Sample records for intracellular chloride level

  1. High Intracellular Chloride Slows the Decay of Glycinergic Currents

    PubMed Central

    Pitt, Samantha J.; Sivilotti, Lucia G.; Beato, Marco

    2009-01-01

    The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm (“symmetrical” chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from ∼7ms to ∼3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions. PMID:18987182

  2. Glutamate transporter-associated anion channels adjust intracellular chloride concentrations during glial maturation.

    PubMed

    Untiet, Verena; Kovermann, Peter; Gerkau, Niklas J; Gensch, Thomas; Rose, Christine R; Fahlke, Christoph

    2017-02-01

    Astrocytic volume regulation and neurotransmitter uptake are critically dependent on the intracellular anion concentration, but little is known about the mechanisms controlling internal anion homeostasis in these cells. Here we used fluorescence lifetime imaging microscopy (FLIM) with the chloride-sensitive dye MQAE to measure intracellular chloride concentrations in murine Bergmann glial cells in acute cerebellar slices. We found Bergmann glial [Cl - ] int to be controlled by two opposing transport processes: chloride is actively accumulated by the Na + -K + -2Cl - cotransporter NKCC1, and chloride efflux through anion channels associated with excitatory amino acid transporters (EAATs) reduces [Cl - ] int to values that vary upon changes in expression levels or activity of these channels. EAATs transiently form anion-selective channels during glutamate transport, and thus represent a class of ligand-gated anion channels. Age-dependent upregulation of EAATs results in a developmental chloride switch from high internal chloride concentrations (51.6 ± 2.2 mM, mean ± 95% confidence interval) during early development to adult levels (35.3 ± 0.3 mM). Simultaneous blockade of EAAT1/GLAST and EAAT2/GLT-1 increased [Cl - ] int in adult glia to neonatal values. Moreover, EAAT activation by synaptic stimulations rapidly decreased [Cl - ] int . Other tested chloride channels or chloride transporters do not contribute to [Cl - ] int under our experimental conditions. Neither genetic removal of ClC-2 nor pharmacological block of K + -Cl - cotransporter change resting Bergmann glial [Cl - ] int in acute cerebellar slices. We conclude that EAAT anion channels play an important and unexpected role in adjusting glial intracellular anion concentration during maturation and in response to cerebellar activity. GLIA 2017;65:388-400. © 2016 Wiley Periodicals, Inc.

  3. Inhibitory effect of DIDS, NPPB, and phloretin on intracellular chloride channels.

    PubMed

    Malekova, Lubica; Tomaskova, Jana; Novakova, Marie; Stefanik, Peter; Kopacek, Juraj; Lakatos, Boris; Pastorekova, Silvia; Krizanova, Olga; Breier, Albert; Ondrias, Karol

    2007-11-01

    We studied the effects of the chloride channel blockers, 5-nitro-2-(phenylpropylamino)-benzoate (NPPB), dihydro-4,4' diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), and phloretin on H2O2-induced primary culture cardiomyocyte apoptosis and activity of intracellular chloride channels obtained from rat heart mitochondrial and lysosomal vesicles. The chloride channel blockers (100 micromol/l) inhibited the H2O2-induced cardiomyocytes apoptosis. We characterized the effect of the blockers on single channel properties of the chloride channels derived from the mitochondrial and lysosomal vesicles incorporated into a bilayer lipid membrane. The single chloride channel currents were measured in 250:50 mmol/l KCl cis/trans solutions. NPPB, DIDS, and phloretin inhibited the chloride channels by decreasing the channel open probability in a concentration-dependent manner with EC50 values of 42, 7, and 20 micromol/l, respectively. NPPB and phloretin inhibited the channel's conductance and open dwell time, indicating that they could affect the chloride selective filter, pore permeability, and gating mechanism of the chloride channels. DIDS and NPPB inhibited the channels from the other side than bongkrekic acid and carboxyatractyloside. The results may contribute to understand a possible involvement of intracellular chloride channels in apoptosis and cardioprotection.

  4. Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein.

    PubMed

    Paredes, Jose M; Idilli, Aurora I; Mariotti, Letizia; Losi, Gabriele; Arslanbaeva, Lyaysan R; Sato, Sebastian Sulis; Artoni, Pietro; Szczurkowska, Joanna; Cancedda, Laura; Ratto, Gian Michele; Carmignoto, Giorgio; Arosio, Daniele

    2016-06-17

    Ion homeostasis regulates critical physiological processes in the living cell. Intracellular chloride concentration not only contributes in setting the membrane potential of quiescent cells but it also plays a role in modulating the dynamic voltage changes during network activity. Dynamic chloride imaging demands new tools, allowing faster acquisition rates and correct accounting of concomitant pH changes. Joining a long-Stokes-shift red-fluorescent protein to a GFP variant with high sensitivity to pH and chloride, we obtained LSSmClopHensor, a genetically encoded fluorescent biosensor optimized for the simultaneous chloride and pH imaging and requiring only two excitation wavelengths (458 and 488 nm). LSSmClopHensor allowed us to monitor the dynamic changes of intracellular pH and chloride concentration during seizure like discharges in neocortical brain slices. Only cells with tightly controlled resting potential revealed a narrow distribution of chloride concentration peaking at about 5 and 8 mM, in neocortical neurons and SK-N-SH cells, respectively. We thus showed that LSSmClopHensor represents a new versatile tool for studying the dynamics of chloride and proton concentration in living systems.

  5. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins.

    PubMed

    Ponnalagu, Devasena; Gururaja Rao, Shubha; Farber, Jason; Xin, Wenyu; Hussain, Ahmed Tafsirul; Shah, Kajol; Tanda, Soichi; Berryman, Mark; Edwards, John C; Singh, Harpreet

    2016-03-01

    Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  6. A role for intracellular zinc in glioma alteration of neuronal chloride equilibrium

    PubMed Central

    Di Angelantonio, S; Murana, E; Cocco, S; Scala, F; Bertollini, C; Molinari, M G; Lauro, C; Bregestovski, P; Limatola, C; Ragozzino, D

    2014-01-01

    Glioma patients commonly suffer from epileptic seizures. However, the mechanisms of glioma-associated epilepsy are far to be completely understood. Using glioma-neurons co-cultures, we found that tumor cells are able to deeply influence neuronal chloride homeostasis, by depolarizing the reversal potential of γ-aminobutyric acid (GABA)-evoked currents (EGABA). EGABA depolarizing shift is due to zinc-dependent reduction of neuronal KCC2 activity and requires glutamate release from glioma cells. Consistently, intracellular zinc loading rapidly depolarizes EGABA in mouse hippocampal neurons, through the Src/Trk pathway and this effect is promptly reverted upon zinc chelation. This study provides a possible molecular mechanism linking glioma invasion to excitation/inhibition imbalance and epileptic seizures, through the zinc–mediated disruption of neuronal chloride homeostasis. PMID:25356870

  7. The Effect of WNK4 on the Na+-Cl- Cotransporter Is Modulated by Intracellular Chloride.

    PubMed

    Bazúa-Valenti, Silvana; Chávez-Canales, María; Rojas-Vega, Lorena; González-Rodríguez, Xochiquetzal; Vázquez, Norma; Rodríguez-Gama, Alejandro; Argaiz, Eduardo R; Melo, Zesergio; Plata, Consuelo; Ellison, David H; García-Valdés, Jesús; Hadchouel, Juliette; Gamba, Gerardo

    2015-08-01

    It is widely recognized that the phenotype of familial hyperkalemic hypertension is mainly a consequence of increased activity of the renal Na(+)-Cl(-) cotransporter (NCC) because of altered regulation by with no-lysine-kinase 1 (WNK1) or WNK4. The effect of WNK4 on NCC, however, has been controversial because both inhibition and activation have been reported. It has been recently shown that the long isoform of WNK1 (L-WNK1) is a chloride-sensitive kinase activated by a low Cl(-) concentration. Therefore, we hypothesized that WNK4 effects on NCC could be modulated by intracellular chloride concentration ([Cl(-)]i), and we tested this hypothesis in oocytes injected with NCC cRNA with or without WNK4 cRNA. At baseline in oocytes, [Cl(-)]i was near 50 mM, autophosphorylation of WNK4 was undetectable, and NCC activity was either decreased or unaffected by WNK4. A reduction of [Cl(-)]i, either by low chloride hypotonic stress or coinjection of oocytes with the solute carrier family 26 (anion exchanger)-member 9 (SLC26A9) cRNA, promoted WNK4 autophosphorylation and increased NCC-dependent Na(+) transport in a WNK4-dependent manner. Substitution of the leucine with phenylalanine at residue 322 of WNK4, homologous to the chloride-binding pocket in L-WNK1, converted WNK4 into a constitutively autophosphorylated kinase that activated NCC, even without chloride depletion. Elimination of the catalytic activity (D321A or D321K-K186D) or the autophosphorylation site (S335A) in mutant WNK4-L322F abrogated the positive effect on NCC. These observations suggest that WNK4 can exert differential effects on NCC, depending on the intracellular chloride concentration. Copyright © 2015 by the American Society of Nephrology.

  8. Chloride flux in phagocytes.

    PubMed

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A Sensitive Membrane-Targeted Biosensor for Monitoring Changes in Intracellular Chloride in Neuronal Processes

    PubMed Central

    Watts, Spencer D.; Suchland, Katherine L.; Amara, Susan G.; Ingram, Susan L.

    2012-01-01

    Background Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. Methodology/Principal Findings In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30–40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k50 =  41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABAA agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. Conclusions/Significance The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments. PMID:22506078

  10. Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride

    PubMed Central

    Batti, Laura; Mukhtarov, Marat; Audero, Enrica; Ivanov, Anton; Paolicelli, Rosa Chiara; Zurborg, Sandra; Gross, Cornelius; Bregestovski, Piotr; Heppenstall, Paul A.

    2013-01-01

    Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo. PMID:23734096

  11. The intracellular region of ClC-3 chloride channel is in a partially folded state and a monomer.

    PubMed

    Li, Shu Jie; Kawazaki, Masanobu; Ogasahara, Kyoko; Nakagawa, Atsushi

    2006-05-01

    In contrast to bacterial ClC chloride channels, all eukaryotic ClC chloride channels have a conserved long intracellular region that makes up of the carboxyl terminus of the protein and is necessary for channel functions as a channel gate. Little is known, however, about the molecular structure of the intracellular region of ClC chloride channels so far. Here, for the first time, we have expressed and purified the intracellular region of the rat ClC-3 chloride channel (C-ClC-3) as a water-soluble protein under physiological conditions, and investigated its structural characteristics and assembly behavior by means of circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC), size exclusion chromatography and analytical ultracentrifugation. The far-UV CD spectra of C-ClC-3 in the native state and in the presence of urea clearly show that the protein has a significantly folded secondary structure consisting of alpha-helices and beta-sheets, while the near-UV CD spectra and DSC experiments indicate the protein is deficient in well-defined tertiary packing. Its Stokes radius is larger than its expected size as a folded globular protein, as determined on size exclusion chromatography. Furthermore, the DisEMBL program, a useful computational tool for the prediction of disordered/unstructured regions within a protein sequence, predicts that the protein is in a partially folded state. Based on these results, we conclude that C-ClC-3 is partially folded. On the other hand, both size exclusion chromatography and sedimentation equilibrium analysis show that C-ClC-3 exists as a monomer in solution, not a dimer like the whole ClC-3 molecule.

  12. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets.

    PubMed

    Peretti, Marta; Angelini, Marina; Savalli, Nicoletta; Florio, Tullio; Yuspa, Stuart H; Mazzanti, Michele

    2015-10-01

    In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers." Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Tanyi, Janos L; Zhang, Rugang; Liu, Qin; Speicher, David W

    2013-08-26

    New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. This manuscript addresses the importance of distinguishing between protein homologs and isoforms when identifying and validating cancer biomarkers in plasma or serum. Specifically, it describes the use of targeted in-depth LC-MS/MS analysis to determine the members of two protein families, chloride intracellular channel (CLIC) and tropomyosin (TPM) proteins that are detectable in sera of ovarian cancer patients. It then establishes a multiplexed isoform- and homology-specific MRM assay to quantify all observed gene products in these two protein

  14. Intracellular chloride ion concentration in differentiating neuronal cell and its role in growing neurite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Ken-ichi; Marunaka, Yoshinori; Department of Bio-Ionomics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566

    Chloride ion (Cl{sup −}) is one of the most abundant anions in our body. Increasing evidence suggests that Cl{sup −} plays fundamental roles in various cellular functions. We have previously reported that electroneutral cation-chloride cotransporters, such as Na{sup +}-K{sup +}-2Cl{sup −} cotransporter 1 (NKCC1) and K{sup +}-Cl{sup −} cotransporter 1 (KCC1), are involved in neurite outgrowth during neuronal differentiation. In the present study, we studied if there is correlation between intracellular Cl{sup −} concentrations ([Cl{sup −}]{sub i}) and the length of growing neurites. We measured [Cl{sup −}]{sub i} in the cell body and growing neurite tips using halide-sensitive fluorescent dyemore » N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE), revealing that [Cl{sup −}]{sub i} in the tip of growing neurite was higher than that in cell body in a single cell. Importantly, there was a significant positive correlation between the length of growing neurite and [Cl{sup −}]{sub i} in neurite tip. Bumtanide (BMT), an inhibitor of NKCC1, significantly inhibited neurite outgrowth and decreased [Cl{sup −}]{sub i} in neurite tip. The results obtained in the present study and our previous studies together strongly suggest that high [Cl{sup −}]{sub i} in neurite tip region is crucial for efficient neurite outgrowth. - Highlights: • Intracellular Cl{sup −} concentrations ([Cl{sup −}]{sub i}) in the tip of growing neurite is higher than that in cell body in a single cell. • There is a significant positive correlation between the length of growing neurite and [Cl{sup −}]{sub i} in neurite tip. • Bumetanide significantly inhibits neurite outgrowth and decreased [Cl{sup −}]{sub i} in neurite tip. • High [Cl{sup −}]{sub i} in neurite tip region is crucial for efficient neurite outgrowth.« less

  15. Surface Chloride Levels in Colorado Structural Concrete

    DOT National Transportation Integrated Search

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  16. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule.

    PubMed

    Sun, Qifei; Wu, Yipin; Jonusaite, Sima; Pleinis, John M; Humphreys, John M; He, Haixia; Schellinger, Jeffrey N; Akella, Radha; Stenesen, Drew; Krämer, Helmut; Goldsmith, Elizabeth J; Rodan, Aylin R

    2018-05-01

    Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule. Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux. Results In vitro , autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK , with or without Drosophila Mo25 , did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux. Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium. Copyright © 2018 by the American Society of Nephrology.

  17. Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo

    PubMed Central

    Sulis Sato, Sebastian; Artoni, Pietro; Landi, Silvia; Cozzolino, Olga; Parra, Riccardo; Pracucci, Enrico; Trovato, Francesco; Szczurkowska, Joanna; Arosio, Daniele; Beltram, Fabio; Cancedda, Laura; Kaila, Kai

    2017-01-01

    Intracellular chloride ([Cl−]i) and pH (pHi) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl−]i and pHi, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl− and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl−]i and pHi at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl−]i and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pHi and [Cl−]i in response to hypercapnia and seizure activity. PMID:28973889

  18. Oxidation promotes insertion of the CLIC1 chloride intracellular channel into the membrane.

    PubMed

    Goodchild, Sophia C; Howell, Michael W; Cordina, Nicole M; Littler, Dene R; Breit, Samuel N; Curmi, Paul M G; Brown, Louise Jennifer

    2009-12-01

    Members of the chloride intracellular channel (CLIC) family exist primarily as soluble proteins but can also auto-insert into cellular membranes to form ion channels. While little is known about the process of CLIC membrane insertion, a unique feature of mammalian CLIC1 is its ability to undergo a dramatic structural metamorphosis between a monomeric glutathione-S-transferase homolog and an all-helical dimer upon oxidation in solution. Whether this oxidation-induced metamorphosis facilitates CLIC1 membrane insertion is unclear. In this work, we have sought to characterise the role of oxidation in the process of CLIC1 membrane insertion. We examined how redox conditions modify the ability of CLIC1 to associate with and insert into the membrane using fluorescence quenching studies and a sucrose-loaded vesicle sedimentation assay to measure membrane binding. Our results suggest that oxidation of monomeric CLIC1, in the presence of membranes, promotes insertion into the bilayer more effectively than the oxidised CLIC1 dimer.

  19. Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells

    PubMed Central

    Miraucourt, Loïs S; Tsui, Jennifer; Gobert, Delphine; Desjardins, Jean-François; Schohl, Anne; Sild, Mari; Spratt, Perry; Castonguay, Annie; De Koninck, Yves; Marsh-Armstrong, Nicholas; Wiseman, Paul W; Ruthazer, Edward S

    2016-01-01

    Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl− levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl− regulation. DOI: http://dx.doi.org/10.7554/eLife.15932.001 PMID:27501334

  20. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Tanyi, Janos L.; Zhang, Rugang; Liu, Qin; Speicher, David W.

    2013-01-01

    New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. PMID:23792823

  1. Higher sweat chloride levels in patients with asthma: a case-control study.

    PubMed

    Awasthi, Shally; Dixit, Pratibha; Maurya, Nutan

    2015-02-01

    To screen asthmatic patients by sweat chloride test to identify proportion with Cystic Fibrosis (CF); (Sweat chloride level >60 mmol/L). Also, to compare sweat chloride levels between cases of bronchial asthma and age and sex matched healthy children aged 5 mo-15 y. The present case-control study was conducted in a tertiary care hospital in India. Cases of bronchial asthma, diagnosed by GINA guideline 2008, and age matched healthy controls were included. Case to control ratio was 2:1. Sweat Chloride test was done by Pilocarpine Iontophoresis method. From April 2010 through May 2012, 216 asthmatics and 112 controls were recruited. Among asthmatics, there was no case of Cystic Fibrosis. Mean sweat chloride levels in asthmatics was 22.39 ± 8.45 mmol/L (inter-quartile range - 15-28 mmol/L) and in controls 19.55 ± 7.04 mmol/L (inter-quartile range - 15-23.5 mmol/L) (p value = 0.048). No Cystic Fibrosis case was identified among asthmatics. Mean sweat chloride levels were higher in asthmatics as compared to controls.

  2. Transcriptional over-expression of chloride intracellular channels 3 and 4 in malignant pleural mesothelioma.

    PubMed

    Tasiopoulou, Vasiliki; Magouliotis, Dimitrios; Solenov, Evgeniy I; Vavougios, Georgios; Molyvdas, Paschalis-Adam; Gourgoulianis, Konstantinos I; Hatzoglou, Chrissi; Zarogiannis, Sotirios G

    2015-12-01

    Chloride Intracellular Channels (CLICs) are contributing to the regulation of multiple cellular functions. CLICs have been found over-expressed in several malignancies, and therefore they are currently considered as potential drug targets. The goal of our study was to assess the gene expression levels of the CLIC's 1-6 in malignant pleural mesothelioma (MPM) as compared to controls. We used gene expression data from a publicly available microarray dataset comparing MPM versus healthy tissue in order to investigate the differential expression profile of CLIC 1-6. False discovery rates were calculated and the interactome of the significantly differentially expressed CLICs was constructed and Functional Enrichment Analysis for Gene Ontologies (FEAGO) was performed. In MPM, the gene expressions of CLIC3 and CLIC4 were significantly increased compared to controls (p=0.001 and p<0.001 respectively). A significant positive correlation between the gene expressions of CLIC3 and CLIC4 (p=0.0008 and Pearson's r=0.51) was found. Deming regression analysis provided an association equation between the CLIC3 and CLIC4 gene expressions: CLIC3=4.42CLIC4-10.07. Our results indicate that CLIC3 and CLIC4 are over-expressed in human MPM. Moreover, their expressions correlate suggesting that they either share common gene expression inducers or that their products act synergistically. FAEGO showed that CLIC interactome might contribute to TGF beta signaling and water transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  4. Effects Of Endothelin-1 On Intracellular Tetrahydrobiopterin Levels In Vascular Tissue.

    PubMed

    Cerrato, Ruha; Crabtree, Mark; Antoniades, Charalambos; Kublickiene, Karolina; Schiffrin, Ernesto L; Channon, Keith M; Böhm, Felix

    2018-03-23

    Tetrahydrobiopterin (BH4) is the essential cofactor of endothelial nitric oxide synthase (eNOS) and intracellular levels of BH4 is regulated by oxidative stress. The aim of this paper was to describe the influence of exogenous endothelin-1 on intracellular BH4 and its oxidation products dihydrobiopterin (BH2) and biopterin (B) in a wide range of vascular tissue. Segments of internal mammary artery (IMA) and human saphenous vein (SV) from 41 patients undergoing elective surgery were incubated in ET-1 (0.1 μM). Aorta and lung from transgenic mice overexpressing ET-1 in the endothelium (ET-TG) were analysed with regards to intracellular biopterin levels. Human umbilical vein endothelial cells (HUVEC) were incubated in ET-1 (0.1 μM) and intracellular biopterin levels were analysed. From 6 healthy women undergoing caesarean section, subcutaneous fat was harvested and the resistance arteries in these biopsies were tested for ET-mediated endothelial dysfunction. In HUVEC, exogenous ET-1 (0.1 μM) did not significantly change intracellular BH4, 1.54 ± 1.7 vs 1.68 ± 1.8 pmol/mg protein; p = .8. In IMA and SV, exogenous ET-1(0.1 μM) did not change intracellular BH4 n = 10, p = .4. In aorta from wild type vs ET-TG mice there was no significant difference in intracellular BH4 between the groups: 1.3 ± 0.49 vs 1.23 ± 0.3 pmol/mg protein; p = .6. In resistance arteries (n = 6) BH4 together with DTE (an antioxidant) was not able to prevent ET-mediated endothelial dysfunction. ET-1 did not significantly alter intracellular tetrahydrobiopterin levels in IMA, SV, HUVEC or aorta from ET-TG mice. These findings are important for future research in ET-1 mediated superoxide production and endothelial dysfunction.

  5. Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride and micro-electrodes

    PubMed Central

    Aickin, C. Claire; Brading, Alison F.

    1982-01-01

    1. Cl-sensitive micro-electrodes were used to measure the intracellular Cl activity (aCli) in smooth muscle cells of the guinea-pig vas deferens. The values obtained were compared with those of intracellular Cl (Cli) found by both ion analysis and 36Cl efflux. 2. Various combinations of filling solution for recording membrane potential (Em), and type of micro-electrode were tested. The most successful, which allowed continuous recording of aCli for several hours, was a double-barrelled electrode using the reference liquid ion exchanger (RLIE; Thomas & Cohen, 1981). However, aCli measured both by simultaneous impalements of separate cells with Cl-sensitive and conventional micro-electrodes, and by double-barrelled micro-electrodes, was about 42 mM in normal Krebs solution. This is five times higher than the value from a passive distribution. ECl was about -24 mV, more than 40 mV positive to Em. 3. On complete removal of extracellular Cl (Clo), aCli fell to an apparent level of about 3 mM. If this represents interference from other anions, the maximum error in ECl measured in normal Krebs solution is 2·5 mV. Replacement of Clo caused a rapid increase in aCli. This must be caused by an active transport of Cl- ions into the cell against their electrochemical gradient. 4. The stabilized values of aCli measured at different levels of Clo agree surprisingly well with aCli estimated from ion analysis and 36Cl efflux, assuming that the intracellular activity coefficient was the same as measured in the normal Krebs solution. The relationship of aCli to Clo was hyperbolic. 5. It is concluded that Cl-sensitive micro-electrodes accurately measure aCli in smooth muscle cells. The remarkable agreement between the direct and indirect methods of measuring Cli suggests that Cl- ions are not bound to a significant extent and that the compartment seen by the micro-electrodes is probably representative of the whole cell. PMID:7108787

  6. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents

    PubMed Central

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.

