Sample records for intracellular antioxidant enzymes

  1. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21

    PubMed Central

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-?-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  2. Possible role of Toll-like receptor-2 in the intracellular survival of Staphylococcus aureus in murine peritoneal macrophages: involvement of cytokines and anti-oxidant enzymes.

    PubMed

    Bishayi, B; Bandyopadhyay, D; Majhi, A; Adhikary, R

    2014-08-01

    Effects of blocking toll-like receptor-2 (TLR-2) on the survival of Staphylococcus aureus (S. aureus) and cytokine production in peritoneal macrophages of Swiss albino mice were analysed. Macrophages were infected with S. aureus in the presence and absence of anti-TLR-2 antibody. Tumour necrosis factor-? (TNF-?) interleukin-6 (IL-6), interferon-gamma (IFN-?), interleukin-1? (IL-1?), interleukin-12 (IL-12) and interleukin-10 (IL-10) concentrations were measured. Expressions of TLR-2, NF-?B, MyD 88 were analysed by Western Blot. Expression of TLR-2 was increased in S. aureus-infected macrophages with respect to control and was MyD 88 independent. TLR2 blocking significantly reduced TNF-?, IL-6, IL-1? and IL-10 and increased IFN-? and IL-12 production. Decreased catalase activity and increased superoxide dismutase (SOD) by S. aureus with concomitant increase in H2 O2 and nitric oxide (NO) were observed in the case of prior TLR-2 blocking. To understand whether catalase contributing in the intracellular survival, was of bacterial origin or not, 3-amino, 1, 2, 4-triazole (ATZ) was used to inhibit specifically macrophage-derived catalase. Catalase enzyme activity from the whole staphylococcal cells in the presence of ATZ suggested that the released catalase were of extracellular origin. From the intracellular survival assay, it was evident that pretreatment of macrophages with ATZ reduces the bacterial burden in macrophages when infected with the recovered bacteria only from the anti-TLR-2 antibody-treated macrophages after phagocytosis. Catalase protein expression from the whole staphylococcal cells recovered after phagocytosis also indicated the catalase release from S. aureus. Capturing of S. aureus via TLR-2 induces inflammatory reactions through activation of NF-?B-signalling pathways which was MyD88-independent. PMID:24846691

  3. Enzyme Mimic to Develop Antioxidant Nanoreactors: From Synthesis to Application

    E-print Network

    Amrhein, Valentin

    Enzyme Mimic to Develop Antioxidant Nanoreactors: From Synthesis to Application.................................................................................................................20 1.10.1. Administration of antioxidant enzymes................................................................................20 1.10. 2. Administration of enzyme mimics

  4. Reactive oxygen species and antioxidant enzymes activity of Anabaena sp. PCC 7120 (Cyanobacterium) under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Li, Gen-bao; Liu, Yong-ding; Wang, Gao-hong; Song, Li-rong

    2004-12-01

    It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of gluathione, an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity.

  5. Antioxidative enzyme activities in human erythrocytes

    Microsoft Academic Search

    Helle Raun Andersen; Jesper B. Nielsen; Flemming Nielsen; Philippe Grandjean

    Reliable and standardized methods are necessary to determine the expression of antioxidative enzymes and their role in maintaining health. In addition, the vari- ability of the enzyme activities within the general pop- ulation caused by age, gender, and life-style factors must be described. This study describes methodological conditions that are suitable for analyzing copper-zinc superoxide dismutase (CuZn-SOD), glutathione peroxi- dase

  6. Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity.

    PubMed

    Wen, Lingrong; You, Lijun; Yang, Xiaoman; Yang, Jiali; Chen, Feng; Jiang, Yueming; Yang, Bao

    2015-07-01

    Litchi leaf is a good resource for phenolics, which are good candidates for medicines. In this work, three phenolics were isolated from litchi leaf by column chromatography. Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy as secoisolariciresinol 9'-O-?-D-xyloside (1), 4,7,7',8',9,9'-hexahydroxy-3,3'-dimethoxy-8,4'-oxyneolignan (2), and cinnamtannin B1 (3). Cinnamtannin B1 showed better extra- and intracellular antioxidant activities than Compounds 1 and 2. The intracellular antioxidant activity of cinnamtannin B1 was related to the upregulation of endogenous antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase), and inhibition of ROS generation. Furthermore, cinnamtannin B1 exhibited strong antiproliferative effects against HepG2 and Siha cell lines with no significant cytotoxicities. In the case of the HepG2 cell line, cell cycle arrest and apoptosis induction were the underlying anticancer mechanisms of cinnamtannin B1. The results indicated that cinnamtannin B1 was a potent cancer cell proliferation inhibitor and a good intracellular antioxidant. PMID:25857215

  7. UNCORRECTEDPROOF 3 Survival rate and antioxidant enzyme activity of ram

    E-print Network

    Zaragoza, Universidad de

    UNCORRECTEDPROOF 3 Survival rate and antioxidant enzyme activity of ram 4 spermatozoa after, the activity of three 17 antioxidant enzymes, superoxide dismutase (SOD), glutathione reductase (GR after 6 h of incubation. 27 In addition, this sample showed higher activity values for the antioxidant

  8. The Assessments of the Intracellular Antioxidant Protection of the Organism after LLLT Irradiation

    SciTech Connect

    Freitinger-Skalicka, Zuzana; Navratil, Leos; Zolzer, Friedo; Hon, Zdenek [University of South Bohemia, Faculty of Health and Social Studies, Department of Radiology and Toxicology, Ceske Budejovice-Czech Republic (Czech Republic)

    2009-06-19

    The antioxidants are chemical compounds that can bind to free oxygen radicals preventing these radicals from damaging healthy cells. Low levels of antioxidants, or inhibition of the antioxidant enzymes causes oxidative stress and may damage or kill cells. The purpose of this project was to establish the changes at intracellular antioxidant protection of the organism after LLLT irradiation. We used female mice of the strain CD1. The mice were exposed in the abdomen region to laser light. From the blood was assessment the Glutathione peroxidase, Reduced Glutathione and Plasma Antioxidant Capacity. The results obtained in the present study demonstrated that in vivo irradiation of the mice with low level lasers did not cause any statistically significant changes in superoxide dismutase and Glutathione peroxidase but we found changes in Reduced Glutathione and Plasma Antioxidant Capacity after exposing the mice to the LLLT during the 30 minutes after irradiation, as well on the 4th day. Do not replace the word ''abstract,'' but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your ''Enter'' key. You may want to print this page and refer to it as a style sample before you begin working on your paper.

  9. The Assessments of the Intracellular Antioxidant Protection of the Organism after LLLT Irradiation

    NASA Astrophysics Data System (ADS)

    Freitinger-Skalicka, Zuzana; Navratil, Leos; Zolzer, Friedo; Hon, Zdenek

    2009-06-01

    The antioxidants are chemical compounds that can bind to free oxygen radicals preventing these radicals from damaging healthy cells. Low levels of antioxidants, or inhibition of the antioxidant enzymes causes oxidative stress and may damage or kill cells. The purpose of this project was to establish the changes at intracellular antioxidant protection of the organism after LLLT irradiation. We used female mice of the strain CD1. The mice were exposed in the abdomen region to laser light. From the blood was assessment the Glutathione peroxidase, Reduced Glutathione and Plasma Antioxidant Capacity. The results obtained in the present study demonstrated that in vivo irradiation of the mice with low level lasers did not cause any statistically significant changes in superoxide dismutase and Glutathione peroxidase but we found changes in Reduced Glutathione and Plasma Antioxidant Capacity after exposing the mice to the LLLT during the 30 minutes after irradiation, as well on the 4th day. Do not replace the word "abstract," but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your "Enter" key. You may want to print this page and refer to it as a style sample before you begin working on your paper.

  10. Dynamic Reorganization of Metabolic Enzymes into Intracellular Bodies

    PubMed Central

    O’Connell, Jeremy D.; Zhao, Alice; Ellington, Andrew D.; Marcotte, Edward M.

    2013-01-01

    Both focused and large-scale cell biological and biochemical studies have revealed that hundreds of metabolic enzymes across diverse organisms form large intracellular bodies. These proteinaceous bodies range in form from fibers and intracellular foci—such as those formed by enzymes of nitrogen and carbon utilization and of nucleotide biosynthesis—to high-density packings inside bacterial microcompartments and eukaryotic microbodies. Although many enzymes clearly form functional mega-assemblies, it is not yet clear for many recently discovered cases whether they represent functional entities, storage bodies, or aggregates. In this article, we survey intracellular protein bodies formed by metabolic enzymes, asking when and why such bodies form and what their formation implies for the functionality—and dysfunctionality—of the enzymes that comprise them. The panoply of intracellular protein bodies also raises interesting questions regarding their evolution and maintenance within cells. We speculate on models for how such structures form in the first place and why they may be inevitable. PMID:23057741

  11. Protective role of antioxidant enzymes under high temperature stress

    Microsoft Academic Search

    Moaed Almeselmani; P. S. Deshmukh; R. K. Sairam; S. R. Kushwaha; T. P. Singh

    2006-01-01

    An experiment was conducted to study the effect of high temperature stress on the antioxidant enzyme activity in five wheat genotypes viz., PBW 343, PBW 175, HDR-77, HD 2815 and HD 2865. There was significant increase in the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) in the late and very late planting and at all stages

  12. Lipoperoxidation and antioxidant enzymes activity in pregnancy complicated with hypertension

    Microsoft Academic Search

    Giuseppe Loverro; Pantaleo Greco; Fernando Capuano; Domenico Carone; Gennaro Cormio; Luigi Selvaggi

    1996-01-01

    Objective: To assess maternal circulating levels of lipid peroxidation breakdown products and antioxidant enzymes activity in pregnancies complicated with hypertension. Study design: Ten women with uncomplicated pregnancies and nine women with hypertension antedating pregnancy were prospectively sampled. Eight women, who had developed preeclampsia, were also cross-sectionally included. Twenty healthy non pregnant volunteers were the control group. Thiobarbituric acid reactive substances

  13. Antioxidant enzymes as redox-based biomarkers: a brief review

    PubMed Central

    Yang, Hee-Young; Lee, Tae-Hoon

    2015-01-01

    The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208] PMID:25560698

  14. Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The changes in antioxidant capacity, enzyme activity and decay inhibition in strawberry fruit (Fragaria x ananassa) illuminated with different UV-C dosages were investigated. Three UV-C illumination durations and dosages, 1 min, 5 min and 10 min, (0.43, 2.15 and 4.30 kJ m-2) tested promoted the anti...

  15. Role of antioxidant enzymes in cell immortalization and transformation

    Microsoft Academic Search

    Larry W. Oberley; Terry D. Oberley

    1988-01-01

    The role of antioxidant enzymes, particularly superoxide dismutase (SOD), in immortalization and malignant transformation is discussed. SOD (generally MnSOD) has been found to be lowered in a wide variety of tumor types when compared to an appropriate normal cell control. Levels of immunoreactive MnSOD protein and mRNA for MnSOD also appear to be lowered in tumor cells. Tumor cells have

  16. Increased Peroxidation and Reduced Antioxidant Enzyme Activity in Alzheimer's Disease

    Microsoft Academic Search

    David L. Marcus; Christopher Thomas; Charles Rodriguez; Katherine Simberkoff; Jir S. Tsai; James A. Strafaci; Michael L. Freedman

    1998-01-01

    The overall peroxidation activity in brain tissue by region from patients with Alzheimer's disease (AD) and age-matched controls was determined employing the thiobarbituric acid-reactive substances (TBARS) assay, a measure of lipid peroxidation, followed by a determination the activities of the antioxidant enzymes Cu\\/Zn superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), in the frontal, temporal, and cerebellar cortex of

  17. Antioxidant enzymes in blood of patients with Friedreich's ataxia

    PubMed Central

    Tozzi, G; Nuccetelli, M; Lo, B; Bernardini, S; Bellincampi, L; Ballerini, S; Gaeta, L; Casali, C; Pastore, A; Federici, G; Bertini, E; Piemonte, F

    2002-01-01

    Background and Aims: Increased generation of reactive oxygen species and mitochondrial dysfunction may underlie the pathophysiology of Friedreich's ataxia, the most common inherited ataxia, due to GAA expansion in a gene coding for a mitochondrial protein (frataxin), implicated in the regulation of iron metabolism. Because iron overload would cause oxidative stress in Friedreich's ataxia, we investigated the enzyme antioxidant system in the blood of 14 patients by determining superoxide dismutase, glutathione peroxidase, and glutathione trasferase catalytic activities. We also studied the glutathione S-transferase genotype polymorphism in order to evaluate its possible influence on enzyme activity. Methods: Blood samples were obtained from 14 unrelated patients with Friedreich's ataxia and 21 age matched healthy subjects. Antioxidant enzyme determinations were spectrophotometrically assayed using specific substrates; the glutathione S-transferase genotype polymorphism was analysed by endonuclease restriction mapping of exon 5 and 6 amplification products. Results: There was a significant elevation of the superoxide dismutase/glutathione peroxidase activity ratio (0.037 (0.01) v 0.025 (0.008) of controls) and an 83% rise of glutathione transferase specific activity (0.22 (0.1) v 0.12 (0.03) nmol/min/mg protein) in blood of patients with Friedreich's ataxia than in the controls. The genotype polymorphism of glutathione S-transferase enzyme did not show any relevant differences when compared to that of healthy subjects. Conclusions: Data show an impairment in vivo of antioxidant enzymes in patients with Friedreich's ataxia and provide evidence of an increased sensitivity to oxidative stress, supporting a consistent role of free radical cytotoxicity in the pathophysiology of the disease. PMID:11970939

  18. Nigella sativa fixed and essential oil improves antioxidant status through modulation of antioxidant enzymes and immunity.

    PubMed

    Sultan, Muhammad Tauseef; Butt, Masood Sadiq; Karim, Roselina; Ahmad, Nisar; Ahmad, Rabia Shabbir; Ahmad, Waqas

    2015-03-01

    The onset of 21st century witnessed the awareness among the masses regarding the diet-health linkages. The researchers attempted to explore traditional products/plants were in the domain of pharmacy and nutrition focussing on their health benefits. In the present research intervention, we investigate the role of Nigella sativa fixed oil (NSFO) and essential oil (NSEO) in improving antioxidant status and modulation of enzymes. The National Institute of Health (NIH) provided us 30 Sprague Dawley rats that were equally placed in three groups. The groups were fed on their respective diets (56 days) two experimental diets i.e. D2 (NSFO @ 4.0%) and D3 (NSEO @ 0.30%) and control. The indices pertaining to antioxidant status, antioxidant enzymes, and parameters pertaining to immunity were evaluated at 4 weeks interval. The experimental diets (NSFO@ 4.0% & NSEO@ 0.30%) modulated the activities of antioxidant enzymes i.e., catalase (CAT), superoxide dismutase (SOD), glutathione transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx), positively. Indices of antioxidant status like tocopherols and glutathione were in linear relationship with that of GPx, GR and GST (P<0.01). Myeloperoxidase activities were in negative correlation with GST (P<0.01) but positive correlation with some other parameters. In the nutshell, the fixed and essential oil of Nigella sativa are effective in improving the indices pertaining to antioxidant status, however, the immune boosting potential needs further clarification. However, authors are of the view that there is need to explore the molecular targets of Nigella sativa fixed and essential oils. Findings from such studies would be useful to validate this instant study for health promoting potential against diabetes mellitus and cardiovascular disorders. PMID:25730812

  19. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays

    Microsoft Academic Search

    Dong Hee Lee; Chin Bum Lee

    2000-01-01

    To investigate the antioxidant defense system, chilling stress-induced changes of antioxidant enzymes were examined in the leaves of cucumber (Cucumis sativus L.). Chilling stress preferentially enhanced the activities of the superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and peroxidase specific to guaiacol, whereas it induced the decrease of catalase activity. In order to analyze the changes of antioxidant

  20. Regulation of antioxidant enzymes in lung after oxidant injury.

    PubMed Central

    Quinlan, T; Spivack, S; Mossman, B T

    1994-01-01

    Studies have implicated active oxygen species (AOS) in the pathogenesis of various lung diseases. Many chemical and physical agents in the environment are potent generators of AOS, including ozone, hyperoxia, mineral dusts, paraquat, etc. These agents produce AOS by different mechanisms, but frequently the lung is the primary target of toxicity, and exposure results in damage to lung tissue to varying degrees. The lung has developed defenses to AOS-mediated damage, which include antioxidant enzymes, the superoxide dismutases [copper-zinc (CuZnSOD) and manganese-containing (MnSOD)], catalase, and glutathione peroxidase (GPX). In this review, antioxidant defenses to environmental stresses in the lung as well as in isolated pulmonary cells following exposure to a number of different oxidants, are summarized. Each oxidant appears to induce a different pattern of antioxidant enzyme response in the lung, although some common trends, i.e., induction of MnSOD following oxidants inducing inflammation or pulmonary fibrosis, in responses to oxidants occur. Responses may vary between the different cell types in the lung as a function of cell-cycle or other factors. Increases in MnSOD mRNA or immunoreactive protein in response to certain oxidants may serve as a biomarker of AOS-mediated damage in the lung. Images Figure 3. PMID:7523104

  1. Antioxidant enzymes responses to cadmium in radish tissues.

    PubMed

    Vitória, A P; Lea, P J; Azevedo, R A

    2001-07-01

    To investigate the antioxidant responses of radish (Raphanus sativus L.) to cadmium (Cd) treatment, seedlings of a tolerant variety were grown in increasing concentrations of CdCl(2), ranging from 0.25-1 mM, for up to 72 h in a hydroponic system. Analysis of Cd uptake indicated that most of the Cd accumulated in the roots, but some was also translocated and accumulated in the leaves, especially at the higher concentrations of Cd used in the experiments. Roots and leaves were analysed for catalase, glutathione reductase and superoxide dismutase activities. Catalase and glutathione reductase activities increased considerably in the roots and leaves after 24 h exposure to the metal, indicating a direct correlation with Cd accumulation. The analysis of native PAGE enzyme activity staining, revealed several superoxide dismutase isoenzymes in leaves, with the two predominant isoenzymes exhibiting increases in activity in response to Cd treatment. The results suggest that in radish, the activity of antioxidant enzymes responds to Cd treatment. The main response may be via the activation of the ascorbate-glutathione cycle for the removal of hydrogen peroxide, or to ensure the availability of glutathione for the synthesis of Cd-binding proteins. PMID:11397437

  2. Dieckol enhances the expression of antioxidant and detoxifying enzymes by the activation of Nrf2-MAPK signalling pathway in HepG2 cells.

    PubMed

    Lee, Min-Sup; Lee, Bonggi; Park, Kyoung-Eun; Utsuki, Tadanobu; Shin, Taisun; Oh, Chul Woong; Kim, Hyeung-Rak

    2015-05-01

    Dieckol was previously reported to exhibit antioxidant and anticancer activities in vitro studies. In this study, we characterised the mechanism underlying the dieckol-mediated expression of antioxidant and detoxifying enzymes. Dieckol suppressed the production of intracellular reactive oxygen species in the presence or absence of H2O2 and increased glutathione level in HepG2 cells. Dieckol enhanced the activities of antioxidant enzymes, and the expression of detoxifying enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO1), and glutathione S-transferase (GST) in HepG2 cells. Enhanced expression of antioxidant and detoxifying enzymes by dieckol was presumed to be the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2) demonstrated by its nuclear translocation and transcriptional activity via activation of mitogen-activated protein kinases in HepG2 cells. Furthermore, we demonstrated dieckol induced the expression of HO-1 in mouse liver. These results demonstrate that the dieckol-mediated cytoprotection in HepG2 cells is mediated through a ROS-independent up-regulation of antioxidant and detoxifying enzymes via Nrf2 activation as well as its intrinsic antioxidant activity, suggesting that dieckol may be used as a natural cytoprotective agent. PMID:25529716

  3. Organochlorine pesticides and antioxidant enzymes are inversely correlated with liver enzyme gene expression in Cyprinus carpio.

    PubMed

    Karaca, Melis; Var??l?, Lokman; Korkmaz, Kemal; Özayd?n, Okan; Perçin, Fatih; Orhan, Hilmi

    2014-10-15

    The present study was designed to investigate the association between levels of organochlorine pesticides (OCPs) and liver enzyme responses in Cyprinus carpio. Fish were caught at three stations in the Büyük Menderes River (BMR): the origin, the Sarayköy station, and the estuary. Seventeen OCPs were quantified in liver tissue, as well as in river water by gas chromatography (GC)-electron capture detection, and structures were confirmed by negative chemical ionization-GC-mass spectrometry. The activities of CYP1A, GST, Se-GPx, CAT, and SODs were determined by spectrophotometry or fluorimetry. The mRNA levels of CYP1A, GST, and SOD1 were quantified by real-time RT-PCR. CYP1A and antioxidant enzyme activities were dramatically higher at the Sarayköy station, where OCP pollution is higher than the other two stations. Mn-SOD is responsible for the increase in total SOD activity in the Sarayköy samples. However, gene expression levels of certain enzymes were heavily suppressed. Our findings show that the transcriptional and functional responses of CYP1A and antioxidant enzymes are inversely correlated. PMID:24583044

  4. Disparate Antioxidant Enzyme Activities in Cultured Human Cutaneous Fibroblasts, Keratinocytes, and Melanocytes

    Microsoft Academic Search

    Joseph J. Yohn; David A. Norris; David G. Yrastorza; Irene J. Buno; Jonathan A. Leff; Steven S. Hake; John E. Repine

    1991-01-01

    Antioxidant enzyme activities of cultured human foreskin fibroblasts, keratinocytes and melanocytes from healthy black and Caucasian donors were measured and compared. Fibroblasts had more (p < 0.05) peroxidase, catalase, glutathione peroxidase and superoxide dismutase activity than keratinocytes. Keratinocytes had more (p < 0.05) peroxidase, catalase, glutathione peroxidas, and superoxide dismutase activity than melanocytes. No differences in antioxidant enzyme activities were

  5. [Effects of dietary fat level on the xenobiotic metabolism enzymes activity and antioxidant enzymes in rats].

    PubMed

    Kravchenko, L V; Aksenov, I V; Trusov, N V; Guseva, G V; Avren'eva, L I

    2012-01-01

    Male Wistar rats received fat-free diet or diets containing 5, 10 and 30% of fat (sunflower oil + lard, 1:1) for 4 weeks. The direct relationship between dietary fat level and ethoxyresorufin O-dealkylase activity of CYP1A1, methoxyresorufin O-dealkylase activity of CYP1A2, pentoxyresorufin O-dealkylase activity of CYP2B1 and testosterone 6beta-hydroxylase activity of CYP3A was found. Activities of key enzymes of phase II xenobiotic metabolism (total activity of glutathione transferase, activity of UDP-glucuronosyle transferase) and antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, paraoxonase-1 and heme oxygenase-1) also increased with higher dietary fat level. PMID:22642161

  6. Protection of Cells against Oxidative Stress by Nanomolar Levels of Hydroxyflavones Indicates a New Type of Intracellular Antioxidant Mechanism

    PubMed Central

    Hájek, Jan; Sta?ková, Veronika; Filipský, Tomáš; Balducci, Valentina; De Vito, Paolo; Leone, Stefano; Bavavea, Eugenia I.; Silvestri, Ilaria Proietti; Righi, Giuliana; Luly, Paolo; Saso, Luciano; Bovicelli, Paolo; Pedersen, Jens Z.; Incerpi, Sandra

    2013-01-01

    Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous antioxidants to reach and scavenge different pools of otherwise inaccessible radicals. PMID:23637768

  7. Effect of pectolytic enzyme preparations on the phenolic composition and antioxidant activity of asparagus juice.

    PubMed

    Sun, Ting; Tang, Juming; Powers, Joseph R

    2005-01-12

    Commercial pectolytic enzymes were investigated for their influence on phenolics and antioxidant activities of asparagus juice. The antioxidant activity of asparagus juice was analyzed according to 2,2'-diphenyl-l-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) methods. The enzymes, with the exception of pectinase from Rhizopus sp., contained rutinase, which hydrolyzed rutin to quercetin. Asparagus juice treated with Viscozyme had the highest quercetin content without exhibiting a significant increase in the antioxidant activity. For a pectinase from Aspergillus niger, the antioxidant activity of asparagus juice was markedly reduced. Caution should be paid in the selection of pectolytic enzyme preparations for production of antioxidant activity-rich juice. PMID:15631507

  8. Microtubule Formation and Activities of Antioxidative Enzymes in PC12 Cells Exposed to Phosphatidylcholine Hydroperoxides

    PubMed Central

    Yamanaka, Yukako; Yoshida-Yamamoto, Shumi; Doi, Hiroshi

    2012-01-01

    Aging increases free radical generation and lipid oxidation and, thereby, mediates neurodegenerative diseases. As the brain is rich in lipids (polyunsaturated fatty acids), the antioxidative system plays an important role in protecting brain tissues from oxidative injury. The changes in microtubule formation and antioxidative enzyme activities have been investigated in rat pheochromocytoma PC12 cells exposed to various concentrations of phosphatidylcholine hydroperoxides (PCOOH). We measured three typical antioxidative enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). The microtubule assembly system was dependent on the antioxidative enzyme system in cells exposed to oxidative stress. The activities of the three enzymes increased in a PCOOH exposure-dependent manner. In particular, the changes in the activity as a result of PCOOH exposure were similar in the three antioxidative enzymes. This is the first report indicating the compatibility between the tubulin-microtubule and antioxidative enzyme systems in cells that deteriorate as a result of phospholipid hydroperoxide administration from an exterior source. The descending order of sensitivity of the three enzymes to PCOOH is also discussed. PMID:23443078

  9. Selective antioxidant enzymes during ischemia/reperfusion in myocardial infarction.

    PubMed

    Muzáková, V; Kandár, R; Vojtísek, P; Skalický, J; Cervinková, Z

    2000-01-01

    The study of ischemia/reperfusion injury included 25 patients in the acute phase of myocardial infarction (19 perfused, 6 remained non-reperfused as evaluated according to the time course of creatine kinase and CK-MB isoenzyme activity) and a control group (21 blood donors). Plasma level of malondialdehyde was followed as a marker of oxidative stress. Shortly after reperfusion (within 90 min), a transient increase of malondialdehyde concentration was detected. The return to the baseline level was achieved 6 h after the onset of therapy. The activity of a free radical scavenger enzyme, plasma glutathione peroxidase (GPx), reached its maximum 90 min after the onset of treatment and returned to the initial value after 18 h. The specificity of the GPx response was confirmed by comparing with both non-reperfused patients and the control group, where no significant increase was detected. The erythrocyte Cu,Zn-superoxide dismutase (SOD) did not exhibit significant changes during the interval studied in perfused patients, probably due to the stability of erythrocyte metabolism. In non-reperfused patients, a decrease of SOD was found during prolonged hypoxia. These results help to elucidate the mechanisms of fast activation of plasma antioxidant system during the reperfusion after myocardial infarction. PMID:11043918

  10. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids

    Microsoft Academic Search

    Shay Yehoshua Schubert; Ephraim Philip Lansky; Ishak Neeman

    1999-01-01

    The antioxidant and eicosanoid enzyme inhibition properties of pomegranate (Punica granatum) fermented juice and seed oil flavonoids were studied. The pomegranate fermented juice (pfj) and cold pressed seed oil (pcpso) showed strong antioxidant activity close to that of butylated hydroxyanisole (BHA) and green tea (Thea sinensis), and significantly greater than that of red wine (Vitis vitifera). Flavonoids extracted from pcpso

  11. Effects of antioxidant enzyme polymorphisms on ozone-induced lung function changes

    Microsoft Academic Search

    C. Chen; M. Arjomandi; I. B. Tager; N. Holland; J. R. Balmes

    2007-01-01

    Chronic exposure to ozone (O3) can cause changes in lung function that may reflect remodelling of small airways. It is likely that antioxidant enzyme function affects susceptibility to O3. The aim of the present study was to determine whether polymorphisms in antioxidant enzyme (GSTM1, GSTP1 and NQO1) genes affect the risk of lung function changes related to chronic exposure to

  12. Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis.

    PubMed

    Kavitha, P; Rao, J Venkateswara

    2008-09-01

    The recovery effect of chlorpyrifos (CPF) on antioxidant enzymes, locomotor behaviour and the target enzyme acetylcholinesterase (AChE) interaction were studied after exposure to 297?gL(-1) (LC(50) for 96h) in mosquito fish, Gambusia affinis. Activities of the antioxidant enzymes-superoxide dismutase, catalase, glutathione reductase in viscera, and AChE in brain were inhibited at 96h of exposure. However, induction in lipid peroxidation was observed. The antioxidant levels were restored to near control by 16-18 days. Similarly, swimming speed and AChE were also recovered but comparatively needs longer period. In vitro AChE study indicated that CPF alters the apparent K(m) values, resulting in a competitive type of inhibition and the inhibitory constant K(i) was found to be 4.57×10(-4)M. The results showed that the organophosphate CPF besides its inhibitory effect on target enzyme AChE also inhibits antioxidant enzymes, which can be used as biomarkers in the pesticide-contaminated aquatic streams. PMID:21783910

  13. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants

    Microsoft Academic Search

    S Rama Devi; M. N. V Prasad

    1998-01-01

    Copper-induced oxidative stress, response of antioxidative enzymes and substances were investigated in Ceratophyllumdemersum L. (Coontail), a free floating macrophyte to understand the mechanisms of Cu resistance. Bioconcentration of Cu in plants treated with 2 and 4 ?M Cu for 24 h was dependent on external Cu concentration. Cu uptake decreased the chlorophyll content and increased both lipid peroxidation and leakage

  14. DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway.

    PubMed

    Yan, Yu-Feng; Yang, Wen-Jie; Xu, Qiang; Chen, He-Ping; Huang, Xiao-Shan; Qiu, Ling-Yu; Liao, Zhang-Ping; Huang, Qi-Ren

    2015-09-01

    DJ-1 protein, as a multifunctional intracellular protein, has an important role in transcriptional regulation and anti-oxidant stress. A recent study by our group showed that DJ-1 can regulate the expression of certain anti?oxidant enzymes and attenuate hypoxia/re?oxygenation (H/R)?induced oxidative stress in the cardiomyocyte cell line H9c2; however, the detailed molecular mechanisms have remained to be elucidated. Nuclear factor erythroid 2?like 2 (Nrf2) is an essential transcription factor that regulates the expression of several anti?oxidant genes via binding to the anti?oxidant response element (ARE). The present study investigated whether activation of the Nrf2 pathway is responsible for the induction of anti?oxidative enzymes by DJ?1 and contributes to the protective functions of DJ?1 against H/R?induced oxidative stress in H9c2 cells. The results demonstrated that DJ?1?overexpressing H9c2 cells exhibited anti?oxidant enzymes, including manganese superoxide dismutase, catalase and glutathione peroxidase, to a greater extent and were more resistant to H/R?induced oxidative stress compared with native cells, whereas DJ?1 knockdown suppressed the induction of these enzymes and further augmented the oxidative stress injury. Determination of the importance of Nrf2 in DJ?1?mediated anti?oxidant enzymes induction and cytoprotection against oxidative stress induced by H/R showed that overexpression of DJ?1 promoted the dissociation of Nrf2 from its cytoplasmic inhibitor Keap1, resulting in enhanced levels of nuclear translocation, ARE?binding and transcriptional activity of Nrf2. Of note, Nrf2 knockdown abolished the DJ?1?mediated induction of anti?oxidant enzymes and cytoprotection against oxidative stress induced by H/R. In conclusion, these findings indicated that activation of the Nrf2 pathway is a critical mechanism by which DJ-1 upregulates anti-oxidative enzymes and attenuates H/R-induced oxidative stress in H9c2 cells. PMID:26081287

  15. Potential relationship among three antioxidant enzymes in eliminating hydrogen peroxide in penaeid shrimp.

    PubMed

    Wang, Dongdong; Li, Fuhua; Chi, Yanhong; Xiang, Jianhai

    2012-07-01

    Antioxidant enzymes, such as glutathione peroxidase (GPx), catalase (CAT), and peroxiredoxin (Prx), are essential components in cells to eliminate excessive reactive oxygen species such as hydrogen peroxide (H(2)O(2)). GPx, CAT, and Prx genes have been reported in penaeid shrimp, and they showed different expression profiles at transcription or protein level when shrimps were challenged by microbes. In order to learn the relationship among the above three genes in their function, GPx, CAT, and Prx transcripts were analyzed, and the variation of GPx and CAT enzyme activity was detected when shrimp was injected with H(2)O(2) or one antioxidant enzyme gene was silenced in shrimp by double-strand RNA injection. The results indicated that there existed some relationships among three antioxidant enzyme genes, CAT, GPx, and Prx in shrimp at transcriptional level. The transcription of CAT and GPx could be directly induced by H(2)O(2) injection, while the transcription of Prx cannot be induced by H(2)O(2). Decreased transcription level of CAT or GPx could lead to increased transcription of the other two genes, which suggested that there existed some compensation among these three antioxidant enzyme genes. These data can help us to understand the roles of antioxidant enzymes in crustacean. PMID:22249789

  16. Comparative studies of hepatic xenobiotic metabolizing and antioxidant enzymes in different fish species

    Microsoft Academic Search

    Lars Förlin; Philippe Lemaire; David R. Livingstone

    1995-01-01

    Seven marine and five freshwater fish species were compared in terms of their activities of eight liver xenobiotic and oxyradical metabolizing enzymes namely those of the mammalian [Ah] gene battery, viz. cytochrome P450 1A (7-ethoxyresorufin-O-deethylase-EROD), glutathione S-transferase, UDP glucuronosyl transferase, DT-diaphorase, aldehyde dehydrogenase, and the antioxidant enzymes catalase, glutathione peroxidase and Superoxide dismutase. A number of these enzyme activities are

  17. Effect of linoleic acid sustained-release microspheres on Microcystis aeruginosa antioxidant enzymes activity and microcystins production and release.

    PubMed

    Ni, Lixiao; Jie, Xiaoting; Wang, Peifang; Li, Shiyin; Wang, Guoxiang; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-02-01

    The objective of this work was to identify the optimal dose range for good anti-algal effect of linoleic acid (LA) sustained-release microspheres and investigate their impact on the antioxidant enzymes (super oxide dismutase, Catalase and Peroxidase) activity changes of Microcystis aeruginosa, as well as the production and release of microcystins (MCs). Based on measured changes in algal cell density and inhibitory ratio (IR), the optimal dose of LA microspheres was 0.3 g L(-1) with over 90% of IR in this study. The Chlorophyll a content and antioxidant enzymes activity in the LA microspheres group decreased markedly until beyond the minimal detection limit after 16 d and 9 d, respectively. In addition, LA microspheres demonstrated no significant impact on the extracellular release of MCs during the culturing period. The amount of intracellular microcystin-LR (MC-LR) per 10(6) algal cells in LA microspheres group was highest among all groups during the whole experimental process. Under the sustained stress of LA released from LA microspheres, the LA microspheres could decrease the production and release of algal toxins. There was no increase in the total amount of MC-LR in the algal cell culture medium. These indicated that LA sustained-release microspheres represent a high degree of ecological safety and their practical applications for the treatment of water undergoing algal blooms need further study. PMID:25496741

  18. Cationic triblock copolymer micelles enhance antioxidant activity, intracellular uptake and cytotoxicity of curcumin.

    PubMed

    Yoncheva, Krassimira; Kamenova, Katya; Perperieva, Teodora; Hadjimitova, Vera; Donchev, Petar; Kaloyanov, Kaloyan; Konstantinov, Spiro; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar

    2015-07-25

    The aim of the present study was to develop curcumin loaded cationic polymeric micelles and to evaluate their loading, preservation of curcumin antioxidant activity and intracellular uptake ability. The micelles were prepared from a triblock copolymer consisting of poly(?-caprolactone) and very short poly(2-(dimethylamino) ethyl methacrylate) segments (PDMAEMA9-PCL70-PDMAEMA9). The micelles showed monomodal size distribution, mean diameter of 145nm, positive charge (+72mV), critical micellar concentration around 0.05g/l and encapsulation efficiency of 87%. The ability of the micellar curcumin to scavenge the ABTS radical and hypochlorite ions was higher than that of the free curcumin. Confocal microscopy revealed that the uptake of curcumin by chronic myeloid leukemia derived K-562 cells and human multiple myeloma cells U-266 was more intensive when curcumin was loaded into the micelles. These results correlated with the higher cytotoxicity of the micellar curcumin compared to free curcumin. Intraperitoneal treatment of Wistar rats indicated that PDMAEMA-PCL-PDMAEMA copolymer, comprising very short cationic chains, did not change the levels of malondialdehyde and glutathione in livers indicating an absence of oxidative stress. Thus, PDMAEMA-PCL-PDMAEMA triblock micelles could be considered efficient and safe platform for curcumin delivery. PMID:26026253

  19. Red blood cell antioxidant enzymes in age-related macular degeneration.

    PubMed Central

    De La Paz, M A; Zhang, J; Fridovich, I

    1996-01-01

    AIMS/BACKGROUND: Oxidative damage has been proposed to be involved in the pathogenesis of age-related macular degeneration (ARMD). The purpose of this study was to evaluate whether red blood cell antioxidant enzyme activity correlates with severity of aging maculopathy in affected individuals. METHODS: Blood samples were obtained from 54 patients with varying severity of aging maculopathy and 12 similarly aged individuals with normal ophthalmoscopic examination. Macular findings were graded according to a modification of the method described for the Age-Related Eye Disease Study. (AREDS). The activities of superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase, glutathione peroxidase, and glutathione reductase were measured in red blood cells. Haemoglobin content of whole blood was measured, and enzyme activity was determined per mg haemoglobin. RESULTS: Multiple regression analysis and ordinal logistic regression analysis were performed to determine whether antioxidant enzyme activity was associated with severity of ARMD. No significant association between disease severity of ARMD and antioxidant enzyme activity was identified for any of the enzymes. CONCLUSION: These results do not provide evidence for a relation between oxidative stress, as measured by antioxidant enzyme activity in red blood cells, and disease severity in ARMD. PMID:8695567

  20. Sodium nitroprusside may modulate Escherichia coli antioxidant enzyme expression by interacting with the ferric uptake regulator

    Microsoft Academic Search

    R. Bertrand; D. Danielson; V. Gong; B. Olynik; M. O. Eze

    Efforts to explore possible relationships between nitric oxide (NO) and antioxidant enzymes in an Escherichia coli model have uncovered a possible interaction between sodium nitroprusside (SNP), a potent, NO-donating drug, and the ferric uptake regulator (Fur), an iron(II) – dependent regulator of antioxidant and iron acquisition proteins present in Gram-negative bacteria. The enzymatic profiles of superoxide dismutase and hydroperoxidase during

  1. Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells

    PubMed Central

    Okada, F; Nakai, K; Kobayashi, T; Shibata, T; Tagami, S; Kawakami, Y; Kitazawa, T; Kominami, R; Yoshimura, S; Suzuki, K; Taniguchi, N; Inanami, O; Kuwabara, M; Kishida, H; Nakae, D; Konishi, Y; Moriuchi, T; Hosokawa, M

    1999-01-01

    We isolated six clones of weakly tumorigenic fibrosarcoma (QR) from the tumorigenic clone BMT-11 cl-9. The QR clones were unable to grow in normal C57BL/6 mice when injected s.c. (1 × 105 cells). However, they formed aggressive tumours upon co-implantation with a ‘foreign body’, i.e. a gelatin sponge, and the rate of tumour take ranged from 8% to 58% among QR clones. The enhanced tumorigenicity was due to host cell-mediated reaction to the gelatin sponge (inflammation). Immunoblot analysis and enzyme activity assay revealed a significant inverse correlation between the frequencies of tumour formation by QR clones and the levels of manganese superoxide dismutase (Mn-SOD, P<0.005) and glutathione peroxidase (GP?, P<0.01) in the respective tumour clones. Electron spin resonance (ESR) revealed that superoxide-scavenging ability of cell lysates of the QR clone with high level of Mn-SOD was significantly higher than that with low level of the antioxidative enzyme in the presence of potassium cyanide, an inhibitor for copper–zinc superoxide dismutase (CuZn-SOD) (P<0.001). Minisatellite mutation (MSM) induced by the inflammatory cells in tumour cells were investigated by DNA fingerprint analysis after QR clones had been co-cultured with gelatin-sponge-reactive cells. The MSM rate was significantly higher in the subclones with low levels of Mn-SOD and GP? (P<0.05) than in the subclones with high levels of both enzymes. The MSM of the subclones with low levels of both enzymes was inhibited in the presence of mannitol, a hydroxyl radical scavenger. The content of 8-hydroxydeoxyguanosine (8-OHdG) by which the cellular DNA damage caused by active oxygen species can be assessed was significantly low in the tumours arising from the QR clone with high levels of Mn-SOD and GP? even if the clone had been co-implanted with gelatin sponge, compared with the arising tumour from the QR clone with low levels of those antioxidative enzymes (P<0.001). In contrast, CuZn-SOD and catalase levels in the six QR clones did not have any correlation with tumour progression parameters. These results suggest that tumour progression is accelerated by inflammation-induced active oxygen species particularly accompanied with declined levels of intracellular antioxidative enzymes in tumour cells. © 1999 Cancer Research Campaign PMID:10027302

  2. Antioxidative enzymes and the Russian wheat aphid (Diuraphis noxia) resistance response in wheat (Triticum aestivum).

    PubMed

    Moloi, M J; van der Westhuizen, A J

    2008-05-01

    A crucial function of antioxidative enzymes is to remove excess reactive oxygen species (ROS), which can be toxic to plant cells. The effect of Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), infestation on the activities of antioxidative enzymes was investigated in the resistant (cv. Tugela DN) and the near-isogenic susceptible (cv. Tugela) wheat (Triticum aestivum L.). RWA infestation significantly induced the activity of superoxide dismutase, glutathione reductase and ascorbate peroxidase to higher levels in the resistant than in susceptible plants. These findings suggest the involvement of antioxidative enzymes in the RWA-wheat resistance response, which was accompanied by an early oxidative burst. The results are consistent with the role of ROS in the resistance response and the control of their levels to minimise toxic effects. PMID:18426488

  3. Correlation of antioxidants and antioxidant enzymes to oxygen radical scavenging activities in berries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Berry fruits contain high levels of antioxidant compounds. In addition to the usual nutrients such as vitamins and minerals, berry fruits are also rich in flavonols, anthocyanidins, proanthocyanidins, catechins, flavones, and their glycosides. These antioxidants are capable of performing a number of...

  4. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with "saccharides".

    PubMed

    Bernardos, Andrea; Mondragon, Laura; Aznar, Elena; Marcos, M Dolores; Martinez-Mañez, Ramon; Sancenon, Felix; Soto, Juan; Barat, Jose Manuel; Perez-Paya, Enrique; Guillem, Carmen; Amoros, Pedro

    2010-11-23

    The synthesis of new capped silica mesoporous nanoparticles for on-command delivery applications is described. The gate-like functional hybrid systems consisted of nanoscopic MCM-41-based materials functionalized on the pore outlets with different "saccharide" derivatives and a dye contained in the mesopores. A series of hydrolyzed starch products as saccharides were selected. The mesoporous silica nanoparticles S1, S2, and S3 containing the grafted starch derivatives Glucidex 47, Gludicex 39, and Glucidex 29 were synthesized. Additionally, for comparative purposes solid S4 containing lactose was prepared. Delivery studies in pure water in the presence of pancreatin or ?-d-galactosidase were carried out for S1-S3 and S4, respectively. S1, S2, and especially S3 showed very low release in the absence of enzyme, but displayed cargo delivery in the presence of the corresponding enzyme. Moreover, nanoparticles of S1 were used to study the controlled release of the dye in intracellular media. Cell viability assays using HeLa and LLC-PK1 cells indicated that S1 nanoparticles were devoid of unspecific cell toxicity. The endocytosis process for S1 nanoparticle internalization in HeLa cells was confirmed, and the anchored starch was degraded by the lysosomal enzymes. Furthermore, a new mesoporous silica nanoparticle functionalized with Glucidex 47 and loaded with a cytotoxic, S1-DOX, was developed. The cell viability with S1-DOX decreased due to the internalization of the nanoparticle, enzyme-dependent opening of the saccharide molecular gate and the consequent release of the cytotoxic agent. As far as the authors know, this is the first example of enzyme-induced in-cell delivery using capped silica mesoporous nanoparticles. PMID:20958020

  5. Association of salivary lipid peroxidation levels, antioxidant enzymes, and chronic periodontitis.

    PubMed

    Trivedi, Shilpa; Lal, Nand; Mahdi, Abbas Ali; Singh, Babita; Pandey, Shivani

    2015-01-01

    This study assessed the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT) and free radical damage marker malondialdehyde (MDA) levels in saliva of 30 patients with chronic periodontitis (CP) compared to 30 healthy controls by spectrophotometry. MDA levels were significantly elevated in the CP group, whereas the SOD, CAT, and GR activities were significantly reduced compared to healthy controls. MDA levels demonstrated a significant direct correlation with all periodontal parameters, whereas all antioxidant enzymes studied (SOD, CAT, and GR) showed an inverse correlation. These findings support the idea that oxidative stress has a role in periodontal disease pathogenesis. PMID:25738349

  6. Phenolic composition, antioxidant and enzyme inhibitory activities of Eryngium bornmuelleri leaf.

    PubMed

    Dalar, Abdullah; Türker, Musa; Zabaras, Dimitrios; Konczak, Izabela

    2014-03-01

    Eryngium bornmuelleri Nab. (Tusî) is an endemic botanical from the Eastern Anatolia region of Turkey traditionally used for preparation of herbal tea. Within this study, phenolic composition, antioxidant capacities and inhibitory activities towards selected digestive enzymes of E. bornmuelleri leaf were investigated. Sequential extracts, obtained by extraction of plant tissue by ethanol, acetone and water exhibited pronounced antioxidant capacities and in a dose-dependent manner suppressed the metabolic syndrome related enzymes: ?-amylase, ?-glucosidase and pancreatic lipase. All extracts contained high levels of phenolic compounds. Flavonoid glycosides were the main phytochemicals detected, with rutin as the major compound (70% of total phenolics). Chlorogenic, hydroxybenzoic and caftaric acids as well as traces of caffeic, ferulic and rosmarinic acids were also detected. Correlation analysis indicated that phenolic compounds were the major sources of the enzyme-inhibitory activities. This study suggests that E. bornmuelleri leaf extracts can modulate the metabolism of sugars and fats through inhibition of the relevant digestive enzymes. PMID:24202545

  7. Antioxidant enzymes responses to cadmium in radish tissues

    Microsoft Academic Search

    Angela P Vitória; Peter J Lea; Ricardo A Azevedo

    2001-01-01

    To investigate the antioxidant responses of radish (Raphanus sativus L.) to cadmium (Cd) treatment, seedlings of a tolerant variety were grown in increasing concentrations of CdCl2, ranging from 0.25–1 mM, for up to 72 h in a hydroponic system. Analysis of Cd uptake indicated that most of the Cd accumulated in the roots, but some was also translocated and accumulated

  8. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats.

    PubMed

    Shanmugam, Kondeti Ramudu; Mallikarjuna, Korivi; Kesireddy, Nishanth; Sathyavelu Reddy, Kesireddy

    2011-04-01

    The aim of the present study was to investigate the effect of ginger on oxidative stress markers in the mitochondrial fractions of cerebral cortex (CC), cerebellum (CB), hippocampus (HC) and hypothalamus (HT) of diabetic rats. Diabetes exacerbates neuronal injury induced by hyperglycemia mediated oxidative damage. A marked decrease in anti-oxidant marker enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH) and increase in malondialdehyde (MDA) was observed in the diabetic rats. Decreased activities of anti-oxidant enzymes in diabetic rats were augmented on oral administration of ginger. Moreover, ginger administration depleted the MDA level, which was earlier increased in the diabetic rats. These results suggest that ginger exhibit a neuroprotective effect by accelerating brain anti-oxidant defense mechanisms and down regulating the MDA levels to the normal levels in the diabetic rats. Thus, ginger may be used as therapeutic agent in preventing complications in diabetic patients. PMID:21184796

  9. Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition

    Microsoft Academic Search

    Lei Zhang; Jianrong Li; Shelly Hogan; Hyun Chung; Gregory E. Welbaum; Kequan Zhou

    2010-01-01

    Seven primocane fall-bearing raspberry (Rubus idaeus L.) cultivars, Nova (red), Dinkum (red), Heritage (red), Autumn Britten (red), Josephine, Anne (yellow), Fall Gold (yellow) were analysed for potential health promoting properties including their inhibitory effect on starch and fat digestive enzymes, antioxidant activities, and phenolic composition. The tested raspberry extracts showed no detectable inhibition of pancreatic ?-amylase and lipase. However, all

  10. Study on Activities of Antioxidant Enzyme Induced by Myclobutanil in Danio rerio

    Microsoft Academic Search

    Feng Ding; Wenhua Song; Zhen Li; Jing Guo

    2010-01-01

    In this study, the antioxidant responses induced by myclobutanil in zebrafish (Danio rerio) were analyzed. Changes in activities of superoxide dismutase (SOD), malondialdehyde (MDA) and catalase (CAT) in the liver of fish were determined. The results showed that as myclobutanil concentration increased, significant changes in SOD and CAT activities and MDA level were found, suggesting that activities of enzymes mentioned

  11. Cadmium Accumulation and Antioxidant Enzyme Activity in Response to Cadmium Stress in Radish (Raphanus sativus L.)

    Microsoft Academic Search

    F. Wang; R. Chu; J. Yang; Y. Gong; X. Zhu; C. Zhu; L. Xu; X. He; L. Liu

    2009-01-01

    The effects of cadmium (Cd) stress with different periods on Cd accumulation and antioxidant enzyme activities in radish plants were investigated with hydroponic culture. Radish seedlings were treated with 50 mg-L-1 Cd2+ for periods of 0, 6, 12, 24, 48 and 96 h. The results showed that with the extension of Cd treatment, the Cd content in shoots and roots

  12. Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit

    Microsoft Academic Search

    C. Abdul Jaleel; P. Manivannan; A. Kishorekumar; B. Sankar; R. Gopi; R. Somasundaram; R. Panneerselvam

    2007-01-01

    Catharanthus roseus (L.) G. Don plants were grown in different water regimes in order to study the drought induced osmotic stress and proline (PRO) metabolism, antioxidative enzyme activities and indole alkaloid accumulation. The plants under pot culture were subjected to 10, 15 and 20 days interval drought (DID) stress from 30 days after sowing (DAS) and regular irrigation was kept

  13. Effects of Cooking Techniques on Antioxidant Enzyme Activities of Some Fruits and Vegetables

    Microsoft Academic Search

    Aim: The aim of this study was to investigate possible effects of cooking techniques on antioxidant enzyme activities in broccoli, tomato, red cabbage, parsley, carrot, green pepper, lemon, onion, and garlic, which are consumed frequently in our daily diet. Materials and Methods: Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured in fresh and thermally treated (boiling,

  14. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity

    Microsoft Academic Search

    Torbjörn Holmblad; Kenneth Söderhäll

    1999-01-01

    The question as to how the immune defence of an invertebrate animal is initiated and coordinated has largely been unanswered. This short review focuses on recent discoveries about crayfish hemolymph proteins, which may play roles in cell adhesion events leading to initiation of phagocytosis and encapsulation. Focus will also be made on anti-oxidative enzymes that may participate in the production

  15. Expression profile of oxidative and antioxidative stress enzymes based on ESTs approach of citrus

    Microsoft Academic Search

    Luis Antonio Peroni; Renato Rodrigues Ferreira; Antonio Figueira; Marcos Antonio Machado; Dagmar Ruth Stach-Machado

    2007-01-01

    Plants not only evolve but also reduce oxygen in photosynthesis. An inevitable consequence of this normal process is the production of reactive oxygen species (ROS). Plants are adequately protected by the presence of multiple antioxidative enzymes in the cytosol and also in the different cell organelles such as chloroplasts, mitochondria, and peroxisomes. Traditionally, ROS were considered to be only a

  16. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments

    Microsoft Academic Search

    Mustafa Bilici; Hasan Efe; M. Arif Köro?lu; Hüseyin Avni Uydu; M. Bekaro?lu; O. De?er

    2001-01-01

    Background: Reactive oxygen species (ROS) may play a role in some neuropsychiatric disorders. There is some evidence that the activation of immune-inflammatory process, increase of monoamines catabolism, and abnormalities in lipid compounds may cause overproduction of ROS and, in turn, antioxidative enzyme activities (AEAs) and lipid peroxidation (LP), and that these phenomena may be related to pathophysiology of major depression.

  17. Pharmacological modifications of endogenous antioxidant enzymes with special reference to the effects of deprenyl: a possible antioxidant strategy.

    PubMed

    Kitani, K; Kanai, S; Ivy, G O; Carrillo, M C

    1999-11-01

    Limited information is available on the upregulation of endogenous antioxidant enzymes by means of administering various pharmaceuticals and/or chemicals. It has been reported that ursodeoxycholic acid (UDCA), a bile acid originally identified from black bear bile (a Chinese medicine, Yutan) increased glutathione S-transferase (GST) activities in mouse livers, resulting in a decrease in systemic lethal toxicity of orally challenged 1-2-dichloro-4-nitrobenzene (DCNB). Also, ursolic acid found in herbal medicines (e.g. leaves of loquat) was reported to increase catalase (CAT) activities in mouse liver. Interestingly, the chemical structures of these two compounds are surprisingly similar to each other, despite the difference in their original sources. These results suggest that in the future, more and more compounds will be found to have effects on increasing endogenous antioxidant enzyme activities. Deprenyl is a monoamine oxidase B inhibitor but also possesses many other different pharmacological activities. Among these various pharmacological effects of deprenyl, a possible causal relationship between two effects of deprenyl, namely the prolongation of the survival of animals and upregulation of antioxidant enzymes in selective brain regions, has been postulated by the authors. In at least four different animal species (rats, mice, hamsters and dogs), a significant prolongation of survival by chronic administration of the drug has been reported by different groups including that of the authors. This group has reported that repeated administration of the drug for 2-3 weeks can significantly increase activities of both types of superoxide dismutase (SODs) (Cu, Zn-, and Mn-SODs) as well as of CAT selectively in brain dopaminergic regions. Both effects are dose dependent but excessive dosages become less effective and even cause an adverse effect (i.e. a decrease in enzyme activities and shortening of life span). The parallelism of the dose-effect relationship between the two phenomena suggests that modification of SOD and CAT levels is one possible mechanism for deprenyl's ability to prolong the life span of animals. PMID:10656538

  18. Association of Age-Related Macular Degeneration with Erythrocyte Antioxidant Enzymes Activity and Serum Total Antioxidant Status

    PubMed Central

    Plestina-Borjan, Ivna; Katusic, Damir; Medvidovic-Grubisic, Maria; Supe-Domic, Daniela; Bucan, Kajo; Tandara, Leida; Rogosic, Veljko

    2015-01-01

    The aim was to estimate association of the oxidative stress with the occurrence of age-related macular degeneration (AMD). The activities of erythrocyte antioxidant enzymes: superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and additionally serum total antioxidant status (TAS) were used as indicators of the oxidative stress level. 57 AMD patients (32 early and 25 late AMD) and 50 healthy, age and gender matched controls were included. GPx activity (P < 0.001) and serum TAS (P = 0.015) were significantly lower in AMD patients. The difference was not significant for SOD or CAT activities. Significant interaction between GPx and SOD was detected (P = 0.003). At high levels of SOD activity (over 75th percentile), one standard deviation decrease in GPx increases the odds for AMD for six times (OR = 6.22; P < 0.001). ROC analysis revealed that combined values of GPx activity and TAS are significant determinants of AMD status. Accuracy, sensitivity, specificity, and positive and negative predictive values were 75%, 95%, 52%, 69%, and 90%, respectively. The study showed that low GPx activity and TAS are associated with AMD. SOD modulates the association of GPx and AMD. The results suggest that erythrocyte antioxidant enzymes activity and serum TAS could be promising markers for the prediction of AMD. PMID:25815109

  19. Association of age-related macular degeneration with erythrocyte antioxidant enzymes activity and serum total antioxidant status.

    PubMed

    Plestina-Borjan, Ivna; Katusic, Damir; Medvidovic-Grubisic, Maria; Supe-Domic, Daniela; Bucan, Kajo; Tandara, Leida; Rogosic, Veljko

    2015-01-01

    The aim was to estimate association of the oxidative stress with the occurrence of age-related macular degeneration (AMD). The activities of erythrocyte antioxidant enzymes: superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and additionally serum total antioxidant status (TAS) were used as indicators of the oxidative stress level. 57 AMD patients (32 early and 25 late AMD) and 50 healthy, age and gender matched controls were included. GPx activity (P < 0.001) and serum TAS (P = 0.015) were significantly lower in AMD patients. The difference was not significant for SOD or CAT activities. Significant interaction between GPx and SOD was detected (P = 0.003). At high levels of SOD activity (over 75th percentile), one standard deviation decrease in GPx increases the odds for AMD for six times (OR = 6.22; P < 0.001). ROC analysis revealed that combined values of GPx activity and TAS are significant determinants of AMD status. Accuracy, sensitivity, specificity, and positive and negative predictive values were 75%, 95%, 52%, 69%, and 90%, respectively. The study showed that low GPx activity and TAS are associated with AMD. SOD modulates the association of GPx and AMD. The results suggest that erythrocyte antioxidant enzymes activity and serum TAS could be promising markers for the prediction of AMD. PMID:25815109

  20. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector.

    PubMed

    Dinkova-Kostova, Albena T; Talalay, Paul

    2010-09-01

    NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) is a widely-distributed FAD-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes, at rates that are comparable with NADH or NADPH. These reductions depress quinone levels and thereby minimize opportunities for generation of reactive oxygen intermediates by redox cycling, and for depletion of intracellular thiol pools. NQO1 is a highly-inducible enzyme that is regulated by the Keap1/Nrf2/ARE pathway. Evidence for the importance of the antioxidant functions of NQO1 in combating oxidative stress is provided by demonstrations that induction of NQO1 levels or their depletion (knockout, or knockdown) are associated with decreased and increased susceptibilities to oxidative stress, respectively. Furthermore, benzene genotoxicity is markedly enhanced when NQO1 activity is compromised. Not surprisingly, human polymorphisms that suppress NQO1 activities are associated with increased predisposition to disease. Recent studies have uncovered protective roles for NQO1 that apparently are unrelated to its enzymatic activities. NQO1 binds to and thereby stabilizes the important tumor suppressor p53 against proteasomal degradation. Indeed, NQO1 appears to regulate the degradative fate of other proteins. These findings suggest that NQO1 may exercise a selective "gatekeeping" role in regulating the proteasomal degradation of specific proteins, thereby broadening the cytoprotective role of NQO1 far beyond its highly effective antioxidant functions. PMID:20361926

  1. Interspecific diversity in root antioxidative enzyme activities reflect root turnover strategies and preferred habitats in wetland graminoids

    PubMed Central

    Yücel, Ça?da? Kera; Bor, Melike; Ryser, Peter

    2014-01-01

    Antioxidant enzymes protect cells against oxidative stress and are associated with stress tolerance and longevity. In animals, variation in their activities has been shown to relate to species ecology, but in plants, comparative studies with wild species are rare. We investigated activities of five antioxidant enzymes – ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) – in roots of four perennial graminoid wetland species over a growing season to find out whether differences in root turnover or habitat preferences would be associated with variation in seasonal patterns of antioxidant enzyme activities. The investigated species differ in their root turnover strategies (fine roots senesce in the fall or fine roots survive the winter) and habitat preferences (nutrient-poor vs. productive wetlands). Roots were collected both in the field and from garden-grown plants. Antioxidant enzyme activities were higher and lipid peroxidation rates lower in species with annual root systems, and for species of the nutrient-poor wetland, compared with perennial roots and species of productive wetlands, respectively. There was variation in the activities of individual antioxidant enzymes, but discriminant analyses with all enzymes revealed a clear picture, indicating consistent associations of antioxidant enzyme activities with the type of root turnover strategy and with the preferred habitat. We conclude that antioxidant enzyme activities in plant roots are associated with the species' ecological strategies and can be used as traits for the characterization of the species' position along plant economics spectrum. PMID:24683465

  2. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: Alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes

    Microsoft Academic Search

    H. Z. Chae; G. Storz; S. G. Rhee; K. Robison; G. Church; L. B. Poole

    1994-01-01

    A cDNA corresponding to a thiol-specific antioxidant enzyme (TSA) was isolated from a rat brain cDNA library with the use of antibodies to bovine TSA. The cDNA clone encoded an open reading frame capable of encoding a 198-residue polypeptide. The rat and yeast TSA proteins show significant sequence homology to the 21-kDa component (AhpC) of Salmonella typhimurium alkyl hydroperoxide reductase,

  3. [The antioxidant enzyme activity in mouse liver mitochondria after nanosecond pulsed periodic X-ray exposure].

    PubMed

    Kniazeva, I R; Ivanov, V V; Bol'shakov, M A; Zharkova, L P; Kereia, A V; Kutenkov, O P; Rostov, V V

    2013-01-01

    The effect of repetitive pulsed X-ray (4 ns pulse duration, 300 kV accelerating voltage; 2.5 kA electron beam current) on the antioxidant enzyme activity in mouse liver mitochondria has been investigated. The mitochondrial suspension was exposed to single 4000 pulse X-ray radiation with repetition rates ranging between 10 and 22 pps (pulsed dose was 0.3-1.8 x 10(-6) Gy/pulse, the total absorbed dose following a single exposure was 7.2 x 10(-3) Gy). It was shown that a short-time exposure to X-ray radiation changes the antioxidant enzyme activity in mouse liver mitochondria. The greatest effect was observed in the changes of the activity of the metal-containing enzymes: superoxide dismutase and glutathione peroxidase. The effect depends on the pulse repetition frequency and radiation dose. PMID:23786032

  4. Extract from Eugenia punicifolia is an antioxidant and inhibits enzymes related to metabolic syndrome.

    PubMed

    Lopes Galeno, Denise Morais; Carvalho, Rosany Piccolotto; Boleti, Ana Paula de Araújo; Lima, Arleilson Sousa; Oliveira de Almeida, Patricia Danielle; Pacheco, Carolina Carvalho; Pereira de Souza, Tatiane; Lima, Emerson Silva

    2014-01-01

    The present study aimed to investigate in vitro biological activities of extract of Eugenia punicifolia leaves (EEP), emphasizing the inhibitory activity of enzymes related to metabolic syndrome and its antioxidant effects. The antioxidant activity was analyzed by free radicals scavengers in vitro assays: DPPH·, ABTS(·+), O2(·?), and NO· and a cell-based assay. EEP were tested in inhibitory colorimetric assays using ?-amylase, ?-glucosidase, xanthine oxidase, and pancreatic lipase enzymes. The EEP exhibited activity in ABTS(·+), DPPH·, and O2(·?) scavenger (IC50 = 10.5 ± 1.2, 28.84 ± 0.54, and 38.12 ± 2.6 ?g/mL), respectively. EEP did not show cytotoxic effects, and it showed antioxidant activity in cells in a concentration-dependent manner. EEP exhibited inhibition of ?-amylase, ?-glucosidase, and xanthine oxidase activities in vitro assays (IC50 = 122.8 ± 6.3; 2.9 ± 0.1; 23.5 ± 2.6), respectively; however, EEP did not inhibit the lipase activity. The findings supported that extract of E. punicifolia leaves is a natural antioxidant and inhibitor of enzymes, such as ?-amylase, ?-glucosidase, and xanthine oxidase, which can result in a reduction in the carbohydrate absorption rate and decrease of risks factors of cardiovascular disease, thereby providing a novel dietary opportunity for the prevention of metabolic syndrome. PMID:24078187

  5. The influence of cadmium on the antioxidant enzyme activities in polychaete Perinereis aibuhitensis Grube (Annelida: Polychaeta)

    NASA Astrophysics Data System (ADS)

    Yuan, Xiutang; Chen, Aihua; Zhou, Yibing; Liu, Haiying; Yang, Dazuo

    2010-07-01

    The infaunal polychaete Perinereis aibuhitensis Grube, distributed widely along Asian coasts and estuaries, is considered a useful animal model in ecotoxicological tests and a promising candidate in biomonitoring programs. This paper deals with the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GSH-Px) in infaunal polychaete P. aibuhitensis exposed to a series of sublethal water-bound cadmium (Cd) concentrations (0, 0.34, 1.72, 3.44, 6.89, and 17.22 mg L-1) under a short-term exposure (1-8 d). The results indicate that the SOD and GSH-Px activities in P. aibuhitensis are stimulated first and then renewed to the original level. The CAT activity of worms decreases at an earlier exposure time but increases to the control values at a later exposure time. Our study suggests that Cd can interfere with the antioxidant defense system of P. aibuhitensis. However, the changes in antioxidant enzyme activities for this species do not show the best promise as biomarkers in Cd biomonitoring of estuarine and coastal zones because weak or non-dose-effect relationships between the antioxidant enzymes activities and Cd levels are found.

  6. Effects of lead on the activities of antioxidant enzymes in watercress, Nasturtium officinale R. Br.

    PubMed

    Keser, Gonca; Saygideger, Saadet

    2010-11-01

    The aim of the present study is to evaluate the oxidative effects of lead with increased concentrations by the determination of antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (AP)) and lipid peroxidation levels in the stem and leaves of watercress (Nasturtium officinale R. Br.) which was exposed to lead acetate, Pb (CH3COOH)2 regime with concentrations of 0, 50, 100, 200, 250, and 500 mg/L Pb in a hydroponic culture. After 14 days, accumulation of lipid peroxidation in stems and leaves and changes in activity of antioxidant enzymes were determined spectrophotometrically. The maximum accumulation was observed in the highest concentration group. In this group, lipid peroxidation levels were three times higher than the control group in the stem and leaves. The highest induction in SOD and GR activities were determined at 200 mg/L Pb group in stem, whereas CAT and AP activities were higher than other groups at the concentration of 250 and 100 mg/L Pb, respectively. The increase in CAT activity was found to be greater than GR, SOD, and AP activities in stems of watercress under Pb treatment. Both lead accumulation and antioxidant enzyme responses were higher in stems than in leaves. The results of the present study suggested that the induction in antioxidant responses could be occurring as an adaptive mechanism to the oxidative potential of lead accumulation. PMID:19967468

  7. Blood antioxidant enzymes as markers of exposure or effect in coal miners.

    PubMed Central

    Perrin-Nadif, R; Auburtin, G; Dusch, M; Porcher, J M; Mur, J M

    1996-01-01

    OBJECTIVE--To investigate if blood Cu++/Zn++ superoxide dismutase, glutathione peroxidase, catalase, and total plasma antioxidant activities could be markers of biological activity resulting from exposure to respirable coal mine dust in active miners, and of pneumoconiosis in retired miners. METHODS--Blood samples were randomly obtained from active surface workers (n = 30) and underground miners (n = 34), and from retired miners without (n = 21), and with (n = 33) pneumoconiosis. Antioxidant enzyme activities and total plasma antioxidants were measured in erythrocytes and plasma. Non-parametric tests were completed by analyses of covariance to compare antioxidants between groups, taking into account potential confounding factors (age, smoking history (pack-years)). RESULTS--Erythrocyte Cu++/Zn++ superoxide dismutase activity was significantly higher in the group of underground miners than the group of surface workers. The differences in total plasma antioxidants and plasma glutathione peroxidase activity between both groups were related to age. Glutathione peroxidase activity increased in the plasma of retired miners with pneumoconiosis, compared with retired miners without pneumoconiosis. No differences were found either in erythrocyte antioxidant enzyme activities or in total plasma antioxidants between the groups of retired miners without and with pneumoconiosis. CONCLUSIONS--In this study, erythrocyte Cu++/Zn++ superoxide dismutase activity may be considered as a marker of effect of respirable coal mine dust in exposed workers. This result is in agreement with the hypothesis that reactive oxygen species are involved in cell injury induced by coal mine dust, and may be predictive of the degree of inflammation and pneumoconiosis induced by coal mine dust. The increase in glutathione peroxidase activity in the plasma of retired miners with pneumoconiosis may be the result of a response to the increasing hydrogen peroxide (H2O2) production due to the disease process. PMID:8563856

  8. An Nrf2\\/Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements

    Microsoft Academic Search

    Ken Itoh; Tomoki Chiba; Satoru Takahashi; Tetsuro Ishii; Kazuhiko Igarashi; Yasutake Katoh; Tatsuya Oyake; Norio Hayashi; Kimihiko Satoh; Ichiro Hatayama; Masayuki Yamamoto; Yo-ichi Nabeshima

    1997-01-01

    The induction of phase II detoxifying enzymes is an important defense mechanism against intake of xenobiotics. While this group of enzymes is believed to be under the transcriptional control of antioxidant response elements (AREs), this contention is experimentally unconfirmed. Since the ARE resembles the binding sequence of erythroid transcription factor NF-E2, we investigated the possibility that the phase II enzyme

  9. Antioxidant and antithrombus activities of enzyme-treated Salicornia herbacea extracts.

    PubMed

    Jang, Hyun-Seo; Kim, Kyung-Ran; Choi, Sang-Won; Woo, Mi-Hee; Choi, Jeong-Hwa

    2007-01-01

    This study was attempted to investigate antioxidant and antithrombus activities of water and methanol extracts of enzyme-treated Salicornia herbacea (SH)by in vitro assays observing the inhibitory activity of a rat liver microsomal lipid peroxidation, DPPH radical scavenging activity, activated partial thromboplastin times (APTT) and thromboplastin times (TT). The water and methanol extracts from enzyme-treated SH inhibited the lipid peroxidation in a dose-dependent manner over a concentration range of 0.1-1.0 mg/ml. The activity of enzyme-treated water and methanol extracts was stronger than that of non-enzyme-treated water and methanol extracts. The inhibitory activity of the water extract was higher at a concentration of 1.0 mg/ml than that of the methanol extract. The activity was the highest in the enzyme-treated water extract, and was approximately 1.08 times higher than alpha-tocopherol, a natural antioxidant. The DPPH radical scavenging activities of the SH extracts were similar to their lipid peroxidation inhibitory activity. The APTT of the water and methanol extracts was delayed at a concentration range of 0.25-2.0 mg/ml in a dose-dependent manner. The APTT of the methanol extract was longer at a concentration of 1.0 mg/ml than that of the water extracts. The enzyme-treated methanol extract exhibited the longest APTT even at a concentration of 0.50 mg/ml. The TT activities of the SH extracts were also similar to their APTT activities. These results suggest that water and methanol extracts of the enzyme-treated SH may be useful as potential antioxidant and antithrombus sources, respectively. PMID:17536188

  10. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits.

