita; Sudarshan, Mathummal; Sahoo, Santi L

    2013-07-01

    Withania somnifera L. seedlings were grown in half-strength MS (Murashige and Skoog) basal medium for 4 weeks and then transferred to full-strength MS liquid medium for 3 weeks. The sustainable plants were subcultured in the same medium but with different concentrations (0, 25, 50, 100 and 200 μM) of Cu for 7 and 14 days. The growth parameters (root length, shoot length, leaf length and total number of leaves per plant) showed a declining trend in the treated plants in a concentration dependant manner. Roots and leaves were analyzed for protein profiling and antioxidant enzymes [catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (GPX, EC 1.11.1.7)]. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of crude protein extracts showed the appearance of some new proteins due to Cu treatment. In plant samples grown with 25 and 50 μM of Cu, a rapid increase in antioxidant activities were noticed but at higher concentration (100 and 200 μM) the activities declined. Isoforms of CAT, SOD and GPX were separated using non-denaturing polyacrylamide gel electrophoresis and concentration specific new isoforms were noticed during the study. Isoforms of the antioxidant enzymes synthesized due to Cu stress may be used as biomarkers for other species grown under metal stress. PMID:24431504

  13. Effect of Nigella sativa fixed and essential oils on antioxidant status, hepatic enzymes, and immunity in streptozotocin induced diabetes mellitus

    PubMed Central

    2014-01-01

    Background Nigella sativa fixed (NSFO) and essential (NSEO) oils have been used to treat diabetes mellitus and its complications. Present study was undertaken to explore and validate these folkloric uses. Methods Sprague dawley rats having streptozotocin (STZ) induced diabetes mellitus were used to assess the role of NSFO and NSEO in the management of diabetes complications. Parameters investigated were antioxidant potential, oxidative stress, and the immunity by in vivo experiments. Results The results indicated that STZ decreased the glutathione contents (25.72%), while NSFO and NSEO increased the trait significantly (P < 0.05). Experimental diets increased the tocopherol contents (P < 0.01) and enhanced the expression of hepatic enzymes (P < 0.01). Correlation matrix further indicated that antioxidant potential is positively associated (P < 0.05) responsible for the modulation of hepatic enzymes and the decrease of the nitric oxide production thus controlling the diabetes complications. Conclusions Overall, results of present study supported the traditional use of N. sativa and its derived products as a treatment for hyperglycemia and allied abnormalities. Moreover, N. sativa fixed and essential oils significantly ameliorate free radicals and improve antioxidant capacity thus reducing the risk of diabetic complications. PMID:24939518

  14. Effects of Ozone Oxidative Preconditioning on TNF-α Release and Antioxidant-Prooxidant Intracellular Balance in Mice During Endotoxic Shock

    PubMed Central

    Zamora, Zullyt B.; Borrego, Aluet; López, Orlay Y.; Delgado, René; González, Ricardo; Menéndez, Silvia; Hernández, Frank; Schulz, Siegfried

    2005-01-01

    Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant-prooxidant balance for preservation of cell redox state by the increase of antioxidant endogenous systems in both in vivo and in vitro experimental models. Our aim is to analyze the effect of ozone oxidative preconditioning on serum TNF-α levels and as a modulator of oxidative stress on hepatic tissue in endotoxic shock model (mice treated with lipopolysaccharide (LPS)). Ozone/oxygen gaseous mixture which was administered intraperitoneally (0.2, 0.4, and 1.2 mg/kg) once daily for five days before LPS (0.1 mg/kg, intraperitoneal). TNF-α was measured by cytotoxicity on L-929 cells. Biochemical parameters such as thiobarbituric acid reactive substances (TBARS), enzymatic activity of catalase, glutathione peroxidase, and glutathione-S transferase were measured in hepatic tissue. One hour after LPS injection there was a significant increase in TNF-α levels in mouse serum. Ozone/oxygen gaseous mixture reduced serum TNF-α levels in a dose-dependent manner. Statistically significant decreases in TNF-α levels after LPS injection were observed in mice pretreated with ozone intraperitoneal applications at 0.2 (78%), 0.4 (98%), and 1.2 (99%). Also a significant increase in TBARS content was observed in the hepatic tissue of LPS-treated mice, whereas enzymatic activity of glutathion-S transferase and glutathione peroxidase was decreased. However in ozone-treated animals a significant decrease in TBARS content was appreciated as well as an increase in the activity of antioxidant enzymes. These results indicate that ozone oxidative preconditioning exerts inhibitory effects on TNF-α production and on the other hand it exerts influence on the antioxidant-prooxidant balance for preservation of cell redox state by the increase of endogenous antioxidant systems. PMID:15770062

  15. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  16. Antioxidant effects of the sarsaparilla via scavenging of reactive oxygen species and induction of antioxidant enzymes in human dermal fibroblasts.

    PubMed

    Park, Gunhyuk; Kim, Tae-mi; Kim, Jeong Hee; Oh, Myung Sook

    2014-07-01

    Ultraviolet (UV) radiation from sunlight causes distinct changes in collagenous skin tissues as a result of the breakdown of collagen, a major component of the extracellular matrix. UV irradiation downregulates reactive oxygen species (ROS)-elimination pathways, thereby promoting the production of ROS, which are implicated in skin aging. Smilax glabra Roxb (sarsaparilla) has been used in folk medicine because of its many effects. However, no study on the protective effects of sarsaparilla root (SR) on human dermal fibroblasts has been reported previously. Here, we investigated the protective effect of SR against oxidative stress in dermal fibroblasts. SR significantly inhibited oxidative damage and skin-aging factor via mitogen-activated protein kinase signaling pathways. Also, SR decreased Ca(2+) and ROS, mitochondrial membrane potential, dysfunction, and increased glutathione, NAD(P)H dehydrogenase and heme oxygenase-1. These results demonstrate that SR can protect dermal fibroblasts against UVB-induced skin aging via antioxidant effects. PMID:25022355

  17. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    PubMed

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (P<0.0001 for all). Increasing dietary lycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors. PMID:26936958

  18. Chemoprevention by Hippophae rhamnoides: effects on tumorigenesis, phase II and antioxidant enzymes, and IRF-1 transcription factor.

    PubMed

    Padmavathi, Bandhuvula; Upreti, Meenakshi; Singh, Virendra; Rao, A Ramesha; Singh, Rana P; Rath, Pramod C

    2005-01-01

    Fruits or berries of Hippophae rhamnoides (sea buckthorn), a rich source of vitamins A, C, and E, carotenes, flavonoids, and microelements such as sulfur, selenium, zinc, and copper, are edible and have been shown to protect from atopic dermatitis, hepatic injury, cardiac disease, ulcer, and atherosclerosis. However, its mechanism of action is not clear. We show that Hippophae inhibits benzo(a)pyrene-induced forestomach and DMBA-induced skin papillomagenesis in mouse. This decrease in carcinogenesis may be attributed to the concomitant induction of phase II enzymes such as glutathione S-transferase and DT-diaphorase and antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the mouse liver. This was accompanied by a remarkable induction of the transcription factor interferon regulatory factor-1 in the Hippophae-treated liver. Our results strongly suggest that Hippophae fruit is able to decrease carcinogen-induced forestomach and skin tumorigenesis, which might involve up-regulation of phase II and antioxidant enzymes as well as DNA-binding activity of IRF-1, a known antioncogenic transcription factor causing growth suppression and apoptosis induction for its anticancer effect. PMID:15749631

  19. Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae).

    PubMed

    Li, Mei; Hu, Changwei; Zhu, Qin; Chen, Li; Kong, Zhiming; Liu, Zhili

    2006-01-01

    The metal-induced lipid peroxidation and response of antioxidative enzymes have been investigated in the marine microalga Pavlova viridis to understand the mechanisms of metal resistance in algal cells. We have analyzed superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) activities and glutathione (GSH) contents in microalgal cells grown at different concentrations of copper and zinc. In response to each metal, lipid peroxidation was enhanced with the increase of concentrations, as an indication of the oxidative damage caused by metal concentration assayed in the microalgae cells. Exposure of P. viridis to the two metals caused changes in enzyme activities in a different manner, depending on the metal assayed: after copper treatments, total SOD activity was enhanced, while it was reduced after zinc exposure. Copper and zinc stimulated the activities of CAT and GSH whereas GPX showed a remarkable increase in activity in response to copper treatments and decrease after zinc treatments. These results suggest that an activation of some antioxidant enzymes was enhanced to counteract the oxidative stress induced by the two metals. PMID:16085277

  20. Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes.

    PubMed

    Silva Macedo, Rodrigo; Peres Leal, Mayara; Braga, Tarcio Teodoro; Barioni, Éric Diego; de Oliveira Duro, Stephanie; Ratto Tempestini Horliana, Anna Carolina; Câmara, Niels Olsen Saraiva; Marcourakis, Tânia; Farsky, Sandra Helena Poliselli; Lino-Dos-Santos-Franco, Adriana

    2016-01-01

    Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT) has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days) and treated or not with PBMT (1 and 5 h after each FA exposure). Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment. PMID:27293324

  1. Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes

    PubMed Central

    Braga, Tarcio Teodoro; Barioni, Éric Diego; de Oliveira Duro, Stephanie; Ratto Tempestini Horliana, Anna Carolina; Câmara, Niels Olsen Saraiva; Marcourakis, Tânia; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2016-01-01

    Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT) has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days) and treated or not with PBMT (1 and 5 h after each FA exposure). Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment. PMID:27293324

  2. Flavonol Glucoside and Antioxidant Enzyme Biosynthesis Affected by Mycorrhizal Fungi in Various Cultivars of Onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Bolandnazar, Saheb Ali; Schwarz, Dietmar; Rohn, Sascha; Riehle, Peer; Zaare Nahandi, Fariborz

    2016-01-13

    The objective of this study was to investigate the impact of mycorrhizal symbiosis on qualitative characteristics of onion (Allium cepa L.). For this reason, five onion cultivars with different scale color and three different strains of arbuscular mycorrhizal fungi (Diversispora versiformis, Rhizophagus intraradices, Funneliformis mosseae) were used. Red cultivars, mainly 'Red Azar-shahr', showed the highest content in vitamin C, flavonols, and antioxidant enzymes. Mycorrhizal inoculation increased total phenolic, pyruvic acid, and vitamin C of onion plants. Considerable increase was observed in quercetin-4'-O-monoglucoside and isorhamnetin-4'-O-monoglucoside content in plants inoculated with Diversispora versiformis, but quercetin-3,4'-O-diglucoside was not significantly influenced. Analyses for phenylalanine ammonia-lyase (PAL) and antioxiodant enzyme activities such as polyphenol oxidase (PPO), catalase (CAT), and peroxidase (POD) revealed that all except PPO were enhanced by mycorrhizal inoculation. Overall, these findings suggested that mycorrhizal inoculation influenced biosynthesis of flavonol glucosides and antioxidant enzymes by increasing nutrient uptake or by induction of the plant defense system. PMID:26694086

  3. Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction.

    PubMed

    Miron, T L; Herrero, M; Ibáñez, E

    2013-05-01

    In this work enzyme-assisted extraction (EAE) and pressurized liquid extraction (PLE) are applied for extraction of natural compounds from lemon balm (Melissa officinalis). Cellulase, endo-β-1,4 xylanase and pectinase were studied in order to degrade cell wall of lemon balm leaves and to release phenolic compounds. On the other hand, in order to compare the performance obtained with EAE, PLE using water and ethanol was employed maintaining 150°C as extraction temperature. The obtained extracts were characterized in terms of antioxidant capacity by using DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging and trolox equivalent antioxidant capacity (TEAC) in vitro assays, whereas the Folin-Ciocalteu procedure was employed to estimate the total phenols content. On the other hand, extracts were chemically characterized by liquid chromatography tandem mass spectrometry (LC-MS/MS). The results showed that EAE enhanced the total phenolic content and the antioxidant capacity compared to a non-enzymatic control. PLE extracts presented higher amount of phenols and antioxidant capacity than enzyme-assisted extracts, reaching the highest values on water extracts (193.18mggallicacid/gextract and EC50=6.81μg/mL). Among the bioactive phenolic compounds identified in lemon balm, rosmarinic acid was the main component, although other important compounds were also identified, such as caffeic acid derivatives (salvianolic acids, lithospermic acid) and rosmarinic acid derivatives (rosmarinic acid hexoside, sagerinic acid, sulfated rosmarinic acid). The present study confirms that EAE and PLE can be considered alternative methods for the extraction of natural compounds with biological activity from natural sources. PMID:23528869

  4. Differential Activity and Expression Profile of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought.

    PubMed

    Sheoran, Sonia; Thakur, Vidisha; Narwal, Sneh; Turan, Rajita; Mamrutha, H M; Singh, Virender; Tiwari, Vinod; Sharma, Indu

    2015-11-01

    Wheat crop may experience water deficit at crucial stages during its life cycle, which induces oxidative stress in the plants. The antioxidant status of the plant plays an important role in providing tolerance against the water stress. The objective of this study was to investigate the impact of water stress on physiological traits, antioxidant activity and transcript profile of antioxidant enzyme related genes in four wheat genotypes (C306, AKAW3717, HD2687, PBW343) at three crucial stages of plants under medium (75% of field capacity) and severe stress (45% of field capacity) in pots. Drought was applied by withholding water for 10 days at a particular growth stage viz. tillering, anthesis and 15 days after anthesis (15DAA). For physiological traits, a highly significant effect of water stress at a particular stage and genotypic variations for resistance to drought tolerance was observed. Under severe water stress, the malondialdehyde (MDA) content increased while the relative water content (RWC) and chlorophyll index decreased significantly in all the genotypes. The drought susceptibility index (DSI) of the genotypes varied from 0.18 to 1.9. The drought treatment at the tillering and anthesis stages was found more sensitive in terms of reduction in thousand grain weight (TGW) and grain yield. Antioxidant enzyme activities [superoxide dismutase (SOD) and peroxidase (POX)] increased with the decrease in osmotic potential in drought tolerant genotypes C306 and AKAW3717. Moreover, the transcript profile of Mn-SOD upregulated significantly and was consistent with the trend of the variation in SOD activity, which suggests that Mn-SOD might play an important role in drought tolerance. PMID:26319568

  5. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK).

    PubMed

    Kleszczyński, Konrad; Zillikens, Detlef; Fischer, Tobias W

    2016-09-01

    Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress. PMID:27117941

  6. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages.

    PubMed

    Varì, Rosaria; D'Archivio, Massimo; Filesi, Carmelina; Carotenuto, Simona; Scazzocchio, Beatrice; Santangelo, Carmela; Giovannini, Claudio; Masella, Roberta

    2011-05-01

    Protocatechuic acid (PCA) is a main metabolite of anthocyanins, whose daily intake is much higher than that of other polyphenols. PCA has biological effects, e.g., it induces the antioxidant/detoxifying enzyme gene expression. This study was aimed at defining the molecular mechanism responsible for PCA-induced over-expression of glutathione (GSH) peroxidase (GPx) and GSH reductase (GR) in J774 A.1 macrophages. New evidence is provided that PCA increases GPx and GR expression by inducing C-JUN NH(2)-terminal kinase (JNK)-mediated phosphorylation of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). RNA and proteins were extracted from cells treated with PCA (25 μM) for different time points. Quantitative real-time polymerase chain reaction and immunoblotting analyses showed a rapid increase in mRNA (>60%) and protein (>50%) for both the enzymes. This was preceded by the up-regulation of Nrf2, in terms of mRNA and protein, and by its significant activation as assessed by increased Nrf2 phosphorylation and nuclear translocation (+60%). By using specific kinase inhibitors and detecting the activated form, we showed that JNK was the main upstream kinase responsible for Nrf2 activation. Convincing evidence is provided of a causal link between PCA-induced Nrf2 activation and increased enzyme expression. By silencing Nrf2 and using a JNK inhibitor, enzyme enhancement was counteracted. Finally, with the ChIP assay, we demonstrated that PCA-activated Nrf2 specifically bound ARE sequences in enzyme gene promoters. Our study demonstrates for the first time that PCA improves the macrophage endogenous antioxidant potential by a mechanism in which JNK-mediated Nrf2 activation plays an essential role. This knowledge could contribute to novel diet-based approaches aimed at counteracting oxidative injury by reinforcing endogenous defences. PMID:20621462

  7. Antioxidants

    MedlinePlus

    ... carotene Lutein Lycopene Selenium Vitamin A Vitamin C Vitamin E Vegetables and fruits are rich sources of antioxidants. There is good ... eating a diet with lots of vegetables and fruits is healthy and lowers risks ... smokers. High doses of vitamin E may increase risks of prostate cancer and ...

  8. The level of an intracellular antioxidant during development determines the adult phenotype in a bird species: a potential organizer role for glutathione.

    PubMed

    Romero-Haro, Ana Angela; Alonso-Alvarez, Carlos

    2015-03-01

    Life-history traits are often involved in trade-offs whose outcome would depend on the availability of resources but also on the state of specific molecular signals. Early conditions can influence trade-offs and program the phenotype throughout the lifetime, with oxidative stress likely involved in many taxa. Here we address the potential regulatory role of a single intracellular antioxidant in life-history trade-offs. Blood glutathione levels were reduced in a large sample of birds (zebra finch Taeniopygia guttata) during development using the synthesis inhibitor buthionine sulfoximine (BSO). Results revealed several modifications in the adult phenotype. BSO-treated nestlings showed lower glutathione and plasma antioxidant levels. In adulthood, BSO birds endured greater oxidative damage in erythrocytes but stronger expression of a sexual signal. Moreover, adult BSO females also showed weaker resistance to oxidative stress but were heavier and showed better body condition. Results suggest that low glutathione values during growth favor the investment in traits that should improve fitness returns, probably in the form of early reproduction. Higher oxidative stress in adulthood may be endured if this cost is paid later in life. Either the presence of specific signaling mechanisms or the indirect effect of increased oxidative stress can explain our findings. PMID:25674693

  9. Response of enzymes involved in the processes of antioxidation towards benthiocarb and methylparathion in cyanobacteria Nostoc muscorum

    SciTech Connect

    Bhunia, A.K.; Roy, D.; Basu, N.K.; Chakrabarti, A.; Banerjee, S.K. )

    1991-08-01

    Recently, it has been observed in the authors' laboratory that growth, nitrogen fixation, protein content of cyanobacteria Nostoc muscorum were reduced by methylparathion and benthiocarb treatment. Though many works on toxicity of pesticides on cyanobacteria, specially on growth, photosynthesis and nitrogen fixation are available, the effects of pesticides on antioxidant enzyme levels is still unclear. In this communication, studies have been presented on the effects of organophosphate insecticide methyl-parathione and carbamate herbicide benthiocarb, on glutathione content, glutathione reductase (GR) and superoxide dismutase (SOD) activities of filamentous, nitrogen-fixing cyanobacteria Nostoc muscorum.

  10. Properties of substances inhibiting aggregation of oxidized GAPDH: Data on the interaction with the enzyme and the impact on its intracellular content.

    PubMed

    Lazarev, Vladimir F; Nikotina, Alina D; Semenyuk, Pavel I; Evstafyeva, Diana B; Mikhaylova, Elena R; Muronetz, Vladimir I; Shevtsov, Maxim A; Tolkacheva, Anastasia V; Dobrodumov, Anatoly V; Shavarda, Alexey L; Guzhova, Irina V; Margulis, Boris A

    2016-06-01

    This data is related to our paper "Small molecules preventing GAPDH aggregation are therapeutically applicable in cell and rat models of oxidative stress" (Lazarev et al. [1]) where we explore therapeutic properties of small molecules preventing GAPDH aggregation in cell and rat models of oxidative stress. The present article demonstrates a few of additional properties of the chemicals shown to block GAPDH aggregation such as calculated site for targeting the enzyme, effects on GAPDH glycolytic activity, influence on GAPDH intracellular level and anti-aggregate activity of pure polyglutamine exemplifying a denatured protein. PMID:27054152

  11. Effects of adding some dietary fibers to a cystine diet on the activities of liver antioxidant enzymes and serum enzymes in rats.

    PubMed

    He, Guochun; Aoyama, Yoritaka

    2003-03-01

    This study investigates whether some dietary fibers can the toxicity due to cystine added to the diet. Wistar rats were investigated for the effects of adding pectin, sugar beet fiber or konjac mannan to a cystine diet on the growth rate and on the activities of liver antioxidant enzymes and serum enzymes. The addition of pectin, sugar beet fiber or konjac mannan to the cystine diet resulted in a significant increase in both the food intake and body weight gain. Feeding the cystine diet caused lower activities of total and Cu,Zn-superoxide dismutase, and of catalase in the liver. The addition of pectin to the cystine diet counteracted the activities of the total and Cu,Zn-superoxide dismutase, and of catalase in liver. Of the dietary fibers tested, konjac mannan prevented the elevation of the two enzyme activities in the serum induced by feeding the cystine diet, indicating that this fiber might have the ability to alleviate hepatic damage due to dietary cystine. PMID:12723612

  12. Postnatal exposure to chromium through mother’s milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes

    PubMed Central

    Stanley, Jone A.; Sivakumar, Kirthiram K.; Nithy, Thamizh K.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.; Banu, Sakhila K.

    2013-01-01

    Hexavalent chromium, CrVI, is a heavy metal endocrine disruptor, known as a mutagen, teratogen, and a group A carcinogen. Environmental contamination with CrVI, including drinking water, has been increasing in more than 30 cities in the United States. CrVI is rapidly converted to CrIII intracellularly, and CrIII can cause DNA strand breaks and cancer or apoptosis through different mechanisms. Our previous study demonstrated that lactational exposure to chromium results in a delay or arrest in follicle development and a decrease in steroid hormone levels in F1 female rats, both of which are mitigated (partial inhibition) by vitamin C. The current study tested the hypothesis that lactational exposure to CrIII accelerates follicle atresia in F1 offspring by increasing reactive oxygen species (ROS) and decreasing cellular antioxidants. Results showed that lactational exposure to CrIII dose-dependently increased follicular atresia and decreased steroidogenesis in postnatal day 25, 45, and 65 rats. Vitamin C mitigated or inhibited the effects of CrIII at all doses. CrIII increased hydrogen peroxide and lipid hydroperoxide in plasma and ovary; decreased the antioxidant enzymes (AOXs) GPx1, GR, SOD, and catalase; and increased glutathione S-transferase in plasma and ovary. To understand the effects of CrVI on ROS and AOXs in granulosa (GC) and theca (TC) cell compartments in the ovary, ROS levels and mRNA expression of cytosolic and mitochondrial AOXs, such as SOD1, SOD2, catalase, GLRX1, GSTM1, GSTM2, GSTA4, GR, TXN1, TXN2, TXNRD2, and PRDX3, were studied in GCs and TCs and in a spontaneously immortalized granulosa cell line (SIGC). Overall, CrVI downregulated each of the AOXs; and vitamin C mitigated the effects of CrVI on these enzymes in GCs and SIGCs, but failed to mitigate CrVI effects on GSTM1, GSTM2, TXN1, and TXN2 in TCs. Thus, these data for the first time reveal that lactational exposure to CrIII accelerated follicular atresia and decreased steroidogenesis in F1

  13. Effect of the French Oak Wood Extract Robuvit on Markers of Oxidative Stress and Activity of Antioxidant Enzymes in Healthy Volunteers: A Pilot Study

    PubMed Central

    Orszaghova, Zuzana; Laubertova, Lucia; Sabaka, Peter; Rohdewald, Peter; Durackova, Zdenka; Muchova, Jana

    2014-01-01

    We examined in vitro antioxidant capacity of polyphenolic extract obtained from the wood of oak Quercus robur (QR), Robuvit, using TEAC (Trolox equivalent antioxidant capacity) method and the effect of its intake on markers of oxidative stress, activity of antioxidant enzymes, and total antioxidant capacity in plasma of 20 healthy volunteers. Markers of oxidative damage to proteins, DNA, and lipids and activities of Cu/Zn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined in the erythrocytes. We have found an in vitro antioxidant capacity of Robuvit of 6.37 micromole Trolox equivalent/mg of Robuvit. One month intake of Robuvit in daily dose of 300 mg has significantly decreased the serum level of advanced oxidation protein products (AOPP) and lipid peroxides (LP). Significantly increased activities of SOD and CAT as well as total antioxidant capacity of plasma after one month intake of Robuvit have been shown. In conclusion, we have demonstrated for the first time that the intake of Robuvit is associated with decrease of markers of oxidative stress and increase of activity of antioxidant enzymes and total antioxidant capacity of plasma in vivo. PMID:25254080

  14. The relationship between the activates of antioxidant enzymes in red blood cells and body mass index in Iranian type 2 diabetes and healthy subjects

    PubMed Central

    2012-01-01

    Background Diabetes mellitus is a metabolic disorder characterized by increased production of free radicals and oxidative stress. The aim of this study was to evaluate the activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione reductase (GR), and glutathione peroxide (GSH-PX) in type 2 diabetic patients compared with healthy subjects. Methods This cross-sectional study was conducted on 100 type 2 diabetic patients and 100 healthy controls. Total antioxidant capacity and fasting serum levels of SOD, GR, and GSH-Px were measured. All data were analyzed using SPSS software compatible with Microsoft Windows. Results The activity levels of SOD were lower in diabetic patients (111.93 ± 354.99 U/g Hb) than in healthy controls (1158.53 ± 381.21 U/g Hb), but this was not significant. Activity levels of GSH-PX and GR in diabetics (62.33 ± 36.29 and 7.17 ± 5.51 U/g Hb, respectively) were higher than in controls (24.62 ± 11.2 and 3.16 ± 2.95 U/g Hb, respectively). The statistical difference in enzyme activity of both GSH-Px and GR was significant (P <0.05). Conclusion The increasing production of free radicals and changes in activity levels of antioxidant enzymes in order to scavenge free radicals and/or the effect of diabetes on the activity levels of antioxidant enzymes has an important effect on diabetic complications and insulin resistance. Evaluation of the levels of antioxidant enzymes and antioxidant factors in patients at different stages of the disease, and pharmaceutical and nutritional interventions, can be helpful in reducing oxidative stress in type 2 diabetic patients. There were positive relationship between BMI and the activity of antioxidant enzymes including SOD, GR and GPX in both groups. PMID:23497678

  15. Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.).

    PubMed

    Kumar, Amit; Singh, Rana Pratap; Singh, Pradyumna Kumar; Awasthi, Surabhi; Chakrabarty, Debasis; Trivedi, Prabodh Kumar; Tripathi, Rudra Deo

    2014-09-01

    Arsenic (As) contamination of rice is a major problem for South-East Asia. In the present study, the effect of selenium (Se) on rice (Oryza sativa L.) plants exposed to As was studied in hydroponic culture. Arsenic accumulation, plant growth, thiolic ligands and antioxidative enzyme activities were assayed after single (As and Se) and simultaneous supplementations (As + Se). The results indicated that the presence of Se (25 µM) decreased As accumulation by threefold in roots and twofold in shoots as compared to single As (25 µM) exposed plants. Arsenic induced oxidative stress in roots and shoots was significantly ameliorated by Se supplementation. The observed positive response was found associated with the increased activities of ascorbate peroxidase (APX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6) and glutathione peroxidase (GPx; EC 1.11.1.9) and induced levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) in As + Se exposed plants as compared to single As treatment. Selenium supplementation modulated the thiol metabolism enzymes viz., γ-glutamylcysteine synthetase (γ-ECS; EC 6.3.2.2), glutathione-S-transferase (GST; EC 2.5.1.18) and phytochelatin synthase (PCS; EC 2.3.2.15). Gene expression analysis of several metalloid responsive genes (LOX, SOD and MATE) showed upregulation during As stress, however, significant downregulation during As + Se exposure as compared to single As treatment. Gene expressions of enzymes of antioxidant and GSH and PC biosynthetic systems, such as APX, CAT, GPx, γ-ECS and PCS were found to be significantly positively correlated with their enzyme activities. The findings suggested that Se supplementation could be an effective strategy to reduce As accumulation and toxicity in rice plants. PMID:24985886

  16. High-intensity physical exercise disrupts implicit memory in mice: involvement of the striatal glutathione antioxidant system and intracellular signaling.