    2011-01-01

    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  7. [Effects of tributyltin chloride (TBT) and triphenyltin chloride (TPT) on rat testicular Leydig cells].

    PubMed

    Wang, Bao-an; Li, Ming; Mu, Yi-ming; Lu, Zhao-hui; Li, Jiang-yuan

    2006-06-01

    To investigate the effects of tributyltin chloride (TBT) and triphenyltin chloride (TPT) on rat testicular Leydig cells. The rat Leydig cells (LC-540) were incubated with 0 to 80 nmol/L TBT and TPT for 24 to approximately 96 h, and then the cell viability was determined by MTT. DNA fragmentation ladder formation of cell apoptosis was examined by agarose electrophoresis. Effects of chelator of intracellular Ca2+ (BAPTA) and the inhibitors of PKA, PKC and TPK on cell apoptosis induced by TBT were observed. Effects of TBT on testosterone production in primary cultured rat Leydig cells treated with or without hCG were detected. TBT and TPT suppressed Leydig cell survival in a time- and dose-dependent manner. The suppressive effects of TBT and TPT on the cell survival was caused by apoptosis which was determined by DNA ladder formation. The apoptotic effect of TBT was possibly mediated by the rise in intracellular Ca2+ because it could be blocked by BAPTA, the chelator of intracellular Ca2+; PKA, PKC and TPK inhibitors did not prevent the apoptotic effects induced by TBT. TBT markedly suppressed testosterone production of primary cultured rat Leydig cells with or without hCG stimulation. TBT and TPT induced apoptosis in rat testicular Leydig cells possibly through increasing intracellular Ca2+. TBT reduced the testosterone production of rat Leydig cells.

  8. Study the effect of Vitamin K on intracellular NAD level in yeast by fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Yahong, Chen; Ruxiu, Cai; Ke, Zhang

    2007-05-01

    The intracellular NAD level plays a pivotal role in numerous biological processes such as rhythm, senescence, cancer and death. The study of the intracellular NAD level has been one of the "hotspots" in biomedical research. We investigated the effect of Vitamin K on intracellular NAD level in yeast by fluorescence spectrum in this paper. Plasma membrane redox system of yeast was found to be greatly promoted by the addition of Vitamin K 3 or Vitamin K 1. Ferricyanide reduction catalyzed by Vitamin K was accompanied by the decrease in intracellular NADH concentration and the increase in intracellular NAD level of yeast cells.

  9. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon

    PubMed Central

    McNamara, Brian; Winter, Desmond C; Cuffe, John E; O'Sullivan, Gerald C; Harvey, Brian J

    1999-01-01

    In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin ΔISC = 63.8 ± 6.2 μA cm−2, n = 6; for PGE2 ΔISC = 34.3 ± 5.2 μA cm−2, n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 μM) and tetraethylammonium (10 mM). The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  10. Mechanism of immunotoxicological effects of tributyltin chloride on murine thymocytes.

    PubMed

    Sharma, Neelima; Kumar, Anoop

    2014-04-01

    Tributyltin-chloride, a well-known organotin compound, is a widespread environmental toxicant. The immunotoxic effects of tributyltin-chloride on mammalian system and its mechanism is still unclear. This study is designed to explore the mode of action of tributyltin-induced apoptosis and other parallel apoptotic pathways in murine thymocytes. The earliest response in oxidative stress followed by mitochondrial membrane depolarization and caspase-3 activation has been observed. Pre-treatment with N-acetyl cysteine and buthionine sulfoximine effectively inhibited the tributyltin-induced apoptotic DNA and elevated the sub G1 population, respectively. Caspase inhibitors pretreatment prevent tributyltin-induced apoptosis. Western blot and flow cytometry indicate no translocation of apoptosis-inducing factor and endonuclease G in the nuclear fraction from mitochondria. Intracellular Ca(2+) levels are significantly raised by tributyltin chloride. These results clearly demonstrate caspase-dependent apoptotic pathway and support the role of oxidative stress, mitochondrial membrane depolarization, caspase-3 activation, and calcium during tributyltin-chloride (TBTC)-induced thymic apoptosis.

  11. Chloride concentration affects Kv channel voltage-gating kinetics: Importance of experimental anion concentrations.

    PubMed

    Bekar, L K; Loewen, M E; Forsyth, G W; Walz, W

    2005-09-30

    Chloride concentration has been shown to have a dramatic impact on protein folding and subsequent tertiary conformation [K.D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods 34 (2004) 300-311; I. Jelesarov, E. Durr, R.M. Thomas, H.R. Bosshard, Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper), Biochemistry 37 (1998) 7539-7550]. As it is known that Kv channel gating is linked to the stability of the cytoplasmic T1 multimerization domain conformation [D.L. Minor, Y.F. Lin, B.C. Mobley, A. Avelar, Y.N. Jan, L.Y. Jan, J.M. Berger, The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel, Cell 102 (2000) 657-670; B.A. Yi, D.L. Minor Jr., Y.F. Lin, Y.N. Jan, L.Y. Jan, Controlling potassium channel activities: interplay between the membrane and intracellular factors, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 11016-11023] and that intracellular chloride concentration has been linked to Kv channel kinetics [L.K. Bekar, W. Walz, Intracellular chloride modulates A-type potassium currents in astrocytes, Glia 39 (2002) 207-216; W.B. Thoreson, S.L. Stella, Anion modulation of calcium current voltage dependence and amplitude in salamander rods, Biochim. Biophys. Acta 1464 (2000) 142-150], the objective of the present study was to address how chloride concentration changes affect Kv channel kinetics more closely in an isolated expression system. Initially, no significant chloride concentration-dependent effects on channel steady-state gating kinetics were observed. Only after disruption of the cytoskeleton with cytochalasin-D did we see significant chloride concentration-dependent shifts in gating kinetics. This suggests that the shift in gating kinetics is mediated through effects of intracellular chloride concentration on cytoplasmic domain tertiary

  12. Exercise modulates chloride homeostasis after spinal cord injury.

    PubMed

    Côté, Marie-Pascale; Gandhi, Sapan; Zambrotta, Marina; Houlé, John D

    2014-07-02

    Activity-based therapies are routinely integrated in spinal cord injury (SCI) rehabilitation programs because they result in a reduction of hyperreflexia and spasticity. However, the mechanisms by which exercise regulates activity in spinal pathways to reduce spasticity and improve functional recovery are poorly understood. Persisting alterations in the action of GABA on postsynaptic targets is a signature of CNS injuries, including SCI. The action of GABA depends on the intracellular chloride concentration, which is determined largely by the expression of two cation-chloride cotransporters (CCCs), KCC2 and NKCC1, which serve as chloride exporters and importers, respectively. We hypothesized that the reduction in hyperreflexia with exercise after SCI relies on a return to chloride homeostasis. Sprague Dawley rats received a spinal cord transection at T12 and were assigned to SCI-7d, SCI-14d, SCI-14d+exercise, SCI-28d, SCI-28d+exercise, or SCI-56d groups. During a terminal experiment, H-reflexes were recorded from interosseus muscles after stimulation of the tibial nerve and the low-frequency-dependent depression (FDD) was assessed. We provide evidence that exercise returns spinal excitability and levels of KCC2 and NKCC1 toward normal levels in the lumbar spinal cord. Acutely altering chloride extrusion using the KCC2 blocker DIOA masked the effect of exercise on FDD, whereas blocking NKCC1 with bumetanide returned FDD toward intact levels after SCI. Our results indicate that exercise contributes to reflex recovery and restoration of endogenous inhibition through a return to chloride homeostasis after SCI. This lends support for CCCs as part of a pathway that could be manipulated to improve functional recovery when combined with rehabilitation programs. Copyright © 2014 the authors 0270-6474/14/348976-12$15.00/0.

  13. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells

    NASA Astrophysics Data System (ADS)

    Saha, Sonali; Prakash, Ved; Halder, Saheli; Chakraborty, Kasturi; Krishnan, Yamuna

    2015-07-01

    The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.

  14. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells.

    PubMed

    Saha, Sonali; Prakash, Ved; Halder, Saheli; Chakraborty, Kasturi; Krishnan, Yamuna

    2015-07-01

    The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.

  15. Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes.

    PubMed Central

    Alvarez-Leefmans, F J; Gamiño, S M; Giraldez, F; Noguerón, I

    1988-01-01

    1. Intracellular Cl- activity (aiCl) and membrane potential (Em) were measured in frog dorsal root ganglion neurones (DRG neurones) using double-barrelled Cl- -selective microelectrodes. In standard Ringer solution buffered with HEPES (5 mM), equilibrated with air or 100% O2, the resting membrane potential was -57.7 +/- 1.0 mV and aiCl was 23.6 +/- 1.0 mM (n = 53). The value of aiCl was 2.6 times the activity expected for an equilibrium distribution and the difference between Em and ECl was 25 mV. 2. Removal of external Cl- led to a reversible fall in aiCl. Initial rates of decay and recovery of aiCl were 4.1 and 3.3 mM min-1, respectively. During the recovery of aiCl following return to standard Ringer solution, most of the movement of Cl- occurred against the driving force for a passive distribution. Changes in aiCl were not associated with changes in Em. Chloride fluxes estimated from initial rates of change in aiCl when external Cl- was removed were too high to be accounted for by electrodiffusion. 3. The intracellular accumulation of Cl- was dependent on the extracellular Cl- activity (aoCl). The relationship between aiCl and aoCl had a sigmoidal shape with a half-maximal activation of about 50 mM-external Cl-. 4. The steady-state aiCl depended on the simultaneous presence of extracellular Na+ and K+. Similarly, the active reaccumulation of Cl- after intracellular Cl- depletion was abolished in the absence of either Na+ or K+ in the bathing solution. 5. The reaccumulation of Cl- was inhibited by furosemide (0.5-1 x 10(-3) M) or bumetanide (10(-5) M). The decrease in aiCl observed in Cl- -free solutions was also inhibited by bumetanide. 6. Cell volume changes were calculated from the observed changes in aiCl. Cells were estimated to shrink in Cl- -free solutions to about 75% their initial volume, at an initial rate of 6% min-1. 7. The present results provide direct evidence for the active accumulation of Cl- in DRG neurones. The mechanism of Cl- transport is

  16. Chloride equilibrium potential in salamander cones

    PubMed Central

    Thoreson, Wallace B; Bryson, Eric J

    2004-01-01

    Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl) was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca)) and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca). PMID:15579212

  17. Carbonic acid buffer species measured in real time with an intracellular microelectrode array

    PubMed Central

    Wietasch, Kristina; Kraig, Richard P.

    2009-01-01

    Carbonic acid buffer anions, HCO3−andCO32−, play an instrumental role in a host of vital processes in animal cells and tissues. Yet study of carbonic acid buffer species is hampered because no means are available to simultaneously monitor them at a cellular level in a rapid and dynamic fashion. An ion-selective cocktail, previously reported to measure changes in bicarbonate activity (αHCO3−), was instead shown to be principally selective for αCO32−. Ion-selective micropipettes (ISMs) based on this exchanger and consisting of a 3:1:6 (volume) mixture of tri-n-octylpropylammonium chloride, 1-octanol, and trifluoroacetyl-p-butylbenzene showed no significant interference from bicarbonate, chloride, phosphate, ascorbate, lactate, glutamate, acetate, or hydroxyl ions at concentrations expected in vivo. Intracellular and triple-barrel ISMs, consisting of a CO32−-sensitive, pH-sensitive, and reference barrel, were fabricated. Skeletal muscle cells (n = 17) were penetrated in vivo and showed values of 74 ± 7 mV for membrane potential, 6.94 ± 0.09 pHi, and 11 ± 5 µM intracellular αCO32−, from which intracellular αHCO3− of 25 ± 10 mM and CO2 tension of 120 ± 55 Torr were calculated. All ion measurements reached a new steady state in 9 ± 2 s after cell penetration. Thus measurements of intracellular αCO32− and pH and associated levels of αHCO3 and CO2 tension can be determined in biological tissues and cells with a spatial and temporal resolution previously unattainable. PMID:1653544

  18. Assessment of Correlation between Sweat Chloride Levels and Clinical Features of Cystic Fibrosis Patients.

    PubMed

    Raina, Manzoor A; Khan, Mosin S; Malik, Showkat A; Raina, Ab Hameed; Makhdoomi, Mudassir J; Bhat, Javed I; Mudassar, Syed

    2016-12-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder and the incidence of this disease is undermined in Northern India. The distinguishable salty character of the sweat belonging to individuals suffering from CF makes sweat chloride estimation essential for diagnosis of CF disease. The aim of this prospective study was to elucidate the relationship of sweat chloride levels with clinical features and pattern of CF. A total of 182 patients, with clinical features of CF were included in this study for quantitative measurement of sweat chloride. Sweat stimulation and collection involved pilocarpine iontophoresis based on the Gibson and Cooks methodology. The quantitative estimation of chloride was done by Schales and Schales method with some modifications. Cystic Fibrosis Trans Membrane Conductance Regulator (CFTR) mutation status was recorded in case of patients with borderline sweat chloride levels to correlate the results and for follow-up. Out of 182 patients having clinical features consistent with CF, borderline and elevated sweat chloride levels were present in 9 (5%) and 41 (22.5%) subjects respectively. Elevated sweat chloride levels were significantly associated with wheeze, Failure To Thrive (FTT), history of CF in Siblings, product of Consanguineous Marriage (CM), digital clubbing and steatorrhoea on univariate analysis. On multivariate analysis only wheeze, FTT and steatorrhoea were found to be significantly associated with elevated sweat chloride levels (p<0.05). Among the nine borderline cases six cases were positive for at least two CFTR mutations and rest of the three cases were not having any mutation in CFTR gene. The diagnosis is often delayed and the disease is advanced in most patients at the time of diagnosis. Sweat testing is a gold standard for diagnosis of CF patients as genetic mutation profile being heterozygous and unlikely to become diagnostic test.

  19. Relationship between Intracellular Magnesium Level, Lung Function, and Level of Asthma Control in Children with Chronic Bronchial Asthma.

    PubMed

    Sein, Htwe Htwe; Whye Lian, Cheah; Juan Loong, Kok; Sl Ng, Josephine; Rahardjai, Andy; Sultan, Mohamed Ameenudeen

    2014-01-01

    This study aimed to determine the intracellular (red blood cell (RBC)) magnesium levels in children with chronic bronchial asthma and to determine the relationship between the magnesium level and peak expiratory flow rate (PEFR), type of asthma treatment, and level of asthma control. A cross-sectional study was conducted at the Paediatric Clinic, Sarawak General Hospital. A total of 100 children, aged 6-12 years with chronic bronchial asthma, were recruited according to the study criteria. Venous blood samples were obtained to measure the intracellular (RBC) magnesium level using the GBC Avanta Flame Atomic Absorption Spectrophotometer. Mean age was 8.57 (SD 1.18) years, and 63% of the participants were male. Mean duration of asthma was 62.2 (SD 32.3) months. A normal intracellular magnesium level was found in 95% of the participants, with a mean of 2.27 (SD 0.33) mmol/L. Two-thirds of the participants had a normal peak flow expiratory rate (> 80% of predicted value). About 85% were using both reliever and controller. Almost half of the participants (49%) had chronic asthma that was well-controlled. No significant relationship was found between magnesium level and age (r = -0.089, P = 0.379), gender (t = 0.64, P = 0.52), duration of asthma (r = -0.03, P = 0.74), PEFR (t = 0.41, P = 0.68), current level of asthma control (t = 0.02, P = 0.97), and current treatment (t = 0.414, P = 0.680). There was no significant intracellular magnesium deficiency in children with chronic bronchial asthma. There was no significant relationship between therapeutic medications used for treatment of children with chronic asthma and intracellular magnesium levels.

  20. The contribution of raised intraneuronal chloride to epileptic network activity.

    PubMed

    Alfonsa, Hannah; Merricks, Edward M; Codadu, Neela K; Cunningham, Mark O; Deisseroth, Karl; Racca, Claudia; Trevelyan, Andrew J

    2015-05-20

    Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl(-). Brief (1-10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl(-) level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002). Copyright © 2015 Alfonsa et al.

  1. Intracellular Proliferation of Legionella pneumophila in Hartmannella vermiformis in Aquatic Biofilms Grown on Plasticized Polyvinyl Chloride

    PubMed Central

    Kuiper, Melanie W.; Wullings, Bart A.; Akkermans, Antoon D. L.; Beumer, Rijkelt R.; van der Kooij, Dick

    2004-01-01

    The need for protozoa for the proliferation of Legionella pneumophila in aquatic habitats is still not fully understood and is even questioned by some investigators. This study shows the in vivo growth of L. pneumophila in protozoa in aquatic biofilms developing at high concentrations on plasticized polyvinyl chloride in a batch system with autoclaved tap water. The inoculum, a mixed microbial community including indigenous L. pneumophila originating from a tap water system, was added in an unfiltered as well as filtered (cellulose nitrate, 3.0-μm pore size) state. Both the attached and suspended biomasses were examined for their total amounts of ATP, for culturable L. pneumophila, and for their concentrations of protozoa. L. pneumophila grew to high numbers (6.3 log CFU/cm2) only in flasks with an unfiltered inoculum. Filtration obviously removed the growth-supporting factor, but it did not affect biofilm formation, as determined by measuring ATP. Cultivation, direct counting, and 18S ribosomal DNA-targeted PCR with subsequent sequencing revealed the presence of Hartmannella vermiformis in all flasks in which L. pneumophila multiplied and also when cycloheximide had been added. Fluorescent in situ hybridization clearly demonstrated the intracellular growth of L. pneumophila in trophozoites of H. vermiformis, with 25.9% ± 10.5% of the trophozoites containing L. pneumophila on day 10 and >90% containing L. pneumophila on day 14. Calculations confirmed that intracellular growth was most likely the only way for L. pneumophila to proliferate within the biofilm. Higher biofilm concentrations, measured as amounts of ATP, gave higher L. pneumophila concentrations, and therefore the growth of L. pneumophila within engineered water systems can be limited by controlling biofilm formation. PMID:15528550

  2. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2016-06-07

    In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate

  3. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Yuchi; Mao, Hua; Wong, Lid B.

    2010-02-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl-]i) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl-]i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl-]i. Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl-]i. These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  4. Observed versus predicted carboxyhemoglobin levels in cellulose triacetate workers exposed to methylene chloride.

    PubMed

    Amsel, J; Soden, K J; Sielken, R L; Valdez-Flora, C

    2001-08-01

    Occupational exposure to methylene chloride, together with carboxyhemoglobin concentrations, has not been studied previously. Carboxyhemoglobin levels were measured in non-smoking employees exposed to varying concentrations of methylene chloride during the manufacture of cellulose triacetate fibers. The observed carboxyhemoglobin levels were compared to predicted concentrations using a pharmacokinetic model. The presence of carboxyhemoglobin in non-smokers exposed to methylene chloride results primarily from the metabolism of methylene chloride in the liver and exhibits a linear dose-response relationship. The observed levels of carboxyhemoglobin in non-smokers at the end of an 8-hour shift depend upon exposures to methylene chloride that day but are independent of occupational exposures on previous days. The observed daily concentrations of carboxyhemoglobin are consistent with predicted concentrations using a pharmacokinetic model. While varying exposure patterns were shown to change the rate of metabolite formation at the end of shift, these same exposure patterns had almost no effect on the total amount of carbon monoxide in the blood. While the present study addresses the relationship between methylene chloride, carbon monoxide, carboxyhemoglobin and ischemic heart disease, it does not address the issue of tumorigenicity, which is also the basis for the current U.S. Occupational Health and Safety workplace exposure limit of 25 ppm. This study provides support for the conclusion that the current American Conference of Governmental Industrial Hygienists 8-hour Threshold Limit Value of 50 ppm adequately protects human health with regard to ischemic heart disease and carboxyhemoglobin formation among non-smokers. Copyright 2001 Wiley-Liss, Inc.

  5. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    PubMed

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. Copyright © 2016. Published by Elsevier B.V.

  6. Altered chloride metabolism in cultured cystic fibrosis skin fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, P.M.; Maloney, P.C.; Littlefield, J.W.

    1987-05-01

    An abnormal regulation of chloride permeability has been described for epithelial cells from patients with cystic fibrosis (CF). To learn more about the biochemical basis of this inherited disease, the authors have studied chloride metabolism in cultured CF fibroblasts by comparing the efflux of /sup 36/Cl/sup -/ from matched pairs of CF and normal fibroblasts. The rate constants describing /sup 36/Cl/sup -/ efflux did not differ between the two cell types, but in each of the four pairs tested the amount of /sup 36/Cl/sup -/ contained within CF cells was consistently reduced, by 25-30%, relative to normal cells. Comparisons ofmore » cell water content and /sup 22/Na/sup +/ efflux showed no differences between the two cell types, suggesting that overall intracellular chloride concentration is lower than normal in CF fibroblasts. Such data suggest that the CF gene defect is expressed in skin fibroblasts and that this defect may alter the regulation of intracellular Cl/sup -/ concentration, perhaps through changes in Cl/sup -/ permeability.« less

  7. A Lys-Trp cation-π interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain.

    PubMed

    Peter, Bradley; Polyansky, Anton A; Fanucchi, Sylvia; Dirr, Heini W

    2014-01-14

    Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The oligomerization of the transmembrane domain (TMD) remains speculative despite it being implicated in pore formation. The extent to which electrostatic and van der Waals interactions drive folding and association of the dimorphic TMD is unknown and is complicated by the requirement of interactions favorable in both aqueous and membrane environments. Here we report a putative Lys37-Trp35 cation-π interaction and show that it stabilizes the dimeric form of the CLIC1 TMD in membranes. A synthetic 30-mer peptide comprising a K37M TMD mutant was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using far-ultraviolet (UV) circular dichroism, fluorescence, and UV absorbance spectroscopy. Our data suggest that Lys37 is not implicated in the folding, stability, or membrane insertion of the TMD peptide. However, removal of this residue impairs the formation of dimers and higher-order oligomers. This is accompanied by a 30-fold loss of chloride influx activity, suggesting that dimerization modulates the rate of chloride conductance. We propose that, within membranes, individual TMD helices associate via a Lys37-mediated cation-π interaction to form active dimers. The latter findings are also supported by results of modeling a putative TMD dimer conformation in which Lys37 and Trp35 form cation-π pairs at the dimer interface. Dimeric helix bundles may then associate to form fully active ion channels. Thus, within a membrane-like environment, aromatic interactions involving a polar lysine side chain provide a thermodynamic driving force for helix-helix association.

  8. ROS production, intracellular HSP70 levels and their relationship in human neutrophils: effects of age.

    PubMed

    Kovalenko, Elena I; Boyko, Anna A; Semenkov, Victor F; Lutsenko, Gennady V; Grechikhina, Maria V; Kanevskiy, Leonid M; Azhikina, Tatyana L; Telford, William G; Sapozhnikov, Alexander M

    2014-12-15

    ROS production and intracellular HSP70 levels were measured in human neutrophils for three age groups: young (20-59 years), elders (60-89 years) and nonagenarians (90 years and older). Elders showed higher levels of spontaneous intracellular ROS content compared with young and nonagenarian groups, which had similar intracellular ROS levels. Zymosan-induced (non-spontaneous) extracellular ROS levels were also similar for young and nonagenarians but were lower in elders. However, spontaneous extracellular ROS production increased continuously with age. Correlation analysis revealed positive relationships between HSP70 levels and zymosan-stimulated ROS production in the elder group. This was consistent with a promoting role for HSP70 in ROS-associated neutrophils response to pathogens. No positive correlation between ROS production and intracellular HSP70 levels was found for groups of young people and nonagenarians. In contrast, significant negative correlations of some ROS and HSP70 characteriscics were found for neutrophils from young people and nonagenarians. The observed difference in ROS and HSP70 correlations in elders and nonagenarians might be associated with an increased risk of mortality in older individuals less than 90 years old.