    PubMed

    Pods?dek, Anna; Majewska, Iwona; Redzynia, Ma?gorzata; Sosnowska, Dorota; Kozio?kiewicz, Maria

    2014-05-21

    Dietary inhibitors of fats and carbohydrates degrading enzymes can reduce obesity and type 2 diabetes. In this study, we screened crude extracts from 30 commonly consumed fruits to test their in vitro inhibitory effect against key enzymes relevant for obesity (pancreatic lipase) and type 2 diabetes (?-glucosidase and ?-amylase), total phenolic content (Folin-Ciocalteu method), and antioxidant capacity (ABTS and FRAP). The IC50 values of the fruits tested varied from 39.91 to >400 mg/mL, from 1.04 to >80 mg/mL, and from 0.72 to 135.07 mg/mL against ?-glucosidase, ?-amylase, and pancreatic lipase, respectively. Antioxidant capacity ranged from 0.66 to 124.66 ?mol of TE/g of fruit and strongly correlated with phenolic content, while the enzyme inhibition was poorly correlated with total phenolic and antioxidant capacity. Among fruits tested, blue honeysuckle and red gooseberry exhibited the highest inhibitory activity with respect to the carbohydrate degrading enzymes, while lingonberry had the strongest anti-lipase activity. PMID:24785184

  11. Free radicals and antioxidant enzymes in fish and their responses to metal pollutants

    SciTech Connect

    Zelikoff, J.T.; Flescher, E. [New York Univ. Medical Center, Tuxedo, NY (United States). Inst. of Environmental Medicine

    1994-12-31

    Reactive oxygen intermediates (ROI) are continuously produced as metabolic by-products by virtually all tissues. Without adequate protection from these free radicals, cells/tissues can suffer significant oxidative damage. While superoxide dismutase (SOD), catalase, and NADPH-quinone reductase (QR) are well recognized antioxidant enzymes in mammalian cells, little is known concerning these enzymes in cells from aquatic species. In addition, the effects of environmental contaminants on ROI production and on these protective enzymes in fish have not been well studied. For this investigation, whole kidney cell homogenates from medaka (Oryzias latipes) were used to evaluate the activity of SOD, catalase, and QR, as well as production of the ROI`s, superoxide (O{sub 2{sup {minus}}}) and hydrogen peroxide (H{sub 2}O{sub 2}). Fish were also exposed to cadmium (Cd{sup 2+})-contaminated water at 60 ppb for five days and the effects on ROI production and these same enzyme systems were evaluated. Findings demonstrate that kidney cells from medaka stimulated in vitro with phorbol myristate acetate produced large quantities of free radicals, as well as expressed all three protective enzymes at levels comparable to those measured in mammalian immune cells. Exposure of fish to Cd{sup 2+} levels below the LC{sub 50} concentration altered these parameters. The results demonstrate the presence of antioxidant enzymes in fish immune cells and suggest the applicability of these endpoints to serve as biomarkers of aquatic metal pollution.

  12. Moringa oleifera Enhances Liver Antioxidant Status via Elevation of Antioxidant Enzymes Activity and Counteracts Paracetamol-induced Hepatotoxicity.

    PubMed

    Uma, N; Fakurazi, S; Hairuszah, I

    2010-08-01

    This study investigated the role of antioxidant enzyme system following crude hydroethanolic extract of Moringa oleifera leaves (MO) in acute paracetamol (PCM) induced hepatotoxicity. Hydroethanolic extract (80%) of MO (200 mg/kg and 800 mg/kg; p.o) was pre-administered before a single oral dose of 3 g/kg PCM intoxication to male Sprague-Dawley rats. Pre-treatment of the extract was found to have reduced lipid peroxidation level when compared to the group treated with PCM only. The level of glutathione peroxidase (GPx), glutathione-Stransferase (GST) and glutathione reductase (GR) was restored to near normal in groups that were pre-treated with MO. Histopathological studies have further confirmed the hepatoprotective activity of MO compared to group treated with PCM only. The results obtained were comparable to silymarin (200 mg/kg; p.o). The MO extract was found to have significantly protected the liver against toxicity following PCM intoxication by enhancing the level of antioxidant enzyme activity. PMID:22691934

  13. Effects of Launaea procumbens on brain antioxidant enzymes and cognitive performance of rat

    PubMed Central

    2012-01-01

    Background Launaea procumbens is used in the treatment of oxidative stress and mental disorders. The effects of Launaea procumbens methanolic extracts (LPMEs), i.e., 100 and 200 LPME mg/kg body weight (b.w.), on cognitive performance as well as on the activity of acetylcholinesterase, and antioxidant enzymes in rat brain tissue homogenates were evaluated. Methods Thirty male Sprague–Dawley rats were divided equally into three groups. Rats in group I (control) were given saline (vehicle), group II received LPME (100 mg/kg b.w., p.o.), and group III were treated with LPME (200 mg/kg b.w., p.o.) in dimethyl sulfoxide (DMSO) for 7 days. Antioxidant potential was assessed by measuring the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHpx), glutathione reductase (GSR) and glutathione-S-transferase (GST) as well as lipid peroxidation and glutathione (GSH) contents in brain tissue homogenates. Activity of acetylcholinesterase (AChE) and cognitive performance were also assessed. Results LPME administration reduced the levels of lipid peroxidation products (TBARS contents), increased GSH levels and enhanced the activities of SOD, CAT, GSHpx, GSR and GST. AChE activity was reduced by LPME treatment compared with untreated controls. Conclusion These findings suggested the significant impact of LPMEs on brain function. These effects could be through the antioxidant effects of the bioactive constituents present in LPME. PMID:23151029

  14. Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions.

    PubMed

    Espino, Javier; Bejarano, Ignacio; Paredes, Sergio D; Barriga, Carmen; Rodríguez, Ana B; Pariente, José A

    2011-09-01

    Apoptosis or programmed cell death plays a critical role in both inflammatory and immune responses. Recent evidence demonstrates that control of leukocyte apoptosis is one of the most striking immune system-related roles of melatonin. For this reason, this study evaluated the protective effects of melatonin on human leukocyte apoptosis induced by sustained cytosolic calcium increases. Such protective effects are likely mediated by melatonin's free-radical scavenging actions. Treatments with the specific inhibitor of cytosolic calcium re-uptake, thapsigargin (TG), and/or the calcium-mobilizing agonist, N-formyl-methionyl-leucyl-phenylalanine (FMLP), induced intracellular reactive oxygen species (ROS) production, caspase activation as well as DNA fragmentation in human leukocytes. Also, TG- and/or FMLP-induced apoptosis was dependent on both cytosolic calcium increases and calcium uptake into mitochondria, because when cells were preincubated with the cytosolic calcium chelator, dimethyl BAPTA, and the inhibitor of mitochondrial calcium uptake, Ru360, TG- and FMLP-induced apoptosis was largely inhibited. Importantly, melatonin treatment substantially prevented intracellular ROS production, reversed caspase activation, and forestalled DNA fragmentation induced by TG and FMLP. Similar results were obtained by preincubating the cells with another well-known antioxidant, i.e., N-acetyl-L-cysteine. To sum up, depletion of intracellular calcium stores induced by TG and/or FMLP triggers different apoptotic events in human leukocytes that are dependent on calcium signaling. The protective effects resulting from melatonin administration on leukocyte apoptosis likely depend on melatonin's antioxidant action because we proved that this protection is melatonin receptor independent. These findings help to understand how melatonin controls apoptosis in cells of immune/inflammatory relevance. PMID:21470303

  15. A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker

    Microsoft Academic Search

    Shaheen B. Mowla; Jennifer A. Thomson; Jill M. Farrant; Sagadevan G. Mundree

    2002-01-01

    A cDNA corresponding to 1-Cys peroxiredoxin, an evolutionarily conserved thiol-specific antioxidant enzyme, was isolated from Xerophyta viscosa Baker, a resurrection plant indigenous to Southern Africa and belonging to the family Velloziaceae. The cDNA, designated XvPer1, contains an open reading frame that encodes a polypeptide of 219 residues with a predicted molecular weight of 24.2 kDa. The XvPer1 polypeptide shows significant

  16. Antioxidant enzyme activities in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense

    Microsoft Academic Search

    Ran Wei; Shicui Zhang; Changfa Wang; Qiuxiang Pang

    2007-01-01

    Information regarding antioxidant enzymes in amphioxus remains lacking, and this study was carried out to examine the activities\\u000a of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in different genders and tissues of amphioxus\\u000a Branchiostoma belcheri tsingtauense. Results show that (1) CuZn-SOD, CAT and GPX activities in the whole amphioxus B. belcheri tsingtauense were basically at the same levels

  17. Effect of anoxia and reoxygenation on antioxidant enzyme activities in immortalized brain endothelial cells

    Microsoft Academic Search

    Olivier Rabin; Michèle Piciotti; Katy Drieu; Jean-Marie Bourre; Françoise Roux

    1996-01-01

    Summary  The effects of anoxia and reoxygenation on major antioxidant enzyme activities were investigatedin vitro in immortalized rat brain endothelial cells (RBE4 cells). A sublethal anoxic period of 12 h was assessed for RBE4 cells using the neutral red uptake test. Anoxia markedly influenced the specific activity of catalase and superoxide dismutase,\\u000a with no major effect on glutathione peroxidase or glutathione

  18. Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos

    Microsoft Academic Search

    Abdullah Mohammad Shohael; Mohammad Babar Ali; Kee-Won Yu; Eun-Joo Hahn; Kee-Yoeup Paek

    2006-01-01

    Somatic embryos of Eleutherococcus senticosus were exposed at 12, 16, 24 and 30 °C for duration of 45 days in bioreactor. The effects of such treatments on the growth, eleutheroside B, E, E1, total phenolics, flavonoids, chlorogenic acid concentrations and antioxidant enzymes activities were investigated. The results revealed that low (12 and 18 °C) and high (30 °C) temperature caused significant decrease in fresh

  19. Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure

    Microsoft Academic Search

    Qing Wang; Xiaomei Wang; Xiaoyu Wang; Hongsheng Yang; Baozhong Liu

    2010-01-01

    To investigate the possible role of metallothioneins (MTs) and antioxidant enzymes in cadmium (Cd) tolerance in Meretrix meretrix larvae, a new MT (designated MmMT) gene was identified and cloned from M. meretrix. The full-length cDNA of MmMT consisted of an open reading frame (ORF) of 231bp encoding a protein of 76 amino acids, with 21 cysteine residues and a conserved

  20. Antioxidant and Xenobiotic-metabolizing Enzyme Gene Expression in Doxorubicin resistant MCF7 Breast Cancer Cells

    Microsoft Academic Search

    Steven A. Akinan; Gerald Forrest; Fong-Fong Chu; R. Steven; James H. Doroshow

    1990-01-01

    We investigated the expression of the genes for several antioxidant and xenobiotic-detoxifying enzymes in the multidrug-resistant variant of the human breast cancer cell line MCF-7, MCF-7\\/Dox. MCF-7\\/Dox is greater than 500-fold resistant to doxorubicin by donogenic assay. En zyme activity determinations in the cytoplasmic compartment of MCF- 7\\/Dox revealed a 25-fold increase in glutathione peroxidase level com pared to the

  1. Antioxidant Enzyme Regulation and Resistance to Oxidants of Human Bronchial Epithelial Cells Cultured under Hyperoxic Conditions

    Microsoft Academic Search

    Petra Pietarinen-Runtti; Kari O. Raivio; Mika Saksela; Tiina M. Asikainen; Vuokko L. Kinnula

    1998-01-01

    Bronchial epithelial cells are the first cells to encounter high concentrations of inspired oxygen, and their damage is a typical feature in many airway diseases. The direct effect of oxygen on the expression of the main antioxidant enzymes (AOEs) in human bronchial epithelial cells is unknown. We investigated the messenger RNA (mRNA) levels of manganese superoxide dismutase (MnSOD), copper-zinc superoxide

  2. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea

    Microsoft Academic Search

    G. J. G. Pereira; S. M. G. Molina; P. J. Lea; R. A. Azevedo

    2002-01-01

    The effects of the heavy metal Cadmium (Cd) on the growth and the activities of the antioxidant enzymes, catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and glutathione reductase (GR, EC 1.6.4.2) have been investigated in Crotalaria juncea seedlings. Concentrations above 0.2 mM CdCl2 were shown to inhibit strongly the growth of roots and shoots. Cd was shown to

  3. Efficient regeneration and antioxidative enzyme activities in Brassica rapa var. turnip

    Microsoft Academic Search

    Bilal Haider Abbasi; Murad Khan; Bin Guo; Saleem Ahmed Bokhari; Mir Ajab Khan

    2011-01-01

    The regeneration potential and antioxidative enzyme activities of economically important Brassica rapa var. turnip were evaluated. Calli were induced from leaf explants of seed-derived plantlets on Murashige and Skoog (MS) medium incorporated\\u000a with different concentrations of various plant growth regulators (PGRs). The highest leaf explant response (83%) was recorded\\u000a for 2.0 mg l?1 benzyladenine (BA) and 1.0 mg l?1 ?-naphthaleneacetic acid (NAA). Subsequent subculturing

  4. Toxicity of copper excess on the lichen Dermatocarpon luridum: Antioxidant enzyme activities

    Microsoft Academic Search

    Fabien Monnet; François Bordas; Véronique Deluchat; Michel Baudu

    2006-01-01

    The aim of this study was to investigate the toxicity of copper on the aquatic lichen Dermatocarpon luridum focusing on the activities of some antioxidant enzymes. Investigations were conducted using increasing copper concentrations (0.00, 0.25, 0.50, 0.75 and 1.00mM CuSO4·5H2O) in synthetic freshwater that emulated the major ion compositions of its natural water biota; time course measurement was 0, 3,

  5. Garlic inhibits free radical generation and augments antioxidant enzyme activity in vascular endothelial cells

    Microsoft Academic Search

    Zhihua Wei; Benjamin H. S. Lau

    1998-01-01

    Oxygen free radicals have been implicated in mediating various pathological processes such as ischemia, inflammatory diseases, diabetes, and atherosclerosis. The antioxidant enzymes—superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)—play an important role in scavenging oxidants and preventing cell injury. Aged Garlic Extract (AGE) has been shown to prevent oxidant-induced injury of endothelial cells. The present study determined the effects

  6. Age-Related Correlation Between Antioxidant Enzymes and DNA Damage With Smoking and Body Mass Index

    Microsoft Academic Search

    Parvathi Kumara Reddy Thavanati; Kodanda Reddy Kanala; Aurora Escoto de Dios

    2008-01-01

    To understand whether oxidants contribute to the initiation and\\/or promulgation toward aging, the present study has been undertaken on 220 healthy male volunteers aged 20-80 years selected from the defined electoral area (suburbs of Tirupati, Andhra Pradesh, India) to evaluate the concentrations of free radicals (superoxide anion, hydrogen peroxide), lymphocyte antioxidant enzymes (glutathione S-transferase, superoxide dismutase, catalase), and DNA damage

  7. In vitro larvicidal potential against Anopheles stephensi and antioxidative enzyme activities of Ginkgo biloba, Stevia rebaudiana and Parthenium hysterophorous

    Microsoft Academic Search

    Nisar Ahmad; Hina Fazal; Bilal H Abbasi; Mazhar Iqbal

    2011-01-01

    ObjectiveTo investigate in vitro larvicidal and antioxidant enzymes potential of the medicinal plants Ginkgo biloba (G. biloba), Stevia rebaudiana (S. rebaudiana) and Parthenium hysterophorous (P. hysterophorous) against Anopheles stephensi (An. stephensi) 4th instars larvae.

  8. Effects of ghrelin, leptin and melatonin on the levels of reactive oxygen species, antioxidant enzyme activity and viability of the HCT 116 human colorectal carcinoma cell line.

    PubMed

    Bu?dak, Rafa? Jakub; Pilc-Gumu?a, Katarzyna; Bu?dak, ?ukasz; Witkowska, Daria; Kukla, Micha?; Polaniak, Renata; Zwirska-Korczala, Krystyna

    2015-08-01

    Obesity is associated with an increased risk of certain types of cancer, including colon cancer. Adipose tissue is an endocrine organ that produces biologically active substances, such as leptin and ghrelin. Recent research has suggested that adipose?derived hormones may be associated with mechanisms linked to tumorigenesis and cancer progression. Furthermore, previous studies have demonstrated that pineal gland?derived melatonin possesses important oncostatic and antioxidant properties. The present study aimed to determine the effects of the adipokines ghrelin and leptin, and the melatonin on intracellular levels of reactive oxygen species (ROS) and the activity of selected antioxidant enzymes, such as superoxide dismutase, catalase (CAT) and glutathione peroxidase. The effects of these compounds were also determined on the viability of HCT 116 human colorectal carcinoma cells in vitro. The pro?oxidant and growth inhibitory effects of melatonin resulted in an accumulation of ROS and decreased antioxidant capacity in melatonin?treated cells. Ghrelin administration alone caused a significant decrease in the levels of ROS, due to an increased activity of CAT in the HCT 116 cells. In addition, the present study observed increased lipid peroxidation following melatonin treatment, and decreased levels of malondialdehyde following ghrelin or leptin treatment. In conclusion, ghrelin, leptin and melatonin have various influences on the antioxidant capacity of HCT 116 cells. Compared with the adipokines, treatment with melatonin increased ROS levels and decreased cellular viability. PMID:25873273

  9. Assessment of impact of solar UV components on growth and antioxidant enzyme activity in cotton plant.

    PubMed

    Dehariya, Priti; Kataria, Sunita; Pandey, G P; Guruprasad, K N

    2011-07-01

    A field experiment was conducted to study the impact of solar UV-B (280-315 nm) and UV-A (315-400 nm) components on the growth and antioxidant enzyme activity in cotton plant (Gossypium hirsutum var. Vikram). Solar UV components were excluded by filtering the sunlight through selective UV-B (<315 nm) and UV-B/A (<400 nm) absorbing polyester films. Plants grown under filters that transmitted solar UV served as controls. Exclusion of UV-B and UV-B/A enhanced plant height, leaf area and total biomass of plants. The activity of antioxidant enzymes superoxide dismutase (SOD), ascorbic acid peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (GPx) assayed in the leaves were lesser in the UV excluded plants. The level of ascorbic acid and UV absorbing substances were also decreased by the exclusion of UV. Solar UV components exerted a limitation on the potential growth of cotton plants. Reduction in the antioxidant enzyme activity and ascorbic acid after UV exclusion indicated that ambient UV components exert a significant stress on cotton plants. Reduction in the production of UAS indicated a changed pattern of metabolism leading to improved primary metabolism. Exclusion of UV components is advantageous from the agricultural point to enhance the growth of cotton plants. PMID:23573013

  10. Lipoamide Acts as an Indirect Antioxidant by Simultaneously Stimulating Mitochondrial Biogenesis and Phase II Antioxidant Enzyme Systems in ARPE-19 Cells

    PubMed Central

    Zhao, Lin; Liu, Zhongbo; Jia, Haiqun; Feng, Zhihui; Liu, Jiankang; Li, Xuesen

    2015-01-01

    In our previous study, we found that pretreatment with lipoamide (LM) more effectively than alpha-lipoic acid (LA) protected retinal pigment epithelial (RPE) cells from the acrolein-induced damage. However, the reasons and mechanisms for the greater effect of LM than LA are unclear. We hypothesize that LM, rather than the more direct antioxidant LA, may act more as an indirect antioxidant. In the present study, we treated ARPE-19 cells with LA and LM and compared their effects on activation of mitochondrial biogenesis and induction of phase II enzyme systems. It is found that LM is more effective than LA on increasing mitochondrial biogenesis and inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its translocation to the nucleus, leading to an increase in expression or activity of phase II antioxidant enzymes (NQO-1, GST, GCL, catalase and Cu/Zn SOD). Further study demonstrated that mitochondrial biogenesis and phase II enzyme induction are closely coupled via energy requirements. These results suggest that LM, compared with the direct antioxidant LA, plays its protective effect on oxidative damage more as an indirect antioxidant to simultaneously stimulate mitochondrial biogenesis and induction of phase II antioxidant enzymes. PMID:26030919

  11. Lipoamide Acts as an Indirect Antioxidant by Simultaneously Stimulating Mitochondrial Biogenesis and Phase II Antioxidant Enzyme Systems in ARPE-19 Cells.

    PubMed

    Zhao, Lin; Liu, Zhongbo; Jia, Haiqun; Feng, Zhihui; Liu, Jiankang; Li, Xuesen

    2015-01-01

    In our previous study, we found that pretreatment with lipoamide (LM) more effectively than alpha-lipoic acid (LA) protected retinal pigment epithelial (RPE) cells from the acrolein-induced damage. However, the reasons and mechanisms for the greater effect of LM than LA are unclear. We hypothesize that LM, rather than the more direct antioxidant LA, may act more as an indirect antioxidant. In the present study, we treated ARPE-19 cells with LA and LM and compared their effects on activation of mitochondrial biogenesis and induction of phase II enzyme systems. It is found that LM is more effective than LA on increasing mitochondrial biogenesis and inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its translocation to the nucleus, leading to an increase in expression or activity of phase II antioxidant enzymes (NQO-1, GST, GCL, catalase and Cu/Zn SOD). Further study demonstrated that mitochondrial biogenesis and phase II enzyme induction are closely coupled via energy requirements. These results suggest that LM, compared with the direct antioxidant LA, plays its protective effect on oxidative damage more as an indirect antioxidant to simultaneously stimulate mitochondrial biogenesis and induction of phase II antioxidant enzymes. PMID:26030919

  12. State of the antioxidative enzymes of rat bone marrow cells after irradiation, fractures, and a combination of both

    SciTech Connect

    Bogdanova, I.A.; Ovchinnikov, K.G.; Torbenko, V.P.; Gerasimov, A.M.

    1987-11-01

    The authors study bone marrow levels of antioxidative (antiradical) defensive systems (ADS) enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GP), glutathione reductase (GR), and glutathione: dehydroascorbate oxidoreductase (GDAR), rats and changes in their activity in the bone marrow at various times after irradiation, mechanical trauma, and a combination of both. Development of acute radiation sickness as a result of a single irradiation was accompanied by marked changes in the enzymic antioxidative system of rat bone marrow cells.

  13. Variations of antioxidant enzyme activity and malondialdehyde content in nemertean Cephalothrix hongkongiensis after exposure to heavy metals

    Microsoft Academic Search

    Haiyi Wu; Xidan Zhao; Shichun Sun

    2010-01-01

    The antioxidant enzyme activity and malondialdehyde (MDA) content of Cephalothrix hongkongiensis were studied to assess variations in the biochemical\\/physiological parameters of nemerteans under heavy metal stress. Worms\\u000a were exposed to copper, zinc and cadmium solutions at different concentrations, and the activity of three antioxidant enzymes,\\u000a catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX), and MDA content were measured. The

  14. Intracellular antioxidants dissolve man-made antioxidant nanoparticles: using redox vulnerability of nanoceria to develop a responsive drug delivery system.

    PubMed

    Muhammad, Faheem; Wang, Aifei; Qi, Wenxiu; Zhang, Shixing; Zhu, Guangshan

    2014-11-12

    Regeneratable antioxidant property of nanoceria has widely been explored to minimize the deleterious influences of reactive oxygen species. Limited information is, however, available regarding the biological interactions and subsequent fate of nanoceria in body fluids. This study demonstrates a surprising dissolution of stable and ultrasmall (4 nm) cerium oxide nanoparticles (CeO2 NPs) in response to biologically prevalent antioxidant molecules (glutathione, vitamin C). Such a redox sensitive behavior of CeO2 NPs is subsequently exploited to design a redox responsive drug delivery system for transporting anticancer drug (camptothecin). Upon exposing the CeO2 capped and drug loaded nanoconstruct to vitamin c or glutathione, dissolution-accompanied aggregation of CeO2 nanolids unleashes the drug molecules from porous silica to achieve a significant anticancer activity. Besides stimuli responsive drug delivery, immobilization of nanoceria onto the surface of mesoporous silica also facilitates us to gain a basic insight into the biotransformation of CeO2 in physiological mediums. PMID:25312332

  15. Effects of Oxygen Limitation on Xylose Fermentation, Intracellular Metabolites, and Key Enzymes of Neurospora crassa AS3.1602

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihua; Qu, Yinbo; Zhang, Xiao; Lin, Jianqiang

    The effects of oxygen limitation on xylose fermentation of Neurospora crassa AS3.1602 were studied using batch cultures. The maximum yield of ethanol was 0.34 g/g at oxygen transfer rate (OTR) of 8.4 mmol/L·h. The maximum yield of xylitol was 0.33 g/g at OTR of 5.1 mmol/L·h. Oxygen limitation greatly affected mycelia growth and xylitol and ethanol productions. The specific growth rate (?) decreased 82% from 0.045 to 0.008 h-1 when OTR changed from 12.6 to 8.4 mmol/L·h. Intracellular metabolites of the pentose phosphate pathway, glycolysis, and tricarboxylic acid cycle were determined at various OTRs. Concentrations of most intracellular metabolites decreased with the increase in oxygen limitation. Intracellular enzyme activities of xylose reductase, xylitol dehydrogenase, and xylulokinase, the first three enzymes in xylose metabolic pathway, decreased with the increase in oxygen limitation, resulting in the decreased xylose uptake rate. Under all tested conditions, transaldolase and transketolase activities always maintained at low levels, indicating a great control on xylose metabolism. The enzyme of glucose-6-phosphate dehydrogenase played a major role in NADPH regeneration, and its activity decreased remarkably with the increase in oxygen limitation.

  16. Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3.1602.

    PubMed

    Zhang, Zhihua; Qu, Yinbo; Zhang, Xiao; Lin, Jianqiang

    2008-03-01

    The effects of oxygen limitation on xylose fermentation of Neurospora crassa AS3.1602 were studied using batch cultures. The maximum yield of ethanol was 0.34 g/g at oxygen transfer rate (OTR) of 8.4 mmol/L.h. The maximum yield of xylitol was 0.33 g/g at OTR of 5.1 mmol/L.h. Oxygen limitation greatly affected mycelia growth and xylitol and ethanol productions. The specific growth rate (micro) decreased 82% from 0.045 to 0.008 h(-1) when OTR changed from 12.6 to 8.4 mmol/L.h. Intracellular metabolites of the pentose phosphate pathway, glycolysis, and tricarboxylic acid cycle were determined at various OTRs. Concentrations of most intracellular metabolites decreased with the increase in oxygen limitation. Intracellular enzyme activities of xylose reductase, xylitol dehydrogenase, and xylulokinase, the first three enzymes in xylose metabolic pathway, decreased with the increase in oxygen limitation, resulting in the decreased xylose uptake rate. Under all tested conditions, transaldolase and transketolase activities always maintained at low levels, indicating a great control on xylose metabolism. The enzyme of glucose-6-phosphate dehydrogenase played a major role in NADPH regeneration, and its activity decreased remarkably with the increase in oxygen limitation. PMID:18425610

  17. Antioxidants and antioxidant enzymes status of rats fed on n-3 PUFA rich Garden cress (Lepidium Sativum L) seed oil and its blended oils.

    PubMed

    Umesha, Shankar Shetty; Naidu, K Akhilender

    2015-04-01

    Garden cress (Lepidium sativum L) seed oil (GCO) is a rich source of ?-linolenic acid (ALA, 33.6 %) and the oil has a fairly balanced SFA, MUFA and PUFA ratio. In this study we have investigated the effect of GCO and its blends with n-6 PUFA rich edible vegetable oils sunflower oil (SFO), rice bran oil (RBO) and sesame oil (SESO) on antioxidant status of oils and antioxidative enzymes in Wistar rats. Physical blending of GCO with n-6 PUFA rich vegetable oils (SFO, RBO and SESO) increased content of natural antioxidants such as tocopherols, oryzanol and lignans, decreased the n-6/n-3 PUFA ratio and improved the radical scavenging activity of blended oils. Dietary feeding of GCO and its blended oils for 60 days, increased the tocopherols levels (12.2-21.6 %) and activity of antioxidant enzymes namely catalase, glutathione peroxidase (GPx), but did not affect the activity of glutathione reductase (GR), superoxide dismutase (SOD) and glutathione S-transferase (GST) in liver compared to native oil fed rats. Thus, blending of GCO with other vegetable oil decreased n-6/n-3 PUFA ratio (>2.0) and dietary feeding of GCO blended oils increased the antioxidant status and activity of antioxidant enzymes (catalase and GPx) in experimental rats. PMID:25829579

  18. Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure.

    PubMed

    Wang, Qing; Wang, Xiaomei; Wang, Xiaoyu; Yang, Hongsheng; Liu, Baozhong

    2010-11-15

    To investigate the possible role of metallothioneins (MTs) and antioxidant enzymes in cadmium (Cd) tolerance in Meretrix meretrix larvae, a new MT (designated MmMT) gene was identified and cloned from M. meretrix. The full-length cDNA of MmMT consisted of an open reading frame (ORF) of 231bp encoding a protein of 76 amino acids, with 21 cysteine residues and a conserved structural pattern Cys-x-Cys-x(3)-Cys-Tyr-Gly-x(3)-Cys-x-Cys-x(3)-Cys-x-Cys-Lys at the C-terminus. The deduced amino acid sequence of MmMT showed about 57-84% identity with previously published MT sequences of mussels and oysters. Real-time PCR was used to analyze the expression level of MmMT mRNA at different M. meretrix larval stages under Cd exposure (25?gL?¹). Results showed that Cd could induce the expression of MmMT mRNA in the larvae, and the expression level increased 5.04-fold and 3.99-fold in D-shaped larvae and pediveligers, respectively. Immunolocalization of MmMT in the stressed larvae revealed that MmMT was synthesized in almost all of the soft parts at the trochophore and postlarva stages, whereas it was only synthesized in the velum and epidermis at the D-shaped larva and pediveliger stages. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), also were measured in larvae at different developmental stages. Increased enzymatic activities were detected mainly in D-shaped larvae and pediveligers under Cd stress, suggesting that these enzymes respond synchronously with MT. Our results indicate that MmMT and antioxidant enzymes played important roles in counteracting Cd stress in M. meretrix larvae. PMID:20869127

  19. Regulation of growth and antioxidant enzyme activities by 28-homobrassinolide in seedlings of Raphanus sativus L. under cadmium stress.

    PubMed

    Sharma, Indu; Pati, Pratap Kumar; Bhardwaj, Renu

    2010-06-01

    28-Homobrassinolide (28-HBL), a brassinosteroid is reported to play significant role in diverse physiological processes. It induces a range of cellular and adaptive responses to a range of environmental stresses. Cadmium (Cd) is a non-essential metal which alters various physiological processes and generates ROS, which can oxidize biological macromolecules and causes oxidative stress. This stress is generally overcome by the internal antioxidative defense system and stress shielding phytohormones. In this study, effect of 28-HBL was studied on growth and activities of antioxidant enzymes in known hyperaccumulator Raphanus sativus L. (radish) seedlings grown under cadmium (Cd) metal stress. To determine the influence of 28-HBL (0, 10-(11), 10-(9), 10-(7) M) in radish seedlings subjected to Cd (0, 0.5, 1.0, 1.5 mM) stress, the activities of antioxidant enzymes (APOX, CAT, GR, POD and SOD) were analyzed. In addition, length and biomass of radish seedlings was also recorded. Cd toxicity resulted in reduced length, biomass, protein content and activities of antioxidant enzymes. 28-HBL treatments lowered the Cd toxicity by enhancing the activities of antioxidant enzymes, biomass and seedling length. The present study thus suggests a possible role of 28-HBL in amelioration of metal stress by regulating the activities of antioxidant enzymes in radish. PMID:20653289

  20. Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes

    PubMed Central

    2012-01-01

    Background The skin is chronically exposed to endogenous and environmental pro-oxidant agents, leading to the harmful generation of reactive oxygen species. Antioxidant is vital substances which possess the ability to protect the body from damage cause by free radicals induce oxidative stress. Alpinia zerumbet, a traditionally important economic plant in Okinawa, contains several interesting bioactive constituents and possesses health promoting properties. In this regard, we carried out to test the inhibitory effect of crude extracts and isolated compounds from A. zerumbet on antioxidant and skin diseases-related enzymes. Methods The antioxidant activities were examined by DPPH, ABTS and PMS-NADH radical scavenging. Collagenase, elastase, hyaluronidase and tyrosinase were designed for enzymatic activities to investigate the inhibitory properties of test samples using a continuous spectrophotometric assay. The inhibitory capacity of test samples was presented at half maximal inhibitory concentration (IC50). Results The results showed that aqueous extract of the rhizome was found to have greater inhibitory effects than the others on both of antioxidant and skin diseases-related enzymes. Furthermore, 5,6-dehydrokawain (DK), dihydro-5,6-dehydrokawain (DDK) and 8(17),12-labdadiene-15,16-dial (labdadiene), isolated from rhizome, were tested for antioxidant and enzyme inhibitions. We found that DK showed higher inhibitory activities on DPPH, ABTS and PMS-NADH scavenging (IC50?=?122.14?±?1.40, 110.08?±?3.34 and 127.78?±?4.75??g/ml, respectively). It also had stronger inhibitory activities against collagenase, elastase, hyaluronidase and tyrosinase (IC50?=?24.93?±?0.97, 19.41?±?0.61, 19.48?±?0.24 and 76.67?±?0.50??g/ml, respectively) than DDK and labdadiene. Conclusion Our results indicate that the rhizome aqueous extract proved to be the source of bioactive compounds against enzymes responsible for causing skin diseases. Moreover, DK could be used as a potent inhibitor and be further exploited to be used in anti-skin disease formulations. PMID:22827920

  1. Response of antioxidant enzymes in coontail (Ceratophyllum demersum L.) plants under cadmium stress.

    PubMed

    Mishra, Seema; Srivastava, Sudhakar; Tripathi, R D; Dwivedi, Sanjay; Shukla, M K

    2008-06-01

    Cadmium (Cd) contamination of aquatic systems is of major concern since it is a nonessential element and hampers plant growth upon accumulation. The aim of this study was to investigate the Cd accumulation behavior of coontail plant, Ceratophyllum demersum L., toxicity induced and response of the antioxidant system. Plants were exposed to various concentrations of Cd (0-10 microM) for a period of 1-7 days. Accumulation of Cd was found to be a concentration duration dependent phenomenon. The maximum accumulation of Cd, 1293 microg g(-1) dw, was observed after 7 days at 10 microM. Plants showed significant stimulation of the activities of various antioxidant enzymes viz., superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), guaiacol peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), and glutathione reductase (EC 1.6.4.2) and tolerated toxicity of Cd up to moderate concentration of 5 microM. At 10 microM exposure, enzyme activities declined and plants experienced toxicity, which was evident by the significant decrease in the photosynthetic pigments and by increase in the levels of H(2)O(2), lipid peroxidation and ion leakage. In conclusion, modulation of antioxidant system in a coordinated manner in response to Cd accumulation appears to help plants tolerate toxicity of Cd up to 5 microM. PMID:18214904

  2. Effect of spaceflight on oxidative and antioxidant enzyme activity in rat diaphragm and intercostal muscles

    NASA Technical Reports Server (NTRS)

    Lee, Mona D.; Tuttle, Ronald; Girten, Beverly

    1995-01-01

    There are limited data regarding changes in oxidative and antioxidant enzymes induced by simulated or actual weightlessness, and any additional information would provide insight into potential mechanisms involving other changes observed in muscles from animals previously flown in space. Thus, the NASA Biospecimen Sharing Program was an opportunity to collect valuable information. Oxidative and antioxidant enzyme levels, as well as lipid peroxidation, were measured in respiratory muscles from rates flown on board Space Shuttle mission STS-54. The results indicated that there was an increasing trend in citrate synthase activity in the flight diaphragm when compared to ground based controls, and there were no significant changes observed in the intercostal muscles for any of the parameters. However, the lipid peroxidation was significantly (p less than 0.05) decreased in the flight diaphragm. These results indicate that 6 day exposure to microgravity may have a different effect on oxidative and antioxidant activity in rat respiratory muscles when compared to data from previous 14 day hindlimb suspension studies.

  3. Flavonoids in Juglans regia L. leaves and evaluation of in vitro antioxidant activity via intracellular and chemical methods.

    PubMed

    Zhao, Ming-Hui; Jiang, Zi-Tao; Liu, Tao; Li, Rong

    2014-01-01

    Flavonoids are rich in Juglans regia L. leaves. They have potent antioxidant properties, which have been related to regulating immune function and enhancing anticancer activity. Herein, qualitative and quantitative determination of flavonoids from J. regia leaves was carried out using high performance liquid chromatography coupled with tandem mass spectrometry with electrospray ionization and negative ion detection (HPLC-ESI-MS/MS) by comparison of the retention times and mass spectral fragments with standard substances or related literatures. Seventeen compounds were identified and major components are quercetin-3-O-rhamnoside (453.11 ?g/g, dry weight), quercetin-3-O-arabinoside (73.91 ?g/g), quercetin-3-O-xyloside (70.04 ?g/g), kaempferol-O-pentoside derivative (49.04 ?g/g), quercetin-3-O-galactoside (48.61 ?g/g), and kaempferol-O-pentoside (48.46 ?g/g). The in vitro intracellular antioxidation indicated that flavonoids from J. regia leaves could reduce the reactive oxygen species (ROS) level in RAW264.7 cells and showed good radical scavenging activities. These results proved to be more related to the flavonoids that could be considered in the design of new formulations of dietary supplements or functional foods. PMID:25133218

  4. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat.

    PubMed

    Jiang, Lei; Yang, Hong

    2009-09-01

    Prometryne is one of the herbicides widely used for controlling weed/grass in agricultural practice. However, whether it has an adverse effect on crops is unknown. In this study, we investigated prometryne-induced oxidative stress in wheat (Triticum aestivum). Wheat plants were grown in soils with prometryne at 0-24 mgkg(-1) soil. The growth of wheat treated with prometryne was inhibited. Chlorophyll content significantly decreased even at the low level of prometryne (4 mgkg(-1) soil). Accumulation of thiobarbituric acid reactive substances (TBARS), an indicator of cellular peroxidation, increased, suggesting oxidative damage to the plants. The prometryne-induced oxidative stress triggered significant changes in activities of a variety of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione S-transferase (GST). Activities of the enzymes showed a general increase at low prometryne concentrations but a decrease at high levels. Analysis of non-denaturing polyacrylamide gel electrophoresis (PAGE) confirmed the results. To get an insight into the molecular response, a qRT-PCR-based assay was performed to analyze the transcript abundance of Cu/Zn-SOD and GST with prometryne exposure. Our analysis revealed that both genes displayed up-regulated expression patterns similar to the activities of the two enzymes. These data imply that prometryne-induced oxidative stress was responsible for the disturbance of the growth and antioxidant defensive systems in wheat plants. PMID:19473703

  5. Role of intracellular labile iron, ferritin, and antioxidant defence in resistance of chronically adapted Jurkat T cells to hydrogen peroxide

    PubMed Central

    Al-Qenaei, Abdullah; Yiakouvaki, Anthie; Reelfs, Olivier; Santambrogio, Paolo; Levi, Sonia; Hall, Nick D.; Tyrrell, Rex M.; Pourzand, Charareh

    2014-01-01

    To examine the role of intracellular labile iron pool (LIP), ferritin (Ft), and antioxidant defence in cellular resistance to oxidative stress on chronic adaptation, a new H2O2-resistant Jurkat T cell line “HJ16” was developed by gradual adaptation of parental “J16” cells to high concentrations of H2O2. Compared to J16 cells, HJ16 cells exhibited much higher resistance to H2O2-induced oxidative damage and necrotic cell death (up to 3 mM) and had enhanced antioxidant defence in the form of significantly higher intracellular glutathione and mitochondrial ferritin (FtMt) levels as well as higher glutathione-peroxidase (GPx) activity. In contrast, the level of the Ft H-subunit (FtH) in the H2O2-adapted cell line was found to be 7-fold lower than in the parental J16 cell line. While H2O2 concentrations higher than 0.1 mM fully depleted the glutathione content of J16 cells, in HJ16 cells the same treatments decreased the cellular glutathione content to only half of the original value. In HJ16 cells, H2O2 concentrations higher than 0.1 mM increased the level of FtMt up to 4-fold of their control values but had no effect on the FtMt levels in J16 cells. Furthermore, while the basal cytosolic level of LIP was similar in both cell lines, H2O2 treatment substantially increased the cytosolic LIP levels in J16 but not in HJ16 cells. H2O2 treatment also substantially decreased the FtH levels in J16 cells (up to 70% of the control value). In contrast in HJ16 cells, FtH levels were not affected by H2O2 treatment. These results indicate that chronic adaptation of J16 cells to high concentrations of H2O2 has provoked a series of novel and specific cellular adaptive responses that contribute to higher resistance of HJ16 cells to oxidative damage and cell death. These include increased cellular antioxidant defence in the form of higher glutathione and FtMt levels, higher GPx activity, and lower FtH levels. Further adaptive responses include the significantly reduced cellular response to oxidant-mediated glutathione depletion, FtH modulation, and labile iron release and a significant increase in FtMt levels following H2O2 treatment. PMID:24333634

  6. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    PubMed Central

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force–frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm?2) at stimulation frequencies of 20–300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in ?m2) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with contractile dysfunction. Finally, the transgenic overexpression of independent endogenous antioxidants alters diaphragm skeletal muscle morphology, and these changes may also contribute to the diminished specific force production observed in these animals. PMID:19783618

  7. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ting; He, Weiwei; Wamer, Wayne G.; Hu, Xiaona; Wu, Xiaochun; Lo, Y. Martin; Yin, Jun-Jie

    2013-01-01

    Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods.Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods. Electronic supplementary information (ESI) available: Ascorbic acid oxidase activity of Pt NPs and the effects of Au@Pt nanorods on hydroxyl radicals generated from the Fenton reactions and TiO2 exposed to UV radiation. See DOI: 10.1039/c2nr33072e

  8. Antioxidant Enzymes Regulate Reactive Oxygen Species during Pod Elongation in Pisum sativum and Brassica chinensis

    PubMed Central

    Liu, Nan; Lin, Zhifang; Guan, Lanlan; Gaughan, Gerald; Lin, Guizhu

    2014-01-01

    Previous research has focused on the involvement of reactive oxygen species (ROS) in cell wall loosening and cell extension in plant vegetative growth, but few studies have investigated ROS functions specifically in plant reproductive organs. In this study, ROS levels and antioxidant enzyme activities were assessed in Pisum sativum and Brassica chinensis pods at five developmental stages. In juvenile pods, the high levels of O2.? and.OH indicates that they had functions in cell wall loosening and cell elongation. In later developmental stages, high levels of.OH were also related to increases in cell wall thickness in lignified tissues. Throughout pod development, most of the O2.? was detected on plasma membranes of parenchyma cells and outer epidermis cells of the mesocarp, while most of the H2O2 was detected on plasma membranes of most cells throughout the mesocarp. This suggests that these sites are presumably the locations of ROS generation. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) apparently contributed to ROS accumulation in pod wall tissues. Furthermore, specifically SOD and POD were found to be associated with pod growth through the regulation of ROS generation and transformation. Throughout pod development, O2.? decreases were associated with increased SOD activity, while changes in H2O2 accumulation were associated with changes in CAT and POD activities. Additionally, high POD activity may contribute to the generation of.OH in the early development of pods. It is concluded that the ROS are produced in different sites of plasma membranes with the regulation of antioxidant enzymes, and that substantial ROS generation and accumulation are evident in cell elongation and cell wall loosening in pod wall cells. PMID:24503564

  9. Edaravone Mitigates Hexavalent Chromium-Induced Oxidative Stress and Depletion of Antioxidant Enzymes while Estrogen Restores Antioxidant Enzymes in the Rat Ovary in F1 Offspring1

    PubMed Central

    Stanley, Jone A.; Sivakumar, Kirthiram K.; Arosh, Joe A.; Burghardt, Robert C.; Banu, Sakhila K.

    2014-01-01

    ABSTRACT Environmental contamination of drinking water with chromium (Cr) has been increasing in more than 30 cities in the United States. Previous studies from our group have shown that Cr affects reproductive functions in female Sprague Dawley rats. Although it is impossible to completely remove Cr from the drinking water, it is imperative to develop effective intervention strategies to inhibit Cr-induced deleterious health effects. Edaravone (EDA), a potential inhibitor of free radicals, has been clinically used to treat cancer and cardiac ischemia. This study evaluated the efficacy of EDA against Cr-induced ovarian toxicity. Results showed that maternal exposure to CrVI in rats increased follicular atresia, decreased steroidogenesis, and delayed puberty in F1 offspring. CrVI increased oxidative stress and decreased antioxidant (AOX) enzyme levels in the ovary. CrVI increased follicle atresia by increased expression of cleaved caspase 3, and decreased expression of Bcl2 and Bcl2l1 in the ovary. EDA mitigated or inhibited the effects of CrVI on follicle atresia, pubertal onset, steroid hormone levels, and AOX enzyme activity, as well as the expression of Bcl2 and Bcl2l1 in the ovary. In a second study, CrVI treatment was withdrawn, and F1 rats were injected with estradiol (E2) (10 ?g in PBS/ethanol per 100 g body weight) for a period of 2 wk to evaluate whether E2 treatment will restore Cr-induced depletion of AOX enzymes. E2 restored CrVI-induced depletion of glutathione peroxidase 1, catalase, thioredoxin 2, and peroxiredoxin 3 in the ovary. This is the first study to demonstrate the protective effects of EDA against any toxicant in the ovary. PMID:24804965

  10. Effects of phthalate ester treatment on seed germination and antioxidant enzyme activities of Phaseolus radiatus L.

    PubMed

    Liu, Wenli; Zhang, Chongbang; Liu, Shuyuan

    2014-05-01

    Effects of di-(2-ethylhexyl) phthalate and di-n-butyl phthalate on seed germination rate and antioxidant enzymes activities of mung bean (Phaseolus radiatus L.) were investigated. Results showed that under the treatment with 10 mg/kg of phthalate esters (PAEs), superoxide dismutase (SOD), peroxidase and catalase (CAT) activities were higher than those of the control (p > 0.05). But SOD and CAT activities decreased with the PAEs concentrations and the treatment duration, and were significantly lower than those of the control (p < 0.05). Effect of PAEs stress on SOD activity in germinating seeds of mung bean displayed a significant dose-effect relationship. PMID:24535285

  11. The Organochlorine Pesticide Residues and Antioxidant Enzyme Activities in Human Breast Tumors: Is There Any Association?

    Microsoft Academic Search

    Mumtaz Iscan; Tulay Coban; Ismet Cok; Dilek Bulbul; Benay C. Eke; Sema Burgaz

    2002-01-01

    The levels of some organochlorine pesticides (OCP)s (hexachlorobenzene, HCB, a-hexachlorocyclohexane, a-HCH, ß-HCH, ?-HCH, heptachlorepoxide, HE, bis (4-chlorophenyl)-1,1-dichloroethene, p.p'DDE, bis (4-chlorophenyl)-1,1,1-trichloroethane, p.p' DDT and total DDT (S-DDT) and antioxidant enzyme activities namely Cu, Zn superoxide dismutase (SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px), total glutathione peroxidase (T-GSH-Px), selenium independent glutathione peroxidase (GSH-Px II), glutathione reductase (GRd), level of reduced glutathione (GSH)

  12. The activity of antioxidative enzymes in three strawberry cultivars related to salt-stress tolerance

    Microsoft Academic Search

    Ece Turhan; Hatice Gulen; Atilla Eris

    2008-01-01

    Effects of salt stress on the time course of stomatal behaviors and the activity of antioxidative enzymes such as catalase\\u000a (CAT) (EC 1.11.1.6), ascorbate peroxidase (APX) (EC 1.11.1.11), and glutathione reductase (GR) (EC. 1.6.4.2) were studied\\u000a in three strawberry cultivars. The responses of the cultivars ‘Camarosa’, ‘Tioga,’ and ‘Chandler’ were compared when they\\u000a were irrigated with nutrient solution containing 0,

  13. Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts

    Microsoft Academic Search

    Young-Pyo Lee; Sun-Hyung Kim; Jae-Wook Bang; Haeng-Soon Lee; Sang-Soo Kwak; Suk-Yoon Kwon

    2007-01-01

    The effect of simultaneous expression of genes encoding three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD,\\u000a EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1), in the chloroplasts\\u000a of tobacco plants was investigated under oxidative stress conditions. In previous studies, transgenic tobacco plants expressing\\u000a both CuZnSOD and APX in chloroplast (CA plants), or DHAR in

  14. The effects of Rumex patientia extract on rat liver and erythrocyte antioxidant enzyme system.

    PubMed

    Cetinkaya, O; Sili?, Y; Cetinkaya, S; Demirezer, L O

    2002-07-01

    The aqueous extract from the roots of Rumex patientia L. (Polygonaceae) (D-1) was investigated for its effects on rat liver and erythrocyte antioxidant enzyme systems and lipid peroxidation. Measurements of the GSH-Px, SOD and CAT activities, and MDA levels of liver and erythrocytes in D-1 administered animals showed that there was an increase in GSH-Px and SOD activities when compared to that of controls. No significant decrease was observed in catalase activity and no changes in malondialdehyde levels were observed. PMID:12168533

  15. Effect of MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation levels in mouse brain.

    PubMed

    Thiffault, C; Aumont, N; Quirion, R; Poirier, J

    1995-12-01

    Excessive free radical formation or antioxidant enzyme deficiency can result in oxidative stress, a mechanism proposed in the toxicity of MPTP and in the etiology of Parkinson's disease (PD). However, it is unclear if altered antioxidant enzyme activity is sufficient to increase lipid peroxidation in PD. We therefore investigated if MPTP can alter the activity of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) and the level of lipid peroxidation. L-Deprenyl, prior to MPTP administration, is used to inhibit MPP+ formation and its subsequent effect on antioxidant enzymes. MPTP induced a threefold increase in SOD activity in the striatum of C57BL/6 mice. No parallel increase in GSH-PX or CAT activities was observed, while striatal lipid peroxidation decreased. At the level of the substantia nigra (SN), even though increases in CAT activity and reduction in SOD and GSH-PX activities were detected, lipid peroxidation was not altered. Interestingly, L-deprenyl induced similar changes in antioxidant enzymes and lipid peroxidation levels, as did MPTP. Taken together, these results suggest that an alteration in SOD activity, without compensatory increases in CAT or GSH-PX activities, is not sufficient to induce lipid peroxidation. PMID:7595571

  16. Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils

    PubMed Central

    Lee, Jae-Chul

    2014-01-01

    Experimentally transient global cerebral ischemia using animal models have been thoroughly studied and numerous reports suggest the involvement of oxidative stress in the pathogenesis of neuronal death in ischemic lesions. In animal models, during the reperfusion period after ischemia, increased oxygen supply results in the overproduction of reactive oxygen species (ROS), which are involved in the process of cell death. ROS, such as superoxide anions, hydroxyl free radicals, hydrogen peroxide and nitric oxide are produced as a consequence of metabolic reactions and central nervous system activity. These reactive species are directly involved in the oxidative damage of cellular macromolecules such as nucleic acids, lipids and proteins in ischemic tissues, which can lead to cell death. Antioxidant enzymes are believed to be among the major mechanisms by which cells counteract the deleterious effect of ROS after cerebral ischemia. Consequently, antioxidant strategies have been long suggested as a therapy for experimental ischemic stroke; however, clinical trials have not yet been able to promote the translation of this concept into patient treatment regimens. This article focuses on the contribution of oxidative stress or antioxidants to the post-ischemic neuronal death following transient global cerebral ischemia by using a gerbil model. PMID:25276473

  17. Antioxidant enzyme response studies in H 2O 2-stressed porcine muscle tissue following treatment with oregano phenolic extracts

    Microsoft Academic Search

    Reena Randhir; Dhiraj Vattem; Kalidas Shetty

    2005-01-01

    The effect of oregano (Origanum vulgare) extracts rich in phenolics in ameliorating the adverse effects of oxidative stress caused by H2O2 by mediating an antioxidant enzyme response in porcine muscle tissue was investigated. The changes in the total phenolic content, antioxidant activity, proline content, malondialdehyde (MDA) content, activity of glucose-6-phosphate dehydrogenase (G6PDH), which is the first commited step of pentose

  18. Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl.

    PubMed

    Calatayud, A; Barreno, E

    2001-01-01

    Ozone is a widely distributed phytotoxic air pollutant and is known to reduce the yield of several important agricultural crops in Spain. However, benomyl has been found to lessen the adverse impact of ozone on plants. We studied the effects of ozone and benomyl on chlorophyll a fluorescence, antioxidant enzymes, and lipid peroxidation in tomato (Lycopersicon esculentum Mill. cv. Tiny Tim) grown in open-top chambers in the field. Our results indicate that benomyl prevented the peroxidation of membrane lipids and increased protection of PSII from ozone. There was also a significant reduction in the activity of the antioxidant enzyme superoxide dismutase in ozone-exposed plants that had not been treated with benomyl. Comparing plants treated with benomyl to untreated plants we found that, on exposure to ozone, a greater fraction of light absorption energy was cycled through the photosynthetic system in benomyl-treated plants, as shown by the higher PSII-mediated electron flow and the higher fraction of open PSII reaction centers. The values analyzed in the fluorescence parameters and lipid peroxidation were similar for plants without benomyl grown in a charcoal-filtered environment and benomyl-treated plants exposed to ozone. PMID:11706801

  19. Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings.

    PubMed

    Posmyk, Ma?gorzata M; Bailly, Christoph; Szafra?ska, Katarzyna; Janas, Krystyna M; Corbineau, Françoise

    2005-04-01

    Changes of activity antioxidant enzymes and of levels of isoflavonoids were studied in the roots and hypocotyls of the etiolated soybean (Glycine max (L.) Merr. var. Essor) seedlings, submitted to cold. Prolonged exposure to 1 degrees C inhibited hypocotyl and root elongation and limited their growth after seedlings were transferred to 25 degrees C. Roots were more sensitive to chilling than hypocotyls. At 1 degrees C a gradual increase in MDA concentration in roots but not in hypocotyls was observed. An increase in catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC 1.15.1.1) activity in hypocotyls was observed both at 1 degrees C and after transfer of plants to 25 degrees C. In roots, CAT activity increased after 4 days of chilling, while SOD activity only after rewarming. L-Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity decreased in roots of chilled seedlings, but did not change in hypocotyls until activity increased after transfer to 25 degrees C. The content of genistein and daidzein increased after 24 h of treatment by low temperature and then decreased with prolonged chilling in hypocotyls and remained high in roots. However, it should be noted that genistin level (genistein glucoside) in chilled hypocotyls is 10 times higher than in roots, despite falling tendency. The role of antioxidant enzymes and isoflavonoids in preventing chilling injury in hypocotyls and roots of soybean seedlings is discussed. PMID:15900882

  20. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings.

    PubMed

    Dinakar, N; Nagajyothi, P C; Suresh, S; Udaykiran, Y; Damodharam, T

    2008-01-01

    Phytotoxicity of cadmium on growing Arachis hypogaea L. seedlings was studied. Seeds were exposed to 25, 50, and 100 micromol/L CdCl2 concentrations, for a period of 10, 15, 20 and 25 d. The extent of damage to chlorophyll, protein, proline, nitrate and nitrite reductase, antioxidant enzyme activity in leaves and roots were evaluated after 10 d of cadmium stress. The higher concentration of cadmium (100 micromol/L) resulted (leaves and roots) total chlorophyll 91.01%, protein 79.51%, 83.61%, nitrate reductase 79.39%, 80.72% and nitrite reductase 77.07%, 75.88% activity decreased with increase in cadmium concentrations and exposure periods. Cadmium caused significant changes in the activity of antioxidative enzymes. Contrastingly Cd treated plant tissues showed an increase in proline 159.87%, 239.6%, gluthion reductase (GR) 337.72%, 306.14%, superoxide disumutase (SOD) 688.56%, 381.72%, ascorbate peroxidase (APX) 226.47%, 252.14%, peroxidase (POD) 72.19%, 60.29% and catalase (CAT) 228.96%, 214.74% as compared to control. Cadmium stress caused a significant increase in the rate of SOD activity in leaves and roots of plant species. Results show the crop A. hypogaea is highly sensitive even at very low cadmium concentrations. PMID:18574962

  1. Ferulsinaic Acid Modulates SOD, GSH, and Antioxidant Enzymes in Diabetic Kidney

    PubMed Central

    Sayed, Ahmed Amir Radwan

    2012-01-01

    The efficacy of Ferulsinaic acid (FA) to modulate the antioxidant enzymes and to reduce oxidative stress induced-diabetic nephropathy (DN) was studied. Rats were fed diets enriched with sucrose (50%, wt/wt), lard (30%, wt/wt), and cholesterol (2.5%, wt/wt) for 8 weeks to induce insulin resistance. After a DN model was induced by streptozotocin; 5, 50 and 500?mg/kg of FA were administrated by oral intragastric intubation for 12 weeks. In FA-treated diabetic rats, glucose, kidney/body weight ratio, creatinine, BUN, albuminurea, and creatinine clearance were significantly decreased compared with non treated diabetic rats. Diabetic rats showed decreased activities of SOD and GSH; increased concentrations of malondialdehyde and IL-6 in the serum and kidney, and increased levels of 8-hydroxy-2?-deoxyguanosine in urine and renal cortex. FA-treatment restored the altered parameters in a dose-dependent manner. The ultra morphologic abnormalities in the kidney of diabetic rats were markedly ameliorated by FA treatment. Furthermore, FA acid was found to attenuate chronic inflammation induced by both Carrageenan and dextran in rats. We conclude that FA confers protection against injuries in the kidneys of diabetic rats by increasing activities of antioxidant enzymes and inhibiting accumulation of oxidized DNA in the kidney, suggesting a potential drug for the prevention and therapy of DN. PMID:22991571

  2. Tocopherol Succinate: Modulation of Antioxidant Enzymes and Oncogene Expression, and Hematopoietic Recovery

    SciTech Connect

    Singh, Vijay K., E-mail: singh@afrri.usuhs.mi [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD (United States); Parekh, Vaishali I.; Brown, Darren S.; Kao, Tzu-Cheg [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD (United States); Mog, Steven R. [Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD (United States)

    2011-02-01

    Purpose: A class of naturally occurring isoforms of tocopherol (tocols) was shown to have varying degrees of protection when administered before radiation exposure. We recently demonstrated that {alpha}-tocopherol succinate (TS) is a potential radiation prophylactic agent. Our objective in this study was to further investigate the mechanism of action of TS in mice exposed to {sup 60}Co {gamma}-radiation. Methods and Materials: We evaluated the effects of TS on expression of antioxidant enzymes and oncogenes by quantitative RT-PCR in bone marrow cells of {sup 60}Co {gamma}-irradiated mice. Further, we tested the ability of TS to rescue and repopulate hematopoietic stem cells by analyzing bone marrow cellularity and spleen colony forming unit in spleen of TS-injected and irradiated mice. Results: Our results demonstrate that TS modulated the expression of antioxidant enzymes and inhibited expression of oncogenes in irradiated mice at different time points. TS also increased colony forming unit-spleen numbers and bone marrow cellularity in irradiated mice. Conclusions: Results provide additional support for the observed radioprotective efficacy of TS and insight into mechanisms.

  3. Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea

    PubMed Central

    Irfan, Mohd; Ahmad, Aqil; Hayat, Shamsul

    2013-01-01

    Increasing contamination and higher enrichment ratio of non-essential heavy metal cadmium (Cd) induce various toxic responses in plants when accumulated above the threshold level. These effects and growth responses are genotype and Cd level dependent. An experiment was conducted to analyze the effect of Cd toxicity in Brassica juncea [L] Czern and Coss by selecting its two varieties Varuna and RH-30. Cadmium (0, 25, 50 or 100 mg CdCl2 kg?1 of soil) fed to soil decreased the values of growth characteristics, activity of nitrate reductase and leaf water potential, whereas activities of antioxidant enzymes and proline content increased with the increasing concentration of Cd, observed at 30 and 60 day stages of growth, in both the varieties. Moreover, Cd uptake by the roots was higher in RH-30 than Varuna. Also the activity of antioxidant enzymes and proline accumulation were higher in Varuna with increasing soil level of Cd. Out of the two varieties, Varuna was more tolerant than RH-30 to Cd stress. PMID:24600304

  4. Green tea diet decreases PCB 126-induced oxidative stress in mice by upregulating antioxidant enzymes

    PubMed Central

    Newsome, Bradley J; Petriello, Michael C; Han, Sung Gu; Murphy, Margaret O; Eske, Katryn E; Sunkara, Manjula; Morris, Andrew J; Hennig, Bernhard

    2013-01-01

    Superfund chemicals such as polychlorinated biphenyls pose a serious human health risk due to their environmental persistence and link to multiple diseases. Selective bioactive food components such as flavonoids have been shown to ameliorate PCB toxicity, but primarily in an in vitro setting. Here, we show that mice fed a green tea-enriched diet and subsequently exposed to environmentally relevant doses of coplanar PCB exhibit decreased overall oxidative stress primarily due to the upregulation of a battery of antioxidant enzymes. C57BL/6 mice were fed a low fat diet supplemented with green tea extract (GTE) for 12 weeks and exposed to 5 ?mol PCB 126/kg mouse weight (1.63 mg/kg-day) on weeks 10, 11 and 12 (total body burden: 4.9 mg/kg). F2-Isoprostane and its metabolites, established markers of in vivo oxidative stress, measured in plasma via HPLC-MS/MS exhibited five-fold decreased levels in mice supplemented with GTE and subsequently exposed to PCB compared to animals on a control diet exposed to PCB. Livers were collected and harvested for both mRNA and protein analyses, and it was determined that many genes transcriptionally controlled by AhR and Nrf2 proteins were upregulated in PCB-exposed mice fed the green tea supplemented diet. An increased induction of genes such as SOD1, GSR, NQO1 and GST, key antioxidant enzymes, in these mice (green tea plus PCB) may explain the observed decrease in overall oxidative stress. A diet supplemented with green tea allows for an efficient antioxidant response in the presence of PCB 126 which supports the emerging paradigm that healthful nutrition may be able to bolster and buffer a physiological system against the toxicities of environmental pollutants. PMID:24378064

  5. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory activities. PMID:24242245

  6. Measuring Intracellular Enzyme Concentrations: Assessing the Effect of Oxidative Stress on the Amount of Glyoxalase I

    ERIC Educational Resources Information Center

    Miranda, Hugo Vicente; Ferreira, Antonio E. N.; Quintas, Alexandre; Cordeiro, Carlos; Freire, Ana Ponces

    2008-01-01

    Enzymology is one of the fundamental areas of biochemistry and involves the study of the structure, kinetics, and regulation of enzyme activity. Research in this area is often conducted with purified enzymes and extrapolated to "in vivo" conditions. The specificity constant, k[subscript S], is the ratio between k[subscript cat] (the catalytic…

  7. Hepatoprotective effects of Nigella sativa L and Urtica dioica L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats

    PubMed Central

    Kanter, Mehmet; Coskun, Omer; Budancamanak, Mustafa

    2005-01-01

    AIM: To investigate the effects of Nigella sativa L (NS) and Urtica dioica L (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats. METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals. All groups received CCl4 (0.8 mL/kg of body weight, sc, twice a week for 60 d). In addition, B, C and D groups also received daily i.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand, received only 2 mL/kg normal saline solution for 60 d. Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment. RESULTS: The CCl4 treatment for 60 d increased the lipid peroxidation and liver enzymes, and also decreased the antioxidant enzyme levels. NS or UD treatment (alone or combination) for 60 d decreased the elevated lipid peroxidation and liver enzyme levels and also increased the reduced antioxidant enzyme levels. The weight of rats decreased in group A, and increased in groups B, C and D. CONCLUSION: NS and UD decrease the lipid per-oxidation and liver enzymes, and increase the anti-oxidant defense system activity in the CCl4-treated rats. PMID:16425366

  8. The antioxidant mimetic, MnTE-2-PyP, reduces intracellular growth of Mycobacterium abscessus.

    PubMed

    Oberley-Deegan, Rebecca E; Lee, Young Min; Morey, G Eli; Cook, Danielle M; Chan, Edward D; Crapo, James D

    2009-08-01

    Mycobacterium abscessus is a rapidly growing environmental mycobacterium that can cause severe skin, soft tissue, and lung infections. M. abscessus grows inside macrophages, and these cells release a vast number of proinflammatory cytokines in response to infections. The metalloporphyrin, MnTE-2-PyP, is a broad antioxidant that reduces inflammatory cell signaling. Macrophage-like THP-1 cells were infected with M. abscessus in the presence or absence of MnTE-2-PyP. MnTE-2-PyP significantly decreased, in a dose-dependent manner, the number of M. abscessus organisms recovered from infected THP-1 cells 4 and 8 days after infection. Furthermore, when combined with clarithromycin, MnTE-2-PyP additively reduced the number of cells associated with M. abscessus. A mechanism of bacterial growth inhibition by MnTE-2-PyP was then elucidated. It was found that MnTE-2-PyP promoted the survival of infected THP-1 cells and increased fusion of M. abscessus-containing phagosomes with lysosomes. PMID:19097985

  9. The Antioxidant Mimetic, MnTE-2-PyP, Reduces Intracellular Growth of Mycobacterium abscessus

    PubMed Central

    Oberley-Deegan, Rebecca E.; Lee, Young Min; Morey, G. Eli; Cook, Danielle M.; Chan, Edward D.; Crapo, James D.

    2009-01-01

    Mycobacterium abscessus is a rapidly growing environmental mycobacterium that can cause severe skin, soft tissue, and lung infections. M. abscessus grows inside macrophages, and these cells release a vast number of proinflammatory cytokines in response to infections. The metalloporphyrin, MnTE-2-PyP, is a broad antioxidant that reduces inflammatory cell signaling. Macrophage-like THP-1 cells were infected with M. abscessus in the presence or absence of MnTE-2-PyP. MnTE-2-PyP significantly decreased, in a dose-dependent manner, the number of M. abscessus organisms recovered from infected THP-1 cells 4 and 8 days after infection. Furthermore, when combined with clarithromycin, MnTE-2-PyP additively reduced the number of cells associated with M. abscessus. A mechanism of bacterial growth inhibition by MnTE-2-PyP was then elucidated. It was found that MnTE-2-PyP promoted the survival of infected THP-1 cells and increased fusion of M. abscessus–containing phagosomes with lysosomes. PMID:19097985

  10. The Protective Roles of the Antioxidant Enzymes Superoxide Dismutase and Catalase in the Green Photosynthetic Bacterium Chloroflexus Aurantiacus

    NASA Technical Reports Server (NTRS)

    Blankenship, Robert E.; Rothschild, Lynn (Technical Monitor)

    2004-01-01

    The purpose of this study was to examine the biochemical response of the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus to oxidative stress. Lab experiments focused primarily on characterizing the antioxidant enzyme superoxide dismutase and the response of this organism to oxidative stress. Experiments in the field at the hotsprings in Yellowstone National Park focused on the changes in the level of these enzymes during the day in response to oxidants and to the different types of ultraviolet radiation.

  11. Flavonoid antioxidants.

    PubMed

    Rice-Evans, C

    2001-06-01

    In order to ascertain the role of dietary flavonoids as antioxidants in vivo it is necessary to understand the chemical nature of the absorbed forms in the circulation in vivo and how the multiplicity of research findings in vitro reflect the bioactivity of flavonoids in vivo. Only when we gain adequate information on the circulating forms can we begin to understand the targeting to the tissues, whether flavonoids cross the blood-brain barrier, for example, and in what forms. Flavonoids are powerful antioxidants in vitro, but their overall function in vivo has yet to be clarified, whether antioxidant, anti-inflammatory, enzyme inhibitor, enzyme inducer, inhibitor of cell division, or some other role. It should also be emphasised that the reducing properties of flavonoids might contribute to redox regulation in cells, independently of their antioxidant properties, and thus might protect against cell ageing, for example, by working together with the intracellular reductant network. To gain understanding of these issues the factors influencing the absorption of flavonoids in the gastrointestinal tract needs to be established, namely the questions of: de-glycosylation before absorption, conjugation in the small intestine through glucuronidation, sulphation or methylation etc, metabolism and degradation in the colon to smaller phenolic molecules. The forms in which they circulate in vivo will influence their polarity and, thus, their localization and bioactivities in vivo. Finally if antioxidant activities are important, the elucidation of how such properties in vitro relate to the potential for conjugates and metabolites in vivo to act as antioxidants is required. The absorbed flavonoid components might function in the aqueous phase (like vitamin C) or in the lipophilic milieu (as vitamin E) in vivo. This will depend on their polarity properties on uptake, how they are metabolised on absorption, and their resulting structural forms in the circulation. PMID:11375750

  12. Antioxidative Properties and Inhibition of Key Enzymes Relevant to Type-2 Diabetes and Hypertension by Essential Oils from Black Pepper

    PubMed Central

    Oboh, Ganiyu; Ademosun, Ayokunle O.; Odubanjo, Oluwatoyin V.; Akinbola, Ifeoluwa A.

    2013-01-01

    The antioxidant properties and effect of essential oil of black pepper (Piper guineense) seeds on ?-amylase, ?-glucosidase (key enzymes linked to type-2 diabetes), and angiotensin-I converting enzyme (ACE) (key enzyme linked to hypertension) were assessed. The essential oil was obtained by hydrodistillation and dried with anhydrous Na2SO4, and the phenolic content, radical [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2?-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and nitric oxide (NO)] scavenging abilities as well as the ferric reducing antioxidant property (FRAP) and Fe2+-chelating ability of the essential oil were investigated. Furthermore, the effect on ?-amylase, ?-glucosidase, and ACE enzyme activities was also investigated. The characterization of the constituents was done using GC. The essential oil scavenged DPPH?, NO?, and ABTS? and chelated Fe2+. ?-Pinene, ?-pinene, cis-ocimene, myrcene, allo-ocimene, and 1,8-cineole were among the constituents identified by GC. The essential oil inhibited ?-amylase, ?-glucosidase, and ACE enzyme activities in concentration-dependent manners, though exhibiting a stronger inhibition of ?-glucosidase than ?-amylase activities. Conclusively, the phenolic content, antioxidant activity, and inhibition of ?-amylase, ?-glucosidase, and angiotensin-1 converting enzyme activities by the essential oil extract of black pepper could be part of the mechanism by which the essential oil could manage and/or prevent type-2 diabetes and hypertension. PMID:24348547

  13. Ontogenesis of anti-oxidative enzymes in mouse embryos and fetuses: an immunohistochemical study.

    PubMed

    Kobayashi, M; Nakamura, H; Yodoi, J; Shiota, K

    2001-01-01

    The ontogenesis of two anti-oxidative enzymes, thioredoxin (TRX) and glutaredoxin (GRX), was examined immunohistochemically in mouse embryos and fetuses at various developmental stages. They were found to be localized in various tissues, with some tissue specificity and temporal sequence. Both TRX and GRX began to be expressed in many tissues at embryonic (E) day E10 or E11 and tended to increase as the developmental stage advanced. In the heart and neuroepithelium, however, their immunoreactivity was already positive at E8.5. In some fetal organs like the liver, pancreas and kidney, TRX and GRX showed heterogeneous localization, suggesting that their expression may reflect the variable functional states of the cell. These results suggest that TRX and GRX may be associated with tissue differentiation in embryos and fetuses are involved in the acquisition of the capacity of resistance against oxygen radicals. PMID:11732570

  14. Antioxidant enzymes and proteins of wetland plants: their relation to Pb tolerance and accumulation.

    PubMed

    Yang, Junxing; Ye, Zhihong

    2015-02-01

    Constructed wetlands used to clean up toxic metals such as lead (Pb) from contaminated wastewater are considered as an effective and low-cost technology. The effect of Pb on the biomass, tolerance, soluble protein, and antioxidant enzymes in 18 candidate wetland plant species grown in soils without (control) and spiked with 900 and 1800 mg Pb kg(-1) was studied in a pot trial. Our pot experiment showed that the biomass, tolerance, and leaf protein contents decreased with increasing concentrations of Pb in soil. There were significant differences between the plants in their Pb tolerance indices (29-82 % in the 900 mg Pb kg(-1) amended soil) and also Pb uptake (13-749 mg kg(-1) in shoots and 1112-4891 mg kg(-1) in roots, in the same treatments). Activities of superoxide dismutase (SOD) and peroxidase (POD) in leaves of most of the plants increased with increasing level of soil Pb concentration. Conversely, catalase (CAT) activity in leaves declined when plants were subjected to Pb stress. Lead accumulation by the 18 wetland plant species screened was strongly dependent on the species and Pb concentrations in the soil. However, Pb translocation from root to shoot was generally low in all species. Increases in SOD and POD activities suggest that the antioxidant system may play an important role in alleviating Pb toxicity in wetland plants. The data obtained should help in future species selection for the use in designing wetlands in Pb-contaminated environments. PMID:25269838

  15. [Antioxidative enzymes play key roles in cadmium tolerance of Phytolacca americana].