    PubMed

    Aguiar, A S; Boemer, G; Rial, D; Cordova, F M; Mancini, G; Walz, R; de Bem, A F; Latini, A; Leal, R B; Pinho, R A; Prediger, R D S

    2010-12-29

    Physical exercise is a widely accepted behavioral strategy to enhance overall health, including mental function. However, there is controversial evidence showing brain mitochondrial dysfunction, oxidative damage and decreased neurotrophin levels after high-intensity exercise, which presumably worsens cognitive performance. Here we investigated learning and memory performance dependent on different brain regions, glutathione antioxidant system, and extracellular signal-regulated protein kinase 1/2 (ERK1/2), serine/threonine protein kinase (AKT), cAMP response element binding (CREB) and dopamine- and cyclic AMP-regulated phosphoprotein (DARPP)-32 signaling in adult Swiss mice submitted to 9 weeks of high-intensity exercise. The exercise did not alter the animals' performance in the reference and working memory versions of the water maze task. On the other hand, we observed a significant impairment in the procedural memory (an implicit memory that depends on basal ganglia) accompanied by a reduced antioxidant capacity and ERK1/2 and CREB signaling in this region. In addition, we found increased striatal DARPP-32-Thr-75 phosphorylation in trained mice. These findings indicate an increased vulnerability of the striatum to high-intensity exercise associated with the disruption of implicit memory in mice and accompanied by alteration of signaling proteins involved in the plasticity of this brain structure. PMID:20888397

  17. Transcriptional Suppression of Renal Antioxidant Enzyme Systems in Guinea Pigs Exposed to Polymerized Cell-Free Hemoglobin

    PubMed Central

    Rentsendorj, Otgonchimeg; Zhang, Xiaoyuan; Williams, Matthew C.; Buehler, Paul W.; D'Agnillo, Felice

    2016-01-01

    Hemoglobin-based oxygen carriers (HBOCs) are being developed as oxygen and plasma volume-expanding therapeutics though their potential to promote oxidative tissue injury has raised safety concerns. Using a guinea pig exchange transfusion model, we examined the effects of polymerized bovine hemoglobin (HbG) on the transcriptional regulation, activity, and expression of the renal antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). HbG infusion downregulated the mRNA levels for genes encoding SOD isoforms 1-3, GPx1, GPx3, GPx4, and CAT. This transcriptional suppression correlated with decreased enzymatic activities for SOD, CAT, and GPx. Immunostaining revealed decreased protein expression of SOD1, CAT, and GPx1 primarily in renal cortical tubules. DNA methylation analyses identified CpG hypermethylation in the gene promoters for SOD1-3, GPx1, GPx3, and GPx4, suggesting an epigenetic-based mechanism underlying the observed gene repression. HbG also induced oxidative stress as evidenced by increased renal lipid peroxidation end-products and 4-HNE immunostaining, which could be the result of the depleted antioxidant defenses and/or serve as a trigger for increased DNA methylation. Together, these findings provide evidence that the renal exposure to HbG suppresses the function of major antioxidant defense systems which may have relevant implications for understanding the safety of hemoglobin-based products. PMID:27471729

  18. Effect of high oxygen atmosphere storage on quality, antioxidant enzymes, and DPPH-radical scavenging activity of Chinese bayberry fruit.

    PubMed

    Yang, Zhenfeng; Zheng, Yonghua; Cao, Shifeng

    2009-01-14

    The influence of high O(2) atmosphere on postharvest decay, quality, total phenolic, total anthocyanin contents, antioxidant enzymes activity, and antioxidant activity of Chinese bayberry fruit was investigated. Freshly harvested Chinese bayberry fruits were placed in jars and ventilated continuously with air or with 80 and 100% O(2) for up to 12 days. Samples were randomly selected initially and at 3-days interval during storage. The fruit exposed to high O(2) was resistant to decay, had high levels of total soluble solids, titratable acidity and ascorbic acid contents, and also reduced the increment of pH value. High O(2) treatment was less stressful as reflected by having the significantly lower malonaldehyde contents and higher catalase, ascorbic acid peroxidase, and peroxidase activities during storage. Both 80% and 100% O(2) treaments had also retained the bioactive contents and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity during storage. These results indicate that elevated O(2) levels may improve the ability of the antioxidative defense mechanism in Chinese bayberry and result in a better control of fruit decay. PMID:19093866

  19. Metabolite profile, antioxidant capacity, and inhibition of digestive enzymes in infusions of peppermint (Mentha piperita) grown under drought stress.

    PubMed

    Figueroa-Pérez, Marely G; Rocha-Guzmán, Nuria Elizabeth; Pérez-Ramírez, Iza F; Mercado-Silva, Edmundo; Reynoso-Camacho, Rosalía

    2014-12-10

    Peppermint (Mentha piperita) infusions represent an important source of antioxidants, which can be enhanced by inducing abiotic stress in plants. The aim of this study was to evaluate the effect of drought stress on peppermint cultivation as well as the metabolite profile, antioxidant capacity, and inhibition of digestive enzymes of resulting infusions. At 45 days after planting, irrigation was suppressed until 85 (control), 65, 35, 24, and 12% soil moisture (SM) was reached. The results showed that 35, 24, and 12% SM decreased fresh (20%) and dry (5%) weight. The 35 and 24% SM treatments significantly increased total phenolic and flavonoid contents as well as antioxidant capacity. Coumaric acid, quercetin, luteolin, and naringenin were detected only in some drought treatments; however, in these infusions, fewer amino acids and unsaturated fatty acids were identified. The 24 and 12% SM treatments slightly improved inhibition of pancreatic lipase and α-amylase activity. Therefore, induction of moderate water stress in peppermint is recommended to enhance its biological properties. PMID:25439559

  20. Effects of cadmium exposure on digestive enzymes, antioxidant enzymes, and lipid peroxidation in the freshwater crab Sinopotamon henanense.

    PubMed

    Wu, Hao; Xuan, Ruijing; Li, Yingjun; Zhang, Xiaomin; Wang, Qian; Wang, Lan

    2013-06-01

    In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress. PMID:23224505

  1. Flixweed Is More Competitive than Winter Wheat under Ozone Pollution: Evidences from Membrane Lipid Peroxidation, Antioxidant Enzymes and Biomass

    PubMed Central

    Li, Yong; Zheng, Yan-Hai; Jiang, Gao-Ming

    2013-01-01

    To investigate the effects of ozone on winter wheat and flixweed under competition, two species were exposed to ambient, elevated and high [O3] for 30 days, planted singly or in mixculture. Eco-physiological responses were examined at different [O3] and fumigating time. Ozone reduced the contents of chlorophyll, increased the accumulation of H2O2 and malondialdehyde in both wheat and flixweed. The effects of competition on chlorophyll content of wheat emerged at elevated and high [O3], while that of flixweed emerged only at high [O3]. The increase of H2O2 and malondialdehyde of flixweed was less than that of wheat under the same condition. Antioxidant enzyme activities of wheat and flixweed were seriously depressed by perennial and serious treatment using O3. However, short-term and moderate fumigation increased the activities of SOD and POD of wheat, and CAT of flixweed. The expression levels of antioxidant enzymes related genes provided explanation for these results. Furthermore, the increase of CAT expression of flixweed was much higher than that of SOD and POD expression of wheat. Ozone and competition resulted in significant reductions in biomass and grain yield in both winter wheat and flixweed. However, the negative effects on flixweed were less than wheat. Our results demonstrated that winter wheat is more sensitive to O3 and competition than flixweed, providing valuable data for further investigation on responses of winter wheat to ozone pollution, in particular combined with species competition. PMID:23533669

  2. Protective effects of ascorbic acid and vitamin E on antioxidant enzyme activity of freeze-thawed semen of Qinchuan bulls.

    PubMed

    Zhao, X L; Li, Y K; Cao, S J; Hu, J H; Wang, W H; Hao, R J; Gui, L S; Zan, L S

    2015-01-01

    The aim of this study was to determine the protective effects of the combination of ascorbic acid (Vc) and vitamin E (VE) on antioxidant enzyme activity, sperm motility, viability, and acrosome integrity of Qinchuan bulls after freeze-thaw. In this study, we determined the effects of Vc and VE on the activity of the antioxidant enzyme defense system comprising glutathione peroxidase (GSH-Px), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD). The combination of Vc and VE had protective effects on sperm motility and viability. With respect to acrosome integrity and the activity of GR and SOD, differences were observed between the experimental groups with added Vc (7 mg/mL) and VE (0.12 IU/mL) and the control group. The activity of GSH-Px in the experimental group (1400 IU/mL Vc and 0.12 IU/mL VE) was not different (P > 0.05) compared with that in the control group, while the activity of CAT showed a significant difference between the 2 groups (P < 0.05). Therefore, we inferred that the combination of Vc (1400 IU/mL) and VE (0.12 IU/mL) protected the sperm quality in the freeze-thaw process. PMID:25867404

  3. Role of antioxidant enzyme expression in the selective cytotoxic response of glioma cells to gamma-linolenic acid supplementation.

    PubMed

    Preuss, M; Girnun, G D; Darby, C J; Khoo, N; Spector, A A; Robbins, M E

    2000-04-01

    We hypothesized that the cytotoxic effect of GLA observed in glioma but not normal glial cells reflects differences in GLA metabolism and/or antioxidant enzyme levels between these cells. The PUFA content of unsupplemented glioma cells was approximately 50% of that seen in unsupplemented astrocytes. Supplementation with 20 microM GLA for 24 h led to a 230 and 22% increase in glioma and astrocyte PUFA content, respectively, such that both supplemented cell types contained similar levels of PUFA. No major differences were seen in terms of GLA metabolites retained in the cells or secreted into the media following incubation with [(3)H]-GLA. No significant differences were observed in activity of MnSOD or CuZn-SOD between the cells. However, CAT and GPx activity in the glioma cells was significantly higher and lower, respectively, than observed in normal astrocytes. GLA supplementation resulted in a significant increase in CAT activity in normal astrocytes; glioma CAT activity was unchanged. No significant change was seen in the other antioxidant enzymes following GLA supplementation. These results suggest that the cytotoxic effect of GLA on glioma cells reflects both increased PUFA content and an inability to upregulate CAT. PMID:10832077

  4. Effects of chilled storage and cryopreservation on sperm characteristics, antioxidant enzyme activities, and lipid peroxidation in Pacific cod Gadus microcephalus

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Shi, Xuehui; Liu, Yifan; Yu, Daode; Guan, Shuguang; Liu, Qinghua; Li, Jun

    2016-07-01

    The present study evaluated the effects of chilled storage and cryopreservation on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod Gadus macrocephalus. Sperm motility and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (Gr), and lipid peroxidation (measured via malondialdehyde (MDA) content) were determined after the milt was stored at 4°C for 12 h, cryopreserved without cryoprotectant in 12% propylene glycol (PG), cryopreserved in 12% PG+0.1 mol/L trehalose, or cryopreserved in 12% PG spermatozoa but centrifuged to decant the supernatant prior to cryopreservation (only sperm cells were cryopreserved). After chilled storage or cryopreservation, the SOD, CAT and GPx activities were reduced in sperm cells and increased in seminal plasma in almost all treatments; sperm motility parameters were also decreased. However, the addition of trehalose into the cryoprotectant could significantly improve the postthaw sperm quality as revealed by the sperm average path velocity. This improvement might be attributed to the function of trehalose in scavenging reactive oxygen species. Chilled storage and cryopreservation had significant effects on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod.

  5. Effect of thinner inhalation on lipid peroxidation and some antioxidant enzymes of people working with paint thinner.

    PubMed

    Halifeoglu, I; Canatan, H; Ustundag, B; Ilhan, N; Inanc, F

    2000-12-01

    Paint thinner is a commonly used industrial solvent with considerable potential for abuse by inhalation. Paint thinner is taken into the body by inhalation or by contact with the skin. Paint thinner is oxidized gradually by cytochrome P450-dependent monooxygenase and consequently free radicals are produced. In the present study we measured plasma malondialdehyde (MDA, a product of lipid peroxidation) levels as an indicator of oxidative damage and activity levels of antioxidant enzymes gluthatione peroxidase (GSH-Px) and superoxide dismutase (SOD) in erythrocytes of a group of people (n = 18) working with paint thinner. The control group was composed of 18 healthy adults. There was a statistically significant (p < 0.001) increase in MDA (2.0+/-0.7 nmol ml(-1)) and GSH-Px (86.5+/-16.6 U g(-1) Hb) activity levels in people working with paint thinner compared with control subjects (MDA: 1.0+/-0.3 nmol ml(-1); GSH-Px: 53.9+/-14.5 U g(-1) Hb). Similarly, there was also an increase (p < 0.05) in the SOD levels (1079+/-214.6 U g(-1) Hb) of people working with paint thinner compared with controls (953.3+/-46.7 U g(-1) Hb). Based on our results, it can be concluded that paint thinner inhalation may increase lipid peroxidation and consequently induce antioxidant enzymes. PMID:11180289

  6. Effects of chilled storage and cryopreservation on sperm characteristics, antioxidant enzyme activities, and lipid peroxidation in Pacific cod Gadus microcephalus

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Shi, Xuehui; Liu, Yifan; Yu, Daode; Guan, Shuguang; Liu, Qinghua; Li, Jun

    2016-01-01

    The present study evaluated the effects of chilled storage and cryopreservation on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod Gadus macrocephalus. Sperm motility and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (Gr), and lipid peroxidation (measured via malondialdehyde (MDA) content) were determined after the milt was stored at 4°C for 12 h, cryopreserved without cryoprotectant in 12% propylene glycol (PG), cryopreserved in 12% PG+0.1 mol/L trehalose, or cryopreserved in 12% PG spermatozoa but centrifuged to decant the supernatant prior to cryopreservation (only sperm cells were cryopreserved). After chilled storage or cryopreservation, the SOD, CAT and GPx activities were reduced in sperm cells and increased in seminal plasma in almost all treatments; sperm motility parameters were also decreased. However, the addition of trehalose into the cryoprotectant could significantly improve the postthaw sperm quality as revealed by the sperm average path velocity. This improvement might be attributed to the function of trehalose in scavenging reactive oxygen species. Chilled storage and cryopreservation had significant effects on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod.

  7. [THYMIC HORMONES, ANTIOXIDANT ENZYMES AND NEUROGENESIS OF BULBUS OLFACTORIUS IN RATS WITH PARKINSONISM: THE EFFECT OF MELATONIN].

    PubMed

    Labunets, I F; Talanov, S A; Vasilyev, R G; Rodnichenko, A E; Utko, N A; Kyzminova, I A; Kopjak, B S; Podjachenko, E V; Sagach, V F; Butenko, G M

    2015-01-01

    The adult rats received both neurotoxin 6-hidroxidophamine and neurotoxin and melatonin. It was investigated a link between the disturbances of the brain antioxidant enzymes activity and thymic endocrine function, as possible pathogenic factors of parkinsonism, with changes in the number of neural stem cells (NSC) in the bulbus olfactorius. Rats with motor asymmetry in the apomorphine test and significant damage of the dopaminergic neurons in the-substantia nigra have decreased levels of superoxide dismutase, catalase and glutathione peroxidase activities in striatum (1.3-1.4 times) and blood thymulin content (8 times) compared to control group. On the contrary, examined indices were not changed in rats without motor asymmetry and correspondingly partly damaged neurons. The number of nestin(+)-cells in the bulbus olfactorius of rats without motor asymmetry increased from 91.2% to 99.3% and remained unchanged after melatonin administration course (10 mg/kg during 18 days). Melatonin administration resulted in the decrease in the number of nestin(+)-cells along with significant elevation of the decreased antioxidant enzymes activity and blood thymulin content in rats with circulatory movements. Possibilities of the enhancement of NSC differentiation in bulbus olfactorius into neuronal direction in such animals has been discussed. The conclusion about the potential use of melatonin as a neuroprotector in parkinsonism therapy has been made. PMID:26845842

  8. Seasonal variation in the mixed-function oxygenase system and antioxidant enzymes of the mussel Mytilus galloprovincialis

    SciTech Connect

    Sole, M.; Porte, C.; Albaiges, J. . Dept. of Environmental Chemistry)

    1995-01-01

    Seasonal variations in the mixed-function oxygenase (MFO) system components (cytochrome P450, 418 peak, and NADPH-cytochrome c[P450] reductase) and antioxidant enzymes (catalase, superoxide dismutase [SOD], glutathione peroxidase [GPX], and DT-diaphorase) of the mussel Mytilus galloprovincialis have been evaluated. Its relation with contaminant body burden (PAHs, PCBs, DDTs, and lindane) as well as environmental parameters (water temperature, salinity, oxygen concentrations, and suspended matter) was determined. As a general trend, low MFO and antioxidant enzyme activities were detected in February--March, a peak in late April, and a gradual decrease with a minimum in June. This pattern was similar to tissue concentrations of PAHs, PCBs, DDTs, and lindate normalized to lipid weight. Cytochrome P450 content, however, exhibited a steady decrease from February to June. The observed seasonal variations are presumably related to the metabolic status of the animal, itself dependent on such factors as gonadal ripening, food availability, and the hydrological cycle, which regulates productivity in the area.

  9. The effect of extra virgin olive oil and soybean on DNA, cytogenicity and some antioxidant enzymes in rats.

    PubMed

    El-Kholy, Thanaa A; Abu Hilal, Mohammad; Al-Abbadi, Hatim Ali; Serafi, Abdulhalim Salim; Al-Ghamdi, Ahmad K; Sobhy, Hanan M; Richardson, John R C

    2014-06-01

    We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents' organs and warrants further investigation in humans. PMID:24959949

  10. Expression Profile of Antioxidant Enzymes in Hemocytes from Freshwater Prawn Macrobrachium rosenbergii Exposed to an Elevated Level of Copper.

    PubMed

    Guo, Hui; Miao, Yu-Tao; Xian, Jian-An; Qian, Kun; Wang, An-Li

    2015-10-01

    This study evaluated the expression level of antioxidant enzymes Cu, Zn-superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) in hemocytes of Macrobrachium rosenbergii exposed to copper by real-time PCR (qRT-PCR). Results showed that the mRNA expression of Cu, Zn-SOD increased to reach a peak at 6 h, then recovered to its normal level at 48 h. CAT expression level was significantly increased at 12 h and reached a peak at 24 h, but recovered to its normal level later. GPx expression level was significantly increased at 6 h and reached the peak at 12 h. GST expression level was significantly induced from 12 to 24 h and then dropped to its normal level at 48 h. These results indicated that antioxidant enzymes were inducible, possibly for removing excessive reactive oxygen species to protect prawn from oxidative stress. PMID:26215459

  11. Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress.

    PubMed

    Odjegba, V J; Fasidi, I O

    2007-01-01

    Whole plants of Eichhornia crassipes and Pistia stratiotes were exposed to various concentrations (0, 0.1, 0.3, 0.5, 1.0, 3.0 and 5.0 mM) of 8 heavy metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb and Zn) hydroponically for 21 days. Spectrometric assays for the total activity of catalase, peroxidase, and superoxide dismutase in the leaves were studied. At the end of the experimental period, data referred to metal treated plants were compared to data of untreated ones (control). Heavy metals increased the activity of catalase, peroxidase and superoxide dismutase in both species and there was differential inducement among metals. Overall, Zn had the least inducement of antioxidant enzymes in both species while Hg had the highest inducement. The increase in antioxidant enzymes in relation to the control plants was more in E. crassipes than P. stratiotes. The results showed that E. crassipes tolerated higher metal concentrations in a greater number of metals than P. stratiotes. PMID:19086387

  12. Response of antioxidative enzymes to arsenic-induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill

    PubMed Central

    Talukdar, Tulika; Talukdar, Dibyendu

    2013-01-01

    Background: Wedelia chinensis Merrill (Asteraceae) is a medicinally important herb, grown abundantly in soils contaminated with heavy metals, including toxic metalloid arsenic (As). The leaves have immense significance in treatment of various ailments. Objective: The present study was undertaken to ascertain whether the edible/usable parts experience oxidative stress in the form of membrane damage during As exposure or not. Materials and Methods: Responses of seven antioxidant enzymes were studied in leaves under 20 mg/L of As treatment in pot experiment. Results: When compared to control, activities of superoxide dismutase, monodehydroascorbatereductase, dehydroascorbatereductase, glutathione reductase, and gluathione peroxidase had increased, while the catalase level reduced and ascorbate peroxidase activity changed non-significantly in As-treated seedlings. This suggested overall positive response of antioxidant enzymes to As-induced oxidative stress. Although hydrogen peroxide content increased, level of lipid peroxidation and magnitude of membrane damage was quite normal, leading to normal growth (dry weight of shoot) of plant under Astreatment. Conclusion: W.chinensis is tolerant of As-toxicity, and thus, can be grown in As-contaminated zones. PMID:24082737

  13. Bioactive compounds extracted from Indian wild legume seeds: antioxidant and type II diabetes-related enzyme inhibition properties.

    PubMed

    Gautam, Basanta; Vadivel, Vellingiri; Stuetz, Wolfgang; Biesalski, Hans K

    2012-03-01

    Seven different wild legume seeds (Acacia leucophloea, Bauhinia variegata, Canavalia gladiata, Entada scandens, Mucuna pruriens, Sesbania bispinosa and Tamarindus indica) from various parts of India were analyzed for total free phenolics, l-Dopa (l-3,4 dihydroxyphenylalanine), phytic acid and their antioxidant capacity (ferric-reducing antioxidant power [FRAP] and 2,2-diphenyl-1-picrylhydrazyl [DPPH] assay) and type II diabetes-related enzyme inhibition activitiy (α-amylase). S. bispinosa had the highest content in both total free phenolics and l-Dopa, and relatively low phytic acid when compared with other seeds. Phytic acid content, being highest in E. scandens, M. pruriens and T. indica, was highly predictive for FRAP (r = 0.47, p < 0.05) and DPPH (r = 0.66, p < 0.001) assays. The phenolic extract from T. indica and l-Dopa extract from E. scandens showed significantly higher FRAP values among others. All seed extracts demonstrated a remarkable reducing power (7-145 mM FeSO4 per mg extract), DPPH radical scavenging activity (16-95%) and α-amylase enzyme inhibition activity (28-40%). PMID:21970446

  14. Tempol, an Intracellular Antioxidant, Inhibits Tissue Factor Expression, Attenuates Dendritic Cell Function, and Is Partially Protective in a Murine Model of Cerebral Malaria

    PubMed Central

    Francischetti, Ivo M. B.; Gordon, Emile; Bizzarro, Bruna; Gera, Nidhi; Andrade, Bruno B.; Oliveira, Fabiano; Ma, Dongying; Assumpção, Teresa C. F.; Ribeiro, José M. C.; Pena, Mirna; Qi, Chen-Feng; Diouf, Ababacar; Moretz, Samuel E.; Long, Carole A.; Ackerman, Hans C.; Pierce, Susan K.; Sá-Nunes, Anderson; Waisberg, Michael

    2014-01-01

    Background The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood. Methods and Findings We undertook testing Tempol—a superoxide dismutase (SOD) mimetic and pleiotropic intracellular antioxidant—in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs) stimulated by lipopolysaccharide (LPS). This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-α, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg) partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants—such as α-phenyl N-tertiary-butyl nitrone (PBN; a spin trap), MnTe-2-PyP and MnTBAP (Mn-phorphyrin), Mitoquinone (MitoQ) and Mitotempo (mitochondrial antioxidants), M30 (an iron chelator), and epigallocatechin gallate (EGCG; polyphenol from green tea) did not improve survival. By contrast, these compounds (except PBN) inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (gp91phox–/–) or mice treated with

  15. Effects of Cr(VI) long-term and low-dose action on mammalian antioxidant enzymes (an in vitro study)

    SciTech Connect

    Asatiani, N.; Sapojnikova, N.; Abuladze, M.; Kartvelishvili, T.L.; Kulikova, N.; Kiziria, E.; Namchevadze, E.; Holman, H.-Y.N.

    2003-08-01

    In order to investigate the low-dose long-term Cr(VI) action on antioxidant enzymes in cultured mammalian cells we estimated the activity of glutathione dependent antioxidant enzymes, catalase and superoxide dismutase (SOD) under various chromium concentrations in human epithelial-like L-41 cells. The long-term action of 20 mu-M causes the toxicity that results in losing of the cell viability by activating the apoptotic process, as identified by morphological analysis, the activation of caspase-3, and DNA fragmentation. The toxic chromium concentration totally destroys glutathione antioxidant system, and diminishes the activity of catalase and cytosolic Cu, ZnSOD. The non-toxic concentration (2 mu-M) causes the activation of the antioxidant defense systems, and they neutralize the oxidative impact.

  16. Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes.

    PubMed

    Newsome, Bradley J; Petriello, Michael C; Han, Sung Gu; Murphy, Margaret O; Eske, Katryn E; Sunkara, Manjula; Morris, Andrew J; Hennig, Bernhard

    2014-02-01

    Superfund chemicals such as polychlorinated biphenyls pose a serious human health risk due to their environmental persistence and link to multiple diseases. Selective bioactive food components such as flavonoids have been shown to ameliorate PCB toxicity, but primarily in an in vitro setting. Here, we show that mice fed a green tea-enriched diet and subsequently exposed to environmentally relevant doses of coplanar PCB exhibit decreased overall oxidative stress primarily due to the up-regulation of a battery of antioxidant enzymes. C57BL/6 mice were fed a low-fat diet supplemented with green tea extract (GTE) for 12 weeks and exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg-day) on weeks 10, 11 and 12 (total body burden: 4.9 mg/kg). F2-isoprostane and its metabolites, established markers of in vivo oxidative stress, measured in plasma via HPLC-MS/MS exhibited fivefold decreased levels in mice supplemented with GTE and subsequently exposed to PCB compared to animals on a control diet exposed to PCB. Livers were collected and harvested for both messenger RNA and protein analyses, and it was determined that many genes transcriptionally controlled by aryl hydrocarbon receptor and nuclear factor (erythroid-derived 2)-like 2 proteins were up-regulated in PCB-exposed mice fed the green tea-supplemented diet. An increased induction of genes such as SOD1, GSR, NQO1 and GST, key antioxidant enzymes, in these mice (green tea plus PCB) may explain the observed decrease in overall oxidative stress. A diet supplemented with green tea allows for an efficient antioxidant response in the presence of PCB 126, which supports the emerging paradigm that healthful nutrition may be able to bolster and buffer a physiological system against the toxicities of environmental pollutants. PMID:24378064

  17. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression

    PubMed Central

    Yeom, Yiseul; Kim, Yuri

    2015-01-01

    Background: Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease. The objective of this study is to investigate the protective effect of Sasa quelpaertensis leaf extract (SQE) against oxidative stress in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Mice were treated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage in advance two weeks before inflammation was induced. Then, the mice were administered with 2.5% DSS in drinking water for 7 days and normal drinking water for 7 days between two DSS treatment. Disease activity index values, gut motility, and severity of the resulting oxidative DNA damage were analyzed. The antioxidant effect of SQE was evaluated by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) activity in plasma samples. Catalase activity and expressions levels of glutathione peroxidase 1 (Gpx1), SOD1, and SOD2 were also detected in colon tissues. Results: Administration of SQE significantly reduced the severity of DSS-induced colitis compared to the control (Ctrl) group. Levels of 8-oxo-dG, an oxidative DNA damage marker, were significantly lower in the SQE group compared to the untreated DSS Ctrl group. In the SQE (300 mg/kg) group, MDA levels were significantly lower, while SOD and catalase activity levels in the plasma samples were significantly higher compared with the DSS Ctrl group. The expression levels of the antioxidant enzymes, SOD2 and Gpx1, were significantly higher, while the levels of SOD 1 expression were lower, in the colon tissues of the DSS Ctrl group compared with those of the Ctrl group. In contrast, administration of SQE significantly down-regulated SOD2 and Gpx1 expressions and up-regulated SOD1 expression. Conclusions: These results indicate that SQE efficiently suppresses oxidative stress in DSS-induced colitis in mice, and its action is associated with the regulation of antioxidant enzymes. PMID:26151047

  18. The stimulatory effect of the octadecaneuropeptide ODN on astroglial antioxidant enzyme systems is mediated through a GPCR

    PubMed Central

    Hamdi, Yosra; Kaddour, Hadhemi; Vaudry, David; Douiri, Salma; Bahdoudi, Seyma; Leprince, Jérôme; Castel, Hélène; Vaudry, Hubert; Amri, Mohamed; Tonon, Marie-Christine; Masmoudi-Kouki, Olfa

    2012-01-01

    Astroglial cells possess an array of cellular defense systems, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damage caused by oxidative stress on the central nervous system. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides including the octadecaneuropeptide (ODN). ODN is the ligand of both central-type benzodiazepine receptors (CBR), and an adenylyl cyclase- and phospholipase C-coupled receptor. We have recently shown that ODN is a potent protective agent that prevents hydrogen peroxide (H2O2)-induced inhibition of SOD and catalase activities and stimulation of cell apoptosis in astrocytes. The purpose of the present study was to investigate the type of receptor involved in ODN-induced inhibition of SOD and catalase in cultured rat astrocytes. We found that ODN induced a rapid stimulation of SOD and catalase gene transcription in a concentration-dependent manner. In addition, 0.1 nM ODN blocked H2O2-evoked reduction of both mRNA levels and activities of SOD and catalase. Furthermore, the inhibitory actions of ODN on the deleterious effects of H2O2 on SOD and catalase were abrogated by the metabotropic ODN receptor antagonist cyclo1-8[Dleu5]OP, but not by the CBR antagonist flumazenil. Finally, the protective action of ODN against H2O2-evoked inhibition of endogenous antioxidant systems in astrocytes was protein kinase A (PKA)-dependent, but protein kinase C-independent. Taken together, these data demonstrate for the first time that ODN, acting through its metabotropic receptor coupled to the PKA pathway, prevents oxidative stress-induced alteration of antioxidant enzyme expression and activities. The peptide ODN is thus a potential candidate for the development of specific agonists that would selectively mimic its protective activity. PMID:23181054

  19. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks׳ gestation in nulliparous women who subsequently develop preeclampsia

    PubMed Central

    Mistry, Hiten D.; Gill, Carolyn A.; Kurlak, Lesia O.; Seed, Paul T.; Hesketh, John E.; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C.; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2–7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks׳ gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag–single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both P<0.001) compared to controls (median (IQR), copper, 1957.4 (1787, 2177.5) vs 1850.0 (1663.5, 2051.5) µg/L; ceruloplasmin, 2.5 (1.4, 3.2) vs 2.2 (1.2, 3.0) µg/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for SNPs and antioxidant enzyme activity. This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks׳ gestation that subsequently

  20. Dietary blueberries sttenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzymes expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (BB) contain high levels of polyphenols and exhibit high antioxidant capacity. In this study, protective effects of BB against atherosclerosis and possible underlying mechanisms in reducing oxidative stress were examined in ApoE deficient (apoE-/-) mice. ApoE-/- mice were fed AIN-93G die...