  9. Efficacy of magnesium chloride in the treatment of Hailey-Hailey disease: from serendipity to evidence of its effect on intracellular Ca(2+) homeostasis.

    PubMed

    Borghi, Alessandro; Rimessi, Alessandro; Minghetti, Sara; Corazza, Monica; Pinton, Paolo; Virgili, Annarosa

    2015-01-01

    Hailey-Hailey disease (HHD), also known as familial benign chronic pemphigus, is a rare autosomal dominant inherited intraepidermal blistering genodermatosis. Mutations in the ATP2C1 gene encoding for the Golgi secretory pathway Ca(2+) /Mn(2+) -ATPasi protein 1 (SPCA1) affect the processing of desmosomal components and the epidermal suprabasal cell-cell adhesion by deregulating the keratinocyte cytosolic Ca(2+) concentration. We report the unexpected, dramatic, and persistent clinical improvement of the skin lesions of a patient affected with longstanding HHD with daily intake of a solution containing magnesium chloride hexahydrate (MgCl2 ). We investigated the effect of MgCl2 on the intracellular Ca(2+) homeostasis and on the activity of particular Ca(2+) -effectors in HeLa cells transfected with chimeric aequorins (cytAEQ, mtAEQ, erAEQ and GoAEQ) targeted to different subcellular compartments (cytosol, mitochondria, endoplasmic reticulum, and Golgi, respectively). Experimental investigations on HeLa cells showed the effect of MgCl2 on the function of Ca(2+) -extrusor systems, resulting in increased cytosolic and mitochondrial Ca(2+) levels, without altering the mechanisms of intraluminal Ca(2+) -filling and Ca(2+) -release of stores. Based on our clinical observation and experimental results, it can be hypothesized that MgCl2 could act as an inhibitor of the Ca(2+) -extruding activity in keratinocytes favoring intracellular Ca(2+) -disponibility and Ca(2+) -dependent mechanisms in desmosome assembly. This may represent the molecular basis of the good response of the HHD clinical features with MgCl2 solution in the patient described. © 2014 The International Society of Dermatology.

  10. Abnormal Chloride Homeostasis in the Substancia Nigra Pars Reticulata Contributes to Locomotor Deficiency in a Model of Acute Liver Injury

    PubMed Central

    Wei, Yan-Yan; Chen, Jing; Dou, Ke-Feng; Wang, Ya-Yun

    2013-01-01

    Background Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr) in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. Methods Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE). The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. Results In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. Conclusion Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure. PMID:23741482

  11. High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.

    PubMed

    Dastidar, Subham; Egger, David A; Tan, Liang Z; Cromer, Samuel B; Dillon, Andrew D; Liu, Shi; Kronik, Leeor; Rappe, Andrew M; Fafarman, Aaron T

    2016-06-08

    Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.

  12. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration

    PubMed Central

    Wing, Boswell A.; Halevy, Itay

    2014-01-01

    We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<<1 fmol H2S⋅cell−1⋅d−1). PMID:25362045

  13. Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation

    PubMed Central

    Alfonso, A; Cabado, A G; Vieytes, M R; Botana, L M

    2000-01-01

    The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH4Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM.In rat mast cells, nigericin and NH4Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx.The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol.After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%.The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells. PMID:10952669

  14. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells

    PubMed Central

    Dalmark, Mads; Wieth, Jens Otto

    1972-01-01

    1. The temperature dependence of the steady-state self-exchange of chloride between human red cells and a plasma-like electrolyte medium has been studied by measuring the rate of 36Cl- efflux from radioactively labelled cells. Between 0 and 10° C the rate increased by a factor of eight corresponding to an Arrhenius activation energy of 33 kcal/mole. 2. The rate of chloride exchange decreased significantly in experiments where 95% of the chloride ions in cells and medium were replaced by other monovalent anions of a lyotropic series. The rate of chloride self-exchange was increasingly reduced by bromide, bicarbonate, nitrate, iodide, thiocyanate, and salicylate. The latter aromatic anion was by far the most potent inhibitor, reducing the rate of chloride self-exchange to 0·2% of the value found in a chloride medium. 3. The temperature sensitivity of the chloride self-exchange was not affected significantly by the anionic inhibitors. The Arrhenius activation energies of chloride exchange were between 30 and 40 kcal/mole in the presence of the six inhibitory anions mentioned above. 4. The rate of self-exchange of bromide, thiocyanate, and iodide between human red cells and media was determined after washing and labelling cells in media containing 120 mM bromide, thiocyanate, or iodide respectively. The rate of self-exchange of the three anions were 12, 3, and 0·4% of the rate of chloride self-exchange found in the chloride medium. 5. The Arrhenius activation energies of the self-exchange of bromide, iodide, and thiocyanate were all between 29 and 37 kcal/mole, the same magnitude as found for the self-exchange of chloride. 6. Although approximately 40% of the intracellular iodide and salicylate ions appeared to be adsorbed to intracellular proteins, the rate of tracer anion efflux followed first order kinetics until at least 98% of the intracellular anions had been exchanged. 7. The self-exchange of salicylate across the human red cell membrane occurred by a

  15. Properties of the calcium-activated chloride current in heart.

    PubMed

    Zygmunt, A C; Gibbons, W R

    1992-03-01

    We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are

  16. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.

    2009-06-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.

  17. Levels of CEA among vinyl chloride and polyvinyl chloride exposed workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, H.A.; Snyder, J.; Lewinson, T.

    1978-09-01

    In 1974, vinyl chloride exposed workers were found to have an increased risk of malignant disease (hemangiosarcoma of the liver). We have examined 1,147 workers exposed to vinyl chloride monomer in three VC/PVC polymerization plants, and 269 workers from a PVC extrusion plant manufacturing PVC textile leather, exposed to much lower concentrations of vinyl chloride. Included among the comprehensive clinical and laboratory studies conducted was the CEA titer. We obtained, respectively, 1,115 and 248 CEA titers. Multiple factors were demonstrated which affected the distribution of CEA titers. Cigarette use had the greatest effect, followed by history of specific past illnessesmore » and alcohol intake history. After removing these possible confounding effects, the distribution of CEA titers among the polymerization workers was significantly different from the extrusion plant group and from an unexposed comparison group. Of the six job categories analyzed, only production and maintenance workers had CEA titer distributions significantly different from the comparison group and the extrusion workers. The investigation demonstrates that occupational exposures in VC/PVC polymerization plants can cause elevations in the CEA titers of otherwise healthy individuals. Prospective follow-up is necessary before conclusions can be drawn concerning the usefulness of the CEA titer as a predictive indicator of possible increased risk.« less

  18. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    USGS Publications Warehouse

    Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.

    2009-01-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick. ?? US Government 2008.

  19. Chloride and bicarbonate transport in rat resistance arteries.

    PubMed Central

    Aalkjaer, C; Hughes, A

    1991-01-01

    1. The role of chloride and bicarbonate in the control of intracellular pH (pHi) was assessed in segments of rat mesenteric resistance arteries (internal diameter about 200 microns) by measurements of chloride efflux with 36Cl-, of pHi with the pH-sensitive dye 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF) and of membrane potential with intracellular electrodes. 2. The main questions addressed were whether the previously demonstrated sodium-coupled uptake of bicarbonate in these arteries was also coupled to chloride efflux, and whether sodium-independent Cl(-)-HCO3- exchange was present and played a role in regulation of pHi. 3. The 36Cl- efflux was unaffected by acidification induced by an NH4Cl pre-pulse in the presence as well as in the absence of bicarbonate. This was also true in sodium-free media and in vessels depolarized by high potassium. 4. The membrane potential was unaffected by the acidification associated with wash-out of NH4Cl, and the net acid extrusion during recovery of pHi from the acidification was not affected significantly by depolarization. 5. In the absence of bicarbonate, omission of extracellular chloride caused no change in pHi, but reduced 36Cl- efflux. By contrast, in the presence of bicarbonate, omission of chloride caused an increase in pHi but no change in 36Cl- efflux. Furthermore, the anion transport inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) inhibited the increase in pHi seen in the presence of bicarbonate and reduced the 36Cl- efflux in the presence of bicarbonate. 6. The presence of bicarbonate had no significant effect on the rate of recovery of pHi or the rate of increase of intracellular acid equivalents after an NH4Cl induced alkalinization; also the buffering power was not significantly different in the absence and presence of bicarbonate. Moreover these parameters were not significantly affected by DIDS, although DIDS as previously demonstrated reduced the rate of recovery of p

  20. Modulation of secretagogue-induced chloride secretion by intracellular bicarbonate.

    PubMed

    Dagher, P C; Morton, T Z; Joo, C S; Taglietta-Kohlbrecher, A; Egnor, R W; Charney, A N

    1994-05-01

    We have previously demonstrated inhibition of basal Cl- secretion by intracellular bicarbonate concentration ([HCO3-]i) in rat distal colon. We now examined whether secretagogue-induced Cl- secretion is inhibited by [HCO3-]i as well. Stripped segments of distal colon from male Sprague-Dawley rats and the colon tumor cell line T84 were studied. Flux measurements were performed in the Ussing chamber under short-circuit conditions. [HCO3-]i was calculated from intracellular pH (pHi) values that were estimated with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) and carbachol were used as secretagogues. In both distal colon and T84 cells, [HCO3-]i did not affect cAMP-induced Cl- secretion. However, carbachol-induced secretion was inhibited by [HCO3-]i; in rat colon, Cl- secretion decreased from 2.3 to 1.5 mueq.cm-2.h-1 when [HCO3-]i was increased from 15.0 to 28.4 mM (P < 0.05). In T84 cells, the change in short-circuit current decreased from 8.1 to 1.1 microA/cm2 over a range of [HCO3-]i from 0 to 15.6 mM (P < 0.001). We conclude that [HCO3-]i is an important modulator of carbachol-stimulated Cl- secretion in both rat distal colon and the T84 cell line. cAMP-mediated secretion is not affected by [HCO3-]i.

  1. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  2. Water-level measurements and chloride concentrations for selected wells in Louisiana, January 1988-October 1997

    USGS Publications Warehouse

    Lovelace, Wendell M.

    2002-01-01

    This report presents water-level measurements and chlorideconcentrations in water from selected wells completed in aquifers in Louisiana. The data were collected during the period January1988-October 1997. Water-level data are presented for 109 wells, and chloride data are presented for 45 wells. Hydrographs and summaries of water-level trends are presented for wellscompleted in aquifers throughout the State. Chlorographs and summaries of chloride trends are presented for wells completed in the Mississippi River alluvial and Sparta aquifers; Chicot aquifer system; and Gramercy, Norco, and Gonzales-New Orleans aquifers. Data are presented in graphical and tabular formats.

  3. [Function of the CLC chloride channels and their implication in human pathology].

    PubMed

    Vandewalle, A

    2002-01-01

    To date, nine chloride channels belonging to the family of CLC chloride channels have been identified. They are localized either in plasma membranes or in intracellular vesicles (endosomes or lysosomes) and can have an ubiquitus or a more restrained tissue distribution. Recent studies on ClC-K1, ClC-2, ClC-3, ClC-5 and ClC-7 knockout mice and the identification of human inherited diseases caused by mutations of some of these chloride channels (myotonia congenita for ClC-1, Bartter disease for ClC-Kb, Dent's disease for ClC-5 and osteopetrose for ClC-7) have provided lines of direct evidence of the physiological relevance and importance of these chloride channels in the transport of chloride and in the endocytosis and transcytosis of proteins in specialized cells from the kidney and other tissues.

  4. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.

    PubMed

    Chen, Lei; Mao, Feijian; Kirumba, George Chira; Jiang, Cheng; Manefield, Mike; He, Yiliang

    2015-12-01

    Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Compensation for intracellular environment in expression levels of mammalian circadian clock genes

    PubMed Central

    Matsumura, Ritsuko; Okamoto, Akihiko; Node, Koichi; Akashi, Makoto

    2014-01-01

    The circadian clock is driven by transcriptional oscillation of clock genes in almost all body cells. To investigate the effect of cell type-specific intracellular environment on the circadian machinery, we examined gene expression profiles in five peripheral tissues. As expected, the phase relationship between expression rhythms of nine clock genes was similar in all tissues examined. We also compared relative expression levels of clock genes among tissues, and unexpectedly found that quantitative variation remained within an approximately three-fold range, which was substantially smaller than that of metabolic housekeeping genes. Interestingly, circadian gene expression was little affected even when fibroblasts were cultured with different concentrations of serum. Together, these findings support a hypothesis that expression levels of clock genes are quantitatively compensated for the intracellular environment, such as redox potential and metabolite composition. However, more comprehensive studies are required to reach definitive conclusions. PMID:24504324

  6. Inhibition of nitrite-induced toxicity in channel catfish by calcium chloride and sodium chloride

    USGS Publications Warehouse

    Tommasso J.R., Wright; Simco, B.A.; Davis, K.B.

    1980-01-01

    Environmental chloride has been shown to inhibit methemoglobin formation in fish, thereby offering a protective effect against nitrite toxicity. Channel catfish (Ictalurus punctatus) were simultaneously exposed to various environmental nitrite and chloride levels (as either CaCl2 or NaCl) in dechlorinated tap water (40 mg/L total hardness, 47 mg/L alkalinity, 4 mg/L chloride, pH = 6.9-7.1, and temperature 21-24°C). Methemoglobin levels in fish simultaneously exposed to 2.5 mg/L nitrite and up to 30 mg/L chloride as either CaCl2 or NaCl were similar but significantly lower than in unprotected fish. Exposure to 10 mg/L nitrite and 60 mg/L chloride resulted in methemoglobin levels similar to those of the controls; most unprotected fish died. Fish exposed to 10 mg/L nitrite had significantly lower methemoglobin levels when protected with 15.0 mg/L chloride as CaCl2 than with NaCl. Fish exposed to nitrite in the presence of 60 mg/L chloride (as either CaCl2 or NaCl) had similar 24-h LC50 values that were significantly elevated above those obtained in the absence of chloride. Calcium had little effect on tolerance to nitrite toxicity in channel catfish in contrast to its large effect reported in steelhead trout (Salmo gairdneri).

  7. Chloride test - blood

    MedlinePlus

    Serum chloride test ... A greater-than-normal level of chloride is called hyperchloremia. It may be due to: Carbonic anhydrase inhibitors (used to treat glaucoma) Diarrhea Metabolic acidosis Respiratory alkalosis (compensated) Renal ...

  8. Activation of AMPK Inhibits Cholera Toxin Stimulated Chloride Secretion in Human and Murine Intestine

    PubMed Central

    Hoekstra, Nadia; Collins, Danielle; Collaco, Anne; Baird, Alan W.; Winter, Desmond C.; Ameen, Nadia; Geibel, John P.; Kopic, Sascha

    2013-01-01

    Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR), is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK), can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX) mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK). In order to substantiate our findings on the whole tissue level, short-circuit current (SCC) was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK) significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness. PMID:23935921

  9. Chloride secretagogues stimulate inositol phosphate formation in shark rectal gland tubules cultured in suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecay, T.W.; Valentich, J.D.

    1991-03-01

    Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases inmore » inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.« less

  10. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation.

    PubMed

    Tang, Tiantian; Lang, Xueting; Xu, Congfei; Wang, Xiaqiong; Gong, Tao; Yang, Yanqing; Cui, Jun; Bai, Li; Wang, Jun; Jiang, Wei; Zhou, Rongbin

    2017-08-04

    The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.

  11. Lack of the Sodium-Driven Chloride Bicarbonate Exchanger NCBE Impairs Visual Function in the Mouse Retina

    PubMed Central

    Hilgen, Gerrit; Huebner, Antje K.; Tanimoto, Naoyuki; Sothilingam, Vithiyanjali; Seide, Christina; Garrido, Marina Garcia; Schmidt, Karl-Friedrich; Seeliger, Mathias W.; Löwel, Siegrid; Weiler, Reto

    2012-01-01

    Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl−]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function. PMID:23056253

  12. Requirement for Chloride Channel Function during the Hepatitis C Virus Life Cycle

    PubMed Central

    Igloi, Zsofia; Mohl, Bjorn-Patrick; Lippiat, Jonathan D.; Harris, Mark

    2015-01-01

    Hepatocytes express an array of plasma membrane and intracellular ion channels, yet their role during the hepatitis C virus (HCV) life cycle remains largely undefined. Here, we show that HCV increases intracellular hepatic chloride (Cl−) influx that can be inhibited by selective Cl− channel blockers. Through pharmacological and small interfering RNA (siRNA)-mediated silencing, we demonstrate that Cl− channel inhibition is detrimental to HCV replication. This represents the first observation of the involvement of Cl− channels during the HCV life cycle. PMID:25609806

  13. Early Acidification of Phagosomes Containing Brucella suis Is Essential for Intracellular Survival in Murine Macrophages

    PubMed Central

    Porte, Françoise; Liautard, Jean-Pierre; Köhler, Stephan

    1999-01-01

    Brucella suis is a facultative intracellular pathogen of mammals, residing in macrophage vacuoles. In this work, we studied the phagosomal environment of these bacteria in order to better understand the mechanisms allowing survival and multiplication of B. suis. Intraphagosomal pH in murine J774 cells was determined by measuring the fluorescence intensity of opsonized, carboxyfluorescein-rhodamine- and Oregon Green 488-rhodamine-labeled bacteria. Compartments containing live B. suis acidified to a pH of about 4.0 to 4.5 within 60 min. Acidification of B. suis-containing phagosomes in the early phase of infection was abolished by treatment of host cells with 100 nM bafilomycin A1, a specific inhibitor of vacuolar proton-ATPases. This neutralization at 1 h postinfection resulted in a 2- to 34-fold reduction of opsonized and nonopsonized viable intracellular bacteria at 4 and 6 h postinfection, respectively. Ammonium chloride and monensin, other pH-neutralizing reagents, led to comparable loss of intracellular viability. Addition of ammonium chloride at 7 h after the beginning of infection, however, did not affect intracellular multiplication of B. suis, in contrast to treatment at 1 h postinfection, where bacteria were completely eradicated within 48 h. Thus, we conclude that phagosomes with B. suis acidify rapidly after infection, and that this early acidification is essential for replication of the bacteria within the macrophage. PMID:10417172

  14. Effect of altitude on brain intracellular pH and inorganic phosphate levels

    PubMed Central

    Shi, Xian-Feng; Carlson, Paul J.; Kim, Tae-Suk; Sung, Young-Hoon; Hellem, Tracy L.; Fiedler, Kristen K.; Kim, Seong-Eun; Glaeser, Breanna; Wang, Kristina; Zuo, Chun S.; Jeong, Eun-Kee; Renshaw, Perry F.; Kondo, Douglas G.

    2015-01-01

    Normal brain activity is associated with task-related pH changes. Although central nervous system syndromes associated with significant acidosis and alkalosis are well understood, the effects of less dramatic and chronic changes in brain pH are uncertain. One environmental factor known to alter brain pH is the extreme, acute change in altitude encountered by mountaineers. However, the effect of long-term exposure to moderate altitude has not been studied. The aim of this two-site study was to measure brain intracellular pH and phosphate-bearing metabolite levels at two altitudes in healthy volunteers, using phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Increased brain pH and reduced inorganic phosphate (Pi) levels were found in healthy subjects who were long-term residents of Salt Lake City, UT (4720 ft/1438 m), compared with residents of Belmont, MA (20 ft/6 m). Brain intracellular pH at the altitude of 4720 ft was more alkaline than that observed near sea level. In addition, the ratio of inorganic phosphate to total phosphate signal also shifted toward lower values in the Salt Lake City region compared with the Belmont area. These results suggest that long-term residence at moderate altitude is associated with brain chemical changes. PMID:24768210

  15. Proteasome inhibitors alter levels of intracellular peptides in HEK293T and SH-SY5Y cells.

    PubMed

    Dasgupta, Sayani; Castro, Leandro M; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S; Fricker, Lloyd D

    2014-01-01

    The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell.

  16. Proteasome Inhibitors Alter Levels of Intracellular Peptides in HEK293T and SH-SY5Y Cells

    PubMed Central

    Dasgupta, Sayani; Castro, Leandro M.; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S.; Fricker, Lloyd D.

    2014-01-01

    The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell. PMID:25079948

  17. Increased intracellular adenosine triphosphate level as an index to predict acute rejection in kidney transplant recipients.

    PubMed

    Wang, Xu-Zhen; Jin, Zhan-Kui; Tian, Xiao-Hui; Xue, Wu-Jun; Tian, Pu-Xun; Ding, Xiao-Ming; Zheng, Jin; Li, Yang; Jing, Xin; Luo, Zi-Zhen

    2014-01-01

    Peripheral blood CD4+ T cell adenosine triphosphate (ATP) release has been reported to be an adjunct tool to evaluate global cellular immune response in solid-organ transplant recipients. However, the correlation between the ATP level and rejection was controversial. The aim of this prospective clinical study was to explore the association between the intracellular ATP level and the occurrence, progression, and treatment of acute rejection (AR) episodes, determine the predicting value of intracellular ATP level for AR in kidney transplant (KT) recipients. In the period of October 2011 to October 2012, 140 KT recipients were recruited and followed for six months after transplantation. Patients were categorized into stable group and AR group according to their clinical course. Whole blood samples were collected pretransplantation, and at 7, 14, 21, and 28days, and at 2, 3, 4, 5 and 6months post-transplantation. Additional blood samples were obtained from AR patients on the day AR occurred, on the day before and 3 and 7days after intravenous anti-rejection therapy started, and on the day when AR reversed. The intracellular ATP in CD4+ T cells was detected by ImmuKnow Immune Cell Function Assay according to the manufacturer's instruction. The absolute number of CD4+ T cells and the trough levels of tacrolimus and cyclosporine were also measured. The ATP level detected on the day AR occurred (627.07±149.85ng/ml) was obviously higher than that of the stable group (320.48±149.11ng/ml, P<0.05). ATP value decreased to 265.35±84.33ng/m at the end of anti-rejection therapy, which was obviously lower than that measured on the day before the anti-rejection therapy started (665.87±162.85ng/ml, P<0.05). ROC analysis revealed that increased intracellular adenosine triphosphate level showed better sensitivity and specificity than those obtained using single time point detection (89.5% vs 85.0%;95.0% vs 88.9%). The best cutoff value was 172.55ng/ml. A positive correlation

  18. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  19. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  20. Atmospheric chloride: Its implication for foliar uptake and damage

    NASA Astrophysics Data System (ADS)

    McWilliams, E. L.; Sealy, R. L.

    Atmospheric chloride is inversely related to distance from the Texas coast; r2 = 0.86. Levels of atmospheric chloride are higher in the early summer than in the winter because of salt storms. Leaf chloride l'evels of Tillandsia usneoides L. (Spanish moss) reflect the atmospheric chloride levels; r2 = 0.78. The importance of considering the effect of atmospheric chloride on leaf damage to horticultural crops is discussed.