    PubMed

    Zhang, Yu-Xiu; Zhang, Hong-Mei; Huang, Zhi-Bo; Li, Lin-Feng; Liu, Jin-Guang; Li, Xia

    2011-03-01

    Phytolacca americana L. has the capacity to take up and accumulate to very high levels heavy metals such as Mn and Cd, and is used for phytoextraction of heavy metal contaminated soils. The role of antioxidative enzyme of Phytolacca americana in response to Cd stress is unknown. The 6-week-old seedlings of Phytolacca americana were exposed to half strength Hoagland solution with 200 micromol/L CdCl2 or 400 micromol/L CdCl2 for 4 days. The content of H2O2 and MDA, and electrolyte leakage increased, while the photosynthetic rate decreased, indicated that the oxidative damage induced by Cd stress in Phytolacca americana was one of the metal toxicity mechanism. The activities of SOD and POD increased rapidly with elevated Cd concentration and exposure time, CAT activity was stable in response to 200 micromol/L CdCl2 stress, and increased only at 3 d later upon 400 micromol/L CdCl2, treatment. Suggested that the enzymatic antioxidation capacity played important role in Cd tolerance of hyperaccumulator plant. PMID:21634194

  16. The Role of Antioxidant Enzymes in Adaptive Responses to Sheath Blight Infestation under Different Fertilization Rates and Hill Densities

    PubMed Central

    Wan, Xuejie; Shah, Farooq; Fahad, Shah; Huang, Jianliang

    2014-01-01

    Sheath blight of rice, caused by Rhizoctonia solani, is one of the most devastating rice diseases worldwide. No rice cultivar has been found to be completely resistant to this fungus. Identifying antioxidant enzymes activities (activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) and malondialdehyde content (MDA) responding to sheath blight infestation is imperative to understand the defensive mechanism systems of rice. In the present study, two inoculation methods (toothpick and agar block method) were tested in double-season rice. Toothpick method had greater lesion length than agar block method in late season. A higher MDA content was found under toothpick method compared with agar block method, which led to greater POD and SOD activities. Dense planting caused higher lesion length resulting in a higher MDA content, which also subsequently stimulated higher POD and SOD activity. Sheath blight severity was significantly related to the activity of antioxidant enzyme during both seasons. The present study implies that rice plants possess a system of antioxidant protective enzymes which helps them in adaptation to sheath blight infection stresses. Several agronomic practices, such as rational use of fertilizers and optimum planting density, involved in regulating antioxidant protective enzyme systems can be regarded as promising strategy to suppress the sheath blight development. PMID:25136671

  17. Response of Bacillus sp. F26 to Different Reactive Oxygen Species Stress Characterized by Antioxidative Enzymes Synthesis

    Microsoft Academic Search

    Guoliang Yan; Zhaozhe Hua; Guocheng Du; Jian Chen

    2008-01-01

    The oxidative response of Bacillus sp F26 to different forms of reactive oxygen species (ROS) stress including H2O2, O2? ? ? ? ? ?and OH· was investigated using diverse generating source of ROS, which was characterized by the synthesis of antioxidative enzymes. It was seen that the responses of cells to oxidative stress are largely dependent on species, mode (shock

  18. Effect of dietary benzoxadiazole on larval development, cuticle enzyme and antioxidant defense system in housefly ( Musca domestica L.)

    Microsoft Academic Search

    Qingchun Huang; Manhui Liu; Jun Feng; Yang Liu

    2008-01-01

    The toxicity and influence on chronic development regulation of dietary benzoxadiazole as well as the subsequent action on cuticle enzyme and antioxidant defense system in feed-thru housefly larvae are investigated. Dietary benzoxadiazole shows limited larvicidal activity and weak interference on larval pupation, but strong blockage against the succedent eclosion process. It does not change the content ratio of protein\\/chitin in

  19. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1.

    PubMed

    El-Bahr, S M

    2015-01-01

    Twenty-eight rats were examined in a 5-week experiment to investigate the effect of curcumin on gene expression and activities of hepatic antioxidant enzymes in rats intoxicated with aflatoxin B1 (AFB1 ). The rats were divided into four groups. Rats in 1-4 groups served as control, oral curcumin treated (15?mg/kg body weight), single i.p. dose of AFB1 (3?mg/kg body weight) and combination of single i.p. dose of AFB1 with oral curcumin treated, respectively. AFB1 Liver damage and oxidative stress were evident in untreated AFB1 -intoxicated rats as indicated by a significant elevation in hepatic transaminases, elevation in lipid peroxide biomarkers (thiobarbituric acid reactive substances; TBARS), reduction of reduced glutathione (GSH) concentration, reduction in the activities of antioxidant enzymes namely catalase (CAT), total superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) and down-regulation of gene expression of these antioxidant enzymes compared to control. Liver sections of rats intoxicated with AFB1 showed a disrupted lobular architecture, scattered necrotic cells and biliary proliferation. Administration of curcumin with AFB1 resulted in amelioration of AFB1 -induced effects compared to untreated AFB1 -intoxicated rats via an up-regulation of antioxidant enzyme gene expression, activation of the expressed genes and increase in the availability of GSH. PMID:25639897

  20. Influence of salt stress on growth, lipid peroxidation and antioxidative enzyme activity in borage (Borago officinalis L.)

    Microsoft Academic Search

    K. Jaffel; S. Sai; N. K. Bouraoui; R. B. Ammar; L. Legendre; M. Lachâal; B. Marzouk

    2011-01-01

    The effects of increasing salt concentrations on the growth, electrolyte leakage, lipid peroxidation, and major antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) of borage plants were investigated. Plants were grown in half strength of Hoagland nutrient solution added with 0, 25, 50, and 75 mM of NaCl. Most measured parameters were affected by salinity. Increasing salt

  1. Angiotensin II Regulates Cardiac Hypertrophy via Oxidative Stress but Not Antioxidant Enzyme Activities in Experimental Renovascular Hypertension

    Microsoft Academic Search

    Ariel H. POLIZIO; Karina B. BALESTRASSE; Gustavo G. YANNARELLI; Guillermo O. NORIEGA; Susana Gorzalczany; Carlos Taira; Maria L. TOMARO

    2008-01-01

    The aim of this study was to provide new insights into the role of angiotensin II and arterial pressure in the regulation of antioxidant enzyme activities in a renovascular model of cardiac hypertrophy. For this purpose, aortic coarcted rats were treated with losartan or minoxidil for 7 days. Angiotensin II induced cardiac hypertrophy and oxidative stress via Nox4, p22phox and

  2. Toxicity of copper excess on the lichen Dermatocarpon luridum: antioxidant enzyme activities.

    PubMed

    Monnet, Fabien; Bordas, François; Deluchat, Véronique; Baudu, Michel

    2006-12-01

    The aim of this study was to investigate the toxicity of copper on the aquatic lichen Dermatocarpon luridum focusing on the activities of some antioxidant enzymes. Investigations were conducted using increasing copper concentrations (0.00, 0.25, 0.50, 0.75 and 1.00 mM CuSO(4) x 5H(2)O) in synthetic freshwater that emulated the major ion compositions of its natural water biota; time course measurement was 0, 3, 6, 12, 24 and 48 h. The copper concentration in thalli increased with its increase in the medium and the duration of treatment. Copper induced lipid peroxidation, measured using the hydroperoxi-conjugated dienes (HPCD) concentration. The decrease in the protein concentrations was similar in thalli exposed to copper concentrations above 0.50 mM and the decrease was twice lower in thalli exposed to 0.25 mM copper. The activities of antioxidant enzymes measured were differently affected by copper excess. For 0.25 mM copper, the activities of SOD (superoxide dismutase) and APX (ascorbate peroxidase) were unchanged when compared with unstressed thalli whereas the CAT (catalase) activity increased and the GR (glutathione reductase) activity decreased. The activities of SOD and APX increased in thalli exposed to concentrations above 0.50mM copper. The CAT activity increased after the first 3h of experiments at these concentrations and then decreased with the duration of treatment at an activity lower than in the unstressed plant. Whereas the APX activity increased, the GR activity similarly decreased for the copper concentration tested whatever the duration of the experiment. PMID:16730778

  3. Effects of Microgravity On Oxidative and Antioxidant Enzymes In Mouse Hindlimb Muscle

    NASA Technical Reports Server (NTRS)

    Girten, B.; Hoopes, R.; Steele, M.; Morony, S.; Bateman, T. A.; Sun, S. (Technical Monitor)

    2002-01-01

    Gastrocnemius muscle of mice were analyzed in order to examine the effects of 12 days of microgravity on the oxidative enzyme climate synthase (CS) and the antioxidant enzyme superoxide dismutase (SOD). The female C57BL/6J mice utilized for this study were part of the Commercial Biomedical Testing Module (CBTM) payload that flew aboard STS-108. Mice were housed in Animal Enclosure Modules (AEMs) provided by NASA Ames. The flight (FLT) group and the ground control (CON) group each had 12 mice per group. The AEMs that held the CON group operated on a 48-hour delay from the FLT group and were located inside the Orbital Environmental Simulator (OES) at Kennedy Space Center. The temperature, CO2 and relative humidity inside the OES was regulated based on downlinked information from the shuttle middeck. Student T tests were used to compare groups and a p < 0.05 was used to determine statistical significance. Results indicated that CS levels for the FLT group were significantly lower than the CON group while the SOD levels were significantly higher. The CS FLT mean was 19% lower and the SOD FLT mean was 17% higher than the respective CON group means. Although these findings are among the first muscle enzyme values reported for mice from a shuttle mission, these results are similar to some results previously reported for rats exposed to microgravity or hindlimb suspension. The changes seen during the CBTM payload are reflective of the deconditioning that takes place with disuse of the hindlimbs and indicate that muscle enzyme changes induced by disuse deconditioning are similar in both rodent species.

  4. Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase

    PubMed Central

    Alvarez-Suarez, José M.; Dekanski, Dragana; Risti?, Slavica; Radonji?, Nevena V.; Petronijevi?, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio

    2011-01-01

    Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a beneficial effect in the prevention of gastric diseases related to generation of reactive oxygen species. PMID:22016781

  5. [Effects of rutin on the activity of antioxidant enzymes and xenobiotic-metabolizing enzymes in liver of rats fed diets with different level of fat].

    PubMed

    Aksenov, I V; Trusov, N V; Avren'eva, L I; Guseva, G V; Lashneva, N V; Kravchenko, L V; Tutel'ian, V A

    2014-01-01

    The study has been carried out on 6 groups of male Wistar rats, which received semi-synthetic diets within 28 days. Rats of 1st and 4th group received fat-free diet, 2nid.and 5th - diet containing standard amount of fat (10% by weight, 26% by caloric content; lard/sunflower oil - 1/1); 3rd and 6th group - a high-fat diet (30% by weight, 56% by caloric content). During the last 14 days of the experiment rats received rutin in the dose of 40 mg/kg b.w. AOA, MDA level and the activity of paraoxonase I have been evaluated in blood serum. In rat liver along with the parameters of the antioxidant status (MDA level, activity of paraoxonase 1, quinone reductase, heme oxygenase-1) the activity of xenobiotic-metabolizing enzymes (XME) (CYP1A1, CYP1A2, CYP3A1, CYP2B1, UDP-glucuronosyl transferase and glutathione transferase) and the activity of lysosomal enzymes (arylsulfatase A and B, ?-galactosidase and ?-glucuronidase) have been investigated. Elevation of the activity of antioxidant enzymes and XME in liver with the increase of diet fat content has been-noted. Rutin admihistration had no effect onparamete6rs of antioxidant status and decreased unsedimentable activity of lysosomal enzymes that did not depend on fat content in the diet. Rutin receiving increased the activity of all studied XME in rats fed standard diet, but practically did not effect on their activity in rats fed by fat-free and high-fat diets. Thus, rutin in pharmacological dose has no effect on the activity of antioxidant enzymes that doesn't depend on the level of fat in the diet, while the decrease or increase of diet fat content modulates (weakens) the influence of rutin on the XME activity. PMID:25816620

  6. Effects of an organic hydroperoxide on the activity of antioxidant enzymes in cultured mammalian cells.

    PubMed

    Ochi, T

    1990-04-30

    As a basis for an evaluation of the role of the cellular antioxidant defense system against oxidative stress, the effects of an organic hydroperoxide, tertiary-butyl hydroperoxide (t-BuOOH), on the activity of antioxidant enzymes were investigated in cultured Chinese hamster V79 cells. Incubation of cells with t-BuOOH for 1 h significantly increased the activity of Cu-Zn superoxide dismutase (SOD) up to a level 1.4 times that of control cells. In contrast, the activities of catalase and glutathione reductase (GSSG-Rx) were not affected, while the activity of glutathione peroxidase (GSH-Px) was inhibited to a significant extent by t-BuOOH. Hydrogen peroxide also inhibited GSH-Px activity but its potency in this regard was somewhat lower than that of equimolar amount of t-BuOOH. Earlier studies demonstrated that t-BuOOH-induced cytotoxicity, single strand breaks (ssb) in DNA and structural aberrations in the chromosomes of V79 cells can be suppressed almost completely by an iron chelator o-phenanthroline. However, the iron chelator did not suppress the t-BuOOH-induced inhibition of GSH-Px activity. Likewise, a diffusible scavenger of free radicals, butylated hydroxytoluene (BHT) did not affect the hydroperoxide-induced inhibition of the enzymatic activity. These results suggest that a mechanism other than iron-mediated radical reaction is involved in the inhibition of GSH-Px activity by t-BuOOH. Modulation of the activity of antioxidant enzymes by the oxidative agent diamide was very similar to that by t-BuOOH. Inhibition of GSH-Px activity by t-BuOOH was reversible and the reduced activity returned to pre-inhibition levels within 1-2 h of post-treatment incubation. A mechanism for the inhibition of GSH-Px by t-BuOOH is discussed with reference to the oxidation of selenocysteine residues which results in perturbation of the normal catalytic cycle. PMID:2330596

  7. Human serum induces maturation of human monocytes in vitro. Changes in cytolytic activity, intracellular lysosomal enzymes, and nonspecific esterase activity.

    PubMed Central

    Musson, R. A.

    1983-01-01

    The dependence of human monocyte maturation in vitro on autologous serum was examined. If autologous serum was present during the monocyte culture, cytolysis of K562 target cells increased, intracellular levels of three lysosomal enzymes increased, and the fluoride-inhibitable esterase staining of the monocytes changed into a fluoride-resistant esterase stain (characteristic of more mature extravascular mononuclear phagocytes). Monocytes cultured in the presence and in the absence of serum also assumed different shapes. All of these changes were dependent on the concentration of autologous serum present (0-10%) and the length of time the monocytes were in culture (0-7 days). Lack of development by monocytes cultured in the absence of serum was not due to a general loss of the ability of these cells to function, because phagocytosis of antibody-coated erythrocytes was not lost following 7 days in culture in the absence of serum. Images Figure 1 PMID:6859218

  8. The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells.

    PubMed

    Rath, Alexander G; Rehberg, Markus; Janke, Robert; Genzel, Yvonne; Scholz, Sebastian; Noll, Thomas; Rose, Thomas; Sandig, Volker; Reichl, Udo

    2014-05-20

    Optimization of bioprocesses with mammalian cells mainly concentrates on cell engineering, cell screening and medium optimization to achieve enhanced cell growth and productivity. For improving cell lines by cell engineering techniques, in-depth understandings of the regulation of metabolism and product formation as well as the resulting demand for the different medium components are needed. In this work, the relationship of cell specific growth and uptake rates and of changes in maximum in vitro enzyme activities with intracellular metabolite pools of glycolysis, pentose phosphate pathway, citric acid cycle and energy metabolism were determined for batch cultivations with AGE1.HN.AAT cells. Results obtained by modeling cell growth and consumption of main substrates showed that the dynamics of intracellular metabolite pools is primarily linked to the dynamics of specific glucose and glutamine uptake rates. By analyzing maximum in vitro enzyme activities we found low activities of pyruvate dehydrogenase and pyruvate carboxylase which suggest a reduced metabolite transfer into the citric acid cycle resulting in lactate release (Warburg effect). Moreover, an increase in the volumetric lactate production rate during the transition from exponential to stationary growth together with a transient accumulation of fructose 1,6-bisphosphate, fructose 1-phosphate and ribose 5-phosphate point toward an upregulation of PK via FBP. Glutaminase activity was about 44-fold lower than activity of glutamine synthetase. This seemed to be sufficient for the supply of intermediates for biosynthesis but might lead to unnecessary dissipation of ATP. Taken together, our results elucidate regulation of metabolic networks of immortalized mammalian cells by changes of metabolite pools over the time course of batch cultivations. Eventually, it enables the use of cell engineering strategies to improve the availability of building blocks for biomass synthesis by increasing glucose as well as glutamine fluxes. An additional knockdown of the glutamine synthetase might help to prevent unnecessary dissipation of ATP, to yield a cell line with optimized growth characteristics and increased overall productivity. PMID:24657347

  9. Effect of Sodium Fluoride Ingestion on Malondialdehyde Concentration and the Activity of Antioxidant Enzymes in Rat Erythrocytes

    PubMed Central

    Morales-González, José A.; Gutiérrez-Salinas, José; García-Ortiz, Liliana; del Carmen Chima-Galán, María; Madrigal-Santillán, Eduardo; Esquivel-Soto, Jaime; Esquivel-Chirino, César; González-Rubio, Manuel García-Luna y

    2010-01-01

    Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF) treatment on malondialdehyde (MDA) levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress. PMID:20640162

  10. Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum).

    PubMed

    Landbo, A K; Meyer, A S

    2001-07-01

    Enzymatic release of phenolic compounds from pomace remaining from black currant (Ribes nigrum) juice production was examined. Treatment with each of the commercial pectinolytic enzyme preparations Grindamyl pectinase, Macer8 FJ, Macer8 R, and Pectinex BE, as well as treatment with Novozym 89 protease, significantly increased plant cell wall breakdown of the pomace. Each of the tested enzyme preparations except Grindamyl pectinase also significantly enhanced the amount of phenols extracted from the pomace. Macer8 FJ and Macer8 R decreased the extraction yields of anthocyanins, whereas Pectinex BE and Novozym 89 protease showed no effect. A decrease in pomace particle sizes from 500-1000 microm to <125 microm increased the phenol yields 1.6-5 times. Black currant pomace devoid of seeds gave significantly higher yields of phenols than pomace with seeds and seedless wine pomace. Four selected black currant pomace extracts all exerted a pronounced antioxidant activity against human LDL oxidation in vitro when tested at equimolar phenol concentrations of 7.5-10 microM. PMID:11453748

  11. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities.

    PubMed

    Les, Francisco; Prieto, Jose M; Arbonés-Mainar, Jose Miguel; Valero, Marta Sofía; López, Víctor

    2015-06-10

    Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antiproliferative effects of the juice were measured on HeLa and PC-3 cells by the MTT assay and pharmacologically relevant enzymes (cyclooxygenases, xanthine oxidase, acetylcholinesterase and monoamine oxidase A) were selected for enzymatic inhibition assays. Pomegranate juice showed significant protective effects against hydrogen peroxide induced toxicity in the Artemia salina and HepG2 models; these effects may be attributed to radical scavenging properties of pomegranate as the juice was able to reduce DPPH and superoxide radicals. Moderate antiproliferative activities in HeLa and PC-3 cancer cells were observed. However, pomegranate juice was also able to inhibit COX-2 and MAO-A enzymes. This study reveals some mechanisms by which pomegranate juice may have interesting and beneficial effects in human health. PMID:26030005

  12. Differential Expression and Immunolocalization of Antioxidant Enzymes in Entamoeba histolytica Isolates during Metronidazole Stress

    PubMed Central

    Iyer, Lakshmi Rani; Singh, Nishant; Verma, Anil Kumar; Paul, Jaishree

    2014-01-01

    Entamoeba histolytica infections are endemic in the Indian subcontinent. Five to eight percent of urban population residing under poor sanitary conditions suffers from Entamoeba infections. Metronidazole is the most widely prescribed drug used for amoebiasis. In order to understand the impact of metronidazole stress on the parasite, we evaluated the expression of two antioxidant enzymes, peroxiredoxin and FeSOD, in Entamoeba histolytica isolates during metronidazole stress. The results reveal that, under metronidazole stress, the mRNA expression levels of these enzymes did not undergo any significant change. Interestingly, immunolocalization studies with antibodies targeting peroxiredoxin indicate differential localization of the protein in the cell during metronidazole stress. In normal conditions, all the Entamoeba isolates exhibit presence of peroxiredoxin in the nucleus as well as in the membrane; however with metronidazole stress the protein localized mostly to the membrane. The change in the localization pattern was more pronounced when the cells were subjected to short term metronidazole stress compared to cells adapted to metronidazole. The protein localization to the cell membrane could be the stress response mechanism in these isolates. Colocalization pattern of peroxiredoxin with CaBp1, a cytosolic protein, revealed that the membrane and nuclear localization was specific to peroxiredoxin during metronidazole stress. PMID:25013795

  13. Superoxide dismutase and ascorbate peroxidase are constitutively more thermotolerant than other antioxidant enzymes in Chenopodium album.

    PubMed

    Khanna-Chopra, Renu; Semwal, Vimal Kumar

    2011-10-01

    Thermal stability of antioxidant defense enzymes was investigated in leaf and inflorescence of heat adaptive weed Chenopodium album. Leaf samples were taken at early and late seedling stage in December (LD, 20 °C/4 °C) and March (LM, 31 °C/14 °C). Young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). LD, LM and INF crude protein extracts were subjected to elevated temperatures (5 to 100 °C) for 30'. Superoxide dismutase (SOD) was the most heat stable enzyme followed by Ascorbate peroxidase (APX). Two heat stable SOD isozymes were visible on native-PAGE at 100 °C in both leaf and INF. Some heat stable APX isozymes were more abundant in INF than leaf. Thermostability of catalase (CAT) increased with age and increasing ambient temperatures in leaves. CAT activity was observed up to 60 °C in leaves and INF while peroxidase (POX) retained activity up to 100 °C in INF due to one thermostable isozyme. Glutathione reductase (GR), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR) showed activity up to 70 °C in both leaves and INF. DHAR activity was stable up to 60 °C while GR and MDHAR declined sharply after 40 °C. Constitutive heat stable isozymes of SOD and APX in leaves and INF may contribute towards heat tolerance in C. album. PMID:23573027

  14. Change of antioxidant enzymes activity of hazel (Corylus avellana L.) cells by AgNPs.

    PubMed

    Jamshidi, Mitra; Ghanati, Faezeh; Rezaei, Ayatollah; Bemani, Ebrahim

    2014-11-18

    Elicitation effect of silver nano particles (AgNPs) and triggering of defence system by production of hydrogen peroxide (H2O2) as a signaling molecule in the regulation of the activity of stress-related enzymes and production of Taxol was evaluated in suspension- cultured hazel cells (Corylus avellana L.). The cells were treated with different concentrations of AgNPs (0, 2.5, 5, and 10 ppm), in their logarithmic growth phase (d7) and were harvested after 1 week. Treatment of hazel cells with AgNPs decreased the viability of the cells. Also the results showed that while the activity of certain radical scavenging enzymes in particular of catalase and peroxidase increased by 2.5 and 5 ppm AgNPs, the activity of superoxide dismutase decreased in these treatments. The highest activity of ascorbate peroxidase was observed in 10 ppm AgNPs treatments. This treatment also showed the highest contents of H2O2 and phenolic compounds, as well as the highest activity of phenylalanine ammonialyase. According to the results, 5 ppm AgNPs was the best concentration for elicitation of hazel cells to produce efficient amounts of H2O2 in order for stimulation of antioxidant defence system, production of Taxol at the highest capacity of the cells, meanwhile reserving their viability. PMID:25404256

  15. Isozymes of antioxidative enzymes during ripening and storage of ber ( Ziziphus mauritiana Lamk.).

    PubMed

    Kumar, Sunil; Yadav, Praduman; Jain, Veena; Malhotra, Sarla P

    2014-02-01

    Isozyme profile of antioxidative enzymes viz. superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and ascorbate peroxidase (APX) was studied during ripening and storage of two cultivars of ber fruit (Ziziphus mauritiana Lamk.) differing in their shelf-lives viz. Umran (shelf-life, 8-9 d) and Kaithali (shelf-life, 4-5 d). The profile revealed that Umran variety exhibited three bands each of SOD and POX while in Kaithali, these enzymes had two isoenzymes throughout ripening. CAT and APX, however, showed two isozymes each during ripening of both the varieties and the pattern remained the same at all the stages of ripening except at the initial stage i.e immature green stage where single CAT isozyme was visible. During storage, one extra band each of SOD and POX present only in Umran got disappeared at later stages of storage, whereas in Kaithali, the pattern remained unchanged. Also, there was no change in the pattern of CAT and APX isozymes during storage of both the varieties. One isozyme of CAT could be considered as ripening related while one isozyme each of SOD and POX could be related to higher shelf life of fruits. PMID:24493891

  16. Sodium nitroprusside may modulate Escherichia coli antioxidant enzyme expression by interacting with the ferric uptake regulator.

    PubMed

    Bertrand, R; Danielson, D; Gong, V; Olynik, B; Eze, M O

    2012-01-01

    Efforts to explore possible relationships between nitric oxide (NO) and antioxidant enzymes in an Escherichia coli model have uncovered a possible interaction between sodium nitroprusside (SNP), a potent, NO-donating drug, and the ferric uptake regulator (Fur), an iron(II)--dependent regulator of antioxidant and iron acquisition proteins present in Gram-negative bacteria. The enzymatic profiles of superoxide dismutase and hydroperoxidase during logarithmic phase of growth were studied via non-denaturing polyacrylamide gel electrophoresis and activity staining specific to each enzyme. Though NO is known to induce transcription of the manganese-bearing isozyme of SOD (MnSOD), treatment with SNP paradoxically suppressed MnSOD expression and greatly enhanced the activity of the iron-containing equivalent (FeSOD). Fur, one of six global regulators of MnSOD transcription, is uniquely capable of suppressing MnSOD while enhancing FeSOD expression through distinct mechanisms. We thus hypothesize that Fur is complacent in causing this behaviour and that the iron(II) component of SNP is activating Fur. E. coli was also treated with the SNP structural analogues, potassium ferricyanide (PFi) and potassium ferrocyanide (PFo). Remarkably, the ferrous PFo was capable of mimicking the SNP-related pattern, whereas the ferric PFi was not. As Fur depends upon ferrous iron for activation, we submit this observation of redox-specificity as preliminary supporting evidence for the hypothesized Fur-SNP interaction. Iron is an essential metal that the human innate immune system sequesters to prevent its use by invading pathogens. As NO is known to inhibit iron-bound Fur, and as activated Fur regulates iron uptake through feedback inhibition, we speculate that the administration of this drug may disrupt this strategic management of iron in favour of residing Gram-negative species by providing a source of iron in an otherwise iron-scarce environment capable of encouraging its own uptake. However, these gains may be counteracted by the oxidative consequences of iron and NO, as the former can catalyse the formation of toxic free radical species while the latter can inhibit enzymes and contribute to the formation of other toxic compounds. The potential consequences of SNP on microbial growth warrant future investigation. PMID:22061896

  17. Antioxidant activity of leaves of Salvia species in enzyme-dependent and enzyme-independent systems of lipid peroxidation and their phenolic constituents.

    PubMed

    Zupkó, I; Hohmann, J; Rédei, D; Falkay, G; Janicsák, G; Máthé, I

    2001-06-01

    The protective effects of eleven Salvia species native to Europe against enzyme-dependent and enzyme-independent lipid peroxidation were evaluated. The 50% aqueous methanolic extracts of the leaves of all tested plants were found to be more effective than the positive control alpha-tocopherol acid succinate. The extracts of S. candelabrum, S. ringens, S. tomentosa, S. nemorosa, and S. glutinosa displayed considerable concentration-dependent antioxidative effects that were comparable to those of the medicinal and aromatic plant S. officinalis. The concentrations of flavonoids, hydroxycinnamic acids and total phenolic compounds in each extract were quantified with the aim of clarifying the connection between activity and chemical composition. PMID:11458459

  18. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii.

    PubMed

    Elbaz, Abdelrahman; Wei, Yuan Yuan; Meng, Qian; Zheng, Qi; Yang, Zhi Min

    2010-10-01

    Investigation of mercury toxicology in green algae is of great importance from ecological point of view, because mercury has become a major contaminant in recent years. In higher plants, accumulation of mercury modifies many aspects of cellular functions. However, the process that mercury exerts detrimental effects on green algae is largely unknown. In this study, we performed an experiment focusing on the biological responses of Chlamydomonas reinhardtii, a unicellular model organism, to Hg(2+)-induced toxicity. C. reinhardtii was exposed to 0, 1, 2, 4, 6, and 8 ?M Hg in media. Concentrations of Hg were negatively correlated with the cell growth. Treatment with Hg induced accumulation of reactive oxygen species and peroxidative products. Endogenous proline levels increased in Hg-exposed algae. Hg exposure activated superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). To get insights into the molecular response, a RT-PCR-based assay was performed to analyze the transcript abundance of Mn-SOD, CAT and APX. Our analysis revealed that expression of the genes was up-regulated by Hg exposure, with a pattern similar to the enzyme activities. Additional investigation was undertaken on the effect of Hg on the transcript amount of ?(1)-pyrroline-5-carboxylate synthetase, a key enzyme of proline biosynthesis and on that of heme oxygenase-1 (HO-1), an enzyme regulating heavy metal tolerance. Expressions of both P5CS and HO-1 were up-regulated by Hg. These data indicate that Hg-induced oxidative stress was responsible for the disturbance of the growth and antioxidant defensive systems in C. reinhardtii. PMID:20571879

  19. Antioxidant enzyme activity and mRNA expression in reproductive tract of adult male European Bison (Bison bonasus, Linnaeus 1758).

    PubMed

    Koziorowska-Gilun, M; Gilun, P; Fraser, L; Koziorowski, M; Kordan, W; Stefanczyk-Krzymowska, S

    2013-02-01

    Antioxidants in the male reproductive tract are the main defence factors against oxidative stress caused by reactive oxygen species production, which compromises sperm function and male fertility. This study was designed to determine the activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the testicular and epididymidal tissues of adult male European bison (Bison bonasus). The reproductive tract tissues were subjected to real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to quantify mRNA expression levels of five antioxidant enzymes: copper/zinc SOD (Cu/Zn SOD), secretory extracellular SOD (Ec-SOD), CAT, phospholipid hydroperoxide glutathione peroxidase (PHGPx) and GPx5. The corpus and cauda epididymidal tissues displayed greater (p < 0.05) SOD activity compared with the testicular tissue. It was found that CAT activity was lowest (p < 0.05) in the cauda epididymidis, whereas negligible GPx activity was detected in the reproductive tract tissues. There were no detectable differences in the mRNA expression level of Cu/Zn SOD among the different reproductive tract tissues. Small amounts of Ec-SOD mRNA were found in the reproductive tract, particularly in the epididymides. The caput and cauda epididymides exhibited greater (p < 0.05) level of CAT mRNA expression, whereas PHGPx mRNA was more (p < 0.05) expressed in the testis. Furthermore, extremely large amounts of GPx5 mRNA were detected in the caput epididymidal tissue compared with other tissues of the reproductive tract. It can be suggested that the activity of the antioxidant enzymes and the relative gene expression of the enzymes confirm the presence of tissue-specific antioxidant defence systems in the bison reproductive tract, which are required for spermatogenesis, epididymal maturation and storage of spermatozoa. PMID:22458932

  20. Modulation of glutathione and antioxidant enzymes by Ocimum sanctum and its role in protection against radiation injury.

    PubMed

    Devi, P U; Ganasoundari, A

    1999-03-01

    Aqueous extract (OE) of the leaves of Ocimum sanctum, the Indian holy basil, has been found to protect mouse against radiation lethality and chromosome damage and to possess significant antioxidant activity in vitro. Therefore a study was conducted to see if OE protects against radiation induced lipid peroxidation in liver and to determine the role, if any, of the inherent antioxidant system in radioprotection by OE. Adult Swiss mice were injected intraperitoneally (i.p.) with 10 mg/kg of OE for 5 consecutive days and exposed to 4.5 Gy of gamma radiation 30 min after the last injection. Glutathione (GSH) and the antioxidant enzymes glutathione transferase (GST), reductase (GSRx), peroxidase (GSPx) and superoxide dismutase (SOD), as well as lipid peroxide (LPx) activity were estimated in the liver at 15 min, 30 min, 1, 2, 4 and 8 hr post-treatment. LPx was also studied after treatment with a single dose of 50 mg/kg of OE with/without irradiation. OE itself increased the GSH and enzymes significantly above normal levels whereas radiation significantly reduced all the values. The maximum decline was at 30-60 min for GSH and related enzymes and at 2 hr for SOD. Pretreatment with the extract checked the radiation induced depletion of GSH and all the enzymes and maintained their levels within or above the control range. Radiation significantly increased the lipid peroxidation rate, reaching a maximum value at 2 hr after exposure (approximately 3.5 times that of control). OE pretreatment significantly (P < 0.0001) reduced the lipid peroxidation and accelerated recovery to normal levels. The results indicate that Ocimum extract protects against radiation induced lipid peroxidation and that GSH and the antioxidant enzymes appear to have an important role in the protection. PMID:10641157

  1. Analytical modeling of the interaction of enzyme catalysis and diffusion processes at the intracellular level 

    E-print Network

    Faith, Duane Willbern

    1977-01-01

    values are P (i, o) 0. There are three general forms for the boundary condit1ons for the diffusion equation (Geankoplis, 1972). These are. I, C (b, t) = gl (t) 2. d (b, t) = g2 (t) dC 3. C (b, t) + k d (b, t) = g3 (t) where b denotes a boundary... P (VM'=10. ) El k- CCn ~a UJ CJ El LJ Vl RR iiJ ~o 0 CA V) EA IJJ 5)R 'Z W K . 00 1. 00 2 00 3. 00 9. 00 5. 00 6. 00 7 00 8. 00 8. 00, 10. 00 ()1MEAS(CHLESS T(ME Figure 2 Effect of V'(V /V ) on Single Enzyme Catalyzed Reaction m...

  2. Protective Potential of Antioxidant Enzymes as Vaccines for Schistosomiasis in a Non-Human Primate Model.

    PubMed

    Carvalho-Queiroz, Claudia; Nyakundi, Ruth; Ogongo, Paul; Rikoi, Hitler; Egilmez, Nejat K; Farah, Idle O; Kariuki, Thomas M; LoVerde, Philip T

    2015-01-01

    Schistosomiasis remains a major cause of morbidity in the world. The challenge today is not so much in the clinical management of individual patients, but rather in population-based control of transmission in endemic areas. Despite recent large-scale efforts, such as integrated control programs aimed at limiting schistosomiasis by improving education and sanitation, molluscicide treatment programs and chemotherapy with praziquantel, there has only been limited success. There is an urgent need for complementary approaches, such as vaccines. We demonstrated previously that anti-oxidant enzymes, such as Cu-Zn superoxide dismutase (SOD) and glutathione S peroxidase (GPX), when administered as DNA-based vaccines induced significant levels of protection in inbred mice, greater than the target 40% reduction in worm burden compared to controls set as a minimum by the WHO. These results led us to investigate if immunization of non-human primates with antioxidants would stimulate an immune response that could confer protection as a prelude study for human trials. Issues of vaccine toxicity and safety that were difficult to address in mice were also investigated. All baboons in the study were examined clinically throughout the study and no adverse reactions occurred to the immunization. When our outbred baboons were vaccinated with two different formulations of SOD (SmCT-SOD and SmEC-SOD) or one of GPX (SmGPX), they showed a reduction in worm number to varying degrees, when compared with the control group. More pronounced, vaccinated animals showed decreased bloody diarrhea, days of diarrhea, and egg excretion (transmission), as well as reduction of eggs in the liver tissue and in the large intestine (pathology) compared to controls. Specific IgG antibodies were present in sera after immunizations and 10 weeks after challenge infection compared to controls. Peripheral blood mononuclear cells, mesenteric, and inguinal node cells from vaccinated animals proliferated and produced high levels of cytokines and chemokines in response to crude and recombinant antigens compared with controls. All together, these data demonstrate the potential of antioxidants as a vaccine in a non-human primate model. PMID:26082781

  3. Protective Potential of Antioxidant Enzymes as Vaccines for Schistosomiasis in a Non-Human Primate Model

    PubMed Central

    Carvalho-Queiroz, Claudia; Nyakundi, Ruth; Ogongo, Paul; Rikoi, Hitler; Egilmez, Nejat K.; Farah, Idle O.; Kariuki, Thomas M.; LoVerde, Philip T.

    2015-01-01

    Schistosomiasis remains a major cause of morbidity in the world. The challenge today is not so much in the clinical management of individual patients, but rather in population-based control of transmission in endemic areas. Despite recent large-scale efforts, such as integrated control programs aimed at limiting schistosomiasis by improving education and sanitation, molluscicide treatment programs and chemotherapy with praziquantel, there has only been limited success. There is an urgent need for complementary approaches, such as vaccines. We demonstrated previously that anti-oxidant enzymes, such as Cu–Zn superoxide dismutase (SOD) and glutathione S peroxidase (GPX), when administered as DNA-based vaccines induced significant levels of protection in inbred mice, greater than the target 40% reduction in worm burden compared to controls set as a minimum by the WHO. These results led us to investigate if immunization of non-human primates with antioxidants would stimulate an immune response that could confer protection as a prelude study for human trials. Issues of vaccine toxicity and safety that were difficult to address in mice were also investigated. All baboons in the study were examined clinically throughout the study and no adverse reactions occurred to the immunization. When our outbred baboons were vaccinated with two different formulations of SOD (SmCT-SOD and SmEC-SOD) or one of GPX (SmGPX), they showed a reduction in worm number to varying degrees, when compared with the control group. More pronounced, vaccinated animals showed decreased bloody diarrhea, days of diarrhea, and egg excretion (transmission), as well as reduction of eggs in the liver tissue and in the large intestine (pathology) compared to controls. Specific IgG antibodies were present in sera after immunizations and 10 weeks after challenge infection compared to controls. Peripheral blood mononuclear cells, mesenteric, and inguinal node cells from vaccinated animals proliferated and produced high levels of cytokines and chemokines in response to crude and recombinant antigens compared with controls. All together, these data demonstrate the potential of antioxidants as a vaccine in a non-human primate model. PMID:26082781

  4. Genetic Variation in Antioxidant Enzymes, Cigarette Smoking and Longitudinal Change in Lung Function

    PubMed Central

    Tang, W; Bentley, AR; Kritchevsky, SB; Harris, TB; Newman, AB; Bauer, DC; Meibohm, B; Cassano, PA

    2014-01-01

    Rationale Antioxidant enzymes play an important role in the defense against oxidative stress in the lung and in the pathogenesis of chronic obstructive pulmonary disease (COPD). Sequence variation in genes encoding antioxidant enzymes may alter susceptibility to COPD by affecting longitudinal change in lung function in adults. Methods We genotyped 384 sequence variants in 56 candidate genes in 1,281 African-American and 1,794 European-American elderly adults of the Health, Aging, and Body Composition study. Single-marker associations and gene-by-smoking interactions with rate of change in FEV1 and FEV1/ FVC were evaluated using linear mixed effects models, stratified by race/ethnicity. Results In European-Americans, rs17883901 in GCLC was statistically significantly associated with rate of change in FEV1/FVC; the recessive genotype (TT) was associated with a 0.9% per year steeper decline (P = 4.50 × 10?5). Statistically significant gene-by-smoking interactions were observed for variants in two genes in European-Americans: the minor allele of rs2297765 in mGST3 attenuated the accelerated decline in FEV1/FVC in smokers by 0.45% per year (P = 1.13 × 10?4); for participants with greater baseline smoking pack-years, the minor allele of rs2073192 in IDH3B was associated with an accelerated decline in FEV1/FVC (P = 2.10 × 10?4). For both genes, nominally significant interactions (P < 0.01) were observed at the gene-level in African-Americans (P = 0.007 and 4.60 × 10?4, respectively). Nominally significant evidence of association was observed for variants in SOD3 and GLRX2 in multiple analyses. Conclusions This study identifies two novel genes associated with longitudinal lung function phenotypes in both African- and European-Americans, and confirms a prior finding for GCLC. These findings suggest novel mechanisms and molecular targets for future research and advance the understanding of genetic determinants of lung function and COPD risk. PMID:23688726

  5. Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia.

    PubMed

    Zuo, X L; Chen, J M; Zhou, X; Li, X Z; Mei, G Y

    2006-01-01

    Essential elements, mainly selenium and zinc, were involved in protection against oxidative stress in cells. Oxidation could lead to the formation of free radicals that have been implicated in the pathogenesis of many diseases, including leukemia. Leukemia is a neoplastic disease that is susceptible to antioxidant enzyme and essential elements alterations. This study was undertaken to examine the levels of essential elements, antioxidant enzymes activities, and their relationships with different types of leukemia. Serum selenium, zinc, and copper concentrations, red blood cell glutathione peroxidase (GPx) activities, plasma Cu-Zn superoxide dismutase (Cu-Zn SOD) activities and lipid peroxidation (LPO) levels were determined in 49 patients with different types of leukemia before initial treatment. Serum selenium and zinc concentrations were lower in leukemia patients than those of controls (p<0.01). Serum copper concentration was higher in leukemia patients than that of controls (p<0.01). The activities GPx and Cu-Zn SOD were significantly increased in leukemia patients, especially with acute leukemia (AL), acute lymphoid leukemia (ALL), and acute nonlymphoid leukemia (ANLL) (p<0.05), whereas no difference was found between those of chronic myelogenous leukemia and the controls. The levels of LPO were normal as controls. Serum selenium concentration was not correlated with GPx, and serum levels of zinc and copper were not related to Cu-Zn SOD. Serum zinc levels had a negative correlation with the absolute peripheral blast cells, whereas serum copper had a positive correlation with the absolute peripheral blast cells. Increased GPx and Cu-Zn SOD activities and normal levels of LPO, which were a protective responses, were an indicator of mild oxidative stress; it might indicate that the essentials elements alterations in leukemia patients were mostly dependent on tumor activity. Changes of their levels demonstrated that there are low selenium, zinc, and high copper status in leukemia patients. The decrease of plasma zinc and increase of the Cu/Zn ratio could be the index that showed an unfavorable prognosis of acute leukemia. PMID:17205986

  6. Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes

    PubMed Central

    2012-01-01

    Background More than 15,000 marine products have been described up to now; Sponges are champion producers, concerning the diversity of products that have been found. Most bioactive compounds from sponges were classified into anti-inflammatory, antitumor, immuno- or neurosurpressive, antiviral, antimalarial, antibiotic, or antifouling. Evaluation of in vitro inhibitory effects of different extracts from four marine sponges versus some antioxidants indices and carbohydrate hydrolyzing enzymes concerned with diabetes mellitus was studied. The chemical characterizations for the extracts of the predominating sponges; SP1 and SP3 were discussed. Methods All chemicals served in the biological study were of analytical grade and purchased from Sigma, Merck and Aldrich. All kits were the products of Biosystems (Spain), Sigma Chemical Company (USA), Biodiagnostic (Egypt). Carbohydrate metabolizing enzymes; α-amylase, α-glucosidase, and β-galactosidase (EC3.2.1.1, EC3.2.1.20, and EC3.2.1.23, respectively) were obtained from Sigma Chemical Company (USA). Results Four marine sponges; Smenospongia (SP1), Callyspongia (SP2), Niphates (SP3), and Stylissa (SP4), were collected from the Red Sea at Egyptian coasts, and taxonomically characterized. The sponges' extracts exhibited diverse inhibitory effects on oxidative stress indices and carbohydrate hydrolyzing enzymes in linear relationships to some extent with concentration of inhibitors (dose dependant). The extracts of sponges (3, 1, and 2) showed, respectively, potent-reducing power. Purification and Chemical characterization of sponge 1 using NMR and mass spectroscopy, recognized the existence of di-isobutyl phthalate (1), di-n-butyl phthalate (2), linoleic acid (3), ?-sitosterol (4), and cholesterol (5). Sponge 3 produced bis-[2-ethyl]-hexyl-phthylester (6) and triglyceride fatty acid ester (7). Conclusion Marine sponges are promising sources for delivering of bioactive compounds. Four marine sponges, collected from Red Sea at Egyptian coasts, were identified as Smenospongia (SP1), Callyspongia (SP2), Niphates (SP3), and Stylissa (SP4). The results demonstrated that different sponges extracts exhibited inhibitory effects on oxidative stress indices and carbohydrate hydrolyzing enzymes in linear relationships to some extent with concentration of inhibitors (dose dependant). The extracts of sponges (3, 1, and 2) showed, respectively, potent-reducing power. Chemical characterizations of sponges SP1 and SP3 were discussed. Based on this study, marine sponges are considered as talented sources for production of diverse and multiple biologically active compounds. PMID:22898269

  7. Antioxidant Properties of the Extracts of Talinum Triangulare and its Effect on Antioxidant enzymes in Tissue Homogenate of Swiss Albino Rat

    PubMed Central

    Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun

    2014-01-01

    Objectives: This study was designed to put into consideration both the in vitro and in vivo investigations on Talinum triangulare (Tt), an herbaceous perennial plant that is a native of tropical America and one of the most important vegetables in Nigeria. Methods: Total phenolic contents in (mg GAE/100 g), flavonoid contents, the ferric reducing antioxidant properties (FRAP), 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl free radical scavenging ability (OH-) and iron chelating ability were carried out in vivo using standard described methods while GSH, GPx, catalase and SOD were determined in vivo using standard described methods. Results: In the three different solvents extraction of T. triangulare that were studied in vitro, it was noted that ethyl acetate and ethanolic fractions of T. triangulare showed potent antioxidant activity against DPPH and iron chelating property with high phenolic content except Hydroxyl free radical scavenging ability that showed highest value in the aqueous extract, while the Reduced GSH indicated the highest in the parameter determined in vivo. Conclusion: The antioxidant properties showed in this solvent extractable component probably could have been the basis for the enhanced activities of antioxidant enzymes at very lower dose in the examined tissue homogenates. Therefore, T. triangulare can thereby serve as a means of Preventing some of major degenerative diseases challenging Humans PMID:25948971

  8. Antioxidants

    MedlinePLUS

    ... doses of vitamin E may increase risks of prostate cancer and one type of stroke. Antioxidant supplements may also interact with some medicines. To minimize risk, tell you of your health care providers about any antioxidants you use. NIH: National Center for Complementary and Integrative Health

  9. Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: Antioxidant activity and its potential in model systems.

    PubMed

    Kittiphattanabawon, Phanat; Benjakul, Soottawat; Visessanguan, Wonnop; Shahidi, Fereidoon

    2012-12-01

    Antioxidant activities of gelatin hydrolysates from blacktip shark skin prepared using papaya latex enzyme with different degrees of hydrolysis (DHs: 10%, 20%, 30% and 40%) were evaluated. All antioxidant activity indices of hydrolysates increased with increasing DH (P<0.05). When gelatin hydrolysate with 40%DH was determined for its pH and thermal stability, ORAC and chelating activity remained constant or slightly increased in a wide pH range (1-9) and during heating (100°C) for 240min. It was also stable in simulated gastrointestinal tract model system. Moreover, gelatin hydrolysate at a level of 500 and 1000ppm could inhibit lipid oxidation in both ?-carotene linoleate and cooked comminuted pork model systems. Therefore, gelatin hydrolysate from blacktip shark skin (40%DH) can potentially be used as an alternative source of natural antioxidants. PMID:22953833

  10. Seasonal variations of melatonin in ram seminal plasma are correlated to those of testosterone and antioxidant enzymes

    PubMed Central

    2010-01-01

    Background Some breeds of sheep are highly seasonal in terms of reproductive capability, and these changes are regulated by photoperiod and melatonin secretion. These changes affect the reproductive performance of rams, impairing semen quality and modifying hormonal profiles. Also, the antioxidant defence systems seem to be modulated by melatonin secretion, and shows seasonal variations. The aim of this study was to investigate the presence of melatonin and testosterone in ram seminal plasma and their variations between the breeding and non-breeding seasons. In addition, we analyzed the possible correlations between these hormones and the antioxidant enzyme defence system activity. Methods Seminal plasma from nine Rasa Aragonesa rams were collected for one year, and their levels of melatonin, testosterone, superoxide dismutase (SOD), glutathione reductase (GRD), glutathione peroxidase (GPX) and catalase (CAT) were measured. Results All samples presented measurable quantities of hormones and antioxidant enzymes. Both hormones showed monthly variations, with a decrease after the winter solstice and a rise after the summer solstice that reached the maximum levels in October-November, and a marked seasonal variation (P < 0.01) with higher levels in the breeding season. The yearly pattern of GRD and catalase was close to that of melatonin, and GRD showed a significant seasonal variation (P < 0.01) with a higher activity during the breeding season. Linear regression analysis between the studied hormones and antioxidant enzymes showed a significant correlation between melatonin and testosterone, GRD, SOD and catalase. Conclusions These results show the presence of melatonin and testosterone in ram seminal plasma, and that both hormones have seasonal variations, and support the idea that seasonal variations of fertility in the ram involve interplay between melatonin and the antioxidant defence system. PMID:20540737

  11. Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities.

    PubMed

    Fontoura, Roberta; Daroit, Daniel J; Correa, Ana P F; Meira, Stela M M; Mosquera, Mauricio; Brandelli, Adriano

    2014-09-25

    The antioxidant and antihypertensive activities of feather hydrolysates obtained with the bacterium Chryseobacterium sp. kr6 were investigated. Keratin hydrolysates were produced with different concentrations of thermally denatured feathers (10-75 g l(-1)) and initial pH values (6.0-9.0). Soluble proteins accumulated in high amounts in media with 50 and 75 g l(-1) of feathers, reaching values of 18.5 and 22 mg ml(-1), respectively, after 48 hours of cultivation. In media with 50 g l(-1) of feathers, initial pH had minimal effect after 48 hours. Maximal protease production was observed after 24 hours of cultivation, and feather concentration and initial pH values showed no significant effect on enzyme yields at this time. Feather hydrolysates displayed in vitro antioxidant properties, and optimal antioxidant activities were observed in cultures with 50 g l(-1) feathers, at initial pH 8.0, after 48 hours growth at 30°C. Also, feather hydrolysates were demonstrated to inhibit the angiotesin I-converting enzyme by 65% and dipeptidyl peptidase-IV by 44%. The bioconversion of an abundant agroindustrial waste such as chicken feathers can be utilized as a strategy to obtain hydrolysates with antioxidant and antihypertensive activities. Feather hydrolysates might be employed as supplements in animal feed, and also as a potential source of bioactive molecules for feed, food and drug development. PMID:25038398

  12. [Effects of Fe-Cd interaction on the lipid peroxidation and antioxidative enzyme activities of rice].

    PubMed

    Liu, Hou-jun; Li, Xue-ping; Han, Xiao-ri; Liu, Yi-fei; Lu, Jun-jun

    2013-08-01

    Taking rice variety Shennong 265 as test material, a hydroponic experiment was conducted to investigate the effects of Fe (0, 0.1, 0.25 and 0.5 mmol Fe2+ x L(-1)) and Cd (0, 0.1 and 1.0 umol Cd2+ x L(-1)) on the lipid peroxidation and antioxidative enzyme activities of rice plant. When the Fe was supplied alone, the shoot and root dry mass decreased significantly, but this phenomenon would not occur when the Cd was applied simultaneously. Applying Cd alone decreased the root malondialdehyde (MDA) and soluble protein contents, but applying Fe simultaneously alleviated the negative effects of Cd. Applying Fe decreased the Cd concentrations in shoots and roots, whereas applying Cd decreased the shoot and root Fe concentrations, indicating an obvious antagonistic interaction between Fe and Cd. The interaction of high concentration (1.0 micromol x L(-1)) Cd with Fe increased the root MDA and soluble protein contents, and decreased the root superoxide dismutase (SOD) and catalase (CAT) activities. These results indicated that applying definite amount of exogenous Fe could decrease the Cd accumulation in rice under low Cd stress, whereas high Cd stress would decrease the Fe absorption by rice and induce the lipid peroxidation in rice plant. PMID:24380336

  13. Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings.

    PubMed

    Rico, Cyren M; Morales, Maria I; McCreary, Ricardo; Castillo-Michel, Hiram; Barrios, Ana C; Hong, Jie; Tafoya, Alejandro; Lee, Wen-Yee; Varela-Ramirez, Armando; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2013-12-17

    Cerium oxide nanoparticles (nCeO2) have been shown to have significant interactions in plants; however, there are limited reports on their impacts in rice (Oryza sativa). Given the widespread environmental dispersal of nCeO2, it is paramount to understand its biochemical and molecular impacts on a globally important agricultural crop, such as rice. This study was carried out to determine the impact of nCeO2 on the oxidative stress, membrane damage, antioxidant enzymes' activities, and macromolecular changes in the roots of rice seedlings. Rice seeds (medium amylose) were grown for 10 days in nCeO2 suspensions (0-500 mg L(-1)). Results showed that Ce in root seedlings increased as the external nCeO2 increased without visible signs of toxicity. Relative to the control, the 62.5 mg nCeO2 L(-1) reduced the H2O2 generation in the roots by 75%. At 125 mg nCeO2 L(-1), the roots showed enhanced lipid peroxidation and electrolyte leakage, while at 500 mg L(-1), the nCeO2 increased the H2O2 generation in roots and reduced the fatty acid content. The lignin content decreased by 20% at 500 mg nCeO2 L(-1), despite the parallel increase in H2O2 content and peroxidase activities. Synchrotron ?-XRF confirmed the presence of Ce in the vascular tissues of the roots. PMID:24266714

  14. Germination, osmotic adjustment, and antioxidant enzyme activities of gibberellin-pretreated Picea asperata seeds under water stress

    Microsoft Academic Search

    Y. Yang; Q. Liu; G. X. Wang; X. D. Wang; J. Y. Guo

    2010-01-01

    Germination of dragon spruce (Picea asperata Mast.) seeds pretreated with gibberellin (GA) in response to water stress and changes in the levels of osmotic adjustments\\u000a as well as in activities of antioxidant enzymes were investigated. With decreasing water potential caused by increasing concentrations\\u000a of PEG 6000, germination percentage and germination index decreased gradually; the decrease was especially prominent under\\u000a the

  15. Role of glycolysis and antioxidant enzymes in the toxicity of amyloid beta peptide A? 25–35 to erythrocytes

    Microsoft Academic Search

    E. A. Kosenko; I. N. Solomadin; N. V. Marov; N. I. Venediktova; A. S. Poghosyan; Yu. G. Kaminsky

    2008-01-01

    The role of glycolysis and antioxidant enzymes in amyloid beta peptide A?25–35 toxicity to human and rat erythrocytes was studied. The erythrotoxicity of A?25–35 was shown to increase two-to fourfold both in the absence of glucose in the incubation medium and upon the addition of sodium\\u000a fluoride, an enolase inhibitor. Potassium cyanide, a Cu,Zn-superoxide dismutase inhibitor, abolishes the toxic effect

  16. Effects of ghrelin on protein expression of antioxidative enzymes and iNOS in the rat liver

    PubMed Central

    Dobutovic, Branislava; Sudar, Emina; Tepavcevic, Snezana; Djordjevic, Jelena; Djordjevic, Ana; Radojcic, Marija

    2014-01-01

    Introduction We investigated the effects of ghrelin on protein expression of the liver antioxidant enzymes superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), nuclear factor ?B (NF?B) and inducible nitric oxide synthase (iNOS). Furthermore, we aimed to investigate whether extracellular regulated protein kinase (ERK1/2) and protein kinase B (Akt) are involved in ghrelin-regulated liver antioxidant enzymes and iNOS protein expression. Material and methods Male Wistar rats were treated with ghrelin (0.3 nmol/5 µl) injected into the lateral cerebral ventricle every 24 h for 5 days, and 2 h after the last treatment the animals were sacrificed and the liver excised. The Western blot method was used to determine expression of antioxidant enzymes, iNOS, phosphorylation of Akt, ERK1/2 and nuclear factor ?B (NF?B) subunits 50 and 65. Results There was significantly higher protein expression of CuZnSOD (p < 0.001), MnSOD (p < 0.001), CAT (p < 0.001), GPx, (p < 0.001), and GR (p < 0.01) in the liver isolated from ghrelin-treated animals compared with control animals. In contrast, ghrelin significantly (p < 0.01) reduced protein expression of iNOS. In addition, phosphorylation of NF?B subunits p65 and p50 was significantly (p < 0.001 for p65; p < 0.05 for p50) reduced by ghrelin when compared with controls. Phosphorylation of ERK1/2 and of Akt was significantly higher in ghrelin-treated than in control animals (p < 0.05 for ERK1/2; p < 0.01 for Akt). Conclusions The results show that activation of Akt and ERK1/2 is involved in ghrelin-mediated regulation of protein expression of antioxidant enzymes and iNOS in the rat liver. PMID:25276168

  17. Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat

    Microsoft Academic Search

    Vibeke Breinholt; Søren T Lauridsen; Bahram Daneshvar; Jette Jakobsen

    2000-01-01

    The administration of lycopene to female rats at doses ranging from 0.001 to 0.1 g\\/kg b.w. per day for 2 weeks was found to alter the drug-metabolizing capacity and antioxidant status of the exposed animals. An investigation of four cytochrome P450-dependent enzymes revealed that benzyloxyresorufin O-dealkylase activity in the liver was significantly induced in a dose-dependent fashion at all lycopene

  18. Glutathione peroxidase and other antioxidant enzyme function in marine invertebrates ( Mytilus edulis, Pecten maximus, Carcinus maenas and Asterias rubens)

    Microsoft Academic Search

    Simon C. Gamble; Peter S. Goldfarb; Cinta Porte; David R. Livingstone

    1995-01-01

    Selenium-dependent glutathione peroxidase (Se-GPX) and other antioxidant enzyme function was studied in four marine invertebrates, viz. mussel M. edulis (euryoxic herbivore), scallop P. maximus (stenoxic herbivore), crab C. maenas (euryoxic omnivore) and starfish A. rubens (euryoxic carnivore). Se-GPX, Superoxide dismutase and catalase activities were generally highest in the major digestive detoxication tissue of each species (digestive gland, hepatopancreas or pyloric

  19. Activities of antioxidant enzymes and photosynthetic responses in tomato pre-treated by plant activators and inoculated by Xanthomonas vesicatoria

    Microsoft Academic Search

    Fabio Rossi Cavalcanti; Mario Lucio Vilela Resende; João Paulo Matos Santos Lima; Joaquim Albenisio Gomes Silveira; José Tadeu Abreu Oliveira

    2006-01-01

    The activities of antioxidant enzymes and photosynthetic responses were investigated in tomato (Lycopersicon esculentum L. var.) pre-treated by plant activators and inoculated by Xanthomonas vesicatoria. Plants were sprayed with acibenzolar-S-methyl, ASM [Bion® 50WG (0.2gl?1)] and aqueous extract from dry necrotic tissue flour (VLA) of ‘Lobeira’ (Solanum lycocarpum) bush. Four days later, the plants were challenged with a virulent strain of

  20. Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress

    Microsoft Academic Search

    Lingan Kong; Mao Wang; Dongling Bi

    2005-01-01

    Using physiological assays coupled with ultrathin tissue sections, we investigated the impacts of exogenous selenium (Se) on the growth, antioxidant enzymes, osmotic regulation and ultrastructural modifications of leaf mesophyll and root tip cells of 100 mM NaCl-stressed sorrel (Rumex patientia × R. tianshanicus) seedlings. At low concentrations (1–5 µM), Se tended to stimulate the growth, the activities of superoxide dismutase and peroxidase

  1. Combined Effect of Copper and Cadmium on Heavy Metal Ion Bioaccumulation and Antioxidant Enzymes Induction in Chlorella vulgaris

    Microsoft Academic Search

    Haifeng Qian; Jingjing Li; Xiangjie Pan; Liwei Sun; Tao Lu; Hongyu Ran; Zhengwei Fu

    The relationships between metal uptake and antioxidant enzyme activities or a response to membrane lipid peroxidation (i.e.,\\u000a malondialdehyde production) in Chlorella vulgaris exposed to Cu and Cd compounds singly and in combination were investigated. The results showed that bioaccumulation of a\\u000a single metal was influenced by the presence of the other metal. The activities of superoxide dismutase and peroxidase increased

  2. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America

    Microsoft Academic Search

    Lena Galvez Ranilla; Young-In Kwon; Emmanouil Apostolidis; Kalidas Shetty

    2010-01-01

    Traditionally used medicinal plants, herbs and spices in Latin America were investigated to determine their phenolic profiles, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension. High phenolic and antioxidant activity-containing medicinal plants and spices such as Chancapiedra (Phyllantus niruri L.), Zarzaparrilla (Smilax officinalis), Yerba Mate (Ilex paraguayensis St-Hil), and Huacatay (Tagetes minuta) had

  3. Epigallocatechin-3-gallate modulates antioxidant defense enzyme expression in murine submandibular and pancreatic exocrine gland cells and human HSG cells

    PubMed Central

    Dickinson, Douglas; DeRossi, Scott; Yu, Hongfang; Thomas, Cristina; Kragor, Chris; Paquin, Becky; Hahn, Emily; Ohno, Seiji; Yamamoto, Tetsuya; Hsu, Stephen

    2015-01-01

    Sjogren’s syndrome (SS) and type 1 diabetes are prevalent autoimmune diseases in the United States. We reported previously that Epigallocatechin-3-gallate (EGCG) prevented and delayed the onset of autoimmune disease in NOD mice, a model for both Sjogren’s syndrome (SS) and type 1 diabetes. EGCG also normalized the levels of proteins related to DNA repair and antioxidant activity in NOD.B10.Sn-H2 mice, a model for primary SS, prior to disease onset. The current study examined the effect of EGCG on the expression of antioxidant enzymes in the submandibular salivary gland and the pancreas of NOD mice and cultured human salivary gland acinar cells. NOD mice consuming 0.2% EGCG daily dissolved in water showed higher protein levels of peroxiredoxin 6 (PRDX6), a major antioxidant defense protein, and catalase, while the untreated NOD mice exhibited significantly lowered levels of PRDX6. Similarly, pancreas samples from water-fed NOD mice were depleted in PRDX6 and superoxide dismutase, while EGCG-fed mice showed high levels of these antioxidant enzymes. In cultured HSG cells EGCG increased PRDX6 levels significantly, and this was inhibited by p38 and JNK inhibitors, suggesting the EGCG-mediated increase in protective antioxidant capacity is regulated in part through MAPK pathway signaling. This mechanism may explain the higher levels of PRDX6 found in EGCG-fed NOD mice. These preclinical observations warrant future preclinical and clinical studies to determine whether EGCG or green tea polyphenols could be used in novel preventive and therapeutic approaches against autoimmune diseases and salivary dysfunction involving oxidative stress. PMID:24444391

  4. Tempol, an Intracellular Antioxidant, Inhibits Tissue Factor Expression, Attenuates Dendritic Cell Function, and Is Partially Protective in a Murine Model of Cerebral Malaria

    PubMed Central

    Francischetti, Ivo M. B.; Gordon, Emile; Bizzarro, Bruna; Gera, Nidhi; Andrade, Bruno B.; Oliveira, Fabiano; Ma, Dongying; Assumpção, Teresa C. F.; Ribeiro, José M. C.; Pena, Mirna; Qi, Chen-Feng; Diouf, Ababacar; Moretz, Samuel E.; Long, Carole A.; Ackerman, Hans C.; Pierce, Susan K.; Sá-Nunes, Anderson; Waisberg, Michael

    2014-01-01

    Background The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood. Methods and Findings We undertook testing Tempol—a superoxide dismutase (SOD) mimetic and pleiotropic intracellular antioxidant—in cells relevant to malaria pathogenesis in the context of coagulation and inflammation. Tempol was also tested in a murine model of CM induced by Plasmodium berghei Anka infection. Tempol was found to prevent transcription and functional expression of procoagulant tissue factor in endothelial cells (ECs) stimulated by lipopolysaccharide (LPS). This effect was accompanied by inhibition of IL-6, IL-8, and monocyte chemoattractant protein (MCP-1) production. Tempol also attenuated platelet aggregation and human promyelocytic leukemia HL60 cells oxidative burst. In dendritic cells, Tempol inhibited LPS-induced production of TNF-?, IL-6, and IL-12p70, downregulated expression of co-stimulatory molecules, and prevented antigen-dependent lymphocyte proliferation. Notably, Tempol (20 mg/kg) partially increased the survival of mice with CM. Mechanistically, treated mice had lowered plasma levels of MCP-1, suggesting that Tempol downmodulates EC function and vascular inflammation. Tempol also diminished blood brain barrier permeability associated with CM when started at day 4 post infection but not at day 1, suggesting that ROS production is tightly regulated. Other antioxidants—such as ?-phenyl N-tertiary-butyl nitrone (PBN; a spin trap), MnTe-2-PyP and MnTBAP (Mn-phorphyrin), Mitoquinone (MitoQ) and Mitotempo (mitochondrial antioxidants), M30 (an iron chelator), and epigallocatechin gallate (EGCG; polyphenol from green tea) did not improve survival. By contrast, these compounds (except PBN) inhibited Plasmodium falciparum growth in culture with different IC50s. Knockout mice for SOD1 or phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (gp91phox–/–) or mice treated with inhibitors of SOD (diethyldithiocarbamate) or NADPH oxidase (diphenyleneiodonium) did not show protection or exacerbation for CM. Conclusion Results with Tempol suggest that intracellular ROS contribute, in part, to CM pathogenesis. Therapeutic targeting of intracellular ROS in CM is discussed. PMID:24586264

  5. Schisandra Chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats

    PubMed Central

    Jang, Han I; Do, Gyeong-Min; Lee, Hye Min; Ok, Hyang Mok; Shin, Jae-Ho

    2014-01-01

    BACKGROUND/OBJECTIVES This study investigated the antioxidant activities and hepatoprotective effects of Schisandra chinensis Baillon extract (SCE) against tert-butyl hydroperoxide (t-BHP)-induced oxidative hepatic damage in rats. MATERIALS/METHODS Sprague-Dawley (SD) rats were pretreated with SCE (300, 600, and 1,200 mg/kg BW) or saline once daily for 14 consecutive days. On day 14, each animal, except those belonging to the normal control group, were injected with t-BHP (0.8 mmol/kg BW/i.p.), and all of the rats were sacrificed 16 h after t-BHP injection. RESULTS Although no significant differences in AST and ALT levels were observed among the TC and SCE groups, the high-dose SCE group showed a decreasing tendency compared to the TC group. However, erythrocyte SOD activity showed a significant increase in the low-dose SCE group compared with the TC group. On the other hand, no significant differences in hepatic total glutathione (GSH) level, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) activities were observed among the TC and SCE groups. Hepatic histopathological evaluation revealed that pretreatment with SCE resulted in reduced t-BHP-induced incidence of lesions, such as neutrophil infiltration, swelling of liver cells, and necrosis. In particular, treatment with a high dose of SCE resulted in induction of phase II antioxidant/detoxifying enzyme expression, such as glutathione S-transferase (GST) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS Based on these results, we conclude that SCE exerts protective effects against t-BHP induced oxidative hepatic damage through the reduction of neutrophil infiltration, swelling of liver cells, and necrosis. In addition, SCE regulates the gene expression of phase II antioxidant/detoxifying enzymes independent of hepatic antioxidant enzyme activity. PMID:24944771

  6. A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker.

    PubMed

    Mowla, Shaheen B; Thomson, Jennifer A; Farrant, Jill M; Mundree, Sagadevan G

    2002-09-01

    A cDNA corresponding to 1-Cys peroxiredoxin, an evolutionarily conserved thiol-specific antioxidant enzyme, was isolated from Xerophyta viscosa Baker, a resurrection plant indigenous to Southern Africa and belonging to the family Velloziaceae. The cDNA, designated XvPer1, contains an open reading frame that encodes a polypeptide of 219 residues with a predicted molecular weight of 24.2 kDa. The XvPer1 polypeptide shows significant sequence identity (approx. 70%) to other recently identified plant 1-Cys peroxiredoxins and relatively high levels of sequence similarity (approx. 40%) to non-plant 1-Cys peroxiredoxins. The XvPer1 cDNA contains a putative polyadenylation site. As for all 1-Cys peroxiredoxins identified to date, the amino acid sequence proposed to constitute the active site of the enzyme, PVCTTE, is highly conserved in XvPer1. It also contains a putative bipartite nuclear localization signal. Southern blot analysis revealed that there is a single copy of XvPer1 in the X. viscosa genome. All angiosperm 1-Cys peroxiredoxins described to date are seed-specific and absent in vegetative tissues even under stress conditions; therefore, XvPer1 is unique in that it is expressed in the vegetative tissues of X. viscosa. The XvPer1 transcript was absent in fully hydrated X. viscosa tissue but levels increased in tissues subjected to abiotic stresses such as dehydration, heat (42 degrees C), high light intensity (1,500 micro mol photons m(-2) s(-1)) and when treated with abscisic acid (100 micro M ABA) and sodium chloride (100 mM NaCl). Western blot analyses correlated with the patterns of expression of XvPer1 transcripts under different stress conditions. Immunofluorescence analyses revealed that XvPer1 is localized in the nucleus of dehydrated X. viscosa leaf cells. These results suggest that XvPer1 is a stress-inducible gene, which may function to protect nucleic acids within the nucleus against oxidative injury. PMID:12244436

  7. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone.

    PubMed

    Wu, Yue-xuan; von, Tiedemann Andreas

    2002-01-01

    Two modern fungicides, a strobilurin, azoxystrobin (AZO), and a triazole, epoxiconazole (EPO), applied as foliar spray on spring barley (Hordeum vulgare L. cv. Scarlett) 3 days prior to fumigation with injurious doses of ozone (150-250 ppb; 5 days; 7 h/day) induced a 50-60% protection against ozone injury on leaves. Fungicide treatments of barley plants at growth stage (GS) 32 significantly increased the total leaf soluble protein content. Additionally, activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX) and glutathione reductase (GR) were increased by both fungicides at maximal rates of 16, 75, 51 and 144%, respectively. Guiacol-peroxidase (POX) activity was elevated by 50-110% only in AZO treated plants, while this effect was lacking after treatments with EPO. This coincided with elevated levels of hydrogen peroxide (H2O2) only in EPO and not in AZO treated plants. The enhancement of the plant antioxidative system by the two fungicides significantly and considerably reduced the level of superoxide (O2*-) in leaves. Fumigation of barley plants for 4 days with non-injurious ozone doses (120-150 ppb, 7 h/day) markedly and immediately stimulated O2*- accumulation in leaves, while H2O2 was increased only after the third day of fumigation. Therefore, O2*- itself or as precursor of even more toxic oxyradicals appears to be more indicative for ozone-induced leaf damage than H2O2. Ozone also induced significant increases in the activity of antioxidant enzymes (SOD, POX and CAT) after 2 days of fumigation in fungicide untreated plants, while after 4 days of fumigation these enzymes declined to a level lower than in unfumigated plants, due to the oxidative degradation of leaf proteins. This is the first report demonstrating the marked enhancement of plant antioxidative enzymes and the enhanced scavenging of potentially harmful O2*- by fungicides as a mechanism of protecting plants against noxious oxidative stress from the environment. The antioxidant effect of modern fungicides widely used in intense cereal production in many countries represents an important factor when evaluating potential air pollution effects in agriculture. PMID:11808554

  8. Effect of Nigella sativa fixed and essential oils on antioxidant status, hepatic enzymes, and immunity in streptozotocin induced diabetes mellitus

    PubMed Central

    2014-01-01

    Background Nigella sativa fixed (NSFO) and essential (NSEO) oils have been used to treat diabetes mellitus and its complications. Present study was undertaken to explore and validate these folkloric uses. Methods Sprague dawley rats having streptozotocin (STZ) induced diabetes mellitus were used to assess the role of NSFO and NSEO in the management of diabetes complications. Parameters investigated were antioxidant potential, oxidative stress, and the immunity by in vivo experiments. Results The results indicated that STZ decreased the glutathione contents (25.72%), while NSFO and NSEO increased the trait significantly (P?enzymes (P?antioxidant potential is positively associated (P?enzymes and the decrease of the nitric oxide production thus controlling the diabetes complications. Conclusions Overall, results of present study supported the traditional use of N. sativa and its derived products as a treatment for hyperglycemia and allied abnormalities. Moreover, N. sativa fixed and essential oils significantly ameliorate free radicals and improve antioxidant capacity thus reducing the risk of diabetic complications. PMID:24939518

  9. Curcumin and resveratrol in combination modulate drug-metabolizing enzymes as well as antioxidant indices during lung carcinogenesis in mice.