  1. Effect of a polybrominated diphenyl ether congener (BDE-47) on growth and antioxidative enzymes of two mangrove plant species, Kandelia obovata and Avicennia marina, in South China.

    PubMed

    Wang, Ying; Zhu, Haowen; Tam, Nora Fung Yee

    2014-08-30

    The effects of BDE-47 on the growth and antioxidative responses of the seedlings of Kandelia obovata (Ko) and Avicennia marina (Am) were compared in an 8-week hydroponic culture spiked with different levels of BDE-47, 0.1, 1, 5 and 10 mg l(-1). The two highest BDE-47 levels significantly suppressed the growth and increased the activities of three antioxidative enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), of Ko in week 1. However, SOD and POD activities at high levels of BDE-47 became lower than the control in week 8. On the contrary, growth of Am was not affected at all contamination levels, and the activities of three enzymes were enhanced by BDE-47 in weeks 1 and 4, but such stimulatory effect became insignificant in week 8. Avicennia was more tolerant to BDE-47 toxicity than Kandelia, as its antioxidative enzymes could better counter-balance the oxidative stress caused by BDE-47. PMID:24631399

  2. Antioxidant effects of Etlingera elatior flower extract against lead acetate - induced perturbations in free radical scavenging enzymes and lipid peroxidation in rats

    PubMed Central

    2011-01-01

    Background Etlingera elatior or 'pink torch ginger' (Zingiberaceae) are widely cultivated in tropical countries and used as spices and food flavoring. The purpose of this study was to evaluate the antioxidant effects of Etlingera elatior against lead - induced changes in serum free radical scavenging enzymes and lipid hydroperoxides in rats. Findings Rats were exposed to lead acetate in drinking water (500 ppm) for 14 days alone or plus the ethanol extract of E. elatior (50, 100 and 200 mg/kg). Blood lead levels, lipid hydroperoxides, protein carbonyl contents and oxidative marker enzymes were estimated. Lead acetate in drinking water elicited a significant increase in lipid hydroperoxides (LPO) and protein-carbonyl-contents (PCC). There was a significant decrease in total antioxidants, superoxide dismutase, glutathione peroxidase and glutathione S-transferase levels with lead acetate treatment. Supplementation of E. elatior was associated with reduced serum LPO and PCC and a significant increase in total antioxidants and antioxidant enzyme levels. Conclusions The results suggest that flower extract of Etlingera elatior has powerful antioxidant effect against lead - induced oxidative stress and the extract may be useful therapeutic agent against lead toxicity. However, detailed evaluations are required to identify the active antioxidant compounds from this plant extract. PMID:21414212

  3. Antioxidant Enzyme Activity and Meat Quality of Meat Type Ducks Fed with Dried Oregano (Origanum vulgare L.) Powder

    PubMed Central

    Park, J. H.; Kang, S. N.; Shin, D.; Shim, K. S.

    2015-01-01

    One-day-old Cherry valley meat-strain ducks were used to investigate the effect of supplemental dried oregano powder (DOP) in feed on the productivity, antioxidant enzyme activity, and breast meat quality. One hundred sixty five ducks were assigned to 5 dietary treatments for 42 days. The dietary treatment groups were control group (CON; no antibiotic, no DOP), antibiotic group (ANT; CON+0.1% Patrol), 0.1% DOP (CON+0.1% DOP), 0.5% DOP (CON+0.5% DOP), and 1.0% DOP (CON+1.0% DOP). Upon feeding, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity of oregano extracts was higher than that of tocopherol, although it was less than that of ascorbic acid. As a result of in vivo study, DOP in the diet showed no effects on final body weight, feed intake, or feed conversion ratio. However, dietary 0.5% and 1% DOP supplementation caused a significant increase in the serum enzyme activity of superoxide dismutase (SOD) compared with CON and ANT, while glutathione peroxidase (GPx) in tissue was increased as compared to ANT (p<0.05). Cooking loss from ducks fed with DOP decreased compared with the control ducks. Thiobarbituric acid reactive substance (TBARS) values of duck breast meat at 5 d post slaughter was found to be significantly reduced in ducks whose diets were supplemented with 0.5% and 1% DOP (p<0.05). These results suggest that diets containing 0.5% and 1% DOP may beneficially affect antioxidant enzyme activity of GPx and SOD, improve meat cooking loss, and reduce TBARS values in breast meat at 5 d of storage in ducks. PMID:25557678

  4. Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes

    PubMed Central

    Sánchez-Rodríguez, Martha A; Ruiz-Ramos, Mirna; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel

    2007-01-01

    Background Oxidative stress (OxS) has recently been linked with osteoporosis; however, we do not know the influence of OxS as an independent risk factor for this disease. Methods We conducted a case-control study in 94 subjects ≥60 years of age, 50 healthy and 44 with osteoporosis. We measured total antioxidant status, plasma lipid peroxides, antioxidant activity of superoxide dismutase and glutathione peroxidase (GPx), and calculated the SOD/GPx ratio. Bone mineral density was obtained at the peripheral DXA in calcaneus using a portable Norland Apollo Densitometer®. Osteoporosis was considered when subjects had a BMD of 2.5 standard deviations or more below the mean value for young adults. Results GPx antioxidant activity was significantly lower in the group of subjects with osteoporosis in comparison with the group of healthy subjects (p < 0.01); in addition, the SOD/GPx ratio was significantly higher in the group of individuals with osteoporosis (p < 0.05). In logistic regression analysis, we found OxS to be an independent risk factor for osteoporosis (odds ratio [OR] = 2.79; 95% confidence interval [95% CI] = 1.08–7.23; p = 0.034). Conclusion Our findings suggest that OxS is an independent risk factor for osteoporosis linked to increase of SOD/GPx ratio. PMID:18088440

  5. Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers.

    PubMed

    Liu, Z H; Lu, L; Wang, R L; Lei, H L; Li, S F; Zhang, L Y; Luo, X G

    2015-11-01

    The objective of the present study was to investigate the effects of dietary supplemental Zinc (Zn) source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Dietary treatments included the Zn-unsupplemented corn-soybean meal basal diet (control) and basal diets supplemented with 60, 120, or 180 mg Zn/kg as Zn sulfate, Zn amino acid chelate with a weak chelation strength of 6.5 quotient of formation (Qf) (11.93% Zn) (Zn-AA W), Zn proteinate with a moderate chelation strength of 30.7 Qf (13.27% Zn) (Zn-Pro M), or Zn proteinate with an extremely strong chelation strength of 944.0 Qf (18.61% Zn) (Zn-Pro S). The results showed that dietary supplemental Zn increased (P < 0.01) Zn contents in the liver, breast, and thigh muscles of broilers, and up-regulated mRNA expressions of copper and Zn containing superoxide dismutase (CuZnSOD) and metallothioneins (MT) in the liver (P < 0.01) and thigh muscle (P < 0.05), and also enhanced (P < 0.05) CuZnSOD activities in the breast and thigh muscles, which exerted antioxidant ability and a decreased malondialdehyde (MDA) level in the liver (P < 0.01) and breast and thigh muscles (P < 0.05) of broilers. Furthermore, supplemental Zn increased activities of malate dehydrogenase (MDH) and lipoprotein lipase (LPL) in the abdominal fat (P < 0.05), and fatty acid synthetase (FAS) and LPL in the liver (P < 0.01), which were accompanied with up-regulation (P < 0.01) of the mRNA expressions levels of these enzymes in the abdominal fat and liver of broilers. Dietary Zn source, and an interaction between Zn source and level, had no effects on any measurements. It is concluded that dietary Zn supplementation improved Zn status and resulted in promoting antioxidant ability and activities and gene expressions of fat metabolism-related enzymes of broilers regardless of Zn source and level, and the addition of 60 mg Zn/kg to the corn-soybean meal basal diet (a total dietary Zn of approximately 90 mg/kg) was appropriate

  6. Pharmacokinetics and pharmacodynamics of phase II drug metabolizing/antioxidant enzymes gene response by anticancer agent sulforaphane in rat lymphocytes.

    PubMed

    Wang, Hu; Khor, Tin Oo; Yang, Qian; Huang, Ying; Wu, Tien-Yuan; Saw, Constance Lay-Lay; Lin, Wen; Androulakis, Ioannis P; Kong, Ah-Ng Tony

    2012-10-01

    This study assesses the pharmacokinetics (PK) and pharmacodynamics (PD) of Nrf2-mediated increased expression of phase II drug metabolizing enzymes (DME) and antioxidant enzymes which represents an important component of cancer chemoprevention in rat lymphocytes following intravenous (iv) administration of an anticancer phytochemical sulforaphane (SFN). SFN was administered intravenously to four groups of male Sprague-Dawley JVC rats each group comprising four animals. Blood samples were drawn at selected time points. Plasma were obtained from half of each of the blood samples and analyzed using a validated LC-MS/MS method. Lymphocytes were collected from the remaining blood samples using Ficoll-Paque Plus centrifuge medium. Lymphocyte RNAs were extracted and converted to cDNA, quantitative real-time PCR analyses were performed, and fold changes were calculated against those at time zero for the relative expression of Nrf2-target genes of phase II DME/antioxidant enzymes. PK-PD modeling was conducted based on Jusko's indirect response model (IDR) using GastroPlus and bootstrap method. SFN plasma concentration declined biexponentially and the pharmacokinetic parameters were generated. Rat lymphocyte mRNA expression levels showed no change for GSTM1, SOD, NF-κB, UGT1A1, or UGT1A6. Moderate increases (2-5-fold) over the time zero were seen for HO-1, Nrf2, and NQO1, and significant increases (>5-fold) for GSTT1, GPx1, and Maf. PK-PD analyses using GastroPlus and the bootstrap method provided reasonable fitting for the PK and PD profiles and parameter estimates. Our present study shows that SFN could induce Nrf2-mediated phase II DME/antioxidant mRNA expression for NQO1, GSTT1, Nrf2, GPx, Maf, and HO-1 in rat lymphocytes after iv administration, suggesting that Nrf2-mediated mRNA expression in lymphocytes may serve as surrogate biomarkers. The PK-PD IDR model simultaneously linking the plasma concentrations of SFN and the PD response of lymphocyte mRNA expression is

  7. The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine.

    PubMed

    Boojar, Massod Mashhadi Akbar; Goodarzi, Faranak

    2007-05-01

    This study was undertaken to identify the strategies and the status of antioxidant enzyme activities involved in three plant species tolerance against Cu-toxicity in copper mine. The following methods were used for evaluations in three wild type species; Datura stramonium, Malva sylvestris and Chenopodium ambrosioides. The level of chlorophyll and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) by spectrometry, malondialdehyde (MDA) and dityrosine by HPLC and the levels of Cu in tissues and soils by atomic absorption spectrometry (AAS). Analysis showed that total and available copper were at toxic levels for plants growing on contaminated soil (zone 1). However, there were not any visual and conspicuous symptoms of Cu toxicity in plant species. Among three species, excess copper was transferred only into the D. stramonium and C. ambrosioides tissues. The C. ambrosioides accumulated Cu in roots and then in leaves, in which the leaves chloroplasts stored Cu around two times of vacuoles. In D. stramonium most of Cu was accumulated in leaves in which the storage rate in vacuoles and chloroplasts were 42% and 8%, respectively. In zone 1, the chlorophyll levels increased significantly in leaves of C. ambrosioides with respect to the same plant growing on uncontaminated soil (zone 2). There was insignificant decrease in chlorophyll content of D. stramonium leaves, collected from zone 1 with respect to zone 2. The D. stramonium and C. ambrosioides in zone 1, both revealed significant increase in their tissues antioxidant enzyme activities in comparison with the same samples of zone 2. There was significant elevation in oxidative damage biomarkers; MDA and dityrosine, when the aerial parts of D. stramonium in zone 1 were compared with the same parts of zone 2. We concluded that there were different tolerance strategies in studied plant species that protected them against copper toxicity. In M. sylvestris, exclusion of Cu from

  8. Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers1

    PubMed Central

    Liu, Z. H.; Lu, L.; Wang, R. L.; Lei, H. L.; Li, S. F.; Zhang, L. Y.; Luo, X. G.

    2015-01-01

    The objective of the present study was to investigate the effects of dietary supplemental Zinc (Zn) source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Dietary treatments included the Zn-unsupplemented corn-soybean meal basal diet (control) and basal diets supplemented with 60, 120, or 180 mg Zn/kg as Zn sulfate, Zn amino acid chelate with a weak chelation strength of 6.5 quotient of formation (Qf) (11.93% Zn) (Zn-AA W), Zn proteinate with a moderate chelation strength of 30.7 Qf (13.27% Zn) (Zn-Pro M), or Zn proteinate with an extremely strong chelation strength of 944.0 Qf (18.61% Zn) (Zn-Pro S). The results showed that dietary supplemental Zn increased (P < 0.01) Zn contents in the liver, breast, and thigh muscles of broilers, and up-regulated mRNA expressions of copper and Zn containing superoxide dismutase (CuZnSOD) and metallothioneins (MT) in the liver (P < 0.01) and thigh muscle (P < 0.05), and also enhanced (P < 0.05) CuZnSOD activities in the breast and thigh muscles, which exerted antioxidant ability and a decreased malondialdehyde (MDA) level in the liver (P < 0.01) and breast and thigh muscles (P < 0.05) of broilers. Furthermore, supplemental Zn increased activities of malate dehydrogenase (MDH) and lipoprotein lipase (LPL) in the abdominal fat (P < 0.05), and fatty acid synthetase (FAS) and LPL in the liver (P < 0.01), which were accompanied with up-regulation (P < 0.01) of the mRNA expressions levels of these enzymes in the abdominal fat and liver of broilers. Dietary Zn source, and an interaction between Zn source and level, had no effects on any measurements. It is concluded that dietary Zn supplementation improved Zn status and resulted in promoting antioxidant ability and activities and gene expressions of fat metabolism-related enzymes of broilers regardless of Zn source and level, and the addition of 60 mg Zn/kg to the corn-soybean meal basal diet (a total dietary Zn of approximately 90 mg

  9. Optimization, Composition, and Antioxidant Activities of Exo- and Intracellular Polysaccharides in Submerged Culture of Cordyceps gracilis (Grev.) Durieu & Mont.

    PubMed

    Sharma, Sapan Kumar; Gautam, Nandini; Atri, Narender Singh

    2015-01-01

    Under present experiments, EPS and IPS production, monosaccharide composition, and antioxidant activities of C. gracilis were studied for the first time under submerged culture conditions. Effect of different factors on polysaccharides production was studied by orthogonal experiments using one-factor-at-a-time method. Incubation of culture in the medium with capacity 200 mL (675.12 ± 5.01 and 385.20 ± 5.01 mg/L), rotation speed 150 rpm (324.62 ± 3.32 and 254.62 ± 4.62 mg/L), 6-day culture incubation time (445.24 ± 1.11, 216.60 ± 1.71 mg/L), pH 6.0 (374.81 ± 2.52 and 219.45 ± 2.59 mg/L), and temperature 23°C (405.24 ± 1.11 and 215.60 ± 1.71 mg/L) produced higher EPS and IPS, respectively. Maximum EPS and IPS production was observed in the medium supplemented with glucose as a carbon source (464.82 ± 2.12 and 264.42 ± 2.62 mg/L) and yeast extract as a nitrogen source (465.21 ± 3.11 and 245.17 ± 3.24 mg/L), respectively. Carbon to nitrogen ratio for maximum EPS and IPS production was observed as 10 : 1 (395.29 ± 2.15 and 235.62 ± 1.40 mg/L), respectively. Glucose was found to be the major monosaccharide (62.15 ± 7.33%). Both EPS and IPS of C. gracilis showed significant DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power, and iron chelating activity. PMID:25878715

  10. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants.

    PubMed

    Usta, Julnar; Hachem, Yassmine; El-Rifai, Omar; Bou-Moughlabey, Yolla; Echtay, Karim; Griffiths, David; Nakkash-Chmaisse, Hania; Makki, Rajaa Fakhoury

    2013-02-01

    We investigate in this study the biochemical effects on cells in culture of two commonly used fragrance chemicals: lyral and lilial. Whereas both chemicals exerted a significant effect on primary keratinocyte(s), HaCat cells, no effect was obtained with any of HepG2, Hek293, Caco2, NIH3T3, and MCF7 cells. Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Lipoic acid protected HaCat cells against the decrease in viability induced by either compound. Dehydrogenation of lyral and lilial produce α,β-unsaturated aldehydes, that reacts with lipoic acid requiring proteins resulting in their inhibition. We propose lyral and lilial as toxic to mitochondria that have a direct effect on electron transport chain, increase ROS production, derange mitochondrial membrane potential, and decrease cellular ATP level, leading thus to cell death. PMID:22940465

  11. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum ‘Bugwang'

    PubMed Central

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression. PMID:27088085

  12. Effect of the Antihypertensive Drug Enalapril on Oxidative Stress Markers and Antioxidant Enzymes in Kidney of Spontaneously Hypertensive Rat

    PubMed Central

    Chandran, G.; Sirajudeen, K. N. S.; Swamy, M.; Samarendra, Mutum S.

    2014-01-01

    Oxidative stress has been suggested to play a role in hypertension and hypertension induced organ damage. This study examined the effect of enalapril, an antihypertensive drug, on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat (SHR) and Nω -nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups (SHR, SHR+enalapril, SHR+L-NAME, and SHR+enalapril+L-NAME). Enalapril (30 mg kg−1 day−1) was administered from week 4 to week 28 and L-NAME (25 mg kg−1 day−1) was administered from week 16 to week 28 in drinking water. Systolic blood pressure (SBP) was measured during the experimental period. At the end of experimental periods, rats were sacrificed; urine, blood, and kidneys were collected for the assessment of creatinine clearance, total protein, total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and catalase (CAT), as well as histopathological examination. Enalapril treatment significantly enhanced the renal TAS level (P < 0.001) and SOD activity (P < 0.001), reduced the TBARS levels (P < 0.001), and also prevented the renal dysfunction and histopathological changes. The results indicate that, besides its hypotensive and renoprotective effects, enalapril treatment also diminishes oxidative stress in the kidneys of both the SHR and SHR+L-NAME groups. PMID:25254079

  13. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum 'Bugwang'.

    PubMed

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Muneer, Sowbiya; Ko, Chung Ho; Jeong, Byoung Ryong

    2016-01-01

    Silicon- (Si-) induced salinity stress resistance was demonstrated at physiological and proteomic levels in Capsicum annuum for the first time. Seedlings of C. annuum were hydroponically treated with NaCl (50 mM) with or without Si (1.8 mM) for 15 days. The results illustrated that saline conditions significantly reduced plant growth and biomass and photosynthetic parameters and increased the electrolyte leakage potential, lipid peroxidation, and hydrogen peroxide level. However, supplementation of Si allowed the plants to recover from salinity stress by improving their physiology and photosynthesis. During salinity stress, Si prevented oxidative damage by increasing the activities of antioxidant enzymes. Furthermore, Si supplementation recovered the nutrient imbalance that had occurred during salinity stress. Additionally, proteomic analysis by two-dimensional gel electrophoresis (2DE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) revealed that Si treatment upregulated the accumulation of proteins involved in several metabolic processes, particularly those associated with nucleotide binding and transferase activity. Moreover, Si modulated the expression of vital proteins involved in ubiquitin-mediated nucleosome pathway and carbohydrate metabolism. Overall, the results illustrate that Si application induced resistance against salinity stress in C. annuum by regulating the physiology, antioxidant metabolism, and protein expression. PMID:27088085

  14. Effects of Single Exposure of Sodium Fluoride on Lipid Peroxidation and Antioxidant Enzymes in Salivary Glands of Rats

    PubMed Central

    Yamaguti, Paula Mochidome; Simões, Alyne; Ganzerla, Emily; Souza, Douglas Nesadal; Nogueira, Fernando Neves; Nicolau, José

    2013-01-01

    Many studies suggest that fluoride exposure can inhibit the activity of various enzymes and can generate free radicals, which interfere with antioxidant defence mechanisms in living systems. To further the understanding of this issue, this present study examined the effects of low-dose fluoride treatment on the activity of enzymatic antioxidant superoxide dismutase (SOD) and catalase (CAT), as well as the levels of lipid peroxidation (LPO) in the parotid (PA) and submandibular (SM) salivary glands of rats. Rats were injected with a single dose of sodium fluoride (NaF) (15 mg F−/kg b.w.) then euthanized at various time intervals up to 24 hours (h) following exposure. NaF exposure did not cause significant differences in SOD or CAT activity or LPO levels in PA glands compared to control. Conversely, SM glands presented increased SOD activity after 3 h and decreased SOD activity after 1, 12, and 24 h, while LPO was increased after 6, 12, and 24 h of the NaF injection. There were no significant differences in the CAT activity in the groups studied. Our results demonstrated that NaF intoxication caused oxidative stress in salivary glands few hours after administration. These changes were more pronounced in SM than in PA gland. PMID:23738039

  15. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris.

    PubMed

    Shen, Yu-Feng; Liu, Lei; Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Wang, Gao-Xue

    2014-05-01

    This study investigated the effects of trifloxystrobin that one strobilurin used widely in the world as an effective fungicidal agent to control Asian soybean rust on aquatic unicellular algae Chlorella vulgaris. We determined the potential toxic effect of trifloxystrobin on C. vulgaris, and found median inhibition concentration (IC(50)) value 255.58 (95% confidence interval, 207.81-330.29)μgL(-1). In addition, the algal cells were obviously depressed or shrunk at different concentrations by electron microscopy. In the study, a real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL, and one energy gene, ATPs. The results showed that trifloxystrobin reduced the transcript abundances of the three genes and enhanced expression of ATPs after 48 and 96 h. The lowest abundances of psaB, psbC and rbcL transcripts in response to trifloxystrobin exposure were 58%, 79% and 60% of those of the control, respectively. For the potential toxic influences, trifloxystrobin could decrease the soluble protein and total antioxidant contents (T-AOC), and increase superoxide dismutase (SOD) and peroxidase (POD) activity with a gradual concentration-response relationship. Overall, the present study demonstrated that trifloxystrobin could affect the activities of antioxidant enzymes, disrupts photosynthesis in C. vulgaris, and damage cellular structure. PMID:24762415

  16. Studies on the potential antioxidant properties of Senecio stabianus Lacaita (Asteraceae) and its inhibitory activity against carbohydrate-hydrolysing enzymes.

    PubMed

    Tundis, Rosa; Menichini, Federica; Loizzo, Monica R; Bonesi, Marco; Solimene, Umberto; Menichini, Francesco

    2012-01-01

    This study showed for the first time the antioxidant and hypoglycaemic properties of the methanol, n-hexane and ethyl acetate extracts from Senecio stabianus Lacaita, a plant that belongs to the Asteraceae family. The antioxidant activities were carried out using two different in vitro assays, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) test and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonate) (ABTS) test. The ethyl acetate extract showed the highest activity with inhibitory concentration 50% (IC(50)) values of 35.5 and 32.7 µg mL(-1) on DPPH test and ABTS test, respectively. This activity may be related to a good total phenol and flavonoid content. All extracts were also tested for their potential inhibitory activity of α-amylase and α-glucosidase digestive enzymes. The n-hexane extract exhibited the highest α-amylase inhibition with an IC(50) value of 0.21 mg mL(-1). Through bioassay-guided fractionation processes seven fractions (A-G) were obtained and tested. Based on the phytochemical analysis, the activity of n-hexane extract may be related to the presence of monoterpenes and sesquiterpenes. PMID:21644170

  17. Angiotensin-converting enzyme inhibitory activity and antioxidant properties of Nepeta crassifolia Boiss & Buhse and Nepeta binaludensis Jamzad.

    PubMed

    Tundis, Rosa; Nadjafi, Farsad; Menichini, Francesco

    2013-04-01

    This article reports phytochemical and biological studies on Nepeta binaludensis and Nepeta crassifolia. Both species were investigated for their angiotensin-converting enzyme (ACE) inhibitory activity and antioxidant properties through three in vitro models [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assay]. Aerial parts were extracted with methanol and partitioned between water and subsequently n-hexane, ethyl acetate and n-butanol. N. binaludensis methanol extract exerted significantly higher reducing power (1.9 μM Fe(II)/g) than did the positive control butylhydroxytoluene (63.2 μM Fe(II)/g) in FRAP assay. The highest DPPH radical scavenging activity was found for N. crassifolia, with IC50 values of 9.6 and 12.1 µg/mL for ethyl acetate and n-butanol fractions, respectively. n-Butanol fraction of both species showed the highest ACE inhibitory activity, with IC50 values of 59.3 and 81.7 µg/mL for N. binaludensis and N. crassifolia, respectively. Phytochemical investigations resulted in the isolation of ursolic acid, oleanolic acid, apigenin, luteolin and ixoroside. Apigenin-7-O-glucoside, 8-hydroxycirsimaritin and cirsimaritin were furthermore identified in N. crassifolia ethyl acetate-soluble fraction. Nepetanudoside B was isolated from the n-butanol fraction of N. binaludensis. PMID:22693035

  18. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  19. Quercetin protects primary human osteoblasts exposed to cigarette smoke through activation of the antioxidative enzymes HO-1 and SOD-1.

    PubMed

    Braun, Karl F; Ehnert, Sabrina; Freude, Thomas; Egaña, José T; Schenck, Thilo L; Buchholz, Arne; Schmitt, Andreas; Siebenlist, Sebastian; Schyschka, Lilianna; Neumaier, Markus; Stöckle, Ulrich; Nussler, Andreas K

    2011-01-01

    Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS). The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM) rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO-) 1 and superoxide-dismutase- (SOD-) 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers. PMID:22203790

  20. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae.

    PubMed

    Schmidt, Cristiano G; Gonçalves, Letícia M; Prietto, Luciana; Hackbart, Helen S; Furlong, Eliana B

    2014-03-01

    The solid-state fermentation (SSF) has been employed as a form making available a higher content of functional compounds from agroindustrial wastes. In this work, the effect of SSF with the Rhizopus oryzae fungus on the phenolic acid content of rice bran was studied. Phenolic extracts derived from rice bran and fermented rice bran were evaluated for their ability to reduce free radical 1,1-diphenyl-2-picrihidrazil (DPPH) and for the ability to inhibit the enzymes peroxidase and polyphenol oxidase. The phenolic compound content increased by more than two times with fermentation. A change in the content of phenolic acids was observed, with ferulic acid presenting the greatest increase with the fermentation, starting from 33μg/g in rice bran and reaching 765μg/g in the fermented bran. [corrected]. The phenolic extracts showed an inhibition potential for DPPH and for the peroxidase enzyme, however did not inhibit the polyphenol oxidase enzyme. PMID:24176356

  1. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle.

    PubMed

    White, S H; Johnson, S E; Bobel, J M; Warren, L K

    2016-07-01

    Untrained Thoroughbred horses (6 mares and 6 geldings; 11 yr [SE 1] and 565 kg [SE 11]) were used to evaluate antioxidant gene expression and enzyme activity in blood and skeletal muscle in response to prolonged exercise after receiving 2 levels of dietary selenium for 36 d: 0.1 (CON; = 6) or 0.3 mg/kg DM (SEL; = 6). Horses were individually fed 1.6% BW coastal bermudagrass hay, 0.4% BW whole oats, and a mineral/vitamin premix containing no Se. Sodium selenite was added to achieve either 0.1 or 0.3 mg Se/kg DM in the total diet. On d 35, horses underwent 2 h of submaximal exercise in a free-stall exerciser. Blood samples were obtained before (d 0) and after 34 d of Se supplementation and on d 35 to 36 immediately after exercise and at 6 and 24 h after exercise. Biopsies of the middle gluteal muscle were obtained on d 0, before exercise on d 34, and at 6 and 24 h after exercise. Supplementation with Se above the NRC requirement (SEL) increased serum Se ( = 0.011) and muscle thioredoxin reductase (TrxR) activity ( = 0.051) but had no effect on glutathione peroxidase (GPx) activity in plasma, red blood cell (RBC) lysate, or muscle in horses at rest. Serum creatine kinase activity increased ( < 0.0001) in response to prolonged exercise but was not affected by dietary treatment. Serum lipid hydroperoxides were affected by treatment ( = 0.052) and were higher ( = 0.012) in horses receiving CON than SEL immediately following exercise. Muscle expression of was unchanged at 6 h but increased ( = 0.005) 2.8-fold 24 h after exercise, whereas muscle TrxR activity remained unchanged. Glutathione peroxidase activity increased in plasma (P < 0.0001) and decreased in RBC lysate ( = 0.010) after prolonged exercise. A Se treatment × time interaction was observed for RBC GPx activity (P = 0.048). Muscle and expression and GPx activity did not change during the 24-h period after exercise. Level of dietary Se had no overall effect on expression of , , , , , , or in muscle following

  2. Short communication: Effect of casein haplotype on angiotensin-converting enzyme inhibitory and antioxidant capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes.