  1. Measurement of intracellular nitric oxide (NO) production in shrimp haemocytes by flow cytometry.

    PubMed

    Xian, Jian-An; Guo, Hui; Li, Bin; Miao, Yu-Tao; Ye, Jian-Min; Zhang, Sheng-Peng; Pan, Xun-Bin; Ye, Chao-Xia; Wang, An-Li; Hao, Xuan-Ming

    2013-12-01

    A flow cytometric method to measure the production of intracellular nitric oxide (NO) was adapted for use with shrimp haemocytes. We applied fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) for NO detection in haemocytes from the tiger shrimp Penaeus monodon, and used flow cytometry to quantify fluorescence intensity in individual haemocyte. The optimized protocol for intracellular NO analysis consists to incubate haemocytes with DAF-FM DA at 10 μM for 60 min to determine the mean fluorescence intensity. Result showed that NO was also produced in the untreated shrimp haemocytes. NO level in granular cells and semigranular cells were much higher than that in hyaline cells. Defined by different characteristic of NO content, three subsets of haemocytes were observed. Zymosan A at dose of 10 or 100 particles per haemocyte triggered higher DAF-FM fluorescence intensity in granular and semigranular cells, than PMA that had no significant impact on all three cell types. These results indicate that granular and semigranular cells are the primary cells for NO generation. Cytochalasin B significantly inhibited the NO level induced by zymosan A. NG-Monomethyl-L-arginine (L-NMMA) and diphenylene iodonium chloride (DPI) significantly suppressed the DAF-FM fluorescence in haemocytes, but apocynin could not modulate it, indicating that the DAF-FM fluorescence was closely related to the activity of NO-synthase pathway. The NO donor sodium nitroprusside (SNP) improved the DAF-FM fluorescence in haemocytes, while the NO scavenger C-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) significantly decreased the fluorescence, demonstrating that the fluorescence intensity of DAF-FM is mainly dependent on the intracellular NO level.

  2. Modulation of chloride secretion in the rat ileum by intracellular bicarbonate.

    PubMed

    Dagher, P C; Chawla, H; Michael, J; Egnor, R W; Charney, A N

    1997-05-01

    Increasing intracellular bicarbonate concentration ([HCO3-]i) inhibits calcium-mediated Cl- secretion in rat distal colon and T84 cells. We investigated the effect of [HCO3-]i on Cl- secretion in rat ileum. Segments of intact ileum from Sprague-Dawley rats were studied in Ussing chambers and villus and crypt intracellular pH and [HCO3-]i were determined using BCECF. A range of crypt and villus [HCO3-]i from 0 to 31 mM was obtained by varying Ringer's composition. Basal serosal-to-mucosal Cl- flux (JsmCl) averaged 8.5 +/- 0.2 mu eq.h-1.cm-2 and was unaffected by changing [HCO3-]i or serosal bumetanide. Carbachol increased JsmCl by 3.9 +/- 0.5 mu eq.h-1.cm-2 at [HCO3-]i = 0 mM but only by 1.0 +/- 0.3 mu eq.h-1.cm-2 at high crypt and villus [HCO3-]i. Dibutyryl-cAMP increased JsmCl by 2.5 +/- 0.2 mu eq.h-1.cm-2 at all [HCO3-]i. Carbachol and db-cAMP showed mutual antagonism at low [HCO3-]i and near-additivity at high [HCO3-]i. We conclude that like rat colon and T84 cells, calcium-mediated but not cAMP-mediated Cl- secretion in the ileum is inhibited by increasing [HCO3-]i. Mutual antagonism between carbachol and db-cAMP at low [HCO3-]i was present in ileum and distal colon but not in T84 cells.

  3. Interpretation of postmortem vitreous concentrations of sodium and chloride.

    PubMed

    Zilg, B; Alkass, K; Berg, S; Druid, H

    2016-06-01

    Vitreous fluid can be used to analyze sodium and chloride levels in deceased persons, but it remains unclear to what extent such results can be used to diagnose antemortem sodium or chloride imbalances. In this study we present vitreous sodium and chloride levels from more than 3000 cases. We show that vitreous sodium and chloride levels both decrease with approximately 2.2mmol/L per day after death. Since potassium is a well-established marker for postmortem interval (PMI) and easily can be analyzed along with sodium and chloride, we have correlated sodium and chloride levels with the potassium levels and present postmortem reference ranges relative the potassium levels. We found that virtually all cases outside the reference range show signs of antemortem hypo- or hypernatremia. Vitreous sodium or chloride levels can be the only means to diagnose cases of water or salt intoxication, beer potomania or dehydration. We further show that postmortem vitreous sodium and chloride strongly correlate and in practice can be used interchangeably if analysis of one of the ions fails. It has been suggested that vitreous sodium and chloride levels can be used to diagnose drowning or to distinguish saltwater from freshwater drowning. Our results show that in cases of freshwater drowning, vitreous sodium levels are decreased, but that this mainly is an effect of postmortem diffusion between the eye and surrounding water rather than due to the drowning process, since the decrease in sodium levels correlates with immersion time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. A rapid method for measuring intracellular pH using BCECF-AM.

    PubMed

    Ozkan, Pinar; Mutharasan, Raj

    2002-08-15

    A rapid intracellular pH (pH(i)) measurement method based on initial rate of increase of fluorescence ratio of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein upon dye addition to a cell suspension in growth medium is reported. A dye transport model that describes dye concentration and fluorescence values in intracellular and extracellular spaces provides the mathematical basis for the approach. Experimental results of ammonium chloride challenge response of the two suspension cells, Spodoptera frugiperda and Chinese hamster ovary (CHO) cells, successfully compared with results obtained using traditional perfusion method. Since the cell suspension does not require any preparation, measurement of pH(i) can be completed in about 1 min minimizing any potential errors due to dye leakage.

  5. Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia

    PubMed Central

    Raju, Sammeta V.; Wang, Guoshun

    2012-01-01

    Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections. PMID:22442662

  6. Determination of intracellular nitrate.

    PubMed Central

    Romero, J M; Lara, C; Guerrero, M G

    1989-01-01

    A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740

  7. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers.

    PubMed

    Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana

    2017-08-01

    Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.

  8. Trigeminal Ganglion Neurons of Mice Show Intracellular Chloride Accumulation and Chloride-Dependent Amplification of Capsaicin-Induced Responses

    PubMed Central

    Schöbel, Nicole; Radtke, Debbie; Lübbert, Matthias; Gisselmann, Günter; Lehmann, Ramona; Cichy, Annika; Schreiner, Benjamin S. P.; Altmüller, Janine; Spector, Alan C.; Spehr, Jennifer; Hatt, Hanns; Wetzel, Christian H.

    2012-01-01

    Intracellular Cl− concentrations ([Cl−]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl− is accumulated by the Na+-K+-2Cl− cotransporter 1 (NKCC1), resulting in a [Cl−]i above electrochemical equilibrium and a depolarizing Cl− efflux upon Cl− channel opening. Here, we investigate the [Cl−]i and function of Cl− in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl−]i of WT TG neurons indicated active NKCC1-dependent Cl− accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl−]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl−]o suggesting a Cl−-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl− channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl−-dependent signal amplification mechanism in TG neurons that requires intracellular Cl− accumulation by NKCC1 and the activation of CaCCs. PMID:23144843

  9. Insulin-Like Growth Factor Binding Proteins Increase Intracellular Calcium Levels in Two Different Cell Lines

    PubMed Central

    Seurin, Danielle; Lombet, Alain; Babajko, Sylvie; Godeau, François; Ricort, Jean-Marc

    2013-01-01

    Background Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297). Methodology/Principal Findings We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway. Conclusions Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and

  10. Alternative oxidase impacts ganoderic acid biosynthesis by regulating intracellular ROS levels in Ganoderma lucidum.

    PubMed

    Shi, Deng-Ke; Zhu, Jing; Sun, Ze-Hua; Zhang, Guang; Liu, Rui; Zhang, Tian-Jun; Wang, Sheng-Li; Ren, Ang; Zhao, Ming-Wen

    2017-10-01

    The alternative oxidase (AOX), which forms a branch of the mitochondrial respiratory electron transport pathway, functions to sustain electron flux and alleviate reactive oxygen species (ROS) production. In this article, a homologous AOX gene was identified in Ganoderma lucidum. The coding sequence of the AOX gene in G. lucidum contains 1038 nucleotides and encodes a protein of 39.48 kDa. RNA interference (RNAi) was used to study the function of AOX in G. lucidum, and two silenced strains (AOXi6 and AOXi21) were obtained, showing significant decreases of approximately 60 and 50 %, respectively, in alternative pathway respiratory efficiency compared to WT. The content of ganoderic acid (GA) in the mutant strains AOXi6 and AOXi21 showed significant increases of approximately 42 and 44 %, respectively, compared to WT. Elevated contents of intermediate metabolites in GA biosynthesis and elevated transcription levels of corresponding genes were also observed in the mutant strains AOXi6 and AOXi21. In addition, the intracellular ROS content in strains AOXi6 and AOXi21 was significantly increased, by approximately 1.75- and 1.93-fold, respectively, compared with WT. Furthermore, adding N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly depressed the intracellular ROS content and GA accumulation in AOX-silenced strains. These results indicate that AOX affects GA biosynthesis by regulating intracellular ROS levels. Our research revealed the important role of AOX in the secondary metabolism of G. lucidum.

  11. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Kai; College of Life Science and Technology, Jinan University, Guangzhou; Chen, Maoyun

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoicmore » acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.« less

  12. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride.

    PubMed

    Terker, Andrew S; Zhang, Chong; McCormick, James A; Lazelle, Rebecca A; Zhang, Chengbiao; Meermeier, Nicholas P; Siler, Dominic A; Park, Hae J; Fu, Yi; Cohen, David M; Weinstein, Alan M; Wang, Wen-Hui; Yang, Chao-Ling; Ellison, David H

    2015-01-06

    Dietary potassium deficiency, common in modern diets, raises blood pressure and enhances salt sensitivity. Potassium homeostasis requires a molecular switch in the distal convoluted tubule (DCT), which fails in familial hyperkalemic hypertension (pseudohypoaldosteronism type 2), activating the thiazide-sensitive NaCl cotransporter, NCC. Here, we show that dietary potassium deficiency activates NCC, even in the setting of high salt intake, thereby causing sodium retention and a rise in blood pressure. The effect is dependent on plasma potassium, which modulates DCT cell membrane voltage and, in turn, intracellular chloride. Low intracellular chloride stimulates WNK kinases to activate NCC, limiting potassium losses, even at the expense of increased blood pressure. These data show that DCT cells, like adrenal cells, sense potassium via membrane voltage. In the DCT, hyperpolarization activates NCC via WNK kinases, whereas in the adrenal gland, it inhibits aldosterone secretion. These effects work in concert to maintain potassium homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Potassium Modulates Electrolyte Balance and Blood Pressure through Effects on Distal Cell Voltage and Chloride

    PubMed Central

    Terker, Andrew S.; Zhang, Chong; McCormick, James A.; Lazelle, Rebecca A.; Zhang, Chengbiao; Meermeier, Nicholas P.; Siler, Dominic A.; Park, Hae J.; Fu, Yi; Cohen, David M.; Weinstein, Alan M.; Wang, Wen-Hui; Yang, Chao-Ling; Ellison, David H.

    2015-01-01

    SUMMARY Dietary potassium deficiency, common in Western diets, raises blood pressure and enhances salt sensitivity. Potassium homeostasis requires a molecular switch in the distal convoluted tubule (DCT), which fails in familial hyperkalemic hypertension (pseudohypoaldosteronism type 2), activating the thiazide-sensitive NaCl cotransporter, NCC. Here, we show that dietary potassium deficiency activates NCC, even in the setting of high salt intake, thereby causing sodium retention and a rise in blood pressure. The effect is dependent on plasma potassium, which modulates DCT cell membrane voltage and, in turn, intracellular chloride. Low intracellular chloride stimulates WNK kinases to activate NCC, limiting potassium losses, even at the expense of increased blood pressure. These data show that DCT cells, like adrenal cells, sense potassium via membrane voltage. In the DCT, hyperpolarization activates NCC via WNK kinases, whereas in the adrenal gland, it inhibits aldosterone secretion. These effects work in concert to maintain potassium homeostasis. PMID:25565204

  14. Loss of absorptive capacity for sodium and chloride in the colon causes diarrhoea in Potomac horse fever.

    PubMed

    Rikihisa, Y; Johnson, G C; Wang, Y Z; Reed, S M; Fertel, R; Cooke, H J

    1992-05-01

    Ehrlichia risticii, an obligate intracellular bacterium in the family Rickettsiaceae, causes Potomac horse fever which is often associated with severe watery diarrhoea. The mechanism of the diarrhoea is unknown. The aim of this study was to determine whether sodium and chloride transport, morphology and cyclic adenosine 3', 5'-monophosphate (cyclic AMP) content of colonic mucosa was altered in E risticii-infected horses. Mucosa-submucosa sheets from the large and small colon of nine infected and seven to nine uninfected horses were set up in Ussing chambers for measurement of short-circuit current and transepithelial 22Na and 36Cl fluxes. Uninfected tissues absorbed both sodium and chloride whereas absorption of sodium and chloride was abolished in infected tissues. Bethanechol and histamine evoked a concentration-dependent increase in short-circuit current in both groups, but the responses were attenuated at all concentrations in infected horses. Slight focal degeneration of colonic epithelial cells and loss of microvilli from glandular epithelial cells occurred in infected horses. There was a significant increase in cyclic AMP content in colonic mucosa of infected animals. The results suggest that E risticii infection induces focal microscopic degeneration of epithelial cells and an increase in intracellular cyclic AMP in colonic mucosa. These alterations are associated with malabsorption of sodium and chloride and could cause diarrhoea.

  15. Determination of Vinyl Chloride at ug/l. Level in Water by Gas Chromatography

    ERIC Educational Resources Information Center

    Bellar, Thomas A.; And Others

    1976-01-01

    A quantitative method for the determination of vinyl chloride in water is presented. Vinyl chloride is transfered to the gas phase by bubbling inert gas through the water. After concentration on silica gel or Carbosieve-B, determination is by gas chromatography. Confirmation of vinyl chloride is by gas chromatography-mass spectrometry. (Author/BT)

  16. Role of individual histidines in the pH-dependent global stability of human chloride intracellular channel 1.

    PubMed

    Achilonu, Ikechukwu; Fanucchi, Sylvia; Cross, Megan; Fernandes, Manuel; Dirr, Heini W

    2012-02-07

    Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of the three histidine residues in CLIC1 to an alanine at position 74 and a phenylalanine at positions 185 and 207. We examined the effect of the histidine-mediated pH dependence on the structure and global stability of CLIC1. None of the mutations were found to alter the global structure of the protein. However, the stability of H74A-CLIC1 and H185F-CLIC1, as calculated from the equilibrium unfolding data, is no longer dependent on pH because similar trends are observed at pH 7.0 and 5.5. The crystal structures show that the mutations result in changes in the local hydrogen bond coordination. Because the mutant total free energy change upon unfolding is not different from that of the wild type at pH 7.0, despite the presence of intermediates that are not seen in the wild type, we propose that it may be the stability of the intermediate state rather than the native state that is dependent on pH. On the basis of the lower stability of the intermediate in the H74A and H185F mutants compared to that of the wild type, we conclude that both His74 and His185 are involved in triggering the pH changes to the conformational stability of wild-type CLIC1 via their protonation, which stabilizes the intermediate state.

  17. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    PubMed

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  18. Electrochemical Visualization of Intracellular Hydrogen Peroxide at Single Cells.

    PubMed

    He, Ruiqin; Tang, Huifen; Jiang, Dechen; Chen, Hong-yuan

    2016-02-16

    In this Letter, the electrochemical visualization of hydrogen peroxide inside one cell was achieved first using a comprehensive Au-luminol-microelectrode and electrochemiluminescence. The capillary with a tip opening of 1-2 μm was filled with the mixture of chitosan and luminol, which was coated with the thin layers of polyvinyl chloride/nitrophenyloctyl ether (PVC/NPOE) and gold as the microelectrode. Upon contact with the aqueous hydrogen peroxide, hydrogen peroxide and luminol in contact with the gold layer were oxidized under the positive potential resulting in luminescence for the imaging. Due to the small diameter of the electrode, the microelectrode tip was inserted into one cell and the bright luminescence observed at the tip confirmed the visualization of intracellular hydrogen peroxide. The further coupling of oxidase on the electrode surface could open the field in the electrochemical imaging of intracellular biomolecules at single cells, which benefited the single cell electrochemical detection.

  19. Mortality and cancer morbidity in workers exposed to low levels of vinyl chloride monomer at a polyvinyl chloride processing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmar, L.; Akesson, B.; Nielsen, J.

    1990-01-01

    To study whether exposure to low levels of vinyl chloride monomer (VCM) causes increased risk for cancer morbidity and death from ischemic heart disease, a cohort study was performed among 2,031 male workers at a polyvinyl chloride (PVC) processing plant who had been employed for at least 3 months during the period 1945-1980. An almost significantly increased total mortality (SMR = 116, 95% CI 99-136) was found. Deaths caused by violence or intoxication were significantly increased (SMR = 153, 95% CI 109-213), but not deaths from ischemic heart disease (SMR = 100, 95% CI 73-135). A significant increase in totalmore » cancer morbidity was observed (SMR = 128, 95% CI 101-161). Respiratory cancers were significantly increased (SMR = 213, 95% CI 127-346). Furthermore, six brain tumors (vs. 2.6 expected) were observed. This increase, however, was not significant (SMR = 229, 95% CI 84-498). No liver hemangiosarcoma was observed. Applying a latency period of greater than or equal to 10 years from start of employment did not change the risk patterns. There were no significant exposure-response associations between exposure estimates for VCM, asbestos, and plasticizers and cancer morbidity.« less

  20. Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis

    PubMed Central

    Wan, Minghui; Liao, Dongjiang; Peng, Guilin; Xu, Xin; Yin, Weiqiang; Guo, Guixin; Jiang, Funeng; Zhong, Weide

    2017-01-01

    Chloride intracellular channel 1 (CLIC1) is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM) database using structure-based virtual screening and molecular dynamics (MD) simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition. PMID:29147652

  1. [Establishment of oxygen and glucose deprive model of in vitro cultured hippocampal neuron and effect of ligustrazine on intracellular Ca+ level in model neurons].

    PubMed

    Wan, Hai-tong; Wang, Yu; Yang, Jie-hong

    2007-03-01

    To establish the oxygen and glucose deprive (OGD) model in cultured hippocampal neuron and study the effect of ligustrazine on intracellular Ca2+ level in the model neurons. The OGD model was established in cultured hippocampal neuron, and the intracellular Ca2+ level in it was detected by laser scanning confocal microscope (LSCM). The OGD model was successfully established in cultured hippocampal neurons; the intracellular Ca2+ level in the OGD model group was significantly higher than that in the blank control group (P < 0.05), and that in the nemodipine and high and medium dosage of ligustrazine treated groups was lower than that in the OGD model group (P < 0.05). Intracellular Ca2+ overload occurs in OGD model neuron, which could be antagonized by ligustrazine, indicating that ligustrazine has a protective effect on hippocampal neuron from hypoxic-ischemic injury.

  2. Methylene chloride exposure and carboxyhemoglobin levels in cabinetmakers.

    PubMed

    Banjoko, Sunny O; Sridhar Mynapelli, K C; Ogunkola, Isiah O; Masheyi, Olatunde O

    2007-05-01

    Methylene chloride (MeCl(2)) is a clear colorless volatile sweet smelling lipophilic solvent used as a constituent of wood vanishes and paints. Human exposure is mainly due to inhalation and its biotransformation by the hepatic mixed function oxidases (MFO) leads to formation of carbon monoxide (CO). Simultaneous exposure to MeCl(2) and increased ambient CO results in undesirably increased carboxyhemoglobin (COHb) formation, which predisposes to carboxyhemoglobinaemia with the central nervous system as the primary target organ of toxicity.In this study, ambient CO levels were determined using a CO personal monitor in different pasts of Ibadan Nigeria and work place microenvironment of 50 Cabinet makers (test group) and 50 volunteer (control) in non-furniture making occupations. Mann Whitney U and Kruskaal Wallis were the statistical methods of analysis used.Questionnaires were administered to both groups carboxyhaemoglobin levels were determined in venous blood drawn from individuals in the two groups by differential spectrophotometric method.Ambient CO levels in Ibadan were observed to be between 4 and 52 ppm with a mean of 20 ppm. Work environment CO levels were significantly higher in test subjects than controls at 5.2 ± 1.08 ppm and 2.08 ± 0.91 ppm respectively (P <0.001). COHb in cabinetmakers with mean working hours of 9.48 ± 2.9 per day was 3.95 ± 1.35 (%) while that of controls with mean working hours of 8.0 ± 0.8 per day was 2.08 ± 0.91 ppm (P <0.001). Smoking however did not significantly affect the COHb levels within the two groups (P >0.05).It is therefore imperative to substitute MeCl(2) for safer chemicals in wood vanish and paints and the use of protective gas masks and adequate ventilation should be mandatory whenever MeCl(2) is used.

  3. Methylene chloride exposure and carboxyhemoglobin levels in cabinetmakers

    PubMed Central

    Banjoko, Sunny O.; Sridhar Mynapelli, K. C.; Ogunkola, Isiah O.; Masheyi, Olatunde O.

    2007-01-01

    Methylene chloride (MeCl2) is a clear colorless volatile sweet smelling lipophilic solvent used as a constituent of wood vanishes and paints. Human exposure is mainly due to inhalation and its biotransformation by the hepatic mixed function oxidases (MFO) leads to formation of carbon monoxide (CO). Simultaneous exposure to MeCl2 and increased ambient CO results in undesirably increased carboxyhemoglobin (COHb) formation, which predisposes to carboxyhemoglobinaemia with the central nervous system as the primary target organ of toxicity. In this study, ambient CO levels were determined using a CO personal monitor in different pasts of Ibadan Nigeria and work place microenvironment of 50 Cabinet makers (test group) and 50 volunteer (control) in non-furniture making occupations. Mann Whitney U and Kruskaal Wallis were the statistical methods of analysis used. Questionnaires were administered to both groups carboxyhaemoglobin levels were determined in venous blood drawn from individuals in the two groups by differential spectrophotometric method. Ambient CO levels in Ibadan were observed to be between 4 and 52 ppm with a mean of 20 ppm. Work environment CO levels were significantly higher in test subjects than controls at 5.2 ± 1.08 ppm and 2.08 ± 0.91 ppm respectively (P <0.001). COHb in cabinetmakers with mean working hours of 9.48 ± 2.9 per day was 3.95 ± 1.35 (%) while that of controls with mean working hours of 8.0 ± 0.8 per day was 2.08 ± 0.91 ppm (P <0.001). Smoking however did not significantly affect the COHb levels within the two groups (P >0.05). It is therefore imperative to substitute MeCl2 for safer chemicals in wood vanish and paints and the use of protective gas masks and adequate ventilation should be mandatory whenever MeCl2 is used. PMID:21938216

  4. The dependence of the action potential of the frog's heart on the external and intracellular sodium concentration

    PubMed Central

    Niedergerke, R.; Orkand, R. K.

    1966-01-01

    1. The overshoot of the action potential of the frog's heart was reduced when external sodium chloride was replaced by sucrose. However, the potential decrement was only 17·3 mV for a 10-fold reduction of sodium as compared with 58 mV expected on the basis of the sodium hypothesis of excitation. 2. Replacement of up to 75% of the external sodium by choline did not reduce the overshoot, provided atropine was present in sufficient concentrations to suppress any parasympathomimetic action. 3. The maximum rate of rise of the action potential markedly declined in low sodium fluids whether sucrose or choline chloride was used to replace sodium chloride. 4. The maximum rate of rise was reduced to only a small extent when external sodium was replaced by lithium. 5. Increasing the intracellular sodium concentration in exchange for lost potassium caused overshoots to decline. The effects resembled those obtained in similar experiments with skeletal muscle fibres (Desmedt, 1953). 6. Action potentials occurring under certain conditions even in the presence of very low external sodium concentrations (≤ 5% normal) also declined in height when the intracellular sodium concentration was increased. 7. The behaviour of the action potential in low external sodium concentrations may be explained by an action of calcium on the excitable membrane. PMID:5921833

  5. Sweat Chlorides in Salt-Deprived Cystic Fibrosis Heterozygotes

    PubMed Central

    Myers, Michael F.