    PubMed

    Liu, Y; Wu, Y-M; Yu, Y; Cao, C-S; Zhang, J-H; Li, K; Zhang, P-Y

    2015-06-01

    This study investigated combined chemopreventive potential of curcumin and resveratrol during benzo(a)pyrene (BP)-induced lung carcinogenesis in mice. The mice were segregated into five groups that included normal control, BP-treated, BP + curcumin-treated, BP + resveratrol-treated, and BP + curcumin + resveratrol-treated groups. A statistically significant increase in the levels of lipid peroxidation (LPO) was observed in the lungs of mice after 22 weeks of single dose of benzo(a)pyrene. Further, BP treatment also resulted in a significant increase in the enzyme activities of aryl hydrocarbon hydroxylase as well as drug-metabolizing enzymes, namely cytocrome P450 and cytochrome b5. On the other hand, reduced glutathione (GSH) levels, the activities of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione-S-transferase (GST) were found to be significantly decreased following BP treatment. Supplementation with curcumin and resveratrol to BP-treated mice significantly decreased the LPO levels, GSH levels, and enzyme activities of drug-metabolizing enzymes. Further, treatment of curcumin and resveratrol to BP-treated mice significantly elevated the activities of SOD, GR, and GST. Histoarchitectural studies showed well-differentiated signs of lung carcinogenesis following BP administration to mice. However, combined treatment with curcumin and resveratrol resulted in a noticeable improvement in the lung histoarchitecture. This study, therefore, concludes that curcumin and resveratrol when supplemented in combination regulate drug-metabolizing enzymes as well as antioxidant enzymes during lung carcinogenesis in mice. PMID:25632966

  10. [Effects of green tea extract and its components on antioxidant status and activities of xenobiotic metabolizing enzymes of rats].

    PubMed

    Kravchenko, L V; Trusov, N V; Aksenov, I V; Avren'eva, L I; Guseva, G V; Lashneva, N V; Tutel'ian, V A

    2011-01-01

    Dietary administration of green tea extract (GTE) or epigallocatechin gallate (EGCG), quercetin (Qu) or caffeine (Cf) in doses equal to their concentration in GTE led to an increase of serum and liver antioxidant capacity and strengthening stability of microsomal and lysosomal membranes in rats. The antioxidant efficiency of EGCG and Qu was considerably higher than that of GTE. There were significant differences in the effects of EGCG, Qu and GTE on the activities and expression of mRNA for CYP1A1, CYP1A2 and CYP3A1. But feeding both GTE and Cf to rats results in similar elevated activities of CYP1A1, CYP1A2, UDP-glucuronosyl transferase and glutathion transferase. Our results suggest that Cf is the main contributor to GTE effects on activities of xenobiotic metabolizing enzymes. PMID:21692342

  11. Changes in Activities of Antioxidant Enzymes and Their Relationship to Genetic and Paclobutrazol-Induced Chilling Tolerance of Maize Seedlings.

    PubMed Central

    Pinhero, R. G.; Rao, M. V.; Paliyath, G.; Murr, D. P.; Fletcher, R. A.

    1997-01-01

    The potential role of antioxidant enzymes in protecting maize (Zea mays L.) seedlings from chilling injury was examined by analyzing enzyme activities and isozyme profiles of chilling-susceptible (CO 316) and chilling-tolerant (CO 328) inbreds. Leaf superoxide dismutase (SOD) activity in CO 316 was nearly one-half that of CO 328, in which the high activity was maintained during the chilling and postchilling periods. Activity of glutathione reductase (GR) was much higher in roots than in leaves. CO 328 also possessed a new GR isozyme that was absent in roots of CO 316. Ascorbate peroxidase (APX) activity was considerably lower in leaves of CO 328 than in CO 316, and nearly similar in roots. Paclobutrazol treatment of CO 316 induced several changes in the antioxidant enzyme profiles and enhanced their activities, especially those of SOD and APX, along with the induction of chilling tolerance. These results suggest that increased activities of SOD in leaves and GR in roots of CO 328, as well as SOD and APX in leaves and roots of paclobutrazol-treated CO 316, contribute to their enhanced chilling tolerance. PMID:12223737

  12. Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat.

    PubMed

    Breinholt, V; Lauridsen, S T; Daneshvar, B; Jakobsen, J

    2000-06-30

    The administration of lycopene to female rats at doses ranging from 0.001 to 0.1 g/kg b.w. per day for 2 weeks was found to alter the drug-metabolizing capacity and antioxidant status of the exposed animals. An investigation of four cytochrome P450-dependent enzymes revealed that benzyloxyresorufin O-dealkylase activity in the liver was significantly induced in a dose-dependent fashion at all lycopene doses investigated. Likewise, ethoxyresorufin O-dealkylase activity was induced, although only at the two highest lycopene concentrations tested. An investigation of selected phase 2 detoxification enzymes provided evidence that lycopene was capable of inducing hepatic quinone reductase, approximately two-fold, at doses between 0.001 and 0.05 g/kg b.w. per day, whereas no effect was observed at the remaining doses tested. Glutathione transferase, using the two substrates, 2,4-dichloronitrobenzene and 1-chloro-2, 4-dinitrobenzene, was significantly induced at the 0.1 g/kg b.w. per day dose, whereas no effect was observed at the remaining lycopene doses. Analysis of the antioxidant status of the blood compartment revealed that three out of four antioxidant enzymes were affected by lycopene treatment. The activity of superoxide dismutase was thus significantly induced at lycopene doses of 0.005 and 0.05 g/kg b.w, whereas glutathione reductase and glutathione peroxidase was only induced at the 0.005 g/kg b.w. per day dose. For all antioxidant enzymes investigated, the activities seemed to return to the control level after exerting peak induction at doses between 0.005 and 0.05 g/kg b.w. per day. The explanation for this remains unknown. The plasma concentration of lycopene at dietary levels of 0.001, 0.005, 0.05 and 0.1 g/kg b.w. per day was estimated to be 16, 32, 71 and 67 nM, which is barely within the lower range of the mean human plasma concentration of lycopene, which ranges from 70-1790 nM. Oxidative stress induced by the heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), and investigated by analyzing for malondialdehyde in plasma, was not found to be affected by prior lycopene exposure. The level of PhIP-DNA adducts in the liver or colon was likewise not affected by lycopene at any dose. Overall, the present study provides evidence that lycopene administered in the diet of young female rats exerts minor modifying effects toward antioxidant and drug-metabolizing enzymes involved in the protection against oxidative stress and cancer. The fact that these enzymatic activities are induced at all of these very low plasma levels, could be taken to suggest that modulation of antioxidant and drug-metabolizing enzymes may indeed be relevant to humans, which in general exhibit a plasma lycopene level several fold above the effective levels observed in this study. PMID:10806309

  13. Antioxidant enzyme activities of iron-saturated bovine lactoferrin (Fe-bLf) in human gut epithelial cells under oxidative stress.

    PubMed

    Burrow, Hannah; Kanwar, Rupinder K; Kanwar, Jagat R

    2011-05-01

    Chemoprevention by dietary constituents in the form of functional food has emerged as a novel approach to control inflammatory diseases and cancers. Recently we reported for the first time that iron content is a critical determinant in the anti-tumour activity of bovine milk lactoferrin (bLf). We therefore wanted to evaluate the chemo-preventative efficacy of Apo-bLF and 100% iron-saturated bLF (Fe-bLF) on hydrogen peroxide (H2O2)-induced colon carcinogenesis, and their influence on antioxidant enzyme activities within colon carcinogenesis. This was undertaken through observing how oxidative stress induced by H2O2 alters antioxidant enzyme activity within HT29 colon cancer cells, and then observing changes in this activity by treatments with the different antioxidants ascorbic acid (AA), Apo-bLF and Fe-bLF. All antioxidant enzymes (catalase, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GsT) and superoxide dismutase (SOD)) appeared to be increased within HT29 cells, even prior to H2O2 exposure, and all enzymes showed significant decreased activity when cells were treated with the antioxidants AA, Apo-bLF or Fe-bLF, with or without H2O2 exposure. The results indicate that all three antioxidants have the ability to scavenge ROS, lower antioxidant enzyme activities within already excited states, and possibly allow colon cancer cells to be overcome by oxidative stress that would normally be prevented, perhaps leading to damage and potential apoptosis of the cancer cells. In conclusion, the anti-oxidative effects of Apo-bLF and Fe-bLf studied for the first time, show dynamic changes that may allow for necessary protection from imbalanced oxidative conditions, and potential at reducing the ability of cancer cells to protect themselves from oxidative stress states. PMID:21486205

  14. Major Shifts in the Spatio-Temporal Distribution of Lung Antioxidant Enzymes during Influenza Pneumonia

    E-print Network

    Yamada, Yoshiyuki

    With the incessant challenge of exposure to the air we breathe, lung tissue suffers the highest levels of oxygen tension and thus requires robust antioxidant defenses. Furthermore, following injury or infection, lung tissue ...

  15. Effect of the French Oak Wood Extract Robuvit on Markers of Oxidative Stress and Activity of Antioxidant Enzymes in Healthy Volunteers: A Pilot Study

    PubMed Central

    Orszaghova, Zuzana; Laubertova, Lucia; Sabaka, Peter; Rohdewald, Peter; Durackova, Zdenka; Muchova, Jana

    2014-01-01

    We examined in vitro antioxidant capacity of polyphenolic extract obtained from the wood of oak Quercus robur (QR), Robuvit, using TEAC (Trolox equivalent antioxidant capacity) method and the effect of its intake on markers of oxidative stress, activity of antioxidant enzymes, and total antioxidant capacity in plasma of 20 healthy volunteers. Markers of oxidative damage to proteins, DNA, and lipids and activities of Cu/Zn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined in the erythrocytes. We have found an in vitro antioxidant capacity of Robuvit of 6.37 micromole Trolox equivalent/mg of Robuvit. One month intake of Robuvit in daily dose of 300?mg has significantly decreased the serum level of advanced oxidation protein products (AOPP) and lipid peroxides (LP). Significantly increased activities of SOD and CAT as well as total antioxidant capacity of plasma after one month intake of Robuvit have been shown. In conclusion, we have demonstrated for the first time that the intake of Robuvit is associated with decrease of markers of oxidative stress and increase of activity of antioxidant enzymes and total antioxidant capacity of plasma in vivo. PMID:25254080

  16. Increased biological oxidation and reduced anti-oxidant enzyme activity in pre-eclamptic placentae

    Microsoft Academic Search

    J. Vanderlelie; K. Venardos; V. L. Clifton; N. M. Gude; F. M. Clarke; A. V. Perkins

    2005-01-01

    Oxidative stress occurs when cellular levels of reactive oxygen species exceed anti-oxidant capabilities and has been implicated in the pathogenesis of pre-eclampsia. In this study we have examined the tissue levels of endogenous anti-oxidant proteins (superoxide dismutase, glutathione peroxidase, thioredoxin reductase and thioredoxin) and the level of lipid and protein oxidation in placental samples from normal and pre-eclamptic pregnancies. Pre-eclamptic

  17. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production

    Microsoft Academic Search

    M. Reverberi; A. A. Fabbri; S. Zjalic; A. Ricelli; F. Punelli; C. Fanelli

    2005-01-01

    Biosynthesis of aflatoxins, toxic metabolites produced by Aspergillus parasiticus, is correlated to the fungal oxidative stress and cell ageing. In this paper, the mechanism underlying the aflatoxin-inhibiting effect of the Lentinula edodes culture filtrates was studied by analysing their anti-oxidant activity and ?-glucan content. Mushroom ?-glucans are pharmacologically active compounds stimulating anti-oxidant responses in animal cells. L. edodes lyophilised filtrates

  18. Effects of Cr(VI) long-term and low-dose action on mammalian antioxidant enzymes (an in vitro study)

    SciTech Connect

    Asatiani, N.; Sapojnikova, N.; Abuladze, M.; Kartvelishvili, T.L.; Kulikova, N.; Kiziria, E.; Namchevadze, E.; Holman, H.-Y.N.

    2003-08-01

    In order to investigate the low-dose long-term Cr(VI) action on antioxidant enzymes in cultured mammalian cells we estimated the activity of glutathione dependent antioxidant enzymes, catalase and superoxide dismutase (SOD) under various chromium concentrations in human epithelial-like L-41 cells. The long-term action of 20 mu-M causes the toxicity that results in losing of the cell viability by activating the apoptotic process, as identified by morphological analysis, the activation of caspase-3, and DNA fragmentation. The toxic chromium concentration totally destroys glutathione antioxidant system, and diminishes the activity of catalase and cytosolic Cu, ZnSOD. The non-toxic concentration (2 mu-M) causes the activation of the antioxidant defense systems, and they neutralize the oxidative impact.

  19. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks? gestation in nulliparous women who subsequently develop preeclampsia

    PubMed Central

    Mistry, Hiten D.; Gill, Carolyn A.; Kurlak, Lesia O.; Seed, Paul T.; Hesketh, John E.; Méplan, Catherine; Schomburg, Lutz; Chappell, Lucy C.; Morgan, Linda; Poston, Lucilla

    2015-01-01

    Preeclampsia is a pregnancy-specific condition affecting 2–7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc, and manganese have previously been linked to preeclampsia at the time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered before preeclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Predisease plasma samples (15±1 weeks? gestation) were obtained from women enrolled in the international Screening for Pregnancy Endpoints (SCOPE) study who subsequently developed preeclampsia (n=244) and from age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, ceruloplasmin concentration and activity, antioxidant capacity, and markers of oxidative stress were measured by colorimetric assays. Sixty-four tag–single-nucleotide polymorphisms (SNPs) within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Plasma copper and ceruloplasmin concentrations were modestly but significantly elevated in women who subsequently developed preeclampsia (both P<0.001) compared to controls (median (IQR), copper, 1957.4 (1787, 2177.5) vs 1850.0 (1663.5, 2051.5) µg/L; ceruloplasmin, 2.5 (1.4, 3.2) vs 2.2 (1.2, 3.0) µg/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for SNPs and antioxidant enzyme activity. This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks? gestation that subsequently developed preeclampsia. The modest elevation in copper may contribute to oxidative stress, later in pregnancy, in those women that go on to develop preeclampsia. The lack of evidence to support the hypothesis that functional SNPs influence antioxidant enzyme activity in pregnant women argues against a role for these genes in the etiology of preeclampsia. PMID:25463281

  20. Influence of Alternanthera brasiliana (L.) Kuntze on Altered Antioxidant Enzyme Profile during Cutaneous Wound Healing in Immunocompromised Rats

    PubMed Central

    Barua, Chandana Choudhury; Ara Begum, Shameem; Talukdar, Archana; Datta Roy, Jayanti; Buragohain, Bhaben; Chandra Pathak, Debesh; Kumar Sarma, Dilip; Saikia Bora, Rumi; Gupta, Asheesh

    2012-01-01

    Alternanthera brasiliana (L.) Kuntze (Amaranthaceae) is a herbaceous plant used against inflammation, cough, and diarrhea in Brazilian popular medicine. In our preliminary study, promising wound healing activity of methanol extract of leaves of A. brasiliana (MEAB) was observed in normal excision and incision wound models. Therefore, the present study was designed to investigate the wound healing activity along with the antioxidant enzyme profile during cutaneous excision immunocompromised wound after topical application of 5% w/w ointment of MEAB in rats. Immunocompromised state was induced by pretreatment with hydrocortisone (HC) at 40?mg/kg body weight (i.m.) in male rats. Following one-week pretreatment with HC, wounds were created. The vehicle, 5% (w/w) ointment of MEAB, or standard drug (Himax) was applied topically twice daily. Healing potential was evaluated by the rate of wound contraction, estimation of enzymatic and nonenzymatic antioxidants like catalase, SOD, GSH, protein, vitamin C, and hydroxyproline content, which was supported by histopathological study on the 8th day following wounding. There was significant increase in the enzymatic and nonenzymatic antioxidant parameters in the extract-reated group as compared to control group. Histopathological study revealed collagen deposition, fibroblast proliferation, angiogenesis, and development of basement membrane in A. brasiliana group. The results of the present investigation revealed significant wound healing activity of MEAB. PMID:22934192

  1. Metabolite profile, antioxidant capacity, and inhibition of digestive enzymes in infusions of peppermint (Mentha piperita) grown under drought stress.

    PubMed

    Figueroa-Pérez, Marely G; Rocha-Guzmán, Nuria Elizabeth; Pérez-Ramírez, Iza F; Mercado-Silva, Edmundo; Reynoso-Camacho, Rosalía

    2014-12-10

    Peppermint (Mentha piperita) infusions represent an important source of antioxidants, which can be enhanced by inducing abiotic stress in plants. The aim of this study was to evaluate the effect of drought stress on peppermint cultivation as well as the metabolite profile, antioxidant capacity, and inhibition of digestive enzymes of resulting infusions. At 45 days after planting, irrigation was suppressed until 85 (control), 65, 35, 24, and 12% soil moisture (SM) was reached. The results showed that 35, 24, and 12% SM decreased fresh (20%) and dry (5%) weight. The 35 and 24% SM treatments significantly increased total phenolic and flavonoid contents as well as antioxidant capacity. Coumaric acid, quercetin, luteolin, and naringenin were detected only in some drought treatments; however, in these infusions, fewer amino acids and unsaturated fatty acids were identified. The 24 and 12% SM treatments slightly improved inhibition of pancreatic lipase and ?-amylase activity. Therefore, induction of moderate water stress in peppermint is recommended to enhance its biological properties. PMID:25439559

  2. Enzyme

    MedlinePLUS

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  3. Study of the protective effect of ascorbic acid against the toxicity of stannous chloride on oxidative damage, antioxidant enzymes and biochemical parameters in rabbits

    Microsoft Academic Search

    M. I. Yousef; T. I. Awad; F. A. Elhag; F. A. Khaled

    2007-01-01

    Stannous chloride (SnCl2) is a reducing chemical agent used in several man-made products. SnCl2 can generate reactive oxygen species (ROS). Therefore, the present study has been carried out to investigate the antioxidant action of l-ascorbic acid (AA) in minimizing SnCl2 toxicity on lipid peroxidation, antioxidant enzyme, and biochemical parameters in male New Zealand white rabbits. Animals were assigned to one

  4. Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus

    Microsoft Academic Search

    Aurélie Doyotte; Carole Cossu; Marie-Cécile Jacquin; Marc Babut; Paule Vasseur

    1997-01-01

    The aim of this work was to evaluate the potential utility of antioxidant parameters as indicators of exposure to toxicants and of toxic effects in the freshwater mussel Unio tumidus. Antioxidant enzymes (glutathione peroxidase (EC 1.11.1.9), glutathione reductase (EC 1.6.4.2), Superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6)), redox status of glutathione and lipid peroxidation were measured at first in the

  5. The in vitro evaluation of antioxidative activity, ?-glucosidase and ?-amylase enzyme inhibitory of natural phenolic extracts.

    PubMed

    Djeridane, Amar; Hamdi, Aicha; Bensania, Wafa; Cheifa, Khadidja; Lakhdari, Imane; Yousfi, Mohamed

    2013-11-16

    Phenolic extracts from the medicinal parts of six traditional Algerian herbs were tested in screening experiments for the antioxidant, ?-amylase and ?-glycosidase inhibiting activities. UV-analysis of the extracts from the plants indicated that the total phenols content was ranged between 0.48 and 3.46mg equivalent of gallic acid per gram of dry matter, whereas the flavonoids content expressed as rutin equivalent per gram of dry matter was ranged between 0.18 and 2.23mg/g. The study of antioxidant activity by scavenging the hydroxyl radical (OH), the nitroxide radical (NO) and the stable radical cation (ABTS(+)) showed a high antioxidant power. Also, these extracts illustrated a significant reductive power of the Fe(3+)-TPTZ complex. Similarly, we have found that the phenolic extracts exhibit an imperative antioxidant status compared to synthetic antioxidants. The study of the extract effects shows that Anabasis articulata, Agatophora alopecuroide and Heliantheum kahiricum extracts have a powerful inhibiting capacity of the ?-amylase and ?-glycosidase with a Ki values less than 10?M. Our study, for the first time, revealed the anti-diabetic potential of the six plants and the results of this study could be helpful to develop medicinal preparations or nutraceuticals and functional foods for diabetes. PMID:25470628

  6. The effect of extra virgin olive oil and soybean on DNA, cytogenicity and some antioxidant enzymes in rats.

    PubMed

    El-Kholy, Thanaa A; Abu Hilal, Mohammad; Al-Abbadi, Hatim Ali; Serafi, Abdulhalim Salim; Al-Ghamdi, Ahmad K; Sobhy, Hanan M; Richardson, John R C

    2014-06-01

    We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents' organs and warrants further investigation in humans. PMID:24959949

  7. Response of antioxidative enzymes to arsenic-induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill

    PubMed Central

    Talukdar, Tulika; Talukdar, Dibyendu

    2013-01-01

    Background: Wedelia chinensis Merrill (Asteraceae) is a medicinally important herb, grown abundantly in soils contaminated with heavy metals, including toxic metalloid arsenic (As). The leaves have immense significance in treatment of various ailments. Objective: The present study was undertaken to ascertain whether the edible/usable parts experience oxidative stress in the form of membrane damage during As exposure or not. Materials and Methods: Responses of seven antioxidant enzymes were studied in leaves under 20 mg/L of As treatment in pot experiment. Results: When compared to control, activities of superoxide dismutase, monodehydroascorbatereductase, dehydroascorbatereductase, glutathione reductase, and gluathione peroxidase had increased, while the catalase level reduced and ascorbate peroxidase activity changed non-significantly in As-treated seedlings. This suggested overall positive response of antioxidant enzymes to As-induced oxidative stress. Although hydrogen peroxide content increased, level of lipid peroxidation and magnitude of membrane damage was quite normal, leading to normal growth (dry weight of shoot) of plant under Astreatment. Conclusion: W.chinensis is tolerant of As-toxicity, and thus, can be grown in As-contaminated zones. PMID:24082737

  8. The Effect of Extra Virgin Olive Oil and Soybean on DNA, Cytogenicity and Some Antioxidant Enzymes in Rats

    PubMed Central

    El-Kholy, Thanaa A.; Abu Hilal, Mohammad; Ali Al-Abbadi, Hatim; Salim Serafi, Abdulhalim; Al-Ghamdi, Ahmad K.; Sobhy, Hanan M.; Richardson, John R. C.

    2014-01-01

    We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents’ organs and warrants further investigation in humans. PMID:24959949

  9. Flixweed Is More Competitive than Winter Wheat under Ozone Pollution: Evidences from Membrane Lipid Peroxidation, Antioxidant Enzymes and Biomass

    PubMed Central

    Li, Yong; Zheng, Yan-Hai; Jiang, Gao-Ming

    2013-01-01

    To investigate the effects of ozone on winter wheat and flixweed under competition, two species were exposed to ambient, elevated and high [O3] for 30 days, planted singly or in mixculture. Eco-physiological responses were examined at different [O3] and fumigating time. Ozone reduced the contents of chlorophyll, increased the accumulation of H2O2 and malondialdehyde in both wheat and flixweed. The effects of competition on chlorophyll content of wheat emerged at elevated and high [O3], while that of flixweed emerged only at high [O3]. The increase of H2O2 and malondialdehyde of flixweed was less than that of wheat under the same condition. Antioxidant enzyme activities of wheat and flixweed were seriously depressed by perennial and serious treatment using O3. However, short-term and moderate fumigation increased the activities of SOD and POD of wheat, and CAT of flixweed. The expression levels of antioxidant enzymes related genes provided explanation for these results. Furthermore, the increase of CAT expression of flixweed was much higher than that of SOD and POD expression of wheat. Ozone and competition resulted in significant reductions in biomass and grain yield in both winter wheat and flixweed. However, the negative effects on flixweed were less than wheat. Our results demonstrated that winter wheat is more sensitive to O3 and competition than flixweed, providing valuable data for further investigation on responses of winter wheat to ozone pollution, in particular combined with species competition. PMID:23533669

  10. Lipid peroxidation and antioxidant defense enzymes in Clarias gariepinus as useful biomarkers for monitoring exposure to polycyclic aromatic hydrocarbons.

    PubMed

    Otitoloju, Adebayo; Olagoke, Oluwatoyin

    2011-11-01

    The toxicological evaluations of crude oil, xylene, toluene and benzene were carried out against juvenile stages of Clarias gariepinus. On the basis of LC(50) value, benzene (0.017 ml/l) was found to be the most toxic followed by xylene (0.086 ml/l), toluene (0.398 ml/l) and crude oil (2.219 ml/l) was the least toxic. The results of the lipid peroxidation assay showed that the level of malonaldehyde (MDA) in liver and gills of fish exposed to all the test chemicals increased significantly (P < 0.05) when compared to control. Measurement of activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) in liver and gill of fishes exposed to sublethal concentration of the test chemicals over a 28-day period was found to decrease significantly (P < 0.05) when compared to control. The observed reduction in the activities of antioxidant defense enzymes such as SOD, CAT and GST in conjunction with an increase in MDA levels in the gill and liver tissues of test animals exposed to aromatic hydrocarbon compounds were recommended as a good battery of biomarkers for early detection of pollution during biomonitoring programmes. PMID:21213039

  11. Oxidative Stress, DNA Damage, and Antioxidant Enzyme Activity Induced by Hexavalent Chromium in Sprague-Dawley Rats

    PubMed Central

    Patlolla, Anita K.; Barnes, Constance; Yedjou, Clement; Velma, V. R.; Tchounwou, Paul B.

    2009-01-01

    Chromium is a widespread industrial compound. The soluble hexavalent chromium Cr (VI) is an environmental contaminant widely recognized as carcinogen, mutagen, and teratogen toward humans and animals. The fate of chromium in the environment is dependent on its oxidation state. The reduction of Cr (VI) to Cr (III) results in the formation of reactive intermediates leading to oxidative tissue damage and cellular injury. In the present investigation, Potassium dichromate was given intraperitoneally to Sprague-Dawley rats for 5 days with the doses of 2.5, 5.0, 7.5, and 10 mg/kg body weight per day. Oxidative stress including the level of reactive oxygen species (ROS), the extent of lipid peroxidation and the activity of antioxidant enzymes in both liver and kidney was determined. DNA damage in peripheral blood lymphocytes was determined by single-cell gel electrophoresis (comet assay). The results indicated that administration of Cr (VI) had caused a significant increase of ROS level in both liver and kidney after 5 days of exposure, accompanied with a dose-dependent increase in superoxide dismutase and catalase activities. The malondialdehyde content in liver and kidney was elevated as compared with the control animals. Dose- and time-dependent effects were observed on DNA damage after 24, 48, 72, and 96 h posttreatment. The results obtained from the present study showed that Cr (VI) could induce dose- and time-dependent effects on DNA damage, both liver and kidney show defense against chromium-induced oxidative stress by enhancing their antioxidant enzyme activity. However, liver was found to exhibit more antioxidant defense than the kidney. PMID:18508361

  12. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression

    PubMed Central

    Yeom, Yiseul; Kim, Yuri

    2015-01-01

    Background: Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease. The objective of this study is to investigate the protective effect of Sasa quelpaertensis leaf extract (SQE) against oxidative stress in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Mice were treated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage in advance two weeks before inflammation was induced. Then, the mice were administered with 2.5% DSS in drinking water for 7 days and normal drinking water for 7 days between two DSS treatment. Disease activity index values, gut motility, and severity of the resulting oxidative DNA damage were analyzed. The antioxidant effect of SQE was evaluated by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) activity in plasma samples. Catalase activity and expressions levels of glutathione peroxidase 1 (Gpx1), SOD1, and SOD2 were also detected in colon tissues. Results: Administration of SQE significantly reduced the severity of DSS-induced colitis compared to the control (Ctrl) group. Levels of 8-oxo-dG, an oxidative DNA damage marker, were significantly lower in the SQE group compared to the untreated DSS Ctrl group. In the SQE (300 mg/kg) group, MDA levels were significantly lower, while SOD and catalase activity levels in the plasma samples were significantly higher compared with the DSS Ctrl group. The expression levels of the antioxidant enzymes, SOD2 and Gpx1, were significantly higher, while the levels of SOD 1 expression were lower, in the colon tissues of the DSS Ctrl group compared with those of the Ctrl group. In contrast, administration of SQE significantly down-regulated SOD2 and Gpx1 expressions and up-regulated SOD1 expression. Conclusions: These results indicate that SQE efficiently suppresses oxidative stress in DSS-induced colitis in mice, and its action is associated with the regulation of antioxidant enzymes.

  13. Correlation of oxidative stress with serum trace element levels and antioxidant enzyme status in Beta thalassemia major patients: a review of the literature.

    PubMed

    Shazia, Q; Mohammad, Z H; Rahman, Taibur; Shekhar, Hossain Uddin

    2012-01-01

    Beta thalassemia major is an inherited disease resulting from reduction or total lack of beta globin chains. Patients with this disease need repeated blood transfusion for survival. This may cause oxidative stress and tissue injury due to iron overload, altered antioxidant enzymes, and other essential trace element levels. The aim of this review is to scrutinize the relationship between oxidative stress and serum trace elements, degree of damage caused by oxidative stress, and the role of antioxidant enzymes in beta thalassemia major patients. The findings indicate that oxidative stress in patients with beta thalassemia major is mainly caused by tissue injury due to over production of free radical by secondary iron overload, alteration in serum trace elements and antioxidant enzymes level. The role of trace elements like selenium, copper, iron, and zinc in beta thalassemia major patients reveals a significant change of these trace elements. Studies published on the status of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione S-transferase in beta thalassemia patients also showed variable results. The administration of selective antioxidants along with essential trace elements and minerals to reduce the extent of oxidative damage and related complications in beta thalassemia major still need further evaluation. PMID:22645668

  14. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism.

    PubMed

    Kaushal, Neeru; Gupta, Kriti; Bhandhari, Kalpna; Kumar, Sanjeev; Thakur, Prince; Nayyar, Harsh

    2011-07-01

    Chickpea is a heat sensitive crop hence its potential yield is considerably reduced under high temperatures exceeding 35 °C. In the present study, we evaluated the efficacy of proline in countering the damage caused by heat stress to growth and to enzymes of carbon and antioxidative metabolism in chickpea. The chickpea seeds were raised without (control) and with proline (10 ?M) at temperatures of 30/25 °C, 35/30 °C, 40/35 °C and 45/40 °C as day/ night (12 h/12 h) in a growth chamber. The shoot and root length at 40/35 °C decreased by 46 and 37 %, respectively over control while at 45/40 °C, a decrease of 63 and 47 %, respectively over control was observed. In the plants growing in the presence of 10 ?M proline at 40/35 °C and 45/40 °C, the shoot length showed improvement of 32 and 53 %, respectively over untreated plants, while the root growth was improved by 22 and 26 %, respectively. The stress injury (as membrane damage) increased with elevation of temperatures while cellular respiration, chlorophyll content and relative leaf water content reduced as the temperature increased to 45/40 °C. The endogenous proline was elevated to 46 ?mol g(-1) dw at 40/35 °C but declined to 19 ?mol g(-1) dw in plants growing at 45/40 °C that was associated with considerable inhibition of growth at this temperature. The oxidative damage measured as malondialdehyde and hydrogen peroxide content increased manifolds in heat stressed plants coupled with inhibition in the activities of enzymatic (superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase) and levels of non-enzymatic (ascorbic acid, glutathione, proline) antioxidants. The enzymes associated with carbon fixation (RUBISCO), sucrose synthesis (sucrose phosphate synthase) and sucrose hydrolysis (invertase) were strongly inhibited at 45/40 °C. The plants growing in the presence of proline accumulated proline up to 63 ?mol g(-1) dw and showed less injury to membranes, had improved content of chlorophyll and water, especially at 45/40 °C. Additionally, the oxidative injury was significantly reduced coupled with elevated levels of enzymatic and non-enzymatic antioxidants. A significant improvement was also noticed in the activities of enzymes of carbon metabolism in proline-treated plants. We report here that proline imparts partial heat tolerance to chickpea's growth by reducing the cellular injury and protection of some vital enzymes related to carbon and oxidative metabolism and exogenous application of proline appears to have a countering effect against elevated high temperatures on chickpea. PMID:23573011

  15. Nasal membrane and intracellular protein and enzyme release by bile salts and bile salt-fatty acid mixed micelles: correlation with facilitated drug transport.

    PubMed

    Shao, Z; Mitra, A K

    1992-09-01

    The effects of four bile salts, one fusidate derivative, and one mixed micellar formulation of bile salt-fatty acid combination on the nasal mucosal protein and enzyme release have been investigated in rats using an in situ nasal perfusion technique. Deoxycholate (NaDC) was found to possess the maximum protein solubilizing activity, followed by taurodihydrofusidate (STDHF), cholate, glycocholate (NaGC), and taurocholate (NaTC) in a descending order. The difference in protein solubilization of NaDC and NaGC was further characterized by the release of 5'-nucleotidase (5'-ND), a membrane-bound enzyme, and lactate dehydrogenase (LDH), an intracellular enzyme, in the perfusate. While both NaDC and NaGC caused comparable 5'-ND release from nasal membrane, intracellular LDH release was significantly higher with NaDC. The greater protein and LDH solubilizing effects of NaDC corresponded well with its faster rate of disappearance from the nasal perfusate. Therefore, the dihydroxy bile salt NaDC tends to cause intracellular damage and cell lysis, whereas the trihydroxy bile salt NaGC appears to produce primarily mucosal membrane perturbations. Linoleic acid in the form of soluble mixed micelles with glycocholate caused a further increase in nasal protein release. However, the rate and extent of nasal membrane protein release by the mixed micelles composed of 15 mM glycocholate and 5 mM linoleic acid were significantly lower than those caused by either deoxyholate or STDHF at the same concentrations. Nasal absorption of acyclovir, a non-absorbable hydrophilic model antiviral agent, was found to be enhanced in the presence of conjugated trihydroxy bile salts and bile salt-fatty acid mixed micelles.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1409402

  16. Antioxidant Enzyme Activity and Meat Quality of Meat Type Ducks Fed with Dried Oregano (Origanum vulgare L.) Powder

    PubMed Central

    Park, J. H.; Kang, S. N.; Shin, D.; Shim, K. S.

    2015-01-01

    One-day-old Cherry valley meat-strain ducks were used to investigate the effect of supplemental dried oregano powder (DOP) in feed on the productivity, antioxidant enzyme activity, and breast meat quality. One hundred sixty five ducks were assigned to 5 dietary treatments for 42 days. The dietary treatment groups were control group (CON; no antibiotic, no DOP), antibiotic group (ANT; CON+0.1% Patrol), 0.1% DOP (CON+0.1% DOP), 0.5% DOP (CON+0.5% DOP), and 1.0% DOP (CON+1.0% DOP). Upon feeding, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity of oregano extracts was higher than that of tocopherol, although it was less than that of ascorbic acid. As a result of in vivo study, DOP in the diet showed no effects on final body weight, feed intake, or feed conversion ratio. However, dietary 0.5% and 1% DOP supplementation caused a significant increase in the serum enzyme activity of superoxide dismutase (SOD) compared with CON and ANT, while glutathione peroxidase (GPx) in tissue was increased as compared to ANT (p<0.05). Cooking loss from ducks fed with DOP decreased compared with the control ducks. Thiobarbituric acid reactive substance (TBARS) values of duck breast meat at 5 d post slaughter was found to be significantly reduced in ducks whose diets were supplemented with 0.5% and 1% DOP (p<0.05). These results suggest that diets containing 0.5% and 1% DOP may beneficially affect antioxidant enzyme activity of GPx and SOD, improve meat cooking loss, and reduce TBARS values in breast meat at 5 d of storage in ducks. PMID:25557678

  17. Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species.

    PubMed

    Chen, Yu; Jiang, Jiafu; Chang, Qingshan; Gu, Chunsun; Song, Aiping; Chen, Sumei; Dong, Bin; Chen, Fadi

    2014-02-01

    Cold acclimation is necessary for chrysanthemum to achieve its genetically determined maximum freezing tolerance, but the underlying physiological and molecular mechanisms are unclear. The aim of this study was to discover whether changes in antioxidative enzymes, proline metabolism and frost-related gene expression induced by cold acclimation are related to freezing tolerance. Our results showed that the semi-lethal temperature (LT50) decreased from -7.3 to -23.5 °C in Chrysanthemum dichrum and -2.1 to -7.1 °C in Chrysanthemum makinoi, respectively, after cold acclimation for 21 days. The activities of SOD, CAT and APX showed a rapid and transient increase in the two chrysanthemum species after 1 day of cold acclimation, followed by a gradual increase during the subsequent days and then stabilization. qRT-PCR analysis showed that the expression levels of some isozyme genes (Mn SOD, CAT and APX) were upregulated, which was consistent with the SOD, CAT and APX activities, while others remained relatively constant (Fe SOD and Cu/Zn SOD). P5CS and PDH expression were increased under cold acclimation and the level of P5CS presented similar trends as proline content, indicating proline accumulation was via P5CS and PDH cooperation. Cold acclimation also promoted DREB, COR413 and CSD gene expression. The activities of three enzymes and gene expression were higher in C. dichrum than in C. makinoi after cold acclimation. Our data suggested that cold-inducible freezing-tolerance could be attributed to higher activity of antioxidant enzymes, and increased proline content and frost-related gene expression during different periods. PMID:24413987

  18. Effects of cadmium exposure on digestive enzymes, antioxidant enzymes, and lipid peroxidation in the freshwater crab Sinopotamon henanense.

    PubMed

    Wu, Hao; Xuan, Ruijing; Li, Yingjun; Zhang, Xiaomin; Wang, Qian; Wang, Lan

    2013-06-01

    In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress. PMID:23224505

  19. Variations of antioxidant enzymes in Daphnia species and populations as related to ambient UV exposure

    Microsoft Academic Search

    Jan Borgeraas; Dag O. Hessen

    2002-01-01

    To assess their role in photoprotection in the crustacean zooplankton Daphnia spp., activities of the antioxidants catalase (CAT), superoxide dismutase (SOD), glutathione transferase (GST) and content of carotenoids (CAR) were studied in 4 Daphniaspecies from a total of 50 populations. Included in the survey were alpine and lowland populations of both pigmented and non-pigmented D. longispina, rock-pool and laboratory clones

  20. Antioxidant Enzyme Responses to NaCl Stress in Cassia angustifolia

    Microsoft Academic Search

    S. Agarwal; V. Pandey

    2004-01-01

    Seeds of Cassia angustifolia Vahl. were subjected to 0, 20, 50, 100 mM NaCl for 7 d in order to study the effect of salt stress on growth parameters, endogenous Na+ and Cl- concentrations, antioxidant system, lipid peroxidation, hydrogen peroxide, and proline contents. Salinity affected all of the considered parameters and caused a great reduction in plant biomass. The root

  1. Oxidative stress and antioxidant enzyme activities in patients with Hashimoto’s thyroiditis

    Microsoft Academic Search

    Julieta Gerenova; Veselina Gadjeva

    2007-01-01

    We investigated the parameters of oxidative stress in 71 Hashimoto’s thyroiditis patients. They were divided into three sub-groups\\u000a according to the thyroid function: group I—euthyroid subjects; group II—hypothyroid subjects; and group III—subjects treated\\u000a with Levothyroxin. Thirty healthy subjects were studied as controls. The level of lipid peroxidation (malondialdehyde, MDA)\\u000a in the plasma and the antioxidant defences such as superoxide dismutase

  2. Effect of cadmium on lipid peroxidation and activities of antioxidant enzymes in growing pigs

    Microsoft Academic Search

    Xin-Yan Han; Zi-Rong Xu; Yi-Zhen Wang; Qi-Chun Huang

    2006-01-01

    Malondialdehyde (MDA), glutathione (GSH) content, total antioxidant capacity (T-AOC) levels, superoxide dismutase (SOD), glutathione\\u000a peroxidase (GSH-Px), and glutathione transferase (GST) activities were studied in serum, liver, and kidney of growing pigs\\u000a after graded doses of cadmium administration in diets. One hundred ninety-two barrows (Duroc x Landrace x Yorkshire), with\\u000a similar initial body weight 27.67±1.33 kg, were randomly allotted into 4

  3. Upregulation of intracellular antioxidant enzymes in brain and heart during estivation in the African lungfish Protopterus dolloi

    Microsoft Academic Search

    Melissa M. Page; Kurtis D. Salway; Yuen Kwong Ip; Shit F. Chew; Sarah A. Warren; James S. Ballantyne; Jeffrey A. Stuart

    2010-01-01

    The African slender lungfish, Protopterus dolloi, is highly adapted to withstand periods of drought by secreting a mucous cocoon and estivating for periods of months to years.\\u000a Estivation is similar to the diapause and hibernation of other animal species in that it is characterized by negligible activity\\u000a and a profoundly depressed metabolic rate. As is typically observed in quiescent states,

  4. Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes

    PubMed Central

    Sánchez-Rodríguez, Martha A; Ruiz-Ramos, Mirna; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel

    2007-01-01

    Background Oxidative stress (OxS) has recently been linked with osteoporosis; however, we do not know the influence of OxS as an independent risk factor for this disease. Methods We conducted a case-control study in 94 subjects ?60 years of age, 50 healthy and 44 with osteoporosis. We measured total antioxidant status, plasma lipid peroxides, antioxidant activity of superoxide dismutase and glutathione peroxidase (GPx), and calculated the SOD/GPx ratio. Bone mineral density was obtained at the peripheral DXA in calcaneus using a portable Norland Apollo Densitometer®. Osteoporosis was considered when subjects had a BMD of 2.5 standard deviations or more below the mean value for young adults. Results GPx antioxidant activity was significantly lower in the group of subjects with osteoporosis in comparison with the group of healthy subjects (p < 0.01); in addition, the SOD/GPx ratio was significantly higher in the group of individuals with osteoporosis (p < 0.05). In logistic regression analysis, we found OxS to be an independent risk factor for osteoporosis (odds ratio [OR] = 2.79; 95% confidence interval [95% CI] = 1.08–7.23; p = 0.034). Conclusion Our findings suggest that OxS is an independent risk factor for osteoporosis linked to increase of SOD/GPx ratio. PMID:18088440

  5. Antioxidant enzymes in freshwater prawn Macrobrachium malcolmsonii during embryonic and larval development

    Microsoft Academic Search

    S. Arun; P. Subramanian

    1998-01-01

    Activities of superoxide dismutase, catalase, glutathione peroxidase (selenium-dependent and selenium-independent) and glutathione-S-transferases were analysed in freshwater prawn Macrobrachium malcolmsonii during embryonic and larval development. An elevated level of these enzymes was encountered in the larval stage of M. malcolmsonii when compared to its preceding embryonic stages. Enzyme activities were also analysed in hepatopancreas, muscle and gill of M. malcolmsonii sub-adults

  6. Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper.

    PubMed Central

    Verhaegh, G W; Richard, M J; Hainaut, P

    1997-01-01

    Mutations in the p53 tumor suppressor gene frequently fall within the specific DNA-binding domain and prevent the molecule from transactivating normal targets. DNA-binding activity is regulated in vitro by metal ions and by redox conditions, but whether these factors also regulate p53 in vivo is unclear. To address this question, we have analyzed the effect of pyrrolidine dithiocarbamate (PDTC) on p53 DNA-binding activity in cell lines expressing wild-type p53. PDTC is commonly regarded as an antioxidant, but it can also bind and transport external copper ions into cells and thus exert either pro- or antioxidant effects in different situations. We report that PDTC, but not N-acetyl-L-cysteine, down-regulated the specific DNA-binding activity of p53. Loss of DNA binding correlated with disruption of the immunologically "wild-type" p53 conformation. Using different chelators to interfere with copper transport by PDTC, we found that bathocuproinedisulfonic acid (BCS), a non-cell-permeable chelator of Cu1+, prevented both copper import and p53 down-regulation. In contrast, 1,10-orthophenanthroline, a cell-permeable chelator of Cu2+, promoted the redox activity of copper and up-regulated p53 DNA-binding activity through a DNA damage-dependent pathway. We have previously reported that p53 protein binds copper in vitro in the form of Cu1+ (P. Hainaut, N. Rolley, M. Davies, and J. Milner, Oncogene 10:27-32, 1995). The data reported here indicate that intracellular levels and redox activity of copper are critical for p53 protein conformation and DNA-binding activity and suggest that copper ions may participate in the physiological control of p53 function. PMID:9315628

  7. A potential antioxidant enzyme belonging to the atypical 2-Cys peroxiredoxin subfamily characterized from rock bream, Oplegnathus fasciatus.

    PubMed

    Saranya Revathy, Kasthuri; Umasuthan, Navaneethaiyer; Whang, Ilson; Jung, Hyung-Bok; Lim, Bong-Soo; Nam, Bo-Hye; Lee, Jehee

    2015-09-01

    Peroxiredoxins (Prxs), a diverse family of antioxidant enzymes, exert their antioxidant function through which different peroxide species are detoxified. This study describes both structural and functional characterization of a mitochondrial Prx identified in rock bream, Oplegnathus fasciatus (RbPrx5). The ORF (573 bp) of RbPrx5 encoded a protein of 190 amino acids (20kDa) containing a putative mitochondrial targeting sequence (residues 1-20) and a thioredoxin-2 motif (residues 31-190) and three conserved Cys residues. Homology assessment and phylogenetic analysis clearly disclosed relatively higher amino acid sequence similarities and a closer evolutionary position of RbPrx5 with those of other teleost homologs. The ORF of RbPrx5 was distributed among six exons as found in other vertebrates, but it possessed an additional exon in its 5'-UTR. In silico examination of RbPrx5 gene's putative promoter region revealed the presence of several cis-elements which may be important in its transcriptional regulation. Constitutive expression of RbPrx5 was detected in eleven tissues with the highest level in the heart. Modulation of RbPrx5 transcription was evidenced from varying mRNA levels in head kidney post in vivo LPS-, poly I:C-, Edwardsiella tarda bacterial- and rock bream iridoviral-challenges. The antioxidant function of RbPrx5 was investigated using recombinant RbPrx5 protein. Results of an in vitro mixed-function oxidase assay demonstrated a dose-dependent inhibition of DNA damage by rRbPrx5. A H2O2 tolerance assay showed that in vivo overexpression of rRbPrx5 increased the bacterial survival under H2O2-mediated oxidative stress condition. These findings provide an overall insight into the structural, expressional and functional aspects of RbPrx5. PMID:25934084

  8. Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals.

    PubMed

    Rai, U N; Singh, N K; Upadhyay, A K; Verma, S

    2013-05-01

    A concentration-dependent increase in activity of antioxidant enzymes (catalase, ascorbate peroxidase, glutathione, superoxide dismutase) and carotenoid, MDA level have been observed in the green alga Chlorella vulgaris following chromium exposure at different concentrations (0.01-100 ?g ml(-1)). Simultaneously, decrease in growth rate, chlorophyll and protein contents was observed. In case of ascorbate peroxidase, glutathione peroxidase and superoxide dismutase a bell shaped dose response was evident, however, lipid peroxidation followed a linear relationship along with catalase activity, which could be used as biomarker of Cr toxicity and played important role in providing tolerance and subsequently, high accumulation potential of chromium in C. vulgaris. In present investigation, the green alga C. vulgaris respond better under chromium stress in terms of tolerance, growth and metal accumulating potential at higher concentration of Cr (VI) which could be employed in decontamination of chromium for environmental cleanup. PMID:23567737

  9. Angiotensin-converting enzyme inhibitory activity and antioxidant properties of Nepeta crassifolia Boiss & Buhse and Nepeta binaludensis Jamzad.

    PubMed

    Tundis, Rosa; Nadjafi, Farsad; Menichini, Francesco

    2013-04-01

    This article reports phytochemical and biological studies on Nepeta binaludensis and Nepeta crassifolia. Both species were investigated for their angiotensin-converting enzyme (ACE) inhibitory activity and antioxidant properties through three in vitro models [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assay]. Aerial parts were extracted with methanol and partitioned between water and subsequently n-hexane, ethyl acetate and n-butanol. N. binaludensis methanol extract exerted significantly higher reducing power (1.9 ?M Fe(II)/g) than did the positive control butylhydroxytoluene (63.2??M Fe(II)/g) in FRAP assay. The highest DPPH radical scavenging activity was found for N. crassifolia, with IC50 values of 9.6 and 12.1 µg/mL for ethyl acetate and n-butanol fractions, respectively. n-Butanol fraction of both species showed the highest ACE inhibitory activity, with IC50 values of 59.3 and 81.7 µg/mL for N. binaludensis and N. crassifolia, respectively. Phytochemical investigations resulted in the isolation of ursolic acid, oleanolic acid, apigenin, luteolin and ixoroside. Apigenin-7-O-glucoside, 8-hydroxycirsimaritin and cirsimaritin were furthermore identified in N. crassifolia ethyl acetate-soluble fraction. Nepetanudoside B was isolated from the n-butanol fraction of N. binaludensis. PMID:22693035

  10. Anti-inflammatory effect of Pueraria tuberosa extracts through improvement in activity of red blood cell anti-oxidant enzymes

    PubMed Central

    Pandey, Nidhi; Yadav, Durgavati; Pandey, Vivek; Tripathi, Yamini B.

    2013-01-01

    Changing life style and over-nutrition causes low-grade inflammation (LGI), with obesity and hyper-lipidemia as basic factors. The physiological state polarizes macrophages to classical type (M1), which is pro-inflammatory and promotes ectopic fat deposition in the body. Both factors induce inflammatory cascade, where free radicals (FRs) play an important role. Thus, pharmacological and non-pharmacological interventions would be effective in the management of LGI and plant products would be used as food supplement or as a drug. Previously, a study has reported the anti-oxidant potential of methanolic extract of tubers of Pueraria tuberosa (PTME) and inhibitory role of tuberosin on lipopolysaccharides-induced expression of inducible nitric oxide synthase in macrophages in an in vitro study model. Here, the effect of PTME has been explored on carrageenan-induced inflammatory changes in rats. The activity of antioxidant enzymes in red blood cell hemolysate has been assessed. PTME was orally given to rats for 9 days and periodical changes (every 3rd day) in the activity/concentration of superoxide dismutase (SOD), catalase, reduced glutathione (GSH), lipid peroxides (LPO), and C-reactive proteins (CRP) were monitored. The PTME significantly prevented carrageenan-induced decline in GSH content, lowering of catalase and SOD activity, and rise in LPO and CRP in rats in a time-dependent, sequential manner. Thus, it could be suggested that the anti-inflammatory role of PTME is primarily mediated through its FR scavenging potential. PMID:24501527

  11. Changes in somatosensory evoked potentials, lipid peroxidation, and antioxidant enzymes in experimental diabetes: effect of sulfur dioxide.

    PubMed

    Küçükatay, Vural; A?ar, Aysel; Yargiço?lu, Piraye; Gümü?lü, Saadet; Aktekin, Berrin

    2003-01-01

    The effect of sulfur dioxide (SO2) on brain antioxidant status, lipid peroxidation, and somatosensory evoked potentials (SEPs) was investigated in diabetic rats. A total of 40 rats were divided into 4 equal groups: control (C), SO2 + C (SO2), diabetic (D), and SO2 + D (DSO2). Experimental diabetes mellitus was induced by i.v. injection of alloxan at a dose of 50 mg/kg body weight. Ten ppm SO2 was administered to the rats in the sulfur dioxide groups (SO2 and DSO2) in an exposure chamber. Exposure occurred 1 hr/day, 7 days/wk, for 6 wk; control rats were exposed to filtered air during the same time periods. Although SO2 exposure markedly increased copper, zinc Superoxide dismutase activity, it significantly decreased glutathione peroxidase activity in both the diabetic and nondiabetic groups, compared with the C group. Brain catalase activity was unaltered; however, brain thiobarbituric acid reactive substances (TBARS) were elevated in all experimental groups with respect to the C group. SEP components P1, N1, P2, and N2 were significantly increased in all experimental groups, compared with the C group, and these components were also prolonged in the DSO2 group with respect to the other groups. The authors' findings suggest that exposure to SO2, because it increases lipid peroxidation, can change antioxidant enzyme activities and affect SEP components in diabetic rats. PMID:12747514

  12. Sulphurous thermal water increases the release of the anti-inflammatory cytokine IL-10 and modulates antioxidant enzyme activity.

    PubMed

    Prandelli, C; Parola, C; Buizza, L; Delbarba, A; Marziano, M; Salvi, V; Zacchi, V; Memo, M; Sozzani, S; Calza, S; Uberti, D; Bosisio, D

    2013-01-01

    The beneficial effects of hot springs have been known for centuries and treatments with sulphurous thermal waters are recommended in a number of chronic pathologies as well as acute recurrent infections. However, the positive effects of the therapy are often evaluated in terms of subjective sense of wellbeing and symptomatic clinical improvements. Here, the effects of an S-based compound (NaSH) and of a specific sulphurous thermal water characterized by additional ions such as sodium chloride, bromine and iodine (STW) were investigated in terms of cytokine release and anti-oxidant enzyme activity in primary human monocytes and in saliva from 50 airway disease patients subjected to thermal treatments. In vitro, NaSH efficiently blocked the induction of pro-inflammatory cytokines and counterbalanced the formation of ROS. Despite STW not recapitulating these results, possibly due to the low concentration of S-based compounds reached at the minimum non-toxic dilution, we found that it enhanced the release of IL-10, a potent anti-inflammatory cytokine. Notably, higher levels of IL-10 were also observed in patients' saliva following STW treatment and this increase correlated positively with salivary catalase activity (r2 = 0.19, *p less than 0.01). To our knowledge, these results represent the first evidence suggesting that S-based compounds and STW may prove useful in facing chronic inflammatory and age-related illness due to combined anti-inflammatory and anti-oxidant properties. PMID:24067460

  13. Antioxidative peptides derived from enzyme hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection.

    PubMed

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  14. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  15. Male Genital Tract Antioxidant Enzymes: Their Source, Function in the Female, and Ability to Preserve Sperm DNA Integrity in the Golden Hamster

    Microsoft Academic Search

    HONG CHEN; PAK HAM CHOW; SO KWAN CHENG; ANNIE L. M. CHEUNG; LYDIA Y. L. CHENG; WAI-SUM O

    Recently, we reported that male accessory sex gland (ASG) secretions protect sperm genomic integrity by demonstrating that DNA damage was more extensive in sperm not exposed to the secretions. The present study was conducted to find out if ASGs secrete the main antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx or GSH-Px), and catalase (CAT) and if the most abundant

  16. Long-term feeding effects of heated and fried oils on hepatic antioxidant enzymes, absorption and excretion of fat in rats

    Microsoft Academic Search

    S. Purushothama; H. D. Ramachandran; K. Narasimhamurthy; P. L. Raina

    2003-01-01

    Long-term feeding effect of heated and fried peanut (PNO), rice bran (RBO) and palm oil (PO) in the diet on the hepatic antioxidant enzyme status and absorption and excretion of fats were studied in laboratory rats. The rats were fed oils heated to 180°C continuously for a period of 72 h or laboratory fried at 20% level in the diet

  17. Modulation of antioxidant enzyme activities, platelet aggregation and serum prostaglandins in rats fed spray-dried milk containing n-3 fatty acid

    Microsoft Academic Search

    T. R. Ramaprasad; V. Baskaran; T. P. Krishnakantha; B. R. Lokesh

    2005-01-01

    Spray-dried milk enriched with n-3 fatty acids from linseed oil (LSO) or fish oil (FO) were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of ? linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats

  18. A diet high in cholesterol and deficient in vitamin E induces lipid peroxidation but does not enhance antioxidant enzyme expression in rat liver

    Microsoft Academic Search

    Marie-France Maggi-Capeyron; Julien Cases; Eric Badia; Jean-Paul Cristol; Jean-Max Rouanet; Pierre Besançon; Claude L Leger; Bernard Descomps

    2002-01-01

    Expression of antioxidant enzymes (AOE), an important mechanism in the protection against oxidative stress, could be modified by the redox status of the cells. The aim of this project was to evaluate the role of vitamin E deficiency in association with a high-cholesterol diet in the hepatic lipid peroxidation and the expression of AOE. Two groups of 6 male rats

  19. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. PMID:24788860

  20. Impact of processing on the phenolic profiles of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia.

    PubMed

    Pradeep, P M; Sreerama, Yadahally N

    2015-02-15

    The effects of germination, steaming and microwave treatments of whole grain millets (barnyard, foxtail and proso) on their phenolic composition, antioxidant activities and inhibitory properties against ?-amylase and ?-glucosidase were investigated. Compositional analysis of phenolics by HPLC revealed that vanillic and ferulic acids were the principal phenolic acids and kaempferol was the predominant flavonoid found in raw millets. Different processing treatments brought about relevant changes in the composition and content of certain phenolic acids and flavonoids in processed millets. Phenolic extracts of raw and processed millets exhibited multiple antioxidant activities and are also potent inhibitors of ?-amylase and ?-glucosidase. In general, germinated millets showed highest phenolic content as well as superior antioxidant and enzyme inhibitory activities. These results suggest that germinated millet grains are potential source of phenolic antioxidants and also great sources of strong natural inhibitors for ?-amylase and ?-glucosidase. PMID:25236251

  1. Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes.

    PubMed

    Gechev, T; Gadjev, I; Van Breusegem, F; Inzé, D; Dukiandjiev, S; Toneva, V; Minkov, I

    2002-04-01

    Tolerance against oxidative stress generated by high light intensities or the catalase inhibitor aminotriazole (AT) was induced in intact tobacco plants by spraying them with hydrogen peroxide (H2O2). Stress tolerance was concomitant with an enhanced antioxidant status as reflected by higher activity and/or protein levels of catalase, ascorbate peroxidase, guaiacol peroxidases, and glutathione peroxidase, as well as an increased glutathione pool. The induced stress tolerance was dependent on the dose of H2O2 applied. Moderate doses of H2O2 enhanced the antioxidant status and induced stress tolerance, while higher concentrations caused oxidative stress and symptoms resembling a hypersensitive response. In stress-tolerant plants, induction of catalase was 1.5-fold, that of ascorbate peroxidase and glutathione peroxidase was 2-fold, and that of guaiacol peroxidases was approximately 3-fold. Stress resistance was monitored by measuring levels of malondialdehyde, an indicator of lipid peroxidation. The levels of malondialdehyde in all H2O2-treated plants exposed to subsequent high light or AT stress were similar to those of unstressed plants, whereas lipid peroxidation in H2O2-untreated plants stressed with either high light or AT was 1.5- or 2-fold higher, respectively. Although all stress factors caused increases in the levels of reduced glutathione, its levels were much higher in all H2O2-pretreated plants. Moreover, significant accumulation of oxidized glutathione was observed only in plants that were not pretreated with H2O2. Extending the AT stress period from 1 to 7 days resulted in death of tobacco plants that were not pretreated with H2O2, while all H2O2-pretreated plants remained little affected by the prolonged treatment. Thus, activation of the plant antioxidant system by H2O2 plays an important role in the induced tolerance against oxidative stress. PMID:12022476

  2. The Role of Intracellular Signaling in Insulin-mediated Regulation of Drug Metabolizing Enzyme Gene and Protein Expression

    PubMed Central

    Kim, Sang K.; Novak, Raymond F.

    2007-01-01

    Endogenous factors, including hormones, growth factors and cytokines, play an important role in the regulation of hepatic drug metabolizing enzyme expression in both physiological and pathophysiological conditions. Alterations of hepatic drug metabolizing enzymes gene and protein expression, observed in diabetes, fasting, obesity, protein-calorie malnutrition and long-term alcohol consumption alters the metabolism of xenobiotics, including procarcinogens, carcinogens, toxicants, and therapeutic agents and may also impact the efficacy and safety of therapeutic agents, as well as result in drug-drug interactions. Although the mechanisms by which xenobiotics regulate drug metabolizing enzymes have been studied intensively, less is known regarding the cellular signaling pathways and components which regulate drug metabolizing enzyme gene and protein expression in response to hormones and cytokines. Recent findings, however, have revealed that several cellular signaling pathways are involved in hormone- and growth factor-mediated regulation of drug metabolizing enzymes. Our laboratory, and others, have demonstrated that insulin and growth factors regulate drug metabolizing enzyme gene and protein expression, including cytochromes P450, glutathione S-transferases and microsomal epoxide hydrolase, through receptors which are members of the large receptor tyrosine kinase family, and by downstream effectors such as phosphatidylinositol 3-kinase, the mitogen activated protein kinase, Akt/protein kinase B, mTOR, and the p70S6 kinase. Here, we review current knowledge of the signaling pathways implicated in regulation of drug metabolizing enzyme gene and protein expression in response to insulin and growth factors, with the goal of increasing our understanding of how chronic disease affects these signaling pathways, components, and ultimately gene expression and translational control. PMID:17097148

  3. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants.

    PubMed

    Usta, Julnar; Hachem, Yassmine; El-Rifai, Omar; Bou-Moughlabey, Yolla; Echtay, Karim; Griffiths, David; Nakkash-Chmaisse, Hania; Makki, Rajaa Fakhoury

    2013-02-01

    We investigate in this study the biochemical effects on cells in culture of two commonly used fragrance chemicals: lyral and lilial. Whereas both chemicals exerted a significant effect on primary keratinocyte(s), HaCat cells, no effect was obtained with any of HepG2, Hek293, Caco2, NIH3T3, and MCF7 cells. Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Lipoic acid protected HaCat cells against the decrease in viability induced by either compound. Dehydrogenation of lyral and lilial produce ?,?-unsaturated aldehydes, that reacts with lipoic acid requiring proteins resulting in their inhibition. We propose lyral and lilial as toxic to mitochondria that have a direct effect on electron transport chain, increase ROS production, derange mitochondrial membrane potential, and decrease cellular ATP level, leading thus to cell death. PMID:22940465

  4. Susceptibility against grey blight disease-causing fungus Pestalotiopsis sp. in tea (Camellia sinensis (L.) O. Kuntze) cultivars is influenced by anti-oxidative enzymes.

    PubMed

    Palanisamy, Senthilkumar; Mandal, Abul Kalam Azad

    2014-01-01

    Reactive oxygen species (ROS) production is the first level of response by a host during stress. Even though the ROS are toxic to cell, when present in a limited amount, they act as a signalling molecule for the expression of defence-related genes and later are scavenged by either enzymatic or non-enzymatic mechanisms of the host. The different anti-oxidative enzymes like glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APO), peroxidase (POD) and polyphenol oxidase (PPO) were estimated, and their activities were compared between infected and healthy leaves of the tolerant and susceptible cultivars of tea. The infected leaves of the susceptible cultivars registered higher amount of enzyme activity when compared with the tolerant cultivars. The study reveals that the more anti-oxidative enzymes, the more susceptible the cultivar will be. PMID:24068475

  5. Insights into potentially toxic effects of 4-aminoantipyrine on the antioxidant enzyme copper-zinc superoxide dismutase.

    PubMed

    Teng, Yue; Liu, Rutao

    2013-11-15

    4-Aminoantipyrine (AAP) is scarcely administered as an analgesic drug because of side effects. The residue of AAP in the environment is potentially harmful. To evaluate the toxicity of AAP from molecular level, the effects of AAP on the important antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD) were explored using spectroscopic and molecular modeling methods. AAP can spontaneously bind with Cu/ZnSOD with one binding site to form AAP-Cu/ZnSOD complex through hydrogen bond and van der Waals forces. The molecular docking simulation revealed that AAP bound into the Cu/ZnSOD interface of two subdomains, which induced some conformational and microenvironmental changes of Cu/ZnSOD and further caused the inhibition of Cu/ZnSOD activity. The present study provides important insights into toxic mechanism of AAP with Cu/ZnSOD. The estimated research route can be applied to characterize interactions of enzyme systems and other pollutants and drugs. PMID:24056243

  6. Ontogeny of glutathione and glutathione-related antioxidant enzymes in rat liver

    Microsoft Academic Search

    Fawzy Elbarbry; Jane Alcorn

    2009-01-01

    We conducted a comprehensive characterization of the ontogeny of glutathione (GSH) and its related enzymes in rat liver. GSH content and activities of glutathione reductase (GR), cytosolic glutathione-S-transferases (GST), and glutathione peroxidase (GPx) were determined in male rat livers (n=4) at different developmental stages. Our results indicate total hepatic GSH content and GR, GST, and GPx activity were low in

  7. Optimization, Composition, and Antioxidant Activities of Exo- and Intracellular Polysaccharides in Submerged Culture of Cordyceps gracilis (Grev.) Durieu & Mont.

    PubMed Central

    Sharma, Sapan Kumar; Atri, Narender Singh

    2015-01-01

    Under present experiments, EPS and IPS production, monosaccharide composition, and antioxidant activities of C. gracilis were studied for the first time under submerged culture conditions. Effect of different factors on polysaccharides production was studied by orthogonal experiments using one-factor-at-a-time method. Incubation of culture in the medium with capacity 200?mL (675.12 ± 5.01 and 385.20 ± 5.01?mg/L), rotation speed 150?rpm (324.62 ± 3.32 and 254.62 ± 4.62?mg/L), 6-day culture incubation time (445.24 ± 1.11, 216.60 ± 1.71?mg/L), pH 6.0 (374.81 ± 2.52 and 219.45 ± 2.59?mg/L), and temperature 23°C (405.24 ± 1.11 and 215.60 ± 1.71?mg/L) produced higher EPS and IPS, respectively. Maximum EPS and IPS production was observed in the medium supplemented with glucose as a carbon source (464.82 ± 2.12 and 264.42 ± 2.62?mg/L) and yeast extract as a nitrogen source (465.21 ± 3.11 and 245.17 ± 3.24?mg/L), respectively. Carbon to nitrogen ratio for maximum EPS and IPS production was observed as 10?:?1 (395.29 ± 2.15 and 235.62 ± 1.40?mg/L), respectively. Glucose was found to be the major monosaccharide (62.15 ± 7.33%). Both EPS and IPS of C. gracilis showed significant DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power, and iron chelating activity. PMID:25878715

  8. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA ?-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA ?-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA ?-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  9. Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats

    PubMed Central

    Ramesh, B; Karuna, R; Sreenivasa, Reddy S; Haritha, K; Sai, Mangala D; Sasi, Bhusana Rao B; Saralakumari, D

    2012-01-01

    Objective To study the antioxidant efficacy of Commiphora mukul (C. mukul) gum resin ethanolic extract in streptozotocin (STZ) induced diabetic rats. Methods The male Wistar albino rats were randomly divided into four groups of eight animals each: Control group (C), CM-treated control group (C+CMEE), Diabetic control group (D), CM- treated diabetic group (D+CMEE). Diabetes was induced by intraperitoneal injection of STZ (55 mg/kg/ bwt). After being confirmed the diabetic rats were treated with C. mukul gum resin ethanolic extract (CMEE) for 60 days. The biochemical estimations like antioxidant, oxidative stress marker enzymes and hepatic marker enzymes of tissues were performed. Results The diabetic rats showed increased level of enzymatic activities aspartate aminotransaminase (AST), alanine aminotransaminase (ALT) in liver and kidney and oxidative markers like lipid peroxidation (LPO) and protein oxidation (PO) in pancreas and heart. Antioxidant enzyme activities were significantly decreased in the pancreas and heart compared to control group. Administration of CMEE (200 mg/kg bw) to diabetic rats for 60 days significantly reversed the above parameters towards normalcy. Conclusions In conclusion, our data indicate the preventive role of C. mukul against STZ-induced diabetic oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of diabetes and aggravated antioxidant status. PMID:23569867

  10. Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice

    PubMed Central

    Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd

    2012-01-01

    OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging. PMID:23295600

  11. AN INVESTIGATION ON THE RELATIONSHIP BETWEEN VANADIUM AND ANTIOXIDATIVE ENZYME SYSTEM IN RATS

    Microsoft Academic Search

    Ahmet AYDIN; Ahmet SAYAL; Onur ERDEM

    The aim of the study is to investigate the relationship between free oxygen radicals and vanadium in vanadium cytotoxicity. For this purpose erythrocyte copper zinc superoxide dismutase (CuZn-SOD) erythrocyte and plasma selenium dependent glutathione peroxidase (SeGSH-Px) enzyme activities, erythrocyte thiobarbituric acid reactive substances (TBARS) levels, erythrocyte and plasma vanadium levels were measured in Sprague Dawley rats fed with 0.15mgV\\/ml in

  12. [Antioxidant enzyme activities in Scots pine populations growing under chronic radiation exposure].

    PubMed

    Volkova, P Iu; Geras'kin, S A; Raevskaia, N I

    2014-01-01

    The activities of superoxide dismutase, catalase and peroxidase in Scots pine populations growing in the contaminated areas of Bryansk region were investigated. The dose rate at the experimental sites ranged from 7 to 130 mGy/year. It has been identified that the activities ofantioxidant enzymes do not depend on the radiation factor under these dose rates. These doses were found to be insufficient for forming significant physiological effects. PMID:25764819

  13. Low Ascorbic Acid in the vtc-1 Mutant of Arabidopsis Is Associated with Decreased Growth and Intracellular Redistribution of the Antioxidant System1

    PubMed Central

    Veljovic-Jovanovic, Sonja D.; Pignocchi, Cristina; Noctor, Graham; Foyer, Christine H.