    PubMed

    Perna, Annamaria; Simonetti, Amalia; Gambacorta, Emilio

    2016-09-01

    The aim of this work was to investigate the effect of casein haplotype (αS1, β, and κ) on antioxidative and angiotensin-converting enzyme (ACE) inhibitory capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes. The antioxidant capacity was measured using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power assays, whereas ACE inhibition was determined by ACE-inhibitory assay. The ACE-inhibitory and antioxidant capacities of milk casein increased during in vitro gastrointestinal digestion. Casein haplotype significantly influenced the antioxidative and ACE-inhibitory capacities of digested casein. In particular, BB-A(2)A(1)-AA casein and BB-A(1)A(1)-AA casein showed the highest ACE-inhibitory capacity, BB-A(2)A(2)-AA casein showed the highest antioxidant capacity, whereas BB-A(2)A(2)-BB casein showed the lowest biological capacity. To date, few studies have been done on the effect of casein haplotype on biological capacity of milk casein, thus the present study sets the basis for a new knowledge that could lead to the production of milk with better nutraceutical properties. PMID:27289148

  3. Effect of different methods of hypoxic exercise training on free radical oxidation and antioxidant enzyme activity in the rat brain.

    PubMed

    Li, Jie; Wang, Yuxia

    2013-11-01

    The effects of different modes of hypoxic exercise training on free radical production and antioxidant enzyme activity in the brain of rats were investigated in this study. A total of 40 healthy 2-month-old male Wister rats were randomly assigned to 5 groups according to different training modes. Endurance training sessions were performed for 5 weeks under different normoxic (atmospheric pressure ~632 mmHg, altitude ~1,500 m) and hypoxic conditions (atmospheric pressure ~493 mmHg, altitude ~3,500 m) at the same relative intensity. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activity and the malondialdehyde (MDA) content of the brain were evaluated by spectrophotometric analysis. Compared to the low-training low (LL) group, the SOD activity was significantly increased by 68.73, 54.28 and 304.02% in the high-training high (HH), high-training low (HL) and high-exercise high-training low (HHL) groups, respectively. However, no obvious change was observed for the low-training high (LH) group. In comparison to the LL group, the GSH-Px activity was found to be significantly higher in the HH, HL, LH and HHL groups. Similarly, in comparison to the LL group, the CAT activity exhibited a significant increase in the HH, HL, LH and HHL groups. Compared to the LL group, the MDA content was significantly increased in the HH, HL and HHL groups, although no significant difference was detected for the LH group. Following exhaustive exercise, the antioxidant enzyme activities in the rat brains were immediately improved in all the hypoxia modes. Moreover, the free radical production was increased after all the modes of hypoxic exercise training, with the LH mode being the only exception. PMID:24649054

  4. Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles.

    PubMed

    Chang, Chen-Kang; Huang, Hui-Yu; Tseng, Hung-Fu; Hsuuw, Yan-Der; Tso, Tim K

    2007-01-01

    It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress. PMID:16644199

  5. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange

    PubMed Central

    Huang, Yong-Ming; Srivastava, A. K.; Zou, Ying-Ning; Ni, Qiu-Dan; Han, Yu; Wu, Qiang-Sheng

    2014-01-01

    Trifoliate orange [Poncirus trifoliata (L) Raf.] is considered highly arbuscular mycorrhizal (AM) dependent for growth responses through a series of signal transductions in form of various physiological responses. The proposed study was carried out to evaluate the effect of an AM fungus (Funneliformis mosseae) on growth, antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD) activities, leaf relative water content (RWC), calmodulin (CaM), superoxide anion (O2•−), and hydrogen peroxide (H2O2) concentrations in leaves of the plants exposed to both well-watered (WW) and drought stress (DS) conditions. A 58-day of DS significantly decreased mycorrhizal colonization by 60% than WW. Compared to non-AM seedlings, AM seedlings displayed significantly higher shoot morphological properties (plant height, stem diameter, and leaf number), biomass production (shoot and root fresh weight) and leaf RWC, regardless of soil water status. AM inoculation significantly increased CaM and soluble protein concentrations and CAT activity, whereas significantly decreased O2•− and H2O2 concentration under both WW and DS conditions. The AM seedlings also exhibited significantly higher Cu/Zn-SOD and Mn-SOD activities than the non-AM seedlings under DS but not under WW, which are triggered by higher CaM levels in AM plants on the basis of correlation studies. Further, the negative correlation of Cu/Zn-SOD and Mn-SOD activities with O2•− and H2O2 concentration showed the DS-induced ROS scavenging ability of CaM mediated SODs under mycorrhization. Our results demonstrated that AM-inoculation elevated the synthesis of CaM in leaves and up-regulated activities of the antioxidant enzymes, thereby, repairing the possible oxidative damage to plants by lowering the ROS accumulation under DS condition. PMID:25538696

  6. Amendment in phosphorus levels moderate the chromium toxicity in Raphanus sativus L. as assayed by antioxidant enzymes activities.

    PubMed

    Sayantan, D; Shardendu

    2013-09-01

    Chromium (Z=24), a d-block element, is a potent carcinogen, whereas phosphorus is an essential and limiting nutrient for the plant growth and development. This study undertakes the role of phosphorus in moderating the chromium toxicity in Raphanus sativus L., as both of them compete with each other during the uptake process. Two-factor complete randomized experiment (5 chromium × 5 phosphorus concentrations) was conducted for twenty eight days in green house. The individuals of R. sativus were grown in pots supplied with all essential nutrients. The toxic effects of chromium and the moderation of toxicity due to phosphorus amendment were determined as accumulation of chromium, nitrogen, phosphorus in root tissues and their effects were also examined in the changes in biomass, chlorophyll and antioxidant enzyme levels. Cr and N accumulation were almost doubled at the highest concentration of Cr supply, without any P amendment, whereas at the highest P concentration (125 mM), the accumulation was reduced to almost half. A significant reduction in toxic effects of Cr was determined as there was three-fold increase in total chlorophyll and biomass at the highest P amendment. Antioxidant enzymes like superoxide dismutase, catalase, peroxidase and lipid peroxidation were analyzed at various levels of Cr each amended with five levels of P. It was observed that at highest level of P amendment, the reduction percentage in toxicity was 33, 44, 39 and 44, correspondingly. Conclusively, the phosphorus amendment moderates the toxicity caused by the supplied chromium in R. sativus. This finding can be utilized to develop a novel technology for the amelioration of chromium stressed fields. PMID:23810367

  7. Respiratory Burst Enzymes, Pro-Oxidants and Antioxidants Status in Bangladeshi Population with β-Thalassemia Major

    PubMed Central

    Hossain, Md. Faruk; Ismail, Md.; Tanu, Arifur Rahman; Shekhar, Hossain Uddin

    2015-01-01

    Background: Oxidative stress is intimately associated with many diseases, including β-thalassemia. Aim: The study was to estimate the status of respiratory burst enzymes, pro-oxidants, and antioxidants in β-thalassemia major patients in Bangladesh and to compare with apparently healthy individuals. Materials and Methods: A total of 49 subjects were recruited which included 25 patients (age range 5 to 40 years) with β-thalassemia major and 24 controls (age and sex matched). Superoxide dismutase (SOD) and catalase (CAT) represented respiratory burst enzymes; malondialdehyde (MDA), lipid hydroperoxide (LHP), and xanthine oxidase (XO) were measured as pro-oxidants; and glutathione S transferase (GST), vitamin C (Vit.C), and glutathione (GSH) were the measured antioxidants. Results: The activity of SOD was significantly (P < 0.001) increased by about 79% and the activity of CAT was significantly (P < 0.001) decreased by more than 34% in the blood of β-thalassemia major patients compared to the control group. The content of pro-oxidants such as MDA, LHP, and XO was significantly (P < 0.001) higher in patients by about 228%, 241.3% and 148.1% respectively compared to control group. The level of GSH and Vit.C were significantly (P = 0.000) decreased in patients by about 59% and 81% versus the healthy group, respectively; and GST activity was significantly (P < 0.001) declined by 44.25% in patients group. Conclusion: β-thalassemia major patients demonstrate raised oxidative stress compared to healthy subjects. PMID:26199921

  8. Effect of selenium pre-treatment on antioxidative enzymes and lipid peroxidation in Cd-exposed suckling rats.

    PubMed

    Lazarus, Maja; Orct, Tatjana; Aladrović, Jasna; Ljubić, Blanka Beer; Jurasović, Jasna; Blanuša, Maja

    2011-09-01

    Since there are no data about the protective role of selenium (Se) against cadmium (Cd)-induced oxidative damage in early life, we studied the effect of Se supplementation on antioxidative enzyme activity and lipid peroxidation (through thiobarbituric acid reactive substances; TBARS) in suckling Wistar rats exposed to Cd. Treated animals received either Se alone for 9 days (8 μmol, i.e., 0.6 mg Se as Na(2)SeO(3) kg(-1) b.w., daily, orally; Se group), Cd alone for 5 days (8 μmol, i.e., 0.9 mg Cd as CdCl(2) kg(-1) b.w., daily, orally; Cd group), or pre-treatment with Se for 4 days and then co-treatment with Cd for the following 5 days (Se + Cd group). Our results showed that selenium supplementation, with and without Cd, increased SOD activity in the brain and kidney, but not in the liver and GSH-Px activity across all tissues compared to control rats receiving distilled water. Relative to the Cd group, Se + Cd group had higher kidney and brain SOD and GSH-Px activity (but not the liver), while in the liver caused increased and in the brain decreased TBARS level. These results suggest that Se stimulates antioxidative enzymes in immature kidney and brain of Cd-exposed rats and could protect against oxidative damage. PMID:20652648

  9. Effect of sodium chloride and cadmium on the growth, oxidative stress and antioxidant enzyme activities of Zygosaccharomyces rouxii

    NASA Astrophysics Data System (ADS)

    Li, Chunsheng; Xu, Ying; Jiang, Wei; Lv, Xin; Dong, Xiaoyan

    2014-06-01

    Zygosaccharomyces rouxii is a salt-tolerant yeast species capable of removing cadmium (Cd) pollutant from aqueous solution. Presently, the physiological characteristics of Z. rouxii under the stress of sodium chloride (NaCl) and Cd are poorly understood. This study investigated the effects of NaCl and Cd on the growth, oxidative stress and antioxidant enzyme activities of Z. rouxii after stress treatment for 24 h. Results showed that NaCl or Cd alone negatively affected the growth of Z. rouxii, but the growth-inhibiting effect of Cd on Z. rouxii was reduced in the presence of NaCl. Flow cytometry assay showed that under Cd stress, NaCl significantly reduced the production of reactive oxygen species (ROS) and cell death of Z. rouxii compared with those in the absence of NaCl. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) of Z. rouxii were significantly enhanced by 2%-6% NaCl, which likely contributed to the high salt tolerance of Z. rouxii. The POD activity was inhibited by 20 mg L-1 Cd while the SOD and CAT activities were enhanced by 8 mg L-1 Cd and inhibited by 20 mg L-1 or 50 mg L-1 Cd. The inhibitory effect of high-level Cd on the antioxidant enzyme activities of Z. rouxii was counteracted by the combined use of NaCl, especially at 6%. This probably accounted for the decrease in Cd-induced ROS production and cell death of Z. rouxii after incubation with NaCl and Cd. Our work provided physiological clues as to the use of Z. rouxii as a biosorbent for Cd removal from seawater and liquid highly salty food.

  10. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange.

    PubMed

    Huang, Yong-Ming; Srivastava, A K; Zou, Ying-Ning; Ni, Qiu-Dan; Han, Yu; Wu, Qiang-Sheng

    2014-01-01

    Trifoliate orange [Poncirus trifoliata (L) Raf.] is considered highly arbuscular mycorrhizal (AM) dependent for growth responses through a series of signal transductions in form of various physiological responses. The proposed study was carried out to evaluate the effect of an AM fungus (Funneliformis mosseae) on growth, antioxidant enzyme (catalase, CAT; superoxide dismutase, SOD) activities, leaf relative water content (RWC), calmodulin (CaM), superoxide anion ([Formula: see text]), and hydrogen peroxide (H2O2) concentrations in leaves of the plants exposed to both well-watered (WW) and drought stress (DS) conditions. A 58-day of DS significantly decreased mycorrhizal colonization by 60% than WW. Compared to non-AM seedlings, AM seedlings displayed significantly higher shoot morphological properties (plant height, stem diameter, and leaf number), biomass production (shoot and root fresh weight) and leaf RWC, regardless of soil water status. AM inoculation significantly increased CaM and soluble protein concentrations and CAT activity, whereas significantly decreased [Formula: see text] and H2O2 concentration under both WW and DS conditions. The AM seedlings also exhibited significantly higher Cu/Zn-SOD and Mn-SOD activities than the non-AM seedlings under DS but not under WW, which are triggered by higher CaM levels in AM plants on the basis of correlation studies. Further, the negative correlation of Cu/Zn-SOD and Mn-SOD activities with [Formula: see text] and H2O2 concentration showed the DS-induced ROS scavenging ability of CaM mediated SODs under mycorrhization. Our results demonstrated that AM-inoculation elevated the synthesis of CaM in leaves and up-regulated activities of the antioxidant enzymes, thereby, repairing the possible oxidative damage to plants by lowering the ROS accumulation under DS condition. PMID:25538696

  11. Duration of priapism is associated with increased corporal oxidative stress and antioxidant enzymes in a rat model.

    PubMed

    Kucukdurmaz, F; Kucukgergin, C; Akman, T; Salabas, E; Armagan, A; Seckin, S; Kadıoglu, A

    2016-05-01

    Ischaemic priapism is characterised by hypoxia, hypercapnia and acidosis with resultant corporal fibrosis. Studies reported decreased erectile recovery after treatment of priapism longer than 36 h. However, a recent study revealed that half of patients with 3 days of priapism achieved recovery after T-shunt, although mechanism remains unclear. We aimed to investigate the effect of priapism duration on oxidative stress and antioxidant enzymes. Twenty-four male rats were divided into four groups. Group 1 served as control. Groups 2, 3 and 4 represented 1, 2 and 4 h, respectively, of priapism induced by vacuum device and rubber band placed at base of erect penis. After 30 min of reperfusion, penectomy and blood withdrawal were performed to investigate levels of malondialdehyde (MDA), protein carbonyl (PC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx). Corporal MDA progressively increased with priapism duration (P = 0.01). Corporal SOD significantly differed between groups 1, 2 and 4. Also, there were significant differences in corporal GPx in groups 1 and 4 (P = 0.004) and groups 2 and 4 (P = 0.01). Corporal CAT was higher in group 4, but multivariable analysis revealed insignificant differences. Plasma MDA of the experimental groups was significantly higher than that of controls. There were no differences among groups in terms of other parameters. Increased antioxidant enzymes according to duration of priapism suggest that immediate treatment to relieve oxidative stress should be initiated in prolonged cases. However, further studies should be conducted to determine resistance mechanisms of the corpora to prolonged ischaemia. PMID:26223151

  12. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.

    PubMed

    Zhang, Weiguo; Liu, Min; Zhang, Peiliang; Yu, Fugen; Lu, Shan; Li, Pengfu; Zhou, Junying

    2014-11-01

    Only limited information is available on herbicide toxicity to algae under mixotrophic conditions. In the present study, we studied the effects of the herbicide paraquat on growth, photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. The mean measured exposure concentrations of paraquat under mixotrophic and autotrophic conditions were in the range of 0.3-3.4 and 0.6-3.6 μM, respectively. Exposure to paraquat for 72 h under both autotrophic and mixotrophic conditions induced decreased growth and chlorophyll (Chl) content, increased superoxide dismutase and peroxidase activities, and decreased transcript abundances of three photosynthesis-related genes (light-independent protochlorophyllide reductase subunit, photosystem II protein D1, and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [rbcL]). Compared with autotrophic conditions, the inhibition percentage of growth rate under mixotrophic conditions was lower at 0.8 μM paraquat, whereas it was greater at 1.8 and 3.4 μM paraquat. With exposure to 0.8-3.4 μM paraquat, the inhibition rates of Chl a and b content under mixotrophic conditions (43.1-52.4% and 54.6-59.7%, respectively) were greater compared with autotrophic conditions, whereas the inhibition rate of rbcL gene transcription under mixotrophic conditions (35.7-44.0%) was lower. These data showed that similar to autotrophic conditions, paraquat affected the activities of antioxidant enzymes and decreased Chl synthesis and transcription of photosynthesis-related genes in C. pyrenoidosa under mixotrophic conditions, but a differential susceptibility to paraquat toxicity occurred between autotrophically versus mixotrophically grown cells. PMID:25038722

  13. Three antagonistic cyclic di-GMP-catabolizing enzymes promote differential Dot/Icm effector delivery and intracellular survival at the early steps of Legionella pneumophila infection.

    PubMed

    Allombert, Julie; Lazzaroni, Jean-Claude; Baïlo, Nathalie; Gilbert, Christophe; Charpentier, Xavier; Doublet, Patricia; Vianney, Anne

    2014-03-01

    Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole. PMID:24379287

  14. Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media.

    PubMed

    Adrees, Muhammad; Ali, Shafaqat; Iqbal, Muhammad; Aslam Bharwana, Saima; Siddiqi, Zeenat; Farid, Mujahid; Ali, Qasim; Saeed, Rashid; Rizwan, Muhammad

    2015-12-01

    Chromium (Cr) is one of the most phytotoxic metals in the agricultural soils and its concentration is continuously increasing mainly through anthropogenic activities. Little is known on the role of mannitol (M) on plant growth and physiology under metal stress. The aim of this study was to investigate the mechanism of growth amelioration and antioxidant enzyme activities in Cr-stressed wheat (Triticum aestivum L. cv. Lasani 2008) by exogenously applied mannitol. For this, wheat seedlings were sown in pots containing soil or sand and subjected to increasing Cr concentration (0, 0.25 and 0.5mM) in the form of of K2Cr2O7 with and without foliar application of 100mM mannitol. Plants were harvested after four months and data regarding growth characteristics, biomass, photosynthetic pigments, and antioxidant enzymes were recorded. Mannitol application increased plant biomass, photosynthetic pigments and antioxidant enzymes while decreased Cr uptake and accumulation in plants as compared to Cr treatments alone. In this study, we observed that M applied exogenously to Cr-stressed wheat plants, which normally cannot synthesize M, improved their Cr tolerance by increasing growth, photosynthetic pigments and enhancing activities of antioxidant enzymes and by decreasing Cr uptake and translocation in wheat plants. From this study, it can be concluded that M could be used to grow crops on marginally contaminated soils for which separate remediation techniques are time consuming and not cost effective. PMID:26164268

  15. Oxidative stability and antioxidant enzyme activities of dry-cured bacons as affected by the partial substitution of NaCl with KCl.

    PubMed

    Wu, Haizhou; Yan, Wenjing; Zhuang, Hong; Huang, Mingming; Zhao, Jianying; Zhang, Jianhao

    2016-06-15

    This study investigated the influence of partial substitution of NaCl with KCl on protein and lipid oxidation as well as antioxidant enzyme activities in dry-cured bacons during processing. The partial substitution was 0% KCl (I), 40% KCl (II), and 70% KCl (III). Compared with 0% KCl (I), the substitution of 40% NaCl with KCl did not significantly influence the protein and lipid oxidation and antioxidant enzyme activities. The bacons that were treated with 70% KCl treatment (III) showed increased lipid oxidation and antioxidant enzyme GSH-Px activity, whereas samples treated with formulas I and II showed higher protein oxidation and antioxidant enzyme catalase activity. These results demonstrate that the substitution of NaCl with KCl by more than 40% may significantly affect protein and lipid oxidation and that for the substitution of NaCl in further processed meat products with other chloride salts, salt content is very important for control of protein and lipid biochemical changes in finished products. PMID:26868571

  16. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    PubMed Central

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  17. Blood glutathione status and activity of glutathione-metabolizing antioxidant enzymes in erythrocytes of young trotters in basic training.

    PubMed

    Janiak, M; Suska, M; Dudzińska, W; Skotnicka, E

    2010-04-01

    The aim of this study was to evaluate response of blood glutathione status and activity of glutathione-metabolizing antioxidant enzymes in erythrocytes of young trotters in basic training. Nine untrained trotters (aged 16-20 months) were exposed to a 4-month training program based on exercises at low-to-moderate intensity. The conditioning consisted of breaking the horses and running them on distances varying from 4 to 40 km a week. The workloads were increased on a 3-week basis. Exercise intensity was monitored by measuring heart rate and blood lactate. Blood samples were collected at rest, before (RES0) and after (RESt) the conditioning period; moreover, on the latter occasion (on day 112 of training), the blood was also taken immediately after the routine exercise (EXE0) and 60 min thereafter (EXE60). The whole blood samples were analysed for the concentration of reduced, oxidized and total glutathione (GSH, GSSG and TGSH, respectively), while the activities of glutathione peroxidase (GPX) and glutathione-disulfide reductase (GR) were determined in haemolysates. Additionally, the erythrocytic concentrations of oxidized nicotinamide adenine dinucleotide (NAD(+)) and its phosphate (NADP(+)) were measured. All investigated parameters except NAD(+) and reduced/oxidized glutathione ratio (GSH/GSSG) changed during the training period. Following the effortm GPX, NADP(+) and GSH/GSSG were significantly lower (p < 0.05, p < 0.01, p < 0.001, respectively) while GSSG was markedly higher than at rest (RESt). The drop in NADP(+), low GSH/GSSG and high GSSG concentration were sustained at EXE60. Glutathione-disulfide reductase activity was higher after the workout but only at EXE60 the increase in activity was significant. Despite the activities of the GSH-GSSG cycle, enzymes were considerably higher after the training period, the elevated concentration of GSSG and significantly lower GSH/GSSG ratio in the post-exercise measurements suggest that production of reactive oxygen

  18. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  19. The neem limonoids azadirachtin and nimbolide inhibit hamster cheek pouch carcinogenesis by modulating xenobiotic-metabolizing enzymes, DNA damage, antioxidants, invasion and angiogenesis.

    PubMed

    Priyadarsini, Ramamurthi Vidya; Manikandan, Palrasu; Kumar, Gurram Harish; Nagini, Siddavaram

    2009-05-01

    The neem tree has attracted considerable research attention as a rich source of limonoids that have potent antioxidant and anti-cancer properties. The present study was designed to evaluate the chemopreventive potential of the neem limonoids azadirachtin and nimbolide based on in vitro antioxidant assays and in vivo inhibitory effects on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Both azadirachtin and nimbolide exhibited concentration-dependent anti-radical scavenging activity and reductive potential in the order: nimbolide > azadirachtin > ascorbate. Administration of both azadirachtin and nimbolide inhibited the development of DMBA-induced HBP carcinomas by influencing multiple mechanisms including prevention of procarcinogen activation and oxidative DNA damage, upregulation of antioxidant and carcinogen detoxification enzymes and inhibition of tumour invasion and angiogenesis. On a comparative basis, nimbolide was found to be a more potent antioxidant and chemopreventive agent and offers promise as a candidate agent in multitargeted prevention and treatment of cancer. PMID:19391054

  20. Chemoprotective influence of Zanthoxylum sps. on hepatic carcinogen metabolizing and antioxidant enzymes and skin papillomagenesis in murine model.

    PubMed

    Rajamani, Paulraj; Banerjeet, Sanjeev; Rao, A Ramesha

    2011-11-01

    In the present study, the putative potential of pericarp of dried fruit of Zanthoxylum (Rutaceae Family), a common spice additive in India's west coast cuisines, in protecting against carcinogenesis has been reported. Extract from dried fruit of Zanthoxylum was orally administered to mice at two dose levels: 100 and 200 mg/kg body wt. for 14 days. Results reveal bifunctional nature of Zanthoxylum species as deduced from its potential to induce phase-I and phase-II enzyme activities associated with carcinogen activation and detoxification in the liver of mice. Hepatic glutathione S-transferase and DT-diaphorase were found significantly elevated by the treatment. Zanthoxylum was also effective in augmenting the antioxidant enzyme activities of glutathione peroxidase, superoxide dismutase and catalase albeit significantly by high dose of the extract (P < 0.05; P < 0.01). Reduced glutathione was also significantly elevated in the liver of treated animals (P < 0.05). The present study also investigated peri-initiation application of acetone extract of Zanthoxylum on initiated mouse skin. Results showed a significant reduction in tumor incidence from 68% to 36% (P < 0.05); as well as, a reduction in tumor burden per effective mouse from 3.87 to 0.72 (P < 0.01). Cumulatively, the findings strongly suggest cancer chemopreventive potential of Zanthoxylum sps. PMID:22126017

  1. Reactive oxygen species production and antioxidant enzyme activity during epididymal sperm maturation in Corynorhinus mexicanus bats.

    PubMed

    Arenas-Ríos, Edith; Rosado García, Adolfo; Cortés-Barberena, Edith; Königsberg, Mina; Arteaga-Silva, Marcela; Rodríguez-Tobón, Ahiezer; Fuentes-Mascorro, Gisela; León-Galván, Miguel Angel

    2016-03-01

    Prolonged sperm storage in the epididymis of Corynorhinus mexicanus bats after testicular regression has been associated with epididymal sperm maturation in the caudal region, although the precise factors linked with this phenomenon are unknown. The aim of this work is to determine the role of reactive oxygen species (ROS) and changes in antioxidant enzymatic activity occurring in the spermatozoa and epididymal fluid over time, in sperm maturation and storage in the caput, corpus and cauda of the bat epididymis. Our data showed that an increment in ROS production coincided with an increase in superoxide dismutase (SOD) activity in epididymal fluid and with a decrease in glutathione peroxidase (GPX) activity in the spermatozoa in at different time points and epididymal regions. The increase in ROS production was not associated with oxidative damage measured by lipid peroxidation. The results of the current study suggest the existence of a shift in the redox balance, which might be associated with sperm maturation and storage. PMID:26952757

  2. Nutritional, amylolytic enzymes inhibition and antioxidant properties of bread incorporated with Stevia rebaudiana.

    PubMed

    Ruiz-Ruiz, Jorge C; Moguel-Ordoñez, Yolanda B; Matus-Basto, Angel J; Segura-Campos, Maira R

    2015-01-01

    Wheat bread with sucrose content replaced with different levels of stevia extract was compared with traditional wheat bread. The ability to reduce glucose intake was highlighted by performing enzymatic assays using α-amylase and α-glucosidase. Antioxidant activity was measured by determining the scavenging effect on α,α-diphenyl-β-picrylhydrazyl radical. In comparison with the control, the bread with stevia extract was softer and had lower microbial growth during the shelf-life study. The sensory test showed that the substitution of 50% stevia extract was more acceptable when comparing with all the quality characteristics. Regarding the nutritional contribution, the content of dietary fiber and digestible carbohydrates in the bread with stevia extract was higher and lower respectively, so caloric intake was significantly reduced. The results showed that the biological properties of Stevia rebaudiana extract were retained after the bread making process and that the proposed bread could be suitable as functional food in human nutrition. PMID:26299814

  3. Heat stress and antioxidant enzyme activity in bubaline (Bubalus bubalis) oocytes during in vitro maturation.

    PubMed

    Waiz, Syma Ashraf; Raies-Ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T Sridhar; Chauhan, M S; Upadhyay, R C

    2016-09-01

    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly (P < 0.05) higher in the oocytes subjected to heat stress (40.5 and 41.5 °C) during meiotic maturation compared to the oocytes matured under standard in vitro culture conditions (38.5 °C). Also, the antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly (P < 0.05) increased in all the treatment groups compared to the control group. Therefore, the present study clearly establishes that heat stress ensues oxidative stress in bubaline oocytes which triggers the induction of antioxidant enzymatic defense system for scavenging the ROS. PMID:26781547

  4. Heat stress and antioxidant enzyme activity in bubaline (Bubalus bubalis) oocytes during in vitro maturation

    NASA Astrophysics Data System (ADS)

    Waiz, Syma Ashraf; Raies-ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T. Sridhar; Chauhan, M. S.; Upadhyay, R. C.

    2016-01-01

    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly (P < 0.05) higher in the oocytes subjected to heat stress (40.5 and 41.5 °C) during meiotic maturation compared to the oocytes matured under standard in vitro culture conditions (38.5 °C). Also, the antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly (P < 0.05) increased in all the treatment groups compared to the control group. Therefore, the present study clearly establishes that heat stress ensues oxidative stress in bubaline oocytes which triggers the induction of antioxidant enzymatic defense system for scavenging the ROS.

  5. Increased tolerance to oxidative stress in transgenic tobacco expressing a wheat oxalate oxidase gene via induction of antioxidant enzymes is mediated by H2O2.