    1965-01-01

    Sweat chlorides of 10 sets of parents of children with cystic fibrosis and 11 controls were studied in an attempt to develop a test for the diagnosis of cystic fibrosis heterozygotes by subjecting both the parents and controls to a low sodium diet and comparing sweat chloride values as the diet progressed. It was hoped that the sweat chloride levels of the parents, the heterozygotes, would remain stationary throughout the diet, since their children, the homozygotes, reveal this finding under similar conditions of salt deprivation. The sweat chloride levels of the controls, because of effects of aldosterone, were expected to decrease steadily from the commencement of the diet to its termination. A decrease in sweat chloride values of similar magnitude was found in both parents and controls as the diet continued. It is concluded that the study of sweat electrolyte levels in salt-deprived subjects is of no value in the diagnosis of cystic fibrosis heterozygotes. PMID:14289142

  6. Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

    PubMed Central

    Fromm, Anja; Günzel, Dorothee

    2011-01-01

    Background and Purpose The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. Experimental Approach HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl− secretion by measuring short-circuit current (ISC) and tracer fluxes of 22Na+ and 36Cl−. Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na+/K+-ATPase and intracellular cAMP levels (ELISA) were measured. Key Results In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced ISC within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced ISC was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na+/K+-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na+/K+-ATPase. Conclusion and Implications Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na+/K+-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea. PMID:21479205

  7. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis.

    PubMed

    Terker, Andrew S; Zhang, Chong; Erspamer, Kayla J; Gamba, Gerardo; Yang, Chao-Ling; Ellison, David H

    2016-01-01

    Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low-potassium diet. Recent data suggest that plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the with-no-lysine kinase (WNK)-Ste20p-related proline- and alanine-rich kinase (SPAK) pathway. As previous studies used extreme dietary manipulations, we sought to determine whether the relationship between potassium and NaCl cotransporter (NCC) is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect NCC in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride concentration. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3, and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable it to mediate effects of potassium on NCC in vivo. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-03

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials.

  9. Na-KATPase activity and intracellular ion concentrations in the lactating guinea pig mammary gland. Studies on Na-K activated adenosine triphosphatase, XXXVI.

    PubMed

    Vreeswijk, J H; de Pont, J J; Bonting, S L

    1975-01-01

    The intracellular sodium, potassium and chloride concentrations in slices of lactating guinea pig mammary gland have been determined by chemical analysis and the use of appropriate values for extracellular space. These ion concentrations after 1 hr incubation at 37 degrees C in a Krebs-Ringer bicarbonate solution are 45mM Na+, 138 mM K+ and 44 mM Cl-, which values are in agreement with those found in fresh mammary gland slices. Inhibition of the NaK activated ATPase cation pump system of the tissue by 10(-4)M ouabain, anoxia or cooling to 0 degrees C Causes a gain of Na+ and an equimolar loss of K+ without a significant change in chloride concentration. The effect of cooling (0 degrees C) is reversible by reincubation at 37 degrees C. Water content of the tissue (76.5% of wet weight) and extracellular space (40.5%) do not change under these conditions. The results permit the conclusion that the NaK activated ATPase system is responsible for the maintenance of the intracellular Na+ and K+ concentrations, but do not support the presence of a chloride pump.

  10. Application of physiologically based pharmacokinetic modeling in setting acute exposure guideline levels for methylene chloride.

    PubMed

    Bos, Peter Martinus Jozef; Zeilmaker, Marco Jacob; van Eijkeren, Jan Cornelis Henri

    2006-06-01

    Acute exposure guideline levels (AEGLs) are derived to protect the human population from adverse health effects in case of single exposure due to an accidental release of chemicals into the atmosphere. AEGLs are set at three different levels of increasing toxicity for exposure durations ranging from 10 min to 8 h. In the AEGL setting for methylene chloride, specific additional topics had to be addressed. This included a change of relevant toxicity endpoint within the 10-min to 8-h exposure time range from central nervous system depression caused by the parent compound to formation of carboxyhemoglobin (COHb) via biotransformation to carbon monoxide. Additionally, the biotransformation of methylene chloride includes both a saturable step as well as genetic polymorphism of the glutathione transferase involved. Physiologically based pharmacokinetic modeling was considered to be the appropriate tool to address all these topics in an adequate way. Two available PBPK models were combined and extended with additional algorithms for the estimation of the maximum COHb levels. The model was validated and verified with data obtained from volunteer studies. It was concluded that all the mentioned topics could be adequately accounted for by the PBPK model. The AEGL values as calculated with the model were substantiated by experimental data with volunteers and are concluded to be practically applicable.

  11. Importance of Abnormal Chloride Homeostasis in Stable Chronic Heart Failure.

    PubMed

    Grodin, Justin L; Verbrugge, Frederik H; Ellis, Stephen G; Mullens, Wilfried; Testani, Jeffrey M; Tang, W H Wilson

    2016-01-01

    The aim of this analysis was to determine the long-term prognostic value of lower serum chloride in patients with stable chronic heart failure. Electrolyte abnormalities are prevalent in patients with chronic heart failure. Little is known regarding the prognostic implications of lower serum chloride. Serum chloride was measured in 1673 consecutively consented stable patients with a history of heart failure undergoing elective diagnostic coronary angiography. All patients were followed for 5-year all-cause mortality, and survival models were adjusted for variables that confounded the chloride-risk relationship. The average chloride level was 102 ± 4 mEq/L. Over 6772 person-years of follow-up, there were 547 deaths. Lower chloride (per standard deviation decrease) was associated with a higher adjusted risk of mortality (hazard ratio 1.29, 95% confidence interval 1.12-1.49; P < 0.001). Chloride levels net-reclassified risk in 10.4% (P = 0.03) when added to a multivariable model (with a resultant C-statistic of 0.70), in which sodium levels were not prognostic (P = 0.30). In comparison to those with above first quartile chloride (≥ 101 mEq/L) and sodium (≥ 138 meq/L), subjects with first quartile chloride had a higher adjusted mortality risk, whether they had first quartile sodium (hazard ratio 1.35, 95% confidence interval 1.08-1.69; P = 0.008) or higher (hazard ratio 1.43, 95% confidence interval 1.12-1.85; P = 0.005). However, subjects with first quartile sodium but above first quartile chloride had no association with mortality (P = 0.67). Lower serum chloride levels are independently and incrementally associated with increased mortality risk in patients with chronic heart failure. A better understanding of the biological role of serum chloride is warranted. © 2015 American Heart Association, Inc.

  12. Transmembrane chloride flux in tissue-cultured chick heart cells

    PubMed Central

    1983-01-01

    To evaluate the transmembrane movement of chloride in a preparation of cardiac muscle lacking the extracellular diffusion limitations of natural specimens, intracellular chloride concentration ( [Cl] i) and transmembrane 36Cl efflux have been determined in growth-oriented embryonic chick heart cells in tissue culture. Using the method of isotopic equilibrium, [Cl]i was 25.1 +/- 7.3 mmol x (liter cell water)- 1, comparable to the value of 24.9 +/- 5.4 mmol x (liter cell water)-1 determined by coulometric titration. Two cellular 36Cl compartments were found; one exchanged with a rate constant of 0.67 +/- 0.12 min-1 and was associated with the cardiac muscle cells; the other, attributed to the fibroblasts, exchanged with a rate constant of 0.18 +/- 0.05 min- 1. At 37 degrees C, transmembrane Cl flux of cardiac muscle under steady-state conditions was 30 pmol x cm-2 x s-1. In K-free, normal, or high-Ko solutions, the responses of the membrane potential to changes in external Cl concentration suggested that chloride conductance was low. These results indicate that Cl transport across the myocardial cell membrane is more rapid than K transport and is largely electrically silent. PMID:6864192

  13. Transformation of methyltin chlorides and stannic chloride under simulated landfill conditions.

    PubMed

    Björn, Annika; Hörsing, Maritha; Ejlertsson, Jörgen; Svensson, Bo H

    2011-12-01

    There is increasing concern regarding the fate of methyltins in the environment, particularly since large amounts of polyvinyl chloride (PVC) plastics are deposited in landfills. The potential transformation of methyltin chlorides and stannic chloride in landfills was investigated, by incubating the target substances at concentrations relevant to landfill conditions (100 and 500 µg Sn L(-1)). The amounts of methane formed in all treatment bottles, and controls, were measured to evaluate the general microbial activity of the inocula and possible effects of methyltins on the degradation of organic matter. The methyltins and stannic chloride were found to have no significant inhibitory effects on the activity of landfill micro-organisms, and the methanol used to disperse the tin compounds was completely degraded. In some experimental bottles, the methanol degradation gave rise to larger methane yields than expected, which was attributed to enhanced degradation of the waste material. Alkyltin analyses showed that monomethyltin trichloride at an initial concentration of 500 µg Sn L(-1) promoted methylation of inorganic tin present in the inoculum. No methylation activities were detected in the incubations with 100 µg Sn L(-1) methyltin chlorides (mono-, di- or tri-methyltin), but demethylation occurred instead. Levels of soluble inorganic tin increased during the incubation period, due partly to demethylation and partly to a release of tin from the waste inocula.

  14. Chloride: the queen of electrolytes?

    PubMed

    Berend, Kenrick; van Hulsteijn, Leonard Hendrik; Gans, Rijk O B

    2012-04-01

    Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general do not allocate chapters exclusively on hypochloremia or hyperchloremia and information on chloride other than channelopathies is scattered in the literature. To systematically review the function of chloride in man, data for this review include searches of MEDLINE, PubMed, and references from relevant articles including the search terms "chloride," "HCl," "chloride channel" "acid-base," "acidosis," "alkalosis," "anion gap" "strong anion gap" "Stewart," "base excess" and "lactate." In addition, internal medicine, critical care, nephrology and gastroenterology textbooks were evaluated on topics pertaining the assessment and management of acid-base disorders, including reference lists from journals or textbooks. Chloride is, after sodium, the most abundant electrolyte in serum, with a key role in the regulation of body fluids, electrolyte balance, the preservation of electrical neutrality, acid-base status and it is an essential component for the assessment of many pathological conditions. When assessing serum electrolytes, abnormal chloride levels alone usually signify a more serious underlying metabolic disorder, such as metabolic acidosis or alkalosis. Chloride is an important component of diagnostic tests in a wide array of clinical situations. In these cases, chloride can be tested in sweat, serum, urine and feces. Abnormalities in chloride channel expression and function in many organs can cause a range of disorders. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  15. Self-Organization Processes at the Intracellular Level

    NASA Astrophysics Data System (ADS)

    Ponce Dawson, Silvina

    2003-03-01

    In spite of their relatively small sizes, cells are incredibly complex objects in which various sorts of self-organizing processes occur. Cell division is an example of a process that nearly all cells undergo in which a concerted sequence of events takes place. What are the signals that tell the cell to move along this sequence? Clearly, this is a self-organized process. Microtubules (long polymers that are part of the cytoskeleton) and calcium signals play a major role during cell division. In this course we will focus on some features of microtubule dynamics and calcium signals that are amenable to modeling. In both of these biological systems, behaviors at a single molecule level are key determinants of the self-organized dynamics that is observed at larger scales. Thus, the modeling of these systems presents interesting challenges which require novel strategies. Their study may not only provide answers for biologically motivated questions, but is also a natural setting in which the transition between particle-like and mean-field models can be explored. In this course we will first give a brief biological introduction on the structure of eukaryotic cells, microtubule dynamics and intracellular calcium signals. We will then describe some of the models that have been presented in the literature and discuss the spatio-temporal dynamics that they predict, comparing them with observed behaviors in vitro or in vivo. We will end with a discussion on the virtues and limitations of the various modeling strategies described.

  16. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    PubMed Central

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  17. Removal of chloride from MSWI fly ash.

    PubMed

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effects of diadenosine tetraphosphate on FGF9-induced chloride flux changes in achondroplastic chondrocytes.

    PubMed

    Huete, Fernando; Guzman-Aranguez, Ana; Ortín, Javier; Hoyle, Charles H V; Pintor, Jesús

    2011-06-01

    Achondroplasia, the most common type of dwarfism, is characterized by a mutation in the fibroblast growth factor receptor 3 (FGFR3). Achondroplasia is an orphan pathology with no pharmacological treatment so far. However, the possibility of using the dinucleotide diadenosine tetraphosphate (Ap(4)A) with therapeutic purposes in achondroplasia has been previously suggested. The pathogenesis involves the constitutive activation of FGFR3, resulting in altered biochemical and physiological processes in chondrocytes. Some of these altered processes can be influenced by changes in cell volume and ionic currents. In this study, the action of mutant FGFR3 on chondrocyte size and chloride flux in achondroplastic chondrocytes was investigated as well as the effect of the Ap(4)A on these processes triggered by mutant FGFR3. Stimulation with the fibroblast growth factor 9 (FGF9), the preferred ligand for FGFR3, induced an enlarged achondroplastic chondrocyte size and an increase in the intracellular chloride concentration, suggesting the blockade of chloride efflux. Treatment with the Ap(4)A reversed the morphological changes triggered by FGF9 and restored the chloride efflux. These data provide further evidence for the therapeutic potential of this dinucleotide in achondroplasia treatment.

  19. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...

  20. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels.

    PubMed

    Kamaleddin, Mohammad Amin

    2018-02-01

    Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl - and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl - flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca 2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca 2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain. © 2017 Wiley Periodicals, Inc.

  1. The Importance of Abnormal Chloride Homeostasis in Stable Chronic Heart Failure

    PubMed Central

    Grodin, Justin L.; Verbrugge, Frederik H.; Ellis, Stephen G.; Mullens, Wilfried; Testani, Jeffrey M.; Wilson Tang MD, W. H.

    2015-01-01

    Background The aim of this analysis was to determine the long-term prognostic value of lower serum chloride in patients with stable chronic heart failure. Electrolyte abnormalities are prevalent in patients with chronic heart failure. Little is known regarding the prognostic implications of lower serum chloride. Methods and Results Serum chloride was measured in 1,673 consecutively consented stable patients with a history of heart failure undergoing elective diagnostic coronary angiography. All patients were followed for 5-year all-cause mortality, and survival models were adjusted for variables that confounded the chloride-risk relationship. The average chloride level was 102±4 mEq/L. Over 6,772 person-years of follow-up, there were 547 deaths. Lower chloride (per standard deviation decrease) was associated with a higher adjusted risk of mortality (HR 1.29, 95%CI 1.12–1.49, P<0.001). Chloride levels net-reclassified risk in 10.4% (P=0.03) when added to a multivariable model (with a resultant C-statistic of 0.70), in which sodium levels were not prognostic (P=0.30). In comparison to those with above first quartile chloride (≥101 mEq/L) and sodium (≥138 meq/L), subjects with first quartile chloride had a higher adjusted mortality risk, whether they had first quartile sodium (HR 1.35, 95%CI 1.08–1.69, P=0.008) or higher (HR 1.43, 95%CI 1.12–1.85, P=0.005). However, subjects with first quartile sodium but above first quartile chloride had no association with mortality (P=0.67). Conclusions Lower serum chloride levels are independently and incrementally associated with increased mortality risk in patients with chronic heart failure. A better understanding of the biological role of serum chloride is warranted. PMID:26721916

  2. Single-cell intracellular nano-pH probes†

    PubMed Central

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  3. Single-cell intracellular nano-pH probes.

    PubMed

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  4. Biatriosporin D displays anti-virulence activity through decreasing the intracellular cAMP levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Chang, Wenqiang; Shi, Hongzhuo

    Candidiasis has long been a serious human health problem, and novel antifungal approaches are greatly needed. During both superficial and systemic infection, C. albicans relies on a battery of virulence factors, such as adherence, filamentation, and biofilm formation. In this study, we found that a small phenolic compound, Biatriosporin D (BD), isolated from an endolichenic fungus, Biatriospora sp., displayed anti-virulence activity by inhibiting adhesion, hyphal morphogenesis and biofilm formation of C. albicans. Of note is the high efficacy of BD in preventing filamentation with a much lower dose than its MIC value. Furthermore, BD prolonged the survival of worms infectedmore » by C. albicans in vivo. Quantitative real-time PCR analysis, exogenous cAMP rescue experiments and intracellular cAMP measurements revealed that BD regulates the Ras1-cAMP-Efg1 pathway by reducing cAMP levels to inhibit the hyphal formation. Further investigation showed that BD could upregulate Dpp3 to synthesize much more farnesol, which could inhibit the activity of Cdc35 and reduce the generation of cAMP. Taken together, these findings indicate that BD stimulates the expression of Dpp3 to synthesize more farnesol that directly inhibits the Cdc35 activity, reducing intracellular cAMP and thereby disrupting the morphologic transition and attenuating the virulence of C. albicans. Our study uncovers the underlying mechanism of BD as a prodrug in fighting against pathogenic C. albicans and provides a potential application of BD in fighting clinically relevant fungal infections by targeting fungal virulence. - Highlights: • BD inhibits the filamentation of C. albicans in multiple hypha-inducing conditions. • BD can prolong the survival of nematodes infected by C. albicans. • BD stimulates the expression of Dpp3 to synthesize more farnesol. • BD reduces intracellular cAMP and regulates Ras1-cAMP-PKA pathway.« less

  5. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  6. CalQuo: automated, simultaneous single-cell and population-level quantification of global intracellular Ca2+ responses.

    PubMed

    Fritzsche, Marco; Fernandes, Ricardo A; Colin-York, Huw; Santos, Ana M; Lee, Steven F; Lagerholm, B Christoffer; Davis, Simon J; Eggeling, Christian

    2015-11-13

    Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.

  7. GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation.

    PubMed

    Cai, Shijie; Alp, Nicholas J; McDonald, Denise; Smith, Ian; Kay, Jonathan; Canevari, Laura; Heales, Simon; Channon, Keith M

    2002-09-01

    Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain less clear. We aimed to investigate the role of BH4 levels in intracellular eNOS regulation, by targeting the BH4 synthetic pathway as a novel strategy to modulate intracellular BH4 levels. We constructed a recombinant adenovirus, AdGCH, encoding human GTPCH. We infected human endothelial cells with AdGCH, investigated the changes in intracellular biopterin levels, and determined the effects on eNOS enzymatic activity, protein levels and dimerisation. GTPCH gene transfer in EAhy926 endothelial cells increased BH4 >10-fold compared with controls (cells alone or control adenovirus infection), and greatly enhanced NO production in a dose-dependent, eNOS-specific manner. We found that eNOS was principally monomeric in control cells, whereas GTPCH gene transfer resulted in a striking increase in eNOS homodimerisation. Furthermore, the total amounts of both native eNOS protein and a recombinant eNOS-GFP fusion protein were significantly increased following GTPCH gene transfer. These findings suggest that GTPCH gene transfer is a valid approach to increase BH4 levels in human endothelial cells, and provide new evidence for the relative importance of different mechanisms underlying BH4-mediated eNOS regulation in intact human endothelial cells. Additionally, these observations suggest that GTPCH may be a rational target to augment endothelial BH4 and normalise eNOS activity in endothelial dysfunction states.

  8. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  9. Antioxidant protection mechanism of chick hepatic mitochondria exposed to lanthanum chloride & neodymium chloride treatment.

    PubMed

    Ghosh, N; Chattopadhyay, D; Chatterjee, G C

    1991-05-01

    Acute lanthanum chloride (250 mg/kg body wt) and neodymium chloride (200 mg/kg body wt) administrations resulted in significant enhancement of glutathione level in chick hepatic mitochondria. However, glutathione-s-transferase activity was depressed. There was no alteration in the activity of glutathione reductase. Activity of glucose-6-phosphate dehydrogenase was not altered under lanthanum and neodymium treatment. There was a significant enhancement of intramitochondrial glutathione peroxidase and superoxide dismutase. Lipid peroxidation remains the same as control group of animals.

  10. Monitoring Intracellular Oxygen Concentration: Implications for Hypoxia Studies and Real-Time Oxygen Monitoring.

    PubMed

    Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J

    2016-01-01

    The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.

  11. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34 Section 151.50-34 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall...

  12. Effects of decreased ground-water withdrawal on ground-water levels and chloride concentrations in Camden County, Georgia, and ground-water levels in Nassau County, Florida, from September 2001 to May 2003

    USGS Publications Warehouse

    Peck, Michael F.; McFadden, Keith W.; Leeth, David C.

    2005-01-01

    the upper Brunswick aquifer was still rising as of May 2003. Chloride concentrations in the Upper Floridan aquifer in Camden County do not exceed the State and Federal drinking-water standard of 250 milligrams per liter (mg/L). With the exception of three wells located at St. Marys, all of the wells sampled during this study (from September 2002 to May 2003) had chloride concentrations ranging from 30 to 50 mg/L, which are considered within background levels for the Upper Floridan aquifer in this area. The three wellstwo at the Durango Paper Company and the other an old unused City of St. Marys wellhad chloride concentrations that ranged from 74 to 175 mg/L, which are above the background level, but were still below the 250-mg/L drinking-water standard. The source has not been determined for the elevated chloride concentration in these wells; the chloride concentration in one of the wells has decreased slightly since the paper-mill shutdown. Chloride concentrations throughout Camden County showed little change after the paper-mill shutdown.

  13. Effects of muscarinic, alpha-adrenergic, and substance P agonists and ionomycin on ion transport mechanisms in the rat parotid acinar cell. The dependence of ion transport on intracellular calcium

    PubMed Central

    1989-01-01

    The relationship between receptor-mediated increases in the intracellular free calcium concentration [( Ca]i) and the stimulation of ion fluxes involved in fluid secretion was examined in the rat parotid acinar cell. Agonist-induced increases in [Ca]i caused the rapid net loss of up to 50-60% of the total content of intracellular chloride (Cli) and potassium (Ki), which is consistent with the activation of calcium-sensitive chloride and potassium channels. These ion movements were accompanied by a 25% reduction in the intracellular volume. The relative magnitudes of the losses of Ki and the net potassium fluxes promoted by carbachol (a muscarinic agonist), phenylephrine (an alpha-adrenergic agonist), and substance P were very similar to their characteristic effects on elevating [Ca]i. Carbachol stimulated the loss of Ki through multiple efflux pathways, including the large-conductance Ca-activated K channel. Carbachol and substance P increased the levels of intracellular sodium (Nai) to more than 2.5 times the normal level by stimulating the net uptake of sodium through multiple pathways; Na-K-2Cl cotransport accounted for greater than 50% of the influx, and approximately 20% was via Na-H exchange, which led to a net alkalinization of the cells. Ionomycin stimulated similar fluxes through these two pathways, but also promoted sodium influx through an additional pathway which was nearly equivalent in magnitude to the combined uptake through the other two pathways. The carbachol- induced increase in Nai and decrease in Ki stimulated the activity of the sodium pump, measured by the ouabain-sensitive rate of oxygen consumption, to nearly maximal levels. In the absence of extracellular calcium or in cells loaded with the calcium chelator BAPTA (bis[o- aminophenoxy]ethane-N,N,N',N'-tetraacetic acid) the magnitudes of agonist- or ionomycin-stimulated ion fluxes were greatly reduced. The parotid cells displayed a marked desensitization to substance P; within 10 min the

  14. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7.

    PubMed

    Hosein, Althea M; Breidt, Frederick; Smith, Charles E

    2011-02-01

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.