    2001-01-01

    Ascorbic acid has numerous and diverse roles in plant metabolism. We have used the vtc-1 mutant of Arabidopsis, which is deficient in ascorbate biosynthesis, to investigate the role of ascorbate concentration in growth, regulation of photosynthesis, and control of the partitioning of antioxidative enyzmes. The mutant possessed 70% less ascorbate in the leaves compared with the wild type. This lesion was associated with a slight increase in total glutathione but no change in the redox state of either ascorbate or glutathione. In vtc-1, total ascorbate in the apoplast was decreased to 23% of the wild-type value. The mutant displayed much slower shoot growth than the wild type when grown in air or at high CO2 (3 mL L?1), where oxidative stress is diminished. Leaves were smaller, and shoot fresh weight and dry weight were lower in the mutant. No significant differences in the light saturation curves for CO2 assimilation were found in air or at high CO2, suggesting that the effect on growth was not due to decreased photosynthetic capacity in the mutant. Analysis of chlorophyll a fluorescence quenching revealed only a slight effect on non-photochemical energy dissipation. Hydrogen peroxide contents were similar in the leaves of the vtc-1 mutant and the wild type. Total leaf peroxidase activity was increased in the mutant and compartment-specific differences in ascorbate peroxidase (APX) activity were observed. In agreement with the measurements of enzyme activity, the expression of cytosolic APX was increased, whereas that for chloroplast APX isoforms was either unchanged or slightly decreased. These data implicate ascorbate concentration in the regulation of the compartmentalization of the antioxidant system in Arabidopsis. PMID:11598218

  14. Increased 8-hydroxy-2?-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus

    PubMed Central

    Lee, H-T; Lin, C-S; Lee, C-S; Tsai, C-Y; Wei, Y-H

    2014-01-01

    We measured plasma levels of the oxidative DNA damage marker 8-hydroxy-2?-deoxyguanosine (8-OHdG) and leucocyte mRNA expression levels of the genes encoding the 8-OHdG repair enzyme human 8-oxoguanine DNA glycosylase 1 (hOGG1), the anti-oxidant enzymes copper/zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase-1 (GPx-1), GPx-4, glutathione reductase (GR) and glutathione synthetase (GS), the mitochondrial biogenesis-related proteins mtDNA-encoded ND 1 polypeptide (ND1), ND6, ATPase 6, mitochondrial transcription factor A (Tfam), nuclear respiratory factor 1(NRF-1), pyruvate dehydrogenase E1 component alpha subunit (PDHA1), pyruvate dehydrogenase kinase isoenzyme 1 (PDK-1) and hypoxia inducible factor-1? (HIF-1?) and the glycolytic enzymes hexokinase-II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase A (LDHa). We analysed their relevance to oxidative damage in 85 systemic lupus erythematosus (SLE) patients, four complicated SLE patients undergoing rituximab treatment and 45 healthy individuals. SLE patients had higher plasma 8-OHdG levels (P?anti-oxidant enzymes (P?enzymes (P?anti-oxidant enzymes (P?enzymes (P?anti-oxidant enzymes, GAPDH, Tfam and PDHA1, experienced better therapeutic outcomes after rituximab therapy. In conclusion, higher oxidative damage with suboptimal increases in DNA repair, anti-oxidant capacity, mitochondrial biogenesis and glucose metabolism may be implicated in SLE deterioration, and this impairment might be improved by targeted biological therapy. PMID:24345202

  15. Increased 8-hydroxy-2'-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus.

    PubMed

    Lee, H-T; Lin, C-S; Lee, C-S; Tsai, C-Y; Wei, Y-H

    2014-04-01

    We measured plasma levels of the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) and leucocyte mRNA expression levels of the genes encoding the 8-OHdG repair enzyme human 8-oxoguanine DNA glycosylase 1 (hOGG1), the anti-oxidant enzymes copper/zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase-1 (GPx-1), GPx-4, glutathione reductase (GR) and glutathione synthetase (GS), the mitochondrial biogenesis-related proteins mtDNA-encoded ND 1 polypeptide (ND1), ND6, ATPase 6, mitochondrial transcription factor A (Tfam), nuclear respiratory factor 1(NRF-1), pyruvate dehydrogenase E1 component alpha subunit (PDHA1), pyruvate dehydrogenase kinase isoenzyme 1 (PDK-1) and hypoxia inducible factor-1? (HIF-1?) and the glycolytic enzymes hexokinase-II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase A (LDHa). We analysed their relevance to oxidative damage in 85 systemic lupus erythematosus (SLE) patients, four complicated SLE patients undergoing rituximab treatment and 45 healthy individuals. SLE patients had higher plasma 8-OHdG levels (P?anti-oxidant enzymes (P?enzymes (P?anti-oxidant enzymes (P?enzymes (P?anti-oxidant enzymes, GAPDH, Tfam and PDHA1, experienced better therapeutic outcomes after rituximab therapy. In conclusion, higher oxidative damage with suboptimal increases in DNA repair, anti-oxidant capacity, mitochondrial biogenesis and glucose metabolism may be implicated in SLE deterioration, and this impairment might be improved by targeted biological therapy. PMID:24345202

  16. Three Antagonistic Cyclic di-GMP-Catabolizing Enzymes Promote Differential Dot/Icm Effector Delivery and Intracellular Survival at the Early Steps of Legionella pneumophila Infection

    PubMed Central

    Allombert, Julie; Lazzaroni, Jean-Claude; Baïlo, Nathalie; Gilbert, Christophe; Charpentier, Xavier; Doublet, Patricia

    2014-01-01

    Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole. PMID:24379287

  17. Hazardous effect of organophosphate compound, dichlorvos in transgenic Drosophila melanogaster (hsp70-lacZ): induction of hsp70, anti-oxidant enzymes and inhibition of acetylcholinesterase.

    PubMed

    Gupta, Subash Chandra; Siddique, Hifzur Rahman; Saxena, Daya Krishna; Chowdhuri, Debapratim Kar

    2005-08-30

    We tested a working hypothesis that stress genes and anti-oxidant enzyme machinery are induced by the organophosphate compound dichlorvos in a non-target organism. Third instar larvae of Drosophila melanogaster transgenic for hsp70 were exposed to 0.1 to 100.0 ppb dichlorvos and 5.0 mM CuSO(4) (an inducer of oxidative stress and stress genes) and hsp70, and activities of acetylcholinesterase (AchE), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPO) product were measured. The study was further extended to examine tissue damage, if any, under such conditions. A concentration- and time-dependent increase in hsp70 and anti-oxidant enzymes was observed in the exposed organism as compared to control. A comparison of stress gene expression with SOD, CAT activities and LPO product under similar experimental conditions revealed that induction of hsp70 precedes the anti-oxidant enzyme activities in the exposed organism. Further, concomitant with a significant inhibition of AChE activity, significant induction of hsp70 was observed following chemical exposure. Mild tissue damage was observed in the larvae exposed to 10.0 ppb dichlorvos for 48 h when hsp70 expression reaches plateau. Dichlorvos at 0.1 ppb dietary concentration did not evoke significant hsp70 expression, anti-oxidant enzymes and LPO and AchE inhibition in the exposed organism, and thereby, was found to be non-hazardous to D. melanogaster. Conversely, 1.0 ppb of the test chemical stimulated a significant induction of hsp70 and anti-oxidant enzymes and significant inhibition of AchE; hence this concentration of test chemical was hazardous to the organism. The present study suggests that (a) both stress genes and anti-oxidant enzymes are stimulated as indices of cellular defense against xenobiotic hazard in D. melanogaster with hsp70 being proposed as first-tier bio-indicator of cellular hazard, (b) 0.1 ppb of the test chemical may be regarded as No Observed Adverse Effect Level (NOAEL), and 1.0 ppb dichlorvos as Low Observed Adverse Effect Level (LOAEL). PMID:16023296

  18. Tuning intracellular homeostasis of human uroporphyrinogen III synthase by enzyme engineering at a single hotspot of congenital erythropoietic porphyria.

    PubMed

    ben Bdira, Fredj; González, Esperanza; Pluta, Paula; Laín, Ana; Sanz-Parra, Arantza; Falcon-Perez, Juan Manuel; Millet, Oscar

    2014-11-01

    Congenital erythropoietic porphyria (CEP) results from a deficiency in uroporphyrinogen III synthase enzyme (UROIIIS) activity that ultimately stems from deleterious mutations in the uroS gene. C73 is a hotspot for these mutations and a C73R substitution, which drastically reduces the enzyme activity and stability, is found in almost one-third of all reported CEP cases. Here, we have studied the structural basis, by which mutations in this hotspot lead to UROIIIS destabilization. First, a strong interdependency is observed between the volume of the side chain at position 73 and the folded protein. Moreover, there is a correlation between the in vitro half-life of the mutated proteins and their expression levels in eukaryotic cell lines. Molecular modelling was used to rationalize the results, showing that the mutation site is coupled to the hinge region separating the two domains. Namely, mutations at position 73 modulate the inter-domain closure and ultimately affect protein stability. By incorporating residues capable of interacting with R73 to stabilize the hinge region, catalytic activity was fully restored and a moderate increase in the kinetic stability of the enzyme was observed. These results provide an unprecedented rationale for a destabilizing missense mutation and pave the way for the effective design of molecular chaperones as a therapy against CEP. PMID:24925316

  19. Nanoalumina induces apoptosis by impairing antioxidant enzyme systems in human hepatocarcinoma cells

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad

    2015-01-01

    Alumina nanoparticles (Al2O3NPs) are gradually used in various areas, including nanomedicine, biosensors, and electronics. The current study aimed to explore the DNA damage and cytotoxicity due to Al2O3NPs on human hepatocarcinoma cells (HepG2). The MTT and neutral red uptake assays showed that Al2O3NPs induce significant cell death in a dose- and time-dependent manner. However, Al2O3NPs induced significant intracellular reactive oxygen species production and elevated lipid peroxidation and superoxide dismutase levels in the HepG2 cells. Al2O3NPs also induced significant decrease in reduced glutathione levels and increase caspase-3 activity in HepG2 cells. DNA fragmentation analysis using the alkaline single-cell gel electrophoresis showed that Al2O3NPs cause genotoxicity in dose- and time-dependent manner. However, they induce reactive oxygen species production and oxidative stress, leading to oxidative DNA damage, a probable mechanism of genotoxicity. This study warrants more careful assessment of Al2O3NPs before their industrial application. PMID:26045665

  20. Amphotericin B as an intracellular antioxidant: protection against 2,2'-azobis(2,4-dimethylvaleronitrile)-induced peroxidation of membrane phospholipids in rat aortic smooth muscle cells.

    PubMed

    Osaka, K; Tyurina, Y Y; Dubey, R K; Tyurin, V A; Ritov, V B; Quinn, P J; Branch, R A; Kagan, V E

    1997-10-15

    The antifungal activity of amphotericin B (AmB) and its side-effects (e.g. nephrotoxicity and hemolytic action) are suggested to be associated with its prooxidant effects in target cells. To test this hypothesis, we have undertaken studies to examine the role of AmB in oxidative stress in cultured rat aortic smooth muscle cells (SMC) incubated in the absence or in the presence of a lipid-soluble azo-initiator of peroxyl radicals, 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN). No changes in the pattern of membrane phospholipids could be detected by two-dimensional high performance thin-layer chromatography (HPTLC) after oxidative stress induced by AMVN in which the cells remained viable, as judged by trypan blue exclusion. To improve the sensitivity of detection of oxidative stress in the cells, cis-parinaric acid (PnA) was incorporated biosynthetically into the membrane phospholipids [using PnA-human serum albumin (hSA) complex]. Incubation of the cells under aerobic conditions in the presence of up to 10 microM AmB showed no significant change in the pattern of PnA-labeled phospholipids, suggesting that AmB was not affecting the oxidative state of the cells. In contrast, treatment with AMVN (0.5 mM, incubation in the dark for 2 hr at 37 degrees--conditions in which the viability of the cells was maintained) caused a significant reduction of all fluorescently labeled phospholipid fractions separated by HPLC. When PnA-labeled cells were subjected to oxidative stress by incubation with 0.5 mM AMVN in the presence of AmB, the loss of fluorescent phospholipids was reduced in a concentration-dependent manner over a concentration range of 0.25 to 10 microM. Thus, AmB does not produce any prooxidant effect but rather acts as an intracellular antioxidant. PMID:9354594

  1. Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning

    PubMed Central

    Agarwal, Avinash; Robo, Roto; Jain, Nirdesh; Gutch, Manish; Consil, Shuchi; Kumar, Sukriti

    2014-01-01

    Introduction: The primary objective of this study was to determine the serum level of antioxidant enzymes and to correlate them with outcome in patients of aluminum phosphide (ALP) poisoning and, secondly, to evaluate the effect of N-acetylcysteine (NAC) given along with supportive treatment of ALP poisoning. Design: We conducted a cohort study in patients of ALP poisoning hospitalized at a tertiary care center of North India. The treatment group and control group were enrolled during the study period of 1 year from May 2011 to April 2012. Interventions: Oxidative stress was evaluated in each subject by estimating the serum levels of the enzymes, viz. catalase, superoxide dismutase (SOD) and glutathione reductase (GR). The treatment group comprised of patients who were given NAC in addition to supportive treatment (magnesium sulfate and vasopressors, if required), while in the control group, only supportive treatment was instituted. The primary endpoint of the study was the survival of the patients. Measurements and Results: The baseline catalase (P = 0.008) and SOD (P < 0.01) levels were higher among survivors than non-survivors. Of the total patients in the study, 31 (67.4%) expired and 15 (32.6%) survived. Among those who expired, the mean duration of survival was 2.92 ± 0.40 days in the test group and 1.82 ± 0.33 days in the control group (P = 0.043). Conclusions: This study suggests that the baseline level of catalase and SOD have reduced in ALP poisoning, but baseline GR level has not suppressed but is rather increasing with due time, and more so in the treatment group. NAC along with supportive treatment may have improved survival in ALP poisoning. PMID:25316977

  2. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Kim, Il-Chan; Yim, Joung Han; Lee, Su-Jae; Lee, Jae-Seong

    2014-10-01

    To examine the effects of gamma radiation on marine organisms, we irradiated several doses of gamma ray to the microzooplankton Brachionus koreanus, and measured in vivo and in vitro endpoints including the survival rate, lifespan, fecundity, population growth, gamma ray-induced oxidative stress, and modulated patterns of enzyme activities and gene expressions after DNA damage. After gamma radiation, no individuals showed any mortality within 96 h even at a high intensity (1200 Gy). However, a reduced fecundity (e.g. cumulated number of offspring) of B. koreanus at over 150 Gy was observed along with a slight decrease in lifespan. At 150 Gy and 200 Gy, the reduced fecundity of the rotifers led to a significant decrease in population growth, although in the second generation the population growth pattern was not affected even at 200 Gy when compared to the control group. At sub-lethal doses, reactive oxygen species (ROS) levels dose-dependently increased with GST enzyme activity. In addition, up-regulations of the antioxidant and chaperoning genes in response to gamma radiation were able to recover cellular damages, and life table parameters were significantly influenced, particularly with regard to fecundity. DNA repair-associated genes showed significantly up-regulated expression patterns in response to sublethal doses (150 and 200 Gy), as shown in the expression of the gamma-irradiated B. koreanus p53 gene, suggesting that these sublethal doses were not significantly fatal to B. koreanus but induced DNA damages leading to a decrease of the population size. PMID:25000471

  3. Juniperus communis Linn oil decreases oxidative stress and increases antioxidant enzymes in the heart of rats administered a diet rich in cholesterol.

    PubMed

    Gumral, Nurhan; Kumbul, Duygu Doguc; Aylak, Firdevs; Saygin, Mustafa; Savik, Emin

    2015-01-01

    It has been asserted that consumption of dietary cholesterol (Chol) raises atherosclerotic cardiovascular diseases and that Chol causes an increase in free radical production. Hypercholesterolemic diet has also been reported to cause changes in the antioxidant system. In our study, different doses of Juniperus communis Linn (JCL) oil, a tree species growing in Mediterranean and Isparta regions and having aromatic characteristics, were administered to rats; and the levels of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and thiobarbituric acid reactive substances assay (TBARS) were examined in the heart tissue of rats. In this study, 35 Wistar Albino male adult rats weighing approximately 250-300 g were used. The rats were divided into five groups of seven each. The control group was administered normal pellet chow, and the Chol group was administered pellet chow including 2% Chol, while 50 JCL, 100 JCL, and 200 JCL groups were administered 50, 100, and 200 mg/kg JCL oil dissolved in 0.5% sodium carboxy methyl cellulose, respectively, in addition to the pellet chow containing 2% Chol, by gavage. After 30 days, the experiment was terminated and the antioxidant enzyme activities were examined in the heart tissue of rats. While consumption of dietary Chol decreases the activities of SOD, GSH-Px, and CAT in heart tissue of rats (not significant), administeration of 200 mg/kg JCL oil in addition to Chol led to a significant increase in the activity of antioxidant enzymes. Administering Chol led to a significant increase in TBARS level. Administering 100 and 200 mg/kg JCL oil together with Chol prevented significantly the increase in lipid peroxides. As a result of the study, JCL oil showed oxidant-antioxidant effect in the heart tissue of rats. PMID:23293127

  4. Characterization of the antioxidant enzyme, thioredoxin peroxidase, from the carcinogenic human liver fluke, Opisthorchis viverrini

    PubMed Central

    Suttiprapa, Sutas; Loukas, Alex; Laha, Thewarach; Wongkham, Sopit; Kaewkes, Sasithorn; Gaze, Soraya; Brindley, Paul J.; Sripa, Banchob

    2013-01-01

    The human liver fluke, Opisthorchis viverrini, induces inflammation of the hepatobiliary system. Despite being constantly exposed to inimical oxygen radicals released from inflammatory cells, the parasite survives for many years. The mechanisms by which it avoids oxidative damage are unknown. In this study, thioredoxin peroxidase (TPx), a member of the peroxiredoxin superfamily, was cloned from an O. viverrini cDNA library. O. viverrini TPx cDNA encoded a polypeptide of 212 amino acid residues, of molecular mass 23.57 kDa. The putative amino acid sequence shared 60-70% identity with TPXs from other helminths and from mammals, and phylogenetic analysis revealed a close relationship between TPxs from O. viverrini and other trematodes. Recombinant O. viverrini TPx was expressed as soluble protein in Escherichia coli. The recombinant protein dimerized, and its antioxidant activity was deduced by observing protection of nicking of supercoiled plasmid DNA by hydroxyl radicals. Antiserum raised against O. viverrini TPx recognized native proteins from egg, metacercaria and adult developmental stages of the liver fluke and excretory-secretory products released by adult O. viverrini. Immunolocalization studies revealed ubiquitous expression of TPx in O. viverrini organs and tissues. TPx was also detected in bile fluid and bile duct epithelial cells surrounding the flukes two weeks after infection of hamsters with O. viverrini. In addition, TPx was observed in the secondary (small) bile ducts where flukes cannot reach due to their large size. These results suggested that O. viverrini TPx plays a significant role in protecting the parasite against damage induced by reactive oxygen species from inflammation. PMID:18538872

  5. Protective action of CLA against oxidative inactivation of paraoxonase 1, an antioxidant enzyme.

    PubMed

    Su, Nguyen-Duy; Liu, Xi-Wen; Kim, Mee Ree; Jeong, Tae-Sook; Sok, Dai-Eun

    2003-06-01

    The effect of CLA on paraoxonase 1 (PON1), one of the antioxidant proteins associated with HDL, was investigated for its protective action against oxidative inactivation as well as its stabilization activity. When cis-9 (c9),trans-11 (t11)-CLA and t10,c12-CLA were examined for their protective activity against ascorbate/Cu(2+)-induced inactivation of PON1 in the presence of Ca2+, two CLA isomers exhibited a remarkable protection (Emax, 71-74%) in a concentration-dependent manner (50% effective concentration, 3-4 microM), characterized by a saturation pattern. Such a protective action was also reproduced with oleic acid, but not linoleic acid. Rather, linoleic acid antagonized the protective action of CLA isomers in a noncompetitive fashion. Additionally, the two CLA isomers also protected PON1 from oxidative inactivation by H2O2 or cumene hydroperoxide. The concentration-dependent protective action of CLA against various oxidative inactivation systems suggests that the protective action of CLA isomers may be mediated through their selective binding to a specific binding site in a PON1 molecule. Separately, the inactivation of PON1 by p-hydroxymercuribenzoate (PHMB), a modifier of the cysteine residue, was also prevented by CLA isomers, suggesting the possible existence of the cysteine residue in the binding site of CLA. The c9,t11-CLA isomer seems to be somewhat more effective than t10,c12-CLA in protecting against the inactivation of PON1 by either peroxides or PHMB, in contrast to the similar efficacy of these two CLA isomers in preventing ascorbate/Cu(2+)-induced inactivation of PON1. Separately, CLA isomers successfully stabilized PON1, but not linoleic acid. These data suggest that the two CLA isomers may play a beneficial role in protecting PON1 from oxidative inactivation as well as in its stabilization. PMID:12934671

  6. Effect of nonylphenol on male reproduction: Analysis of rat epididymal biochemical markers and antioxidant defense enzymes

    SciTech Connect

    Aly, Hamdy A.A., E-mail: hamdyaali@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah (Saudi Arabia); Domènech, Òscar [Department of Physical Chemistry, Faculty of Pharmacy, Barcelona University (Spain)] [Department of Physical Chemistry, Faculty of Pharmacy, Barcelona University (Spain); Banjar, Zainy M. [Department of Medical Biology, School of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia)] [Department of Medical Biology, School of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia)

    2012-06-01

    The mechanism by which nonylphenol (NP) interferes with male reproduction is not fully elucidated. Therefore, the present study was conducted to evaluate the effect of NP on male reproductive organ's weight, sperm characteristics, and to elucidate the nature and mechanism of action of NP on the epididymis. Adult male Wistar rats were gavaged with NP, dissolved in corn oil, at 0, 100, 200 or 300 mg/kg/day for 30 consecutive days. Control rats were gavaged with vehicle (corn oil) alone. Body weight did not show any significant change while, absolute testes and epididymides weights were significantly decreased. Sperm count in cauda and caput/corpus epididymides, and sperm motility was significantly decreased. Daily sperm production was significantly decreased in a dose-related manner. Sperm transit time in cauda epididymis was significantly decreased by 300 mg/kg, while in the caput/corpus epididymis it was significantly decreased by 200 and 300 mg/kg of NP. Plasma LDH was significantly increased while; plasma testosterone was significantly decreased in a dose-related pattern. In the epididymal sperm, NP decreased acrosome integrity, ??m and 5?-nucleotidase activity. Hydrogen peroxide (H{sub 2}O{sub 2}) production and LPO were significantly increased in a dose-related pattern. The activities of SOD, CAT and GPx were significantly decreased in the epididymal sperm. In conclusion, this study revealed that NP treatment impairs spermatogenesis and has a cytotoxic effect on epididymal sperm. It disrupts the prooxidant and antioxidant balance. This leads oxidative stress in epididymal sperms of rat. Moreover, the reduction in sperm transit time may affect sperm quality and fertility potential. -- Highlights: ? The nature and mechanism of action of NP on rat epididymis were elucidated. ? NP decreased sperm count, motility, daily sperm production and sperm transit time. ? NP decreased sperm acrosome integrity, ??m and 5?-nucleotidase activity. ? Plasma LDH was significantly increased and testosterone was significantly decreased. ? NP induced oxidative stress in epididymal sperm.

  7. [Effects of cadmium stress on active oxygen generation, lipid peroxidation and antioxidant enzyme activities in radish seedlings].

    PubMed

    Tang, Chun-Fang; Liu, Yun-Guo; Zeng, Guang-Ming; Li, Cheng-Feng; Xu, Wei-Hua

    2004-08-01

    When seedlings of radish were treated with Cd2+ from 125 to 500 micromol/L, for a period of 12 to 96 h in hydroponic system, increase in ratio of SOD to CAT and levels of O(-.)(2), H(2)O(2), MDA indicate that Cd2+ induces oxidative stress in radish plants. Antioxidant enzyme activities responded differently to the level and time of Cd2+ treatment. Under 125 micromol/L Cd2+ treatment a gradual increase in SOD activity was observed; at 250, 500 micromol/L Cd2+ treatment SOD activity increased first, then declined considerably to even lower than that of the control during later Cd2+ treatment. A gradual decrease in roots and a marked increase in leaves in CAT activity were detected. GR activity in both leaves and roots were enhanced significantly with the increase in content of Cd2+ and time of treatment. The increase in GR activity suggests that AsA-GsH cycle may be activated to scavenge the AOS or the synthesis of PC may be stimulated to chelate cadmium. PMID:15627698

  8. Response of antioxidative enzymes and apoplastic bypass transport in Thlaspi caerulescens and Raphanus sativus to cadmium stress.

    PubMed

    Benzarti, Saoussen; Hamdi, Helmi; Mohri, Shino; Ono, Yoshiro

    2010-01-01

    A hydroponics experiment using hyperaccumulator Thlaspi caerulescens (alpine pennycress) and non-specific accumulator Raphanus sativus (common radish) was conducted to investigate the short-term effect of increasing Cd concentrations (0, 25, 50, 75, 100 microM) on metal uptake, chlorophyll content, antioxidative enzymes, and apoplastic bypass flow. As expected, T. caerulescens generally showed better resistance to metal stress, which was reflected by higher Cd accumulation within plant tissues with no signs of chlorosis, or wilt. Glutathione reductase (GR) and superoxide dismutase (SOD) activities in fresh leaves were monitored as the plant metal-detoxifying response. In general, both plant species exhibited an increase trend of GR activity before declining at 100 microM likely due to excessive levels of phytotoxic Cd. SOD activity exhibited almost a similar variation pattern to GR and decreased also at 100 microM Cd. For both plant species, fluorescent PTS uptake (8-hydroxy-1,3,6-pyrenetrisulphonic acid) increased significantly with metal level in exposure solutions indicating that Cd has a comparable effect to drought or salinity in terms of the gain of relative importance in apoplastic bypass transport under such stress conditions. PMID:21166344

  9. Effects of Echis pyramidum snake venom on hepatic and renal antioxidant enzymes and lipid peroxidation in rats.

    PubMed

    Al Asmari, Abdulrahman K; Khan, Haseeb A; Manthiri, Rajamohammed A; Al Yahya, Khalid M; Al Otaibi, Kitab E

    2014-09-01

    The effects of Echis pyramidum venom (EPV) (0.25, 0.50, and 1.00 mg/kg) on activities of superoxide dismutase (SOD) and catalase (CAT) and levels of thiobarbituric acid reactive substances (TBARS) and total thiols (T-SH) in liver and kidneys of rats were investigated. EPV significantly and dose dependently decreased the activities of SOD and CAT in livers. Although the kidney SOD and CAT activities were not affected by low and medium doses of EPV, the high dose significantly reduced the activities of these enzymes. Liver and kidney TBARS levels were not affected by the low and medium doses of EPV, whereas the high dose significantly increased the TBARS after 6 h postdosing. There was a significant depletion of T-SH in liver and kidneys of rats exposed to a high dose of EPV. The acute phase oxidative stress due to an EPV injection points toward the importance of an early antioxidant therapy for the management of snake bites. PMID:24888330

  10. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    PubMed Central

    Ceretta, Luciane B.; Réus, Gislaine Z.; Abelaira, Helena M.; Ribeiro, Karine F.; Zappellini, Giovanni; Felisbino, Francine F.; Steckert, Amanda V.; Dal-Pizzol, Felipe; Quevedo, João

    2012-01-01

    Diabetes Mellitus (DM) is associated with pathological changes in the central nervous system (SNC) as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150?mg/kg), and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS) production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals' recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes. PMID:22645603

  11. Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress.

    PubMed

    Karata?, Ilhami; Öztürk, Lokman; Demir, Yavuz; Unlükara, Ali; Kurunç, Ahmet; Düzdemir, Oral

    2014-09-01

    The effects of long-term drought stress on chlorophyll, proline, protein and hydrogen peroxide (H2O2) contents, malondialdehyde (MDA) in terms of lipid peroxidation and on the changes in the activities of antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and peroxidase (POX; EC 1.11.1.7) in the leaves of pea (Pisum sativum L.) were studied in field conditions. Chlorophyll and protein contents in leaves decreased significantly with increased drought stress. The proline content increased markedly under water deficit. MDA amounts were elevated as a result of water shortage, whereas H(2)O(2) content changed slightly in pea leaves exposed to drought stress. Drought stress markedly enhanced the activities of SOD, CAT and POX but slightly changed the activity of APX. We conclude that in field conditions, long-term water shortage increased the susceptibility to drought in peas. PMID:23047611

  12. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    PubMed

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas. PMID:21608265

  13. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes.

    PubMed

    Holá, Dana; Kocová, Marie; Rothová, Olga; Wilhelmová, Nad'a; Benesová, Monika

    2007-07-01

    The differences between two maize (Zea mays L.) inbred lines and their F1 hybrids in their response to chilling periods of various duration (1, 2, 3 or 4 weeks) and subsequent return to optimum temperatures were analysed by the measurement of the photosystem (PS) 1 and 2 activity, the photosynthetic pigments' content and the activity of antioxidant enzymes. The PS2 activity and the chlorophyll content decreased in plants subjected to 3 or 4 weeks of chilling, but not in those subjected to 1 or 2 weeks of chilling. This decrease was more pronounced in inbreds compared to their hybrids. The activity of superoxide dismutase did not much change with the increasing length of chilling period in the inbreds but decreased in the hybrids, the glutathione reductase activity increased in both types of genotypes but more in the inbred lines, while for ascorbate peroxidase and catalase the changes in parents-hybrids relationship did not show any specific trend. The PS1 activity and the carotenoids' content was not much affected. PMID:16884820

  14. Comparative study of alloxan effects in copper-loaded and iron-loaded rats: lipid peroxidation, protein oxidation, proteasome and antioxidant enzyme activities

    Microsoft Academic Search

    Albena Alexandrova; Almira Georgieva; Lubomir Petrov; Elina Tsvetanova; Margarita Kirkova

    2006-01-01

    The in-vivo effects of alloxan on protein oxidation and lipid peroxidation, as well as on proteasome and antioxidant enzyme activities\\u000a in liver and kidney of copper-loaded and iron-loaded rats, were studied. In control animals, a single alloxan dose (120 mg\\/kg,\\u000a i.p.) increased blood-glucose concentration at the 24th hr and 48th hr and, especially, on the 5th day. For these periods

  15. Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial ( Peganum harmala ) and an annual ( Halogeton glomeratus ) grass

    Microsoft Academic Search

    Yan Lu; Xinrong Li; Mingzhu He; Xin Zhao; Yubing Liu; Yan Cui; Yanxia Pan; Huijuan Tan

    2010-01-01

    The present study showed the toxicity caused by heavy metal and its detoxification responses in two desert plants: perennial\\u000a Peganum harmala and annual Halogeton glomeratus. In pot experiments, 1-month-old seedlings were grown under control and three levels of combined heavy metal stress. Seedling\\u000a growth as well as heavy metal accumulation, antioxidative enzymes [superoxide dismutase (SOD), catalase (CAT) and ascorbate\\u000a peroxidase

  16. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings ( Kandelia candel and Bruguiera gymnorrhiza)

    Microsoft Academic Search

    Feng-Qin Zhang; You-Shao Wang; Zhi-Ping Lou; Jun-De Dong

    2007-01-01

    The effects of multiple heavy metal stress on the activity of antioxidative enzymes and lipid peroxidation were studied in leaves and roots of two mangrove plants, Kandelia candel and Bruguiera gymnorrhiza, grown under control (10‰ NaCl nutrient solution) or five levels of multiple heavy metal stress (10‰ NaCl nutrient solution containing different concentration of Pb2+, Cd2+, and Hg2+). Leaves and

  17. The effects of organophosphate insecticide methidathion on lipid peroxidation and anti-oxidant enzymes in rat erythrocytes: role of vitamins E and C

    Microsoft Academic Search

    I Altuntas; N Delibas; R Sutcu

    2002-01-01

    The effects of organophosphate insecticide methidathion (MD) on lipid peroxidation and anti-oxidant enzymes and the ameliorating effects of a combination of vitamins E and C against MD toxicity were evaluated in rat erythrocytes. Experimental groups were: control group, MD-treated group (MD), and MD+vitamin E+vitamin Ctreated group (MD+Vit). MD and MD+Vit groups were treated orally with a single dose of 8

  18. Modulation of antioxidant enzyme activities, platelet aggregation and serum prostaglandins in rats fed spray-dried milk containing n -3 fatty acid

    Microsoft Academic Search

    T. R. Ramaprasad; V. Baskaran; T. P. Krishnakantha; B. R. Lokesh

    2005-01-01

    Spray-dried milk enriched with n-3 fatty acids from linseed oil or fish oil were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant\\u000a enzyme activities, serum prostaglandins and platelet aggregation. Significant level of ? linolenic acid, eicosapentaenoic\\u000a acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3

  19. Alcohol-induced deterioration in primary antioxidant and glutathione family enzymes reversed by exercise training in the liver of old rats.

    PubMed

    Mallikarjuna, K; Shanmugam, K R; Nishanth, K; Wu, Ming-Chieh; Hou, Chien-Wen; Kuo, Chia-Hua; Reddy, K Sathyavelu

    2010-09-01

    Chronic alcohol consumption causes severe hepatic oxidative damage, particularly to old subjects by decreasing various antioxidant enzymes. In this study, we test the hypothesis that exercise training can protect the aging liver against alcohol-induced oxidative damage. Two different age groups of Wistar albino rats (3 months young, n=24; 18 months old, n=24) were evenly divided into four groups: control (Con), exercise trained (Tr, 23 m/min 30 min/day, 5 days/week for 2 months), ethanol drinking/treated (Et, 2.0 g/kg b.w. orally), and exercise training plus ethanol drinking/treated (Tr+Et). We found significantly (P<.001) lowered hepatic antioxidant enzymes including superoxide dismutase, catalase, selenium (Se)-dependent glutathione peroxidase (Se-GSH-Px), Se-non-dependent glutathione peroxidase (non-Se-GSH-Px), glutathione reductase, and glutathione S-transferase activities in aged rats compared with young. Age-related decrease in antioxidant enzyme status was further exacerbated with ethanol drinking, which indicates liver in aged rats is more susceptible to oxidative damage because of decreased free radical scavenging system in aged/old ethanol-drinking rats. However, the decrease in liver antioxidant enzymes status with ethanol consumption was ameliorated by 2 months exercise training in old and young rats. These results demonstrate that age-associated decrease in hepatic free radical scavenging system exacerbated by ethanol drinking. For the first time, we found that this deterioration was significantly reversed by exercise training in aging liver, thus protects against alcohol-induced oxidative damage. PMID:20705416

  20. Effects of NaCl on growth, ion accumulation, protein, proline contents and antioxidant enzymes activity in callus cultures of Jatropha curcas

    Microsoft Academic Search

    Nitish Kumar; Sudheer D. V. N. Pamidimarri; Meenakshi Kaur; Girish Boricha; Muppala P. Reddy

    2008-01-01

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. The effect of NaCl stress\\u000a on growth, ion accumulation, contents of protein, proline, and antioxidant enzymes activity in callus cultures of J. curcas was investigated. Exposure of callus to NaCl decreased growth in a concentration dependent manner. NaCl treated callus accumulated\\u000a Na

  1. Effects of root exudates and aqueous root extracts of cucumber ( Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber

    Microsoft Academic Search

    Jing Quan Yu; Su Feng Ye; Ming Fang Zhang; Wen Hai Hu

    2003-01-01

    The effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals on root antioxidant enzymes and leaf photosynthesis, transpiration and stomatal conductance were investigated in cucumber. Cucumber seedlings were incubated in solutions containing root exudates at 50 or 100 mg\\/l, root extracts at 1:100, 1:50, 1:25 and 1:10 (root dry weight:distilled water), and derivatives of benzoic

  2. Effect of Antioxidant-Rich Foods on Plasma Ascorbic Acid, Cardiac Enzyme, and Lipid Peroxide Levels in Patients Hospitalized with Acute Myocardial Infarction

    Microsoft Academic Search

    RAM B SINGH; MOHAMMAD A NIAZ; POONAM AGARWAL; RAHEENA BEGOM; SHANTI S RASTOGI

    1995-01-01

    Objective To determine whether a fat- and energy-reduced diet rich in antioxidant vitamins C and E, beta carotene, and soluble dietary fiber reduces free-radical stress and cardiac enzyme level and increases plasma ascorbic acid level 1 week after acute myocardial infarction.Design Randomized, single blind, controlled study.Setting Primary- and secondary-care research center for patients with myocardial infarction.Subjects All subjects with suspected

  3. Wakame and Nori in Restructured Meats Included in Cholesterol-enriched Diets Affect the Antioxidant Enzyme Gene Expressions and Activities in Wistar Rats

    Microsoft Academic Search

    Adriana Schultz Moreira; Laura González-Torres; Raul Olivero-David; Sara Bastida; Juana Benedi; Francisco J. Sánchez-Muniz

    2010-01-01

    The effects of diets including restructured meats (RM) containing Wakame or Nori on total liver glutathione status, and several\\u000a antioxidant enzyme gene expressions and activities were tested. Six groups of ten male growing Wistar rats each were fed a\\u000a mix of 85% AIN-93 M diet and 15% freeze-dried RM for 35 days. The control group (C) consumed control RM, the Wakame (W)

  4. Effects of diet enriched with restructured meats, containing Himanthalia elongata, on hypercholesterolaemic induction, CYP7A1 expression and antioxidant enzyme activity and expression in growing rats

    Microsoft Academic Search

    Adriana R. Schultz Moreira; Juana Benedí; Laura González-Torres; Raul Olivero-David; Sara Bastida; Maria Isabel Sánchez-Reus; María José González-Muñoz; Francisco J. Sánchez-Muniz

    2011-01-01

    Meat and pork consumptions are very high in Spain. Seaweeds are rich in fibre, minerals, and bioactive substances. Due to the growing demand for healthier meats, this work studied the effect of diets containing restructured pork (RP) enriched with Himanthalia elongata (Sea Spaghetti) on: (1) cholesterolaemia; (2) liver cytochrome P450 7A1 (CYP7A1) expression; (3) liver antioxidant enzyme activities and gene

  5. Chemical composition, angiotensin I-converting enzyme (ACE) inhibitory, antioxidant and antimicrobial activities of the essential oil from Periploca laevigata root barks

    Microsoft Academic Search

    Mohamed Hajji; Ons Masmoudi; Nabil Souissi; Yosra Triki; Sadok Kammoun; Moncef Nasri

    2010-01-01

    The present study describes the chemical composition, and antimicrobial, antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities of essential oil from Periploca laevigata root barks (PLRB), an aromatic plant widely distributed in Tunisia and used as a traditional medicinal plant. Gas chromatography\\/mass spectrometry was used to determine the composition of the PLRB oil. Forty-three components were identified in the essential

  6. Analysis of gene expression changes, caused by exposure to nitrite, in metabolic and antioxidant enzymes in the red claw crayfish, Cherax quadricarinatus.

    PubMed

    Jiang, Qichen; Zhang, Wenyi; Tan, Hongyue; Pan, Dongmei; Yang, Yuanhao; Ren, Qian; Yang, Jiaxin

    2014-06-01

    We evaluated the effect of acute exposure to nitrite on expression of antioxidant and metabolic enzyme genes in gill tissue of advanced juvenile Cherax quadricarinatus. A 48h nitrite exposure was conducted, using four test concentrations (NO2-N=0.5, 1, 1.5 and 2mg L(-1)) plus a control group. The relative mRNA expression of mitochondrial manganese superoxide dismutase (mMnSOD), cytosolic MnSOD (cMnSOD), extracellular copper/zinc SOD (exCu/ZnSOD), catalase (CAT), glutathione S-transferase (GST), arginine kinase (AK), glutamate dehydrogenase (GDH), mitochondrial malate dehydrogenase (mMDH), Na(+)/K(+)-ATPase ?-subunit and phosphoenolpyruvate carboxykinase (PEPCK) in gill tissue was measured. Significantly increased mRNA expression was observed for all the antioxidant enzymes after 12 and 24h. After 48h, they all decreased at high nitrite concentrations. The gene expression levels of AK, GDH, mMDH and Na(+)/K(+)-ATPase ?-subunit showed similar trends as the antioxidant enzymes. Significant depression of gene expression levels of PEPCK occurred throughout the experimental time at high nitrite concentrations. The results indicated that nitrite could induce oxidative and metabolic stress in C. quadricarinatus, in a time dependent manner, which suggests they could be helpful in predicting sublethal nitrite toxicity and useful in environmental monitoring studies. PMID:24680578

  7. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: effects on hemolymph and biochemical parameters.

    PubMed

    An, Myung In; Choi, Cheol Young

    2010-01-01

    Changes in water temperature and salinity are responsible for a variety of physiological stress responses in aquatic organisms. Stress induced by these factors was recently associated with enhanced reactive oxygen species (ROS) generation, which caused oxidative damage. In the present study, we investigated the time-related effects of changes in water temperature and salinity on mRNA expression and the activities of antioxidant enzymes (SOD and CAT) and lipid peroxidation (LPO) in the gills and digestive glands of the ark shell, Scapharca broughtonii. To investigate physiological responses, hydrogen peroxide (H(2)O(2)), lysozyme activity, aspartate aminotransferase (AspAT), and alanine aminotransferase (AlaAT) were measured in the hemolymph. Water temperature and salinity changes significantly increased antioxidant enzyme mRNA expression and activity in the digestive glands and gills in a time-dependent manner. H(2)O(2) concentrations increased significantly in the high-temperature and hyposalinity treatments. LPO, AspAT and AlaAT levels also increased significantly in a time-dependent manner, while lysozyme activity decreased. These results suggest that antioxidant enzymes play important roles in reducing oxidative stress in ark shells exposed to changes in water temperature and salinity. PMID:19788926

  8. Aging-Dependent Regulation of Antioxidant Enzymes and Redox Status in Chronically Loaded Rat Dorsiflexor Muscles

    PubMed Central

    Ryan, Michael J.; Dudash, Holly J.; Docherty, Megan; Geronilla, Kenneth B.; Baker, Brent A.; Haff, G. Gregory; Cutlip, Robert G.; Alway, Stephen E.

    2009-01-01

    This study compares changes in the pro-oxidant production and buffering capacity in young and aged skeletal muscle after exposure to chronic repetitive loading (RL). The dorsiflexors from one limb of young and aged rats were loaded 3 times/week for 4.5 weeks using 80 maximal stretch-shortening contractions per session. RL increased H2O2 in tibialis anterior muscles of young and aged rats and decreased the ratio of reduced/oxidized glutathione and lipid peroxidation in aged but not young adult animals. Glutathione peroxidase (GPx) activity decreased whereas catalase activity increased with RL in muscles from young and aged rats. RL increased CuZn superoxide disumutase (SOD) and Mn SOD protein concentration and CuZn SOD activity in muscles from young but not aged animals. There were no changes in protein content for GPx-1 and catalase or messenger RNA for any of the enzymes studied. These data show that aging reduces the adaptive capacity of muscles to buffer increased pro-oxidants imposed by chronic RL. PMID:18948551

  9. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury.

    PubMed

    Yun, Xiang; Maximov, Victor D; Yu, Jin; Zhu, Hong; Vertegel, Alexey A; Kindy, Mark S

    2013-04-01

    Stroke is one of the major causes of death and disability in the United States. After cerebral ischemia and reperfusion injury, the generation of reactive oxygen species (ROS) and reactive nitrogen species may contribute to the disease process through alterations in the structure of DNA, RNA, proteins, and lipids. We generated various nanoparticles (liposomes, polybutylcyanoacrylate (PBCA), or poly(lactide-co-glycolide) (PLGA)) that contained active superoxide dismutase (SOD) enzyme (4,000 to 20,000 U/kg) in the mouse model of cerebral ischemia and reperfusion injury to determine the impact of these molecules. In addition, the nanoparticles were untagged or tagged with nonselective antibodies or antibodies directed against the N-methyl-D-aspartate (NMDA) receptor 1. The nanoparticles containing SOD protected primary neurons in vitro from oxygen-glucose deprivation (OGD) and limited the extent of apoptosis. The nanoparticles showed protection against ischemia and reperfusion injury when applied after injury with a 50% to 60% reduction in infarct volume, reduced inflammatory markers, and improved behavior in vivo. The targeted nanoparticles not only showed enhanced protection but also showed localization to the CA regions of the hippocampus. Nanoparticles alone were not effective in reducing infarct volume. These studies show that targeted nanoparticles containing protective factors may be viable candidates for the treatment of stroke. PMID:23385198

  10. Enzyme-Controlled Intracellular Self-Assembly of 18F Nanoparticles for Enhanced MicroPET Imaging of Tumor

    PubMed Central

    Liu, Yaling; Miao, Qingqing; Zou, Pei; Liu, Longfei; Wang, Xiaojing; An, Linna; Zhang, Xiaoliu; Qian, Xiangping; Luo, Shineng; Liang, Gaolin

    2015-01-01

    Herein, we report the development of a new “smart” radioactive probe (i.e., 1) which can undergo furin-controlled condensation and self-assembly of radioactive nanoparticles (i.e., 1-NPs) in tumor cells and its application for enhanced microPET imaging of tumors in nude mice co-injected with its cold analog (i.e., 1-Cold). Furin-controlled condensation of 1-Cold and self-assembly of its nanoparticles (i.e., 1-Cold-NPs) in vitro were validated and characterized with HPLC, mass spectra, SEM, and TEM analyses. Cell uptake studies showed that both 1 and 1-Cold have good cell permeability. TEM images of 1-Cold-treated MDA-MB-468 cells directly uncovered that the intracellular 1-Cold-NPs were at/near the location of furin (i.e., Golgi bodies). MTT results indicated that 50 µM 1-Cold did not impose cytotoxicity to MDA-MB-468 cells up to 12 hours. MicroPET imaging of MDA-MB-468 tumor-bearing mice indicated that mice co-injected with 1 and 1-Cold showed higher uptake and longer attenuation of the radioactivity in tumors than those mice only injected with same dosage of 1. Tumor uptake ratios of 1 between these two groups of mice reached the maximum of 8.2 folds at 240 min post injection. Biodistribution study indicated that the uptake ratios of 1 in kidneys between these two groups continuously increased and reached 81.9 folds at 240 min post injection, suggesting the formation of radioactive NPs (i.e., 1-NPs) in MDA-MB-468 tumors of mice co-injected with 1 and 1-Cold. And the nanoparticles were slowly digested and secreted from the tumors, accumulating in the kidneys. Our ''smart'' probe (i.e., 1), together with the strategy of co-injection, might help researchers trace the biomarkers of interest within a longer time window. PMID:26199645

  11. A Comparative Study for the Evaluation of Two Doses of Ellagic Acid on Hepatic Drug Metabolizing and Antioxidant Enzymes in the Rat

    PubMed Central

    Celik, Gurbet; Semiz, Asl?; Karakurt, Serdar; Arslan, Sevki; Adali, Orhan; Sen, Alaattin

    2013-01-01

    The present study was designed to evaluate different doses of ellagic acid (EA) in vivo in rats for its potential to modulate hepatic phases I, II, and antioxidant enzymes. EA (10 or 30?mg/kg/day, intragastrically) was administered for 14 consecutive days, and activity, protein, and mRNA levels were determined. Although the cytochrome P450 (CYP) 2B and CYP2E enzyme activities were decreased significantly, the activities of all other enzymes were unchanged with the 10?mg/kg/day EA. In addition, western-blot and qRT-PCR results clearly corroborated the above enzyme expressions. On the other hand, while the NAD(P)H:quinone oxidoreductase 1 (NQO1), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities were increased significantly, CYP1A, 2B, 2C, 2E, and 19 enzyme activities were reduced significantly with 30?mg/kg/day EA. In addition, CYP2B, 2C6, 2E1, and 19 protein and mRNA levels were substantially decreased by the 30?mg/kg/day dose of EA, but the CYP1A protein, and mRNA levels were not changed. CYP3A enzyme activity, protein and mRNA levels were not altered by neither 10 nor 30?mg/kg/day ellagic acid. These results indicate that EA exerts a dose-dependent impact on the metabolism of chemical carcinogens and drugs by affecting the enzymes involved in xenobiotics activation/detoxification and antioxidant pathways. PMID:23971029

  12. Hypothyroidism attenuates protein tyrosine nitration, oxidative stress and renal damage induced by ischemia and reperfusion: effect unrelated to antioxidant enzymes activities

    PubMed Central

    Tenorio-Velázquez, Verónica M; Barrera, Diana; Franco, Martha; Tapia, Edilia; Hernández-Pando, Rogelio; Medina-Campos, Omar Noel; Pedraza-Chaverri, José

    2005-01-01

    Background It has been established that hypothyroidism protects rats against renal ischemia and reperfusion (IR) oxidative damage. However, it is not clear if hypothyroidism is able to prevent protein tyrosine nitration, an index of nitrosative stress, induced by IR or if antioxidant enzymes have involved in this protective effect. In this work it was explored if hypothyroidism is able to prevent the increase in nitrosative and oxidative stress induced by IR. In addition the activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was studied. Control and thyroidectomized (HTX) rats were studied 24 h of reperfusion after 60 min ischemia. Methods Male Wistar rats weighing 380 ± 22 g were subjected to surgical thyroidectomy. Rats were studied 15 days after surgery. Euthyroid sham-operated rats were used as controls (CT). Both groups of rats underwent a right kidney nephrectomy and suffered a 60 min left renal ischemia with 24 h of reperfusion. Rats were divided in four groups: CT, HTX, IR and HTX+IR. Rats were sacrificed and samples of plasma and kidney were obtained. Blood urea nitrogen (BUN) and creatinine were measured in blood plasma. Kidney damage was evaluated by histological analysis. Oxidative stress was measured by immunohistochemical localization of protein carbonyls and 4-hydroxy-2-nonenal modified proteins. The protein carbonyl content was measured using antibodies against dinitrophenol (DNP)-modified proteins. Nitrosative stress was measured by immunohistochemical analysis of 3-nitrotyrosine modified proteins. The activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was measured by spectrophotometric methods. Multiple comparisons were performed with ANOVA followed by Bonferroni t test. Results The histological damage and the rise in plasma creatinine and BUN induced by IR were significantly lower in HTX+IR group. The increase in protein carbonyls and in 3-nitrotyrosine and 4-hydroxy-2-nonenal modified proteins was prevented in HTX+IR group. IR-induced decrease in renal antioxidant enzymes was essentially not prevented by HTX in HTX+IR group. Conclusion Hypothyroidism was able to prevent not only oxidative but also nitrosative stress induced by IR. In addition, the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase seem not to play a protective role in this experimental model. PMID:16274486

  13. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes.

    PubMed

    Nounjan, Noppawan; Nghia, Phan Tuan; Theerakulpisut, Piyada

    2012-04-15

    Proline (Pro) and Trehalose (Tre) function as compatible solutes and are upregulated in plants under abiotic stress. They play an osmoprotective role in physiological responses, enabling the plants to better tolerate the adverse effects of abiotic stress. We investigated the effect of exogenous Pro and Tre (10 mM) in seedlings of Thai aromatic rice (cv. KDML105; salt-sensitive) during salt stress and subsequent recovery. Salt stress (S, NaCl) resulted in growth reduction, increase in the Na(+)/K(+) ratio, increase in Pro level and up-regulation of Pro synthesis genes (pyrroline-5-carboxylatesynthetase, P5CS; pyrroline-5-carboxylate reductase, P5CR) as well as accumulation of hydrogen peroxide (H(2)O(2)), increased activity of antioxidative enzymes (superoxide dismutase, SOD; peroxidase, POX; ascorbate peroxidase, APX; catalase, CAT) and transcript up-regulation of genes encoding antioxidant enzymes (Cu/ZnSOD, MnSOD, CytAPX, CatC). Under salt stress, exogenous Pro (PS; Pro+NaCl) reduced the Na(+)/K(+) ratio, further increased endogenous Pro and transcript levels of P5CS and P5CR, but decreased the activity of the four antioxidant enzymes. The transcription of genes encoding several antioxidant enzymes was upregulated. Exogenous Tre (TS; Tre+NaCl) also reduced the Na(+)/K(+) ratio and strongly decreased endogenous Pro. Transcription of P5CS and P5CR was upregulated, the activities of SOD and POX decreased, the activity of APX increased and the transcription of all antioxidant enzyme genes upregulated. Although exogenous osmoprotectants did not alleviate growth inhibition during salt stress, they exhibited a pronounced beneficial effect during recovery period showing higher percentage of growth recovery in PS (162.38%) and TS (98.43%) compared with S (3.68%). During recovery, plants treated with PS showed a much greater reduction in endogenous Pro than NaCl-treated (S) or Tre-treated plants (TS). Increase in CAT activity was most related to significant reduction in H(2)O(2), particularly in the case of PS-treated plants. Advantageous effects of Pro were also associated with increase in APX activity during recovery. PMID:22317787

  14. Epigallocatechin-3-gallate modulates anti-oxidant defense enzyme expression in murine submandibular and pancreatic exocrine gland cells and human HSG cells.

    PubMed

    Dickinson, Douglas; DeRossi, Scott; Yu, Hongfang; Thomas, Cristina; Kragor, Chris; Paquin, Becky; Hahn, Emily; Ohno, Seiji; Yamamoto, Tetsuya; Hsu, Stephen

    2014-05-01

    Sjogren's syndrome (SS) and type-1 diabetes are prevalent autoimmune diseases in the USA. We reported previously that epigallocatechin-3-gallate (EGCG) prevented and delayed the onset of autoimmune disease in non-obese diabetic (NOD) mice, a model for both SS and type-1 diabetes. EGCG also normalized the levels of proteins related to DNA repair and anti-oxidant activity in NOD.B10.Sn-H2 mice, a model for primary SS, prior to disease onset. The current study examined the effect of EGCG on the expression of anti-oxidant enzymes in the submandibular salivary gland and the pancreas of NOD mice and cultured human salivary gland acinar cells. NOD mice consuming 0.2% EGCG daily dissolved in water showed higher protein levels of peroxiredoxin 6 (PRDX6), a major anti-oxidant defense protein, and catalase, while the untreated NOD mice exhibited significantly lowered levels of PRDX6. Similarly, pancreas samples from water-fed NOD mice were depleted in PRDX6 and superoxide dismutase, while EGCG-fed mice showed high levels of these anti-oxidant enzymes. In cultured HSG cells EGCG increased PRDX6 levels significantly, and this was inhibited by p38 and JNK inhibitors, suggesting that the EGCG-mediated increase in protective anti-oxidant capacity is regulated in part through mitogen-activated protein kinase pathway signaling. This mechanism may explain the higher levels of PRDX6 found in EGCG-fed NOD mice. These preclinical observations warrant future preclinical and clinical studies to determine whether EGCG or green tea polyphenols could be used in novel preventive and therapeutic approaches against autoimmune diseases and salivary dysfunction involving oxidative stress. PMID:24444391

  15. Daily variations of antioxidant enzyme and luciferase activities in the luminescent click-beetle Pyrearinus termitilluminans: cooperation against oxygen toxicity.

    PubMed

    Barros, M P; Bechara, E J

    2001-03-15

    Several lines of investigation have suggested an interplay between bioluminescence (BL) and oxyradical metabolism, mainly in bacteria and beetles. Although not yet confirmed, luminescent beetles seem to be challenged daily by oxidative conditions imposed by higher oxygen absorption necessary to enhance light emission for courtship (adult lampyrids and elaterids) and prey attraction (e.g. Pyrearinus termitilluminans larvae). This work reports the activities of luciferase, superoxide dismutase (SOD), catalase and dehydroascorbate reductase (DHAR) and total glutathione content at different times of the day in the bright prothorax and dim abdomen of larval Pyrearinus termitilluminans (Coleoptera: Elateridae), investigating a possible adjuvant role for luciferase in oxygen detoxification. Luciferase activity in the prothorax was shown to peak at 7 p.m., which is the time when P. termitilluminans larvae light up for prey attraction. In their habitat, P. termitilluminans larvae emit light until 8.30 p.m. However, at 8 p.m., prothorax luciferase activity achieved basal levels and total glutathione content declined to the daily lowest value, possibly resulting from hyperoxidative conditions during this time. Significant increases in the activities of total SOD (28%) and catalase (37%) were observed in the prothorax at 9 p.m., which should minimize the extent of damage from this potentially hazardous period. Prothorax total SOD (42% higher than daily average) and abdomen CuZnSOD (41%) and catalase (95%) activities showed extra peaks at 7-10 a.m., and abdomen DHAR activity was maximal (37%) earlier (4-7 a.m.). These morning increases in antioxidant enzyme activities may be associated with biological events other than bioluminescence, e.g. intense physical activity for digging tunnels and/or digestion of captured preys. These data suggest that oxyradical pathway and bioluminescence are coordinated, especially in the prothorax, to minimize the oxidative stress imposed by higher irrigation of the photocytes with O(2) when P. termitilluminans larvae emit light. PMID:11222948

  16. Amelioration of Ozone-Induced Oxidative Damage in Wheat Plants Grown under High Carbon Dioxide (Role of Antioxidant Enzymes).

    PubMed Central

    Rao, M. V.; Hale, B. A.; Ormrod, D. P.

    1995-01-01

    O3-induced changes in growth, oxidative damage to protein, and specific activities of certain antioxidant enzymes were investigated in wheat plants (Triticum aestivum L. cv Roblin) grown under ambient or high CO2. High CO2 enhanced shoot biomass of wheat plants, whereas O3 exposure decreased shoot biomass. The shoot biomass was relatively unaffected in plants grown under a combination of high CO2 and O3. O3 exposure under ambient CO2 decreased photosynthetic pigments, soluble proteins, and ribulose-1,5-bisphosphate carboxylase/oxygenase protein and enhanced oxidative damage to proteins, but these effects were not observed in plants exposed to O3 under high CO2. O3 exposure initially enhanced the specific activities of superoxide dismutase, peroxidase, glutathione reductase, and ascorbate peroxidase irrespective of growth in ambient or high CO2. However, the specific activities decreased in plants with prolonged exposure to O3 under ambient CO2 but not in plants exposed to O3 under high CO2. Native gels revealed preferential changes in the isoform composition of superoxide dismutase, peroxidases, and ascorbate peroxidase of plants grown under a combination of high CO2 and O3. Furthermore, growth under high CO2 and O3 led to the synthesis of one new isoform of glutathione reductase. This could explain why plants grown under a combination of high CO2 and O3 are capable of resisting O3-induced damage to growth and proteins compared to plants exposed to O3 under ambient CO2. PMID:12228603

  17. DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans

    SciTech Connect

    Chen, Huan [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China) [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Zhejiang Institute of Microbiology, Zhejiang Province, Hangzhou 310012 (China); Wu, Rongrong [Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009 (China)] [Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009 (China); Xu, Guangzhi [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China)] [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Fang, Xu; Qiu, Xiaoli; Guo, Hongyin [Zhejiang Institute of Microbiology, Zhejiang Province, Hangzhou 310012 (China)] [Zhejiang Institute of Microbiology, Zhejiang Province, Hangzhou 310012 (China); Tian, Bing, E-mail: tianbing@zju.edu.cn [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China)] [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Hua, Yuejin, E-mail: yjhua@zju.edu.cn [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China)] [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China)

    2010-05-28

    Transcriptional regulators of the diphtheria toxin repressor (DtxR) family control the expression of genes involved in the uptake of iron and manganese, which is not only necessitous nutrients but also was suggested to be essential for intracellular redox cycling of microorganisms. We identified a unique DtxR homologue (DR2539) with special characteristics from Deinococcus radiodurans, which is known for its extreme resistance to radiation and oxidants. The dr2539 mutant showed higher resistance to hydrogen peroxide than the wild-type strain R1. Intracellular catalase activity assay and semiquantitative PCR analysis demonstrated that this DtxR is a negative regulator of catalase (katE). Furthermore, quantitative real-time PCR, global transcription profile and inductively coupled plasma-mass spectrometry analysis showed that the DtxR is involved in the regulation of antioxidant system by maintaining the intracellular Mn/Fe ion homeostasis of D. radiodurans. However, unlike the other DtxR homologues, the DtxR of D. radiodurans acts as a negative regulator of a Mn transporter gene (dr2283) and as a positive regulator of Fe-dependent transporter genes (dr1219, drb0125) in D. radiodurans.

  18. Variation in antioxidant enzyme activities and nonenzyme components among cultivars of rabbiteye blueberries (Vaccinium ashei Reade) and V. ashei derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit from forty-two blueberry (Vaccinium species) cultivars, including thirty-six rabbiteye rabbiteye cultivars (Vaccinium ashei Reade), three V. ashei hybrid derivatives and three northern highbush (V. corymbosum L.) standards were evaluated for antioxidant activities (AA), levels of antioxidant e...

  19. Salivary Antigen-5/CAP Family Members Are Cu2+-dependent Antioxidant Enzymes That Scavenge O2? and Inhibit Collagen-induced Platelet Aggregation and Neutrophil Oxidative Burst*

    PubMed Central

    Assumpção, Teresa C. F.; Ma, Dongying; Schwarz, Alexandra; Reiter, Karine; Santana, Jaime M.; Andersen, John F.; Ribeiro, José M. C.; Nardone, Glenn; Yu, Lee L.; Francischetti, Ivo M. B.

    2013-01-01

    The function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 ?g/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin ?2?1. This inhibitory profile resembles the effects of antioxidants Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in platelet function. Accordingly, DMAV was found to inhibit cytochrome c reduction by O2? generated by the xanthine/xanthine oxidase, implying that it exhibits antioxidant activity. Moreover, our results demonstrate that DMAV blunts the luminescence signal of O2? generated by phorbol 12-myristate 13-acetate-stimulated neutrophils. Mechanistically, inductively coupled plasma mass spectrometry and fluorescence spectroscopy revealed that DMAV, like Cu,Zn-SOD, interacts with Cu2+, which provides redox potential for catalytic removal of O2?. Notably, surface plasmon resonance experiments (BIAcore) determined that DMAV binds sulfated glycosaminoglycans (e.g. heparin, KD ?100 nmol/liter), as reported for extracellular SOD. Finally, fractions of the salivary gland of D. maxima with native DMAV contain Cu2+ and display metal-dependent antioxidant properties. Antigen-5/CAP emerges as novel family of Cu2+-dependent antioxidant enzymes that inhibit neutrophil oxidative burst and negatively modulate platelet aggregation by a unique salivary mechanism. PMID:23564450

  20. Age-associated changes in oxidative damage and the activity of antioxidant enzymes in rats with inherited overgeneration of free radicals

    PubMed Central

    Sinitsyna, Olga; Krysanova, Zhanna; Ishchenko, A; Dikalova, Anna E; Stolyarov, S; Kolosova, Nataliya; Vasunina, Elena; Nevinsky, G

    2006-01-01

    Reactive oxygen species have been hypothesized to play an important role in the process of aging. To investigate the correlation between oxidative stress and accumulation of protein and DNA damage, we have compared the age-dependent levels of protein carbonyl groups and the activities of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase in cytosol and mitochondrial extracts from liver cells of Wistar and OXYS rats. The latter strain is characterized by increased sensitivity to free radicals. Faster age-dependent increase in the level of protein carbonyl groups was found in OXYS as compared with Wistar rats. A complicated enzyme-specific pattern of age-dependent changes in the activities of antioxidant enzymes was observed. Long-term uptake of dietary supplements Mirtilene forte (extract from the fruits of Vaccinium myrtillus L.) or Adrusen zinco (vitamin E complex with zinc, copper, selenium and ?-3 polyunsaturated fatty acids) sharply decreased the level of protein oxidation in cytosol and mitochondrial extracts of hepatocytes of Wistar and of OXYS rats. Both dietary supplements increased the activity of catalase in the liver mitochondria of OXYS rats. Our results are in agreement with the shorter life-span of OXYS and with the mitochondrial theory of aging, which postulates that accumulation of DNA and protein lesions leads to mitochondrial dysfunction and accelerates the process of aging. PMID:16563232

  1. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    PubMed

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher ?,?-diphenyl-?-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion. PMID:21806056

  2. Changes in expression of genes encoding antioxidant enzymes, heme oxygenase-1, Bcl2, and Bclxl and in level of reactive oxygen species in tumor cells resistant to doxorubicin

    Microsoft Academic Search

    E. V. Kalinina; N. N. Chernov; A. N. Saprin; Ya. N. Kotova; Ya. A. Andreev; V. S. Solomka; N. P. Scherbak

    2006-01-01

    The relationship between expression of genes encoding key antioxidant enzymes, heme oxygenase-1, Bcl-2, and Bcl-xl and change\\u000a in production of reactive oxygen species (ROS) resulting from development of resistance of cancer cells K562, MCF-7, and SKOV-3\\u000a to the prooxidant chemotherapeutic agent doxorubicin (DOX) has been studied. Significant increase in mRNA level and activity\\u000a of Mn-superoxide dismutase (Mn-SOD), catalase, and selenium-dependent

  3. Effects of esculetin on activities of some antioxidant enzymes of Galleria mellonella and its parasitoid Bracon hebetor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eicosanoids mediate several physiological responses, including immune defense reactions. Two major groups of eicosanoids are prostaglandins (products of cyclooxygenase pathways) and various products of lipoxygenase pathways. Antioxidant response is one of the defense mechanisms to oxidative damage...

  4. Effect of selenium-saturated bovine lactoferrin (Se-bLF) on antioxidant enzyme activities in human gut epithelial cells under oxidative stress.

    PubMed

    Burrow, Hannah; Kanwar, Rupinder K; Mahidhara, Ganesh; Kanwar, Jagat R

    2011-10-01

    Cancer and many chronic inflammatory diseases are associated with increased amounts of reactive oxygen species (ROS). The potential cellular and tissue damage created by ROS has significant impact on many disease and cancer states and natural therapeutics are becoming essential in regulating altered redox states. We have shown recently that iron content is a critical determinant in the antitumour activity of bovine milk lactoferrin (bLF). We found that 100% iron-saturated bLF (Fe-bLF) acts as a potent natural adjuvant and fortifying agent for augmenting cancer chemotherapy and thus has a broad utility in the treatment of cancer. Furthermore, we also studied the effects of iron saturated bLF's ability as an antioxidant in the human epithelial colon cancer cell line HT29, giving insights into the potential of bLF in its different states. Thus, metal saturated bLF could be implemented as anti-cancer neutraceutical. In this regard, we have recently been able to prepare a selenium (Se) saturated form of bLF, being up to 98% saturated. Therefore, the objectives of this study were to determine how oxidative stress induced by hydrogen peroxide (H2O2) alters antioxidant enzyme activity within HT29 epithelial colon cancer cells, and observe changes in this activity by treatments with different antioxidants ascorbic acid (AA), Apo (iron free)-bLF and selenium (Se)-bLF. The states of all antioxidant enzymes (glutathione peroxidase (GPx), glutathione reductase (GR), glutathione- s-transferase (GsT), catalase and superoxide dismutase (SOD)) demonstrated high levels within untreated HT29 cells compared to the majority of other treatments being used, even prior to H2O2 exposure. All enzymes showed significant alterations in activity when cells were treated with antioxidants AA, Apo-bLF or Se-bLF, with and/or without H2O2 exposure. Obvious indications that the Se content of the bLF potentially interacted with the glutathione (GSH)/GPx/GR/GsT associated redox system could be observed immediately, showing capability of Se-bLF being highly beneficial in helping to maintain a balance between the oxidant/antioxidant systems within cells and tissues, especially in selenium deficient systems. In conclusion, the antioxidative defence activity of Se-bLf, investigated in this study for the first time, shows dynamic adaptations that may allow for essential protection from the imbalanced oxidative conditions. Because of its lack of toxicity and the availability of both selenium and bLF in whole milk, Se-bLF offers a promise for a prospective natural dietary supplement, in addition to being an immune system enhancement, or a potential chemopreventive agent for cancers. PMID:21919840

  5. Detoxification of Cr(VI) in Salvinia minima is related to seasonal-induced changes of thiols, phenolics and antioxidative enzymes.

    PubMed

    Prado, Carolina; Pagano, Eduardo; Prado, Fernando; Rosa, Mariana

    2012-11-15

    In this study, protein- and non-protein-thiol-containing compounds (THCC), soluble phenolics (SP), proline (Pro), proteins and malondialdehyde (MDA) contents, and antioxidative enzyme activities were analyzed in floating and submerged leaves of Salvinia minima to establish their role against Cr-induced oxidative stress. We analyzed relationships among biochemical responses to different Cr(VI) concentrations to explore underlying mechanisms of Cr detoxification in plants growing under field conditions during summer and winter seasons. Significant increases in THCC were observed in submerged leaves from both seasons, while in floating leaves THCC increased only in summer being decreased in winter. Contrarily SP increased in floating leaves and decreased in submerged ones. MDA increased significantly in winter-leaves, but in summer-leaves remained unchanged. Antioxidative enzymes, i.e. guaiacol peroxidase (G-POD), superoxide dismutase (SOD) and catalase (CAT) showed different activity patterns. G-POD significantly increased in Cr-treated leaves from both seasons, while SOD increased in submerged leaves only, remaining practically unchanged in floating ones. CAT activity increased in floating leaves from both seasons, whereas in submerged ones was decreased or increased. Proteins increased in both leaf types during summer whereas decreased or remained unchanged in winter. Pro increased in winter-submerged leaves only. Results show that seasonal-induced changes occur in all measured parameters. PMID:23022414

  6. Responses of photosynthetic properties and antioxidant enzymes in high-yield rice flag leaves to supplemental UV-B radiation during senescence stage.

    PubMed

    Wang, Yuwen; Yu, Guanghui; Li, Kang; Wu, Min; Ma, Jing; Xu, Jingang; Chen, Guoxiang

    2015-03-01

    Despite the increasing occurrence of ultraviolet-B (UV-B) radiation, its molecular mechanism is poorly documented in higher plants compared to other environmental stress. In present study, the influence of supplemental UV-B radiation on photosynthetic performance and antioxidant enzymes in rice (Oryza sativa L.) was investigated. Supplemental UV-B radiation reduced net photosynthetic rate in rice flag leaves during senescence stage. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly inhibited by the increased thermal dissipation. Furthermore, 18 thylakoid membrane protein spots were differentially expressed (5-fold or greater variation compared to the control) in supplemental UV-B-treated rice. These identified proteins were involved in various cellular responses and metabolic processes including photosynthesis, stress defense, Calvin cycle, and others of unknown functions. Taken together, these results suggested that physiological changes that resulted from supplemental UV-B radiation were linked to the light reaction, carbon metabolism, and antioxidant enzymes in rice leaves during senescence stage. PMID:25328096

  7. Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.).

    PubMed

    Ali, Shafaqat; Chaudhary, Aaifa; Rizwan, Muhammad; Anwar, Hafiza Tania; Adrees, Muhammad; Farid, Mujahid; Irshad, Muhammad Kashif; Hayat, Tahir; Anjum, Shakeel Ahmad

    2015-07-01

    Little information is available on the role of glycinebetaine (GB) in chromium (Cr) tolerance while Cr toxicity is widespread problem in crops grown on Cr-contaminated soils. In this study, we investigated the influence of GB on Cr tolerance in wheat (Triticum aestivum L.) grown in sand and soil mediums. Three concentrations of chromium (0, 0.25, and 0.5 mM) were tested with and without foliar application of GB (0.1 M). Chromium alone led to a significant growth inhibition and content of chlorophyll a, b, proteins and enhanced the activity of antioxidant enzymes. Glycinebetaine foliar application successfully alleviated the toxic effects of Cr on wheat plants and enhanced growth characteristics, biomass, proteins, and chlorophyll contents. Glycinebetaine also reduced Cr accumulation in wheat plants especially in grains and enhanced the activity of antioxidant enzymes in both shoots and roots. This study provides evidence that GB application contributes to decreased Cr concentrations in wheat plants and its importance in the detoxification of heavy metals. PMID:25752628

  8. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats

    PubMed Central

    Rasoolijazi, Homa; Mehdizadeh, Mehdi; Soleimani, Mansoureh; Nikbakhte, Farnaz; Eslami Farsani, Mohsen; Ababzadeh, Shima

    2015-01-01

    Background: The Rosemary extract (RE) possesses various antioxidant, cytoprotective and cognition- improving bioactivities. In this study, we postulated which doses of RE have a more effect on the hippocampus of middle-aged rats. Methods: In this experimental study, thirty-two middle-aged male Wistar rats were fed by different doses (50,100 and 200 mg/kg/day) of RE (containing 40% carnosic acid) or distilled water for 12 weeks. The effects of different RE doses on learning and spatial memory scores, hippocampal neuronal survival, antioxidant enzymes and lipid peroxidation amount were evaluated by one and two way analysis of variance (ANOVA). Results: It seemed that RE (100mg/kg) could recover the spatial memory retrieval score (p< 0.05). The amount of activity of SOD, GPx and CAT enzymes in the hippocampus of animals of the RE (100mg/kg) group showed a significant increase compared to the normal group (p< 0.01), (p< 0.01) and (p< 0.05), respectively. Also, the amount of activity of GPx in the RE (50 mg/kg) group of animals showed a significant increase compared to the normal group (p< 0.05). No significant difference was found between the groups in the MDA level. Conclusion: The results revealed that rosemary extract (40% carnosic acid) may improve the memory score and oxidative stress activity in middle aged rats in a dose dependent manner, especially in 100mg/kg.