    PubMed

    Wan, Xiaoqing; Tan, Jiali; Lu, Shaoyun; Lin, Chuyu; Hu, Yihong; Guo, Zhenfei

    2009-05-01

    Hydrogen peroxide (H(2)O(2)) plays a key role in the regulation of plant responses to various environmental stresses and modulates the expression of related genes including those encoding antioxidant enzymes. A wheat oxalate oxidase (OxO) gene was transformed and expressed in tobacco for production of H(2)O(2). The transgenic plants exhibited enhanced OxO activities and H(2)O(2) concentrations, which was blocked by inhibitors of OxO. The transgenic plants showed increased tolerance to methyl viologen (MV) or high light-induced oxidative stress in both short-time and long-time tests by measuring their maximal photochemical efficiency of PSII (F(v)/F(m)), ion leakage and malondialdehyde. Higher activities and transcripts of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) were observed in the transgenic plants compared to their wild-type controls under normal growth conditions. Pretreatments with inhibitors of OxO and scavenger of H(2)O(2) blocked the increase of tolerance to MV-induced or high light-induced oxidative stress, as well as the induction of antioxidant enzyme activities. Pretreatments with H(2)O(2) increased tolerance to oxidative stresses and antioxidant enzyme activities. It is suggested that H(2)O(2) produced by OxO in the transgenic tobacco plants triggers the signaling pathways to upregulate expressions of antioxidant enzyme genes, which in turn results in the increase of tolerance to MV-induced and high light-induced oxidative stresses. PMID:19508366

  6. Response of antioxidant enzymes to intermittent and continuous hyperbaric O sub 2

    SciTech Connect

    Harabin, A.L.; Braisted, J.C.; Flynn, E.T. )

    1990-02-26

    Rats and guinea pigs were exposed to 2.8 ATA O{sub 2} (HBO) delivered either continuously or intermittently (repeated cycles of 10 minutes 100% O{sub 2}:2.5 minutes air). The O{sub 2} time required to produce convulsions and death was increased significantly in both species by intermittency. To determine whether changes in brain and lung superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSHPx) correlated with the observed tolerance, enzyme activities were measured after short or long HBO exposures. For each exposure duration, one group received continuous and one intermittent HBO; O{sub 2} times were matched. HBO had marked effects on these enzymes: Lung SOD increased (guinea pigs 47%, rats 88%), CAT and GSHPx activities decreased (33%) in brain and lung. No differences were seen in lung GSHPx or brain CAT in rats or brain SOD of either species. In guinea pigs, but less so in rats, the observed changes in activity were usually modulated by intermittency. Increases in hematocrit, organ protein, and lung DNA, which may also reflect ongoing oxidative damage, were also slowed with intermittency in guinea pigs. Intermittency benefitted both species by postponing gross symptoms of toxicity, but its modulation of changes in enzyme activities and other biochemical variables was more pronounced in guinea pigs than in rats suggesting additional mechanisms for tolerance.

  7. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism.

    PubMed

    Kaushal, Neeru; Gupta, Kriti; Bhandhari, Kalpna; Kumar, Sanjeev; Thakur, Prince; Nayyar, Harsh

    2011-07-01

    Chickpea is a heat sensitive crop hence its potential yield is considerably reduced under high temperatures exceeding 35 °C. In the present study, we evaluated the efficacy of proline in countering the damage caused by heat stress to growth and to enzymes of carbon and antioxidative metabolism in chickpea. The chickpea seeds were raised without (control) and with proline (10 μM) at temperatures of 30/25 °C, 35/30 °C, 40/35 °C and 45/40 °C as day/ night (12 h/12 h) in a growth chamber. The shoot and root length at 40/35 °C decreased by 46 and 37 %, respectively over control while at 45/40 °C, a decrease of 63 and 47 %, respectively over control was observed. In the plants growing in the presence of 10 μM proline at 40/35 °C and 45/40 °C, the shoot length showed improvement of 32 and 53 %, respectively over untreated plants, while the root growth was improved by 22 and 26 %, respectively. The stress injury (as membrane damage) increased with elevation of temperatures while cellular respiration, chlorophyll content and relative leaf water content reduced as the temperature increased to 45/40 °C. The endogenous proline was elevated to 46 μmol g(-1) dw at 40/35 °C but declined to 19 μmol g(-1) dw in plants growing at 45/40 °C that was associated with considerable inhibition of growth at this temperature. The oxidative damage measured as malondialdehyde and hydrogen peroxide content increased manifolds in heat stressed plants coupled with inhibition in the activities of enzymatic (superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase) and levels of non-enzymatic (ascorbic acid, glutathione, proline) antioxidants. The enzymes associated with carbon fixation (RUBISCO), sucrose synthesis (sucrose phosphate synthase) and sucrose hydrolysis (invertase) were strongly inhibited at 45/40 °C. The plants growing in the presence of proline accumulated proline up to 63 μmol g(-1) dw and showed less injury to

  8. Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis.

    PubMed

    Ye, B; Gressel, J

    2000-06-01

    The elucidation of mechanisms plants use to overcome oxidative stress is facilitated where there is intra-specific genetic variability. The differential induction of higher levels of mRNAs, cytosol and chloroplast antioxidant enzyme activities, and proteins occurred after sub-lethal paraquat treatment of the oxidant-resistant biotype of Conyza bonariensis (L.) Cronq. By 6 h after sub-lethal paraquat treatment the activities of superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), dehydroascorbate reductase (EC 1.8.5), monodehydroascorbate reductase (EC 1.6.5.4), and glutathione peroxidase (EC 1.11.19) had increased, peaking at 24 h and then slowly reverting back to the basal level. Similarly, the levels of mRNAs encoding these enzymes were enhanced by 12 h and peaked at 18-24 h after sub-lethal paraquat treatment. The time courses of the transient elevation of both transcript and antioxidant enzyme levels correlated with a further transient 2.5- to 3.0-fold increase of paraquat resistance, which occurred only in the constitutively resistant biotype. The individual enzymes seem to be part of a coordinately controlled oxidant tolerance in the resistant biotype, utilizing oxidant-induced, increasingly abundant transcript levels, upon which more antioxidant enzymes were synthesized. PMID:10923703

  9. Enzyme-Controlled Intracellular Self-Assembly of 18F Nanoparticles for Enhanced MicroPET Imaging of Tumor

    PubMed Central

    Liu, Yaling; Miao, Qingqing; Zou, Pei; Liu, Longfei; Wang, Xiaojing; An, Linna; Zhang, Xiaoliu; Qian, Xiangping; Luo, Shineng; Liang, Gaolin

    2015-01-01

    Herein, we report the development of a new “smart” radioactive probe (i.e., 1) which can undergo furin-controlled condensation and self-assembly of radioactive nanoparticles (i.e., 1-NPs) in tumor cells and its application for enhanced microPET imaging of tumors in nude mice co-injected with its cold analog (i.e., 1-Cold). Furin-controlled condensation of 1-Cold and self-assembly of its nanoparticles (i.e., 1-Cold-NPs) in vitro were validated and characterized with HPLC, mass spectra, SEM, and TEM analyses. Cell uptake studies showed that both 1 and 1-Cold have good cell permeability. TEM images of 1-Cold-treated MDA-MB-468 cells directly uncovered that the intracellular 1-Cold-NPs were at/near the location of furin (i.e., Golgi bodies). MTT results indicated that 50 µM 1-Cold did not impose cytotoxicity to MDA-MB-468 cells up to 12 hours. MicroPET imaging of MDA-MB-468 tumor-bearing mice indicated that mice co-injected with 1 and 1-Cold showed higher uptake and longer attenuation of the radioactivity in tumors than those mice only injected with same dosage of 1. Tumor uptake ratios of 1 between these two groups of mice reached the maximum of 8.2 folds at 240 min post injection. Biodistribution study indicated that the uptake ratios of 1 in kidneys between these two groups continuously increased and reached 81.9 folds at 240 min post injection, suggesting the formation of radioactive NPs (i.e., 1-NPs) in MDA-MB-468 tumors of mice co-injected with 1 and 1-Cold. And the nanoparticles were slowly digested and secreted from the tumors, accumulating in the kidneys. Our ''smart'' probe (i.e., 1), together with the strategy of co-injection, might help researchers trace the biomarkers of interest within a longer time window. PMID:26199645

  10. TcI Isolates of Trypanosoma cruzi Exploit the Antioxidant Network for Enhanced Intracellular Survival in Macrophages and Virulence in Mice.

    PubMed

    Zago, María Paola; Hosakote, Yashoda M; Koo, Sue-Jie; Dhiman, Monisha; Piñeyro, María Dolores; Parodi-Talice, Adriana; Basombrio, Miguel A; Robello, Carlos; Garg, Nisha J

    2016-06-01

    Trypanosoma cruzi species is categorized into six discrete typing units (TcI to TcVI) of which TcI is most abundantly noted in the sylvatic transmission cycle and considered the major cause of human disease. In our study, the TcI strains Colombiana (COL), SylvioX10/4 (SYL), and a cultured clone (TCC) exhibited different biological behavior in a murine model, ranging from high parasitemia and symptomatic cardiomyopathy (SYL), mild parasitemia and high tissue tropism (COL), to no pathogenicity (TCC). Proteomic profiling of the insect (epimastigote) and infective (trypomastigote) forms by two-dimensional gel electrophoresis/matrix-assisted laser desorption ionization-time of flight mass spectrometry, followed by functional annotation of the differential proteome data sets (≥2-fold change, P < 0.05), showed that several proteins involved in (i) cytoskeletal assembly and remodeling, essential for flagellar wave frequency and amplitude and forward motility of the parasite, and (ii) the parasite-specific antioxidant network were enhanced in COL and SYL (versus TCC) trypomastigotes. Western blotting confirmed the enhanced protein levels of cytosolic and mitochondrial tryparedoxin peroxidases and their substrate (tryparedoxin) and iron superoxide dismutase in COL and SYL (versus TCC) trypomastigotes. Further, COL and SYL (but not TCC) were resistant to exogenous treatment with stable oxidants (H2O2 and peroxynitrite [ONOO(-)]) and dampened the intracellular superoxide and nitric oxide response in macrophages, and thus these isolates escaped from macrophages. Our findings suggest that protein expression conducive to increase in motility and control of macrophage-derived free radicals provides survival and persistence benefits to TcI isolates of T. cruzi. PMID:27068090

  11. Investigation into the effects of antioxidant-rich extract of Tamarindus indica leaf on antioxidant enzyme activities, oxidative stress and gene expression profiles in HepG2 cells

    PubMed Central

    Razali, Nurhanani; Abdul Aziz, Azlina; Lim, Chor Yin

    2015-01-01

    The leaf extract of Tamarindus indica L. (T. indica) had been reported to possess high phenolic content and showed high antioxidant activities. In this study, the effects of the antioxidant-rich leaf extract of the T. indica on lipid peroxidation, antioxidant enzyme activities, H2O2-induced ROS production and gene expression patterns were investigated in liver HepG2 cells. Lipid peroxidation and ROS production were inhibited and the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was enhanced when the cells were treated with the antioxidant-rich leaf extract. cDNA microarray analysis revealed that 207 genes were significantly regulated by at least 1.5-fold (p < 0.05) in cells treated with the antioxidant-rich leaf extract. The expression of KNG1, SERPINC1, SERPIND1, SERPINE1, FGG, FGA, MVK, DHCR24, CYP24A1, ALDH6A1, EPHX1 and LEAP2 were amongst the highly regulated. When the significantly regulated genes were analyzed using Ingenuity Pathway Analysis software, “Lipid Metabolism, Small Molecule Biochemistry, Hematological Disease” was the top biological network affected by the leaf extract, with a score of 36. The top predicted canonical pathway affected by the leaf extract was the coagulation system (P < 2.80 × 10−6) followed by the superpathway of cholesterol biosynthesis (P < 2.17 × 10−4), intrinsic prothrombin pathway (P < 2.92 × 10−4), Immune Protection/Antimicrobial Response (P < 2.28 × 10−3) and xenobiotic metabolism signaling (P < 2.41 × 10−3). The antioxidant-rich leaf extract of T. indica also altered the expression of proteins that are involved in the Coagulation System and the Intrinsic Prothrombin Activation Pathway (KNG1, SERPINE1, FGG), Superpathway of Cholesterol Biosynthesis (MVK), Immune protection/antimicrobial response (IFNGR1, LEAP2, ANXA3 and MX1) and Xenobiotic Metabolism Signaling (ALDH6A1, ADH6). In conclusion, the antioxidant-rich leaf extract of T. indica inhibited lipid

  12. Investigation into the effects of antioxidant-rich extract of Tamarindus indica leaf on antioxidant enzyme activities, oxidative stress and gene expression profiles in HepG2 cells.

    PubMed

    Razali, Nurhanani; Abdul Aziz, Azlina; Lim, Chor Yin; Mat Junit, Sarni

    2015-01-01

    The leaf extract of Tamarindus indica L. (T. indica) had been reported to possess high phenolic content and showed high antioxidant activities. In this study, the effects of the antioxidant-rich leaf extract of the T. indica on lipid peroxidation, antioxidant enzyme activities, H2O2-induced ROS production and gene expression patterns were investigated in liver HepG2 cells. Lipid peroxidation and ROS production were inhibited and the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was enhanced when the cells were treated with the antioxidant-rich leaf extract. cDNA microarray analysis revealed that 207 genes were significantly regulated by at least 1.5-fold (p < 0.05) in cells treated with the antioxidant-rich leaf extract. The expression of KNG1, SERPINC1, SERPIND1, SERPINE1, FGG, FGA, MVK, DHCR24, CYP24A1, ALDH6A1, EPHX1 and LEAP2 were amongst the highly regulated. When the significantly regulated genes were analyzed using Ingenuity Pathway Analysis software, "Lipid Metabolism, Small Molecule Biochemistry, Hematological Disease" was the top biological network affected by the leaf extract, with a score of 36. The top predicted canonical pathway affected by the leaf extract was the coagulation system (P < 2.80 × 10(-6)) followed by the superpathway of cholesterol biosynthesis (P < 2.17 × 10(-4)), intrinsic prothrombin pathway (P < 2.92 × 10(-4)), Immune Protection/Antimicrobial Response (P < 2.28 × 10(-3)) and xenobiotic metabolism signaling (P < 2.41 × 10(-3)). The antioxidant-rich leaf extract of T. indica also altered the expression of proteins that are involved in the Coagulation System and the Intrinsic Prothrombin Activation Pathway (KNG1, SERPINE1, FGG), Superpathway of Cholesterol Biosynthesis (MVK), Immune protection/antimicrobial response (IFNGR1, LEAP2, ANXA3 and MX1) and Xenobiotic Metabolism Signaling (ALDH6A1, ADH6). In conclusion, the antioxidant-rich leaf extract of T. indica inhibited lipid peroxidation

  13. Bioelectronic Tongue Employing Enzyme-Modified Sensors for the Resolution of Phenolic Antioxidant Mixtures

    NASA Astrophysics Data System (ADS)

    Cetó, Xavier; Céspedes, Francisco; Pividori, Maria Isabel; Gutiérrez, Juan Manuel; Haddi, Zouhair; Bouchikhi, Benachir; del Valle, Manel

    2011-09-01

    This work reports the application of a BioElectronic Tongue (BioET) in the analysis of polyphenols. For this, a voltammetric BioET formed by an array of epoxy-graphite biosensors, bulk-modified with different redox enzymes, aimed to the simultaneous determination of different polyphenols was used. Departure information was the set of voltammograms generated with the biosensor array and Artificial Neural Networks (ANNs) were used for extraction and quantification of each compound. Cathecol, caffeic acid and catechine formed the three-analyte study case resolved in this work, with good prediction ability attained, therefore permitting the separate quantification of the three phenols.

  14. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  15. Curcumin Induces Nrf2 Nuclear Translocation and Prevents Glomerular Hypertension, Hyperfiltration, Oxidant Stress, and the Decrease in Antioxidant Enzymes in 5/6 Nephrectomized Rats

    PubMed Central

    Tapia, Edilia; Soto, Virgilia; Ortiz-Vega, Karla Mariana; Zarco-Márquez, Guillermo; Molina-Jijón, Eduardo; Cristóbal-García, Magdalena; Santamaría, José; García-Niño, Wylly Ramsés; Correa, Francisco; Zazueta, Cecilia; Pedraza-Chaverri, José

    2012-01-01

    Renal injury resulting from renal ablation induced by 5/6 nephrectomy (5/6NX) is associated with oxidant stress, glomerular hypertension, hyperfiltration, and impaired Nrf2-Keap1 pathway. The purpose of this work was to know if the bifunctional antioxidant curcumin may induce nuclear translocation of Nrf2 and prevents 5/6NX-induced oxidant stress, renal injury, decrease in antioxidant enzymes, and glomerular hypertension and hyperfiltration. Four groups of rats were studied: (1) control, (2) 5/6NX, (3) 5/6NX +CUR, and (4) CUR (n = 8–10). Curcumin was given by gavage to NX5/6 +CUR and CUR groups (60 mg/kg/day) starting seven days before surgery. Rats were studied 30 days after NX5/6 or sham surgery. Curcumin attenuated 5/6NX-induced proteinuria, systemic and glomerular hypertension, hyperfiltration, glomerular sclerosis, interstitial fibrosis, interstitial inflammation, and increase in plasma creatinine and blood urea nitrogen. This protective effect was associated with enhanced nuclear translocation of Nrf2 and with prevention of 5/6NX-induced oxidant stress and decrease in the activity of antioxidant enzymes. It is concluded that the protective effect of curcumin against 5/6NX-induced glomerular and systemic hypertension, hyperfiltration, renal dysfunction, and renal injury was associated with the nuclear translocation of Nrf2 and the prevention of both oxidant stress and the decrease of antioxidant enzymes. PMID:22919438

  16. Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats

    PubMed Central

    Ramesh, B; Karuna, R; Sreenivasa, Reddy S; Haritha, K; Sai, Mangala D; Sasi, Bhusana Rao B; Saralakumari, D

    2012-01-01

    Objective To study the antioxidant efficacy of Commiphora mukul (C. mukul) gum resin ethanolic extract in streptozotocin (STZ) induced diabetic rats. Methods The male Wistar albino rats were randomly divided into four groups of eight animals each: Control group (C), CM-treated control group (C+CMEE), Diabetic control group (D), CM- treated diabetic group (D+CMEE). Diabetes was induced by intraperitoneal injection of STZ (55 mg/kg/ bwt). After being confirmed the diabetic rats were treated with C. mukul gum resin ethanolic extract (CMEE) for 60 days. The biochemical estimations like antioxidant, oxidative stress marker enzymes and hepatic marker enzymes of tissues were performed. Results The diabetic rats showed increased level of enzymatic activities aspartate aminotransaminase (AST), alanine aminotransaminase (ALT) in liver and kidney and oxidative markers like lipid peroxidation (LPO) and protein oxidation (PO) in pancreas and heart. Antioxidant enzyme activities were significantly decreased in the pancreas and heart compared to control group. Administration of CMEE (200 mg/kg bw) to diabetic rats for 60 days significantly reversed the above parameters towards normalcy. Conclusions In conclusion, our data indicate the preventive role of C. mukul against STZ-induced diabetic oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of diabetes and aggravated antioxidant status. PMID:23569867

  17. Effects of Sodium Arsenite and Arsenate in Testicular Histomorphometry and Antioxidants Enzymes Activities in Rats.

    PubMed

    Souza, Ana Cláudia Ferreira; Marchesi, Sarah Cozzer; Domingues de Almeida Lima, Graziela; Ferraz, Rafael Penha; Santos, Felipe Couto; da Matta, Sérgio Luis Pinto; Machado-Neves, Mariana

    2016-06-01

    The main source of environmental arsenic exposure in most countries of the world is drinking water in which inorganic forms of arsenic predominate. The present study was aimed to test the impact of two different compounds of inorganic arsenic in histomorphometric and enzymatic parameters in the testes by oral exposition. Adult Wistar male rats were exposed to sodium arsenite and arsenate in drinking water, testing for each chemical form the concentrations of 0.01 and 10 mg/L per 56 days. The animals intoxicated with arsenic, mainly sodium arsenite, showed reduction in the percentage of seminiferous epithelium and in proportion and volume of Leydig cells. Moreover, there was an increase in the percentage of tunica propria, lumen, lymphatic space, blood vessels, and macrophages. The activity of superoxide dismutase (SOD) did not change among the groups. However, the activity of catalase (CAT) decreased in animals exposed to both arsenic compounds. In addition, the higher concentration of arsenic, mainly as sodium arsenite, caused vacuolization in the seminiferous epithelium. The body and testes weight as well as testosterone concentration remained unchanged among the groups. In conclusion, exposition to arsenic, mainly as sodium arsenite, caused alteration in histomorphometric parameters and antioxidant defense system in the testes. PMID:26446860

  18. Nanoalumina induces apoptosis by impairing antioxidant enzyme systems in human hepatocarcinoma cells

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad

    2015-01-01

    Alumina nanoparticles (Al2O3NPs) are gradually used in various areas, including nanomedicine, biosensors, and electronics. The current study aimed to explore the DNA damage and cytotoxicity due to Al2O3NPs on human hepatocarcinoma cells (HepG2). The MTT and neutral red uptake assays showed that Al2O3NPs induce significant cell death in a dose- and time-dependent manner. However, Al2O3NPs induced significant intracellular reactive oxygen species production and elevated lipid peroxidation and superoxide dismutase levels in the HepG2 cells. Al2O3NPs also induced significant decrease in reduced glutathione levels and increase caspase-3 activity in HepG2 cells. DNA fragmentation analysis using the alkaline single-cell gel electrophoresis showed that Al2O3NPs cause genotoxicity in dose- and time-dependent manner. However, they induce reactive oxygen species production and oxidative stress, leading to oxidative DNA damage, a probable mechanism of genotoxicity. This study warrants more careful assessment of Al2O3NPs before their industrial application. PMID:26045665

  19. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco

    PubMed Central

    Bharti, Poonam; Mahajan, Monika; Vishwakarma, Ajay K.; Bhardwaj, Jyoti; Yadav, Sudesh Kumar

    2015-01-01

    In plants, epigenetic changes have been identified as regulators of developmental events during normal growth as well as environmental stress exposures. Flavonoid biosynthetic and antioxidant pathways play a significant role in plant defence during their exposure to environmental cues. The aim of this study was to unravel whether genes encoding enzymes of flavonoid biosynthetic and antioxidant pathways are under epigenetic regulation, particularly DNA methylation, during salt stress. For this, a repressor of silencing from Arabidopsis, AtROS1, was overexpressed in transgenic tobacco. Generated transgenics were evaluated to examine the influence of AtROS1 on methylation status of promoters as well as on coding regions of genes encoding enzymes of flavonoids biosynthesis and antioxidant pathways. Overexpression of AtROS1 increases the demethylation levels of both promoters as well as coding regions of genes encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, and anthocyanidin synthase of the flavonoid biosynthetic pathway, and glutathione S-transferase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase of the antioxidant pathway during control conditions. The level of demethylation was further increased at promoters as well as coding regions of these genes during salt-stress conditions. Transgenic tobacco overexpressing AtROS1 showed tolerance to salt stress that could have been due to the higher expression levels of the genes encoding enzymes of the flavonoid biosynthetic and antioxidant pathways. This is the first comprehensive study documenting the epigenetic regulation of flavonoid biosynthetic and antioxidant pathways during salt-stress exposure of plants. PMID:26116024

  20. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco.

    PubMed

    Bharti, Poonam; Mahajan, Monika; Vishwakarma, Ajay K; Bhardwaj, Jyoti; Yadav, Sudesh Kumar

    2015-09-01

    In plants, epigenetic changes have been identified as regulators of developmental events during normal growth as well as environmental stress exposures. Flavonoid biosynthetic and antioxidant pathways play a significant role in plant defence during their exposure to environmental cues. The aim of this study was to unravel whether genes encoding enzymes of flavonoid biosynthetic and antioxidant pathways are under epigenetic regulation, particularly DNA methylation, during salt stress. For this, a repressor of silencing from Arabidopsis, AtROS1, was overexpressed in transgenic tobacco. Generated transgenics were evaluated to examine the influence of AtROS1 on methylation status of promoters as well as on coding regions of genes encoding enzymes of flavonoids biosynthesis and antioxidant pathways. Overexpression of AtROS1 increases the demethylation levels of both promoters as well as coding regions of genes encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, and anthocyanidin synthase of the flavonoid biosynthetic pathway, and glutathione S-transferase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase of the antioxidant pathway during control conditions. The level of demethylation was further increased at promoters as well as coding regions of these genes during salt-stress conditions. Transgenic tobacco overexpressing AtROS1 showed tolerance to salt stress that could have been due to the higher expression levels of the genes encoding enzymes of the flavonoid biosynthetic and antioxidant pathways. This is the first comprehensive study documenting the epigenetic regulation of flavonoid biosynthetic and antioxidant pathways during salt-stress exposure of plants. PMID:26116024

  1. Relation between iron metabolism and antioxidants enzymes and δ-ALA-D activity in rats experimentally infected by Fasciola hepatica.

    PubMed

    Bottari, Nathieli B; Mendes, Ricardo E; Baldissera, Matheus D; Bochi, Guilherme V; Moresco, Rafael N; Leal, Marta L R; Morsch, Vera M; Schetinger, Maria R C; Christ, Ricardo; Gheller, Larissa; Marques, Éder J; Da Silva, Aleksandro S

    2016-06-01

    The aim of this study was to evaluate the iron metabolism in serum, as well as antioxidant enzymes, in addition to the Delta-Aminolevulinic Acid Dehydratase (δ-ALA-D) activity in the liver of rats experimentally infected by Fasciola hepatica. Thirty male adult rats (Wistar) specific pathogen free were divided into four groups: two uninfected group (CTRL 1 and CTRL 2) with five animals each and two infected groups (INF 1 and INF 2) with 10 animals each. Infection was performed orally with 20 metacercariae at day 1. On day 15 (CTRL 1 and INF 1 groups) and 87 PI (CTRL 2 and INF 2 groups) blood and bone marrow were collected and the animals were subsequently euthanized for liver sampling. Blood was allocated in tubes without anticoagulant for serum acquisition to measure iron, transferrin and unsaturated iron binding capacity (UIBC). δ-ALA-D, superoxide dismutase (SOD), and catalase (CAT) activities were measured in the liver. A decrease in iron, transferrin and UIBC levels was observed in all infected animals compared to control groups (P < 0.05). Furthermore, iron accumulation was observed in bone marrow of infected mice. Infected animals showed an increase in δ-ALA-D activity at 87 post-infection (PI) (INF 2) as well as in SOD activity at days 15 (INF 1) and 87 PI (INF 2). On the other hand, CAT activity was reduced in rats infected by F. hepatica during acute and chronic phase of fasciolosis (INF 1 and INF 2 groups), when moderate (acute) and severe necrosis in the liver histopathology were observed. These results may suggest that oxidative damage to tissues along with antioxidant mechanisms might have taken part in fasciolosis pathogenesis and are also involved in iron deficiency associated to changes in δ-ALA-D activity during chronic phase of disease. PMID:26995536

  2. Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants.

    PubMed

    Rout, Jyoti Ranjan; Behera, Sadhana; Keshari, Nitin; Ram, Shidharth Sankar; Bhar, Subhajit; Chakraborty, Anindita; Sudarshan, Mathummal; Sahoo, Santi Lata

    2015-03-01

    In the present study the response of antioxidant enzyme activities and the level of expression of their corresponding genes on bioaccumulation of iron (Fe) were investigated. In vitro germinated Withania somnifera L. were grown in Murashige and Skoog's liquid medium with increasing concentrations (0, 25, 50, 100 and 200 µM) of FeSO4 for 7 and 14 days. Root and leaf tissues analyzed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (GPX, EC 1.11.1.7), have shown an increase in content with respect to exposure time. Isoforms of CAT, SOD and GPX were separated using non-denaturing polyacrylamide gel electrophoresis and observed that the isoenzymes were greatly affected by higher concentrations of Fe. Reverse transcriptase polymerase chain reaction analysis performed by taking three pairs of genes of CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) to find out the differential expression of antioxidant genes under Fe excess. RsCat from CAT and MnSOD from SOD have exhibited high levels of gene expression under Fe stress, which was consistent with the changes of the activity assayed in solution after 7 days of treatment. Analysis by proton induced X-ray emission exhibited an increasing uptake of Fe in plants by suppressing and expressing of other nutrient elements. The results of the present study suggest that higher concentration of Fe causes disturbance in nutrient balance and induces oxidative stress in plant. PMID:25480472

  3. Winery solid residue revalorization into oil and antioxidant with nutraceutical properties by an enzyme assisted process.

    PubMed

    Tobar, P; Moure, A; Soto, C; Chamy, R; Zúñiga, M E

    2005-01-01

    Revalorization of the winery industry residue, grape seed is studied for the production of an oil and defatted meal with nutraceutical properties. Conventional grape seed oil extraction process is carried out by pressing at high temperature affecting the product quality. Oil extraction by cold pressing improves product quality, but it gives a low oil yield. Oil extracted is increased at the pressing stage, when an enzymatic pre-treatment is incorporated in to the conventional process. The yield is determined by determining the residual oil in the pressed cake. Using an enzymatic treatment during 9 hours at 45 degrees C and 50% of moisture, with a mixture of two commercial enzymes grape seed oil extraction yield by cold pressing is raised up to 72%, being a 59.4% increment in comparison to the yield obtained by the control, without enzymes. The defatted meal by enzimatic assisted process improves its phenolic compounds between 2 and 4 times, depending on the conditions of phenolics extraction in comparison to the control samples. PMID:15771098

  4. Antioxidant Enzyme Inhibitor Role of Phosphine Metal Complexes in Lung and Leukemia Cell Lines

    PubMed Central

    Keleş, Tuğba; Serindağ, Osman

    2014-01-01

    Phosphine metal complexes have been recently evaluated in the field of cancer therapy. In this research, the cytotoxic effects of some metal phosphines {[PdCl2((CH2OH)2PCH2)2NCH3] (C1), [RuCl2(((CH2OH)2PCH2)2NCH3)2] (C2), [PtCl2((Ph2PCH2)2NCH3)(timin)2] (C3)} on K562 (human myelogenous leukemia cell line) and A549 (adenocarcinomic human alveolar basal epithelial cells) cells were investigated using the MTT test. C1 and C2 are water-soluble metal complexes, which may have some advantages in in vitro and in vivo studies. The effects of the above-mentioned metal complexes on thioredoxin reductase (TrxR) (EC: 1.8.1.9), glutathione peroxidase (GPx) (EC: 1.11.1.9), and catalase (Cat) (EC: 1.11.1.6) enzymes were also tested. The results of this research showed that all three metal complexes indicated dose-dependent cytotoxicity on A549 and K562 cell lines and that the complexes inhibited different percentages of the TrxR, GPx, and Cat enzymes of these tumor cells. PMID:25610346

  5. Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice

    PubMed Central

    Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd

    2012-01-01

    OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during

  6. Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice.