  15. Extracellular protons enable activation of the calcium‐dependent chloride channel TMEM16A

    PubMed Central

    Cruz‐Rangel, Silvia; De Jesús‐Pérez, José J.; Aréchiga‐Figueroa, Iván A.; Rodríguez‐Menchaca, Aldo A.; Pérez‐Cornejo, Patricia; Hartzell, H. Criss

    2017-01-01

    Key points The calcium‐activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity.TMEM16A is opened by voltage‐dependent calcium binding and regulated by permeant anions and intracellular protons.Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high.In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons.At physiological pH, E623 is un‐protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. Abstract Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore‐forming subunit of a Ca2+‐dependent Cl− channel (CaCC), is activated by direct, voltage‐dependent, binding of intracellular Ca2+. Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H+]o) on mouse TMEM16A expressed in HEK‐293 cells using whole‐cell and inside‐out patch‐clamp recordings. We found that increasing the [H+]o from 10−10 to 10−5.5 m caused a progressive increase in the chloride current (I Cl) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage‐independent manner, regardless of channel state (open or closed), and without altering its apparent Ca2

  16. Extracellular protons enable activation of the calcium-dependent chloride channel TMEM16A.

    PubMed

    Cruz-Rangel, Silvia; De Jesús-Pérez, José J; Aréchiga-Figueroa, Iván A; Rodríguez-Menchaca, Aldo A; Pérez-Cornejo, Patricia; Hartzell, H Criss; Arreola, Jorge

    2017-03-01

    The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high. In addition, protonation conditions determine the open probability of TMEM16A without changing its calcium sensitivity. External glutamic acid 623 (E623) is key for TMEM16A's ability to respond to external protons. At physiological pH, E623 is un-protonated and TMEM16A is activated when intracellular calcium increases; however, under acidic conditions E623 is partially protonated and works synergistically with intracellular calcium to activate the channel. These findings are critical for understanding physiological and pathological processes that involve changes in pH and chloride flux via TMEM16A. Transmembrane protein 16A (TMEM16A), also known as ANO1, the pore-forming subunit of a Ca 2+ -dependent Cl - channel (CaCC), is activated by direct, voltage-dependent, binding of intracellular Ca 2+ . Endogenous CaCCs are regulated by extracellular protons; however, the molecular basis of such regulation remains unidentified. Here, we evaluated the effects of different extracellular proton concentrations ([H + ] o ) on mouse TMEM16A expressed in HEK-293 cells using whole-cell and inside-out patch-clamp recordings. We found that increasing the [H + ] o from 10 -10 to 10 -5.5  m caused a progressive increase in the chloride current (I Cl ) that is described by titration of a protonatable site with pK = 7.3. Protons regulate TMEM16A in a voltage-independent manner, regardless of channel state (open or closed), and without altering its apparent Ca 2+ sensitivity. Noise analysis showed

  17. Molybdenum In Cathodes Of Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of molybdenum wire in NaAlCl4 melt indicate molybdenum chloride useful as cathode material in rechargeable sodium/metal chloride electrochemical cells. Batteries used in electric vehicles, for electric-power load leveling, and other applications involving high energy and power densities.

  18. Antibiotic susceptibility and intracellular localization of Diplorickettsia massiliensis.

    PubMed

    Subramanian, Geetha; Barry, Abdoulaye O; Ghigo, Eric; Raoult, Didier; Mediannikov, Oleg

    2012-02-01

    Diplorickettsia massiliensis is an obligate intracellular bacterium from the Coxiellaceae family recently isolated from Ixodes ricinus ticks. The inhibitory effects of antimicrobial agents were assessed by two different methods, immunofluorescence and Gimenez staining assay. Different markers (EEA1, Lamp-1, Cathepsin D, and LysoTracker Red DND99) were used to reveal the nature of the vacuole containing the bacterium. Ciprofloxacin, levofloxacin, and rifampin had MIC values of 2 lg mL(-1). We found that 4 lg mL(-1) of Doxycycline inhibited the growth of D. massiliensis strain. Surprisingly, D. massiliensis was resistant to chloramphenicol up to the concentration of 64 lg mL(-1). We found that penicillin G, ammonium chloride, gentamycin, omeprazole, bafilomycin A1, and chloroquine were not active against D. massiliensis. Studies performed with markers EEA1, Lamp-1, Cathepsin D, and LysoTracker Red DND99 showed that D. massiliensis is localized within an acidic compartment that is not an early phagosome, but a late phagosome or a phagolysosome. Gimenez staining stays a good method that will work with a very low number of bacteria and can be used to determine the MICs of new therapeutic antibiotics precisely. The resistance profile of D. massiliensis was found to be quite unusual for intracellular Gram-negative bacterium with marked resistance to chloramphenicol. Despite of localization in acidic compartment, pH-neutralizing agents do not significantly inhibit intracellular growth of bacterium. The results of these studies prove that antibiotic resistance does not depend on pH of vacuole. This pH-related mechanism seems not to play a contributing role in the overall resistance of D. massiliensis.

  19. The intracellular carboxyl tail of the PAR-2 receptor controls intracellular signaling and cell death.

    PubMed

    Zhu, Zhihui; Stricker, Rolf; Li, Rong yu; Zündorf, Gregor; Reiser, Georg

    2015-03-01

    The protease-activated receptors are a group of unique G protein-coupled receptors, including PAR-1, PAR-2, PAR-3 and PAR-4. PAR-2 is activated by multiple trypsin-like serine proteases, including trypsin, tryptase and coagulation proteases. The clusters of phosphorylation sites in the PAR-2 carboxyl tail are suggested to be important for the binding of adaptor proteins to initiate intracellular signaling to Ca(2+) and mitogen-activated protein kinases. To explore the functional role of PAR-2 carboxyl tail in controlling intracellular Ca(2+), ERK and AKT signaling, a series of truncated mutants containing different clusters of serines/threonines were generated and expressed in HEK293 cells. Firstly, we observed that lack of the complete C-terminus of PAR-2 in a mutated receptor gave a relatively low level of localization on the cell plasma membrane. Secondly, the shortened carboxyl tail containing 13 amino acids was sufficient for receptor internalization. Thirdly, the cells expressing truncation mutants showed deficits in their capacity to couple to intracellular Ca(2+) and ERK and AKT signaling upon trypsin challenge. In addition, HEK293 cells carrying different PAR-2 truncation mutants displayed decreased levels of cell survival after long-lasting trypsin stimulation. In summary, the PAR-2 carboxyl tail was found to control the receptor localization, internalization, intracellular Ca(2+) responses and signaling to ERK and AKT. The latter can be considered to be important for cell death control.

  20. INTRACELLULAR ION CONCENTRATIONS IN BRANCHIAL EPITHELIAL CELLS OF BROWN TROUT (SALMO TRUTTA L.) DETERMINED BY X-RAY MICROANALYSIS

    PubMed

    Morgan; Potts; Oates

    1994-09-01

    The intracellular concentrations of sodium, chloride, phosphorus and potassium under normal conditions in pavement epithelial (PE) cells of brown trout (Salmo trutta) gill were 66, 51, 87 and 88 mmol l-1 respectively. The concentrations of these elements under identical conditions in mitochondria-rich (MR) cells were not significantly different, except for that of chlorine, which was lower in MR cells (40 mmol l-1). The concentration of sodium in the PE cells decreased slightly after exposure of the fish to low external [Na+] (25 µmol l-1) for 7 days but increased greatly within 5 min of subsequent exposure to 1 mmol l-1 external Na+. These changes in external [Na+] had no significant effect on MR cells. Exposure of fish to low [Cl-] (25 µmol l-1) had no effect on PE or MR cells, but on exposure to 1 mmol l-1 Cl- the concentrations of chlorine, phosphorus and potassium in both types of cells increased, whilst the intracellular sodium concentration decreased only in MR cells. The PE cells were little affected by exposure of the fish to the carbonic anhydrase inhibitor acetazolamide. In contrast, 0.5 mmol l-1 external acetazolamide caused a significant decrease in intracellular phosphorus, chlorine and potassium concentrations in MR cells. This suggests that the PE cells are the sites of sodium uptake in the gills of the brown trout and that chloride uptake occurs via the MR cells. These results are discussed with respect to the sites and possible mechanisms of ionic exchange in freshwater vertebrates.

  1. Activation of the proteasomes of sand dollar eggs at fertilization depends on the intracellular pH rise.

    PubMed

    Chiba, K; Alderton, J M; Hoshi, M; Steinhardt, R A

    1999-05-01

    The mechanism of the activation of intracellular proteasomes at fertilization was measured in living sand dollar eggs using the membrane-impermeant fluorogenic substrate, succinyl-Phe-Leu-Arg-coumarylamido-4-methanesulfonic acid. When the substrate was microinjected into unfertilized eggs, the initial velocity of hydrolysis of the substrate (V0) was low. V0 measured 5 to 10 min after fertilization was five to nine times the prefertilization level and remained high throughout the first cell cycle. Hydrolysis of the substrate was inhibited by clasto-lactacystin beta-lactone, a specific inhibitor of the proteasome. There has been in vitro evidence that calcium may be involved in regulation of proteasome activity to either inhibit the increase in peptidase activity associated with PA 28 binding to the 20S proteasome or stimulate activity of the PA 700-proteasome complex. Since both intracellular free Ca2+ concentration ([Ca2+]i) and intracellular pH (pHi) increase after fertilization, hydrolysis of the proteasome substrate was measured under conditions in which [Ca2+]i and pHi were varied independently during activation. When the pHi of unfertilized eggs was elevated by exposure to 15 mM ammonium chloride in pH 9 seawater, V0 increased to a level comparable to that measured after fertilization. In contrast, [Ca2+]i elevation without pHi change, induced by calcium ionophore in sodium-free seawater, had no effect on V0 in the unfertilized egg. Moreover, when unfertilized eggs were microinjected with buffers modulating pHi, V0 increased in a pH-dependent manner. These results indicate that the pHi rise at fertilization is the necessary prerequisite for activation of the proteasome, an essential component in the regulation of the cell cycle. Copyright 1999 Academic Press.

  2. Characterization of intracellular and extracellular saxitoxin levels in both field and cultured Alexandrium spp. samples from Sequim Bay, Washington.

    PubMed

    Lefebvre, Kathi A; Bill, Brian D; Erickson, Aleta; Baugh, Keri A; O'Rourke, Lohna; Costa, Pedro R; Nance, Shelly; Trainer, Vera L

    2008-05-14

    Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004-2007) and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA) and an enzyme-linked immunosorbent assay (ELISA). Characterization of the PST toxin profile in the Sequim Bay isolates by pre-column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 +/- 9.7% of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region.

  3. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging

    NASA Astrophysics Data System (ADS)

    Abbott, Jeffrey; Ye, Tianyang; Qin, Ling; Jorgolli, Marsela; Gertner, Rona S.; Ham, Donhee; Park, Hongkun

    2017-05-01

    Developing a new tool capable of high-precision electrophysiological recording of a large network of electrogenic cells has long been an outstanding challenge in neurobiology and cardiology. Here, we combine nanoscale intracellular electrodes with complementary metal-oxide-semiconductor (CMOS) integrated circuits to realize a high-fidelity all-electrical electrophysiological imager for parallel intracellular recording at the network level. Our CMOS nanoelectrode array has 1,024 recording/stimulation 'pixels' equipped with vertical nanoelectrodes, and can simultaneously record intracellular membrane potentials from hundreds of connected in vitro neonatal rat ventricular cardiomyocytes. We demonstrate that this network-level intracellular recording capability can be used to examine the effect of pharmaceuticals on the delicate dynamics of a cardiomyocyte network, thus opening up new opportunities in tissue-based pharmacological screening for cardiac and neuronal diseases as well as fundamental studies of electrogenic cells and their networks.

  4. Relationship between intracellular pH and proton mobility in rat and guinea-pig ventricular myocytes.

    PubMed

    Swietach, Pawel; Vaughan-Jones, Richard D

    2005-08-01

    Intracellular H+ ion mobility in eukaryotic cells is low because of intracellular buffering. We have investigated whether Hi+ mobility varies with pHi. A dual microperfusion apparatus was used to expose guinea-pig or rat myocytes to small localized doses (3-5 mm) of ammonium chloride (applied in Hepes-buffered solution). Intracellular pH (pHi) was monitored confocally using the fluorescent dye, carboxy-SNARF-1. Local ammonium exposure produced a stable, longitudinal pHi gradient. Its size was fed into a look-up table (LUT) to give an estimate of the apparent intracellular proton diffusion coefficient (D(app)H). LUTs were generated using a diffusion-reaction model of Hi+ mobility based on intracellular buffer diffusion. To examine the pHi sensitivity of D(app)H, whole-cell pHi was initially displaced using a whole-cell ammonium or acetate prepulse, before locally applying the low dose of ammonium. In both rat and guinea-pig, D(app)H decreased with pHi over the range 7.5-6.5. In separate pipette-loading experiments, the intracellular diffusion coefficient for carboxy-SNARF-1 (a mobile-buffer analogue) exhibited no significant pHi dependence. The pHi sensitivity of D(app)H is thus likely to be governed by the mobile fraction of intrinsic buffering capacity. These results reinforce the buffer hypothesis of Hi+ mobility. The pHi dependence of D(app)H was used to characterize the mobile and fixed buffer components, and to estimate D(mob) (the average diffusion coefficient for intracellular mobile buffer). One consequence of a decline in Hi+ mobility at low pHi is that it will predispose the myocardium to pHi nonuniformity. The physiological relevance of this is discussed.

  5. Fluid shear stress enhances the cell volume decrease of osteoblast cells by increasing the expression of the ClC-3 chloride channel

    PubMed Central

    LIU, LI; CAI, SIYI; QIU, GUIXING; LIN, JIN

    2016-01-01

    ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity. PMID:27073622

  6. Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers

    PubMed Central

    DiFranco, Marino; Herrera, Alvaro

    2011-01-01

    Chloride fluxes are the main contributors to the resting conductance of mammalian skeletal muscle fibers. ClC-1, the most abundant chloride channel isoform in this preparation, is believed to be responsible for this conductance. However, the actual distribution of ClC-1 channels between the surface and transverse tubular system (TTS) membranes has not been assessed in intact muscle fibers. To investigate this issue, we voltageclamped enzymatically dissociated short fibers using a two-microelectrode configuration and simultaneously recorded chloride currents (ICl) and di-8-ANEPPS fluorescence signals to assess membrane potential changes in the TTS. Experiments were conducted in conditions that blocked all but the chloride conductance. Fibers were equilibrated with 40 or 70 mM intracellular chloride to enhance the magnitude of inward ICl, and the specific ClC-1 blocker 9-ACA was used to eliminate these currents whenever necessary. Voltage-dependent di-8-ANEPPS signals and ICl acquired before (control) and after the addition of 9-ACA were comparatively assessed. Early after the onset of stimulus pulses, di-8-ANEPPS signals under control conditions were smaller than those recorded in the presence of 9-ACA. We defined as attenuation the normalized time-dependent difference between these signals. Attenuation was discovered to be ICl dependent since its magnitude varied in close correlation with the amplitude and time course of ICl. While the properties of ICl, and those of the attenuation seen in optical records, could be simultaneously predicted by model simulations when the chloride permeability (PCl) at the surface and TTS membranes were approximately equal, the model failed to explain the optical data if PCl was precluded from the TTS membranes. Since the ratio between the areas of TTS membranes and the sarcolemma is large in mammalian muscle fibers, our results demonstrate that a significant fraction of the experimentally recorded ICl arises from TTS contributions

  7. Hydrocracking with molten zinc chloride catalyst containing 2-12% ferrous chloride

    DOEpatents

    Zielke, Clyde W.; Bagshaw, Gary H.

    1981-01-01

    In a process for hydrocracking heavy aromatic polynuclear carbonaceous feedstocks to produce hydrocarbon fuels boiling below about 475.degree. C. by contacting the feedstocks with hydrogen in the presence of a molten zinc chloride catalyst and thereafter separating at least a major portion of the hydrocarbon fuels from the spent molten zinc chloride catalyst, an improvement comprising: adjusting the FeCl.sub.2 content of the molten zinc chloride to from about 2 to about 12 mol percent based on the mixture of ferrous chloride and molten zinc chloride.

  8. Health Assessment Document for Vinylidene Chloride (Final Report, 1983)

    EPA Science Inventory

    Vinylidene chloride is a highly reactive, flammable, clear colorless liquid. In the absence of chemical inhibitors, it can produce violently explosive, complex peroxides. The estimated, ambient air level of vinylidene chloride in urban-suburban areas of the United States is 20 mi...

  9. [Association between intracellular zinc levels and nutritional status in HIV-infected and uninfected children exposed to the virus].

    PubMed

    Gómez G, Erika María; Maldonado C, María Elena; Rojas L, Mauricio; Posada J, Gladys

    2015-01-01

    Malnutrition, growth retardation and opportunistic infections outlast the metabolic, immune and gastrointestinal disorders produced by HIV. Zinc deficiency has been associated with deteriorating nutritional status, growth failure, and risk of infection. The aim of this study is to determine the association between zinc levels in peripheral blood mononuclear cells (PBMC) and the nutritional status of HIV-infected and uninfected children exposed to the virus. An analytical, observational, cross-sectional study was conducted on 17 infected and 17 exposed children, aged 2-10 years. Anthropometric measurements, clinical and nutritional history, 24h recall, measurement of physical activity, and zinc in PBMC by flow cytometry analysis were recorded. Height according to age, energy consumption and adequacy of energy, protein and dietary zinc were significantly higher in children exposed to the virus compared to those infected with HIV (P <.05). No significant differences were found in BMI, levels of zinc in monocytes, CD4 + and CD4- lymphocytes between the two study groups (P >.05). However, the median levels of zinc in monocytes of infected patients was higher (218.6) compared to the control group (217.0). No association was found between zinc intake and levels of intracellular zinc. The deterioration of nutritional status and growth retardation in children were associated with HIV, but not with the levels of intracellular zinc. The dietary intake of this nutrient was not associated with levels of zinc in monocytes or CD4 + and CD4- lymphocytes. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  10. ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells.

    PubMed

    Wang, Caixia; Hu, Xiaoke; Gao, Yan; Ji, Yinglu

    2015-01-01

    Owing to the wide use of novel nanoparticles (NPs) such as zinc oxide (ZnO) in all aspects of life, toxicological research on ZnO NPs is receiving increasing attention in these days. In this study, the toxicity of ZnO NPs in a human pulmonary adenocarcinoma cell line LTEP-a-2 was tested in vitro. Log-phase cells were exposed to different levels of ZnO NPs for hours, followed by colorimetric cell viability assay using tetrazolium salt and cell survival rate assay using trypan blue dye. Cell morphological changes were observed by Giemsa staining and light microscopy. Apoptosis was detected by using fluorescence microscopy and caspase-3 activity assay. Both intracellular reactive oxygen species (ROS) and reduced glutathione (GSH) were examined by a microplate-reader method. Results showed that ZnO NPs (≥ 0.01 μg/mL) significantly inhibited proliferation (P < 0.05) and induced substantial apoptosis in LTEP-a-2 cells after 4 h of exposure. The intracellular ROS level rose up to 30-40% corresponding to significant depletion (approximately 70-80%) in GSH content in LTEP-a-2 cells (P < 0.05), suggesting that ZnO NPs induced apoptosis mainly through increased ROS production. This study elucidates the toxicological mechanism of ZnO NPs in human pulmonary adenocarcinoma cells and provides reference data for application of nanomaterials in the environment.

  11. Characterization of Intracellular and Extracellular Saxitoxin Levels in Both Field and Cultured Alexandrium spp. Samples from Sequim Bay, Washington

    PubMed Central

    Lefebvre, Kathi A.; Bill, Brian D.; Erickson, Aleta; Baugh, Keri A.; O’Rourke, Lohna; Costa, Pedro R.; Nance, Shelly; Trainer, Vera L.

    2008-01-01

    Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004–2007) and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA) and an enzyme-linked immunosorbent assay (ELISA). Characterization of the PST toxin profile in the Sequim Bay isolates by pre-column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 ± 9.7 % of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region. PMID:18728762

  12. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    PubMed

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. An FHWA Special Study: Post-Tensioning Tendon Grout Chloride Thresholds

    DOT National Transportation Integrated Search

    2014-05-01

    "Elevated levels of chloride were recently discovered in a commercially available pre-bagged grout product made for : post-tensioned (PT) tendons. Chloride concentrations were reported to be as high as 5.27 percent by weight of cement. : These number...

  14. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo.

    PubMed

    Congdon, Erin E; Wu, Jessica W; Myeku, Natura; Figueroa, Yvette H; Herman, Mathieu; Marinec, Paul S; Gestwicki, Jason E; Dickey, Chad A; Yu, W Haung; Duff, Karen E

    2012-04-01

    More than 30 neurodegenerative diseases including Alzheimer disease (AD), frontotemporal lobe dementia (FTD), and some forms of Parkinson disease (PD) are characterized by the accumulation of an aggregated form of the microtubule-binding protein tau in neurites and as intracellular lesions called neurofibrillary tangles. Diseases with abnormal tau as part of the pathology are collectively known as the tauopathies. Methylthioninium chloride, also known as methylene blue (MB), has been shown to reduce tau levels in vitro and in vivo and several different mechanisms of action have been proposed. Herein we demonstrate that autophagy is a novel mechanism by which MB can reduce tau levels. Incubation with nanomolar concentrations of MB was sufficient to significantly reduce levels of tau both in organotypic brain slice cultures from a mouse model of FTD, and in cell models. Concomitantly, MB treatment altered the levels of LC3-II, cathepsin D, BECN1, and p62 suggesting that it was a potent inducer of autophagy. Further analysis of the signaling pathways induced by MB suggested a mode of action similar to rapamycin. Results were recapitulated in a transgenic mouse model of tauopathy administered MB orally at three different doses for two weeks. These data support the use of this drug as a therapeutic agent in neurodegenerative diseases.

  15. The effect of hypophysectomy on chloride balance in young-of-the-year bowfin, Amia calva.

    PubMed

    Duff, D; Hanson, R; Fleming, W R

    1987-01-01

    The effect of hypophysectomy on chloride balance was examined in young-of-the-year bowfin, Amia calva. Hypophysectomy resulted in decreased serum and total body chloride levels but not in serum and total body sodium levels. Hypophysectomy resulted in decreased chloride influx with no effect on chloride efflux or sodium fluxes. Prolactin therapy reversed the effect of hypophysectomy on electrolyte balance but caused a significant reduction in serum protein.

  16. Butyrate influences intracellular levels of adenine and adenine derivatives in the fungus Penicillium restrictum.

    PubMed

    Zutz, Christoph; Chiang, Yi Ming; Faehnrich, Bettina; Bacher, Markus; Hellinger, Roland; Kluger, Bernhard; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2017-04-01

    Butyrate, a small fatty acid, has an important role in the colon of ruminants and mammalians including the inhibition of inflammation and the regulation of cell proliferation. There is also growing evidence that butyrate is influencing the histone structure in mammalian cells by inhibition of histone deacetylation. Butyrate shows furthermore an antimicrobial activity against fungi, yeast and bacteria, which is linked to its toxicity at a high concentration. In fungi there are indications that butyrate induces the production of secondary metabolites potentially via inhibition of histone deacetylases. However, information about the influence of butyrate on growth, primary metabolite production and metabolism, besides lipid catabolism, in fungi is scarce. We have identified the filamentous fungus Penicillium (P.) restrictum as a susceptible target for butyrate treatment in an antimicrobial activity screen. The antimicrobial activity was detected only in the mycelium of the butyrate treated culture. We investigated the effect of butyrate ranging from low (0.001mM) to high (30mM), potentially toxic, concentrations on biomass and antimicrobial activity. Butyrate at high concentrations (3 and 30mM) significantly reduced the fungal biomass. In contrast P. restrictum treated with 0.03mM of butyrate showed the highest antimicrobial activity. We isolated three antimicrobial active compounds, active against Staphylococcus aureus, from P. restrictum cellular extracts treated with butyrate: adenine, its derivate hypoxanthine and the nucleoside derivate adenosine. Production of all three compounds was increased at low butyrate concentrations. Furthermore we found that butyrate influences the intracellular level of the adenine nucleoside derivate cAMP, an important signalling molecule in fungi and various organisms. In conclusion butyrate treatment increases the intracellular levels of adenine and its respective derivatives. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids.