  9. Expression profiles of two small heat shock proteins and antioxidant enzyme activity in Mytilus galloprovincialis exposed to cadmium at environmentally relevant concentrations

    NASA Astrophysics Data System (ADS)

    You, Liping; Ning, Xuanxuan; Chen, Leilei; Zhang, Linbao; Zhao, Jianmin; Liu, Xiaoli; Wu, Huifeng

    2014-03-01

    Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock proteins (MgsHSP22 and MgsHSP24.1) were cloned from Mytilus galloprovincialis, which encoded peptides of 181 and 247 amino acids, respectively. Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR, with the highest expression being observed in muscle and gonad tissues. The real-time PCR results revealed that Cd significantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 ?g/L Cd 2+ exposure. MgsHSP24.1 expression was also significantly inhibited after 50 ?g/L Cd2+ exposure for 48 h. With regard to antioxidant enzymes, increased GPx and CAT activity were detected under Cd2+ stress (5 and 50 ?g/L), while no significant difference in SOD activity was observed throughout the experiment. Overall, both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M. galloprovincialis.

  10. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America.

    PubMed

    Ranilla, Lena Galvez; Kwon, Young-In; Apostolidis, Emmanouil; Shetty, Kalidas

    2010-06-01

    Traditionally used medicinal plants, herbs and spices in Latin America were investigated to determine their phenolic profiles, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension. High phenolic and antioxidant activity-containing medicinal plants and spices such as Chancapiedra (Phyllantus niruri L.), Zarzaparrilla (Smilax officinalis), Yerba Mate (Ilex paraguayensis St-Hil), and Huacatay (Tagetes minuta) had the highest anti-hyperglycemia relevant in vitro alpha-glucosidase inhibitory activities with no effect on alpha-amylase. Molle (Schinus molle), Maca (Lepidium meyenii Walp), Caigua (Cyclanthera pedata) and ginger (Zingiber officinale) inhibited significantly the hypertension relevant angiotensin I-converting enzyme (ACE). All evaluated pepper (Capsicum) genus exhibited both anti-hyperglycemia and anti-hypertension potential. Major phenolic compounds in Matico (Piper angustifolium R.), Guascas (Galinsoga parviflora) and Huacatay were chlorogenic acid and hydroxycinnamic acid derivatives. Therefore, specific medicinal plants, herbs and spices from Latin America have potential for hyperglycemia and hypertension prevention associated with Type 2 diabetes. PMID:20185303

  11. Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus.

    PubMed

    Estrada, Norma; de Jesús Romero, Maria; Campa-Córdova, Angel; Luna, Antonio; Ascencio, Felipe

    2007-11-01

    This study documents effects of the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison, on juvenile farmed (5.9+/-0.39 cm) giant lions-paw scallop Nodipecten subnodosus. Scallops were fed bloom concentrations of toxic dinoflagellate G. catenatum for 7 h. The effect of the toxic dinoflagellate in different tissues was determined by analysis of antioxidant enzymes (catalase, superoxide dismutase, gluthathione peroxidase), thiobarbituric acid reactive substances (lipid peroxidation), and hydrolytic enzymes (proteases, glycosidases, phosphatases, lipases, and esterases). Histopathological photos record the effects of the toxic dinoflagellate in various tissues. The results show that juvenile lions-paw scallops produce pseudo-feces, partially close their shell, increase melanization, and aggregate hemocytes. Several enzymes were affected and could serve as biological markers. In general, the adductor muscle was not affected. In the digestive gland, some enzymes could be the result of defensive and digestive processes. Gills and mantle tissue were markedly affected because these sites respond first to toxic dinoflagellates, leading to the idea that proteolytic cascades could be involved. PMID:17613278

  12. A novel dietary supplement containing multiple phytochemicals and vitamins elevates hepatorenal and cardiac antioxidant enzymes in the absence of significant serum chemistry and genomic changes.

    PubMed

    Bulku, Elida; Zinkovsky, Daniel; Patel, Payal; Javia, Vishal; Lahoti, Tejas; Khodos, Inna; Stohs, Sidney J; Ray, Sidhartha D

    2010-01-01

    A novel dietary supplement composed of three well-known phytochemicals, namely, Salvia officinalis (sage) extract, Camellia sinensis (oolong tea) extract, and Paullinia cupana (guarana) extract, and two prominent vitamins (thiamine and niacin) was designed to provide nutritional support by enhancing metabolism and maintaining healthy weight and energy. The present study evaluated the safety of this dietary supplement (STG; S=sage; T=tea; G=guarana) and assessed changes in target organ antioxidant enzymes (liver, kidneys and heart), serum chemistry profiles and organ histopathology in Fisher 344 rats. Adult male and female Fisher 344 rats were fed control (no STG) or STG containing (1X and 7X, 1X=daily human dose) diets and sacrificed after 2 and 4 months. Serum chemistry analysis and histopathological examination of three vital target organs disclosed no adverse influence on protein, lipid and carbohydrate profiles, genomic integrity of the liver and/or the tissue architecture. However, analysis of the most important antioxidant components in the liver, kidney and heart homogenates revealed a dramatic increase in total glutathione concentrations, glutathione peroxidase and superoxide dismutase enzyme activities. Concomitantly, oxidative stress levels (malondialdehyde accumulation) in these three organs were less than control. Organ specific serum markers (ALT/AST for the liver; CPK/AST for the heart; BUN/creatinine for kidneys) and the genomic integrity disclosed no STG-induced alteration. Some of the serum components (lipid and protein) showed insignificant changes. Overall, STG-exposed rats were more active, and the results suggest that STG exposure produces normal serum chemistry coupled with elevated antioxidant capacity in rats fed up to seven times the normal human dose and does not adversely influence any of the vital target organs. Additionally, this study reiterates the potential benefits of exposure to a pharmacologically relevant combination of phytochemicals compared to a single phytochemical entity. PMID:20716937

  13. Cell Biology Intracellular Transport

    E-print Network

    Schüler, Axel

    Keywords Ribozymes ncRNAs Cell Biology Intracellular Transport » PD Dr. Astrid Schön localization of complex RNA enzymes Contact PD Dr. Astrid Schön Molekulare Zelltherapie UNIVERSITÄT LEIPZIG-31373 fax +49 341 97-31379 astrid.schoen@bbz.uni-leipzig.de www.uni-leipzig.de/~mct/ Li, D.; WiLLkomm, D. k

  14. Salivary antigen-5/CAP family members are Cu2+-dependent antioxidant enzymes that scavenge O??. and inhibit collagen-induced platelet aggregation and neutrophil oxidative burst.

    PubMed

    Assumpção, Teresa C F; Ma, Dongying; Schwarz, Alexandra; Reiter, Karine; Santana, Jaime M; Andersen, John F; Ribeiro, José M C; Nardone, Glenn; Yu, Lee L; Francischetti, Ivo M B

    2013-05-17

    The function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 ?g/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin ?2?1. This inhibitory profile resembles the effects of antioxidants Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in platelet function. Accordingly, DMAV was found to inhibit cytochrome c reduction by O2[Symbol: see text] generated by the xanthine/xanthine oxidase, implying that it exhibits antioxidant activity. Moreover, our results demonstrate that DMAV blunts the luminescence signal of O2[Symbol: see text] generated by phorbol 12-myristate 13-acetate-stimulated neutrophils. Mechanistically, inductively coupled plasma mass spectrometry and fluorescence spectroscopy revealed that DMAV, like Cu,Zn-SOD, interacts with Cu(2+), which provides redox potential for catalytic removal of O2[Symbol: see text]. Notably, surface plasmon resonance experiments (BIAcore) determined that DMAV binds sulfated glycosaminoglycans (e.g. heparin, KD ~100 nmol/liter), as reported for extracellular SOD. Finally, fractions of the salivary gland of D. maxima with native DMAV contain Cu(2+) and display metal-dependent antioxidant properties. Antigen-5/CAP emerges as novel family of Cu(2+)-dependent antioxidant enzymes that inhibit neutrophil oxidative burst and negatively modulate platelet aggregation by a unique salivary mechanism. PMID:23564450

  15. Protein oxidation and the degradation of oxidized proteins in the rat oligodendrocyte cell line OLN 93-antioxidative effect of the intracellular spin trapping agent PBN

    Microsoft Academic Search

    Andrea Ernst; Alexandra Stolzing; Grit Sandig; Tilman Grune

    2004-01-01

    Oligodendrocytes are the myelin-producing cells in the central nervous system. It was proposed that these cells are much more prone to oxidative damage than to other cells of the central nervous system. This fact seems to be due to their high iron store and low antioxidative defense mechanisms. Consequently, free radical induced damage should lead to an enhanced damage of

  16. Effect of feeding lipids recovered from fish processing waste by lactic acid fermentation and enzymatic hydrolysis on antioxidant and membrane bound enzymes in rats.

    PubMed

    Rai, Amit Kumar; Bhaskar, N; Baskaran, V

    2015-06-01

    Fish oil recovered from fresh water fish visceral waste (FVW-FO) through lactic acid fermentation (FO-LAF) and enzymatic hydrolysis (FO-EH) were fed to rats to study their influence on lipid peroxidation and activities of antioxidant and membrane bound enzyme in liver, heart and brain. Feeding of FO-LAF and FO-EH resulted in increase (P?antioxidant enzymes in tissues, modulates the activities of membrane bound enzymes and improved the fatty acid composition in microsomes of tissues similar to CLO. Utilization of these processing wastes for the production of valuable biofunctional products can reduce the mounting economic values of fish oil and minimize the environmental pollution problems. PMID:26028754

  17. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench].

    PubMed

    Surender Reddy, P; Jogeswar, Gadi; Rasineni, Girish K; Maheswari, M; Reddy, Attipalli R; Varshney, Rajeev K; Kavi Kishor, P B

    2015-09-01

    Shoot-tip derived callus cultures of Sorghum bicolor were transformed by Agrobacterium tumefaciens as well as by bombardment methods with the mutated pyrroline-5-carboxylate synthetase (P5CSF129A) gene encoding the key enzyme for proline biosynthesis from glutamate. The transgenics were selfed for three generations and T4 plants were examined for 100 mM NaCl stress tolerance in pot conditions. The effect of salt stress on chlorophyll and carotenoid contents, photosynthetic rate, stomatal conductance, internal carbon dioxide concentration, transpiration rates, intrinsic transpiration and water use efficiencies, proline content, MDA levels, and antioxidant enzyme activities were evaluated in 40-day-old transgenic lines and the results were compared with untransformed control plants. The results show that chlorophyll content declines by 65% in untransformed controls compared to 30-38% loss (significant at P < 0.05) in transgenics but not carotenoid levels. Photosynthetic rate (PSII activity) was reduced in untransformed controls almost completely, while it declined by 62-88% in different transgenic lines. Salinity induced ca 100% stomatal closure in untransformed plants, while stomatal conductance was decreased only by 64-81% in transgenics after 4 days. The intercellular CO2 decreased by ca 30% in individual transgenic lines. Malondialdehyde (MDA) content was lower in transgenics compared to untransformed controls. The activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione reductase (GR; EC1.8.1.7) were quantified in leaves exposed to 100 mM NaCl stress and found higher in transgenics. The results suggest that transgenic lines were able to cope better with salt stress than untransformed controls by protecting photosynthetic and antioxidant enzyme activities. PMID:26065619

  18. Synthesis and in vitro antioxidant functions of protein hydrolysate from backbones of Rastrelliger kanagurta by proteolytic enzymes

    PubMed Central

    Sheriff, Sheik Abdulazeez; Sundaram, Balasubramanian; Ramamoorthy, Baranitharan; Ponnusamy, Ponmurugan

    2013-01-01

    Every year, a huge quantity of fishery wastes and by-products are generated by fish processing industries. These wastes are either underutilized to produce low market value products or dumped leading to environmental issues. Complete utilization of fishery wastes for recovering value added products would be beneficial to the society and individual. The fish protein hydrolysates and derived peptides of fishery resources are widely used as nutritional supplements, functional ingredients, and flavor enhancers in food, beverage and pharmaceutical industries. Antioxidants from fishery resources have attracted the attention of researchers as they are cheaper in cost, easy to derive, and do not have side effects. Thus the present investigation was designed to produce protein hydrolysate by pepsin and papain digestion from the backbones of Rastrelliger kanagurta (Indian mackerel) and evaluate its antioxidant properties through various in vitro assays. The results reveal that both hydrolysates are potent antioxidants, capable of scavenging 46% and 36% of DPPH (1,1-diphenyl-2 picrylhydrazyl) and 58.5% and 37.54% of superoxide radicals respectively. The hydrolysates exhibit significant (p < 0.05) reducing power and lipid peroxidation inhibition. Among the two hydrolysates produced, pepsin derived fraction is superior than papain derived fraction in terms of yield, DH (Degree of hydrolysis), and antioxidant activity. PMID:24596496

  19. Fish oil increases antioxidant enzyme activities in macrophages and reduces atherosclerotic lesions in apoE-knockout mice

    Microsoft Academic Search

    Hsueh-Hsiao Wang; Tzu-Ming Hung; Jeng Wei; An-Na Chiang

    Objectives: The molecular and cellular mechanisms that fish oil (FO) exerts its physiological function are complicated. The present study brings evidence on the in vivo effect of FO on the development of atherosclerosis in apolipoprotein E knockout (apoE \\/ ) mice. We also test the hypothesis that the modulation of the cellular oxidative stress and antioxidant status contributes to the

  20. Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcript levels of antioxidative genes including Mn-superoxide dismutase (Mn-SOD), Cu/Zn SOD, ascorbate peroxidise (APX), and catalase (CAT) do not vary significantly during storage at 5 °C with high oxygen treatment in freshly harvested zucchini squash (Cucurbita pepo L. cv. Elite). However, ...

  1. Seasonal variations of melatonin in ram seminal plasma are correlated to those of testosterone and antioxidant enzymes

    Microsoft Academic Search

    Adriana Casao; Igor Cebrián; Mayra Eoda Asumpção; Rosaura Pérez-Pé; José A Abecia; Fernando Forcada; José A Cebrián-Pérez; Teresa Muiño-Blanco

    2010-01-01

    BACKGROUND: Some breeds of sheep are highly seasonal in terms of reproductive capability, and these changes are regulated by photoperiod and melatonin secretion. These changes affect the reproductive performance of rams, impairing semen quality and modifying hormonal profiles. Also, the antioxidant defence systems seem to be modulated by melatonin secretion, and shows seasonal variations. The aim of this study was

  2. Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells.

    PubMed

    Li, Jinming; Liu, Fang; Shao, Qing; Min, Yuanzeng; Costa, Marianne; Yeow, Edwin K L; Xing, Bengang

    2014-08-01

    Here, a set of novel and personalized nanocarriers are presented for controlled nucleus-targeted antitumor drug delivery and real-time imaging of intracellular drug molecule trafficking by integrating an enzyme activatable cell penetrating peptide (CPP) with mesoporous silica coated quantum dots nanoparticles. Upon loading of antitumor drug, doxorubicin (DOX) and further exposure to proteases in tumor cell environment, the enzymatic cleavage of peptide sequence activates oligocationic TAT residues on the QDs@mSiO2 surface and direct the DOX delivery into cellular nucleus. The systematic cell imaging and cytotoxicity studies confirm that the enzyme responsive DOX-loaded CPP-QDs@mSiO2 nanoparticles can selectively release DOX in the tumor cells with high cathepsin B enzyme expression and greatly facilitate DOX accumulation in targeted nucleus, thus exhibiting enhanced antitumor activity in these cells. As contrast, there is limited nuclear-targeted drug accumulation and lower tumor cytotoxicity observed in the cells without enzyme expression. More importantly, significant antitumor DOX accumulation and higher tumor inactivation is also found in the drug resistant tumor cells with targeted enzyme expression. Such simple and specific enzyme responsive mesoporous silica-QDs nanoconjugates provide great promise for rational design of targeted drug delivery into biological system, and may thus greatly facilitate the medical theranostics in the near future. PMID:24550203

  3. Field validation of antioxidant enzyme biomarkers in mussels (Perna viridis) and clams (Ruditapes philippinarum) transplanted in Hong Kong coastal waters.

    PubMed

    De Luca-Abbott, Sharon B; Richardson, Bruce J; McClellan, Katherine E; Zheng, Gene J; Martin, Michael; Lam, Paul K S

    2005-01-01

    Green-lipped mussels, Perna viridis, and Manila clams, Ruditapes philippinarum were sourced from "clean" sites in the Hong Kong region, depurated in a laboratory using uncontaminated filtered seawater for 8 days, and transplanted to a suspected gradient of chemically polluted sites in Hong Kong. After 14- and 28-days of field exposure, several antioxidant parameters including glutathione S transferase (GST), catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH) were quantified in gill and hepatopancreas tissues. Whole body tissue concentrations of polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (PHCs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCs) were determined in pooled site samples. Chemical analyses indicated that: (a) clams had higher levels of PAHs, PHCs, DDTs and PCBs, whereas mussels had higher hexachlorocyclohexane (HCHs) and there was no difference between species for dieldrin and remaining OCs; (b) Kat O should not be continued as a "clean" reference site for Hong Kong, because of the levels of contaminants measured and (c) PAH concentrations in the current survey were similar to those previously measured. Toxicological conclusions were: (a) antioxidant responses were different between species; (b) CAT and GST have highest utility in clams for field use in Hong Kong, whereas CAT in both gill and hepatopancreas tissue showed most potential in mussels; (c) significant induction of antioxidant responses over day 0 (excluding GPx in both tissues, and GST in mussel hepatic tissue); (d) groups of contaminants do not consistently induce antioxidant responses and (e) organochlorines and PCBs correlated significantly with CAT and GST in clam hepatopancreas and with CAT in mussel gill and hepatic tissue. Multivariate statistical techniques indicated little relationship between the site patterns for antioxidant responses and the contaminant gradients identified in body burden analysis. PMID:16291185

  4. Dual neuroprotective pathways of a pro-electrophilic compound via HSF-1-activated heat-shock proteins and Nrf2-activated phase 2 antioxidant response enzymes.

    PubMed

    Satoh, Takumi; Rezaie, Tayebeh; Seki, Masaaki; Sunico, Carmen R; Tabuchi, Takahito; Kitagawa, Tomomi; Yanagitai, Mika; Senzaki, Mutsumi; Kosegawa, Chihiro; Taira, Hideharu; McKercher, Scott R; Hoffman, Jennifer K; Roth, Gregory P; Lipton, Stuart A

    2011-11-01

    Activation of the Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and consequent induction of phase 2 antioxidant enzymes is known to afford neuroprotection. Here, we present a series of novel electrophilic compounds that protect neurons via this pathway. Natural products, such as carnosic acid (CA), are present in high amounts in the herbs rosemary and sage as ortho-dihydroquinones, and have attracted particular attention because they are converted by oxidative stress to their active form (ortho-quinone species) that stimulate the Keap1/Nrf2 transcriptional pathway. Once activated, this pathway leads to the production of a series of antioxidant phase 2 enzymes. Thus, such dihydroquinones function as redox-activated 'pro-electrophiles'. Here, we explored the concept that related para-dihydroquinones represent even more effective bioactive pro-electrophiles for the induction of phase 2 enzymes without producing toxic side effects. We synthesized several novel para-hydroquinone-type pro-electrophilic compounds (designated D1 and D2) to analyze their protective mechanism. DNA microarray, PCR, and western blot analyses showed that compound D1 induced expression of heat-shock proteins (HSPs), including HSP70, HSP27, and DnaJ, in addition to phase 2 enzymes such as hemeoxygenase-1 (HO-1), NADP(H) quinine-oxidoreductase1, and the Na(+)-independent cystine/glutamate exchanger (xCT). Treatment with D1 resulted in activation of Nrf2 and heat-shock transcription factor-1 (HSF-1) transcriptional elements, thus inducing phase 2 enzymes and HSPs, respectively. In this manner, D1 protected neuronal cells from both oxidative and endoplasmic reticulum (ER)-related stress. Additionally, D1 suppressed induction of 78 kDa glucose-regulated protein (GRP78), an ER chaperone protein, and inhibited hyperoxidation of peroxiredoxin 2 (PRX2), a molecule that is in its reduced state can protect from oxidative stress. These results suggest that D1 is a novel pro-electrophilic compound that activates both the Nrf2 and HSF-1 pathways, and may thus offer protection from oxidative and ER stress. PMID:21883218

  5. Production of fibrinolytic enzyme from Bacillus amyloliquefaciens by fermentation of chickpeas, with the evaluation of the anticoagulant and antioxidant properties of chickpeas.

    PubMed

    Wei, Xuetuan; Luo, Mingfang; Xu, Lin; Zhang, Yewei; Lin, Xing; Kong, Peng; Liu, Huizhou

    2011-04-27

    To develop safe and cheap thrombolytic agents, a fibrinolytic enzyme productive strain of LSSE-62 was isolated from Chinese soybean paste. This strain was identified as Bacillus amyloliquefaciens by 16S rDNA sequence analysis. Nucleotide and amino acid sequence analysis showed that this fibrinolytic enzyme was identical to subtilisin DJ-4. Chickpeas were used as the substrate for fibrinolytic enzyme production from B. amyloliquefaciens in solid-state fermentation. Under the optimized conditions (34 °C and 50% initial moisture content), the fibrinolytic activity of fermented chickpeas reached 39.28 fibrin degradation units (FU)/g. Additionally, the fermented chickpeas showed anticoagulant activity, and the purified anticoagulant component showed higher anticoagulant activity than heparin sodium. After fermentation, the total phenolic and total flavonoid contents increased by 222 and 71%, respectively, and then the antioxidant activities were improved significantly. This study provided a novel method for the preparation of multifunctional food of chickpeas or raw materials for the preparation of functional food additives and potential drugs. PMID:21391672

  6. Protective effect of ginger against alcohol-induced renal damage and antioxidant enzymes in male albino rats.

    PubMed

    Shanmugam, K R; Ramakrishna, C H; Mallikarjuna, K; Reddy, K Sathyavelu

    2010-02-01

    Superoxide dismutase, ascorbic acid, glutathione and uric acid levels were decreased and xanthine oxidase, glutathione-s-transferase activities were increased in alcohol treated (2 g/kg body weight, once daily for 30 days) group. However, treatment with ethanolic extract of ginger (100 mg/kg, 200 mg/kg body weight, po, once daily for 30 days) these parameters came to normalcy showing the antioxidant effect of ginger. The antioxidant compounds of ginger may modulate the oxidative stress parameters. The biochemical findings were supplemented by histopathological examination of the kidney. Severe congestion and degenerative changes in tubules in alcohol treated rats were restored by ginger extract treatment. The results confirm the renal protective effect of ginger in alcohol treated rats. PMID:20455323

  7. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector

    Microsoft Academic Search

    Albena T. Dinkova-Kostova; Paul Talalay

    2010-01-01

    NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) is a widely-distributed FAD-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes, at rates that are comparable with NADH or NADPH. These reductions depress quinone levels and thereby minimize opportunities for generation of reactive oxygen intermediates by redox cycling, and for depletion of intracellular thiol pools. NQO1 is a highly-inducible

  8. Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol.

    PubMed

    Jurczuk, M; Brzóska, M M; Moniuszko-Jakoniuk, J; Ga?azyn-Sidorczuk, M; Kulikowska-Karpi?ska, E

    2004-03-01

    The oxidative status of liver and kidney of rats co-exposed to cadmium (50 mg Cd/l in drinking water) and ethanol (5 g EtOH/kg body weight/24 h, intragastrically) for 12 weeks was studied. The activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) as well as the concentration of malondialdehyde (MDA), as an indicator of lipid peroxidation, were measured in homogenates of the liver and kidney. Concentrations of zinc (Zn), copper (Cu), iron (Fe) and Cd in the serum or blood, and their content in the liver and kidney as well as EtOH concentration in the whole blood were assayed. Daily Cd intake in the Cd and Cd+EtOH groups was similar and ranged from 2.39 to 4.88 mg/kg body weight/24 h and from 2.64 to 4.14 mg/kg body weight/24 h, respectively. After the administration of EtOH alone, the activity of SOD increased in the kidney and decreased in the liver, whereas the activity of CAT decreased in both these organs, and MDA concentration increased in the liver and was unchanged in the kidney. The exposure to 50 mg Cd/l led to a decrease in the activities of SOD in the liver and CAT in the liver and kidney, and an increase in the kidney activity of SOD and MDA concentration in both these organs. In the rats co-exposed to Cd and EtOH, the kidney activity of SOD and the liver concentration of MDA were lower, whereas the kidney activity of CAT was higher compared to the Cd group. The concentration of Fe in the serum and its content in the liver of rats treated with EtOH increased, whereas the concentrations of Zn and Cu in the serum and the content of Zn, Cu and Fe in the kidney and that of Zn and Cu in the liver were unchanged. In the liver and kidney of rats treated with Cd alone, the content of Fe was decreased and that of Zn and Cu was enhanced. After EtOH administration to Cd-exposed rats, a decrease in Cu serum concentration and its liver content and an increase in Fe concentration in the serum and its content in the liver and kidney, compared to the group exposed to Cd alone, were noted. Moreover, EtOH decreased the blood Cd concentration and its accumulation in the liver and kidney of these animals. EtOH alone decreased Cd content in the liver and increased in the kidney, however the whole content of Cd in these organs was unchanged compared with control. The results of this study indicate that despite the ability of Cd and EtOH to induce the oxidative stress the effect in the liver and kidney is not intensified at simultaneous exposure to both substances. The changes in the studied indicators of oxidative stress (SOD, CAT and MDA) observed in the kidney and especially in the liver of the rats co-exposed to Cd and EtOH may result from an independent effect of Cd and/or EtOH and also from their interaction. The interactive effect may involve, among others, changes in Cd accumulation and content of Zn, Cu and Fe in these organs and their concentration in serum. Since the rats treated with Cd and Cd+EtOH had reduced drinking fluids intake that might result in dehydratation, the effect of the both xenobiotics on the oxidative status of the body may be not solely due to Cd and/or EtOH, but also the modyfing influence of accompanying alterations such as reduced water intake and dehydratation. The results of the study allow us to hypothesize that Cd-exposed alcohol misusers are not at enhanced risk of liver and kidney damage due to lipid peroxidation. PMID:14871584

  9. Iron limitation effects a massive shift in iron and flavin based antioxidant enzyme systems and their substrates in the Chlorophyte alga Dunaliella tertiolecta

    NASA Astrophysics Data System (ADS)

    Traggis, H. M.

    2012-12-01

    Ubiquitous in the neritic ocean, it is now believed that iron-limitation is the most important factor controlling primary production in oceanic phytoplankton. To investigate the effects of iron deficiency, Dunaliella tertiolecta was cultured under limiting (100 nM Fe) and replete (1?M Fe) iron concentrations. The physiological status and the Water-Water antioxidant defense system were evaluated. Iron limitation effected a 21% drop in PSII efficiency (replete= 0.634± 0.012; limiting= 0.507± 0.012) concurrent with a 17.5% reduction in photosynthetic rates (replete= 265.8 umol 02/mg chl/hr ± 5.7; limiting= 219.3 umol 02/mg chl/hr ± 5.7). Both heme and non-heme based antioxidant enzyme activities were assessed. Heme-based Ascorbate peroxidase (APX), exhibits an 84% iron limited rate reduction (replete and limited = 36.23 and 5.72 umol ascorbate mg prot-1 hr-1 ±2.96, respectively). Conversely, the flavin-based Monodehydroascorbate reductase (MDHAR), exhibits a significant rate increase, 2.16±0.19 (replete) to 3.86±0.19 umol NADH mg prot-1 hr-1 under iron-limitation. Iron deficient cultures exhibit a 34% increase in total available ascorbate. These investigations suggest that D. tertiolecta is able to maintain a stable growth rate under iron limitation by re-allocating its subcellular usage of available iron and increasing the availability of total ascorbate. Further investigations will determine the presence of additional iron/flavin based molecules involved in the photosynthetic apparatus and anti-oxidant scavenging mechanisms.

  10. Effects of Three Medicinal Plants Extracts in Experimental Diabetes: Antioxidant Enzymes Activities and Plasma Lipids Profiles inComparison with Metformin.

    PubMed

    Fehresti Sani, Mohammad; Montasser Kouhsari, Shideh; Moradabadi, Leila

    2012-01-01

    In the present study we aimed to evaluate the effects of methanolic extracts of the bulbs of Garlic (Allium sativum L., Alliaceae) and Persian shallot (Allium ascalonicum L., Alliaceae ) and leaves of Sage (Salvia officinalis L., Lamiaceae ), ASE, AAE and SOE respectively, on the antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) activities and on the levels of plasma lipids profiles such as triglycerides (TG), total cholesterol (TC), high-density lipoproteins (HDL), low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL) in Alloxan diabetic Wistar rats. In comparison with diabetic control rats in diabetic treated rats, AAE increases the activities of SOD (65%), GPX (43%) and CAT (55%). ASE and SOE increase SOD activity by 60% and 33% respectively. ASE reduces TC (34%), SOE decreases TG (40%) and LDL (30%) and AAE reduces VLDL (24%). Metformin exhibits mild antioxidant and hypolipidemic properties. Results of quantitative phytochemical analysis show that the methanolic garlic and Persian shallot bulbs extracts contain secondary metabolites including alkaloids (3.490% and 3.430%), glycosides (18.023% and 13.301%) and saponins (0.812% and 0.752%). Methanolic sage leaves extract contains flavonoids (1.014%), glycosides (23.142%) and saponins (2.096%). The total phenolic contents of ASE, AAE and SOE were in order 4.273, 3.621 and 6.548 mg GAE/g dry weight (DW). These results suggest that Allium sativum, Allium ascalonicum and Salvia officinalis are beneficial in the control of diabetes by noticeable antioxidant and hypolipidemic properties. PMID:24250517

  11. Effects of Three Medicinal Plants Extracts in Experimental Diabetes: Antioxidant Enzymes Activities and Plasma Lipids Profiles inComparison with Metformin

    PubMed Central

    Fehresti Sani, Mohammad; Montasser Kouhsari, Shideh; Moradabadi, Leila

    2012-01-01

    In the present study we aimed to evaluate the effects of methanolic extracts of the bulbs of Garlic (Allium sativum L., Alliaceae) and Persian shallot (Allium ascalonicum L., Alliaceae ) and leaves of Sage (Salvia officinalis L., Lamiaceae ), ASE, AAE and SOE respectively, on the antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) activities and on the levels of plasma lipids profiles such as triglycerides (TG), total cholesterol (TC), high-density lipoproteins (HDL), low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL) in Alloxan diabetic Wistar rats. In comparison with diabetic control rats in diabetic treated rats, AAE increases the activities of SOD (65%), GPX (43%) and CAT (55%). ASE and SOE increase SOD activity by 60% and 33% respectively. ASE reduces TC (34%), SOE decreases TG (40%) and LDL (30%) and AAE reduces VLDL (24%). Metformin exhibits mild antioxidant and hypolipidemic properties. Results of quantitative phytochemical analysis show that the methanolic garlic and Persian shallot bulbs extracts contain secondary metabolites including alkaloids (3.490% and 3.430%), glycosides (18.023% and 13.301%) and saponins (0.812% and 0.752%). Methanolic sage leaves extract contains flavonoids (1.014%), glycosides (23.142%) and saponins (2.096%). The total phenolic contents of ASE, AAE and SOE were in order 4.273, 3.621 and 6.548 mg GAE/g dry weight (DW). These results suggest that Allium sativum, Allium ascalonicum and Salvia officinalis are beneficial in the control of diabetes by noticeable antioxidant and hypolipidemic properties. PMID:24250517

  12. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress.

    PubMed

    Zelenka, Jaroslav; Muchova, Lucie; Zelenkova, Miroslava; Vanova, Katerina; Vreman, Hendrik J; Wong, Ronald J; Vitek, Libor

    2012-08-01

    Antioxidant, anti-inflammatory and anti-atherogenic effects have been associated with elevations of unconjugated bilirubin (UCB) in serum and with the induction of heme oxygenase-1 (HO-1), the rate-limiting enzyme in UCB synthesis. The aim of this study was to investigate the intracellular metabolism and antioxidant properties of UCB in human hepatoblastoma HepG2 cells and tissues of Wistar rats exposed to oxidative stressors and lipopolysaccharide (LPS), respectively. Intracellular UCB concentrations in HepG2 cells correlated with its levels in culture media (p < 0.001) and diminished lipid peroxidation in a dose-dependent manner (p < 0.001). Moreover, induction of HO-1 with sodium arsenite led to 2.4-fold (p = 0.01) accumulation of intracellular UCB over basal level while sodium azide-derived oxidative stress resulted in a 60% drop (p < 0.001). This decrease was ameliorated by UCB elevation in media or by simultaneous induction of HO-1. In addition, hyperbilirubinemia and liver HO-1 induction in LPS-treated rats resulted in a 2-fold accumulation of tissue UCB (p = 0.01) associated with enhanced protection against lipid peroxidation (p = 0.02). In conclusion, hyperbilirubinemia and HO-1 induction associated with inflammation and oxidative stress increase intracellular concentrations of UCB, thus enhancing the protection of cellular lipids against peroxidation. Therefore, the previously reported protective effects of hyperbilirubinemia and HO-1 induction are at least in part due to intracellular accumulation of UCB. PMID:22580386

  13. Effect of muscle and post-mortem rate of pH and temperature fall on antioxidant enzyme activities in beef.

    PubMed

    Pastsart, Umaporn; De Boever, Maarten; Claeys, Erik; De Smet, Stefaan

    2013-03-01

    The aim of this study was to investigate the effect of muscle, inner and outer Musculus biceps femoris (IBF and OBF respectively) and Musculus longissimus dorsi (LD), on the post-mortem rate of pH and temperature fall, and the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) during simulated retail display. At day 0 of display (2 days post-mortem), the CAT and GSH-Px activities were lower in IBF than in OBF and LD (P<0.001), and the SOD activity was lower in OBF compared to IBF and LD (P<0.001). At day 10 of display, SOD and CAT activities had decreased in all three muscles compared to day 0 (P<0.001), whereas the GSH-Px activity did increase with time of display. Across muscles, there were significant relationships between temperature fall, colour, lipid and colour stability and antioxidant enzyme activities. PMID:23273481

  14. Protective effect of ganodermanondiol isolated from the Lingzhi mushroom against tert-butyl hydroperoxide-induced hepatotoxicity through Nrf2-mediated antioxidant enzymes.

    PubMed

    Li, Bin; Lee, Dong-Sung; Kang, Yue; Yao, Nai-Qi; An, Ren-Bo; Kim, Youn-Chul

    2013-03-01

    Ganodermanondiol, a biologically active compound, was isolated from the Lingzhi mushroom (Ganoderma lucidum). The present study examined the protective effects of ganodermanondiol against tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity. Ganodermanondiol protected human liver-derived HepG2 cells through nuclear factor-E2-related factor 2 (Nrf2) pathway-dependent heme oxygenase-1 expressions. Moreover, ganodermanondiol increased cellular glutathione levels and the expression of the glutamine-cysteine ligase gene in a dose-dependent manner. Furthermore, ganodermanondiol exposure enhanced the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and its upstream kinase activators, LKB1 and Ca(2+)/calmodulin-dependent protein kinase-II (CaMKII). This study indicates that ganodermanondiol exhibits potent cytoprotective effects on t-BHP-induced hepatotoxicity in human liver-derived HepG2 cells, presumably through Nrf2-mediated antioxidant enzymes and AMPK. PMID:23266269

  15. In Vitro Studies on the Antioxidant Property and Inhibition of ?-Amylase, ?-Glucosidase, and Angiotensin I-Converting Enzyme by Polyphenol-Rich Extracts from Cocoa (Theobroma cacao) Bean

    PubMed Central

    Ademosun, Ayokunle O.; Ademiluyi, Adedayo O.; Omojokun, Olasunkanmi S.; Nwanna, Esther E.; Longe, Kuburat O.

    2014-01-01

    Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of ?-amylase, ?-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on ?-amylase, ?-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited ?-amylase (1.81 ± 0.22?mg/mL), ?-glucosidase (1.84 ± 0.17?mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06?mg/mL [lungs], 1.006 ± 0.08?mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34?mg/mL), NO (6.98 ± 0.886?mg/mL), OH (3.72 ± 0.26?mg/mL), and ABTS (15.7 ± 1.06?mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of ?-amylase, ?-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension. PMID:25295218

  16. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates.

    PubMed

    Venuste, Muhamyankaka; Zhang, Xiaoming; Shoemaker, Charles F; Karangwa, Eric; Abbas, Shabbar; Kamdem, Patrick Eugene

    2013-04-30

    Nutritional and antioxidant properties of pumpkin meal and their hydrolysates prepared by hydrolysis with alcalase, flavourzyme, protamex or neutrase were evaluated. The hydrolysis process significantly increased protein content from 67.07% to 92.22%. All the essential amino acids met the Food and Agriculture Organization of United Nations/World Health Organization (WHO/FAO) suggested requirements for children and adults. The amino acid score (AAS) of meal was increased from 65.59 to 73.00 except for flavourzyme (62.97) and protamex (62.50). The Biological Value (BV) was increased from 53.18 to 83.44 except for protamex (40.97). However hydrolysis decreased the Essential Amino Acid/Total Amino Acid ratio (EAA/TAA) from 32.98% to 29.43%. Protein Efficiency Ratio (PER) was comparable to that of good quality protein (1.5) except for flavourzyme hydrolysate which had PER1 = 0.92, PER2 = 1.03, PER3 = 0.38. The in vitro protein digestibility (IVPD) increased from 71.32% to 77.96%. Antioxidant activity increased in a dose-dependent manner. At 10 mg mL(-1), the hydrolysates had increased 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activities from 21.89% to 85.27%, the reducing power increased from Abs(700nm) 0.21 to 0.48. Metal (Iron) chelating ability was improved from 30.50% to 80.03% at 1 mg mL(-1). Hydrolysates also showed better capabilities to suppress or delay lipid peroxidation in a linoleic acid model system. Different proteases lead to different Degrees of Hydrolysis (DH), molecular weight (MW) distribution, amino acid composition and sequence, which influenced the nutritional properties and antioxidant activities of the hydrolysates. Alcalase was the most promising protease in production of pumpkin protein hydrolysates with improved nutritional quality, while flavourzyme was best in production of hydrolysates with improved antioxidative activity among various assays. These results showed that hydrolysates from by-products of pumpkin oil-processing might serve as alternative sources of dietary proteins with good nutritional quality, and protection against oxidative damage. PMID:23591974

  17. Influence of dietary zinc on semen traits and seminal plasma antioxidant enzymes and trace minerals of beetal bucks.

    PubMed

    Rahman, H U; Qureshi, M S; Khan, R U

    2014-12-01

    Zinc (Zn) is a potent antioxidant and plays a key role in scavenging free radicals. We hypothesized that supplementation of Zn would reduce the oxidative damage, which is linked with poor sperm quality. Sixteen bucks of similar average age (2 years) and body weight (41 kg) were randomly divided into four groups viz., 1, 2, 3 and 4 supplemented with zinc sulphate into the diet at the rate of 0, 50, 100 and 200 mg/buck/day, respectively, for 3 months. At the end of the experiment, semen samples were collected and assessed. Seminal plasma was separated to find the concentration of superoxide dismutase (SOD), glutathione peroxidase (GPx), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and trace minerals (Zn, Cu, Mn and Fe). The results revealed that semen volume (1.85 ± 0.01 ml) and sperm motility (88.23 ± 5.77%) increased significantly (p < 0.05) in supplemented groups compared with the control specifically in group 3. SOD (10.66 ± 0.23 inhibition rate %) and GPx (23.55 ± 0.49 mU/ml) increased significantly (p < 0.05) in group 3 with no effect on AST and ALT. Among seminal plasma trace elements, no significant change (p > 0.05) was observed. From the present results, we concluded that zinc sulphate at the rate of 100 mg/buck/day improved semen traits and seminal plasma antioxidant capacity in Beetal bucks. PMID:25263460

  18. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells.

    PubMed

    Ghosh, Rita; Guha, Dipanjan; Bhowmik, Sudipta; Karmakar, Sayantani

    2013-09-18

    Irradiated cells generate dynamic responses in non-irradiated cells; this signaling phenomenon is known as the bystander effect (BE). Factors secreted by the irradiated cells communicate some of these signals. Conditioned medium from UVC-irradiated A375 human melanoma cells was used to study the BE. Exposure of cells to conditioned medium induce cell-cycle arrest at the G2/M transition. Although conditioned medium treatment, by itself, did not alter cell viability, treated cells were more resistant to the lethal action of UVC or H2O2. This protective effect of conditioned medium was lost within 8h. Apoptotic or autophagic cell death was not involved in this resistance. Exposure to conditioned medium did not influence the rate of DNA repair, as measured by NAD(+) depletion. The activities of catalase and superoxide dismutase were elevated in cells exposed to conditioned medium, but returned to normal levels by 8h post-treatment. These results indicate a close correlation between BE-stimulated antioxidant activity and cellular sensitivity. Cell-cycle arrest and stimulation of antioxidant activity may account for the resistance to killing that was observed in bystander cells exposed to UVC or H2O2 treatment and are consistent with the role of the BE as a natural defense function triggered by UVC irradiation. PMID:23845763

  19. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation.

    PubMed

    Je, Jae-Young; Lee, Da-Bin

    2015-06-10

    Naturally occurring phenolic compounds are widely found in plants. Here, the phenolic composition and hepatoprotective effect of the butanolic extract (BE) from Nelumbo nucifera leaves against H2O2-induced hepatic damage in cultured hepatocytes were investigated. BE showed high total phenol and flavonoid contents, and major phenolic compounds are quercetin, catechin, ferulic acid, rutin, and protocatechuic acid by HPLC analysis. BE effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) cation radicals (IC50 values of 5.21 ?g mL(-1) for DPPH and 6.22 ?g mL(-1) for ABTS(+)) and showed strong reducing power. Pretreatment of BE prior to 650 ?M H2O2 exposure markedly increased cell viability and suppressed H2O2-induced intracellular reactive oxygen species generation and AAPH-induced cell membrane lipid peroxidation. In addition, BE up-regulated intracellular glutathione levels under normal and oxidative stress conditions. Notably, the hepatoprotective effect of BE was directly correlated with the increased expression of superoxide dismutase-1 (SOD-1) by 0.62-fold, catalase (CAT) by 0.42-fold, and heme oxygenase-1 (HO-1) by 2.4-fold. Pretreatment of BE also increased the nuclear accumulation of Nrf2 by 8.1-fold indicating that increased SOD-1, CAT, and HO-1 expressions are Nrf2-mediated. PMID:25962859

  20. Diminution of Hepatic Response to 7, 12-dimethylbenz(?)anthracene by Ethyl Acetate Fraction of Acacia catechu Willd. through Modulation of Xenobiotic and Anti-Oxidative Enzymes in Rats

    PubMed Central

    Kumar, Rakesh; Kaur, Rajbir; Singh, Amrit Pal; Arora, Saroj

    2014-01-01

    Background Liver is the primary metabolizing site of body and is prone to damage by exogenous as well as endogenous intoxicants. Polycyclic aromatic hydrocarbons such as 7, 12- dimethylbenz(?)anthracene (DMBA) is an exogenous hepatotoxin, which is well known for modulating phase I, II and anti-oxidative enzymes of liver. Plants contain plethora of polyphenolic compounds which can reverse the damaging effect of various xenobiotics. The present study investigated protective role of the ethyl acetate fraction of Acacia catechu Willd. (EAF) against DMBA induced alteration in hepatic metabolizing and anti-oxidative enzymes in rats. Methodology and Principal Findings The rats were subjected to hepatic damage by treating with DMBA for 7 weeks on alternative days and treatment schedule was terminated at the end of 14 weeks. The rats were euthanized at the end of protocol and livers were homogenized. The liver homogenates were used to analyse phase I (NADPH-cytochrome P450 reducatse, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome b5), phase II (glutathione-S-transferase, DT diaphorase and ?-Glutamyl transpeptidase) and antioxidative enzymes (catalase, superoxide dismutase, ascorbate peroxidase, glutathione reductase, guiacol peroxidase and lactate dehydrogenase). Furthermore, other oxidative stress parameters (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes and reduced glutathione) and liver marker enzymes (serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase and alkaline phosphatase) were also studied. The DMBA induced significant changes in activity of hepatic enzymes that was reversed by treatment with three dose levels of EAF. Conclusion It is concluded that EAF affords hepato-protection against DMBA in rats through modulation of phase I, II and anti-oxidative enzymes. PMID:24587216

  1. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  2. The effect of carrot juice, ?-carotene supplementation on lymphocyte DNA damage, erythrocyte antioxidant enzymes and plasma lipid profiles in Korean smoker

    PubMed Central

    Lee, Hye-Jin; Park, Yoo Kyoung

    2011-01-01

    High consumption of fruits and vegetables has been suggested to provide some protection to smokers who are exposed to an increased risk of numerous cancers and other degenerative diseases. Carrot is the most important source of dietary ?-carotene. Therefore, the objective of this study was to investigate whether carrot juice supplementation to smokers can protect against lymphocyte DNA damage and to compare the effect of supplementation of capsules containing purified ?-carotene or a placebo (simple lactose). The study was conducted in a randomized and placebo-controlled design. After a depletion period of 14 days, 48 smokers were supplemented with either carrot juice (n = 18), purified ?-carotene (n = 16) or placebo (n = 14). Each group was supplemented for 8 weeks with approximately 20.49 mg of ?-carotene/day and 1.2 mg of vitamin C/day, as carrot juice (300 ml/day) or purified ?-carotene (20.49 mg of ?-carotene, 1 capsule/day). Lymphocyte DNA damage was determined using the COMET assay under alkaline conditions and damage was quantified by measuring tail moment (TM), tail length (TL), and% DNA in the tail. Lymphocyte DNA damage was significantly decreased in the carrot juice group in all three measurements. The group that received purified ?-carotene also showed a significant decrease in lymphocyte DNA damage in all three measurements. However, no significant changes in DNA damage was observed for the placebo group except TM (P = 0.016). Erythrocyte antioxidant enzyme was not significantly changed after supplementation. Similarly plasma lipid profiles were not different after carrot juice, ?-carotene and placebo supplementation. These results suggest that while the placebo group failed to show any protective effect, carrot juice containing beta-carotene or purified ?-carotene itself had great antioxidative potential in preventing damage to lymphocyte DNA in smokers. PMID:22259679

  3. Assessment of the roles of antioxidant enzymes and glutathione in 3,3?,4,4?,5-Pentachlorobiphenyl (PCB 126)-induced oxidative stress in the brain tissues of rats after subchronic exposure

    PubMed Central

    Hassoun, Ezdihar A.; Periandri-Steinberg, SeAnna

    2010-01-01

    The abilities of various doses of 3,3?,4,4?,5-pentachlorobiphenyl (PCB126) to induce changes in antioxidant enzyme activities and glutathione levels in the brain tissues of rats were examined in rats after subchronic exposure. Groups of rats were administered 10,30, 100, 300, 550 or 1000 ng PCB 126/kg/day, p.o., for 13 weeks and the activities of supeoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), as well as (GSH) levels were determined in the brain tissue homogenates. Treatment resulted in significant and dose-dependent increases in the activities of the three tested enzymes. While maximal increase GSH-Px activity was achieved with a dose of 100-175 mg/kg/day, CAT and SOD activities continued to increase in response to maximal dose used for this study. GSH levels on the other hand, were suppressed significantly in a dose-dependent fashion. Data suggest that previously observed increase in oxidative stress production by PCB-126 in the brain tissues of rats is associated with dose-dependent rise in antioxidant enzyme activities and GSH depletion. However, the increases in the antioxidant enzyme activities can not provide full protection against oxidative damage induced by the same doses. In addition, GSH depletion plays a critical role in the previously observed oxidative stress in response to this compound. PMID:20161674

  4. Respiratory Viral Infections and Subversion of Cellular Antioxidant Defenses

    PubMed Central

    Komaravelli, Narayana; Casola, Antonella

    2014-01-01

    Reactive oxygen species (ROS) formation is part of normal cellular aerobic metabolism, due to respiration and oxidation of nutrients in order to generate energy. Low levels of ROS are involved in cellular signaling and are well controlled by the cellular antioxidant defense system. Elevated levels of ROS generation due to pollutants, toxins and radiation exposure, as well as infections, are associated with oxidative stress causing cellular damage. Several respiratory viruses, including respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and influenza, induce increased ROS formation, both intracellularly and as a result of increased inflammatory cell recruitment at the site of infection. They also reduce antioxidant enzyme (AOE) levels and/or activity, leading to unbalanced oxidative-antioxidant status and subsequent oxidative cell damage. Expression of several AOE is controlled by the activation of the nuclear transcription factor NF-E2-related factor 2 (Nrf2), through binding to the antioxidant responsive element (ARE) present in the AOE gene promoters. While exposure to several pro-oxidant stimuli usually leads to Nrf2 activation and upregulation of AOE expression, respiratory viral infections are associated with inhibition of AOE expression/activity, which in the case of RSV and hMPV is associated with reduced Nrf2 nuclear localization, decreased cellular levels and reduced ARE-dependent gene transcription. Therefore, administration of antioxidant mimetics or Nrf2 inducers represents potential viable therapeutic approaches to viral-induced diseases, such as respiratory infections and other infections associated with decreased cellular antioxidant capacity. PMID:25584194

  5. Genetic control of cellular longevity in Neurospora crassa : A relationship between cyclic nucleotides, antioxidants, and antioxygenic enzymes

    Microsoft Academic Search

    Kenneth D. Munkres; Rajendra S. Rana

    1984-01-01

    Short-lived conidial longevity mutants of Neurospora were studied. Mutations at a number of closely-linked and probably functionally-redundant genes lead to deficiency of five\\u000a anti-oxygenic enzymes, including superoxide dismutase.\\u000a \\u000a The results of this investigation indicate that: 1) the mutants are deficient in 3?, 5?-cyclic adenosine monophosphate (cAMP);\\u000a 2)their survival is enhanced by dietary cAMP, or 3?, 5?-cyclic guanosine monophosphate (cGMP), or

  6. The effect of the combination of acids and tannin in diet on the performance and selected biochemical, haematological and antioxidant enzyme parameters in grower pigs

    PubMed Central

    2010-01-01

    Background The abolition of in-feed antibiotics or chemotherapeutics as growth promoters have stimulated the swine industry to look for alternatives such as organic acids, botanicals, probiotics and tannin. The objective of the present study was to compare the effects of a combination of acids and tannin with diet with organic acids and diet without growth promoters on the growth performance and selected biochemical, haematological and antioxidant enzyme parameters in grower pigs. Tannin is more natural and cheaper but possibly with the same effectiveness as organic acids with regard to growth performance. Methods Thirty-six 7 week old grower pigs, divided into three equal groups, were used in a three week feeding trial. Group I was fed basal diet, group II basal diet with added organic acids and group III basal diet with added organic and inorganic acids and tannin. Pigs were weighed before and after feeding and observed daily. Blood was collected before and after the feeding trial for the determination of selected biochemical, haematological and antioxidant enzyme parameters. One-way ANOVA was used to assess any diet related changes of all the parameters. Paired t-test was used to evaluate changes of blood parameters individually in each group of growers before and after feeding. Results No clinical health problems related to diet were noted during the three week feeding trial. The average daily gain (ADG) and selected blood parameters were not affected by the addition to basal diet of either acids and tannin or of organic acids alone. Selected blood parameters remained within the reference range before and after the feeding trial, with the exception of total serum proteins that were below the lower value of reference range at both times. The significant changes (paired t-test) observed in individual groups before and after the feeding trial are related to the growth of pigs. Conclusion Diet with acids and tannin did not improve the growth performance of grower pigs but had no deleterious effects on selected blood parameters. The possibility of beneficial effects of adding acids and tannin in diets on growth performance over a longer period, however, could not be excluded. PMID:20205921

  7. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene.

    PubMed

    Aksmann, Anna; Pokora, Wojciech; Ba?cik-Remisiewicz, Agnieszka; Dettlaff-Pokora, Agnieszka; Wielgomas, Bartosz; Dziadziuszko, Ma?gorzata; Tukaj, Zbigniew

    2014-12-01

    Heavy metals (HM) and polycyclic aromatic hydrocarbons (PAHs) are present in the freshwater environment at concentrations that can be hazardous to the biota. Among HMs and PAHs, cadmium (Cd) and anthracene (ANT) are the most prevalent and toxic ones. The response of Chlamydomonas cells to Cd and ANT at concentrations that markedly reduced the growth of algal population was investigated in this study. At such concentrations, both cadmium and anthracene were recognized as oxidative stress inducers, since high concentration of H2O2 in treated cultures was observed. Therefore, as a part of the "molecular phase" of the cell response to this stress, we examined the time-dependent expression of genes encoding the main antioxidative enzymes: superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as the activity of these enzymes in cells, with special attention paid to chloroplastic and mitochondrial isoforms of SOD. To characterize the cell response at the "physiological level", we examined the photosynthetic activity of stressed cells via analysis of chlorophyll a fluorescence in vivo. In contrast to standard ecotoxicity studies in which the growth end-points are usually determined, herein we present time-dependent changes in algal cell response to Cd- and ANT-induced stress. The most significant effect(s) of the toxicants on photosynthetic activity was observed in the 6th hour, when strong depression of PI parameter value, an over 50 percent reduction of the active reaction center fraction (RC0) and a 3-fold increase in non-photochemical energy dissipation (DI0/RC) were noted. At the same time, the increase (up to 2.5-fold) in mRNA transcript of SOD and CAT genes, followed by the enhancement in the enzyme activity was observed. The high expression of the Msd 3 gene in treated Chlamydomonas cells probably complements the partial loss of chloroplast Fe-SOD and APX activity, while catalase and Mn-SOD 5 seem to be the major enzymes responsible for mitochondrion protection. The progressive increase in SOD and CAT activities seems to be involved in the recovery of photosynthesis within 12-24h after the application of the toxicants. PMID:25193882

  8. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    PubMed Central

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to degrade AHLs to metabolites such as the hydroxy- or keto-form of the original compound. PMID:25914699

  9. Chlorogenic acid prevents acetaminophen-induced liver injury: the involvement of CYP450 metabolic enzymes and some antioxidant signals*

    PubMed Central

    Pang, Chun; Sheng, Yu-chen; Jiang, Ping; Wei, Hai; Ji, Li-li

    2015-01-01

    Chlorogenic acid (CGA), a polyphenolic compound, is abundant in fruits, dietary vegetables, and some medicinal herbs. This study investigated the prevention of CGA against acetaminophen (AP)-induced hepatotoxicity and its engaged mechanisms. CGA reversed the decreased cell viability induced by AP in L-02 cells in vitro. In addition, CGA reduced the AP-induced increased serum levels of alanine/aspartate aminotransferase (ALT/AST) in vivo. The effect of CGA on cytochrome P450 (CYP) enzymatic (CYP2E1, CYP1A2, and CYP3A4) activities showed that CGA caused very little inhibition on CYP2E1 and CYP1A2 enzymatic activities, but not CYP3A4. The measurement of liver malondialdehyde (MDA), reactive oxygen species (ROS), and glutathione (GSH) levels showed that CGA prevented AP-induced liver oxidative stress injury. Further, CGA increased the AP-induced decreased mRNA expression of peroxiredoxin (Prx) 1, 2, 3, 5, 6, epoxide hydrolase (Ephx) 2, and polymerase (RNA) II (DNA directed) polypeptide K (Polr2k), and nuclear factor erythroid-2-related factor 2 (Nrf2). In summary, CGA ameliorates the AP-induced liver injury probably by slightly inhibiting CYP2E1 and CYP1A2 enzymatic properties. In addition, cellular important antioxidant signals such as Prx1, 2, 3, 5, 6, Ephx2, Polr2k, and Nrf2 also contributed to the protection of CGA against AP-induced oxidative stress injury. PMID:26160718

  10. Inhibitory potential of some Romanian medicinal plants against enzymes linked to neurodegenerative diseases and their antioxidant activity

    PubMed Central

    Paun, Gabriela; Neagu, Elena; Albu, Camelia; Radu, Gabriel Lucian

    2015-01-01

    Context: Eryngium planum, Geum urbanum and Cnicus benedictus plants are an endemic botanical from the Romanian used in folk medicine. Objective: The extracts from three Romanian medicinal plants were investigated for their possible neuroprotective potential. Materials and Methods: Within this study, in vitro neuroprotective activity of the extracts of E. planum, G. urbanum, and C. benedictus plants were investigated via inhibition of acetylcholinesterase (AChE) and tyrosinase (TYR). Total content of phenolics, flavonoids, and proanthocyanidins, high-performance liquid chromatography profile of the main phenolic compounds and antioxidant activity were also determined. Results: Among the tested extracts, the best inhibition of AChE (88.76 ± 5.2%) and TYR (88.5 ± 5.2%) was caused by C. benedictus ethanol (EtOH) extract. The G. urbanum extracts exerted remarkable scavenging effect against 2, 2-diphenyl-1-picrylhydrazyl (IC50, 7.8 ± 0.5 ?g/mL aqueous extract, and IC50, 1.3 ± 0.1 ?g/mL EtOH extract, respectively) and reducing power, whereas the EtOH extract of C. benedictus showed high scavenging activity (IC50, 0.609 ± 0.04 mg/mL), also. Conclusion: According to our knowledge, this is the first study that demonstrates in vitro neuroprotective effects of E. planum, G. urbanum and C. benedictus. PMID:26109755

  11. Bioaccumulation of Cry1Ab Protein from an Herbivore Reduces Anti-Oxidant Enzyme Activities in Two Spider Species

    PubMed Central

    Wang, Zhi; Tian, Yun; Tian, Yixing; Song, Qisheng

    2014-01-01

    Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators. PMID:24454741

  12. Escherichia coli ?-galactosidase as an in vitro and in vivo reporter enzyme and stable transfection marker in the intracellular protozoan parasite Toxoplasma gondii

    Microsoft Academic Search

    Frank Seeber; John C. Boothroyd

    1996-01-01

    We have developed several protocols for the use of ?-galactosidase (?Gal) from Escherichia coli as a reporter enzyme in transfection studies of Toxoplasma gondii (Tg) and as a readily screenable marker for stable transformation. Three Tg expression vectors with different promoters driving lacZ were constructed and shown in transient transfections to differ in their relative expression levels. Using a fluorescent

  13. Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H(+)-pyrophosphatase gene (SbVPPase) from Sorghum bicolor.

    PubMed

    Anjaneyulu, Ediga; Reddy, Palle Surender; Sunita, Merla Srilakshmi; Kishor, Polavarapu B Kavi; Meriga, Balaji

    2014-06-15

    A vacuolar proton pyrophosphatase cDNA clone was isolated from Sorghum bicolor (SbVPPase) using end-to-end gene-specific primer amplification. It showed 80-90% homology at the nucleotide and 85-95% homology at the amino acid level with other VPPases. The gene was introduced into expression vector pCAMBIA1301 under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter and transformed into Agrobacterium tumifaciens strain LBA4404 to infect embryogenic calli of finger millet (Eleusine coracana). Successful transfer of SbVPPase was confirmed by a GUS histochemical assay and PCR analysis. Both, controls and transgenic plants were subjected to 100 and 200mM NaCl and certain biochemical and physiological parameters were studied. Relative water content (RWC), plant height, leaf expansion, finger length and width and grain weight were severely reduced (50-70%), and the flowering period was delayed by 20% in control plants compared to transgenic plants under salinity stress. With increasing salt stress, the proline and chlorophyll contents as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased by 25-100% in transgenics, while malondialdehyde (MDA) showed a 2-4-fold decrease. The increased activities of antioxidant enzymes and the reduction in the MDA content suggest efficient scavenging of reactive oxygen species (ROS) in transgenics and, as a consequence, probably alleviation of salt stress. Also, the leaf tissues of the transgenics accumulated 1.5-2.5-fold higher Na(+) and 0.4-0.8-fold higher K(+) levels. Together, these results clearly demonstrate that overexpression of SbVPPase in transgenic finger millet enhances the plant's performance under salt stress. PMID:24877670

  14. Effect of manipulation of incubation temperature on fatty acid profiles and antioxidant enzyme activities in meat-type chicken embryos.

    PubMed

    Yalçin, S; Ba?datlio?lu, N; Yenisey, Ç; Siegel, P B; Özkan, S; Ak?it, M

    2012-12-01

    Eggs (n = 1,800) obtained from Ross broiler breeders at 32 and 48 wk of age were incubated at either a constant temperature of 37.6°C throughout (T1), or the temperature was reduced for 6 h to 36.6°C each day during embryonic age (EA) 10 to 18 (T2). Yolk sac, liver, and brain fatty acid profiles and oxidant and antioxidant status of liver and brain were measured at EA 14, 19, and day of hatch (DOH). Fatty acid profiles of yolk sac, liver, and brain were influenced by age of breeder with significant breeder hen age × incubation temperature interactions. At EA 14, higher levels of 20:4n-6 and 22:6n-3 had been transferred from the yolk sac to T2 embryos from younger than older breeders, whereas for T1 and T2 embryos, yolk sac 20:4n-6 and 22.6n-3 values were similar for older breeders. Accumulation of 20:4n-6 and 22:6n-3 fatty acids in the liver of T1 and T2 embryos from younger breeders was similar; however, T2 embryos from older breeders had higher liver levels of 20:4n-6 and 22:6n-3 than T1 embryos. At EA 19, liver nitric oxide levels were higher for T2 embryos from younger breeders than those from breeders incubated at T1. Brain catalase levels of T2 embryos from younger breeders were higher than those from older breeders at DOH. Thus, changes in fatty acid profiles and catalase and nitric oxide production of brain and liver tissues resulting from 1°C lower incubation temperature from EA 10 to 18 reflect adaptive changes. PMID:23155039

  15. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants.

    PubMed

    Li, Xiaoning; Yang, Yingli; Jia, Lingyun; Chen, Haijian; Wei, Xia

    2013-03-01

    The purpose of this study was to evaluate antioxidative responses and proline metabolism in roots and leaves of wheat seedlings after treatment with different zinc (Zn) concentrations (0, 0.5, 1 and 3mM) for 6 days. A notable reduction in Zn content was observed in 0.5mM Zn-treated leaves, but a significant elevation in response to 1 and 3mM Zn treatment. Significant increases in Zn levels were observed in roots exposed to all applied Zn concentration. The highest Zn concentration resulted in significant reduction in the amount of total chlorophyll (chl) and chl a, while chl b content decreased under all applied Zn concentrations. In wheat leaves, Zn excess caused an insignificant enhancement of hydrogen peroxide (H(2)O(2)) content as well as unaltered malondialdehyde (MDA) level. Unchanged superoxide dismutase (SOD) activity, increased peroxidase (POD), catalase (CAT), glutathione reductase (GR) and ascorbate peroxidase (APX) activities were also observed in the leaves of Zn-treated seedlings. By contrast, higher H(2)O(2) and MDA contents in Zn-treated roots were correlated with the stimulation of SOD and the inhibition of POD and GR. There were significant enhancements of soluble sugar and proline in both leaves and roots of wheat seedlings under Zn stress, but the increased rate of proline was higher in the roots than in the leaves. Differently, soluble protein content due to Zn treatment was lower in the leaves but higher in the roots, as compared with untreated seedlings. Additionally, ornithine ?-aminotransferase in both leaves and roots was stimulated by Zn stress, but different Zn concentrations exhibited inhibitory effect on glutamate kinase activity in wheat seedlings. In contrast, all applied Zn concentration resulted in an elevation of proline dehydrogenase activity in the leaves while the highest Zn concentration inhibited this parameter in the roots. PMID:23260180

  16. Effects of Droplet-Vitrification Cryopreservation Based on Physiological and Antioxidant Enzyme Activities of Brassidium Shooting Star Orchid

    PubMed Central

    Rahmah, Safrina; Ahmad Mubbarakh, Safiah; Soo Ping, Khor

    2015-01-01

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages. PMID:25861687

  17. Amyloid ? peptides modify the expression of antioxidant repair enzymes and a potassium channel in the septohippocampal system.

    PubMed

    Durán-González, Jorge; Michi, Edna D; Elorza, Brisa; Perez-Córdova, Miriam G; Pacheco-Otalora, Luis F; Touhami, Ahmed; Paulson, Pamela; Perry, George; Murray, Ian V; Colom, Luis V

    2013-08-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative brain disorder characterized by extracellular accumulations of amyloid ? (A?) peptides, intracellular accumulation of abnormal proteins, and early loss of basal forebrain neurons. Recent studies have indicated that the conformation of A? is crucial for neuronal toxicity, with intermediate misfolded forms such as oligomers being more toxic than the final fibrillar forms. Our previous work shows that A? blocks the potassium (K(+)) currents IM and IA in septal neurons, increasing firing rates, diminishing rhythmicity and firing coherence. Evidence also suggests that oxidative stress (OS) plays a role in AD pathogenesis. Thus we wished to determine the effect of oligomeric and fibrillar forms of A????? on septohippocampal damage, oxidative damage, and dysfunction in AD. Oligomeric and fibrillar forms of A????? were injected into the CA1 region of the hippocampus in live rats. The rats were sacrificed 24 hours and 1 month after A? or sham injection to additionally evaluate the temporal effects. The expression levels of the K(+) voltage-gated channel, KQT-like subfamily, member 2 (KCNQ?) and the OS-related genes superoxide dismutase 1, 8-oxoguanine DNA glycosylase, and monamine oxidase A, were analyzed in the hippocampus, medial, and lateral septum. Our results show that both forms of A? exhibit time-dependent differential modulation of OS and K(+) channel genes in the analyzed regions. Importantly, we demonstrate that A? injected into the hippocampus triggered changes in gene expression in anatomical regions distant from the injection site. Thus the A? effect was transmitted to anatomically separate sites, because of the functional coupling of the brain structures. PMID:23473707

  18. Effects of Glucomannan-Enriched, Aronia Juice-Based Supplement on Cellular Antioxidant Enzymes and Membrane Lipid Status in Subjects with Abdominal Obesity

    PubMed Central

    Petrovi?-Oggiano, Gordana; Glibeti?, Natalija; Zec, Manja; Debeljak-Martacic, Jasmina; Koni?-Risti?, Aleksandra

    2014-01-01

    The aim of this study was to analyze the effects of a 4-week-long consumption of glucomannan-enriched, aronia juice-based supplement on anthropometric parameters, membrane fatty acid profile, and status of antioxidant enzymes in erythrocytes obtained from postmenopausal women with abdominal obesity. Twenty women aged 45–65 with a mean body mass index (BMI) of 36.1 ± 4.4?kg/m2 and waist circumference of 104.8 ± 10.1?cm were enrolled. Participants were instructed to consume 100?mL of supplement per day as part of their regular diet. A significant increase in the content of n-3 (P < 0.05) polyunsaturated fatty acids in membrane phospholipids was observed, with a marked increase in the level of docosahexaenoic fatty acid (P < 0.05). Accordingly, a decrease in the n-6 and n-3 fatty acids ratio was observed (P < 0.05). The observed effects were accompanied with an increase in glutathione peroxidase activity (P < 0.05). Values for BMI (P < 0.001), waist circumference (P < 0.001), and systolic blood pressure (P < 0.05) were significantly lower after the intervention. The obtained results indicate a positive impact of tested supplement on cellular oxidative damage, blood pressure, and anthropometric indices of obesity. PMID:25574495

  19. Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress.

    PubMed

    Guo, Hui; Xian, Jian-An; Li, Bin; Ye, Chao-Xia; Wang, An-Li; Miao, Yu-Tao; Liao, Shao-An

    2013-05-01

    Apoptotic cell ratio and mRNA expression of caspase-3, cathepsin B (CTSB), heat shock protein 70 (HSP70), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx) in hemocytes of white shrimp Litopenaeus vannamei exposed to nitrite-N (20 mg/L) was investigated at different stress time (0, 4, 8, 12, 24, 48 and 72 h). The apoptotic cell ratio and mRNA expression level of CTSB were significantly increased in shrimp exposed to nitrite-N for 48 and 72 h. Caspase-3 mRNA expression level significantly increased by 766.50% and 1811.16% for 24 and 48 h exposure, respectively. HSP70 expression level significantly increased at 8 and 72 h exposure. MnSOD mRNA expression in hemocytes up-regulated at 8 and 48 h, while CAT mRNA expression level increased at 24 and 48 h. GPx expression showed a trend that increased first and then decreased. Significant increases of GPx expression were observed at 8 and 12 h exposure. Expression level of TRx reached its highest level after 48 h exposure. These results suggest that nitrite exposure induces expression of apoptosis-related genes in hemocytes, and subsequently caused hemocyte apoptosis. Meanwhile, expression levels of HSP70 and antioxidant enzymes up-regulated to protect the hemocyte against nitrite stress. PMID:23474501

  20. [Effects of salicylic acid on the leaf photosynthesis and antioxidant enzyme activities of cucumber seedlings under low temperature and light intensity].

    PubMed

    Liu, Wei; Ai, Xi-Zhen; Liang, Wen-Juan; Wang, Hong-Tao; Liu, Sheng-Xue; Zheng, Nan

    2009-02-01

    In order to elucidate the regulation functions of salicylic acid (SA) on the photosynthesis of cucumber under low temperature and light intensity, the seedlings of cucumber 'Jinyou 3' under low temperature and light intensity were foliar-sprayed with different concentration SA, and the leaf gas exchange parameters, photochemical efficiency, MDA content, and antioxidant enzyme activities were measured. The results showed that under low temperature and light intensity, the leaf photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), actual photochemical efficiency of PS II (PhiPSII), and maximal photochemical efficiency of PS II (Fv/Fm) of the seedlings all decreased but the intercellular CO2 concentration (Ci) increased, suggesting that nonstomatal limitation was the main cause of the decrease of Pn under low temperature and light intensity stress. Low temperature and light intensity also led to the increase of leaf malondialdehyde (MDA) content and superoxide dismutase (SOD) activity, the decrease of catalase (CAT) activity, and the decrease after an initial increase of peroxidase (POD) activity. However, foliar-spraying 0.5-2.5 mmol x L(-1) of SA before the stress increased the leaf Pn, Gs, Tr, PhiPSII, Fv/Fm, and activities of SOD, POD and CAT while decreased the Ci and MDA content, suggesting that SA could regulate the leaf photosynthetic functions of cucumber seedlings, and enhance the seedlings resistance against low temperature and light intensity. The optimum concentration of SA for the foliar-spraying was 1 mmol x L(-1). PMID:19459388

  1. Effects of glucomannan-enriched, aronia juice-based supplement on cellular antioxidant enzymes and membrane lipid status in subjects with abdominal obesity.