    PubMed

    Bharali, Rupjyoti; Tabassum, Jawahira; Azad, Mohammed Rekibul Haque

    2003-01-01

    The modulatory effects of a hydro-alcoholic extract of drumsticks of Moringa oliefera Lam at doses of 125 mg/kg bodyweight and 250 mg/ kg body weight for 7 and 14 days, respectively, were investigated with reference to drug metabolising Phase I (Cytochrome b(5) and Cytochrome p(450) ) and Phase II (Glutathione-S- transferase) enzymes, anti-oxidant enzymes, glutathione content and lipid peroxidation in the liver of 6-8 week old female Swiss albino mice. Further, the chemopreventive efficacy of the extract was evaluated in a two stage model of 7,12 - dimethylbenz(a)anthracene induced skin papillomagenesis. Significant increase (p<0.05 to p<0.01) in the activities of hepatic cytochrome b(5), cytochrome p(450), catalase, glutathione peroxidase ( GPx ), glutathione reductase (GR), acid soluble sulfhydryl content (-SH ) and a significant decrease ( p<0.01 ) in the hepatic MDA level were observed at both dose levels of treatment when compared with the control values. Glutathione-S- transferase ( GST )activity was found to be significantly increased (p<0.01 ) only at the higher dose level. Butylated hydroxyanisol (BHA ) fed at a dose of 0.75% in the diet for 7 and 14 days (positive control ) caused a significant increase (p<0.05 to p<0.01) in the levels of hepatic phase I and phase II enzymes, anti- oxidant enzymes, glutathione content and a decrease in lipid peroxidation. The skin papillomagenesis studies demonstrated a significant decrease (p<0.05 ) in the percentage of mice with papillomas, average number of papillomas per mouse and papillomas per papilloma bearing mouse when the animals received a topical application of the extract at a dose of 5mg/ kg body weight in the peri-initiation phase 7 days before and 7 days after DMBA application, Group II ), promotional phase (from the day of croton oil application and continued till the end of the experiment, Group III ) and both peri and post initiation stages (from 7 days prior to DMBA application and continued till the

  7. Alterations in antioxidant metabolism and associated enzymes in pea (Pisum sativum) exposed to sulfur dioxide

    SciTech Connect

    Madamanchi, N.R.; Alscher, R.G. )

    1990-05-01

    The response of glutathione and ascorbate and the enzymes glutathione reductase (GR) and superoxide dismutase (SOD) was studied in two cultivars of pea known to be differentially sensitive to SO{sub 2} (0.8 ppm). Total glutathione accumulated more rapidly on exposure to SO{sub 2} in insensitive cultivar Progress compared to the sensitive cultivar Nugget, confirming our previous results. However, corresponding changes in oxidized glutathione were not observed and ascorbate levels did not change over the course of the exposure. Changes in the activity of GR corresponded to the changes in total glutatione levels. Preliminary results indicate that SOD activity increased to a significantly higher extent in Progress than in Nugget. These data suggest a significant role for GR and possibly SOD in resistance to oxidative stress.

  8. Lipid peroxidative stress and antioxidative enzymes in brains of milk-supplemented rats.

    PubMed

    Bay, B H; Lee, Y K; Tan, B K; Ling, E A

    1999-12-24

    Skim milk cultured with lactic acid bacteria has been previously reported to reduce lipid peroxidation in rat livers. In this study, the effects of skim milk and cultured milk supplementation on peroxidative stress in brains of weanling rats were investigated. We observed a reduction of brain thiobarbituric acid reacting substances (TBARS) concentration in milk-supplemented animals as compared with controls. In brains of control rats, the superoxide dismutase (SOD) enzyme levels were significantly higher than those from the milk-supplemented animals. In addition, SOD activity in control animal brains had a positive correlation with the TBARS concentration. There was no significant differences in the brain glutathione-S-transferase (GST) levels of all the three groups of animals. The results suggest that milk supplementation may be beneficial in reducing peroxidative stress in the developing rat brain. PMID:10624826

  9. Antioxidant relevance to human health.

    PubMed

    Wahlqvist, Mark L

    2013-01-01

    Human ecology requires both oxygen and water with the generation from food of an immediate energy source, ATP, by oxidative phosphorylation. A continuing balance between oxidation and antioxidation is necessary for longer less-disabled lives, taking account of oxidative stresses and the critical roles of oxidants in defence against infection, tissue repair and signalling. Antioxidant capacity is derived both exogenously (from food, beverage and sunlight) and endogenously (from enzymatic and non-enzymatic pathways). A number of oxidant food factors service antioxidant metallo-enzymes. The capacity operates extra- or intracellularly. Uric acid is the major antioxidant in primate blood. Uric acid synthesis is increased by dietary fructose from fruit, sugary foods and drinks. This indirect antioxidant effect of fruit is separate from that attributable to its flavonoids. Alcohol also increases serum uric acid. Urate excess and retention is associated with disease. The high prevalence of hyperuricaemia in NE Asia presents a major public health dilemma in regard to putative benefits and risks. Foods with high antioxidant activity include berries, nuts and legumes, tomatoes and sweet potato leaves. Each of the antioxidants in these foods is pleiotropic being inter-alia anti-inflammatory, anti-angiogenic or anti-neoplastic. Moreover, food matrices and patterns contribute to the safety of antioxidant consumption. There is no evidence to date that isolated antioxidants as food supplements improve health outcomes or survival; and some that indicate unacceptable risk. Their use as biomarkers of food cannot justify their isolated use. Nevertheless, a spectrum of dietary pluripotential antioxidants for tissues, metabolic and immune systems is advantageous. PMID:23635359

  10. Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning

    PubMed Central

    Agarwal, Avinash; Robo, Roto; Jain, Nirdesh; Gutch, Manish; Consil, Shuchi; Kumar, Sukriti

    2014-01-01

    Introduction: The primary objective of this study was to determine the serum level of antioxidant enzymes and to correlate them with outcome in patients of aluminum phosphide (ALP) poisoning and, secondly, to evaluate the effect of N-acetylcysteine (NAC) given along with supportive treatment of ALP poisoning. Design: We conducted a cohort study in patients of ALP poisoning hospitalized at a tertiary care center of North India. The treatment group and control group were enrolled during the study period of 1 year from May 2011 to April 2012. Interventions: Oxidative stress was evaluated in each subject by estimating the serum levels of the enzymes, viz. catalase, superoxide dismutase (SOD) and glutathione reductase (GR). The treatment group comprised of patients who were given NAC in addition to supportive treatment (magnesium sulfate and vasopressors, if required), while in the control group, only supportive treatment was instituted. The primary endpoint of the study was the survival of the patients. Measurements and Results: The baseline catalase (P = 0.008) and SOD (P < 0.01) levels were higher among survivors than non-survivors. Of the total patients in the study, 31 (67.4%) expired and 15 (32.6%) survived. Among those who expired, the mean duration of survival was 2.92 ± 0.40 days in the test group and 1.82 ± 0.33 days in the control group (P = 0.043). Conclusions: This study suggests that the baseline level of catalase and SOD have reduced in ALP poisoning, but baseline GR level has not suppressed but is rather increasing with due time, and more so in the treatment group. NAC along with supportive treatment may have improved survival in ALP poisoning. PMID:25316977

  11. Antioxidative enzyme profiling and biosorption ability of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress.

    PubMed

    Shamim, Saba; Rehman, Abdul

    2015-03-01

    Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to study their biosorption ability and their antioxidative enzymes. The minimal inhibitory concentration of C. metallidurans CH34 for Cd was found to be 30 mM, and for P. putida mt2 it was 1.25 mM. The tube dilution method revealed the heavy-metal resistance pattern of C. metallidurans CH34 as Ni(2+) (10 mM)>Zn(2+) (4 mM)>Cu(2+) (2 mM)>Hg(2+) (1 mM)>Cr(2+) (1 mM)>Pb(2+) (0 mM), whereas P. putida mt2 was only resistant to Zn(2+) (1 mM). Under Cd stress, the induction of GSH was higher in C. metallidurans CH34 (0.359 ± 0.010 mM g(-1)  FW) than in P. putida mt2 (0.286 ± 0.005 mM g(-1)  FW). Glutathione reductase was more highly expressed in the mt2 strain, in contrast to non-protein thiols and peroxidase. Unlike dead bacterial cells, live cells of both bacteria showed significant Cd biosorption, i.e. more than 80% at 48 h. C. metallidurans CH34 used only catalase, whereas P. putida mt2 used superoxide dismutase and ascorbate peroxidase to combat Cd stress. This study investigated the Cd biosorption ability and enzymes involved in the Cd detoxification mechanisms of C. metallidurans CH34 and P. putida mt2. PMID:23832807

  12. Effect of nonylphenol on male reproduction: Analysis of rat epididymal biochemical markers and antioxidant defense enzymes

    SciTech Connect

    Aly, Hamdy A.A.; Domènech, Òscar; Banjar, Zainy M.

    2012-06-01

    The mechanism by which nonylphenol (NP) interferes with male reproduction is not fully elucidated. Therefore, the present study was conducted to evaluate the effect of NP on male reproductive organ's weight, sperm characteristics, and to elucidate the nature and mechanism of action of NP on the epididymis. Adult male Wistar rats were gavaged with NP, dissolved in corn oil, at 0, 100, 200 or 300 mg/kg/day for 30 consecutive days. Control rats were gavaged with vehicle (corn oil) alone. Body weight did not show any significant change while, absolute testes and epididymides weights were significantly decreased. Sperm count in cauda and caput/corpus epididymides, and sperm motility was significantly decreased. Daily sperm production was significantly decreased in a dose-related manner. Sperm transit time in cauda epididymis was significantly decreased by 300 mg/kg, while in the caput/corpus epididymis it was significantly decreased by 200 and 300 mg/kg of NP. Plasma LDH was significantly increased while; plasma testosterone was significantly decreased in a dose-related pattern. In the epididymal sperm, NP decreased acrosome integrity, Δψm and 5′-nucleotidase activity. Hydrogen peroxide (H{sub 2}O{sub 2}) production and LPO were significantly increased in a dose-related pattern. The activities of SOD, CAT and GPx were significantly decreased in the epididymal sperm. In conclusion, this study revealed that NP treatment impairs spermatogenesis and has a cytotoxic effect on epididymal sperm. It disrupts the prooxidant and antioxidant balance. This leads oxidative stress in epididymal sperms of rat. Moreover, the reduction in sperm transit time may affect sperm quality and fertility potential. -- Highlights: ► The nature and mechanism of action of NP on rat epididymis were elucidated. ► NP decreased sperm count, motility, daily sperm production and sperm transit time. ► NP decreased sperm acrosome integrity, Δψm and 5′-nucleotidase activity. ► Plasma LDH was

  13. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury

    PubMed Central

    Yun, Xiang; Maximov, Victor D; Yu, Jin; Zhu, Hong; Vertegel, Alexey A; Kindy, Mark S

    2013-01-01

    Stroke is one of the major causes of death and disability in the United States. After cerebral ischemia and reperfusion injury, the generation of reactive oxygen species (ROS) and reactive nitrogen species may contribute to the disease process through alterations in the structure of DNA, RNA, proteins, and lipids. We generated various nanoparticles (liposomes, polybutylcyanoacrylate (PBCA), or poly(lactide-co-glycolide) (PLGA)) that contained active superoxide dismutase (SOD) enzyme (4,000 to 20,000 U/kg) in the mouse model of cerebral ischemia and reperfusion injury to determine the impact of these molecules. In addition, the nanoparticles were untagged or tagged with nonselective antibodies or antibodies directed against the N-methyl-𝒟-aspartate (NMDA) receptor 1. The nanoparticles containing SOD protected primary neurons in vitro from oxygen-glucose deprivation (OGD) and limited the extent of apoptosis. The nanoparticles showed protection against ischemia and reperfusion injury when applied after injury with a 50% to 60% reduction in infarct volume, reduced inflammatory markers, and improved behavior in vivo. The targeted nanoparticles not only showed enhanced protection but also showed localization to the CA regions of the hippocampus. Nanoparticles alone were not effective in reducing infarct volume. These studies show that targeted nanoparticles containing protective factors may be viable candidates for the treatment of stroke. PMID:23385198

  14. Effect of Butachlor on Antioxidant Enzyme Status and Lipid Peroxidation in Fresh Water African Catfish, (Clarias gariepinus)

    PubMed Central

    Farombi, E. O.; Ajimoko, Y. R.; Adelowo, O. A.

    2008-01-01

    The present study was undertaken to evaluate the influence of butachlor, a widely used herbicide, on antioxidant enzyme system and lipid peroxidation formation in African cat fish (Clarias gariepinus). Fish were exposed to sub-lethal concentrations of butachlor 1, 2, 2.5 ppm and sacrificed 24hrs after treatment. A significant increase in malondialdehyde formation was observed in the liver, kidney, gills and heart of the fish following exposure to different concentrations of butachlor. Superoxide dismutase and catalase activities increased in the liver and kidney but decreased in the gills and heart in a concentration-dependent pattern. Glutathione level and glutathione-S-transferase activities increased (P<0.05) in the liver but decreased in the kidneys, gills and heart when fishes were exposed to the three concentrations of butachlor. The results suggest that butachlor induced oxidative stress in the various tissues of the fish particularly in the kidney and as such the organ may be subjected to severe oxidative toxicity due to depressed glutathione detoxification system. PMID:19151438

  15. Effects of temperature - heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Ergün, N; Özçubukçu, S; Kolukirik, M; Temizkan, Ö

    2014-12-01

    In this study, the effect of heat and chromium (Cr) heavy metal interactions on wheat seedlings (Triticum aestivum L. cv. Ç-1252 and Gun91) was investigated by measuring total chlorophyll and carotenoid levels, catalase (CAT) and ascorbate peroxidase (APX) antioxidant enzyme activities, and MYB73, ERF1 and TaSRG gene expression. Examination of pigment levels demonstrated a decrease in total chlorophyll in both species of wheat under combined heat and heavy metal stress, while the carotenoid levels showed a slight increase. APX activity increased in both species in response to heavy metal stress, but the increase in APX activity in the Gun91 seedlings was higher than that in the Ç-1252 seedlings. CAT activity increased in Gun91 seedlings but decreased in Ç-1252 seedlings. These results showed that Gun91 seedling had higher resistance to Cr and Cr + heat stresses than the Ç-1252 seedling. The quantitative molecular analyses implied that the higher resistance was related to the overexpression of TaMYB73, TaERF1 and TaSRG transcription factors. The increase in the expression levels of these transcription factors was profound under combined Cr and heat stress. This study suggests that TaMYB73, TaERF1 and TaSRG transcription factors regulate Cr and heat stress responsive genes in wheat. PMID:25475983

  16. Response of antioxidative enzymes and apoplastic bypass transport in Thlaspi caerulescens and Raphanus sativus to cadmium stress.

    PubMed

    Benzarti, Saoussen; Hamdi, Helmi; Mohri, Shino; Ono, Yoshiro

    2010-01-01

    A hydroponics experiment using hyperaccumulator Thlaspi caerulescens (alpine pennycress) and non-specific accumulator Raphanus sativus (common radish) was conducted to investigate the short-term effect of increasing Cd concentrations (0, 25, 50, 75, 100 microM) on metal uptake, chlorophyll content, antioxidative enzymes, and apoplastic bypass flow. As expected, T. caerulescens generally showed better resistance to metal stress, which was reflected by higher Cd accumulation within plant tissues with no signs of chlorosis, or wilt. Glutathione reductase (GR) and superoxide dismutase (SOD) activities in fresh leaves were monitored as the plant metal-detoxifying response. In general, both plant species exhibited an increase trend of GR activity before declining at 100 microM likely due to excessive levels of phytotoxic Cd. SOD activity exhibited almost a similar variation pattern to GR and decreased also at 100 microM Cd. For both plant species, fluorescent PTS uptake (8-hydroxy-1,3,6-pyrenetrisulphonic acid) increased significantly with metal level in exposure solutions indicating that Cd has a comparable effect to drought or salinity in terms of the gain of relative importance in apoplastic bypass transport under such stress conditions. PMID:21166344

  17. Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress.

    PubMed

    Karataş, Ilhami; Öztürk, Lokman; Demir, Yavuz; Unlükara, Ali; Kurunç, Ahmet; Düzdemir, Oral

    2014-09-01

    The effects of long-term drought stress on chlorophyll, proline, protein and hydrogen peroxide (H2O2) contents, malondialdehyde (MDA) in terms of lipid peroxidation and on the changes in the activities of antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and peroxidase (POX; EC 1.11.1.7) in the leaves of pea (Pisum sativum L.) were studied in field conditions. Chlorophyll and protein contents in leaves decreased significantly with increased drought stress. The proline content increased markedly under water deficit. MDA amounts were elevated as a result of water shortage, whereas H(2)O(2) content changed slightly in pea leaves exposed to drought stress. Drought stress markedly enhanced the activities of SOD, CAT and POX but slightly changed the activity of APX. We conclude that in field conditions, long-term water shortage increased the susceptibility to drought in peas. PMID:23047611

  18. Chronic stress differentially affects antioxidant enzymes and modifies the acute stress response in liver of Wistar rats.

    PubMed

    Djordjevic, J; Djordjevic, A; Adzic, M; Niciforovic, A; Radojcic, M B

    2010-01-01

    Clinical reports suggest close interactions between stressors, particularly those of long duration, and liver diseases, such as hepatic inflammation, that is proposed to occur via reactive oxygen species. In the present study we have used 21-day social isolation of male Wistar rats as a model of chronic stress to investigate protein expression/activity of liver antioxidant enzymes: superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GLR), and protein expression of their upstream regulators: glucocorticoid receptor (GR) and nuclear factor kappa B (NFkB). We have also characterized these parameters in either naive or chronically stressed animals that were challenged by 30-min acute immobilization. We found that chronic isolation caused decrease in serum corticosterone (CORT) and blood glucose (GLU), increase in NFkB signaling, and disproportion between CuZnSOD, peroxidases (CAT, GPx) and GLR, thus promoting H2O2 accumulation and prooxidative state in liver. The overall results suggested that chronic stress exaggerated responsiveness to subsequent stressor at the level of CORT and GLU, and potentiated GLR response, but compromised the restoration of oxido-reductive balance due to irreversible alterations in MnSOD and GPx. PMID:20406049

  19. Response of growth and antioxidant enzymes in Azolla plants (Azolla pinnata and Azolla filiculoides) exposed to UV-B.

    PubMed

    Masood, Amjad; Zeeshan, M; Abraham, G

    2008-06-01

    Effect of ultravilolet-B (0.4 Wm(-2)) irradiation on growth, flavonoid content, lipid peroxidation, proline accumulation and activities of superoxide dismutase and peroxidase was comparatively analysed in Azolla pinnata and Azolla filiculoides. Growth measured as increment in dry weight reduced considerably due to all UV-B treatments. However, the reduction was found to be severe in A. filiculoides as compared to A. pinnata. The level of UV-absorbing compound flavonoids increased significantly in A. pinnata plants whereas only a slight increase in the flavonoid content was observed in A. filiculoides. UV-B exposure led to enhanced production of malondialdehyde (MDA) and electrolyte leakage in A. filiculoides than A. pinnata. Proline accumulation also showed a similar trend. Marked differences in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD) was noticed in both the plants exposed to UV-B. Our comparative studies indicate A. pinnata to be better tolerant to UV-B as compared with A. filiculoides which appears to be sensitive. PMID:18637563

  20. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    PubMed

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas. PMID:21608265

  1. Antioxidant enzymes status and reproductive health of adult male workers exposed to brick kiln pollutants in Pakistan.

    PubMed

    Jahan, Sarwat; Falah, Samreen; Ullah, Hizb; Ullah, Asad; Rauf, Naveed

    2016-07-01

    The present study was designed to study the effect of brick kilns emissions on the reproductive health and biochemical status of brick kiln workers and people living in the area near brick kilns. Body mass index (BMI) was significantly reduced in brick makers, carriers, and bakers compared to the control. Red blood cells count and hematocrit (%) were significantly high in brick bakers while MCH was significantly reduced in brick makers and brick bakers. Heavy metals (lead, cadmium, and chromium) concentration in whole blood of the brick kiln workers were significantly higher as compared to the control. Antioxidant enzymes (CAT, SOD, POD, GSH, and GR) were significantly reduced in brick kiln workers as compared to the control while TBARS level were significantly high in brick bakers as compared to the control. Plasma leutinizing hormone (LH) was significantly high in brick bakers while testosterone concentrations were significantly reduced in brick makers, carriers, and bakers. The present study shows that brick kiln workers and people living in the brick kiln vicinity are exposed to heavy metals and other pollutants that is a serious threat to their health. Alternate technology is needed to be developed and brick kilns should be replaced. PMID:26996903

  2. Modulation of antioxidant enzyme expression by PTU-induced hypothyroidism in cerebral cortex of postnatal rat brain.

    PubMed

    Bhanja, Shravani; Jena, Srikanta

    2013-01-01

    This study aimed to elucidate the effect of 6-n-propylthiouracil (PTU)-induced hypothyroidism on oxidative stress parameters and expression of antioxidant enzymes in cerebral cortex of rat brain during postnatal development. A significant decrease in levels of lipid peroxidation and H(2)O(2) were seen in 7 and 30 days old PTU-treated rats with respect to their controls. Significantly decreased activities of superoxide dismutase (SOD) and catalase (CAT) along with the translated products of SOD1 and SOD2 were observed in 7, 15 and 30 days old PTU-treated rats as compared to their respective controls. However, increase in translated product of CAT was seen in all age groups of PTU-treated rats. Glutathione peroxidase activity was decreased in 7 days and increased in 15 days old PTU-treated rats with respect to their control groups. Histological sections clearly show a decline in neuronal migration with neurons packed together in the hypothyroid group as compared to the control. PMID:22987056

  3. Changes in lipid peroxidation and antioxidant enzyme activities by triiodothyronine (T3) and polyunsaturated fatty acids (PUFA) in rat liver.

    PubMed

    Varghese, S; Lakshmy, P S; Oommen, O V

    2001-11-01

    Thyroid hormones play an important role in the control of metabolism of vertebrates. This investigation was carried out to examine the effects of triiodothyronine (T3) and polyunsaturated fatty acids (PUFA) on lipid peroxidation in rat liver. Male Wistar strain of rats treated with 6-propylthiouracil (6-PTU) showed no significant change in lipid peroxidation as evident from the generation of malondialdehyde and conjugated dienes. However, in PUFA fed animals as well as 6-PTU + PUFA + T3 treated groups, increased peroxidation products were found. Superoxide dismutase (SOD) activity was low in 6-PTU, 6-PTU + PUFA, PUFA, 6-PTU + PUFA + T3 treated animals while glutathione peroxidase (GPx) activity was high in these groups. Catalase activity was low in all treated groups except PUFA alone fed animals. Glutathione reductase (GR) activity was decreased by 6-PTU treatment and increased in PTU + PUFA fed rats. Cellular glutathione level was high in PUFA and low in PTU-treated groups. From these results it can be concluded that both T3 and PUFA have profound influence on lipid peroxidation and antioxidant enzyme activities in rat liver. PMID:11794465

  4. Variation in antioxidant enzyme activities, growth and some physiological parameters of bitter melon (Momordica charantia) under salinity and chromium stress.

    PubMed

    Bahrami, Mahsa; Heidari, Mostafa; Ghorbani, Hadi

    2016-07-01

    In general, salinity and heavy metals interfere with several physiological processes and reduce plant growth. In order to evaluate of three levels of salinity (0, 4 and 8 ds m(-1)) and three concentration of chromium (0, 10 and 20 mg kg(-1) soil) in bitter melon (Momordica charantia), a plot experiment was conducted in greenhouse at university of Shahrood, Iran. The results revealed that chromium treatment had no significant affect on fresh and dry weight, but salinity caused reduction of fresh and dry weight in growth parameter. Salinity and chromium enhanced antioxidant enzymes activities like catalase (CAT), guaiacol peroxidase (GPX) and sodium content in leaves. However salinity and chromium treatments had no effect on potassium, phosphorus in leaves, soluble carbohydrate concentration in leaves and root, but decreased the carotenoid content in leaves. On increasing salinity from control to 8 ds m(-1) chlorophyll a, b and anthocyanin content decreased by 41.6%, 61.1% and 26.5% respectively but chromium treatments had no significant effect on these photosynthetic pigments. PMID:27498497

  5. Effect of sub-chronic selenium toxicosis on lipid peroxidation, glutathione redox cycle and antioxidant enzymes in calves.

    PubMed

    Kaur, Rajdeep; Sharma, Sucheta; Rampal, Satyavan

    2003-08-01

    The present investigation reports the effect of sodium selenite-induced sub-chronic toxicity in crossbred cow calves on various antioxidant enzymes. Sodium selenite (0.25 mg/kg for 16 w) resulted in characteristic signs of sub-chronic selenosis, ie alopecia, cracking and enlargement of hooves, interdigital lesions, ring formation on the coronet region, and gangrene at tip of the tail. The sodium selenite resulted in significant rise of blood selenium levels and concurrent increase in erythrocytic glutathione peroxidase (GPx) activity. Blood selenium levels and GPx activity had a high positive correlation (r = 0.97). Blood glutathione levels were lowered from 211.1 +/- 13.4 to 95.56 +/- 11.8 microg/ml. Selenosis caused oxidative stress as evidenced by a 3-fold increase in lipid peroxidation: activities of glutathione-S-transferase, glutathione reductase, superoxide dismutase and catalase were significantly increased. These findings support the hypothesis that the pro-oxidant attributes of selenium play important roles in its toxicity. PMID:12882488

  6. [Effects of exogenous NO on the growth and antioxidant enzyme activities of cucumber seedlings under NO3- stress].

    PubMed

    Jiao, Juan; Wang, Xiu-feng; Yang, Feng-juan; Sun, Jia-zheng; Wei, Min; Shi, Qing-hua; Wang, Xiu-hong

    2009-12-01

    In this study, cucumber seedlings were cultivated in nutrient solution added with different concentration (0.05, 0.1, 0.2, and 0.3 mmol x L(-1)) sodium nitroprusside (SNP) as nitric oxide (NO) donor to study the effects of exogenous NO on the growth of cucumber seedlings and the activities of antioxidant enzymes in cucumber leaves under NO3- stress. Under the stress of 140 mmol x L(-1) NO3-, treating with 0.1 mmol x L(-1) of SNP for 1 d or 7 d increased the leaf soluble protein content and superoxidase (SOD), catalase (CAT), and ascorbic acid peroxidase (APX) activities, and decreased the leaf malondialdehyde (MDA) content significantly, suggesting that exogenous NO could enhance the capacity of cucumber seedlings in scavenging active oxygen species, protect the seedlings from the peroxidation of membrane lipids, and promote the seedlings growth and increase their resistance to high concentration NO3- stress. After the cucumber seedlings grew in 0.3 mmol x L(-1) of SNP for 7 d, the activities of leaf SOD, POD, and CAT decreased, and the MDA content increased, resulting in the injury of cucumber seedlings. It was indicated that certain concentration (0.1-0.2 mmol x L(-1)) exogenous NO could alleviate the NO3- stress to cucumber seedlings. PMID:20353070

  7. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes.

    PubMed

    Holá, Dana; Kocová, Marie; Rothová, Olga; Wilhelmová, Nad'a; Benesová, Monika

    2007-07-01

    The differences between two maize (Zea mays L.) inbred lines and their F1 hybrids in their response to chilling periods of various duration (1, 2, 3 or 4 weeks) and subsequent return to optimum temperatures were analysed by the measurement of the photosystem (PS) 1 and 2 activity, the photosynthetic pigments' content and the activity of antioxidant enzymes. The PS2 activity and the chlorophyll content decreased in plants subjected to 3 or 4 weeks of chilling, but not in those subjected to 1 or 2 weeks of chilling. This decrease was more pronounced in inbreds compared to their hybrids. The activity of superoxide dismutase did not much change with the increasing length of chilling period in the inbreds but decreased in the hybrids, the glutathione reductase activity increased in both types of genotypes but more in the inbred lines, while for ascorbate peroxidase and catalase the changes in parents-hybrids relationship did not show any specific trend. The PS1 activity and the carotenoids' content was not much affected. PMID:16884820

  8. A Greenhouse Study on Lead Uptake and Antioxidant Enzyme Activities in Vetiver Grass (Vetiveria zizanioides) as a Function of Lead Concentration and Soil Physico-Chemical Properties

    NASA Astrophysics Data System (ADS)

    Andra, S. P.; Datta, R.; Sarkar, D.; Saminathan, S. K.