    PubMed

    Treyer, Andrea; Mateus, André; Wiśniewski, Jacek R; Boriss, Hinnerk; Matsson, Pär; Artursson, Per

    2018-06-04

    Intracellular unbound drug concentrations are the pharmacologically relevant concentrations for targets inside cells. Intracellular drug concentrations are determined by multiple processes, including the extent of drug binding to intracellular structures. The aim of this study was to evaluate the effect of neutral lipid (NL) and phospholipid (PL) levels on intracellular drug disposition. The NL and/or PL content of 3T3-L1 cells were enhanced, resulting in phenotypes (in terms of morphology and proteome) reminiscent of adipocytes (high NL and PL) or mild phospholipidosis (only high PL). Intracellular bioavailability ( F ic ) was then determined for 23 drugs in these cellular models and in untreated wild-type cells. A higher PL content led to higher intracellular drug binding and a lower F ic . The induction of NL did not further increase drug binding but led to altered F ic due to increased lysosomal pH. Further, there was a good correlation between binding to beads coated with pure PL and intracellular drug binding. In conclusion, our results suggest that PL content is a major determinant of drug binding in cells and that PL beads may constitute a simple alternative to estimating this parameter. Further, the presence of massive amounts of intracellular NLs did not influence drug binding significantly.

  18. Methods for the determination of intracellular levels of ribose phosphates.

    PubMed

    Camici, Marcella; Tozzi, Maria Grazia; Ipata, Piero Luigi

    2006-10-31

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway or stem from the phosphorolytic cleavage of the N-glycosidic bond of ribonucleosides. The two major pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, can be readily interconverted by phosphopentomutase. Ribose-5-phosphate is also the direct precursor of 5-phosphoribosyl-1-pyrophosphate, which is used for both de novo and salvage synthesis of nucleotides. On the other hand, the phosphorolysis of deoxyribonucleosides is the major source of deoxyribose phosphates. While the destiny of the nucleobase stemming from nucleoside phosphorolysis has been extensively investigated, the fate of the sugar moiety has been somehow neglected. However, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. Nevertheless, many aspects of pentose phosphate metabolism, and the possible involvement of these compounds in a number of cellular processes still remain obscure. The comprehension of the role played by pentose phosphates may be greatly facilitated by the knowledge of their steady-state intracellular levels and of their changes in response to variations of intra- and extracellular signals.

  19. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange.

    PubMed Central

    Star, R A; Burg, M B; Knepper, M A

    1985-01-01

    Cortical collecting ducts (CCD) from rabbits treated with deoxycorticosterone (DOC) actively secrete bicarbonate at high rates. To investigate the mechanism of bicarbonate secretion, we measured bicarbonate and chloride transport in CCD from rabbits treated with DOC for 9-24 d. Removal of chloride (replaced with gluconate) from both perfusate and bath inhibited bicarbonate secretion without changing transepithelial voltage. Removal of chloride only from the bath increased bicarbonate secretion, while removal of chloride only from the perfusate inhibited secretion. In contrast to the effect of removing chloride, removal of sodium from both the perfusate and bath (replacement with N-methyl-D-glucamine) did not change the rate of bicarbonate secretion. The rate of bicarbonate secretion equaled the rate of chloride absorption in tubules bathed with 0.1 mM ouabain to inhibit any cation-dependent chloride transport. Under these conditions, chloride absorption occurred against an electrochemical gradient. Removal of bicarbonate from both the perfusate and bath inhibited chloride absorption. Removal of bicarbonate only from the bath inhibited chloride absorption, while removal of bicarbonate from the lumen stimulated chloride absorption. We conclude that CCD from DOC-treated rabbits actively secrete bicarbonate and actively absorb chloride by an electroneutral mechanism involving 1:1 chloride/bicarbonate exchange. The process is independent of sodium. PMID:3930570

  20. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: a feasibility study.

    PubMed

    Engen, Deborah J; McAllister, Samantha J; Whipple, Mary O; Cha, Stephen S; Dion, Liza J; Vincent, Ann; Bauer, Brent A; Wahner-Roedler, Dietlind L

    2015-09-01

    Fibromyalgia is a syndrome characterized by chronic pain, fatigue, depression, and sleep disturbances. Its primary cause is unclear. Several studies have reported decreased intracellular magnesium levels in patients with fibromyalgia and have found negative correlation between magnesium levels and fibromyalgia symptoms. To gather preliminary data on whether transdermal magnesium can improve quality of life for women who have fibromyalgia. This is a patient questionnaires and survey in a fibromyalgia clinic at a tertiary medical center. Forty female patients with the diagnosis of fibromyalgia were enrolled. Each participant was provided a spray bottle containing a transdermal magnesium chloride solution and asked to apply 4 sprays per limb twice daily for 4 weeks. Participants were asked to complete the Revised Fibromyalgia Impact Questionnaire, SF-36v2 Health Survey, and a quality-of-life analog scale at baseline, week 2, and week 4. Questionnaire and survey scores, evaluated through intent-to-treat and per-protocol analyses. Twenty-four patients completed the study (mean [SD] age, 57.2 [7.6] years; white, 95%; mean body mass index, 31.3 kg/m2). With intention-to-treat analysis, Revised Fibromyalgia Impact Questionnaire subscale and total scores were significantly improved at week 2 and week 4 (total score, P=0.001). Per-protocol analysis results were similar: all subscales of the Revised Fibromyalgia Impact Questionnaire were significantly improved at week 2 and week 4 (total score, P=0.001). This pilot study suggests that transdermal magnesium chloride applied on upper and lower limbs may be beneficial to patients with fibromyalgia. ClinicalTrials.gov.ldentifier NCT01968772.

  1. Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water.

    PubMed

    Stets, E G; Lee, C J; Lytle, D A; Schock, M R

    2018-02-01

    Corrosion in water-distribution systems is a costly problem and controlling corrosion is a primary focus of efforts to reduce lead (Pb) and copper (Cu) in tap water. High chloride concentrations can increase the tendency of water to cause corrosion in distribution systems. The effects of chloride are also expressed in several indices commonly used to describe the potential corrosivity of water, the chloride-sulfate mass ratio (CSMR) and the Larson Ratio (LR). Elevated CSMR has been linked to the galvanic corrosion of Pb whereas LR is indicative of the corrosivity of water to iron and steel. Despite the known importance of chloride, CSMR, and LR to the potential corrosivity of water, monitoring of seasonal and interannual changes in these parameters is not common among water purveyors. We analyzed long-term trends (1992-2012) and the current status (2010-2015) of chloride, CSMR, and LR in order to investigate the short and long-term temporal variability in potential corrosivity of US streams and rivers. Among all sites in the trend analyses, chloride, CSMR, and LR increased slightly, with median changes of 0.9mgL -1 , 0.08, and 0.01, respectively. However, urban-dominated sites had much larger increases, 46.9mgL -1 , 2.50, and 0.53, respectively. Median CSMR and LR in urban streams (4.01 and 1.34, respectively) greatly exceeded thresholds found to cause corrosion in water distribution systems (0.5 and 0.3, respectively). Urbanization was strongly correlated with elevated chloride, CSMR, and LR, especially in the most snow-affected areas in the study, which are most likely to use road salt. The probability of Pb action-level exceedances (ALEs) in drinking water facilities increased along with raw surface water CSMR, indicating a statistical connection between surface water chemistry and corrosion in drinking water facilities. Optimal corrosion control will require monitoring of critical constituents reflecting the potential corrosivity in surface waters. Published by

  2. Vinyl Chloride

    Cancer.gov

    Learn about vinyl chloride, which can raise the risk of a rare form of liver cancer, as well as brain and lung cancers, and leukemia and lymphoma. Vinyl chloride is used primarily to make PVC, a substance used in products such as pipes.

  3. Chloride inhibition of nitrite uptake for non-teleost Actinopterygiian fishes.

    PubMed

    Boudreaux, Perry J; Ferrara, Allyse M; Fontenot, Quenton C

    2007-06-01

    Fish that transport environmental chloride with a gill uptake mechanism (gill epithelial Cl(-)/HCO(3)(-)cotransport exchange system), also transport nitrite into plasma through the same mechanism. Because of the relationship between nitrite uptake and the gill chloride uptake mechanism, nitrite uptake can provide insight regarding the method of chloride uptake for fish. This study was designed to determine if non-teleost fishes concentrate nitrite in their plasma, and to determine if chloride inhibits nitrite uptake in non-teleost fish. To determine if bowfin Amia calva, spotted gar Lepisosteus oculatus, alligator gar Atractosteus spatula, and paddlefish Polyodon spathula concentrate environmental nitrite in their plasma, individuals were exposed to concentrations of 0, 1, 10, or 100 mg/L nitrite-N. After exposure, all species had plasma nitrite-N concentrations greater than environmental levels. To determine if chloride inhibits nitrite uptake for spotted gar, alligator gar, and paddlefish, fish were exposed to 1 mg/L nitrite-N and 20 mg/L chloride as calcium chloride, or to 1 mg/L nitrite-N only. Chloride effectively prevented nitrite from being concentrated in the plasma of all species. It appears that non-teleost fish concentrate nitrite in their plasma via their chloride uptake mechanism and that this is an ancestral characteristic for teleost.

  4. Bergamot essential oil differentially modulates intracellular Ca2+ levels in vascular endothelial and smooth muscle cells: a new finding seen with fura-2.

    PubMed

    You, Ji H; Kang, Purum; Min, Sun Seek; Seol, Geun Hee

    2013-04-01

    In this study, we compared the effect of the essential oil of Citrus bergamia Risso [bergamot, bergamot essential oil (BEO)] on the intracellular Ca levels in vascular endothelial (EA) and mouse vascular smooth muscle (MOVAS) cells, using the fura-2 fluorescence technique. BEO caused an initial transient increase in intracellular Ca concentration ([Ca]i) in EA cells, followed by a decrease, whereas it induced a sustained increase in [Ca]i in MOVAS cells. Linalyl acetate (LA) as a major component of BEO-induced [Ca]i mobilization was similar to BEO in EA cells. The increase of [Ca]i by LA was higher in EA cells than in MOVAS cells. [Ca]i rise induced by extracellular Ca application was significantly blocked by BEO or LA in EA cells but not in MOVAS cells, suggesting that BEO and LA block Ca influx in EA cells. The present results suggest that BEO and LA differentially modulate intracellular Ca levels in vascular endothelial and smooth muscle cells. In addition, blockade of Ca influx by BEO and LA in EA cells may explain the protective effects of BEO on endothelial dysfunction associated with cardiovascular disease.

  5. Early cellular responses against tributyltin chloride exposure in primary cultures derived from various brain regions.

    PubMed

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2014-05-01

    Tributyltin (TBT) is a potent biocide and commonly used in various industrial sectors. Humans are mainly exposed through the food chain. We have previously demonstrated tin accumulation in brain following TBT-chloride (TBTC) exposure. In this study, effect of TBTC on dissociated cells from different brain regions was evaluated. Cytotoxicity assay (MTT), mode of cell death (Annexin V/PI assay), oxidative stress parameters (ROS and lipid peroxidation), reducing power of the cell (GSH), mitochondrial membrane potential (MMP) and intracellular Ca(2+) were evaluated to ascertain the effect of TBTC. Expression of glial fibrillary acidic protein (GFAP) was measured to understand the effect on astroglial cells. TBTC as low as 30 nM was found to reduce GSH levels, whereas higher doses of 300 and 3000 nM induced ROS generation and marked loss in cell viability mainly through apoptosis. Striatum showed higher susceptibility than other regions, which may have further implications on various neurological aspects. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Reexamination of the Physiological Role of PykA in Escherichia coli Revealed that It Negatively Regulates the Intracellular ATP Levels under Anaerobic Conditions.

    PubMed

    Zhao, Chunhua; Lin, Zhao; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2017-06-01

    Pyruvate kinase is one of the three rate-limiting glycolytic enzymes that catalyze the last step of glycolysis, conversion of phosphoenolpyruvate (PEP) into pyruvate, which is associated with ATP generation. Two isozymes of pyruvate kinase, PykF and PykA, are identified in Escherichia coli PykF is considered important, whereas PykA has a less-defined role. Prior studies inactivated the pykA gene to increase the level of its substrate, PEP, and thereby increased the yield of end products derived from PEP. We were surprised when we found a pykA ::Tn 5 mutant in a screen for increased yield of an end product derived from pyruvate ( n -butanol), suggesting that the role of PykA needs to be reexamined. We show that the pykA mutant exhibited elevated intracellular ATP levels, biomass concentrations, glucose consumption, and n -butanol production. We also discovered that the pykA mutant expresses higher levels of a presumed pyruvate transporter, YhjX, permitting the mutant to recapture and metabolize excreted pyruvate. Furthermore, we demonstrated that the nucleotide diphosphate kinase activity of PykA leads to negative regulation of the intracellular ATP levels. Taking the data together, we propose that inactivation of pykA can be considered a general strategy to enhance the production of pyruvate-derived metabolites under anaerobic conditions. IMPORTANCE This study showed that knocking out pykA significantly increased the intracellular ATP level and thus significantly increased the levels of glucose consumption, biomass formation, and pyruvate-derived product formation under anaerobic conditions. pykA was considered to be encoding a dispensable pyruvate kinase; here we show that pykA negatively regulates the anaerobic glycolysis rate through regulating the energy distribution. Thus, knocking out pykA can be used as a general strategy to increase the level of pyruvate-derived fermentative products. Copyright © 2017 American Society for Microbiology.

  7. Fiber optic chloride sensing: if corrosion's the problem, chloride sensing is the key

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; MacCraith, Brian D.; Huston, Dryver R.; Guerrina, Mario; Nelson, Matthew

    1997-09-01

    The use of chloride-based deicing agents to help clear US highways of roadway hazards leads to associated chemical related problems. Fouling of local rivers and streams due to runoff of the water borne chlorides is significant and has contributed to local ordances are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides. With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. The costs of this corrosion are considerable and have led to the widespread use of chloride/water impermeable membranes on roadways and especially within bridges. Fiber optic sensor have repeatedly been shown to provide measurement capabilities of parameters within such reinforced concrete structures. Development of a fiber optic chloride sensors capable of being embedded within a roadway or bridge deck is reported.

  8. 21 CFR 173.255 - Methylene chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chloride may be present in food under the following conditions: (a) In spice oleoresins as a residue from the extraction of spice, at a level not to exceed 30 parts per million; Provided, That, if residues of...

  9. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar.

    PubMed

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-04-30

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel's salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO₂ - in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel's salt. More research is needed to confirm the mechanisms.

  10. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    PubMed Central

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-01-01

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms. PMID:28788625

  11. HIV-1 activation of innate immunity depends strongly on the intracellular level of TREX1 and sensing of incomplete reverse transcription products.

    PubMed

    Kumar, Swati; Morrison, James H; Dingli, David; Poeschla, Eric

    2018-05-16

    TREX1 has been reported to degrade cytosolic immune-stimulatory DNA, including viral DNA generated during HIV-1 infection, but the dynamic range of its capacity to suppress innate immune stimulation is unknown and its full role in the viral life cycle remains unclear. A main purpose of our study was to determine how the intracellular level of TREX1 affects HIV-1 activation and avoidance of innate immunity. Using stable over-expression and CRISPR-mediated gene disruption, we engineered a range of TREX1 levels in human THP-1 monocytes. Increasing the level of TREX1 dramatically suppressed HIV-1 induction of interferon-stimulated genes (ISGs). Productive infection and integrated proviruses were equal to increased. Knocking out TREX1 impaired viral infectivity, increased early viral cDNA and caused ten-fold or greater increases in HIV-1 ISG induction. Knockout of cyclic GMP-AMP synthase (cGAS) abrogated all ISG induction. Moreover, cGAS knockout produced no increase in single cycle infection, establishing that HIV-1 DNA-triggered signaling is not rapid enough to impair the initial ISG-triggering infection cycle. Disruption of the HIV-1 capsid by PF74 also induced ISGs and this was TREX1 level-dependent, required reverse transcriptase catalysis, and was eliminated by cGAS gene knockout. Thus, the intracellular level of TREX1 pivotally modulates innate immune induction by HIV-1. Partial HIV-1 genomes are the TREX1 target and are sensed by cGAS. The nearly complete lack of innate immune induction despite equal to increased viral integration observed when the TREX1 protein level is experimentally elevated indicates that integration-competent genomes are shielded from cytosolic sensor-effectors during uncoating and transit to the nucleus. IMPORTANCE Much remains unknown about how TREX1 influences HIV-1 replication, whether it targets full-length viral DNA versus partial intermediates, how intracellular TREX1 protein levels correlate with ISG induction, and whether TREX1

  12. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury.

    PubMed

    Jantzie, L L; Getsy, P M; Firl, D J; Wilson, C G; Miller, R H; Robinson, S

    2014-07-01

    Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The effect of NO-donors on chloride efflux, intracellular Ca(2+) concentration and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells.

    PubMed

    Oliynyk, Igor; Hussain, Rashida; Amin, Ahmad; Johannesson, Marie; Roomans, Godfried M

    2013-06-01

    Since previous studies showed that the endogenous bronchodilator, S-nitrosglutathione (GSNO), caused a marked increase in CFTR-mediated chloride (Cl(-)) efflux and improved the trafficking of CFTR to the plasma membrane, and that also the nitric oxide (NO)-donor GEA3162 had a similar, but smaller, effect on Cl(-) efflux, it was investigated whether the NO-donor properties of GSNO were relevant for its effect on Cl(-) efflux from airway epithelial cells. Hence, the effect of a number of other NO-donors, sodium nitroprusside (SNP), S-nitroso-N-acetyl-DL-penicillamine (SNAP), diethylenetriamine/nitric oxide adduct (DETA-NO), and diethylenetriamine/nitric oxide adduct (DEA-NONOate) on Cl(-) efflux from CFBE (∆F508/∆F508-CFTR) airway epithelial cells was tested. Cl(-) efflux was determined using the fluorescent N-(ethoxycarbonylmethyl)-6-methoxyquinoliniu bromide (MQAE)-technique. Possible changes in the intracellular Ca(2+) concentration were tested by the fluorescent fluo-4 method in a confocal microscope system. Like previously with GSNO, after 4 h incubation with the NO-donor, an increased Cl(-) efflux was found (in the order SNAP>DETA-NO>SNP). The effect of DEA-NONOate on Cl(-) efflux was not significant, and the compound may have (unspecific) deleterious effects on the cells. Again, as with GSNO, after a short (5 min) incubation, SNP had no significant effect on Cl(-) efflux. None of the NO-donors that had a significant effect on Cl(-) efflux caused significant changes in the intracellular Ca(2+) concentration. After 4 h preincubation, SNP caused a significant increase in the mRNA expression of CFTR. SNAP and DEA-NONOate decreased the mRNA expression of all ENaC subunits significantly. DETA-NO caused a significant decrease only in α-ENaC expression. After a short preincubation, none of the NO-donors had a significant effect, neither on the expression of CFTR, nor on that of the ENaC subunits in the presence and absence of L-cysteine. It can be concluded that

  14. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Roberto J.; Ogata, Fernando T.; Batista, Wagner L.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects ofmore » GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.« less

  15. Hepatoprotective effect of manganese chloride against CCl4-induced liver injury in rats.

    PubMed

    Eidi, Akram; Mortazavi, Pejman; Behzadi, Khodabakhsh; Rohani, Ali Haeri; Safi, Shahabeddin

    2013-11-01

    The aim of the present study is to evaluate the protective effect of manganese chloride against carbon tetrachloride (CCl4)-induced liver injury in rats. Manganese chloride (0.001, 0.01, 0.05 and 0.1 g/kg bw) was administered intragastrically for 28 consecutive days to male CCl4-treated rats. The hepatoprotective activity was assessed using various biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltransferase (GGT) and superoxide dismutase (SOD). Histopathological changes in the liver of different groups were also studied. Administration of CCl4 increased the serum ALT, AST, ALP and GGT but decreased SOD levels in rats. Treatment with manganese chloride significantly attenuated these changes to nearly normal levels. The animals treated with manganese chloride have shown decreased necrotic zones and hepatocellular degeneration when compared to the liver exposed to CCl4 intoxication alone. Thus, the histopathological studies also supported the protective effect of manganese chloride. Therefore, the results of this study suggest that manganese chloride exerts hepatoprotection via promoting antioxidative properties against CCl4-induced oxidative liver damage.

  16. Anethole dithiolethione, a putative neuroprotectant, increases intracellular and extracellular glutathione levels during starvation of cultured astroglial cells.

    PubMed

    Dringen, R; Hamprecht, B; Drukarch, B

    1998-12-01

    Astroglial cells protect neurons against oxidative damage. The antioxidant glutathione plays a pivotal role in the neuroprotective action of astroglial cells which is impaired following loss of glutathione. Anethole dithiolethione (ADT), a sulfur-containing compound which is used in humans as a secretagogue, increases glutathione levels in cultured astroglial cells under "physiological" conditions and is thought thereby to protect against oxidative damage. Presently, we report the effect of ADT (3-100 microM) on glutathione content of and efflux from rat primary astroglia-rich cultures under "pathological" conditions, i.e., extended deprivation of glucose and amino acids. Although cellular viability was not affected significantly, starvation of these cultures for 24 h in a bicarbonate buffer lacking glucose and amino acids led to a decrease in glutathione and protein content of approximately 43% and 40%, respectively. Although no effect on the protein loss occurred, the presence of ADT during starvation counteracted the starvation-induced loss of intracellular glutathione in a concentration-dependent way. At a concentration of 100 microM ADT even a significant increase in astroglial glutathione content was noted after 24 h of starvation. Alike intracellular glutathione levels, the amount of glutathione found in the buffer was elevated substantially if ADT was present during starvation. This ADT-mediated, apparent increase in glutathione efflux was additive to the stimulatory effect on extracellular glutathione levels of acivicin (100 microM), an inhibitor of extracellular enzymatic glutathione breakdown. However, the ADT-induced elevation of both intra- and extracellular glutathione content during starvation was prevented completely by coincubation with buthionine sulfoximine (10 microM), an inhibitor of glutathione synthesis. These results demonstrate that, most likely through stimulation of glutathione synthesis, ADT enables astroglial cells to maintain higher

  17. Correlation of sweat chloride and percent predicted FEV1 in cystic fibrosis patients treated with ivacaftor.

    PubMed

    Fidler, Meredith C; Beusmans, Jack; Panorchan, Paul; Van Goor, Fredrick

    2017-01-01

    Ivacaftor, a CFTR potentiator that enhances chloride transport by acting directly on CFTR to increase its channel gating activity, has been evaluated in patients with different CFTR mutations. Several previous analyses have reported no statistical correlation between change from baseline in ppFEV 1 and reduction in sweat chloride levels for individuals treated with ivacaftor. The objective of the post hoc analysis described here was to expand upon previous analyses and evaluate the correlation between sweat chloride levels and absolute ppFEV 1 changes across multiple cohorts of patients with different CF-causing mutations who were treated with ivacaftor. The goal of the analysis was to help define the potential value of sweat chloride as a pharmacodynamic biomarker for use in CFTR modulator trials. For any given study, reductions in sweat chloride levels and improvements in absolute ppFEV 1 were not correlated for individual patients. However, when the data from all studies were combined, a statistically significant correlation between sweat chloride levels and ppFEV 1 changes was observed (p<0.0001). Thus, sweat chloride level changes in response to potentiation of the CFTR protein by ivacaftor appear to be a predictive pharmacodynamic biomarker of lung function changes on a population basis but are unsuitable for the prediction of treatment benefits for individuals. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Mercuric chloride poisoning

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002474.htm Mercuric chloride poisoning To use the sharing features on this page, please enable JavaScript. Mercuric chloride is a very poisonous form of mercury. It ...