    PubMed

    Kardum, Nevena; Petrovi?-Oggiano, Gordana; Takic, Marija; Glibeti?, Natalija; Zec, Manja; Debeljak-Martacic, Jasmina; Koni?-Risti?, Aleksandra

    2014-01-01

    The aim of this study was to analyze the effects of a 4-week-long consumption of glucomannan-enriched, aronia juice-based supplement on anthropometric parameters, membrane fatty acid profile, and status of antioxidant enzymes in erythrocytes obtained from postmenopausal women with abdominal obesity. Twenty women aged 45-65 with a mean body mass index (BMI) of 36.1 ± 4.4?kg/m(2) and waist circumference of 104.8 ± 10.1?cm were enrolled. Participants were instructed to consume 100?mL of supplement per day as part of their regular diet. A significant increase in the content of n-3 (P < 0.05) polyunsaturated fatty acids in membrane phospholipids was observed, with a marked increase in the level of docosahexaenoic fatty acid (P < 0.05). Accordingly, a decrease in the n-6 and n-3 fatty acids ratio was observed (P < 0.05). The observed effects were accompanied with an increase in glutathione peroxidase activity (P < 0.05). Values for BMI (P < 0.001), waist circumference (P < 0.001), and systolic blood pressure (P < 0.05) were significantly lower after the intervention. The obtained results indicate a positive impact of tested supplement on cellular oxidative damage, blood pressure, and anthropometric indices of obesity. PMID:25574495

  2. A comparison of metal levels and antioxidant enzymes in freshwater snails, Lymnaea natalensis, exposed to sediment and water collected from Wright Dam and Lower Mguza Dam, Bulawayo, Zimbabwe.

    PubMed

    Siwela, A H; Nyathi, C B; Naik, Y S

    2010-10-01

    We compared the bioaccumulation of lead (Pb), cadmium (Cd), zinc (Zn), copper (Cu), nickel (Ni) and iron (Fe) with antioxidant enzyme activity in tissues of the snails, Lymnaea natalensis, exposed to elements of two differently polluted dams. 45 snails were exposed to sediment and water collected from Wight Dam (reference) whilst another 45 snails were also exposed to sediment and water collected from Lower Mguza Dam (polluted dam). Except for Fe in sediment and Pb in water, metal concentrations were statistically higher in sediment and water collected from Lower Mguza Dam. Lead, Cd and Zn were two times higher in tissues of snails exposed to Lower Mguza Dam elements. On one hand, superoxide dismutase (SOD), diphosphotriphosphodiaphorase (DTD) and catalase (CAT) activities were significantly lower whilst malondialdehyde (MDA) levels were significantly higher in tissues of snails exposed to Lower Mguza Dam sediment and water. On the other hand, selenium-dependent glutathione peroxidase (Se-GPX) activity was significantly elevated in tissues of snails exposed to Lower Mguza Dam sediment and water. Snails exposed to Lower Mguza Dam elements seem to have responded to pollution by increasing CAT and Se-GPX specific activity in an effort to detoxify peroxides produced as a result of metal induced oxidative stress. PMID:20813407

  3. Antioxidant and biotransformation enzymes in Myriophyllum quitense as biomarkers of heavy metal exposure and eutrophication in Suquía River basin (Córdoba, Argentina).

    PubMed

    Nimptsch, Jorge; Wunderlin, Daniel A; Dollan, Anja; Pflugmacher, Stephan

    2005-10-01

    We report the evaluation of changes in water quality, increasing pollution level, of a section of Suquía River basin (Córdoba, Argentina) by using Myriophyllum quitense as bioindicator in addition to the measurement of chemical parameters, combined with chemometrics (ANOVA, Cluster and Discriminant Analysis). Myriophyllum quitense was collected upstream from Córdoba city at an unpolluted site of Suquía River basin. After collection plants were transplanted to different sites with different pollution levels. Subsequent to transplantation plants were weekly collected from the original site as well as from transplantation stations. Water quality was evaluated throughout the transplantation experiment, while the use of this macrophyte as bioindicator was verified through the activation of its antioxidant defenses and biotransformation system. Myriophyllum quitense reacts to the pollution stress increasing the activity of glutathione-S-transferases (CDNB and Fluorodifen), glutathione reductase (GR) and peroxidase (POD). Elevated enzyme activities agreed to different pollution levels, especially inorganic nitrogen loads combined with elevated lead and aluminum concentrations, all of them originated by anthropogenic activities, thus presenting Myriophyllum quitense as a good biomonitor for assessment of water quality in this polluted aquatic ecosystem. PMID:16168738

  4. Cadmium Telluride Quantum Dots (CdTe-QDs) and Enhanced Ultraviolet-B (UV-B) Radiation Trigger Antioxidant Enzyme Metabolism and Programmed Cell Death in Wheat Seedlings

    PubMed Central

    Han, Rong

    2014-01-01

    Nanoparticles (NPs) are becoming increasingly widespread in the environment. Free cadmium ions released from commonly used NPs under ultraviolet-B (UV-B) radiation are potentially toxic to living organisms. With increasing levels of UV-B radiation at the Earth’s surface due to the depletion of the ozone layer, the potential additive effect of NPs and UV-B radiation on plants is of concern. In this study, we investigated the synergistic effect of CdTe quantum dots (CdTe-QDs), a common form of NP, and UV-B radiation on wheat seedlings. Graded doses of CdTe-QDs and UV-B radiation were tested, either alone or in combination, based on physical characteristics of 5-day-old seedlings. Treatments of wheat seedlings with either CdTe-QDs (200 mg/L) or UV-B radiation (10 KJ/m2/d) induced the activation of wheat antioxidant enzymes. CdTe-QDs accumulation in plant root cells resulted in programmed cell death as detected by DNA laddering. CdTe-QDs and UV-B radiation inhibited root and shoot growth, respectively. Additive inhibitory effects were observed in the combined treatment group. This research described the effects of UV-B and CdTe-QDs on plant growth. Furthermore, the finding that CdTe-QDs accumulate during the life cycle of plants highlights the need for sustained assessments of these interactions. PMID:25329900

  5. Impact of non-starter lactobacilli on release of peptides with angiotensin-converting enzyme inhibitory and antioxidant activities during bovine milk fermentation.

    PubMed

    Solieri, Lisa; Rutella, Giuseppina Sefora; Tagliazucchi, Davide

    2015-10-01

    This study aimed at evaluating non-starter lactobacilli (NSLAB) isolated from cheeses for their proteolytic activity and capability to produce fermented milk enriched in angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides. Preliminarily, 34 NSLAB from Parmigiano Reggiano (PR) and 5 from Pecorino Siciliano cheeses were screened based on their capacity to hydrolyze milk proteins. Two NSLAB strains from PR, Lactobacillus casei PRA205 and Lactobacillus rhamnosus PRA331, showed the most proteolytic phenotype and were positively selected to inoculate sterile cow milk. The fermentation process was monitored by measuring viable cell population, kinetic of acidification, consumption of lactose, and synthesis of lactic acid. Milk fermented with Lb. casei PRA205 exhibited higher radical scavenging (1184.83 ± 40.28 mmol/L trolox equivalents) and stronger ACE-inhibitory (IC50 = 54.57 ?g/mL) activities than milk fermented with Lb. rhamnosus PRA331 (939.22 ± 82.68 mmol/L trolox equivalents; IC50 = 212.38 ?g/mL). Similarly, Lb. casei PRA205 showed the highest production of ACE-inhibitory peptides Val-Pro-Pro and Ile-Pro-Pro, which reached concentrations of 32.88 and 7.52 mg/L after 87 and 96 h of milk fermentation, respectively. This evidence supports Lb. casei PRA205, previously demonstrated to possess characteristics compatible with probiotic properties, as a promising functional culture able to promote health benefits in dairy foods. PMID:26187835

  6. Assessment of the roles of antioxidant enzymes and glutathione in 3,3?,4,4?,5-pentachlorobiphenyl (PCB 126)-induced oxidative stress in the brain tissues of rats after subchronic exposure

    Microsoft Academic Search

    Ezdihar A. Hassoun; SeAnna Periandri-Steinberg

    2010-01-01

    The abilities of various doses of 3,3?,4,4?,5-pentachlorobiphenyl (PCB126) to induce changes in antioxidant enzyme activities and glutathione levels in the brain tissues of rats were examined after subchronic exposure. Groups of rats were administered 10, 30, 100, 300, 550, or 1000 ng PCB 126 kg day, p.o., for 13 weeks and the activities of supeoxide dismutase (SOD), catalase (CAT), and

  7. Antioxidant Activity of Proteins and Peptides

    Microsoft Academic Search

    Ryan J. Elias; Sarah S. Kellerby; Eric A. Decker

    2008-01-01

    Proteins can inhibit lipid oxidation by biologically designed mechanisms (e.g. antioxidant enzymes and iron-binding proteins) or by nonspecific mechanisms. Both of these types of antioxidative proteins contribute to the endogenous antioxidant capacity of foods. Proteins also have excellent potential as antioxidant additives in foods because they can inhibit lipid oxidation through multiple pathways including inactivation of reactive oxygen species, scavenging

  8. Effect of excess dietary L-valine on laying hen performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activity.

    PubMed

    Azzam, M M M; Dong, X Y; Dai, L; Zou, X T

    2015-01-01

    1. The aim of this study was to evaluate the tolerance of laying hens for an excessive L-valine (L-val) supply on laying performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activities of laying hens. 2. A total of 720 HyLine Brown hens were allocated to 5 dietary treatment groups, each of which included 6 replicates of 24 hens, from 40 to 47 weeks of age. Graded amounts of L-val were added to the basal diet to achieve concentrations of 0 (control), 1, 2, 3 and 4 g/kg, respectively, in the experimental diets. 3. Supplementing the diet with L-val did not affect egg production, egg mass, egg weight, feed conversion ratio (FCR) or egg quality. The average daily feed intake response to supplemental L-val was quadratic and was maximised at 2.0 g L-val/kg diet. No differences were observed for total protein, total amino acids, blood urea nitrogen (BUN), uric acid, lactate dehydrogenase (LDH), alkaline phosphatase (AKP), Ca and P concentrations among the treatments. 4. Serum albumin concentration increased significantly in response to supplemental L-val and was also maximised at 2.0 g/kg. In addition, serum glucose increased quadratically to peak at 2.0 g L-val/kg diet. Serum free valine increased as L-val concentration increased to 2.0 g/kg diet and then decreased linearly. 5. Supplementation of L-val did not affect the serum concentrations of total antioxidative capability (T-AOC), superoxide dismutase (SOD) and malondialdehyde (MDA). L-val supplementation did not affect the concentrations of immunoglobulins IgG, IgA, IgM and complements (C3 and C4). Serum concentration of triiodothyronine (T3) increased significantly at 2.0 g L-val/kg diet. 6. It is concluded that high concentrations of L-val are tolerated and can be successfully supplemented into diets without detrimental effects on laying performance or immune function of laying hens. PMID:25409658

  9. Relationship between the activity of the ethylene-forming enzyme and the level of intracellular 2,4-dichlorophenoxyacetic acid in pear cell cultures in vitro

    Microsoft Academic Search

    Claudine Balagué; Jean-Claude Pech

    1985-01-01

    Ethylene production by auxin-dependent pear cells culturedin vitro falls rapidly when they are deprived of 2,4-D. This phenomenon is associated with a decrease in ACC production. Readdition\\u000a of 2,4-D causes a resumption of ACC production and ethylene synthesis. Ethylene-forming enzyme (EFE) activity, although never\\u000a limiting, decreases sharply during 2,4-D depletion and rises again upon addition of 2,4-D. This increase in

  10. Increased oxidative stress and impaired antioxidant response in lafora disease.

    PubMed

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2015-06-01

    Lafora disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/-mice, we observed an increase in a modified form of peroxiredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD. PMID:24838580

  11. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB.

    PubMed

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-?B) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1? and 1?, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. PMID:25831079

  12. Saikosaponin-D attenuates heat stress-induced oxidative damage in LLC-PK1 cells by increasing the expression of anti-oxidant enzymes and HSP72.

    PubMed

    Zhang, Bao-Zhen; Guo, Xiao-Tong; Chen, Jian-Wei; Zhao, Yuan; Cong, Xia; Jiang, Zhong-Ling; Cao, Rong-Feng; Cui, Kai; Gao, Shan-Song; Tian, Wen-Ru

    2014-01-01

    Heat stress stimulates the production of reactive oxygen species (ROS), which cause oxidative damage in the kidney. This study clarifies the mechanism by which saikosaponin-d (SSd), which is extracted from the roots of Bupleurum falcatum L, protects heat-stressed pig kidney proximal tubular (LLC-PK1) cells against oxidative damage. SSd alone is not cytotoxic at concentrations of 1 or 3 ?g/mL as demonstrated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To assess the effects of SSd on heat stress-induced cellular damage, LLC-PK1 cells were pretreated with various concentrations of SSd, heat stressed at 42°C for 1 h, and then returned to 37°C for 9 h. DNA ladder and MTT assays demonstrated that SSd helped to prevent heat stress-induced cellular damage when compared to untreated cells. Additionally, pretreatment with SSd increased the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) but decreased the concentration of malondialdehyde (MDA) in a dose-dependent manner when compared to controls. Furthermore, real-time PCR and Western blot analysis demonstrated that SSd significantly increased the expression of copper and zinc superoxide dismutase (SOD-1), CAT, GPx-1 and heat shock protein 72 (HSP72) at both the mRNA and protein levels. In conclusion, these results are the first to demonstrate that SSd ameliorates heat stress-induced oxidative damage by modulating the activity of anti-oxidant enzymes and HSP72 in LLC-PK1 cells. PMID:25169909

  13. Effects of antenatal, postpartum and post-weaning melatonin supplementation on blood pressure and renal antioxidant enzyme activities in spontaneously hypertensive rats.

    PubMed

    Lee, S K; Sirajudeen, K N S; Sundaram, Arunkumar; Zakaria, Rahimah; Singh, H J

    2011-06-01

    Although melatonin lowers blood pressure in spontaneously hypertensive rats (SHR), its effect following antenatal and postpartum supplementation on the subsequent development of hypertension in SHR pups remains unknown. To investigate this, SHR dams were given melatonin in drinking water (10 mg/kg body weight/day) from day 1 of pregnancy until day 21 postpartum. After weaning, a group of male pups continued to receive melatonin till the age of 16 weeks (Mel-SHR), while no further melatonin was given to another group of male pups (Maternal-Mel-SHR). Controls received plain drinking water. Systolic blood pressure (SBP) was measured at 4, 6, 8, 12 and 16 weeks of age, after which the kidneys were collected for analysis of antioxidant enzyme profiles. SBP was significantly lower till the age of 8 weeks in Maternal-Mel-SHR and Mel-SHR than that in the controls, after which no significant difference was evident in SBP between the controls and Maternal-Mel-SHR. SBP in Mel-SHR was lower than that in controls and Maternal-Mel-SHR at 12 and 16 weeks of age. Renal glutathione peroxidase (GPx) and glutathione s-transferase (GST) activities, levels of total glutathione and relative GPx-1 protein were significantly higher in Mel-SHR. GPx protein was however significantly higher in Mel-SHR. No significant differences were evident between the three groups in the activities of superoxide dismutase, catalase and glutathione reductase. In conclusion, it appears that while antenatal and postpartum melatonin supplementation decreases the rate of rise in blood pressure in SHR offspring, it however does not alter the tendency of offspring of SHR to develop hypertension. PMID:21210316

  14. Modulatory effect of Ganoderma lucidum on expression of xenobiotic enzymes, oxidant-antioxidant and hormonal status in 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats

    PubMed Central

    Deepalakshmi, Krishnamoorthy; Mirunalini, Sankaran

    2013-01-01

    Background: Mushrooms are an important natural source represents a major and untapped potent pharmaceutical product. Ganoderma lucidum (G. lucidum) an important medicinal mushroom has been shown to contain high amount of antioxidant. However, in vivo studies on G. lucidum fruiting bodies are lacking. Objectives: To determine the effects of G. lucidum fruiting bodies ethanolic extract (GLEet) on expression of xenobiotic enzymes, oxidant-antioxidant and hormonal status on 7,12-dimethyl benz[a]antheracene (DMBA) induced experimental breast cancer was investigated in female Sprague dawley rats. Materials and Methods: Cancer bearing female Sprague dawley rats was orally treated with GLEet (500mg/kg body weight) for 16 weeks. Incidence and tumor volume in each groups, and biochemical parameters were carried out in plasma, liver, and mammary tissues of animals. Histopathological and immunohistochemical analysis were also determined. Result: Oral administration of GLEet on tumor bearing animals significantly diminished the levels of lipid peroxidation thereby enhancing the nonenzymatic antioxidants and also positively regulated the estrogen receptor hormones level to near normal when compared with DMBA treated rats. Moreover, it also positively modulates the xenobiotic metabolizing enzymes. Therefore, the dietary administration of G. lucidum may be efficiently used as a chemopreventive agent against mammary carcinogenesis. Conclusion: We concluded that G. lucidum is a potent chemopreventive agent, thereby it offers maximum protection against DMBA-induced mammary carcinogenesis. PMID:23772114

  15. Amphotericin B as an intracellular antioxidant

    Microsoft Academic Search

    Kazuhiro Osaka; Yulia Y Tyurina; Raghvendra K Dubey; Vladimir A Tyurin; Vladimir B Ritov; Peter J Quinn; Robert A Branch; Valerian E Kagan

    1997-01-01

    The antifungal activity of amphotericin B (AmB) and its side-effects (e.g. nephrotoxicity and hemolytic action) are suggested to be associated with its prooxidant effects in target cells. To test this hypothesis, we have undertaken studies to examine the role of AmB in oxidative stress in cultured rat aortic smooth muscle cells (SMC) incubated in the absence or in the presence

  16. [Alleviated affect of exogenous CaCl2 on the growth, antioxidative enzyme activities and cadmium absorption efficiency of Wedelia trilobata hairy roots under cadmium stress].

    PubMed

    Shi, Heping; Wang, Yunling; Tsang, PoKeung Eric; Chan, LeeWah Andrew

    2012-06-01

    In order to study the physiological mechanism of exogenous calcium on the toxicity of heavy metal cadmium (Cd) to Wedelia trilobata hairy roots, the effects of Cd alone, and in combination with different concentrations of Ca on growth, contents of soluble protein and malondialdehyde (MDA), activities of superoxide dismutase (SOD) and peroxidase (POD), Cd2+ absorption in W. trilobata hairy roots were investigated. Cd concentrations lower than 50 micromol/L enhanced the growth of hairy roots, while concentrations higher than 100 micromol/L inhibited growth, making the branched roots short and small, and also turning the root tips brown, even black. In comparison with the control (0 micromol/L Cd), the soluble protein content in hairy roots was found to increase when cultured with 10-50 micromol/L Cd, and decrease when exposed to a cadmium concentration higher than 100 micromol/L Cd. In addition, the activities of POD and SOD activity and MDA content were significantly higher than the control. Compared to the control (hairy roots cultured without 10-30 mmol/L Ca), 100 micromol/L Cd or 300 micromol/L Cd in combination with 10-30 mmol/L Ca resulted in increased growth, causing the main root and secondary roots thicker and also an increase in soluble protein content. On the contrary, MDA content and POD and SOD activities decreased. Quantitative analysis by Atomic Absorption Spectrophotometry showed that W. trilobata hairy roots can absorb and adsorb heavy metal Cd in the ionic form of Cd2+. The maximum content of Cd2+ absorbed by the hairy roots was obtained with a concentration 100 micromol/L Cd2+ while that of Cd2+ adsorbed by hairy roots was achieved with a concentration of 300 micromol/L Cd2+. The exogenous addition of 10-30 mmol/L Ca2+ was found to reduce the absorption, adsorption of Cd2+ and the toxicity of Cd significantly. This reduction in toxicity was caused by the reduction in the absorption of Cd and decreasing the lipid peroxidation through regulating the activities of antioxidant enzymes SOD and POD in the hairy roots. PMID:23016311

  17. The effects of ageing and sulfur dioxide inhalation exposure on visual-evoked potentials, antioxidant enzyme systems, and lipid-peroxidation levels of the brain and eye.

    PubMed

    Kilic, Derya

    2003-01-01

    The effects of ageing and 10 ppm sulfur dioxide (SO(2)) inhalation exposure on visual-evoked potentials (VEPs), thiobarbituric acid reactive substances (TBARS), a product of lipid peroxidation, and the activities of Cu, Zn superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) of brain and eye were investigated in young (3-month), adult (12-month), and mature (24-month) Swiss male albino rats. The experimental groups were placed in an exposure chamber containing a constant level of 10 ppm SO(2), while control groups were placed in an exposure chamber, which was continually pumped with filtered air, for 1 h/day x 7 days/week for 6 weeks. SO(2) inhalation exposure caused increased levels of brain, retina, and lens Cu, Zn SOD activity, and decreased levels of brain and lens GSH-Px activity in all experimental groups with respect to their corresponding control groups, whereas no change was observed in the level of retina GSH-Px activity. No alterations were observed in brain CAT activity. On the other hand, retina CAT activity was slightly decreased in SO(2)-exposed rats, but no change was observed in their lens CAT activity. The brain and lens TBARS levels of all SO(2)-exposed groups were significantly increased in comparison with their respective control groups. The amount of TBARS was only increased in the retina of the SO(2)-exposed 3-month group compared with its control. Of the SO(2)-exposed rats, the mean latencies of the P(1), N(1), P(2), and P(3) components of the 3-month group, P(1), N(1), and N(2) components of the 12-month group, and only P(3) of the 24-month group were significantly prolonged in comparison with those of their control groups. The amplitudes of N(1)P(2) and P(2)N(2) in the 12- and 24-month control groups were significantly decreased compared with those of the 3-month group. On the other hand, no differences were observed among those of SO(2)-exposed groups. These findings suggest that ageing and SO(2) inhalation exposure have the potential to induce antioxidant enzymes in the brain and eye, and VEP alterations, which are the primary target for air pollutants. It could be concluded that lipid peroxidation could play a critical role in the mechanism responsible for VEP alterations with ageing. PMID:12972072

  18. Amperometric enzyme sensor to check the total antioxidant capacity of several mixed berries. Comparison with two other spectrophotometric and fluorimetric methods.

    PubMed

    Tomassetti, Mauro; Serone, Maruschka; Angeloni, Riccardo; Campanella, Luigi; Mazzone, Elisa

    2015-01-01

    The aim of this research was to test the correctness of response of a superoxide dismutase amperometric biosensor used for the purpose of measuring and ranking the total antioxidant capacity of several systematically analysed mixed berries. Several methods are described in the literature for determining antioxidant capacity, each culminating in the construction of an antioxidant capacity scale and each using its own unit of measurement. It was therefore endeavoured to correlate and compare the results obtained using the present amperometric biosensor method with those resulting from two other different methods for determining the total antioxidant capacity selected from among those more frequently cited in the literature. The purpose was to establish a methodological approach consisting in the simultaneous application of different methods that it would be possible to use to obtain an accurate estimation of the total antioxidant capacity of different mixed berries and the food products containing them. Testing was therefore extended to also cover jams, yoghurts and juices containing mixed berries. PMID:25654720

  19. Antioxidant enzyme activities and lipid peroxidation in earthworm Eisenia fetida exposed to 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-?-2-benzopyran.

    PubMed

    Liu, Shuo; Zhou, Qixing; Chen, Chun

    2012-08-01

    Polycyclic musks have been indicated to cause lethal and sublethal effects on exposed biota. However, knowledge about the effect of polycyclic musks on the antioxidant defense system in earthworms is vague. In this work, the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and malondialdehyde (MDA) exposed to 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-?-2-benzopyran (HHCB) were systematically investigated. The investigation shows that their activities are closely related to the exposed dose and time of HHCB. For SOD and CAT, the activities increased monotonically with increased exposed dose of HHCB, which indicates a dose-dependent change pattern. POD exhibited its peak activity in 0.0157 ?g cm(-2) HHCB treatment and decreased at higher concentrations. These two changing patterns were complementary, which reveals the cooperation of enzymes in response to oxidative stress. MDA content in earthworms was basically unaffected with a 1-day exposure and significantly increased after 2-day and 3-day exposures, correlating with changes in the activities of SOD and CAT when the concentration of HHCB was high. It was also found that the sensitivity of Eisenia fetida to HHCB increased over time. These results may support the theoretical hypothesis that oxidative stress is an important component for the response of earthworms to the toxicity of HHCB in environment. Among the studied enzymes, SOD and CAT appeared to be the most responsive biomarkers of oxidative stress caused by HHCB. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012. PMID:22764077

  20. Allium schoenoprasum L., as a natural antioxidant.

    PubMed

    Stajner, D; Canadanovi?-Brunet, J; Pavlovi?, A

    2004-07-01

    The present study investigated the antioxidative properties of the bulb, leaf and stalk of Allium schoenoprasum L. Activities of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, glutathione peroxidase), quantities of malonyldialdehyde, superoxide and hydroxyl radicals and reduced glutathione and also the content of total flavonoids, chlorophylls a and b, carotenoids, vitamin C and soluble proteins were determined. The results indicate that extracts from all plant organs exhibited antioxidant activity. The highest antioxidant activity was observed in the leaves. PMID:15305309

  1. High Sensitivity of Nrf2 Knockout Mice to Acetaminophen Hepatotoxicity Associated with Decreased Expression of ARE-Regulated Drug Metabolizing Enzymes and Antioxidant Genes

    Microsoft Academic Search

    Akiko Enomoto; Ken Itoh; Eiko Nagayoshi; Junko Haruta; Toyoe Kimura; Tania O'Connor; Takanori Harada; Masayuki Yamamoto

    2001-01-01

    Nrf2, which belongs to the basic leucine zipper (bZip) transcrip- tion factor family, has been implicated as a key molecule involved in antioxidant-responsive element (ARE)-mediated gene expres- sion. In order to examine the role of Nrf2 in protection against xenobiotic toxicity, the sensitivity of nrf2 knockout mice to acet- aminophen (N-acetyl-4-aminophenol (APAP)) was analyzed. The saturation of detoxification pathways after

  2. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione.

    PubMed Central

    Kwak, M. K.; Itoh, K.; Yamamoto, M.; Sutter, T. R.; Kensler, T. W.

    2001-01-01

    BACKGROUND: The induction of phase 2 enzymes by dithiolethiones such as oltipraz is an effective means for achieving protection against environmental carcinogens in animals and humans. Transcriptional control of the expression of at least some of these protective enzymes is mediated through the antioxidant response element (ARE) found in the upstream regulatory region of many phase 2 genes. The transcription factor Nrf2, which binds to the ARE, appears to be essential for the induction of proto-typical phase 2 enzymes such as glutathione S-transferase (GST) Ya, Yp, and NAD(P)H: quinone reductase (NQO1) in vivo. MATERIALS AND METHODS: In the present study, 3H-1,2-dithiole-3-thione (D3T) was used as a potent model inducer whose effects on gene expression and chemopreventive efficacy have been extensively characterized in the rat. Over a dozen putative D3T-inducible genes were examined in wild-type and nrf2-disrupted mice by Northern blot hybridization and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to elucidate whether loss of Nrf2 function also affects the induction of a broader representation of phase 2 and antioxidative enzymes. The effects of D3T on hepatic Nrf2 expression and localization were also examined in vivo by Northern blot hybridization, electromobility shift assay, and Western blot analysis. RESULTS: Specific activities of hepatic GST and NQO1 were increased by D3T in wild-type mice and were largely blunted in the nrf2-deficient mice. However, changes in levels of RNA transcripts following D3T treatment of nrf2-disrupted mice were multidirectional, dependent upon the particular gene examined. Although elevation of mRNAs for GST Ya, NQO1, microsomal epoxide hydrolase and gamma-glutamylcysteine synthetase regulatory chain were blocked in the mutant mice, elevation of GST Yp mRNA was largely unimpeded. Increases in levels of mRNA for the heavy and light chains of ferritin were only seen in the nrf2-disrupted mice. Transcript levels of UDP-glucuronyl-transferase 1A6, heme oxygenase-1, maganese superoxide dismutase, which were inducible in the wild-type mice, actually decreased in the mutant mice, whereas levels of mRNA for GST Yc, aflatoxin B1 aldehyde reductase and catalase decreased following D3T treatment in the mutant mice in the absence of any inductive effect by D3T in the wild-type mice. In wild-type mice, treatment with D3T lead to 3-fold increases in hepatic Nrf2 mRNA levels within several hours following dosing as assessed by Northern blot and RT-PCR analyses. Gel shift analyses with oligonucleotide probes for human NQO1 ARE, murine GST Ya ARE, and erythroid transcription factor (NF-E2) binding site showed increased intensity of binding with nuclear extracts prepared from livers of D3T-treated mice compared to vehicle-treated controls. Antibody to Nrf2 supershifted the DNA binding bands of these nuclear extracts. Moreover, immunoblot analysis indicated accumulation of Nrf2 in extracts prepared from hepatic nuclei of D3T-treated mice at the same time points. CONCLUSIONS: Nrf2 plays a central role in the regulation of constitutive and inducible expression of multiple phase 2 and antioxidative enzymes by chemoprotective dithiolethiones in vivo, although patterns of response vary among different genes. Knowledge of the factors controlling the specificity of actions of enzyme inducers will be exceedingly helpful in the design and isolation of more efficient and selective chemoprotective agents. PMID:11471548

  3. Synergistic Exposure of Rice Seeds to Different Doses of ?-Ray and Salinity Stress Resulted in Increased Antioxidant Enzyme Activities and Gene-Specific Modulation of TC-NER Pathway

    PubMed Central

    Macovei, Anca; Garg, Bharti; Raikwar, Shailendra; Carbonera, Daniela; Bremont, Juan Francisco Jiménez; Gill, Sarvajeet Singh; Tuteja, Narendra

    2014-01-01

    Recent reports have underlined the potential of gamma (?)-rays as tools for seed priming, a process used in seed industry to increase seed vigor and to enhance plant tolerance to biotic/abiotic stresses. However, the impact of ?-rays on key aspects of plant metabolism still needs to be carefully evaluated. In the present study, rice seeds were challenged with different doses of ?-rays and grown in absence/presence of NaCl to assess the impact of these treatments on the early stages of plant life. Enhanced germination efficiency associated with increase in radicle and hypocotyl length was observed, while at later stages no increase in plant tolerance to salinity stress was evident. APX, CAT, and GR were enhanced at transcriptional level and in terms of enzyme activity, indicating the activation of antioxidant defence. The profiles of DNA damage accumulation were obtained using SCGE and the implication of TC-NER pathway in DNA damage sensing and repair mechanisms is discussed. OsXPB2, OsXPD, OsTFIIS, and OsTFIIS-like genes showed differential modulation in seedlings and plantlets in response to ?-irradiation and salinity stress. Altogether, the synergistic exposure to ?-rays and NaCl resulted in enhanced oxidative stress and proper activation of antioxidant mechanisms, thus being compatible with plant survival. PMID:24551849

  4. Cytotoxicity evaluation and antioxidant enzyme expression related to heavy metals found in tuna by-products meal: An in vitro study in human and rat liver cell lines.

    PubMed

    Saïdi, Saber Abdelkader; Azaza, Mohamed Salah; Windmolders, Petra; van Pelt, Jos; El-Feki, Abdelfattah

    2013-11-01

    Heavy metals can accumulate in organisms via various pathways, including respiration, adsorption and ingestion. They are known to generate free radicals and induce oxidative and/or nitrosative stress with depletion of anti-oxidants. Tuna by-product meal (TBM) is rich in proteins and can, therefore, offer an attractive protein source for animals. This study was undertaken to assess the effects of metals present in TBM, namely cadmium (Cd), lead (Pb), and mercury (Hg), separately or in combination with oxidative stress, on cell viability. Three cell models: rat liver FTO2B, human hepatoma HepG2, and human hepatic WRL-68, were used. Cell viability was determined following exposure to various concentrations of the metals. Two antioxidant genes, catalase (CAT) and superoxide dismutase (SOD), were measured to obtain a better understanding of oxidative stress-associated gene expression. Among the metals present in TBM, only Cd at a concentration of 30?M was noted to exhibit cytotoxic effects. This cytotoxicity was even more pronounced after co-stimulation with H2O2, used to mimic systemic oxidative stress. At non-toxic concentrations, Hg and Pb were noted to aggravate oxidative stress toxicity. The results further revealed that exposure to Cd, Pb, and a co-stimulation of H2O2 with Hg resulted in the increased expression of antioxidant gene SOD. A risk assessment of toxic contaminants in TBM indicated that food safety objectives should consider the human health impacts of foods derived from animals fed on contaminated meal and that much care should be taken when TBM is used in animal diet. PMID:23578882

  5. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress.

    PubMed

    Krishnan, Navasona; Dickman, Martin B; Becker, Donald F

    2008-02-15

    The potential of proline to suppress reactive oxygen species (ROS) and apoptosis in mammalian cells was tested by manipulating intracellular proline levels exogenously and endogenously by overexpression of proline metabolic enzymes. Proline was observed to protect cells against H(2)O(2), tert-butyl hydroperoxide, and a carcinogenic oxidative stress inducer but was not effective against superoxide generators such as menadione. Oxidative stress protection by proline requires the secondary amine of the pyrrolidine ring and involves preservation of the glutathione redox environment. Overexpression of proline dehydrogenase (PRODH), a mitochondrial flavoenzyme that oxidizes proline, resulted in 6-fold lower intracellular proline content and decreased cell survival relative to control cells. Cells overexpressing PRODH were rescued by pipecolate, an analog that mimics the antioxidant properties of proline, and by tetrahydro-2-furoic acid, a specific inhibitor of PRODH. In contrast, overexpression of the proline biosynthetic enzymes Delta(1)-pyrroline-5-carboxylate (P5C) synthetase (P5CS) and P5C reductase (P5CR) resulted in 2-fold higher proline content, significantly lower ROS levels, and increased cell survival relative to control cells. In different mammalian cell lines exposed to physiological H(2)O(2) levels, increased endogenous P5CS and P5CR expression was observed, indicating that upregulation of proline biosynthesis is an oxidative stress response. PMID:18036351

  6. Hawthorn (Crataegus oxyacantha L.) bark extract regulates antioxidant response element (ARE)-mediated enzyme expression via Nrf2 pathway activation in normal hepatocyte cell line.

    PubMed

    Krajka-Ku?niak, Violetta; Paluszczak, Jaros?aw; Oszmia?ski, Jan; Baer-Dubowska, Wanda

    2014-04-01

    Hawthorn (Crataegus oxyacantha L.), a plant used in traditional medicine, is a rich source of procyanidins which have been reported to exhibit antioxidant and anti-carcinogenic activity. In this study, we assessed the effect of hawthorn bark extract (HBE) on Nrf2 pathway activation in THLE-2 and HepG2 cells. Treatment with 1.1 µg/mL, 5.5 µg/mL and 11 µg/mL of HBE resulted in the translocation of Nrf2 from the cytosol to the nucleus in both cell lines; however, the accumulation of phosphorylated Nrf2 was observed only in THLE-2. Accordingly, treatment of cells with HBE was associated with an increase in the mRNA and protein level of such Nrf2-dependent genes as glutathione S-transferases (GSTA, GSTP, GSTM, GSTT), NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) (0.2-1.1-fold change, p?antioxidant/detoxifying effects in hepatocytes, and this may explain the hepatoprotective and chemopreventive properties of these phytochemicals. PMID:23843400

  7. Intracellular proteolytic activity during sporulation of Bacillus megaterium

    Microsoft Academic Search

    J. Chaloupka; M. Strnadová; V. Zalabák

    1977-01-01

    Intracellular proteolytic activity increased during incubation of the sporogenic strain ofBacillus megaterium KM in a sporulation medium together with excretion of an extracellular metalloprotease. The exocellular protease activity\\u000a in a constant volume of the medium reached a 100-fold value with respeot to the intracellular activity. Maximal values of\\u000a the activity of both the extracellular and intracellular enzyme were reached after

  8. Selenium-enriched Candida utilis: Efficient preparation with l-methionine and antioxidant capacity in rats.

    PubMed

    Yang, Bo; Wang, Dahui; Wei, Gongyuan; Liu, Zhikui; Ge, Xiaoguang

    2013-01-01

    Selenium-enriched Candida utilis has attracted much attention due to its expanding application in food and feed additives. The objective of this study was to efficiently prepare selenium-enriched C. utilis and to investigate the effects of the prepared yeast on antioxidant capacity in rats. A batch culture of selenium-enriched C. utilis was first carried out, and the addition of sodium selenite (Na(2)SeO(3)) after all glucose had been consumed was found to favor higher intracellular glutathione and organic selenium content. Moreover, l-methionine boosted yeast cell growth and glutathione biosynthesis, and prevented glutathione from leaking to the extracellular space that can be caused by Na(2)SeO(3). We therefore developed a two-stage culture strategy involving supplementation with l-methionine and Na(2)SeO(3) at separate culture phases to improve the performance of selenized C. utilis. Using this two-stage culture strategy, intracellular glutathione content reached 18.6 mg/g and 15.5mg/g, respectively, in batch and fed-batch systems, and organic selenium content reached 905.2 ?g/g and 984.7 ?g/g, respectively. The effects of selenium-enriched C. utilis on the activities of antioxidant related enzymes in rats were investigated, and the prepared selenium-enriched C. utilis was shown to be an optimal dietary supplement for enhancing antioxidant capacity in rats. PMID:22940082

  9. Effect of Trigonella foenum graecum L on the Activities of Antioxidant Enzyme and Their Expression in Tissues of Alloxan-Induced Diabetic Rats.

    PubMed

    Sharma, Sapneh; Mishra, Vibhuti; Jayant, Shiv Kumar; Srivastava, Nalini

    2015-07-01

    Diabetes is a life-threatening metabolic disorder. This study was undertaken to evaluate the antihyperglycemic and antioxidative potential of seed powder of Trigonella foenum-graecum L in alloxan (55 mg/kg) induced diabetic rats. The results obtained showed that extensive oxidative stress is generated in tissues of diabetic rats as evidenced by increased production of hydrogen peroxide, increased accumulation of malondialdehyde (MDA) and 4-hydroxynonanal (4HNE) and decreased activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in tissues of diabetic rats. It was observed that the transcription of genes of SOD, GPx, and CAT was also significantly decreased when compared with control. Treatment of Trigonella for 15 days to diabetic rats showed hypoglycemic effect and improved the altered levels of H2O2, MDA, and 4HNE, the activities of SOD, GPx, and CAT as well as transcription of these genes in the liver and the brain of diabetic rats. PMID:25854675

  10. Protein antioxidants in thalassemia.

    PubMed

    Awadallah, Samir

    2013-01-01

    It is common knowledge that thalassemic patients are under significant oxidative stress. Chronic hemolysis, frequent blood transfusion, and increased intestinal absorption of iron are the main factors that result in iron overload with its subsequent pathophysiologic complications. Iron overload frequently associates with the generation of redox-reactive labile iron, which in turn promotes the production of other reactive oxygen species (ROS). If not neutralized, uncontrolled production of ROS often leads to damage of various intra- and extracellular components such as DNA, proteins, lipids, and small antioxidant molecules among others. A number of endogenous and exogenous defense mechanisms can neutralize and counteract the damaging effects of labile iron and the reactive substances associated with it. Endogenous antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and ferroxidase, may directly or sequentially terminate the activities of ROS. Nonenzymatic endogenous defense mechanisms include metal binding proteins (ceruloplasmin, haptoglobin, albumin, and others) and endogenously produced free radical scavengers (glutathione (GSH), ubiquinols, and uric acid). Exogenous agents that are known to function as antioxidants (vitamins C and E, selenium, and zinc) are mostly diet-derived. In this review, we explore recent findings related to various antioxidative mechanisms operative in thalassemic patients with special emphasis on protein antioxidants. PMID:23724742

  11. Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers

    Microsoft Academic Search

    Francesco Regoli; Giovanni Principato

    1995-01-01

    The effects of exposure to metals under and laboratory conditions were investigated in the Mediterranean mussel Mytilus galloprovincialis. The examined biological responses included the concentrations of heavy metals, the level of glutathione, and the activity of several enzymes selected among glutathione-dependent oxidoreductases and hydrolases: glutathione reductase. EC1.6.4.2; glyoxalase I, EC4.4.1.5; glyoxalase II, EC3.1.2.6; glutathione S-transferases, EC2.5.1.18; Se-dependent, EC1 11.1.9 and

  12. The Effects of Excess Copper on Antioxidative Enzymes, Lipid Peroxidation, Proline, Chlorophyll, and Concentration of Mn, Fe, and Cu in Astragalus neo-mobayenii

    PubMed Central

    Karimi, P.; Khavari-Nejad, R. A.; Niknam, V.; Ghahremaninejad, F.; Najafi, F.

    2012-01-01

    To probe the physiological and biochemical tolerance mechanisms in Astragalus neo-mobayenii Maassoumi, an endemic plant around the Cu-rich areas from the North West of Iran, the effect of different copper concentrations at toxic levels on this plant was investigated. Copper was applied in the form of copper sulfate (CuSO4·5H2O) in four levels (0, 50, 100, and 150??M). We observed no visible symptoms of Cu toxicity in this plant species. During the exposure of plants to excess copper, the antioxidant defense system helped the plant to protect itself from the damage. With increasing copper concentration, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities increased in leaves and roots (P < 0.001) compared with that of the control group. The chlorophyll amount gradually declined with increasing Cu concentrations. However, reduction in the 50??M level showed insignificant changes. Enhanced accumulation of proline content in the leaves was determined, as well as an increase of MDA content (oxidative damage biomarker) (P < 0.001). The results indicated that Cu contents in leaves and roots enhanced with increasing levels of Cu application. The Fe and Mn contents in both shoots and roots significantly decreased with increasing Cu concentration. Finally, the mechanisms of copper toxicity and copper tolerance in this plant were briefly discussed. PMID:23213292

  13. RESEARCH PAPER Antioxidant responses of hyper-accumulator and

    E-print Network

    Ma, Lena

    RESEARCH PAPER Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic responded differentially to arsenic exposure in terms of anti-oxidative defence. Higher levels of super. vittata. Higher activity of anti-oxidative enzymes and lower thiobarbituric acid-reacting substances

  14. Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology

    PubMed Central

    Raymond, Laura J.; Deth, Richard C.; Ralston, Nicholas V. C.

    2014-01-01

    Autism and autism spectrum disorders (ASDs) are behaviorally defined, but the biochemical pathogenesis of the underlying disease process remains uncharacterized. Studies indicate that antioxidant status is diminished in autistic subjects, suggesting its pathology is associated with augmented production of oxidative species and/or compromised antioxidant metabolism. This suggests ASD may result from defects in the metabolism of cellular antioxidants which maintain intracellular redox status by quenching reactive oxygen species (ROS). Selenium-dependent enzymes (selenoenzymes) are important in maintaining intercellular reducing conditions, particularly in the brain. Selenoenzymes are a family of ~25 genetically unique proteins, several of which have roles in preventing and reversing oxidative damage in brain and endocrine tissues. Since the brain's high rate of oxygen consumption is accompanied by high ROS production, selenoenzyme activities are particularly important in this tissue. Because selenoenzymes can be irreversibly inhibited by many electrophiles, exposure to these organic and inorganic agents can diminish selenoenzyme-dependent antioxidant functions. This can impair brain development, particularly via the adverse influence of oxidative stress on epigenetic regulation. Here we review the physiological roles of selenoproteins in relation to potential biochemical mechanisms of ASD etiology and pathology. PMID:24734177

  15. Effective Delivery of Endogenous Antioxidants Ameliorates Diabetic Nephropathy

    PubMed Central

    Park, Yongsoo; Kim, Hyunok; Park, Leejin; Min, Dongsoo; Park, Jinseu; Choi, Sooyoung; Park, Moon Hyang

    2015-01-01

    Background Diabetic nephropathy (DN) is thought to be partially due to the injury of renal cells and the renal micro-environment by free radicals. Free radial scavenging agents that inhibit free radical damage may well prevent the development of underlying conditions such as mesangial expansion (by inhibiting extracellular matrix expression) in these patients. Methods Using techniques for intra-cellular delivery of peptides, we made metallothionein (MT) and superoxide dismutase (SOD), potent endogenous antioxidants, readily transducible into cell membrane and tested their protective effect against the development of DN in OLETF rats. Herein, we study antioxidant peptides for their ability to prevent oxidative damage to primary rat mesangial cells (MCs), which are important constituents of renal glomeruli. Results Intraperitoneal administration of these antioxidants resulted in delivery to the kidney and decreased ROS and the expression of downstream signals in renal cells and postponed the usual progression to DN. In in vitro experiments, MT and SOD were efficiently transferred to MCs, and the increased removal of ROS by MT and SOD was proportional to the degree of scavenging enzymes delivered. MT and SOD decreased three major oxidative injuries (hyperglycemia, AGE and ROS exposure) and also injuries directly mediated by angiotensin II in MCs while changing downstream signal transduction. Conclusions The protective effects of MT and SOD for the progression of DN in experimental animals may be associated with the scavenging of ROS by MT and SOD and correlated changes in signal transduction downstream. Concomitant administration of these antioxidant peptides may prove to be a new approach for the prevention and therapy of DN. PMID:26114547

  16. Short-term exposure to nickel alters the adult rat brain antioxidant status and the activities of crucial membrane-bound enzymes: neuroprotection by L-cysteine.

    PubMed

    Liapi, Charis; Zarros, Apostolos; Theocharis, Stamatios; Voumvourakis, Konstantinos; Anifantaki, Foteini; Gkrouzman, Elena; Mellios, Zois; Skandali, Nikolina; Al-Humadi, Hussam; Tsakiris, Stylianos

    2011-12-01

    Nickel (Ni) is an environmental pollutant towards which human exposure can be both occupational (mainly through inhalation) and dietary (through water and food chain-induced bioaccumulation). The aim of this study was to investigate the effects of short-term Ni-administration (as NiCl(2), 13 mg/kg) on the adult rat whole brain total antioxidant status (TAS) and the activities of acetylcholinesterase (AChE), Na(+),K(+)-ATPase, and Mg(2+)-ATPase; in addition, the potential effect of the co-administration of the antioxidant L-cysteine (Cys, 7 mg/kg) on the above parameters was studied. Twenty-eight male Wistar rats were divided into four groups: A (saline-treated control), B (Ni), C (Cys), and D (Ni and Cys). All rats were treated once daily with intraperitoneal injections of the tested compounds, for 1-week. Rats were sacrificed by decapitation and the above-mentioned parameters were measured spectrophotometrically. Rats treated with Ni exhibited a significant reduction in brain TAS (-47%, p??0.05, DvsA; +83%, p??0.05, BvsA), but was significantly reduced when combined with Cys administration (-17%, p?

  17. Effect of methanolic extract of Vernonia amygdalina (common bitter leaf) on lipid peroxidation and antioxidant enzymes in rats exposed to cycasin.

    PubMed

    Lolodi, O; Eriyamremu, G E

    2013-07-01

    This study investigated the effect of a methanolic extract of Vernonia amygdalina (VA) on lipid peroxidation and antioxidant status of the colon of rats maintained on a normal diet containing 5% Cycas revoluta (cycads). Fifty male Wistar albino rats were randomly assigned into five groups of ten experimental animals in a study that lasted for six weeks. One control group was maintained on a normal diet only while another group was fed a normal diet containing 5% cycads. The other three groups were maintained on the normal diet and 5% cycads and orally fed 200 mg VA/kg body weight for 1, 5 or 6 weeks. The results obtained revealed that the level of malondialdehyde (an index of lipid peroxidation) was significantly elevated (p < 0.05) in rats exposed to cycads only compared with the control. However, oral administration of VA in conjunction with exposure to cycads appeared to reduce the extent of lipid peroxidation to values that are not significantly (p > 0.05) different from those of the control. The activity of Superoxide Dismutase (SOD) was significantly reduced (p < 0.05) in the experimental animals fed cycads compared with the controls. Oral administration of VA seemed to counteract the effect of cycads on SOD in the colon as no significant difference (p > 0.05) was observed in rats fed VA compared with the controls. The results of this study suggest that methanolic extract of VA may mitigate the biochemical consequences of cycasin-induced lipid peroxidation in the colon of rats. PMID:24505988

  18. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease: involvement of antioxidative enzymes induction.

    PubMed

    Wu, Chi-Rei; Tsai, Chia-Wen; Chang, Shu-Wei; Lin, Chia-Yuan; Huang, Li-Chun; Tsai, Chia-Wen

    2015-01-01

    The neuroprotective effects of carnosic acid (CA), a phenolic diterpene isolated from rosemary (Rosmarinus officinalis), have been widely investigated in recent years, however, its protection in in vivo still unclear. In this study, we investigated the behavioral activity and neuroprotective effects of CA in a rat model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA). Rats were treated with 20mg/kg body weight of CA for 3 weeks before 6-OHDA exposure. Results indicated that CA improved the locomotor activity and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Significant protection against lipid peroxidation and GSH reduction was observed in the 6-OHDA rats pretreated with CA. Pretreatment with CA increased the protein expression of ?-glutamate-cysteine ligase catalytic subunit, ?-glutamate-cysteine ligase modifier subunit, superoxide dismutase, and glutathione reductase compared with 6-OHDA-stimulated rats and SH-SY5Y cells. Immunoblots showed that the reduction of the Bcl-2/Bax ratio, the induction of caspase 3 cleavage, and the induction of poly(ADP-ribose) polymerase (PARP) cleavage by 6-OHDA was reversed in the presence of SB203580 (a p38 inhibitor) or SP600125 (a JNK inhibitor) in SH-SY5Y cells. Rats treated with CA reversed the 6-OHDA-mediated the activation of c-Jun NH2-terminal kinase and p38, the down-regulation of the Bcl-2/Bax ratio, the up-regulation of cleaved caspase 3/caspase 3 and cleaved PARP/PARP ratio, and the down-regulation of tyrosine hydroxylase protein. However, BAM7, an activator of Bax, attenuated the effect of CA on apoptosis in SH-SY5Y cells. These results suggest that CA protected against 6-OHDA-induced neurotoxicity is attributable to its anti-apoptotic and anti-oxidative action. The present findings may help to clarify the possible mechanisms of rosemary in the neuroprotection of PD. PMID:25446857

  19. Supplementation with Sodium Selenite and Selenium-Enriched Microalgae Biomass Show Varying Effects on Blood Enzymes Activities, Antioxidant Response, and Accumulation in Common Barbel (Barbus barbus)

    PubMed Central

    Kouba, Antonín; Velíšek, Josef; Stará, Alžb?ta; Masojídek, Ji?í; Kozák, Pavel

    2014-01-01

    Yearling common barbel (Barbus barbus L.) were fed four purified casein-based diets for 6 weeks in outdoor cages. Besides control diet, these were supplemented with 0.3?mg?kg?1 dw selenium (Se) from sodium selenite, or 0.3 and 1.0?mg?kg?1 from Se-enriched microalgae biomass (Chlorella), a previously untested Se source for fish. Fish mortality, growth, Se accumulation in muscle and liver, and activity of selected enzymes in blood plasma, muscle, liver, and intestine were evaluated. There was no mortality, and no differences in fish growth, among groups. Se concentrations in muscle and liver, activity of alanine aminotransferase and creatine kinase in blood plasma, glutathione reductase (GR) in muscle, and GR and catalase in muscle and liver suggested that selenium from Se-enriched Chlorella is more readily accumulated and biologically active while being less toxic than sodium selenite. PMID:24772422

  20. Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus).

    PubMed

    Kouba, Antonín; Velíšek, Josef; Stará, Alžb?ta; Masojídek, Ji?í; Kozák, Pavel

    2014-01-01

    Yearling common barbel (Barbus barbus L.) were fed four purified casein-based diets for 6 weeks in outdoor cages. Besides control diet, these were supplemented with 0.3 mg kg(-1) dw selenium (Se) from sodium selenite, or 0.3 and 1.0 mg kg(-1) from Se-enriched microalgae biomass (Chlorella), a previously untested Se source for fish. Fish mortality, growth, Se accumulation in muscle and liver, and activity of selected enzymes in blood plasma, muscle, liver, and intestine were evaluated. There was no mortality, and no differences in fish growth, among groups. Se concentrations in muscle and liver, activity of alanine aminotransferase and creatine kinase in blood plasma, glutathione reductase (GR) in muscle, and GR and catalase in muscle and liver suggested that selenium from Se-enriched Chlorella is more readily accumulated and biologically active while being less toxic than sodium selenite. PMID:24772422

  1. Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress.

    PubMed

    Wang, Wei-Na; Zhou, Jun; Wang, Peng; Tian, Ting-Ting; Zheng, Ying; Liu, Yuan; Mai, Wei-Jun; Wang, An-Li

    2009-11-01

    The ROS production, the percentage of dead and damaged haemocytes, the DNA Olive Tail Moment (OTM) value and the gene expression of manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx), were studied in the Pacific white shrimp, Litopenaeus vannamei, when exposed to acute pH stress. The increased ROS production in haemocytes and the increased OTM value in both the haemocytes and the hepatopancreas cells suggest that oxidative damage occurred in shrimp exposed to pH 5.6 and pH 9.3, with apoptosis, mainly being associated with excess Ca(2+)influx and changes in cell viability. Acid and alkaline pH-induced DNA damage was time dependent in the haemocytes and the hepatopancreas cells. The concentration of intracellular free calcium [Ca(2+)] (i) after different pH treatments increased significantly over time, reaching its highest concentration after 12 h, but decreasing gradually to normal levels after 24 h. The [Ca(2+)] (i) content in shrimp cells when exposed to pH 9.3 and pH 5.6 for 12 h had increased by 58%-81%, compared with exposure to pH 7.4 (control). In addition, the gene expression of cMnSOD, CAT, GPx and TRx in the hepatopancreas of L. vannamei was induced by acid and alkaline pH stress, although there were differences in the expression response with respect to the duration of induction and the different pH treatments (acid or alkaline). Our results show that acidic or alkaline-induced oxidative stress may cause DNA damage, and cooperatively activate expression of CAT, GPx and TRx mRNA. Calcium ions appear to be important in mediating shrimp responses to pH stress. PMID:19573624

  2. Crocin "saffron" protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene expression of antioxidant enzymes.

    PubMed

    El-Beshbishy, Hesham A; Hassan, Memy H; Aly, Hamdy A A; Doghish, Ahmed S; Alghaithy, Abdulaziz A A

    2012-09-01

    Beryllium chloride (BeCl(2)) is a highly toxic substance that accumulates in different tissues after absorption. The purpose of this study was to investigate protective role of crocin against BeCl(2)-intoxication in rats. Male Wistar rats were used in this study and categorised into four groups (n=8). Group I served as normal control rats. Group II treated orally with BeCl(2) 86 mg/kg b.w. for five consecutive days. This dose was equivalent to experimental LD(50). Group III treated intraperitoneally with crocin 200 mg/kg b.w. for seven consecutive days. Group IV received crocin for seven consecutive days before BeCl(2) administration. Blood samples and liver and brain homogenates were obtained for haematological, biochemical and RT-PCR examinations. The haematocrit value, RBCs count and haemoglobin concentration were significantly decreased in BeCl(2)-treated rats. A significant increase was observed in rat liver and brain malondialdehyde level and protein carbonyls content in BeCl(2) exposed group compared to the control group, and these values were significantly declined upon administration of crocin. Lactate dehydrogenase levels in rat liver and brain significantly increased compared to the control group and was associated with significant decrease in catalase and superoxide dismutase activities. Reduced glutathione hepatic contents of BeCl(2)-treated rats were significantly decreased. There was significant decline in mRNA expression of catalase and superoxide dismutase genes in BeCl(2)-intoxicated rats compared to the normal rats. Crocin treatment prior to BeCl(2) intake resulted in significant increase in mRNA expressions of catalase and superoxide dismutase genes near to normalcy. The haematological and biochemical parameters were restored near to normal levels. Our results suggested that, BeCl(2) induced oxidation of cellular lipids and proteins and that administration of crocin reduced BeCl(2)-induced oxidative stress combined with initiation of mRNA expression of antioxidant genes. PMID:22766413

  3. ANTIOXIDANTS IN DEERBERRIES REDUCE FREE RADICAL PRODUCTION, INHIBIT ACTIVATION OF ACTIVATOR PROTEIN-1 AND NUCLEAR FACTOR-KAPPAB BUT INDUCE HUMAN LEUKEMIA CELL APOPTOSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit from three genotypes of deerberries [Vaccinium stamineum L.] were evaluated for fruit quality, total anthocyanin and phenolic contents, antioxidants, antioxidant capacity, antioxidant enzyme activity, and anti-cancer properties. The fruit soluble solids, titratable acids, total anthocyanins, ...

  4. The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit

    PubMed Central

    Alissa, Eman M; Bahijri, Suhad M; Lamb, David J; Ferns, Gordon A A

    2004-01-01

    It has previously been shown that dietary copper can modulate the extent of atherosclerosis in the thoracic aorta of cholesterol-fed rabbits. The metabolism of copper and zinc are closely related, and it has been hypothesized that the balance of dietary copper to zinc may be important in determining coronary risk. Hence, we have investigated the interaction between dietary copper and zinc in atherogenesis in the New Zealand White rabbit. Juvenile male rabbits were randomly allocated to eight groups. Four groups were fed a normal chow diet with zinc (0.5%, w/w), copper (0.2%, w/w), copper plus zinc or neither in their drinking water for 12 weeks. Four other groups were fed a diet containing 0.25–1% (w/w) cholesterol plus zinc, copper, both or neither. Serum cholesterol of individual animals was maintained at approximately 20 mmol/l. Integrated plasma cholesterol levels were similar for all groups receiving cholesterol and significantly higher than those in the chow-fed groups (P < 0.001). Aortic copper concentrations were higher in the animals receiving cholesterol diets with copper compared to rabbits receiving normal chow and copper (P < 0.001). Aortic zinc content was significantly higher in cholesterol-fed rabbits supplemented with zinc alone or with copper than in those fed cholesterol alone (P < 0.001). Plasma ceruloplasmin concentrations were significantly higher in groups receiving cholesterol, irrespective of their trace element supplementation (P < 0.001). However, trace element supplementation increased the level significantly (P < 0.05). Trace element supplements did not appear to affect erythrocyte superoxide dismutase in the cholesterol-fed animals; however, zinc supplementation was associated with a significant increase in the enzyme in chow-fed animals (P < 0.05). The activity of the enzyme per mg of protein in aortic tissue was higher in animals receiving copper in the presence of cholesterol (P < 0.05) but not significantly so in its absence. Dietary trace element supplementation in cholesterol-fed animals was associated with a significant reduction in aortic lesion area. Plasma thiobarbituric acid-reactive substances and FOX concentrations were both significantly higher in the cholesterol-fed rabbits compared with the animals that fed on a chow diet (P < 0.001), and these were reduced significantly by dietary copper or zinc supplementation (P < 0.001). Hence, dietary supplements of copper or zinc at the doses used both inhibited aortic atherogenesis in the cholesterol-fed rabbits, although there was no significant additional effect when given in combination. PMID:15379959

  5. The ubiquitin-conjugating enzyme UBE2E3 and its import receptor importin-11 regulate the localization and activity of the antioxidant transcription factor NRF2

    PubMed Central

    Plafker, Kendra S.; Plafker, Scott M.

    2015-01-01

    The transcription factor NF-E2 p45–related factor (Nrf2) induces the expression of cytoprotective proteins that maintain and restore redox homeostasis. Nrf2 levels and activity are tightly regulated, and three subcellular populations of the transcription factor have been identified. During homeostasis, the majority of Nrf2 is degraded in the cytoplasm by ubiquitin (Ub)-mediated degradation. A second population is transcriptionally active in the nucleus, and a third population localizes to the outer mitochondrial membrane. Still unresolved are the mechanisms and factors that govern Nrf2 distribution between its subcellular locales. We show here that the Ub-conjugating enzyme UBE2E3 and its nuclear import receptor importin 11 (Imp-11) regulate Nrf2 distribution and activity. Knockdown of UBE2E3 reduces nuclear Nrf2, decreases Nrf2 target gene expression, and relocalizes the transcription factor to a perinuclear cluster of mitochondria. In a complementary manner, Imp-11 functions to restrict KEAP1, the major suppressor of Nrf2, from prematurely extracting the transcription factor off of a subset of target gene promoters. These findings identify a novel pathway of Nrf2 modulation during homeostasis and support a model in which UBE2E3 and Imp-11 promote Nrf2 transcriptional activity by restricting the transcription factor from partitioning to the mitochondria and limiting the repressive activity of nuclear KEAP1. PMID:25378586

  6. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice.

    PubMed

    Bhat, Rajeev; Stamminger, Rainer

    2015-07-01

    Freshly prepared, hand-pressed strawberry fruit juice was exposed to ultraviolet radiation (254?nm) at room temperature (25???±?1??) for 15, 30 and 60?min with 0?min serving as control. Results revealed decrease in pH, total soluble solids and titratable acidity, while colour parameters (L*, a* and b* values) and clarity of juice (% transmittance) increased significantly. All the results corresponded to exposure time to ultraviolet radiation. Bioactive compounds (total phenolics, ascorbic acid and anthocyanins) decreased along with a recorded reduction in polyphenol oxidase enzyme and 1,1-diphenyl-2-picryl hydrazyl radical scavenging activities, which were again dependent on exposure time. Results on the microbial studies showed significant reduction by 2-log cycles in aerobic plate count as well as in total yeast and mould counts. Though negative results were observed for certain parameters, this is the first time it was endeavoured to demonstrate the impact of ultraviolet radiation radiation on freshly prepared, hand-pressed strawberries juice. PMID:24867944

  7. Hydrogen peroxide generation and antioxidant enzyme activities in the leaves and roots of wheat cultivars subjected to long-term soil drought stress.

    PubMed

    Huseynova, Irada M; Aliyeva, Durna R; Mammadov, Alamdar Ch; Aliyev, Jalal A

    2015-08-01

    The dynamics of the activity of catalase, ascorbate peroxidase, guaiacol peroxidase, and benzidine peroxidase, as well as the level of hydrogen peroxide in the vegetative organs of durum wheat (Triticum durum Desf.) cultivars was studied under long-term soil drought conditions. It was established that hydrogen peroxide generation occurred at early stages of stress in the tolerant variety Barakatli-95, whereas in the susceptible variety Garagylchyg-2 its significant amounts were accumulated only at later stages. Garagylchyg-2 shows a larger reduction of photochemical activity of PS II in both genotypes at all stages of ontogenesis under drought stress than Barakatli-95. The highest activity of catalase which plays a leading role in the neutralization of hydrogen peroxide was observed in the leaves and roots of the drought-tolerant variety Barakatli-95. Despite the fact that the protection system also includes peroxidases, the activity of these enzymes even after synthesis of their new portions is substantially lower compared with catalase. Native PAGE electrophoresis revealed the presence of one isoform of CAT, seven isoforms of APX, three isoforms of GPO, and three isoforms of BPO in the leaves, and also three isoforms of CAT, four isoforms of APX, two isoforms of GPO, and six isoforms of BPO in the roots of wheat. One isoform of CAT was found in the roots when water supply was normal and three isoforms were observed under drought conditions. Stress associated with long-term soil drought in the roots of wheat has led to an increase in the heterogeneity due to the formation of two new sedentary forms of catalase: CAT2 and CAT3. PMID:26008794

  8. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease

    PubMed Central

    McCord, Meghan C.; Aizenman, Elias

    2014-01-01

    Brain aging is marked by structural, chemical, and genetic changes leading to cognitive decline and impaired neural functioning. Further, aging itself is also a risk factor for a number of neurodegenerative disorders, most notably Alzheimer’s disease (AD). Many of the pathological changes associated with aging and aging-related disorders have been attributed in part to increased and unregulated production of reactive oxygen species (ROS) in the brain. ROS are produced as a physiological byproduct of various cellular processes, and are normally detoxified by enzymes and antioxidants to help maintain neuronal homeostasis. However, cellular injury can cause excessive ROS production, triggering a state of oxidative stress that can lead to neuronal cell death. ROS and intracellular zinc are intimately related, as ROS production can lead to oxidation of proteins that normally bind the metal, thereby causing the liberation of zinc in cytoplasmic compartments. Similarly, not only can zinc impair mitochondrial function, leading to excess ROS production, but it can also activate a variety of extra-mitochondrial ROS-generating signaling cascades. As such, numerous accounts of oxidative neuronal injury by ROS-producing sources appear to also require zinc. We suggest that zinc deregulation is a common, perhaps ubiquitous component of injurious oxidative processes in neurons. This review summarizes current findings on zinc dyshomeostasis-driven signaling cascades in oxidative stress and age-related neurodegeneration, with a focus on AD, in order to highlight the critical role of the intracellular liberation of the metal during oxidative neuronal injury. PMID:24860495

  9. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  10. CdSe/ZnS Quantum Dots trigger DNA repair and antioxidant enzyme systems in Medicago sativa cells in suspension culture

    PubMed Central

    2013-01-01

    Background Nanoparticles appear to be promising devices for application in the agriculture and food industries, but information regarding the response of plants to contact with nano-devices is scarce. Toxic effects may be imposed depending on the type and concentration of nanoparticle as well as time of exposure. A number of mechanisms may underlie the ability of nanoparticles to cause genotoxicity, besides the activation of ROS scavenging mechanisms. In a previous study, we showed that plant cells accumulate 3-Mercaptopropanoic acid-CdSe/ZnS quantum dots (MPA-CdSe/ZnS QD) in their cytosol and nucleus and increased production of ROS in a dose dependent manner when exposed to QD and that a concentration of 10 nM should be cyto-compatible. Results When Medicago sativa cells were exposed to 10, 50 and 100 nM MPA-CdSe/ZnS QD a correspondent increase in the activity of Superoxide dismutase, Catalase and Glutathione reductase was registered. Different versions of the COMET assay were used to assess the genotoxicity of MPA-CdSe/ZnS QD. The number of DNA single and double strand breaks increased with increasing concentrations of MPA-CdSe/ZnS QD. At the highest concentrations, tested purine bases were more oxidized than the pyrimidine ones. The transcription of the DNA repair enzymes Formamidopyrimidine DNA glycosylase, Tyrosyl-DNA phosphodiesterase I and DNA Topoisomerase I was up-regulated in the presence of increasing concentrations of MPA-CdSe/ZnS QD. Conclusions Concentrations as low as 10 nM MPA-CdSe/ZnS Quantum Dots are cytotoxic and genotoxic to plant cells, although not lethal. This sets a limit for the concentrations to be used when practical applications using nanodevices of this type on plants are being considered. This work describes for the first time the genotoxic effect of Quantum Dots in plant cells and demonstrates that both the DNA repair genes (Tdp1?, Top1? and Fpg) and the ROS scavenging mechanisms are activated when MPA-CdSe/ZnS QD contact M. sativa cells. PMID:24359290

  11. The antioxidant protection of CELLFOOD against oxidative damage in vitro.

    PubMed

    Benedetti, Serena; Catalani, Simona; Palma, Francesco; Canestrari, Franco

    2011-09-01

    CELLFOOD (CF) is an innovative nutritional supplement containing 78 ionic/colloidal trace elements and minerals combined with 34 enzymes and 17 amino acids, all suspended in a solution of deuterium sulfate. The aim of this study was to investigate, for the first time, the antioxidant properties of CF in vitro in different model systems. Three pathophysiologically relevant oxidants were chosen to evaluate CF protection against oxidative stress: hydrogen peroxide, peroxyl radicals, and hypochlorous acid. Both biomolecules (GSH and plasmid DNA) and circulating cells (erythrocytes and lymphocytes) were used as targets of oxidation. CF protected, in a dose-dependent manner, both GSH and DNA from oxidation by preserving reduced GSH thiol groups and supercoiled DNA integrity, respectively. At the same time, CF protected erythrocytes from oxidative damage by reducing cell lysis and GSH intracellular depletion after exposure to the oxidant agents. In lymphocytes, CF reduced the intracellular oxidative stress induced by the three oxidants in a dose-dependent manner. The overall in vitro protection of biomolecules and cells against free radical attacks suggests that CF might be a valuable coadjuvant in the prevention and treatment of various physiological and pathological conditions related to oxidative stress, from aging to atherosclerosis, from neurodegeneration to cancer. PMID:21703326

  12. Expression of CXCR1 (interleukin-8 receptor) in murine macrophages after staphylococcus aureus infection and its possible implication on intracellular survival correlating with cytokines and bacterial anti-oxidant enzymes.

    PubMed

    Bishayi, Biswadev; Bandyopadhyay, Debasish; Majhi, Arnab; Adhikary, Rana

    2015-04-01

    Interaction with the live Staphylococcus aureus promotes secretion of interleukin-8 (IL-8), although the expressions of functional CXCR1 (IL-8RA) in murine macrophages have not been identified. Expression of CXCR1 was induced in S. aureus-infected macrophages, whereas, CXCR1 was undetectable in control macrophages. CXCR1 blocking significantly reduced the phagocytosis of S. aureus and TNF-?, IL-6, IL-1?, IFN-?, IL-12, and IL-8 production and increased release of MIP-2 and soluble TNF-R1. Increased bacterial catalase and decreased superoxide dismutase (SOD) activities by S. aureus with concomitant decrease in hydrogen peroxide (H2O2), superoxide anion, and nitric oxide (NO) release were observed in case of prior CXCR1 blocking. In the presence of cytochalasin D, S. aureus-mediated induction of IL-8 was inhibited concomitant with decreased bacterial count suggesting that internalization of S. aureus was necessary for induction of IL-8. Shedding of TNF-R1 due to CXCR1 blocking after S. aureus inoculation was critical for neutralization of TNF-? signaling and arrests the inflammation. PMID:25129059

  13. Intracellular ?-Amylase of Streptococcus mutans

    PubMed Central

    Simpson, Christine L.; Russell, Roy R. B.

    1998-01-01

    Sequencing upstream of the Streptococcus mutans gene for a CcpA gene homolog, regM, revealed an open reading frame, named amy, with homology to genes encoding ?-amylases. The deduced amino acid sequence showed a strong similarity (60% amino acid identity) to the intracellular ?-amylase of Streptococcus bovis and, in common with this enzyme, lacked a signal sequence. Amylase activity was found only in S. mutans cell extracts, with no activity detected in culture supernatants. Inactivation of amy by insertion of an antibiotic resistance marker confirmed that S. mutans has a single ?-amylase activity. The amylase activity was induced by maltose but not by starch, and no acid was produced from starch. S. mutans can, however, transport limit dextrins and maltooligosaccharides generated by salivary amylase, but inactivation of amy did not affect growth on these substrates or acid production. The amylase digested the glycogen-like intracellular polysaccharide (IPS) purified from S. mutans, but the amy mutant was able to digest and produce acid from IPS; thus, amylase does not appear to be essential for IPS breakdown. However, when grown on excess maltose, the amy mutant produced nearly threefold the amount of IPS produced by the parent strain. The role of Amy has not been established, but Amy appears to be important in the accumulation of IPS in S. mutans grown on maltose. PMID:9721315

  14. Esterified Trityl Radicals as Intracellular Oxygen Probes

    PubMed Central

    Liu, Yangping; Villamena, Frederick A.; Sun, Jian; Wang, Tse-yao

    2009-01-01

    Triarylmethyl (trityl) radicals exhibit high stability and narrow line width at physiological conditions which provide high sensitivity and resolution for the measurement of O2 concentration, making them attractive as EPR oximetry probes. However, the application of previously available compounds has been limited by their poor intracellular permeability. We recently reported the synthesis and characterization of esterified trityl radicals as potential intracellular EPR probes and their oxygen sensitivity, redox properties and enzyme-mediated hydrolysis were investigated. In this paper, we report the cellular permeability and stability of these trityls in the presence of bovine aortic endothelial cells. Results show that the acetoxymethoxycarbonyl-containing trityl AMT-02 exhibits high stability in the presence of cells and can be effectively internalized. The intracellular hydrolysis of AMT-02 to the carboxylate form of the trityl (CT-03) was also observed. In addition, this internalized trityl probe was applied to measure intracellular O2 concentrations and the effects of menadione and KCN on the rates of O2 consumption in endothelial cells. This study demonstrates that these esterified trityl radicals can function as effective EPR oximetry probes measuring intracellular O2 concentration and consumption. PMID:19135524

  15. Evaluating the influence of National Research Council levels of copper, iron, manganese, and zinc using organic (Bioplex) minerals on resulting tissue mineral concentrations, metallothionein, and liver antioxidant enzymes in grower-finisher swine diets.