    2006-05-01

    Lead (Pb) is a toxic non-essential metal that can cause permanent learning disabilities, retardation, mental and behavioral problems in children. Lead accumulation in soils result from weathering, chipping, scraping, sanding and sand blasting of housing structures constructed prior to 1978, bearing lead-based paint. The primary objective of this study is to develop a cost-effective, chelate-assisted phytoremediation for cleaning up lead contaminated soils. Soils are a unique environment of diverse physical and chemical characteristics that influence the extent of phytoavailable (labile) Pb forms. The success of phytoremediation strategy depends on the physiological/ biochemical tolerance of the plants to lipid peroxidation induced by Pb at sub-lethal levels. Oxidative challenge is alleviated by antioxidant compounds, but more importantly by the induction of antioxidant enzymes, which are crucial for scavenging reactive oxygen species (ROS) and terminating lipid peroxidation chain reaction. A column study was conducted in a temperature and humidity-controlled greenhouse setting to assess the extent of Pb phytoextraction and antioxidant response in a lead accumulator, vetiver grass (Vetiveria zizanioides). Treatments consisted of a randomized block arrangement of 4 soil types (Immokalee, Pahokee Muck, Tobosa, and Millhopper) and 3 soil Pb concentrations [normal - 400 mg/kg lead (following federal soil standards for lead), moderate - 800 mg/kg lead, and excessive - 1200 mg/kg lead] in 4 replicates. At the end of 6 months, selected columns were amended with a biodegradable chelating agent, ethylenediamene disuccinate (10 mmol/ kg EDDS), to mobilize Pb and enhance Pb uptake by vetiver. Total and exchangeable (labile) Pb were correlated with phytoextracted Pb, and levels of antioxidant enzymes viz., superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the root and shoot tissues of vetiver grass. Results indicate that Pb uptake and antioxidant

  9. Juniperus communis Linn oil decreases oxidative stress and increases antioxidant enzymes in the heart of rats administered a diet rich in cholesterol.

    PubMed

    Gumral, Nurhan; Kumbul, Duygu Doguc; Aylak, Firdevs; Saygin, Mustafa; Savik, Emin

    2015-01-01

    It has been asserted that consumption of dietary cholesterol (Chol) raises atherosclerotic cardiovascular diseases and that Chol causes an increase in free radical production. Hypercholesterolemic diet has also been reported to cause changes in the antioxidant system. In our study, different doses of Juniperus communis Linn (JCL) oil, a tree species growing in Mediterranean and Isparta regions and having aromatic characteristics, were administered to rats; and the levels of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and thiobarbituric acid reactive substances assay (TBARS) were examined in the heart tissue of rats. In this study, 35 Wistar Albino male adult rats weighing approximately 250-300 g were used. The rats were divided into five groups of seven each. The control group was administered normal pellet chow, and the Chol group was administered pellet chow including 2% Chol, while 50 JCL, 100 JCL, and 200 JCL groups were administered 50, 100, and 200 mg/kg JCL oil dissolved in 0.5% sodium carboxy methyl cellulose, respectively, in addition to the pellet chow containing 2% Chol, by gavage. After 30 days, the experiment was terminated and the antioxidant enzyme activities were examined in the heart tissue of rats. While consumption of dietary Chol decreases the activities of SOD, GSH-Px, and CAT in heart tissue of rats (not significant), administeration of 200 mg/kg JCL oil in addition to Chol led to a significant increase in the activity of antioxidant enzymes. Administering Chol led to a significant increase in TBARS level. Administering 100 and 200 mg/kg JCL oil together with Chol prevented significantly the increase in lipid peroxides. As a result of the study, JCL oil showed oxidant-antioxidant effect in the heart tissue of rats. PMID:23293127

  10. Morin hydrate attenuates the acrylamide-induced imbalance in antioxidant enzymes in a murine model

    PubMed Central

    SINGH, MAHENDRA PAL; JAKHAR, REKHA; KANG, SUN CHUL

    2015-01-01

    Liver diseases are among the most serious health issues nowadays. Hepatocellular carcinoma, one of the most lethal types of cancer worldwide, can be caused by chemically-induced oxidative stress. In the present study, we aimed to evaluate the protective effects of morin hydrate (MH) against acrylamide (AA)-induced hepatotoxicity in male ICR mice. The mice were randomly allocated into 4 groups [the control, the group subcutaneously injected with AA alone (50 mg/kg body weight), the group subcutaneously injected with AA (50 mg/kg body weight) and MH (5 mg/kg body weight) and the group subcutaneously injected with AA (50 mg/kg body weight) and MH (15 mg/kg body weight) for 5 consecutive days]. Histopathological evaluations were performed and the levels of serum hepatic enzymes were analyzed to determine initial liver injury, and the mice in the AA-treated groups were compared with the mice receiving no treatment and with the mice administered MH in combination with AA. Furthermore, oxidative stress, hepatic inflammation and the levels of DNA damage-related markers were evaluated to determine the extent of liver damage induced by AA within a short-term period. The subcutaneous administration of AA induced severe hepatic injury, and combined treatment with AA and MH resulted in a significant improvement in all evaluated parameters. This recovery was most obvious in the group receiving AA and 15 mg/kg body weight dose of MH. The findings of our study demonstrated that MH protected mice from severe hepatic injury induced by AA. Moreover, MH is a natural polyphenolic compound, and thus it has potential for use in the treatment of severe liver diseases, in place of many synthetic drugs. PMID:26252199

  11. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes.

    PubMed

    Kavitha, K; Thiyagarajan, P; Rathna Nandhini, J; Mishra, Rajakishore; Nagini, S

    2013-08-01

    Identifying agents that activate nuclear factor erythroid-2 related factor-2 (Nrf2), a key regulator of various cytoprotective antioxidant, and detoxifying enzymes has evolved as a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary supplementation of structurally diverse phytochemicals- astaxanthin, blueberry, chlorophyllin, ellagic acid, and theaphenon-E on Nrf2 signaling, and xenobiotic-metabolizing and antioxidant enzymes in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model. We observed that these phytochemicals induce nuclear accumulation of Nrf2 while downregulating its negative regulator, Keap-1. This was associated with reduced expression of CYP1A1 and CYP1B1, the cytochrome P450 isoforms involved in the activation of DMBA, and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine coupled with upregulation of the phase II detoxification enzymes glutathione S-transferases and NAD(P)H:quinone oxidoreductase 1 and the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. In addition, these dietary phytochemicals also enhanced the DNA repair enzymes 8-oxoguanine glycosylase 1 (OGG1), xeroderma pigmentosum D (XPD), xeroderma pigmentosum G (XPG), and x-ray repair cross complementing group 1 (XRCC1). Our data provide substantial evidence that the dietary phytochemicals inhibit the development of HBP carcinomas through the activation of Nrf2/Keap-1 signaling and by upregulating cytoprotective enzymes. The extent of the chemopreventive effects of the phytochemicals was in the order: chlorophyllin > blueberry > ellagic acid > astaxanthin > theaphenon-E. Thus these dietary phytochemicals that function as potent activators of Nrf2 and its orchestrated response are novel candidates for cancer chemoprevention. PMID:23707664

  12. Anthraquinone profile, antioxidant and enzyme inhibitory effect of root extracts of eight Asphodeline taxa from Turkey: can Asphodeline roots be considered as a new source of natural compounds?

    PubMed

    Zengin, Gokhan; Locatelli, Marcello; Ceylan, Ramazan; Aktumsek, Abdurrahman

    2016-10-01

    Plant-based foods have become attractive for scientists and food producers. Beneficial effects related to their consumption as dietary supplements are due to the presence of natural occurring secondary metabolites. In this context, studies on these products are important for natural and safely food ingredients evaluation. The aim of this study was to evaluate root extract of eight Asphodeline species as antioxidants, enzyme inhibitors and phytochemical content. Spectrophotometric antioxidant and enzyme inhibitory assays were performed. Total phenolic and flavonoids contents as well as the chemical free-anthraquinones profiles were determined using routinely procedure (HPLC-PDA). Data show that Asphodeline roots can be considered as a new source of natural compounds and can be used as a valuable dietary supplement. Some differences related to biological activities can be inferred to other phytochemicals that can be considered in the future for their synergic or competitive activities. PMID:26207512

  13. Changes of platelet antioxidative enzymes during oxidative stress: the protective effect of polyphenol-rich extract from berries of Aronia melanocarpa and grape seeds.

    PubMed

    Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Stochmal, Anna; Oleszek, Wiesław; Erler, Joachim

    2011-01-01

    Aronia melanocarpa fruits (Rosaceae) and grape seeds (seeds of Vitis vinifera, Vitaceae) are two of the richest plant sources of phenolic substances, and they have been shown to have various biological activities. The aim of the present study was to investigate and compare the action of phenolic extracts (at concentrations 5-100 µg/mL) of two different plants, berries of A. melanocarpa (chokebbery) and grape seeds, on the activities of various antioxidative enzymes, the amount of glutathione (as an important component of redox status) in control the platelets and platelets treated with H(2)O(2) (the strong physiological oxidant) in vitro. The properties of these two tested extracts were also compared with the action of a well characterized antioxidative and antiplatelet commercial monomeric polyphenol - resveratrol. The extract from berries of A. melanocarpa, like the extract from grape seeds, reduced the changes in activities of different antioxidative enzymes (glutathione peroxidase, superoxide dismutase, and catalase) in platelets treated with H(2)O(2). The action of the two tested plant extracts and H(2)O(2) evoked a significant increase of reduced glutathione in platelets compared with platelets treated with H(2)O(2) only. Comparative studies indicate that the two tested plant extracts had similar antioxidative properties, and were found to be more reactive in blood platelets than the solution of resveratrol. PMID:21299394

  14. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts.

    PubMed

    Erinle, Kehinde Olajide; Jiang, Zhao; Ma, Bingbing; Li, Jinmei; Chen, Yukun; Ur-Rehman, Khalil; Shahla, Andleeb; Zhang, Ying

    2016-10-01

    Calcium (Ca) has been reported to lessen oxidative damages in plants by upregulating the activities of antioxidant enzymes. However, atrazine mediated reactive oxygen species (ROS) reduction by Ca is limited. This study therefore investigated the effect of exogenously applied Ca on ROS, antioxidants activity and gene transcripts, the D1 protein (psbA gene), and chlorophyll contents in Pennisetum seedlings pre-treated with atrazine. Atrazine toxicity increased ROS production and enzyme activities (ascorbate peroxidase APX, peroxidase POD, Superoxide dismutase SOD, glutathione-S-transferase GST); but decreased antioxidants (APX, POD, and Cu/Zn SOD) and psbA gene transcripts. Atrazine also decreased the chlorophyll contents, but increased chlorophyll (a/b) ratio. Contrarily, Ca application to atrazine pre-treated seedlings lowered the harmful effects of atrazine by reducing ROS levels, but enhancing the accumulation of total chlorophyll contents. Ca-protected seedlings in the presence of atrazine manifested reduced APX and POD activity, whereas SOD and GST activity was further increased with Ca application. Antioxidant gene transcripts that were down-regulated by atrazine toxicity were up-regulated with the application of Ca. Calcium application also resulted in up-regulation of the D1 protein. In conclusion, ability of calcium to reverse atrazine-induced oxidative damage and calcium regulatory role on GST in Pennisetum was presented. PMID:27391035

  15. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P < 0.05) the fasting blood glucose compared to control groups. There was significant increase (P < 0.05) in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase) in the liver of the rats treated with it and significantly reduced (P < 0.05) the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians. PMID:24367390

  16. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells.

    PubMed

    Pandurangan, Muthuraman; Veerappan, Muthuviveganandavel; Kim, Doo Hwan

    2015-02-01

    The present study was aimed to investigate the dose-dependent effect of zinc oxide (ZnO) nanoparticles on antioxidant enzyme activities and messenger RNA (mRNA) expression in the cocultured C2C12 and 3T3-L1 cells. Coculturing experiments are 3D and more reliable compared to mono-culture (2D) experiment. Even though, there are several studies on ZnO nanoparticle-mediated cytotoxicity, but there are no studies on the effect of ZnO nanoparticle on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. A cytotoxicity assay was carried out to determine the effect of ZnO nanoparticles on the C2C12 and 3T3-L1 cell viability. At higher concentration of ZnO nanoparticles, C2C12 and 3T3-L1 cells almost die. ZnO nanoparticles increased reactive oxygen species (ROS) and lipid peroxidation and reduced glutathione (GSH) levels in a dose-dependent manner in the C2C12 and 3T3-L1 cells. In addition, ZnO nanoparticles increased antioxidant enzyme activities and their mRNA expression in the C2C12 and 3T3-L1 cells. In conclusion, the present study showed that ZnO nanoparticles increased oxidative stress, antioxidant enzyme activities, and their mRNA expression in the cocultured C2C12 and 3T3-L1 cells. PMID:25380643

  17. Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats

    PubMed Central

    2013-01-01

    Background The effects of curcumin on the activities and gene expression of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (G-ST), B-cell CLL/lymphoma 2 (Bcl-2) and insulin like growth factor-1 (IGF-1) in diabetic rats were studied. Methods Twenty four rats were assigned to three groups (8 rats for each). Rats of first group were non diabetic and rats of the second group were rendered diabetic by streptozotocin (STZ). Both groups received vehicle, corn oil only (5 ml/kg body weight) and served as negative and positive controls, respectively. Rats of the third group were rendered diabetic and received oral curcumin dissolved in corn oil at a dose of 15 mg/5 ml/kg body weight for 6 weeks. Results Diabetic rats showed significant increase of blood glucose, thiobarbituric acid reactive substances (TBARS) and activities of all antioxidant enzymes with significant reduction of reduced glutathione (GSH) compare to the control non diabetic group. Gene expression of Bcl2, SOD, CAT, GPX and GST was increased significantly in diabetic untreated rats compare to the control non diabetic group. The administration of curcumin to diabetic rats normalized significantly their blood sugar level and TBARS values and increased the activities of all antioxidant enzymes and GSH concentration. In addition, curcumin treated rats showed significant increase in gene expression of IGF-1, Bcl2, SOD and GST compare to non diabetic and diabetic untreated rats. Conclusion Curcumin was antidiabetic therapy, induced hypoglycemia by up-regulation of IGF-1 gene and ameliorate the diabetes induced oxidative stress via increasing the availability of GSH, increasing the activities and gene expression of antioxidant enzymes and Bcl2. Further studies are required to investigate the actual mechanism of action of curcumin regarding the up regulation of gene expression of examined parameters. PMID:24364912

  18. Seasonal-dependent variations in metabolic status of spermatozoa and antioxidant enzyme activity in the reproductive tract fluids of wild boar/domestic pig hybrids.

    PubMed

    Dziekońska, A; Fraser, L; Koziorowska-Gilun, M; Strzezek, J; Koziorowski, M; Kordan, W

    2014-01-01

    This study investigated seasonal changes in the metabolic performance of spermatozoa and activity of the antioxidant enzymes in the seminal plasma of three wild boar/domestic pigs (aged 1.5 to 2.5 years) and the activity of the antioxidant enzymes in fluids of the cauda epididymidis and vesicular glands from 16 wild boar/domestic pig hybrids (aged 1 to 3 years). Parameters of the sperm metabolic activity, such as total motility, mitochondrial functions, and measurements of oxygen uptake, ATP content and L-lactate production, were analyzed during the spring-summer and autumn-winter periods. Besides these sperm metabolic parameters, the sperm membrane integrity was also assessed. Total protein content and activity of the antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), were measured in the reproductive tract fluids. There were no marked significant differences (P > 0.05) between the seasonal periods in terms of sperm motility, mitochondrial function and oxygen uptake; however, spermatozoa collected during the autumn-winter period exhibited higher (P < 0.05) ATP content and L-lactate production than those harvested during the spring-summer period. It was found that the vesicular gland fluid exhibited a higher level of SOD activity during the spring-summer period compared with the autumn-winter period. Furthermore, CAT activity in the seminal plasma and vesicular gland fluid was greater during the autumn-winter. Total protein content was significantly higher in the vesicular gland fluid, whereas the cauda epididymidal fluid exhibited greater SOD and GPx activities, irrespective of the seasonal period. The findings of this study confirmed seasonal-related differences in the metabolic performance of spermatozoa and activity of antioxidant enzymes of the reproductive tract of the boar/domestic pig hybrids. PMID:24988857

  19. Analysis of gene expression changes, caused by exposure to nitrite, in metabolic and antioxidant enzymes in the red claw crayfish, Cherax quadricarinatus.

    PubMed

    Jiang, Qichen; Zhang, Wenyi; Tan, Hongyue; Pan, Dongmei; Yang, Yuanhao; Ren, Qian; Yang, Jiaxin

    2014-06-01

    We evaluated the effect of acute exposure to nitrite on expression of antioxidant and metabolic enzyme genes in gill tissue of advanced juvenile Cherax quadricarinatus. A 48h nitrite exposure was conducted, using four test concentrations (NO2-N=0.5, 1, 1.5 and 2mg L(-1)) plus a control group. The relative mRNA expression of mitochondrial manganese superoxide dismutase (mMnSOD), cytosolic MnSOD (cMnSOD), extracellular copper/zinc SOD (exCu/ZnSOD), catalase (CAT), glutathione S-transferase (GST), arginine kinase (AK), glutamate dehydrogenase (GDH), mitochondrial malate dehydrogenase (mMDH), Na(+)/K(+)-ATPase α-subunit and phosphoenolpyruvate carboxykinase (PEPCK) in gill tissue was measured. Significantly increased mRNA expression was observed for all the antioxidant enzymes after 12 and 24h. After 48h, they all decreased at high nitrite concentrations. The gene expression levels of AK, GDH, mMDH and Na(+)/K(+)-ATPase α-subunit showed similar trends as the antioxidant enzymes. Significant depression of gene expression levels of PEPCK occurred throughout the experimental time at high nitrite concentrations. The results indicated that nitrite could induce oxidative and metabolic stress in C. quadricarinatus, in a time dependent manner, which suggests they could be helpful in predicting sublethal nitrite toxicity and useful in environmental monitoring studies. PMID:24680578

  20. Germinating Peanut (Arachis hypogaea L.) Seedlings Attenuated Selenite-Induced Toxicity by Activating the Antioxidant Enzymes and Mediating the Ascorbate-Glutathione Cycle.

    PubMed

    Wang, Guang; Zhang, Hong; Lai, Furao; Wu, Hui

    2016-02-17

    Selenite can enhance the selenium nutrition level of crops, but excessive selenite may be toxic to plant growth. To elucidate the mechanisms underlying the role of selenite in production and detoxification of oxidative toxicity, peanut seedlings were developed with sodium selenite (0, 3, and 6 mg/L). The effects of selenite on antioxidant capacity, transcript levels of antioxidant enzyme genes, and enzyme activities in hypocotyl were investigated. The CuZn-SOD, GSH-Px, GST, and APX gene expression levels and their enzyme activities in selenite treatments were 1.0-3.6-fold of the control. Selenite also significantly increased the glutathione and ascorbate concentrations by mediating the ascorbate-glutathione cycle, and the selenite-induced hydrogen peroxide may act as a second messenger in the signaling pathways. This work has revealed a complex antioxidative response to selenite in peanut seedling. Understanding these mechanisms may help future research in increasing selenite tolerance and selenium accumulation in peanut and other crops. PMID:26824138

  1. Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis.

    PubMed

    Miller-Morey, Jeanine S; Van Dolah, Frances M

    2004-08-01

    This study identifies stress proteins and antioxidant enzymes that may play a role in the survival strategies of the Florida red tide dinoflagellate, Karenia brevis. Heat shock protein 60 (Hsp 60), mitochondrial small heat shock protein (mitosHsp), chloroplastic small heat shock protein (chlsHsp), Mn superoxide dismutase (SOD), and Fe SOD were first identified by Western blotting. The induction of these proteins in laboratory cultures in response to elevated temperatures, hydrogen peroxide, lead, or elevated light intensities was next assessed. In parallel, F(V)/F(M), a measurement of photosynthetic efficiency and common proxy of cellular stress, was determined. Hsp 60, Fe SOD, and Mn SOD were induced following exposure to elevated temperatures, hydrogen peroxide, or lead. MitosHsp responded only to heat, whereas chlsHsp responded only to H(2)O(2)-induced stress. The expression of stress proteins and antioxidant enzymes appears to be a more sensitive indicator of heat or chemically induced stresses than F(V)/F(M). However, F(V)/F(M) decreased significantly in response to elevated light intensities that did not induce the expression of stress proteins. These results identify for the first time stress proteins and antioxidant enzymes in K. brevis, provide evidence for differential sensitivity of cellular organelles to various sources of stress, and confirm the presence of conserved stress responses observed across phyla in a dinoflagellate. PMID:15536057

  2. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro.

    PubMed

    Manquián-Cerda, K; Escudey, M; Zúñiga, G; Arancibia-Miranda, N; Molina, M; Cruces, E

    2016-11-01

    Cadmium (Cd(2+)) can affect plant growth due to its mobility and toxicity. We evaluated the effects of Cd(2+) on the production of phenolic compounds and antioxidant response of Vaccinium corymbosum L. Plantlets were exposed to Cd(2+) at 50 and 100µM for 7, 14 and 21 days. Accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the antioxidant enzyme SOD was determined. The profile of phenolic compounds was evaluated using LC-MS. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power test (FRAP). Cd(2+) increased the content of MDA, with the highest increase at 14 days. The presence of Cd(2+) resulted in changes in phenolic compounds. The main phenolic compound found in blueberry plantlets was chlorogenic acid, whose abundance increased with the addition of Cd(2+) to the medium. The changes in the composition of phenolic compounds showed a positive correlation with the antioxidant activity measured using FRAP. Our results suggest that blueberry plantlets produced phenolic compounds with reducing capacity as a selective mechanism triggered by the highest activity of Cd(2+). PMID:27485373

  3. Interplay between the chalcone cardamonin and selenium in the biosynthesis of Nrf2-regulated antioxidant enzymes in intestinal Caco-2 cells.

    PubMed

    De Spirt, Silke; Eckers, Anna; Wehrend, Carina; Micoogullari, Mustafa; Sies, Helmut; Stahl, Wilhelm; Steinbrenner, Holger

    2016-02-01

    Selenoenzymes and nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated phase II enzymes comprise key components of the cellular redox and antioxidant systems, which show multiple interrelations. Deficiency of the micronutrient selenium (Se) and impaired biosynthesis of selenoproteins have been reported to result in induction of Nrf2 target genes. Conversely, transcription of the selenoenzymes glutathione peroxidase 2 (GPx2) and thioredoxin reductase 1 (TrxR1) is up-regulated upon Nrf2 activation. Here, we have studied the interplay between Se and the secondary plant metabolite cardamonin, an Nrf2-activating chalcone, in the regulation of Nrf2-controlled antioxidant enzymes. Se-deficient and Se-repleted (sodium selenite-supplemented) human intestinal Caco-2 cells were exposed to cardamonin. Uptake of cardamonin by the Caco-2 cells was independent of their Se status. Cardamonin strongly induced gene expression of GPx2 and TrxR1. However, cardamonin treatment did not result in elevated GPx or TrxR activity and protein levels, possibly relating to a concomitant down-regulation of O-phosphoseryl-tRNA(Sec) kinase (PSTK), an enzyme involved in translation of selenoprotein mRNAs. On the other hand, induction of the Nrf2-regulated enzyme heme oxygenase 1 (HO-1) by cardamonin was diminished in Se-replete compared to Se-deficient cells. Our findings suggest that cardamonin interferes with the biosynthesis of Nrf2-regulated selenoenzymes, in contrast to the Nrf2-activating isothiocyanate compound sulforaphane, which has been shown earlier to synergize with Se-mediated cytoprotection. Conversely, the cellular Se status apparently affects the cardamonin-mediated induction of non-selenoprotein antioxidant enzymes such as HO-1. PMID:26698667

  4. Pulmonary antioxidants

    SciTech Connect

    Massaro, E.J.; Grose, E.C.; Hatch, G.E.; Slade, R.

    1987-05-01

    One of the most vital of the cellular defenses against pollution is an antioxidant armanentarium which consists of oxidant scavenging molecules such as vitamin E, glutathione, vitamin C, and uric acid as well as a number of enzymes (superoxide dismutase, semidehydroascorbate reductase, catalase, GSH synthetase, GSH peroxidase, GSH reductase, and GSH transferase) and appears to function in keeping oxidant forces under control. Pollutants can upset the oxidant/antioxidant balance of cells by inhibiting vital enzymes, by reacting with oxidant scavengers, or by forming free radical intermediates which initiate uncontrolled tissue reactions with molecular oxygen. The book chapter reviews possible interactions between pollutants and the oxidant/antioxidant balance.

  5. A Comparative Study for the Evaluation of Two Doses of Ellagic Acid on Hepatic Drug Metabolizing and Antioxidant Enzymes in the Rat

    PubMed Central

    Celik, Gurbet; Semiz, Aslı; Karakurt, Serdar; Arslan, Sevki; Adali, Orhan; Sen, Alaattin

    2013-01-01

    The present study was designed to evaluate different doses of ellagic acid (EA) in vivo in rats for its potential to modulate hepatic phases I, II, and antioxidant enzymes. EA (10 or 30 mg/kg/day, intragastrically) was administered for 14 consecutive days, and activity, protein, and mRNA levels were determined. Although the cytochrome P450 (CYP) 2B and CYP2E enzyme activities were decreased significantly, the activities of all other enzymes were unchanged with the 10 mg/kg/day EA. In addition, western-blot and qRT-PCR results clearly corroborated the above enzyme expressions. On the other hand, while the NAD(P)H:quinone oxidoreductase 1 (NQO1), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities were increased significantly, CYP1A, 2B, 2C, 2E, and 19 enzyme activities were reduced significantly with 30 mg/kg/day EA. In addition, CYP2B, 2C6, 2E1, and 19 protein and mRNA levels were substantially decreased by the 30 mg/kg/day dose of EA, but the CYP1A protein, and mRNA levels were not changed. CYP3A enzyme activity, protein and mRNA levels were not altered by neither 10 nor 30 mg/kg/day ellagic acid. These results indicate that EA exerts a dose-dependent impact on the metabolism of chemical carcinogens and drugs by affecting the enzymes involved in xenobiotics activation/detoxification and antioxidant pathways. PMID:23971029

  6. Role of Oxidative Stress in HIV-1-Associated Neurocognitive Disorder and Protection by Gene Delivery of Antioxidant Enzymes

    PubMed Central

    Louboutin, Jean-Pierre; Strayer, David

    2014-01-01

    HIV encephalopathy covers a range of HIV-1-related brain dysfunction. In the Central Nervous System (CNS), it is largely impervious to Highly Active AntiRetroviral Therapy (HAART). As survival with chronic HIV-1 infection improves, the number of people harboring the virus in their CNS increases. Neurodegenerative and neuroinflammatory changes may continue despite the use of HAART. Neurons themselves are rarely infected by HIV-1, but HIV-1 infects resident microglia, periventricular macrophages, leading to increased production of cytokines and to release of HIV-1 proteins, the most likely neurotoxins, among which are the envelope glycoprotein gp120 and HIV-1 trans-acting protein Tat. Gp120 and Tat induce oxidative stress in the brain, leading to neuronal apoptosis/death. We review here the role of oxidative stress in animal models of HIV-1 Associated Neurocognitive Disorder (HAND) and in patients with HAND. Different therapeutic approaches, including clinical trials, have been used to mitigate oxidative stress in HAND. We used SV40 vectors for gene delivery of antioxidant enzymes, Cu/Zn superoxide dismutase (SOD1), or glutathione peroxidase (GPx1) into the rat caudate putamen (CP). Intracerebral injection of SV (SOD1) or SV (GPx1) protects neurons from apoptosis caused by subsequent inoculation of gp120 and Tat at the same location. Vector administration into the lateral ventricle or cisterna magna protects from intra-CP gp120-induced neurotoxicity comparably to intra-CP vector administration. These models should provide a better understanding of the pathogenesis of HIV-1 in the brain as well as offer new therapeutic avenues. PMID:26785240

  7. Amelioration of Ozone-Induced Oxidative Damage in Wheat Plants Grown under High Carbon Dioxide (Role of Antioxidant Enzymes).

    PubMed Central

    Rao, M. V.; Hale, B. A.; Ormrod, D. P.