    PubMed

    Gowanlock, D W; Mahan, D C; Jolliff, J S; Hill, G M

    2015-03-01

    Graded levels of a trace mineral premix containing an organic (Bioplex) source of Cu, Fe, Mn, and Zn was evaluated with additional treatments containing organic Zn or Fe. Grower-finisher pigs were fed from 25 to 115 kg BW. The number of pigs in the experiment, the breeding/genetics of the pigs, the management, and the average age of the pigs were previously reported. The experiment was conducted as a randomized complete block design in 7 replicates. Treatments were 1) basal diet without supplemental Cu, Fe, Mn, and Zn; 2) basal diet + 2.5 mg/kg Cu, 50 mg/kg Fe, 1.5 mg/kg Mn, and 40 mg/kg Zn (50% NRC); 3) basal diet + 5 mg/kg Cu, 100 mg/kg Fe, 3 mg/kg Mn, and 80 mg/kg Zn (100% NRC); 4) basal diet + 25 mg Zn/kg; 5) basal diet + 50 mg Zn/kg; and 6) basal diet + 50 mg Fe/kg. Selenium and I were added to all diets at 0.3 and 0.14 mg/kg, respectively. Diets were composed of corn-soybean meal, dicalcium phosphate, and limestone with phytase added to enhance mineral availability. Three pigs per pen were bled at 55, 80, and 115 kg BW and plasma was analyzed for microminerals. When the average replicate BW was 115 kg, 3 pigs per pen of an equal gender ratio were killed. The liver, kidney, and heart were removed and analyzed for microminerals. Liver, duodenum, and jejunal metallothionein and the antioxidant enzymes in the liver containing these microminerals were determined. The results demonstrated that plasma minerals were unaffected at the 3 BW intervals. Liver and duodenum metallothionein protein were greater ( < 0.05) as dietary micromineral levels increased but jejunum metallothionein did not change as microminerals increased. The activity of Cu/Zn superoxide dismutase (SOD) was not affected as the levels of the micromineral increased, whereas the activity of Mn SOD increased slightly ( < 0.05) to the 50% NRC treatment level. Liver Zn (relative and total) increased ( < 0.05) as dietary micromineral levels increased and also when Zn was added singly to the diet. Liver, kidney, and heart Cu and Mn concentrations were similar at the various micromineral levels. The activities of liver enzymes containing graded levels of Zn were not affected by dietary microminerals at 115 kg BW. These results indicate that the supplemental levels of Cu, Fe, and Mn were not necessary for grower-finisher pigs and that these innate microminerals in a corn-soybean meal diet were adequate, whereas a need for supplemental Zn was demonstrated. PMID:26020892

  16. Proteolytic enzymes of Phymatotrichum omnivorum

    E-print Network

    Burgum, Alexis August

    1964-01-01

    ~CTERIZATION OF THE CRUDE PROTEOLYTIC SYSTEM METHODS a e o o o a o o o o ~ e e o ~ ~ o 12 EXPERIMENTAL PROCEDURES AND RESULTS ~ e a ~ a e ~ 19 DISCUSSION e e o o e a e e a a a o e e ~ e e a 43 PART I I e PURIFICATION OF A PROTE INASE FROM CULTURE... (intracellular enzymes) or in the medium surrounding the cell (extracellular enzymes). Most of the research on these enzymes has been directed toward proteinases from higher forms of life. For example, the mammalian enzymes trypsin, chymotrypsin, and pepsin...

  17. Antioxidant proteins and reactive oxygen species are decreased in a murine epidermal side population with stem cell-like characteristics

    PubMed Central

    Carr, Wanakee J.; Oberley-Deegan, Rebecca E.; Zhang, Yuping; Oberley, Christopher C.; Dunnwald, Martine

    2012-01-01

    Reactive oxygen species (ROS) and antioxidants are essential to maintain a redox balance within tissues and cells. Intracellular ROS regulate key cellular functions such as proliferation, differentiation and apoptosis through cellular signaling, and response to injury. The redox environment is particularly important for stem/progenitor cells, as their self-renewal and differentiation has been shown to be redox sensitive. However, not much is known about ROS and antioxidant protein function in freshly isolated keratinocytes, notably the different keratinocyte subpopulations. Immunostaining of neonatal cutaneous sections revealed that antioxidant enzymes [catalase, SOD2, gluthatione peroxidase-1 (GPx)] and ROS are localized predominantly to the epidermis. We isolated keratinocyte subpopulations and found lower levels of SOD2, catalase and GPx, as well as decreased SOD and catalase activity in an epidermal side population with stem cell-like characteristics (EpSPs) compared to more differentiated (Non-SP) keratinocytes. EpSPs also exhibited less mitochondrial area, fewer peroxisomes and produced lower levels of ROS than Non-SPs. Finally, EpSPs were more resistant to UV radiation than their progeny. Together, our data indicate ROS and antioxidant levels are decreased in stem-like EpSPs. PMID:21347610

  18. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    SciTech Connect

    Black, Adrienne T.; Gray, Joshua P. [Department of Pharmacology and Toxicology, Rutgers University (United States); Shakarjian, Michael P. [Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University (United States)], E-mail: laskin@eohsi.rutgers.edu; Heck, Diane E. [Department of Pharmacology and Toxicology, Rutgers University (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States)

    2008-09-15

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.

  19. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat.

    PubMed

    Black, Adrienne T; Gray, Joshua P; Shakarjian, Michael P; Laskin, Debra L; Heck, Diane E; Laskin, Jeffrey D

    2008-09-15

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity. PMID:18620719

  20. Recrystallization of dihydromyricetin from Ampelopsis grossedentata and its anti-oxidant activity evaluation.

    PubMed

    Liao, Wenzhen; Ning, Zhengxiang; Ma, Ling; Yin, Xueru; Wei, Qingyi; Yuan, Erdong; Yang, Jiguo; Ren, Jiaoyan

    2014-10-01

    A fast and efficient method for purification of dihydromyricetin (3,5,7,3',4',5'-six hydroxy-2,3-dihydro flavonol; DMY) from Ampelopsis grossedentata was created by crystallization eight times at 25°C, and a purity of 98% was finally achieved. The purified DMY exhibited high oxygen radical absorbance capacity (ORAC) (30.21 ?mol Trolox equiv/mg) and strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (half-maximal inhibitory concentration [IC50]=0.235 ?g/mL). The addition of DMY could also effectively attenuate 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced human erythrocyte hemolysis and cupric chloride (CuCl2)-induced human plasma lipid peroxidation via inhibition of intracellular reactive oxygen species (ROS) generation. It was also found that DMY (>12 ?g/mL) treatment significantly inhibited intracellular malondialdehyde (MDA) formation. Meanwhile, DMY treatment significantly inhibited the obvious increase of anti-oxidant enzymes levels (superoxide dismutase [SOD]; glutathione peroxidase [GPX], and catalase [CAT]) induced by AAPH radicals, suggesting that stress defense mechanisms are associated with protection of DMY against intracellular oxidation. PMID:24835723

  1. The histone methylase KMTox interacts with the redox-sensor peroxiredoxin-1 and targets genes involved in Toxoplasma gondii antioxidant defences.

    PubMed

    Sautel, Céline F; Ortet, Philippe; Saksouk, Nehmé; Kieffer, Sylvie; Garin, Jérôme; Bastien, Olivier; Hakimi, Mohamed-Ali

    2009-01-01

    The ability of living cells to alter their gene expression patterns in response to environmental changes is essential for viability. Oxidative stress represents a common threat for all aerobic life. In normally growing cells, in which hydrogen peroxide generation is transient or pulsed, the antioxidant systems efficiently control its concentration. Intracellular parasites must also protect themselves against the oxidative burst imposed by the host. In this work, we have investigated the role of KMTox, a new histone lysine methyltransferase, in the obligate intracellular parasite Toxoplasma gondii. KMTox is a nuclear protein that holds a High Mobility Group domain, which is thought to recognize bent DNA. The enzyme methylates both histones H4 and H2A in vitro with a great preference for the substrate in reduced conditions. Importantly, KMTox interacts specifically with the typical 2-cys peroxiredoxin-1 and the binding is to some extent enhanced upon oxidation. It appears that the cellular functions that are primarily regulated by the KMTox are antioxidant defences and maintenance of cellular homeostasis. KMTox may regulate gene expression in T. gondii by providing the rapid re-arrangement of chromatin domains and by interacting with the redox-sensor TgPrx1 contribute to establish the antioxidant 'firewall' in T. gondii. PMID:19017266

  2. Cell-cycle radiation response: role of intracellular factors.

    PubMed

    Blakely, E; Chang, P; Lommel, L; Bjornstad, K; Dixon, M; Tobias, C; Kumar, K; Blakely, W F

    1989-01-01

    We have been studying variations of radiosensitivity and endogenous cellular factors during the course of progression through the human and hamster cell cycle. After exposure to low-LET radiations, the most radiosensitive cell stages are mitosis and the G1/S interface. The increased activity of a specific antioxidant enzyme such as superoxide dismutase in G1-phase, and the variations of endogenous thiols during cell division are thought to be intracellular factors of importance to the radiation survival response. These factors may contribute to modifying the age-dependent yield of lesions or more likely, to the efficiency of the repair processes. These molecular factors have been implicated in our cellular measurements of the larger values for the radiobiological oxygen effect late in the cycle compared to earlier cell ages. Low-LET radiation also delays progression through S phase which may allow more time for repair and hence contribute to radioresistance in late-S-phase. The cytoplasmic and intranuclear milieu of the cell appears to have less significant effects on lesions produced by high-LET radiation compared to those made by low-LET radiation. High-LET radiation fails to slow progression through S phase, and there is much less repair of lesions evident at all cell ages; however, high-LET particles cause a more profound block in G2 phase than that observed after low-LET radiation. Hazards posed by the interaction of damage from sequential doses of radiations of different qualities have been evaluated and are shown to lead to a cell-cycle-dependent enhancement of radiobiological effects. A summary comparison of various cell-cycle-dependent endpoints measured with low- or high-LET radiations is given and includes a discussion of the possible additional effects introduced by microgravity. PMID:11537290

  3. Antioxidant enzyme gene transfer for ischemic diseases

    E-print Network

    Wu, Jian

    2009-01-01

    vascular leak and extravasation of inflammatory cells, leading to necrosis and programmed cell death in lung grafts.graft when the cold liver is subjected to room or body temperature while performing the vascularvascular permeability and leukocyte extravasation. These biological effects were associated with an improvement in graft

  4. Antioxidants: basic principles, emerging concepts, and problems.

    PubMed

    Niki, Etsuo

    2014-01-01

    The radical scavenging antioxidants play an essential role in the maintenance of health and prevention of diseases, and a thorough understanding of the action and capacity of antioxidants is critically important. Despite the assumption that antioxidants must exert beneficial effects against oxidative stress, many large-scale randomized controlled trials gave inconsistent and disappointing results on the prevention of chronic diseases. It is now generally accepted that there is no evidence to support the use of non-discriminative antioxidant supplements for prevention of diseases. On the other hand, recent data show that antioxidants may be effective in the prevention and/or treatment of diseases when the right antioxidant is given to the right subject at the right time for the right duration. Now it is accepted that reactive oxygen species (ROS) act as physiologically important signaling messengers as well as deleterious agents. The signaling ROS are produced in a subtly regulated manner, while many deleterious ROS are produced and react randomly. Free radical-mediated lipid peroxidation products which, in contrast to enzymatic oxidation products, are produced by non-specific mechanisms cause oxidative damage, but may also induce adaptive response to enhance the expression of antioxidant enzymes and compounds. This has raised a question if removal of too many ROS by supplementation of antioxidants may upset the cell signaling pathways and actually increase the risk of chronic diseases. However, it is unlikely that antioxidants impair physiologically essential signaling pathways. PMID:24923567

  5. ZnO Nanostructure-Based Intracellular Sensor

    PubMed Central

    Asif, Muhammad H.; Danielsson, Bengt; Willander, Magnus

    2015-01-01

    Recently ZnO has attracted much interest because of its usefulness for intracellular measurements of biochemical species by using its semiconducting, electrochemical, catalytic properties and for being biosafe and biocompatible. ZnO thus has a wide range of applications in optoelectronics, intracellular nanosensors, transducers, energy conversion and medical sciences. This review relates specifically to intracellular electrochemical (glucose and free metal ion) biosensors based on functionalized zinc oxide nanowires/nanorods. For intracellular measurements, the ZnO nanowires/nanorods were grown on the tip of a borosilicate glass capillary (0.7 µm in diameter) and functionalized with membranes or enzymes to produce intracellular selective metal ion or glucose sensors. Successful intracellular measurements were carried out using ZnO nanowires/nanorods grown on small tips for glucose and free metal ions using two types of cells, human fat cells and frog oocytes. The sensors in this study were used to detect real-time changes of metal ions and glucose across human fat cells and frog cells using changes in the electrochemical potential at the interface of the intracellular micro-environment. Such devices are helpful in explaining various intracellular processes involving ions and glucose. PMID:26007730

  6. Antioxidant activity of fermented soybean extract.

    PubMed

    Hu, Chih-Chieh; Hsiao, Ching-Huang; Huang, Sin-Yi; Fu, Sheng-Hwa; Lai, Chih-Chia; Hong, Tzu-Ming; Chen, Hwei-Hsien; Lu, Fung-Jou

    2004-09-01

    Free radicals are considered to be important causative factors in the development of cancer and cardiovascular diseases. This relationship has led to interest in evaluating the antioxidant capacities of many dietary supplements. Fermented soybean extract is produced by symbiotic fermentation of organic soybean with 20 types of Lactobacillus and yeast. In vitro and in vivo models are used in this study to evaluate the antioxidant effect of fermented soybean extract. Several in vitro models are used to detect the antioxidant capacity of the fermented soybean extract, which is compared to vitamin C and Trolox. The results demonstrate that the fermented soybean extract has strong antioxidant activity against unsaturated fatty acid peroxidation compared to vitamin C and Trolox. By the means of the test system developed by Y. Toshiki et al., it is shown that the fermented soybean extract can function both as an antioxidant and as a free radical acceptor that can convert free radicals into harmless substances through an energy-decreasing procedure. An in vivo study examines the effects of fermented soybean extract on the activity of antioxidant enzymes. The activities of the antioxidant enzymes (AOE) including total superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are measured in liver, kidney, and brain from male Sprague-Dawley rats. The activities of CAT, SOD, and GPX are increased in the liver. However, the SOD activity is decreased in the kidney. SOD and GPX activities are decreased in the brain. These results lead to the conclusion that fermented soybean extract not only has antioxidant activity but also has an effect on the activity of antioxidant enzymes in liver. PMID:15373417

  7. Intracellular oxidative modification of low density lipoprotein by endothelial cells

    Microsoft Academic Search

    Toshimi Satoh; Osamu Tokunaga

    2002-01-01

    We investigated intracellular oxidative modification of low density lipoprotein (IOM-LDL) by endothelial cells (ECs) and the role of ferritin in this process. IOM-LDL was examined by immunocytochemistry with an anti-oxidized phosphatidylcholine antibody and by lipid peroxidation assay. Incubation of LDL-treated ECs (human umbilical vein endothelial cells, passage 3) with ferritin produced cytoplasmic immunostain with the antibody, especially in large or

  8. Antioxidative metabolism in down syndrome

    Microsoft Academic Search

    Fulya Tek?en; Bekir Sitki ?ayli; Ahmet Aydin; Ahmet Sayal; A?kin I?imer

    1998-01-01

    Down syndrome is the most common cause of mental retardation, affecting 1 in 700–800 liveborn infants. Although numerous biochemical\\u000a abnormalities accompanying the syndrome have not yet been completely clarified, the antioxidant defense system enzymes have\\u000a shown to be altered due to increased gene dosage on chromosome 21 and overproduction of superoxide dismutase (SOD-1 or Cu\\/Zn\\u000a SOD). The purpose of this

  9. Intracellular Gene Expression Profile of Listeria monocytogenes †

    PubMed Central

    Chatterjee, Som Subhra; Hossain, Hamid; Otten, Sonja; Kuenne, Carsten; Kuchmina, Katja; Machata, Silke; Domann, Eugen; Chakraborty, Trinad; Hain, Torsten

    2006-01-01

    Listeria monocytogenes is a gram-positive, food-borne microorganism responsible for invasive infections with a high overall mortality. L. monocytogenes is among the very few microorganisms that can induce uptake into the host cell and subsequently enter the host cell cytosol by breaching the vacuolar membrane. We infected the murine macrophage cell line P388D1 with L. monocytogenes strain EGD-e and examined the gene expression profile of L. monocytogenes inside the vacuolar and cytosolic environments of the host cell by using whole-genome microarray and mutant analyses. We found that ?17% of the total genome was mobilized to enable adaptation for intracellular growth. Intracellularly expressed genes showed responses typical of glucose limitation within bacteria, with a decrease in the amount of mRNA encoding enzymes in the central metabolism and a temporal induction of genes involved in alternative-carbon-source utilization pathways and their regulation. Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. A total of 41 genes were species specific, being absent from the genome of the nonpathogenic Listeria innocua CLIP 11262 strain. We also detected 25 genes that were strain specific, i.e., absent from the genome of the previously sequenced L. monocytogenes F2365 serotype 4b strain, suggesting heterogeneity in the gene pool required for intracellular survival of L. monocytogenes in host cells. Overall, our study provides crucial insights into the strategy of intracellular survival and measures taken by L. monocytogenes to escape the host cell responses. PMID:16428782

  10. Antioxidant system of Black Sea animals in early development

    Microsoft Academic Search

    I. I. Rudneva

    1999-01-01

    Activities of lipoxygenase, catalase, superoxide dismutase, peroxidase, glutathione reductase and content of low molecular weight antioxidants were determined in eggs and larvae of some molluscs, crustaceans, elasmobranchs and teleost fish of the Black Sea. The enzyme activities and concentrations of low molecular weight antioxidants showed marked interspecies differences, depending on specific developmental peculiarities. During marine animal embryogenesis the activities of

  11. EFFECTS OF INHALED PHOSGENE ON RAT LUNG ANTIOXIDANT SYSTEMS

    EPA Science Inventory

    A concentration-response and CxT study were undertaken to determine the effect of phosgene (COCL2) inhalation to pulmonary antioxidant processes as determined by changes in endogenous glutathione (GSH) and antioxidant associated enzymes (GSH peroxidase, GSH reductase, glucose-6-p...

  12. Activated Ketones as Inhibitors of Intracellular Ca2+ and Ca2+-Independent Phospholipase A2

    E-print Network

    Dennis, Edward A.

    Activated Ketones as Inhibitors of Intracellular Ca2+ -Dependent and Ca2+-Independent Phospholipase types of activated ketones as inhibitors of two important intracellular phospholipase A2s (PLA2-binding inhibitors of the cPLA2 at both pH's, that the rate of dissociation of the enzyme-inhibitor complex

  13. Modes of action of intracellular dextranase and three oligoglucanases from Pseudomonas UQM733.

    PubMed

    Covacevich, M T; Richards, G N

    1979-05-01

    The action patterns have been studied of a purified, intracellular dextranase and three intracellular alpha-D-glucosidases from Pseudomonas UQM733 on pure isomalto-oligosaccharides. The glucosidases have optimal activity on isomaltotetraose and are therefore classified as oligoglucanases. They have been used to determine the structure of two branched isomalto-oligosaccharides obtained by enzymic degradation of dextran. PMID:427836

  14. Effect of oxidant stressors and phenolic antioxidants on the ochratoxigenic fungus Aspergillus carbonarius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, the effect of oxidant stressors (hydrogen peroxide, menadione) and antioxidants (BHT, phenolic antioxidants) on growth, ROS generation, OTA production and gene expression of antioxidant enzymes of A. carbonarius was studied. In comparison to a nontoxigenic strain, an OTA-producing A. c...

  15. Use of antioxidants in the prevention and treatment of disease.

    PubMed

    Kelly, F J

    1998-03-01

    Considerable interest has risen in the idea that oxidative stress is instrumental in the etiology of numerous human diseases. Oxidative stress can arise through the increased production of reactive oxygen species (ROS) and/or because of a deficiency of antioxidant defenses. Antioxidant deficiencies can develop as a result of decreased antioxidant intake (such as vitamins C and E), synthesis of enzymes (such as superoxide dismutase and glutathione peroxidase) or increased antioxidant utilization. Insufficient antioxidant enzyme synthesis may in turn be due to decreased micronutrient availability (such as selenium, magnese, copper and zinc). Of those diseases linked with oxidative stress, cardiovascular disease provides the strongest evidence for the protective role of antioxidants. A high consumption of fruit and vegetables, which are good sources of antioxidants, is associated with a lower coronary risk. More specifically, there is evidence of a reduced coronary risk in populations with high blood levels of the antioxidant nutrients, vitamins C and E. Evidence is also accumulating that diabetes, and microvascular complications associated with diabetes, involve oxidative stress and have compromised antioxidant status. In addition, patients who develop acute respiratory distress syndrome (ARDS) also exhibit clear evidence of oxidative stress. Definitive proof for active oxygen formation and oxidative cell damage being causative rather than a result of other underlying these pathologies remains elusive; however, evidence is sufficiently compelling to suggest that antioxidants are potential therapeutic agents in the above conditions. PMID:10181011

  16. Modulation of antioxidant defense by Alpinia galanga and Curcuma aromatica extracts correlates with their inhibition of UVA-induced melanogenesis.

    PubMed

    Panich, Uraiwan; Kongtaphan, Kamolratana; Onkoksoong, Tassanee; Jaemsak, Kannika; Phadungrakwittaya, Rattana; Thaworn, Athiwat; Akarasereenont, Pravit; Wongkajornsilp, Adisak

    2010-04-01

    Ultraviolet A (UVA) irradiation is suggested to contribute to melanogenesis through promoting cellular oxidative stress and impairing antioxidant defenses. An overproduction of melanin can be associated with melanoma skin cancer and hyperpigmentation. Therefore, developing effective antimelanogenic agents is of importance. Alpinia galanga (AG) and Curcuma aromatica (CA) are traditional medicinal plants widely used for skin problems. Hence, this study investigated the antimelanogenic effects of AG and CA extracts (3.8-30 microg/ml) by assessing tyrosinase activity, tyrosinase mRNA levels, and melanin content in human melanoma cells (G361) exposed to UVA. The roles in protecting against melanogenesis were examined by evaluating their inhibitory effects on UVA-induced cellular oxidative stress and modulation of antioxidant defenses including antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx), and intracellular glutathione (GSH). In addition, possible active compounds accountable for biological activities of the extracts were identified by thin layer chromatography (TLC)-densitometric analysis. Our study demonstrated that UVA (8 J/cm(2)) induced both tyrosinase activity and mRNA levels and UVA (16 J/cm(2))-mediated melanin production were suppressed by the AG or CA extracts at noncytotoxic concentrations. Both extracts were able to protect against UVA-induced cellular oxidant formation and depletion of CAT and GPx activities and GSH content in a dose-dependent manner. Moreover, TLC-densitometric analysis detected the presence of eugenol and curcuminoids in AG and CA, respectively. This is the first report representing promising findings on AG and CA extract-derived antityrosinase properties correlated with their antioxidant potential. Inhibiting cellular oxidative stress and improving antioxidant defenses might be the mechanisms by which the extracts yield the protective effects on UVA-dependent melanogenesis. PMID:19288216

  17. Total and differential bulk cow milk somatic cell counts and their relation with antioxidant factors

    Microsoft Academic Search

    Houda Hamed; Abdelfettah El Feki; Ahmed Gargouri

    2008-01-01

    In the present study, the relationship between total bulk milk somatic cell counts (BMSCC), differential BMSCC (macrophage, lymphocyte, and polymorphonuclear leukocytes), and antioxidant enzymes was investigated. Forty-three samples of bulk milk were selected randomly from eight dairy farms in the region of Sfax (Tunisia) in winter, from November 2005 to February 2006. Bulk milk samples were analyzed for antioxidant enzymes

  18. Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum

    Microsoft Academic Search

    A Bhattacharya; S Ghosal; S. K Bhattacharya

    2001-01-01

    The antioxidant activity of Withania somnifera (WS) glycowithanolides was assessed in chronic footshock stress induced changes in rat brain frontal cortex and striatum. The stress procedure, given once daily for 21 days, induced an increase in superoxide dismutase (SOD) and lipid peroxidation (LPO) activity, with concomitant decrease in catalase (CAT) and glutathione peroxidase (GPX) activities in both the brain regions.

  19. Comparative study of antioxidant capacity in organs of different Allium species

    Microsoft Academic Search

    Dubravka Štajner; Boris M. Popovi?

    2009-01-01

    Cultivated and wild Allium species were investigated in order to compare the antioxidant capacity of their leaves and bulbs. Leaf and bulb anti-oxidative\\u000a enzymes and scavenger activities, along with quantities of non-enzymic antioxidants, malonyl-dialdehyde and OH radicals were\\u000a determined. Results obtained suggest that leaves possess higher anti-oxidant and scavenging activities than bulbs in the majority\\u000a of cultivated and wild Allium

  20. Intracellular pH in unanesthetized dogs during panting.

    PubMed

    Albers, C; Usinger, W; Scholand, C

    1975-01-01

    Intracellular pH, arterial blood gases and several plasma enzymes were estimated in unanesthetized dogs during a 3-hour exposure to 30 degrees C/50% relative humidity, and 40 degrees C/50% relative humidity. No change occurred during mild heat stress, whereas during severe heat stress a profound respiratory alkalosis developed together with an increase in intracellular pH from 7.03 to 7.29. Most plasma enzymes increased by about 300% or more. In spite of extreme panting body temperature rose to 42.2 degrees C. Exposure to 40 degrees C/50% relative humidity with 4% CO2 in the climatic chamber inhibited the respiratory alkalosis and the increase of plasma enzymes. Though the panting frequency was lower the ventilatory heat dissipation was more efficient. Body temperature rose to only 39.8 degrees C. It is concluded that the intracellular buffering is not able to prevent marked changes of the intracellular pH during panting. PMID:236591

  1. Antioxidant effects of green tea

    PubMed Central

    FORESTER, SARAH C.; LAMBERT, JOSHUA D.

    2013-01-01

    Consumption of green tea (Camellia sinensis) may provide protection against chronic diseases, including cancer. Green tea polyphenols are believed to be responsible for this cancer preventive effect, and the antioxidant activity of the green tea polyphenols has been implicated as a potential mechanism. This hypothesis has been difficult to study in vivo due to metabolism of these compounds and poor understanding of the redox environment in vivo. Green tea polyphenols can be direct antioxidants by scavenging reactive oxygen species or chelating transition metals as has been demonstrated in vitro. Alternatively, they may act indirectly by up-regulating phase II antioxidant enzymes. Evidence of this latter effect has been observed in vivo, yet more work is required to determine under which conditions these mechanisms occur. Green tea polyphenols can also be potent pro-oxidants, both in vitro and in vivo, leading to the formation of hydrogen peroxide, the hydroxyl radical, and superoxide anion. The potential role of these pro-oxidant effects in the cancer preventive activity of green tea is not well understood. The evidence for not only the antioxidant, but also pro-oxidant, properties of green tea are discussed in the present review. PMID:21538850

  2. INTRACELLULAR SURVIVAL OF STAPHYLOCOCCI

    PubMed Central

    Kapral, Frank A.; Shayegani, Mehdi Gh.

    1959-01-01

    A tissue culture procedure is described which permits the quantitative evaluation of the intracellular survival of staphylococci within leucocytes. Staphylococcus aureus survived, but did not multiply, within neutrophils and monocytes of normal rabbits. The same was true of normal human blood leucocytes. Staphylococcus albus on the other hand was destroyed by these cells under the same conditions. Rat monocytes destroyed S. aureus and S. albus with equal facility. Although most experiments were carried out in the presence of 50 µg. streptomycin/ml., similar results were obtained without the use of this antibiotic. The applications of the tissue culture procedure with regard to studies on virulence and immunity in staphylococcal disease are discussed. PMID:13664874

  3. Molecular logistics using cytocleavable polyrotaxanes for the reactivation of enzymes delivered in living cells

    PubMed Central

    Tamura, Atsushi; Ikeda, Go; Seo, Ji-Hun; Tsuchiya, Koji; Yajima, Hirofumi; Sasaki, Yoshihiro; Akiyoshi, Kazunari; Yui, Nobuhiko

    2013-01-01

    The intracellular delivery of enzymes is an essential methodology to extend their therapeutic application. Herein, we have developed dissociable supermolecule-enzyme polyelectrolyte complexes based on reduction-cleavable cationic polyrotaxanes (PRXs) for the reactivation of delivered enzymes. These PRXs are characterized by their supramolecular frameworks of a polymeric chain threading into cyclic molecules, which can form polyelectrolyte complexes with anionic enzymes while retaining their three dimensional structure, although their enzymatic activity is reduced. Upon the addition of a reductant, the PRXs dissociate into their constituent molecules and release the enzymes, resulting in a complete recovery of enzymatic activity. Under the intracellular environment, the PRX-based enzyme complexes showed the highest intracellular enzymatic activity and efficient activation of anticancer prodrugs to induce cytotoxic effects in comparison with the non-dissociable complexes and the commercial cell-penetrating peptide-based reagents. Thus, the intracellularly dissociable supermolecules are an attractive system for delivering therapeutic enzymes into living cells. PMID:23872688

  4. Soil Enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The functionality and resilience of natural and managed ecosystems mainly rely on the metabolic abilities of microbial communities, the main source of enzymes in soils. Enzyme mediated reactions are critical in the decomposition of organic matter, cycling of nutrients, and in the breakdown of herbic...

  5. Enzymes, Industrial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymes serve key roles in numerous biotechnology processes and products that are commonly encountered in the forms of food and beverages, cleaning supplies, clothing, paper products, transportation fuels, pharmaceuticals, and monitoring devices. Enzymes can display regio- and stereo-specificity, p...

  6. Cell-cycle radiation response: Role of intracellular factors

    Microsoft Academic Search

    E. Blakely; P. Chang; L. Lommel; K. Bjornstad; M. Dixon; C. Tobias; K. Kumar; W. F. Blakely

    1989-01-01

    We have been studying variations of radiosensitivity and endogenous cellular factors during the course of progression through the human and hamster cell cycle. After exposure to low-LET radiations, the most radiosensitive cell stages are mitosis and the G1\\/S interface. The increased activity of a specific antioxidant enzyme such as superoxide dismutase in G1-phase, and the variations of endogenous thiols during

  7. Antioxidant-induced stress.

    PubMed

    Villanueva, Cleva; Kross, Robert D

    2012-01-01

    Antioxidants are among the most popular health-protecting products, sold worldwide without prescription. Indeed, there are many reports showing the benefits of antioxidants but only a few questioning the possible harmful effects of these "drugs". The normal balance between antioxidants and free radicals in the body is offset when either of these forces prevails. The available evidence on the harmful effects of antioxidants is analyzed in this review. In summary, a hypothesis is presented that "antioxidant-induced stress" results when antioxidants overwhelm the body's free radicals. PMID:22408440

  8. Oligonucleotide optical switches for intracellular sensing.

    PubMed

    Giannetti, A; Tombelli, S; Baldini, F

    2013-07-01

    Fluorescence imaging coupled with nanotechnology is making possible the development of powerful tools in the biological field for applications such as cellular imaging and intracellular messenger RNA monitoring and detection. The delivery of fluorescent probes into cells and tissues is currently receiving growing interest because such molecules, often coupled to nanodimensional materials, can conveniently allow the preparation of small tools to spy on cellular mechanisms with high specificity and sensitivity. The purpose of this review is to provide an exhaustive overview of current research in oligonucleotide optical switches for intracellular sensing with a focus on the engineering methods adopted for these oligonucleotides and the more recent and fascinating techniques for their internalization into living cells. Oligonucleotide optical switches can be defined as specifically designed short nucleic acid molecules capable of turning on or modifying their light emission on molecular interaction with well-defined molecular targets. Molecular beacons, aptamer beacons, hybrid molecular probes, and simpler linear oligonucleotide switches are the most promising optical nanosensors proposed in recent years. The intracellular targets which have been considered for sensing are a plethora of messenger-RNA-expressing cellular proteins and enzymes, or, directly, proteins or small molecules in the case of sensing through aptamer-based switches. Engineering methods, including modification of the oligonucleotide itself with locked nucleic acids, peptide nucleic acids, or L-DNA nucleotides, have been proposed to enhance the stability of nucleases and to prevent false-negative and high background optical signals. Conventional delivery techniques are treated here together with more innovative methods based on the coupling of the switches with nano-objects. PMID:23793395

  9. Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells

    Microsoft Academic Search

    B. L. Pool-Zobel; A. Bub; N. Schröder; G. Rechkemmer

    1999-01-01

    Summary Anthocyanins are common colored plant flavonoids, occurring as glycosides of the respective anthocyanidin-chromophores. Like other flavonoids, anthocyanidins are also expected to have antioxidative and antimutagenic properties in vivo, although only few data are available. To gain more knowledge on possible protective mechanisms in mammalian cells, we have compared their extracellular and intracellular antioxidative potential in vitro and in human

  10. Redox-Sensitive Transcription Factors as Prime Targets for Chemoprevention with Anti-Inflammatory and Antioxidative Phytochemicals1-3

    Microsoft Academic Search

    Young-Joon Surh; Joydeb Kumar Kundu; Hye-Kyung Na; Jeong-Sang Lee

    Oxidative stress has been implicated in various pathological conditions including cancer. However, the human body has an intrinsic ability to fight against oxidative stress. A wide array of phase 2 detoxifying or antioxidant enzymes constitutes a fundamental cellular defense system against oxidative and electrophilic insults. Transcriptional activation of genes encoding detoxifying and antioxidant enzymes by NF-E2 related factor 2 (Nrf2),

  11. Induction of Oxidative Stress and Antioxidant Activity by Hydrogen Peroxide Treatment in Tolerant and Susceptible Wheat Genotypes

    Microsoft Academic Search

    R. K. Sairam; G. C. Srivastava

    2000-01-01

    We induced an oxidative stress by means of exogenous hydrogen peroxide in two wheat genotypes, C 306 (tolerant to water stress) and Hira (susceptible to water stress), and investigated oxidative injury and changes in antioxidant enzymes activity. H2O2 treatment caused chlorophyll degradation, lipid peroxidation, decreased membrane stability and activity of nitrate reductase. Hydrogen peroxide increased the activity of antioxidant enzymes,

  12. Changes in the Activities of Anti-Oxidant Enzymes during Exposure of lntact Wheat Leaves to Strong Visible Light at Different Temperatures in the Presence of Protein Synthesis lnhibitors

    Microsoft Academic Search

    Neelam P. Mishra; Ranjit K. Mishra; Cauri S. Singhal

    Changes in activities of the enzymes involved in the metabolism of active oxygen species were followed in homogenates prepared from wheat leaves (Triticum aestivum 1.) exposed to strong visible light (600 W m-*). The activities of superoxide dismutase (SOD), ascorbate peroxidase, and monodehydroascorbate reductase in- creased significantly on prolonged illumination of the leaves, in- dicating an increase in the rate

  13. Antioxidant components of naturally-occurring oils exhibit marked anti-inflammatory activity in epithelial cells of the human upper respiratory system

    PubMed Central

    2011-01-01

    Background The upper respiratory tract functions to protect lower respiratory structures from chemical and biological agents in inspired air. Cellular oxidative stress leading to acute and chronic inflammation contributes to the resultant pathology in many of these exposures and is typical of allergic disease, chronic sinusitis, pollutant exposure, and bacterial and viral infections. Little is known about the effective means by which topical treatment of the nose can strengthen its antioxidant and anti-inflammatory defenses. The present study was undertaken to determine if naturally-occurring plant oils with reported antioxidant activity can provide mechanisms through which upper respiratory protection might occur. Methods Controlled exposure of the upper respiratory system to ozone and nasal biopsy were carried out in healthy human subjects to assess mitigation of the ozone-induced inflammatory response and to assess gene expression in the nasal mucosa induced by a mixture of five naturally-occurring antioxidant oils - aloe, coconut, orange, peppermint and vitamin E. Cells of the BEAS-2B and NCI-H23 epithelial cell lines were used to investigate the source and potential intracellular mechanisms of action responsible for oil-induced anti-inflammatory activity. Results Aerosolized pretreatment with the mixed oil preparation significantly attenuated ozone-induced nasal inflammation. Although most oil components may reduce oxidant stress by undergoing reduction, orange oil was demonstrated to have the ability to induce long-lasting gene expression of several antioxidant enzymes linked to Nrf2, including HO-1, NQO1, GCLm and GCLc, and to mitigate the pro-inflammatory signaling of endotoxin in cell culture systems. Nrf2 activation was demonstrated. Treatment with the aerosolized oil preparation increased baseline levels of nasal mucosal HO-1 expression in 9 of 12 subjects. Conclusions These data indicate that selected oil-based antioxidant preparations can effectively reduce inflammation associated with oxidant stress-related challenge to the nasal mucosa. The potential for some oils to activate intracellular antioxidant pathways may provide a powerful mechanism through which effective and persistent cytoprotection against airborne environmental exposures can be provided in the upper respiratory mucosa. PMID:21752292

  14. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  15. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella. PMID:23564838

  16. Susceptibility of sweetpotato (Ipomoea batatas) peel proteins to digestive enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet potato proteins have been shown to possess antioxidant and antidiabetic properties in vivo. The ability of a protein to exhibit systemic effects is somewhat unusual as proteins are typically susceptible to digestive enzymes. This study was undertaken to better understand how digestive enzymes ...

  17. Enzyme Reactions

    NSDL National Science Digital Library

    Maryland Virtual High School

    The enzyme reaction rate activity allows students to simulate the effects of variables such as temperature and pH on the reaction rate of the enzyme catalase. This computer simulation is best used after the students have done a wet lab experiment. The value of the simulation is that it requires the students to interpret and analyze the graphical representation of data and it enables the running of mutiple experiments in a short amount of time.

  18. Cyclooxygenase enzymes and prostaglandins in pathology of the endometrium

    Microsoft Academic Search

    Kurt J. Sales; Henry N. Jabbour

    2003-01-01

    Prostaglandins are bioactive lipids produced from arachidonic acid by cyclooxygenase (COX) enzymes and specific terminal prostanoid synthase enzymes. After biosynthesis, prostaglandins exert an autocrine-paracrine function by coupling to specific prostanoid Gp rotein-coupled receptors to activate intracellular signalling and gene transcription. Fo rm any years, prostaglandins have been recognized as key molecules in reproductive biology by regulating ovulation, endometrial physiology and

  19. Effects of triclosan on the detoxification system in the yellow catfish (Pelteobagrus fulvidraco): expressions of CYP and GST genes and corresponding enzyme activity in phase I, II and antioxidant system.

    PubMed

    Ku, Peijia; Wu, Xiaoyan; Nie, Xiangping; Ou, Ruikang; Wang, Lan; Su, Tian; Li, Yigang

    2014-11-01

    Triclosan (TCS), a broad-spectrum antibacterial agent widely used in pharmaceuticals and personal case products (PPCPs), has been universally detected in aquatic ecosystem in recent years. Unfortunately, there is limited information about its potential impacts on responses of genes and enzymes related to fish detoxification. In the present work, we cloned CYP3A and alpha-GST of yellow catfish (Pelteobagrus fulvidraco) and tested the transcriptional expression of CYP1A, CYP3A and GST as well as the alterations of their corresponding enzymes, including ethoxyresorufin-O-deethylase (EROD), aminopyrine N-demethylase (APND), erythromycin N-demethylase (ERND), glutathione S-transferase (GST) and catalase (CAT), and also the oxidative product malondialdehyde (MDA) content in the liver of P. fulvidraco exposed to TCS. Amino acids of CYP3A and GST were deduced and phylogenetic tree was constructed respectively. High identity percent was exhibited between P. fulvidraco and other species, such as other fish, birds and mammals. Results indicated that TCS significantly elevated CYP1A and GST but decreased CYP3A expression, EROD activity and MDA content at lower concentrations of TCS at 24h. Moreover, CYP3A and GST were significantly inhibited at 72 h but induced at 168 h at lower concentrations. However, CYP3A was always induced at the highest concentration during the exposure period. Furthermore, CYP3A, GST, GST enzyme and MDA content exhibited a dose-effect relationship to some extent, but no significant responses were observed in ERND, APND and CAT except for individual treatments. Taken together, EROD was the most sensitive to TCS exposure as compared to other enzymes. Meanwhile, mRNA responses were more sensitive in yellow catfish. PMID:25064140

  20. Selected heterocyclic compounds as antioxidants. Synthesis and biological evaluation.

    PubMed

    Tsolaki, E; Nobelos, P; Geronikaki, A; Rekka, E A

    2014-01-01

    Reactive oxygen species, oxidative stress, and oxidative damage are increasingly assigned important roles as harmful factors in pathological conditions and ageing. ROS are potentially reactive molecules derived from the reduction of molecular oxygen in the course of aerobic metabolism. ROS can also be produced through a variety of enzymes. Under normal circumstances, ROS concentrations are tightly controlled by physiological antioxidants. When excessively produced, or when antioxidants are depleted, ROS can impose oxidative damage to lipids, proteins, sugars and DNA. This reduction-oxidation imbalance, called oxidative stress, can subsequently contribute to the development and progression of tissue damage and play a role in the pathology of various diseases. An antioxidant is defined as "any substance that, when present at low concentrations compared with those of a substrate, significantly delays, prevents or removes oxidative damage to this target molecule". Despite evidence that oxidative damage contributes to a wide range of clinically important conditions, few antioxidants act as effective drugs in vivo. Inter alia, the difficulty of measuring antioxidant efficacy in vivo makes the interpretation of results from clinical trials difficult. A large number of synthetic compounds have been reported to possess antioxidant activity. Several of them derive from natural antioxidants, others have various structures. In this review, some of the most often reported classes of heterocyclic antioxidant compounds, as well as methods for evaluation of their antioxidant activity are discussed. PMID:25478888

  1. The effects of taurine, taurine homologs and hypotaurine on cell and membrane antioxidative system alterations caused by type 2 diabetes in rat erythrocytes.

    PubMed

    Gossai, Davekanand; Lau-Cam, Cesar A

    2009-01-01

    This study compared taurine, aminomethanesulfonic acid, homotaurine and hypotaurine for the ability to modify indices of oxidative stress and membrane damage associated with type 2 diabetes. In the study, male Goto-Kakizaki and Wistar-Kyoto rats were allowed free access to a high fat and normal diet, respectively, for 9 weeks. At the end of week 8, half of the animals in each group received a daily intraperitoneal dose of a sulfur compound (0.612 M/kg) for 5 days and, 24 hr after the last treatment, blood samples were withdrawn by cardiac puncture to obtain plasma and erythrocyte fractions for biochemical analyses. Relative to control values, taurine and its congeners reduced membrane damage, the formation of intracellular malondialdehyde and oxidized glutathione, and the decreases in reduced glutathione and antioxidative enzyme activities in diabetic erythrocytes. Except for a few isolated instances, all test compounds were equiprotective. PMID:19239167

  2. Triacylglycerol hydrolase: role in intracellular lipid metabolism.

    PubMed

    Dolinsky, V W; Gilham, D; Alam, M; Vance, D E; Lehner, R

    2004-07-01

    Recent scientific advances have revealed the identity of several enzymes involved in the synthesis, storage and catabolism of intracellular neutral lipid storage droplets. An enzyme that hydrolyzes stored triacylglycerol (TG), triacylglycerol hydrolase (TGH), was purified from porcine, human and murine liver microsomes. In rodents, TGH is highly expressed in liver as well as heart, kidney, small intestine and adipose tissues, while in humans TGH is mainly expressed in the liver, adipose and small intestine. TGH localizes to the endoplasmic reticulum and lipid droplets. The TGH genes are located within a cluster of carboxylesterase genes on human and mouse chromosomes 16 and 8, respectively. TGH hydrolyzes stored TG, and in the liver, the lipolytic products are made available for VLDL-TG synthesis. Inhibition of TGH activity also inhibits TG and apolipoprotein B secretion by primary hepatocytes. A role for TGH in basal TG lipolysis in adipocytes has been proposed. TGH expression and activity is both developmentally and hormonally regulated. A model for the function of TGH is presented and discussed with respect to tissue specific functions. PMID:15224187

  3. [Antioxidants in liver protection].

    PubMed

    Hagymási, Krisztina; Blázovics, Anna

    2004-07-01

    Great importance has been attributed to antioxidants in the prevention and treatment of conditions associated with oxidative stress for many years. At the same time the antioxidants are free radicals themselves, and they can exert prooxidant activity depending on the concentration. They influence the cell redox homeostasis by their prooxidant and antioxidant activity as well. Drugs of chronic liver diseases should be considered, because free radicals are generated during the activity of the monooxygenase system, which affect the tissue oxidised status. Combined antioxidant treatment is more favourable compared with monotherapy, because antioxidants have scavenger-, compartment- and tissue-specificity and they regenerate each other directly, too. Beside their antioxidant property they may also directly regulate many important processes, e.g. cell cycle. We have some favourable results with regard combined antioxidant therapy of liver disease of different etiology. PMID:15320484

  4. Peppermint antioxidants revisited.

    PubMed

    Riachi, Liza G; De Maria, Carlos A B

    2015-06-01

    This review discusses the relationship between the chemical composition and antioxidant property of peppermint tisane and essential oil. Phenolic acids (e.g. rosmarinic and caffeic acids), flavones (e.g. luteolin derivatives) and flavanones (e.g. eriocitrin derivatives) are possibly the major infusion antioxidants. Vitamin antioxidants (e.g. ascorbic acid and carotenoids) are minor contributors to the overall antioxidant potential. Unsaturated terpenes having a cyclohexadiene structure (e.g. terpinene) and minor cyclic oxygenated terpenes (e.g. thymol), may contribute to antioxidant potential whilst acyclic unsaturated oxygenated monoterpenes (e.g. linalool) may act as pro-oxidants in essential oil. Findings on the antioxidant potential of major cyclic oxygenated terpenes (menthol and menthone) are conflicting. Antioxidant behaviour of aqueous/organic solvent extracts and essential oil as well as the effect of environmental stresses on essential oil and phenolic composition are briefly discussed. PMID:25624208

  5. Antioxidant defense systems in newborns undergoing phototherapy

    Microsoft Academic Search

    Mete Akisii; Deniz Yilmaz; Sevgi Tiiziin; Nilgün Kültürsay

    1999-01-01

    This paper was designed to investigate whether phototherapy is an oxidative stress in newborn infants undergoing phototherapy.\\u000a A day-light continuous phototherapy was given to jaundiced 20 term and 16 preterm newborns for 72 hours. We measured serum\\u000a vitamin E and the activities of red blood cell anti-oxidation enzymes (superoxide dismutase, catalase and glutathione peroxidase)\\u000a before and after 72 h of

  6. Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers.

    PubMed

    Rendón-Ramírez, Adela-Leonor; Maldonado-Vega, María; Quintanar-Escorza, Martha-Angelica; Hernández, Gerardo; Arévalo-Rivas, Bertha-Isabel; Zentella-Dehesa, Alejandro; Calderón-Salinas, José-Víctor

    2014-01-01

    The molecular response of the antioxidant system and the effects of antioxidant supplementation against oxidative insult in lead-exposed workers has not been sufficiently studied. In this work, antioxidants (vitamin E 400 IU+vitamin C 1g/daily) were supplemented for one year to 15 workers exposed to lead (73 ?g of lead/dl of blood) and the results were compared with those on 19 non-lead exposed workers (6.7 ?g of lead/dl). Lead intoxication was accompanied by a high oxidative damage and an increment in the erythrocyte antioxidant response due to increased activity of catalase and superoxide dismutase. Antioxidant supplementations decreased significantly the oxidative damage as well as the total antioxidant capacity induced by lead intoxication with reduction of the antioxidant enzyme activities. We conclude that antioxidant supplementation is effective in reducing oxidative damage and induces modifications in the physiopathological status of the antioxidant response in lead-exposed workers. PMID:24560336

  7. Herbal antioxidant in clinical practice: a review.

    PubMed

    Alok, Shashi; Jain, Sanjay Kumar; Verma, Amita; Kumar, Mayank; Mahor, Alok; Sabharwal, Monika

    2014-01-01

    Antioxidant-the word itself is magic. Using the antioxidant concept as a spearhead in proposed mechanisms for staving off so-called "free-radical" reactions, the rush is on to mine claims for the latest and most effective combination of free-radical scavenging compounds. We must acknowledge that such "radicals" have definitively been shown to damage all biochemical components such as DNA/RNA, carbohydrates, unsaturated lipids, proteins, and micronutrients such as carotenoids (alpha and beta carotene, lycopene), vitamins A, B6, B12, and folate. Defense strategies against such aggressive radical species include enzymes, antioxidants that occur naturally in the body (glutathione, uric acid, ubiquinol-10, and others) and radical scavenging nutrients, such as vitamins A, C, and E, and carotenoids. This paper will present a brief discussion of some well- and little-known herbs that may add to the optimization of antioxidant status and therefore offer added preventive values for overall health. It is important to state at the outset that antioxidants vary widely in their free-radical quenching effects and each may be individually attracted to specific cell sites. Further evidence of the specialized nature of the carotenoids is demonstrated by the appearance of two carotenoids in the macula region of the retina where beta-carotene is totally absent. PMID:24144136

  8. Herbal antioxidant in clinical practice: A review

    PubMed Central

    Alok, Shashi; Jain, Sanjay Kumar; Verma, Amita; Kumar, Mayank; Mahor, Alok; Sabharwal, Monika

    2014-01-01

    Antioxidant-the word itself is magic. Using the antioxidant concept as a spearhead in proposed mechanisms for staving off so-called "free-radical" reactions, the rush is on to mine claims for the latest and most effective combination of free-radical scavenging compounds. We must acknowledge that such "radicals" have definitively been shown to damage all biochemical components such as DNA/RNA, carbohydrates, unsaturated lipids, proteins, and micronutrients such as carotenoids (alpha and beta carotene, lycopene), vitamins A, B6, B12, and folate. Defense strategies against such aggressive radical species include enzymes, antioxidants that occur naturally in the body (glutathione, uric acid, ubiquinol-10, and others) and radical scavenging nutrients, such as vitamins A, C, and E, and carotenoids. This paper will present a brief discussion of some well- and little-known herbs that may add to the optimization of antioxidant status and therefore offer added preventive values for overall health. It is important to state at the outset that antioxidants vary widely in their free-radical quenching effects and each may be individually attracted to specific cell sites. Further evidence of the specialized nature of the carotenoids is demonstrated by the appearance of two carotenoids in the macula region of the retina where beta-carotene is totally absent. PMID:24144136

  9. Cardiovascular diseases: oxidative damage and antioxidant protection.

    PubMed

    Zhang, P-Y; Xu, X; Li, X-C

    2014-10-01

    Atherosclerosis, the hardening of arteries under oxidative stress is related to oxidative changes of low density lipoproteins (LDL). The antioxidants prevent the formation of oxidized LDL during atherogenesis. Perhaps more than one mechanism is involved in the atherosclerosis disease where LDL is oxidized in all the cells of arterial wall during the development of this disease. The oxidation of LDL produces lipid peroxidation products such as isoprostans from arachidonic, eicosapentaenoic and docosahexaenoic acids, oxysterols from cholesterol, hydroxyl fatty acids, lipid peroxides and aldehydes. The lipid peroxidation bioassay can serve as a marker for the risk of cardiovascular. An in vivo test of levels of oxidative lipid damage is an early prediction of development of cardiovascular disease (CVD). Serum paraoxonase (PON) activity is correlated to severity of the coronary artery disease. The antioxidants level in the serum and serum paraoxonase activity provides information for the risk of CVD. The antioxidant enzyme superoxide dismutase is responsible for dismutation of superoxide, a free radical chain initiator. The subcellular changes in the equilibrium in favor of free radicals can cause increase in the oxidative stress which leads to cardiomyopathy, heart attack or cardiac dysfunction. The oxidative damage and defense of heart disease has been reported where dietary antioxidants protect the free radical damage to DNA, proteins and lipids. The ascorbic acid, vitamin C is an effective antioxidant and high vitamin E intake can reduce the risk of coronary heart disease (CHD) by inhibition of atherogenic forms of oxidized LDL. The vitamin A and beta-carotene protect lipid peroxidation and provitamin-A activity. It has been recently suggested that the protection of oxidative damage and related CVD is best served by antioxidants found in the fruits and vegetables. The oxidative damage and antioxidant protection of CVD have been described here. PMID:25392110

  10. Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system

    Microsoft Academic Search

    C. Abdul Jaleel; G. M. A. Lakshmanan; M. Gomathinayagam; R. Panneerselvam

    2008-01-01

    The mitigative effects of triadimefon (5 mg\\/L) on the germination, early seedling growth, photosynthetic pigments, non-enzymatic antioxidant contents and activities of antioxidant enzymes were studied in salt stressed (40 mM NaCl) Withania somnifera Dunal plants. Salinity stress decreased the germination percentage, early seedling growth and chlorophyll contents. Similarly it affected severely the antioxidants like ascorbic acid (AA), reduced glutathione (GSH) and ?-tocopherol

  11. Enzyme-responsive nanomaterials for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2014-10-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials used for controlled drug release have achieved significant development and have been studied as an important class of drug delivery strategies in nanomedicine. In this review, we describe enzymes such as proteases, phospholipases and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area.

  12. ANTIOXIDANT AND CYCLOOXYGENASE INHIBITORY PROPERTIES OF INDIVIDUAL FLAVONOIDS ISOLATED FROM BERRIES AND SPINACH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary polyphenolics are potent antioxidants and their consumption may provide benefits to human health. In addition, certain phytochemicals have shown to be effective inhibitors of cyclooxygenase (COX) enzymes, and may afford protection against inflammatory processes. The objectives were to deter...

  13. New adenylic homodinucleotides with cytotoxic activity on mammalian cells. ADP-ribosyl cyclases are ubiquitous enzymes responsible for synthesis from NAD+

    E-print Network

    Genova, Università degli Studi di

    New adenylic homodinucleotides with cytotoxic activity on mammalian cells. ADP-ribosyl cyclases are ubiquitous enzymes responsible for synthesis from NAD+ of the intracellular calcium-releasing signal

  14. Food Enzymes

    ERIC Educational Resources Information Center

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  15. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  16. Influence of chilling and heating stress on oxidative parameters and antioxidant systems in tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Tasti-Lee’ and ‘Sanibel’ tomatoes were chilled at 5 °C air for 4 day or heated at 52 °C water for 15 min. Oxidative parameters, antioxidant compounds and antioxidant-related enzymes in the tomatoes were measured immediately after treatment and four days after transfer to 20 °C. For ‘Tasti-Lee’, hea...

  17. Purification and characterization of an intracellular peroxidase from Streptomyces cyaneus

    SciTech Connect

    Mliki, A.; Zimmermann, W. (ETH-Zuerich (Switzerland))

    1992-03-01

    Peroxidases play an important role in the oxidation of a large number of aromatic compounds, including recalcitrant substances. An intracellular peroxidase (EC 1.11.1.7) from Streptomyces cyaneus was purified to homogeneity. The enzyme had a molecular weight of 185,000 and was composed of two subunits of equal size. It had an isoelectric point of 6.1. The enzyme had a peroxidase activity toward o-dianisidine with a K{sub m} of 17.8 {mu}M and a pH optimum of 5.0. It also showed catalase activity with a K{sub m} of 2.07 mM H{sub 2}O{sub 2} and a pH optimum of 8.0. The purified enzyme did not catalyze C{alpha}-C{beta} bond cleavage of 1,3-dihydroxy-2-(2-methoxyphenoxy)-1-(4-ethoxy-3-methoxyphenyl) propane, a nonphenolic dimeric lignin model compound. The spectrum of te peroxidase showed a soret band at 405 nm, which disappeared after reduction with sodium dithionite, indicating that the enzyme is a hemoprotein. Testing the effects of various inhibitors on the enzyme activity showed that it is a bifunctional enzyme having catalase and peroxidase activities.

  18. Bile Acids and Bicarbonate Inversely Regulate Intracellular Cyclic di-GMP in Vibrio cholerae

    PubMed Central

    Koestler, Benjamin J.

    2014-01-01

    Vibrio cholerae is a Gram-negative bacterium that persists in aquatic reservoirs and causes the diarrheal disease cholera upon entry into a human host. V. cholerae employs the second messenger molecule 3?,5?-cyclic diguanylic acid (c-di-GMP) to transition between these two distinct lifestyles. c-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and hydrolyzed by phosphodiesterase (PDE) enzymes. Bacteria typically encode many different DGCs and PDEs within their genomes. Presumably, each enzyme senses and responds to cognate environmental cues by alteration of enzymatic activity. c-di-GMP represses the expression of virulence factors in V. cholerae, and it is predicted that the intracellular concentration of c-di-GMP is low during infection. Contrary to this model, we found that bile acids, a prevalent constituent of the human proximal small intestine, increase intracellular c-di-GMP in V. cholerae. We identified four c-di-GMP turnover enzymes that contribute to increased intracellular c-di-GMP in the presence of bile acids, and deletion of these enzymes eliminates the bile induction of c-di-GMP and biofilm formation. Furthermore, this bile-mediated increase in c-di-GMP is quenched by bicarbonate, the intestinal pH buffer secreted by intestinal epithelial cells. Our results lead us to propose that V. cholerae senses distinct microenvironments within the small intestine using bile and bicarbonate as chemical cues and responds by modulating the intracellular concentration of c-di-GMP. PMID:24799624

  19. Inhibitory effect of rosiglitazone on the acid-induced intracellular generation of hydrogen peroxide in cultured feline esophageal epithelial cells.

    PubMed

    Park, Sun Young; Sohn, Uy Dong

    2011-02-01

    Peroxisome proliferator-activated receptor-gamma (PPAR?) agonists have been reported to enhance antioxidant defenses by increasing levels of catalase and copper-zinc superoxide dismutase (Cu/Zn SOD) in oligodendrocyte progenitor cells. In this study, we investigated the effects of the PPAR? agonist, rosiglitazone, on hydrogen peroxide (H(2)O(2)) generation by acidified medium at pH 5.5 (AM5.5), which is in the pH range of duodenogastric refluxates, in primary cultured feline esophageal epithelial cells (EEC). Successful isolation of EEC was identified by immunocytochemistry. AM5.5- and rosiglitazone-induced cell viabilities were determined using 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide assays. The NAD(P)H oxidase activity was measured, and expression of catalase or SOD protein by AM5.5 in the absence and presence of rosiglitazone was assessed using western blotting analysis. PPAR? protein and mRNA were constitutively expressed in EEC. In the incubation with rosiglitazone alone, cell viability was shown more than 90% at 0-10 ?M for 72 h. After exposure to AM5.5 for 8 h, intracellular H(2)O(2) was significantly generated. Treatment with rosiglitazone prior to and during exposure to AM5.5 inhibited the H(2)O(2) generation whereas the specific PPAR? antagonist GW9662 offsets the inhibitory action of rosiglitazone. H(2)O(2) generation was also prevented by a nonspecific ROS scavenger N-acetylcysteine or an inhibitor of NADPH oxidase diphenyleneiodonium. The enhanced AM5.5-induced NAD(P)H oxidase activity was not suppressed by rosiglitazone. Instead, the pretreatment of rosiglitazone enhanced the protein expression of catalase, Cu/Zn SOD, and Mn SOD, which are endogenous antioxidative enzymes. These findings indicate that rosiglitazone inhibits AM5.5-induced intracellular H(2)O(2) production, which occurs via NAD(P)H oxidase activation, by using a PPAR?-dependent pathway, and that the underlying mechanism involves an increase in the expression of catalase and SOD proteins. PMID:21212935

  20. ENZYMES OF THE LUNG

    PubMed Central

    Vatter, A. E.; Reiss, O. K.; Newman, Joyce K.; Lindquist, Karin; Groeneboer, Elly

    1968-01-01

    The esterases of rabbit lung have been investigated from two viewpoints, the cytochemical and the biochemical. To accomplish this objective, we designed and synthesized a series of ester substrates which provide both a cytochemical indicator of the location of the enzyme and a means of following the enzymatic activity in tissue homogenates and subfractions. The substrates are p-nitrophenylthiol esters which yield, upon hydrolysis, carboxylic acid and p-nitrothiophenol. The latter can react with aurous ions to give an electron-opaque deposit; in addition, the strong absorption of p-nitrothiophenol at 410 mµ permits continuous kinetic measurements. Thus, it is possible to correlate the intracellular site of action and the biochemical behavior of the esterases. The new substrates are the thiol analogues of the p-nitrophenyl esters frequently employed as esterase substrates. The rates of hydrolysis of the two series of esters are compared in vitro. During tissue fractionation, most of the esterase activity sediments with a particulate fraction. The effects of a number of common esterase inhibitors, such as diisopropyl phosphorofluoridate and eserine sulfate, are examined, and the effects of enzyme concentration and heat inactivation are shown with the use of the partially purified preparations. The cytochemical work shows that the esterase activity is most prominent in the lamellar bodies of the giant alveolar (type II, septal, or granular pneumatocyte) cells of the lung and to a lesser extent in squamous (type I, or membranous pneumatocyte) epithelial and endothelial cells. In both the cytochemical and biochemical studies, the enzymes are inhibited by diisopropyl phosphorofluoridate and phenyl methylsulfonyl fluoride but are insensitive to eserine sulfate. PMID:5691980

  1. Different Redox Response Elicited by Naturally Occurring Antioxidants in Human Endothelial Cells

    PubMed Central

    Giordo, Roberta; Cossu, Annalisa; Pasciu, Valeria; Hoa, Phu Thi; Posadino, Anna Maria; Pintus, Gianfranco

    2013-01-01

    Evidences that higher natural antioxidant (NA) intake provides protection against cardiovascular disease (CVD) are contradictory. Oxidative-induced endothelial cells (ECs) injury is the key step in the onset and progression of CVD and for this reason the cellular responses resulting from NA interaction with ECs are actively investigated. This study was designed to investigate the direct impact of different naturally occurring antioxidants on the intracellular ROS levels in cultured human ECs. NA-induced redox changes, in terms of modulation of the intracellular ROS levels, were assessed by using the ROS fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA). While caffeic and caftaric acid exerted an anti-oxidant effect, both coumaric acid and resveratrol were pro-oxidant. Anti- and pro-oxidant effects of the tested compounds were concentration dependent, showing the induction or the tendency to promote a pro-oxidant outcome with increasing concentrations. Interestingly, the anti- and pro-oxidant behavior of chlorogenic and ferulic acid was dependent on the basal intracellular redox state. Our data indicate that naturally occurring antioxidants are able to induce a rapid modification of the intracellular ROS levels in human ECs, which is dependent on both the applied concentration and the intracellular redox state. PMID:23730364

  2. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.

    PubMed

    Caspers, Michael; Czogalla, Katrin J; Liphardt, Kerstin; Müller, Jens; Westhofen, Philipp; Watzka, Matthias; Oldenburg, Johannes

    2015-05-01

    VKORC1 and VKORC1L1 are enzymes that both catalyze the reduction of vitamin K2,3-epoxide via vitamin K quinone to vitamin K hydroquinone. VKORC1 is the key enzyme of the classical vitamin K cycle by which vitamin K-dependent (VKD) proteins are ?-carboxylated by the hepatic ?-glutamyl carboxylase (GGCX). In contrast, the VKORC1 paralog enzyme, VKORC1L1, is chiefly responsible for antioxidative function by reduction of vitamin K to prevent damage by intracellular reactive oxygen species. To investigate tissue-specific vitamin K 2,3-epoxide reductase (VKOR) function of both enzymes, we quantified mRNA levels for VKORC1, VKORC1L1, GGCX, and NQO1 and measured VKOR enzymatic activities in 29 different mouse tissues. VKORC1 and GGCX are highly expressed in liver, lung and exocrine tissues including mammary gland, salivary gland and prostate suggesting important extrahepatic roles for the vitamin K cycle. Interestingly, VKORC1L1 showed highest transcription levels in brain. Due to the absence of detectable NQO1 transcription in liver, we assume this enzyme has no bypass function with respect to activation of VKD coagulation proteins. Our data strongly suggest diverse functions for the vitamin K cycle in extrahepatic biological pathways. PMID:25747820

  3. Effect of traumatic acid on antioxidant activity in Chlorella vulgaris (Chlorophyceae)

    Microsoft Academic Search

    Anna Pietryczuk; Romuald Czerpak

    The present study was undertaken to test the influence of exogenously applied traumatic acid (TA) upon the activity of several\\u000a antioxidant enzymes as well as lipid and protein peroxidation in green algae Chlorella vulgaris. Treatment with TA in concentration range of 10?6–10?5 M resulted in an increase of antioxidant enzyme (sodium dismutase, catalase, ascorbate peroxidase, NADH peroxidase, glutathione\\u000a reductase) activity.

  4. Effects of Urtica dioica L. seed on lipid peroxidation, antioxidants and liver pathology in aflatoxin-induced tissue injury in rats

    Microsoft Academic Search

    Zabit Yener; Ismail Celik; Fatma Ilhan; Ramazan Bal

    2009-01-01

    This study was carried out to investigate the hepatoprotective and antioxidant properties of Urtica dioica L. seeds (UDS) extract against aflatoxin (AF)-exposure in rats. The preventive potential and antioxidant capacity of the plant’s extract was evaluated by liver histopathological changes, measuring serum marker enzymes, antioxidant defense systems and lipid peroxidation (Malondialdehyde, MDA) content in some tissues of rats. Eighteen rats

  5. Exit strategies of intracellular pathogens

    Microsoft Academic Search

    Kevin Hybiske; Richard S. Stephens

    2008-01-01

    The exit of intracellular pathogens from host cells is an important step in the infectious cycle, but is poorly understood. It has recently emerged that microbial exit is a process that can be directed by organisms from within the cell, and is not simply a consequence of the physical or metabolic burden that is imposed on the host cell. This

  6. Plant Extracts of the Family Lauraceae: A Potential Resource for Chemopreventive Agents that Activate the Nuclear Factor-Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway

    PubMed Central

    Shen, Tao; Chen, Xue-Mei; Harder, Bryan; Long, Min; Wang, Xiao-Ning; Lou, Hong-Xiang; Wondrak, Georg T.; Ren, Dong-Mei; Zhang, Donna D.

    2015-01-01

    Cells and tissues counteract insults from exogenous or endogenous carcinogens through the expression of genes encoding antioxidants and phase II detoxifying enzymes regulated by antioxidant response element promoter regions. Nuclear factor-erythroid 2-related factor 2 plays a key role in regulating the antioxidant response elements-target gene expression. Hence, the Nrf2/ARE pathway represents a vital cellular defense mechanism against damage caused by oxidative stress and xenobiotics, and is recognized as a potential molecular target for discovering chemo-preventive agents. Using a stable antioxidant response element luciferase reporter cell line derived from human breast cancer MDA-MB-231 cells combined with a 96-well high-throughput screening system, we have identified a series of plant extracts from the family Lauraceae that harbor Nrf2-inducing effects. These extracts, including Litsea garrettii (ZK-08), Cinnamomum chartophyllum (ZK-02), C. mollifolium (ZK-04), C. camphora var. linaloolifera (ZK-05), and C. burmannii (ZK-10), promoted nuclear translocation of Nrf2, enhanced protein expression of Nrf2 and its target genes, and augmented intracellular glutathione levels. Cytoprotective activity of these extracts against two electrophilic toxicants, sodium arsenite and H2O2, was investigated. Treatment of human bronchial epithelial cells with extracts of ZK-02, ZK-05, and ZK-10 significantly improved cell survival in response to sodium arsenite and H2O2, while ZK-08 showed a protective effect against only H2O2. Importantly, their protective effects against insults from both sodium arsenite and H2O2 were Nrf2-dependent. Therefore, our data provide evidence that the selected plants from the family Lauraceae are potential sources for chemopreventive agents targeting the Nrf2/ARE pathway. PMID:24585092

  7. Plant extracts of the family Lauraceae: a potential resource for chemopreventive agents that activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway.

    PubMed

    Shen, Tao; Chen, Xue-Mei; Harder, Bryan; Long, Min; Wang, Xiao-Ning; Lou, Hong-Xiang; Wondrak, Georg T; Ren, Dong-Mei; Zhang, Donna D

    2014-03-01

    Cells and tissues counteract insults from exogenous or endogenous carcinogens through the expression of genes encoding antioxidants and phase II detoxifying enzymes regulated by antioxidant response element promoter regions. Nuclear factor-erythroid 2-related factor 2 plays a key role in regulating the antioxidant response elements-target gene expression. Hence, the Nrf2/ARE pathway represents a vital cellular defense mechanism against damage caused by oxidative stress and xenobiotics, and is recognized as a potential molecular target for discovering chemopreventive agents. Using a stable antioxidant response element luciferase reporter cell line derived from human breast cancer MDA-MB-231 cells combined with a 96-well high-throughput screening system, we have identified a series of plant extracts from the family Lauraceae that harbor Nrf2-inducing effects. These extracts, including Litsea garrettii (ZK-08), Cinnamomum chartophyllum (ZK-02), C. mollifolium (ZK-04), C. camphora var. linaloolifera (ZK-05), and C. burmannii (ZK-10), promoted nuclear translocation of Nrf2, enhanced protein expression of Nrf2 and its target genes, and augmented intracellular glutathione levels. Cytoprotective activity of these extracts against two electrophilic toxicants, sodium arsenite and H2O2, was investigated. Treatment of human bronchial epithelial cells with extracts of ZK-02, ZK-05, and ZK-10 significantly improved cell survival in response to sodium arsenite and H2O2, while ZK-08 showed a protective effect against only H2O2. Importantly, their protective effects against insults from both sodium arsenite and H2O2 were Nrf2-dependent. Therefore, our data provide evidence that the selected plants from the family Lauraceae are potential sources for chemopreventive agents targeting the Nrf2/ARE pathway. PMID:24585092

  8. Anti-oxidative and hepatoprotective effects of lithospermic acid against carbon tetrachloride-induced liver oxidative damage in vitro and in vivo.

    PubMed

    Chan, Ka Woon Karen; Ho, Wing Shing

    2015-08-01

    Accumulation of an excess amount of reactive oxygen species (ROS) can cause hepatotoxicity that may result in liver damage. Therefore, development of anti-oxidative agents is needed for reducing liver toxicity. This study investigated the anti-oxidative and hepatoprotective activity of lithospermic acid, a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo. The results of the DPPH assay indicated that lithospermic acid was a good anti-oxidant. the CCl4-exposed Huh7 cell line exhibited decreased cell viability, increased necrosis and elevated ROS and caspase-3/7 activity. Lithospermic acid significantly attenuated the CCl4-induced oxidative damage in a concentration-dependent manner. The result of an in vivo study with BALB/c mice corresponded with the anti-oxidative activity noted in the in vitro stud