    1995-01-01

    O3-induced changes in growth, oxidative damage to protein, and specific activities of certain antioxidant enzymes were investigated in wheat plants (Triticum aestivum L. cv Roblin) grown under ambient or high CO2. High CO2 enhanced shoot biomass of wheat plants, whereas O3 exposure decreased shoot biomass. The shoot biomass was relatively unaffected in plants grown under a combination of high CO2 and O3. O3 exposure under ambient CO2 decreased photosynthetic pigments, soluble proteins, and ribulose-1,5-bisphosphate carboxylase/oxygenase protein and enhanced oxidative damage to proteins, but these effects were not observed in plants exposed to O3 under high CO2. O3 exposure initially enhanced the specific activities of superoxide dismutase, peroxidase, glutathione reductase, and ascorbate peroxidase irrespective of growth in ambient or high CO2. However, the specific activities decreased in plants with prolonged exposure to O3 under ambient CO2 but not in plants exposed to O3 under high CO2. Native gels revealed preferential changes in the isoform composition of superoxide dismutase, peroxidases, and ascorbate peroxidase of plants grown under a combination of high CO2 and O3. Furthermore, growth under high CO2 and O3 led to the synthesis of one new isoform of glutathione reductase. This could explain why plants grown under a combination of high CO2 and O3 are capable of resisting O3-induced damage to growth and proteins compared to plants exposed to O3 under ambient CO2. PMID:12228603

  8. Antioxidant enzyme activities in biofilms as biomarker of Zn pollution in a natural system: an active bio-monitoring study.

    PubMed

    Bonet, Berta; Corcoll, Natàlia; Tlili, Ahmed; Morin, Soizic; Guasch, Helena

    2014-05-01

    This study aimed to explore the use of antioxidant enzyme activities (AEA) and biofilm metal accumulation capacity in natural communities as effect-based indicator of metal exposure in fluvial systems. To achieve these objectives, an active biomonitoring using fluvial biofilm communities was performed during 5 weeks. Biofilm was colonized over artificial substrata in a non-polluted site. After 5 weeks, biofilms were translocated to four different sites with different metal pollution in the same stream. The evolution of environmental parameters as well as biofilm responses was analysed over time. Physicochemical parameters were different between sampling times as well as between the most polluted site and the less polluted ones, mainly due to Zn pollution. In contrast, AEA and metal accumulation in biofilms allowed us to discriminate the high and moderate metal pollution sites from the rest. Zn, the metal with the highest contribution to potential toxicity, presented a fast and high accumulation capacity in biofilms. According to the multivariate analysis, AEA showed different responses. While catalase (CAT) and ascorbate peroxidase (APX) variability was mainly attributed to environmental stress (pH, temperature and phosphate concentration), glutathione-S-transferase (GST) changes were related to metal pollution. Glutathione reductase (GR) and superoxide dismutase (SOD) responses were related to both stress factors. AEA and metal accumulation are proposed as sensitive effect-based field methods, to evaluate biofilm responses after acute metal exposure (e.g. an accidental spill) due to their capacity to respond after few hours, but also in routinely monitoring due to their persistent changes after few weeks of exposure. These tools could improve the Common Implementation Strategy (CIS) of the Water Framework Directive (WFD) as expert group request. PMID:24378183

  9. Lipid peroxidation, proteins modifications, anti-oxidant enzymes activities and selenium deficiency in the plasma of hashitoxicosis patients

    PubMed Central

    Mseddi, Malek; Ben Mansour, Riadh; Mnif, Fatma; Gargouri, Bochra; Abid, Mohamed; Guermazi, Fadhel; Attia, Hamadi; Lassoued, Saloua

    2015-01-01

    Objectives: The aim of this study was to explore the oxidative stress profile in hashitoxicosis (HTX) and to compare it with that of healthy subjects. Patients and methods: Spectrophotometric methods were used to evaluate the oxidative stress markers. The selenium level was investigated by atomic absorption. Results: High levels of thiobarbituric acid reactive species (TBARS) and conjugated dienes were found in HTX patients (p = 0.034 and p = 0.043, respectively) compared with healthy controls. For antioxidant enzymes, superoxide dismutase (SOD) and catalase activities increased, whereas that of glutathione peroxidase (GPx) decreased (p = 0.000, p = 0.014, p = 0.000, respectively) compared with controls. A reduction in the level of selenium (p = 0.029) and thiol groups (p = 0.008) were shown in patients; however, levels of carbonyl group and malondialdehyde (MDA) protein adducts decreased (p = 0.000) compared with controls. Positive correlation was shown between levels of free thyroxine (FT4) and TBARS (r = 0.711, p = 0.048) and between FT4 level and SOD activity (r = 0.713, p = 0.047). Conversely, GPx activity presented a negative correlation with FT4 and free triiodothyronine (FT3) levels (r = –0.934, p = 0.001; r = –0.993, p = 0.000, respectively). In addition, GPx activity showed positive correlation with selenium level (r = 0.981, p = 0.019) and the FT3 level correlated negatively with the level of thiol groups (r = –0.892, p = 0.017). Conclusions: This study shows the presence of an oxidative stress and selenium deficiency in HTX patients and suggests that the hyperthyroid state is strongly implicated in the establishment of this disturbed oxidative profile. PMID:26445640

  10. Histological changes and antioxidant enzyme activity in signal crayfish (Pacifastacus leniusculus) associated with sub-acute peracetic acid exposure.

    PubMed

    Chupani, Latifeh; Zuskova, Eliska; Stara, Alzbeta; Velisek, Josef; Kouba, Antonin

    2016-01-01

    Peracetic acid (PAA) is a powerful disinfectant recently adopted as a therapeutic agent in aquaculture. A concentration of 10 mg L(-1) PAA effectively suppresses zoospores of Aphanomyces astaci, the agent of crayfish plague. To aid in establishing safe therapeutic guideline, the effects of PAA on treated crayfish were investigated through assessment of histological changes and oxidative damage. Adult female signal crayfish Pacifastacus leniusculus (n = 135) were exposed to 2 mg L(-1) and 10 mg L(-1) of PAA for 7 days followed by a 7 day recovery period in clean water. Superoxide dismutase activity was significantly lower in gill and hepatopancreas after three days exposure to 10 mg L(1) PAA than in the group treated with 2 mg L(-1) PAA and a control in only clean water. Catalase activity in gill and hepatopancreas remained unaffected by both exposures. Glutathione reductase was significantly decreased in gill of 10 mg L(-1) PAA treated crayfish and increased in group exposed to 2 mg L(-1) compared to control after 7 days exposure. Antioxidant enzyme activity in exposed groups returned to control values after recovery period. Gill, hepatopancreas, and antennal gland showed slight damage in crayfish treated with 2 mg L(-1) of PAA compared to the control group. The extent and frequency of histological alterations were more pronounced in animals exposed to 10 mg L(-1). The gill was the most affected organ, infiltrated by granular hemocytes and displaying malformations of lamella tips and disorganization of epithelial cells. After a 7 day recovery period, the infiltrating cells in affected tissues of the exposed crayfish began to return to normal levels. Results suggested that the given concentrations could be applied to signal crayfish against crayfish plague agent in aquaculture; however, further studies are required for safe use. PMID:26611721

  11. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular Mycorrhizae under NaCl stress.

    PubMed

    He, Zhongqun; He, Chaoxing; Zhang, Zhibin; Zou, Zhirong; Wang, Huaisong

    2007-10-01

    Salinity toxicity is a worldwide agricultural and eco-environmental problem. Many literatures show that arbuscular mycorrhizal fungi (AMF) can enhance salt tolerance of many plants and some physiological changes occurred in AM symbiosis under salt stress. However, the role of ROS-scavenging enzymes in AM tomato is still unknown in continuous salt stress. This study investigated the effect of Glomus mosseae on tomato growth, cell membrane osmosis and examined the antioxidants (superoxide-dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; peroxidase, POD) responses in roots of mycorrhizal tomato and control under different NaCl stress for 40 days in potted culture. NaCl solution (0, 0.5 and 1%) was added to organic soil in the irrigation water after 45 days inoculated by AMF (Glomus mosseae). (1) AMF inoculation improved tomato growth under salt or saltless condition and reduced cell membrane osmosis, MDA (malonaldehyde) content in salinity. So the salt tolerance of tomato was enhanced by AMF; (2) SOD, APX and POD activity in roots of AM symbiosis were significantly higher than corresponding non-AM plants in salinity or saltless condition. However, CAT activity was transiently induced by AMF and then suppressed to a level similar with non-AM seedlings; (3) higher salinity (1% level) and long stress time suppressed the effect of AMF on SOD, APX, POD and CAT activity; (4) this research suggested that the enhanced salt tolerance in AM symbiosis was mainly related with the elevated SOD, POD and APX activity by AMF which degraded more reactive oxygen species and so alleviated the cell membrane damages under salt stress. Whereas, the elevated SOD, POD and APX activity due to AMF depended on salinity environment. PMID:17560092

  12. Epigallocatechin-3-gallate modulates anti-oxidant defense enzyme expression in murine submandibular and pancreatic exocrine gland cells and human HSG cells.

    PubMed

    Dickinson, Douglas; DeRossi, Scott; Yu, Hongfang; Thomas, Cristina; Kragor, Chris; Paquin, Becky; Hahn, Emily; Ohno, Seiji; Yamamoto, Tetsuya; Hsu, Stephen

    2014-05-01

    Sjogren's syndrome (SS) and type-1 diabetes are prevalent autoimmune diseases in the USA. We reported previously that epigallocatechin-3-gallate (EGCG) prevented and delayed the onset of autoimmune disease in non-obese diabetic (NOD) mice, a model for both SS and type-1 diabetes. EGCG also normalized the levels of proteins related to DNA repair and anti-oxidant activity in NOD.B10.Sn-H2 mice, a model for primary SS, prior to disease onset. The current study examined the effect of EGCG on the expression of anti-oxidant enzymes in the submandibular salivary gland and the pancreas of NOD mice and cultured human salivary gland acinar cells. NOD mice consuming 0.2% EGCG daily dissolved in water showed higher protein levels of peroxiredoxin 6 (PRDX6), a major anti-oxidant defense protein, and catalase, while the untreated NOD mice exhibited significantly lowered levels of PRDX6. Similarly, pancreas samples from water-fed NOD mice were depleted in PRDX6 and superoxide dismutase, while EGCG-fed mice showed high levels of these anti-oxidant enzymes. In cultured HSG cells EGCG increased PRDX6 levels significantly, and this was inhibited by p38 and JNK inhibitors, suggesting that the EGCG-mediated increase in protective anti-oxidant capacity is regulated in part through mitogen-activated protein kinase pathway signaling. This mechanism may explain the higher levels of PRDX6 found in EGCG-fed NOD mice. These preclinical observations warrant future preclinical and clinical studies to determine whether EGCG or green tea polyphenols could be used in novel preventive and therapeutic approaches against autoimmune diseases and salivary dysfunction involving oxidative stress. PMID:24444391

  13. Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects.

    PubMed

    Yonekura, Lina; Martins, Carolina Aguiar; Sampaio, Geni Rodrigues; Monteiro, Marcela Piedade; César, Luiz Antônio Machado; Mioto, Bruno Mahler; Mori, Clara Satsuki; Mendes, Thaíse Maria Nogueira; Ribeiro, Marcelo Lima; Arçari, Demetrius Paiva; Torres, Elizabeth Aparecida Ferraz da Silva

    2016-07-13

    We assessed the effects of guaraná (Paullinia cupana) consumption on plasma catechins, erythrocyte antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase) and biomarkers of oxidative stress (ex vivo LDL oxidation, plasma total antioxidant status and ORAC, and lymphocyte single cell gel electrophoresis) in healthy overweight subjects. Twelve participants completed a 15-day run-in period followed by a 15-day intervention with a daily intake of 3 g guaraná seed powder containing 90 mg (+)-catechin and 60 mg (-)-epicatechin. Blood samples were taken on the first and last day of the intervention period, fasting and 1 h post-dose. The administration of guaraná increased plasma ORAC, while reducing ex vivo LDL oxidation (only in the first study day) and hydrogen peroxide-induced DNA damage in lymphocytes, at 1 h post-dose. Plasma catechin (0.38 ± 0.12 and 0.44 ± 0.18 nmol mL(-1)), epicatechin (0.59 ± 0.18 and 0.64 ± 0.25 nmol mL(-1)) and their methylated metabolites were observed at 1 h post-dose but were almost negligible after overnight fasting. The activities of catalase (in both study days) and glutathione peroxidase (in the last intervention day) increased at 1 h post-dose. Furthermore, the activity of both enzymes remained higher than the basal levels in overnight-fasting individuals on the last intervention day, suggesting a prolonged effect of guaraná that continues even after plasma catechin clearance. In conclusion, guaraná catechins are bioavailable and contribute to reduce the oxidative stress of clinically healthy individuals, by direct antioxidant action of the absorbed phytochemicals and up-regulation of antioxidant/detoxifying enzymes. PMID:27302304

  14. Update on the Angiotensin Converting Enzyme 2-Angiotensin (1–7)-Mas Receptor Axis: Fetal Programing, Sex Differences, and Intracellular Pathways

    PubMed Central

    Chappell, Mark C.; Marshall, Allyson C.; Alzayadneh, Ebaa M.; Shaltout, Hossam A.; Diz, Debra I.

    2013-01-01

    The renin-angiotensin-system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. Indeed, dysregulation of the RAS may lead to the development of cardiovascular pathologies including kidney injury. Moreover, the blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS that the system is comprised of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, sodium retention, and other mechanisms to maintain blood pressure, as well as increased oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the non-classical RAS composed of the ACE2-Ang-(1–7)-Mas receptor axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and oxidative stress. Thus, a reduced tone of the Ang-(1–7) system may contribute to these pathologies as well. Moreover, the non-classical RAS components may contribute to the effects of therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury. The review considers recent studies on the ACE2-Ang-(1–7)-Mas receptor axis regarding the precursor for Ang-(1–7), the intracellular expression and sex differences of this system, as well as an emerging role of the Ang1-(1–7) pathway in fetal programing events and cardiovascular dysfunction. PMID:24409169

  15. Variation in antioxidant enzyme activities and nonenzyme components among cultivars of rabbiteye blueberries (Vaccinium ashei Reade) and V. ashei derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit from forty-two blueberry (Vaccinium species) cultivars, including thirty-six rabbiteye rabbiteye cultivars (Vaccinium ashei Reade), three V. ashei hybrid derivatives and three northern highbush (V. corymbosum L.) standards were evaluated for antioxidant activities (AA), levels of antioxidant e...

  16. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    SciTech Connect

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun; Yang, Chung S.; Zhang, Jinsong

    2015-02-15

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at

  17. Transcriptome analysis of the Tan sheep testes: Differential expression of antioxidant enzyme-related genes and proteins in response to dietary vitamin E supplementation.

    PubMed

    Xu, Chenchen; Zuo, Zhaoyun; Liu, Kun; Jia, Huina; Zhang, Yuwei; Luo, Hailing

    2016-03-15

    Gene-chip technology was employed to study the effect of dietary vitamin E on gene expression in sheep testes based on our previous research. Thirty-five male Tan sheep (20-30 days after weaning) with similar body weight were randomly allocated into five groups and supplemented 0, 20, 100, 200 and 2,000 IU sheep(-1)day(-1) vitamin E (treatments denoted as E0, E20, E100, E200, and E2000, respectively) for 120 days. At the end of the study the sheep were slaughtered and the testis samples were immediately collected and stored in liquid nitrogen. Differences in gene expression between different treated groups were identified. Based on GO enrichment analysis and the KEGG database to evaluate the gene expression data we found that vitamin E might affect genes in the testes by modulating the oxidation level, by affecting the expression of various receptors and transcription factors in biological pathways, and by regulating the expression of metabolism-associated genes. The effect of vitamin E supplementation on the expression of oxidative enzyme-related genes was detected by quantitative real-time PCR (qRT-PCR) and Western blot. The results show that dietary vitamin E, at various doses, can significantly increase (P<0.05) the mRNA and protein expression of Glutathione peroxidase 3 and Glutathione S-transferase alpha 1. In addition, the results of qRT-PCR of the antioxidant enzyme genes were consistent with those obtained using the gene chip microarray analysis. In summary, the dietary vitamin E treatment altered the expression of a number of genes in sheep testes. The increase in the mRNA and protein levels of antioxidant enzyme genes, coupled with the elevation in the activity of the antioxidant enzymes were primarily responsible for the improved reproductive performance promoted by dietary vitamin E. PMID:26723511

  18. DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans

    SciTech Connect

    Chen, Huan; Wu, Rongrong; Xu, Guangzhi; Fang, Xu; Qiu, Xiaoli; Guo, Hongyin; Tian, Bing; Hua, Yuejin

    2010-05-28

    Transcriptional regulators of the diphtheria toxin repressor (DtxR) family control the expression of genes involved in the uptake of iron and manganese, which is not only necessitous nutrients but also was suggested to be essential for intracellular redox cycling of microorganisms. We identified a unique DtxR homologue (DR2539) with special characteristics from Deinococcus radiodurans, which is known for its extreme resistance to radiation and oxidants. The dr2539 mutant showed higher resistance to hydrogen peroxide than the wild-type strain R1. Intracellular catalase activity assay and semiquantitative PCR analysis demonstrated that this DtxR is a negative regulator of catalase (katE). Furthermore, quantitative real-time PCR, global transcription profile and inductively coupled plasma-mass spectrometry analysis showed that the DtxR is involved in the regulation of antioxidant system by maintaining the intracellular Mn/Fe ion homeostasis of D. radiodurans. However, unlike the other DtxR homologues, the DtxR of D. radiodurans acts as a negative regulator of a Mn transporter gene (dr2283) and as a positive regulator of Fe-dependent transporter genes (dr1219, drb0125) in D. radiodurans.

  19. The effects of Angelica keiskei Koidz on the expression of antioxidant enzymes related to lipid profiles in rats fed a high fat diet

    PubMed Central

    Choi, Jinho; Yeo, Ikhyun

    2012-01-01

    This study was performed to examine the feeding effects of Angelica keiskei Koidz (AK) and its processed products on serum, liver, and body fat content and the expression of antioxidant genes in rats fed a high fat diet. AK and its processed products were added at 3-5% to a high fat diet and fed to adult rats for 6 weeks. In experiment 1 (EXP 1), the rats were fed with one of six diets including a control diet (normal fat), high fat diet (HF), and HF + AK additives groups (four groups). In experiment 2 (EXP 2), the rats were separated into three groups of HF, HF + AK whole leaves, and HF + fermented juice (FS) + squeeze (SA). Body weight was not different among the groups in either experiment. The liver weight was lower in the FS and SA groups compared to that in the other groups (P < 0.05). Serum luteolin was higher in the AK and processed products groups compared to that in the HF group (P < 0.05). Gene expression of the antioxidative enzymes catalase and glutathione-s-reductase in the liver was higher in the AK processed products group than that in the other groups (P < 0.05). The results suggest that the intake of AK and its processed products increased the expression of antioxidant enzymes in animals fed a high fat diet, reduced hepatic cholesterol content, and increased the effective absorption of luteolin. PMID:22413035

  20. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    PubMed

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-01

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. PMID:27094023

  1. Maximizing Antioxidants in Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits contain high levels of antioxidant compounds, such as carotenoids, flavonoids, vitamins, and phenols. These antioxidants are capable of performing a number of functions including free radical scavengers, peroxide decomposers, singlet and triplet oxygen quenchers, enzyme inhibitors, and synerg...

  2. Maximizing Antioxidants in Fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits contain high levels of antioxidant compounds, such as carotenoids, flavonoids, vitamins, and phenols. These antioxidants are capable of performing a number of functions including free radical scavengers, peroxide decomposers, singlet and triplet oxygen quenchers, enzyme inhibitors, and syner...

  3. 4-Hydroxy-2-nonenal upregulates endogenous antioxidants and phase 2 enzymes in rat H9c2 myocardiac cells: protection against overt oxidative and electrophilic injury.

    PubMed

    Zhu, Hong; Zhang, Li; Xi, Xiaoqing; Zweier, Jay L; Li, Yunbo

    2006-08-01

    This study was undertaken to determine if 4-hydroxy-2-nonenal (HNE) could upregulate antioxidants and phase 2 enzymes in rat H9c2 myocardiac cells, and if the upregulated defenses led to cytoprotection against oxidative and electrophilic injury. Incubation of H9c2 cells with HNE at noncytotoxic concentrations resulted in significant induction of cellular catalase, glutathione (GSH), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1), as determined by enzyme activity and/or protein expression. HNE treatment caused increased mRNA expression of catalase, gamma-glutamylcysteine ligase, GST-A1, and NQO1. Pretreatment of H9c2 cells with HNE led to significant protection against cytotoxicity induced by reactive oxygen and nitrogen species. HNE-pretreated cells also exhibited increased resistance to injury elicited by subsequent cytotoxic concentrations of HNE. Taken together, this study demonstrates that several antioxidants and phase 2 enzymes in H9c2 cells are upregulated by HNE and that the increased defenses afford protection against overt oxidative and electrophilic cardiac cell injury. PMID:17015266

  4. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    PubMed

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems. PMID:24552049

  5. Effects of esculetin on activities of some antioxidant enzymes of Galleria mellonella and its parasitoid Bracon hebetor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eicosanoids mediate several physiological responses, including immune defense reactions. Two major groups of eicosanoids are prostaglandins (products of cyclooxygenase pathways) and various products of lipoxygenase pathways. Antioxidant response is one of the defense mechanisms to oxidative damage...

  6. Intracellular co-localization of the Escherichia coli enterobactin biosynthetic enzymes EntA, EntB, and EntE.

    PubMed

    Pakarian, Paknoosh; Pawelek, Peter D

    2016-09-01

    Bacteria utilize small-molecule iron chelators called siderophores to support growth in low-iron environments. The Escherichia coli catecholate siderophore enterobactin is synthesized in the cytoplasm upon iron starvation. Seven enzymes are required for enterobactin biosynthesis: EntA-F, H. Given that EntB-EntE and EntA-EntE interactions have been reported, we investigated a possible EntA-EntB-EntE interaction in E. coli cells. We subcloned the E. coli entA and entB genes into bacterial adenylate cylase two-hybrid (BACTH) vectors allowing for co-expression of EntA and EntB with N-terminal fusions to the adenylate cyclase fragments T18 or T25. BACTH constructs were functionally validated using the CAS assay and growth studies. Co-transformants expressing T18/T25-EntA and T25/T18-EntB exhibited positive two-hybrid signals indicative of an intracellular EntA-EntB interaction. To gain further insights into the interaction interface, we performed computational docking in which an experimentally validated EntA-EntE model was docked to the EntB crystal structure. The resulting model of the EntA-EntB-EntE ternary complex predicted that the IC domain of EntB forms direct contacts with both EntA and EntE. BACTH constructs that expressed the isolated EntB IC domain fused to T18/T25 were prepared in order to investigate interactions with T25/T18-EntA and T25/T18-EntE. CAS assays and growth studies demonstrated that T25-IC co-expressed with the EntB ArCP domain could complement the E. coli entB(-) phenotype. In agreement with the ternary complex model, BACTH assays demonstrated that the EntB IC domain interacts with both EntA and EntE. PMID:27470582

  7. Alteration of Antioxidant Enzymes and Associated Genes Induced by Grape Seed Extracts in the Primary Muscle Cells of Goats In Vitro

    PubMed Central

    Yang, Tan; Li, Xiaomin; Zhu, Wang; Chen, Cheng; Sun, Zhihong; Tan, Zhiliang; Kang, Jinghe

    2014-01-01

    This study was conducted to investigate how the activity and expression of certain paramount antioxidant enzymes respond to grape seed extract (GSE) addition in primary muscle cells of goats. Gluteal primary muscle cells (PMCs) isolated from a 3-week old goat were cultivated as an unstressed cell model, or they were exposed to 100 µM H2O2 to establish a H2O2-stimulated cell model. The activities of catalase (CAT), superoxide dismutases (SOD) and glutathione peroxidases (GPx) in combination with other relevant antioxidant indexes [i.e., reduced glutathione (GSH) and total antioxidant capacity (TAOC)] in response to GSE addition were tested in the unstressed and H2O2-stimulated cell models, and the relative mRNA levels of the CAT, GuZu-SOD, and GPx-1 genes were measured by qPCR. In unstressed PMCs, GSE addition at the dose of 10 µg/ml strikingly attenuated the expression levels of CAT and CuZn-SOD as well as the corresponding enzyme activities. By contrast, in cells pretreated with 100 µM H2O2, the expression and activity levels of these two antioxidant enzymes were enhanced by GSE addition at 10 µg/ml. GSE addition promoted GPx activity in both unstressed and stressed PMCs, while the expression of the GPx 1 gene displayed partial divergence with GPx activity, which was mitigated by GSE addition at 10 µg/ml in unstressed PMCs. GSH remained comparatively stable except for GSE addition to H2O2-stimulated PMCs at 60 µg/ml, in which a dramatic depletion of GSH occurred. Moreover, GSE addition enhanced TAOC in unstressed (but not H2O2-stimulated) PMCs. GSE addition exerted a bidirectional modulating effect on the mRNA levels and activities of CAT and SOD in unstressed and stressed PMCs at a moderate dose, and it only exhibited a unidirectional effect on the promotion of GPx activity, reflecting its potential to improve antioxidant protection in ruminants. PMID:25238394

  8. [Effects of ryegrass and arbuscular mycorrhiza on activities of antioxidant enzymes, accumulation and chemical forms of cadmium in different varieties of tomato].

    PubMed

    Jiang, Ling; Yang, Yun; Xu, Wei-Hong; Wang, Chong-Li; Chen, Rong; Xiong, Shi-Juan; Xie, Wen-Wen; Zhang, Jin-Zhong; Xiong, Zhi-Ting; Wang, Zheng-Yin; Xie, De-Ti

    2014-06-01

    Pot experiments were carried out to investigate the effects of ryegrass and arbuscular mycorrhiza on the plant growth, malondialdehyde (MDA), antioxidant enzyme activities of leaf and root, accumulation and chemical forms of cadmium (Cd) in tow varieties of tomato when exposed to Cd (20 mg x kg(-1)). The results showed that dry weights of fruit and plant, and contents of malondialdehyde (MDA) and antioxidant enzyme activities of leaf and root, and concentrations and accumulations of Cd significantly differed between two varieties of tomato. Dry weights of fruit, roots, stem, leaf and plant were increased by single or combined remediation of ryegrass and arbuscular mycorrhiza, while MDA contents and antioxidant enzyme activities of leaf and root reduced. The total extractable Cd, F(E), F(W), F(NaCl), F(HAc), F(HCl), and F(R) in fruit of two varieties of tomato reduced by 19.4% - 52.4%, 31.0% - 75.2%, 19.7% - 59.1%, 3.1% - 48.2%, 20.0% - 65.0%, 40.7% - 100.0% and 15.2% - 50.0%, respectively. Cadmium accumulations in tomato were in the order of leaf > stem > fruit > root. Cadmium concentrations in leaf, stem, root and fruit of both varieties decreased by single or combined remediation of ryegrass and arbuscular mycorrhiza, and Cd accumulations of stem and plant of two varieties also reduced. Cd accumulations in fruit of two varieties decreased by 42.9% and 43.7% in the combined remediation treatments, respectively. Tolerance and resistance of 'LUO BEI QI' on Cd was more than 'De Fu mm-8', and Cd concentrations and Cd accumulations in fruit and plant were in the order of 'LUO BEI QI' < 'De Fu mm-8' in the presence or absence of single or combined remediation of ryegrass and arbuscular mycorrhiza. PMID:25158517

  9. Pycnogenol® inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses.

    PubMed

    Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-03-01

    Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. PMID:21796705

  10. MicroRNAs, polyamines, and the activities antioxidant enzymes are associated with in vitro rooting in white pine (Pinus strobus L.).

    PubMed

    Fei, Yunjun; Xiao, Bo; Yang, Man; Ding, Qiong; Tang, Wei

    2016-01-01

    Molecular mechanism of in vitro rooting in conifer is not fully understood. After establishment of a regeneration procedure in eastern white pine (Pinus strobus L.) using mature embryos as explants to induce shoot formation on medium containing 3 μM IAA, 6 μM BA and 6 μM TDZ and induce root formation on medium containing 0.001-0.05 μM IAA, 0.001-0.05 μM IBA, 0.001-0.05 μM TDZ, we have investigated the changes of polyamine content and the activities of antioxidant enzymes during in vitro rooting in P. strobus. Our results demonstrated that putrescine (Put), spermidine (Spd), and spermine (Spm) did not increase in P. strobus during the first week of rooting on medium supplemented with 0.01 μM indole-3-acetic acid (IAA), whereas the levels of Put, Spd, and Spm increased during the 1st-3rd week of culture on medium with IAA, and then decreased on medium with IAA. No such a change in Put, Spd, and Spm was observed on medium without IAA. Measurement of antioxidant enzyme activity demonstrated that the activities of polyphenol oxidase, catalase, and peroxidase slightly increased in the first week of culture and reached to the highest peak in the 3rd-5th week of culture. Quantitative RT-PCR results indicated that miR160 was increased on the 7th day, miR162, miR397, and miR408 was increased from the 21th to 35th day, miR857 was increased on the 35th day, and miR827 was increased on the 49th day. These results demonstrated that enhanced polyamine biosynthesis, antioxidant enzyme activity, and microRNAs are correlated with the root induction and formation in P. strobus. PMID:27069836

  11. Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.).

    PubMed

    Zur, Iwona; Dubas, Ewa; Golemiec, Elzbieta; Szechyńska-Hebda, Magdalena; Gołebiowska, Gabriela; Wedzony, Maria

    2009-08-01

    Isolated microspore cultures of two spring triticale (x Triticosecale Wittm.) cultivars were used to examine the effect of various stress treatments (either high--32 degrees C