  19. Sources of High-Chloride Water to Wells, Eastern San Joaquin Ground-Water Subbasin, California

    USGS Publications Warehouse

    Izbicki, John A.; Metzger, Loren F.; McPherson, Kelly R.; Everett, Rhett; Bennett, George L.

    2006-01-01

    As a result of pumping and subsequent declines in water levels, chloride concentrations have increased in water from wells in the Eastern San Joaquin Ground-Water Subbasin, about 80 miles east of San Francisco (Montgomery Watson, Inc., 2000). Water from a number of public-supply, agricultural, and domestic wells in the western part of the subbasin adjacent to the San Joaquin Delta exceeds the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for chloride of 250 milligrams per liter (mg/L) (fig. 1) (link to animation showing chloride concentrations in water from wells, 1984 to 2004). Some of these wells have been removed from service. High-chloride water from delta surface water, delta sediments, saline aquifers that underlie freshwater aquifers, and irrigation return are possible sources of high-chloride water to wells (fig. 2). It is possible that different sources contribute high-chloride water to wells in different parts of the subbasin or even to different depths within the same well.

  20. Regulation of the collagenase-3 receptor and its role in intracellular ligand processing in rat osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Walling, H. W.; Chan, P. T.; Omura, T. H.; Barmina, O. Y.; Fiacco, G. J.; Jeffrey, J. J.; Partridge, N. C.

    1998-01-01

    We have previously described a specific, saturable receptor for rat collagenase-3 in the rat osteosarcoma cell line, UMR 106-01. Binding of rat collagenase-3 to this receptor is coupled to the internalization and eventual degradation of the enzyme and correlates with observed extracellular levels of the enzyme. In this study we have shown that decreased binding, internalization, and degradation of 125I-rat collagenase-3 were observed in cells after 24 h of parathyroid hormone treatment; these activities returned to control values after 48 h and were increased substantially (twice control levels) after 96 h of treatment with the hormone. Subcellular fractionation studies to identify the route of uptake and degradation of collagenase-3 localized intracellular accumulation of 125I-rat collagenase-3 initially in Golgi-associated lysosomes and later in secondary lysosomes. Maximal lysosomal accumulation of the radiolabel and stimulation of general lysosomal activity occurred after 72 h of parathyroid hormone treatment. Preventing fusion of endosomes with lysosomes (by temperature shift, colchicine, or monensin) resulted in no internalized 125I-collagenase-3 in either lysosomal fraction. Treatment of UMR cells with the above agents or ammonium chloride decreased excretion of 125I-labeled degradation products of collagenase-3. These experiments demonstrated that degradation of collagenase-3 required receptor-mediated endocytosis and sequential processing by endosomes and lysosomes. Thus, parathyroid hormone regulates the expression and synthesis of collagenase-3 as well as the abundance and functioning of the collagenase-3 receptor and the intracellular degradation of its ligand. The coordinate changes in the secretion of collagenase-3 and expression of the receptor determine the net abundance of the enzyme in the extracellular space.

  1. Automatic electrochemical ambient air monitor for chloride and chlorine

    DOEpatents

    Mueller, Theodore R.

    1976-07-13

    An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

  2. Engineering of a Bacillus subtilis strain with adjustable levels of intracellular biotin for secretory production of functional streptavidin.

    PubMed

    Wu, Sau-Ching; Wong, Sui-Lam

    2002-03-01

    Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. This problem cannot be solved by supplementing biotin to the culture medium, as this will saturate the biotin binding sites in streptavidin. We addressed this dilemma by engineering a B. subtilis strain (WB800BIO) which overproduces intracellular biotin. The strategy involves replacing the natural regulatory region of the B. subtilis chromosomal biotin biosynthetic operon (bioWAFDBIorf2) with an engineered one consisting of the B. subtilis groE promoter and gluconate operator. Biotin production in WB800BIO is induced by gluconate, and the level of biotin produced can be adjusted by varying the gluconate dosage. A level of gluconate was selected to allow enhanced intracellular production of biotin without getting it released into the culture medium. WB800BIO, when used as a host for streptavidin production, grows healthily in a biotin-limited medium and produces large amounts (35 to 50 mg/liter) of streptavidin, with over 80% of its biotin binding sites available for future applications.

  3. A polymer-based ratiometric intracellular glucose sensor.

    PubMed

    Zhang, Liqiang; Su, Fengyu; Buizer, Sean; Kong, Xiangxing; Lee, Fred; Day, Kevin; Tian, Yanqing; Meldrum, Deirdre R

    2014-07-04

    The glucose metabolism level reflects cell proliferative status. A polymeric glucose ratiometric sensor comprising poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMAETMA) was synthesized. Cellular internalization and glucose response of the polymer within HeLa cells were investigated.

  4. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy

    PubMed Central

    De Jesús-Pérez, José J.; Castro-Chong, Alejandra; Shieh, Ru-Chi; Hernández-Carballo, Carmen Y.; De Santiago-Castillo, José A.

    2016-01-01

    CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage–sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H+. Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl−, Br−, SCN−, and I−) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl−]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H+ plays a minor role in dislodging the glutamate gate. PMID:26666914

  5. Chloride Transport in Heterogeneous Formation

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Holt, R. M.

    2017-12-01

    The chloride mass balance (CMB) is a commonly-used method for estimating groundwater recharge. Observations of the vertical distribution of pore-water chloride are related to the groundwater infiltration rates (i.e. recharge rates). In CMB method, the chloride distribution is attributed mainly to the assumption of one dimensional piston flow. In many places, however, the vertical distribution of chloride will be influenced by heterogeneity, leading to horizontal movement of infiltrating waters. The impact of heterogeneity will be particularly important when recharge is locally focused. When recharge is focused in an area, horizontal movement of chloride-bearing waters, coupled with upward movement driven by evapotranspiration, may lead to chloride bulges that could be misinterpreted if the CMB method is used to estimate recharge. We numerically simulate chloride transport and evaluate the validity of the CMB method in highly heterogeneous systems. This simulation is conducted for the unsaturated zone of Ogallala, Antlers, and Gatuna (OAG) formations in Andrews County, Texas. A two dimensional finite element model will show the movement of chloride through heterogeneous systems. We expect to see chloride bulges not only close to the surface but also at depths characterized by horizontal or upward movement. A comparative study of focused recharge estimates in this study with available recharge data will be presented.

  6. Functional Characterization of Na+/H+ Exchangers of Intracellular Compartments Using Proton-killing Selection to Express Them at the Plasma Membrane

    PubMed Central

    Monet, Michael; Birgy-Barelli, Eléonore; Léna, Isabelle; Counillon, Laurent

    2015-01-01

    Endosomal acidification is critical for a wide range of processes, such as protein recycling and degradation, receptor desensitization, and neurotransmitter loading in synaptic vesicles. This acidification is described to be mediated by proton ATPases, coupled to ClC chloride transporters. Highly-conserved electroneutral protons transporters, the Na+/H+ exchangers (NHE) 6, 7 and 9 are also expressed in these compartments. Mutations in their genes have been linked with human cognitive and neurodegenerative diseases. Paradoxically, their roles remain elusive, as their intracellular localization has prevented detailed functional characterization. This manuscript shows a method to solve this problem. This consists of the selection of mutant cell lines, capable of surviving acute cytosolic acidification by retaining intracellular NHEs at the plasma membrane. It then depicts two complementary protocols to measure the ion selectivity and activity of these exchangers: (i) one based on intracellular pH measurements using fluorescence video microscopy, and (ii) one based on the fast kinetics of lithium uptake. Such protocols can be extrapolated to measure other non-electrogenic transporters. Furthermore, the selection procedure presented here generates cells with an intracellular retention defective phenotype. Therefore these cells will also express other vesicular membrane proteins at the plasma membrane. The experimental strategy depicted here may therefore constitute a potentially powerful tool to study other intracellular proteins that will be then expressed at the plasma membrane together with the vesicular Na+/H+ exchangers used for the selection. PMID:25867523

  7. Functional characterization of Na+/H+ exchangers of intracellular compartments using proton-killing selection to express them at the plasma membrane.

    PubMed

    Milosavljevic, Nina; Poët, Mallorie; Monet, Michael; Birgy-Barelli, Eléonore; Léna, Isabelle; Counillon, Laurent

    2015-03-30

    Endosomal acidification is critical for a wide range of processes, such as protein recycling and degradation, receptor desensitization, and neurotransmitter loading in synaptic vesicles. This acidification is described to be mediated by proton ATPases, coupled to ClC chloride transporters. Highly-conserved electroneutral protons transporters, the Na+/H+ exchangers (NHE) 6, 7 and 9 are also expressed in these compartments. Mutations in their genes have been linked with human cognitive and neurodegenerative diseases. Paradoxically, their roles remain elusive, as their intracellular localization has prevented detailed functional characterization. This manuscript shows a method to solve this problem. This consists of the selection of mutant cell lines, capable of surviving acute cytosolic acidification by retaining intracellular NHEs at the plasma membrane. It then depicts two complementary protocols to measure the ion selectivity and activity of these exchangers: (i) one based on intracellular pH measurements using fluorescence video microscopy, and (ii) one based on the fast kinetics of lithium uptake. Such protocols can be extrapolated to measure other non-electrogenic transporters. Furthermore, the selection procedure presented here generates cells with an intracellular retention defective phenotype. Therefore these cells will also express other vesicular membrane proteins at the plasma membrane. The experimental strategy depicted here may therefore constitute a potentially powerful tool to study other intracellular proteins that will be then expressed at the plasma membrane together with the vesicular Na+/H+ exchangers used for the selection.

  8. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  9. Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect

    PubMed Central

    Russo, Michael A.; Högenauer, Christoph; Coates, Stephen W.; Santa Ana, Carol A.; Porter, Jack L.; Rosenblatt, Randall L.; Emmett, Michael; Fordtran, John S.

    2003-01-01

    Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF. PMID:12840066

  10. Atomic force microscopy for cellular level manipulation: imaging intracellular structures and DNA delivery through a membrane hole.

    PubMed

    Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi

    2009-01-01

    The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Fatal exposure to methylene chloride among bathtub refinishers - United States, 2000-2011.

    PubMed

    2012-02-24

    In 2010, the Michigan Fatality Assessment and Control Evaluation program conducted an investigation into the death of a bathtub refinisher who used a methylene chloride-based paint stripping product marketed for use in aircraft maintenance. The program identified two earlier, similar deaths in Michigan. Program staff members notified CDC's National Institute for Occupational Safety and Health (NIOSH), which in turn notified the Occupational Safety and Health Administration (OSHA). In addition to the three deaths, OSHA identified 10 other bathtub refinisher fatalities associated with methylene chloride stripping agents that had been investigated in nine states during 2000-2011. Each death occurred in a residential bathroom with inadequate ventilation. Protective equipment, including a respirator, either was not used or was inadequate to protect against methylene chloride vapor, which has been recognized as potentially fatal to furniture strippers and factory workers but has not been reported previously as a cause of death among bathtub refinishers. Worker safety agencies, public health agencies, methylene chloride-based stripper manufacturers, and trade organizations should communicate the extreme hazards of using methylene chloride-based stripping products in bathtub refinishing to employers, workers, and consumers. Employers should strongly consider alternative methods of bathtub stripping and always ensure worker safety protections that reduce the risk for health hazards to acceptable levels. Employers choosing to use methylene chloride-based stripping products must comply with OSHA's standard to limit methylene chloride exposures to safe levels.

  12. Intracellular diffusion of oxygen and hypoxic sensing: role of mitochondrial respiration.

    PubMed

    Takahashi, Eiji; Sato, Michihiko

    2010-01-01

    In vivo, diffusional O(2) gradients from the capillary blood to the intracellular space determine O(2) availability at the O(2) sensing molecules in the cell. With a novel technique for imaging intracellular O(2) levels using green fluorescent protein (GFP), we examined the possibility that diffusional O(2) concentration gradients might be involved in the cellular hypoxic sensing in cultured Hep3B cells. In the present study, we failed to demonstrate significant gradients of intracellular O(2) when mitochondrial respiration was maximally elevated by an uncoupler of oxidative phosphorylation. Thus, we conclude that intracellular O(2) gradients may be negligible at normal mitochondrial O(2) demand in these cells.

  13. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...

  14. A Quick Reference on Chloride.

    PubMed

    Bohn, Andrea A; de Morais, Helio Autran

    2017-03-01

    Chloride is an essential element, playing important roles in digestion, muscular activity, regulation of body fluids, and acid-base balance. As the most abundant anion in extracellular fluid, chloride plays a major role in maintaining electroneutrality. Chloride is intrinsically linked to sodium in maintaining osmolality and fluid balance and has an inverse relationship with bicarbonate in maintaining acid-base balance. It is likely because of these close ties that chloride does not get the individual attention it deserves; we can use these facts to simplify and interpret changes in serum chloride concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Hydrogeology of, water withdrawal from, and water levels and chloride concentrations in the major Coastal Plain aquifers of Gloucester and Salem Counties, New Jersey

    USGS Publications Warehouse

    Cauller, S.J.; Carleton, G.B.; Storck, M.J.

    1999-01-01

    Eight aquifers underlying Gloucester and Salem Counties in the southwestern Coastal Plain of New Jersey provide nearly all the drinking water for the 295,000 people who live in the area. Ground-water withdrawals in the two-county area and adjoining counties have affected water levels in several of these aquifers. Ground-water withdrawals in the two-county area also have affected the quality of water, increasing the chloride concentration in several of the aquifers as a result of saltwater intrusion. This report contains hydrologic data from the two-county area, including geometry and extent of hydrogeologic units, thickness and altitude of each aquifer, withdrawals from and water levels in major aquifers, and chloride concentrations in water from each aquifer. Reported ground-water withdrawals in Gloucester and Salem Counties during 1975-95 averaged 7,800 Mgal/yr (million gallons per year) for public supply, 4,900 Mgal/yr for industrial use, 700 Mgal/yr for irrigation, 500 Mgal/yr for power plants, 50 Mgal/yr for commercial use, and about 40 Mgal/yr for mining. Withdrawals for domestic self-supply in 1994 are estimated to be about 2,600 Mgal/yr, but only about 20 percent (520 Mgal/yr) is thought to be consumptive use; the remainder is returned to the aquifer through septic systems. The most heavily used aquifer in Salem and Gloucester Counties is the Upper Potomac-Raritan-Magothy aquifer, followed by, in decreasing order of use, the Middle Potomac-Raritan-Magothy aquifer, the Lower Potomac-Raritan-Magothy aquifer, the Kirkwood-Cohansey aquifer system, and the Wenonah-Mount Laurel aquifer. Reported withdrawals from these aquifers during 1975-95 averaged 5,000, 3,700, 3,200, and 330 Mgal/yr, respectively. Withdrawals from the Wenonah-Mount Laurel aquifer in Gloucester County increased during 1993-96 because of New Jersey Department of Environmental Protection restrictions on new withdrawals from the deeper Potomac-Raritan-Magothy aquifer system. Because of the

  16. Structure of complexes between aluminum chloride and other chlorides, 2: Alkali-(chloroaluminates). Gaseous complexes

    NASA Technical Reports Server (NTRS)

    Hargittai, M.

    1980-01-01

    The structural chemistry of complexes between aluminum chloride and other metal chlorides is important both for practice and theory. Condensed-phase as well as vapor-phase complexes are of interest. Structural information on such complexes is reviewed. The first emphasis is given to the molten state because of its practical importance. Aluminum chloride forms volatile complexes with other metal chlorides and these vapor-phase complexes are dealt with in the second part. Finally, the variations in molecular shape and geometrical parameters are summarized.

  17. Manganese (Mn) Oxidation Increases Intracellular Mn in Pseudomonas putida GB-1

    PubMed Central

    Banh, Andy; Chavez, Valarie; Doi, Julia; Nguyen, Allison; Hernandez, Sophia; Ha, Vu; Jimenez, Peter; Espinoza, Fernanda; Johnson, Hope A.

    2013-01-01

    Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS). Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection. PMID:24147089

  18. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  19. FRET sensor-based quantification of intracellular trehalose in mammalian cells.

    PubMed

    Kikuta, Shingo; Hou, Bi-Huei; Sato, Ryoichi; Frommer, Wolf B; Kikawada, Takahiro

    2016-01-01

    Trehalose acts as a stress protectant and an autophagy inducer in mammalian cells. The molecular mechanisms of action remain obscure because intracellular trehalose at micromolar level is difficult to quantitate. Here, we show a novel trehalose monitoring technology based on FRET. FLIP-suc90μ∆1Venus sensor expressed in mammalian cells enables to quickly and non-destructively detect an infinitesimal amount of intracellular trehalose.

  20. Long-term chloride concentrations in North American and European freshwater lakes

    PubMed Central

    Dugan, Hilary A.; Summers, Jamie C.; Skaff, Nicholas K.; Krivak-Tetley, Flora E.; Doubek, Jonathan P.; Burke, Samantha M.; Bartlett, Sarah L.; Arvola, Lauri; Jarjanazi, Hamdi; Korponai, János; Kleeberg, Andreas; Monet, Ghislaine; Monteith, Don; Moore, Karen; Rogora, Michela; Hanson, Paul C.; Weathers, Kathleen C.

    2017-01-01

    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future. PMID:28786983

  1. Long-term chloride concentrations in North American and European freshwater lakes.

    PubMed

    Dugan, Hilary A; Summers, Jamie C; Skaff, Nicholas K; Krivak-Tetley, Flora E; Doubek, Jonathan P; Burke, Samantha M; Bartlett, Sarah L; Arvola, Lauri; Jarjanazi, Hamdi; Korponai, János; Kleeberg, Andreas; Monet, Ghislaine; Monteith, Don; Moore, Karen; Rogora, Michela; Hanson, Paul C; Weathers, Kathleen C

    2017-08-08

    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future.

  2. Functional Consequences of Intracellular Proline Levels Manipulation Affecting PRODH/POX-Dependent Pro-Apoptotic Pathways in a Novel in Vitro Cell Culture Model.

    PubMed

    Zareba, Ilona; Surazynski, Arkadiusz; Chrusciel, Marcin; Miltyk, Wojciech; Doroszko, Milena; Rahman, Nafis; Palka, Jerzy

    2017-01-01

    The effect of impaired intracellular proline availability for proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied. We generated a constitutively knocked-down PRODH/POX MCF-7 breast cancer cell line (MCF-7shPRODH/POX) as a model to analyze the functional consequences of impaired intracellular proline levels. We have used inhibitor of proline utilization in collagen biosynthesis, 2-metoxyestradiol (MOE), inhibitor of prolidase that generate proline, rapamycin (Rap) and glycyl-proline (GlyPro), substrate for prolidase. Collagen and DNA biosynthesis were evaluated by radiometric assays. Cell viability was determined using Nucleo-Counter NC-3000. The activity of prolidase was determined by colorimetric assay. Expression of proteins was assessed by Western blot and immunofluorescence bioimaging. Concentration of proline was analyzed by liquid chromatography with mass spectrometry. PRODH/POX knockdown decreased DNA and collagen biosynthesis, whereas increased prolidase activity and intracellular proline level in MCF-7shPRODH/POX cells. All studied compounds decreased cell viability in MCF-7 and MCF-7shPRODH/POX cells. DNA biosynthesis was similarly inhibited by Rap and MOE in both cell lines, but GlyPro inhibited the process only in MCF-7shPRODH/POX and MOE+GlyPro only in MCF-7 cells. All the compounds inhibited collagen biosynthesis, increased prolidase activity and cytoplasmic proline level in MCF-7shPRODH/POX cells and contributed to the induction of pro-survival mode only in MCF-7shPRODH/POX cells. In contrast, all studied compounds upregulated expression of pro-apoptotic protein only in MCF-7 cells. PRODH/POX was confirmed as a driver of apoptosis and proved the eligibility of MCF-7shPRODH/POX cell line as a highly effective model to elucidate the different mechanisms underlying proline utilization or generation in PRODH/POX-dependent pro-apoptotic pathways. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. The intracellular Na(+)/H(+) exchanger NHE7 effects a Na(+)-coupled, but not K(+)-coupled proton-loading mechanism in endocytosis.

    PubMed

    Milosavljevic, Nina; Monet, Michaël; Léna, Isabelle; Brau, Frédéric; Lacas-Gervais, Sandra; Feliciangeli, Sylvain; Counillon, Laurent; Poët, Mallorie

    2014-05-08

    Vesicular H(+)-ATPases and ClC-chloride transporters are described to acidify intracellular compartments, which also express the highly conserved Na(+)/H(+) exchangers NHE6, NHE7, and NHE9. Mutations of these exchangers cause autism-spectrum disorders and neurodegeneration. NHE6, NHE7, and NHE9 are hypothesized to exchange cytosolic K(+) for H(+) and alkalinize vesicles, but this notion has remained untested in K(+) because their intracellular localization prevents functional measurements. Using proton-killing techniques, we selected a cell line that expresses wild-type NHE7 at the plasma membrane, enabling measurement of the exchanger's transport parameters. We found that NHE7 transports Li(+) and Na(+), but not K(+), is nonreversible in physiological conditions and is constitutively activated by cytosolic H(+). Therefore, NHE7 acts as a proton-loading transporter rather than a proton leak. NHE7 mediates an acidification of intracellular vesicles that is additive to that of V-ATPases and that accelerates endocytosis. This study reveals an unexpected function for vesicular Na(+)/H(+) exchangers and provides clues for understanding NHE-linked neurological disorders. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release.

    PubMed

    Khutale, Ganesh V; Casey, Alan

    2017-10-01

    A nanoparticle drug carrier system has been developed to alter the cellular uptake and chemotherapeutic performance of an available chemotherapeutic drug. The system comprises of a multifunctional gold nanoparticle based drug delivery system (Au-PEG-PAMAM-DOX) as a novel platform for intracellular delivery of doxorubicin (DOX). Spherical gold nanoparticles were synthesized by a gold chloride reduction, stabilized with thiolated polyethylene glycol (PEG) and then covalently coupled with a polyamidoamine (PAMAM) G4 dendrimer. Further, conjugation of an anti-cancer drug doxorubicin to the dendrimer via amide bond resulted in Au-PEG-PAMAM-DOX drug delivery system. Acellular drug release studies proved that DOX released from Au-PEG-PAMAM-DOX at physiological pH was negligible but it was significantly increased at a weak acidic milieu. The intracellular drug release was monitored with confocal laser scanning microscopy analysis. In vitro viability studies showed an increase in the associated doxorubicin cytotoxicity not attributed to carrier components indicating the efficiency of the doxorubicin was improved, upon conjugation to the nano system. As such it is postulated that the developed pH triggered multifunctional doxorubicin-gold nanoparticle system, could lead to a promising platform for intracellular delivery of variety of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride

    USDA-ARS?s Scientific Manuscript database

    Generation of waste water containing sodium chloride from cucumber fermentation tank yards could be eliminated if cucumbers were fermented in brines that did not contain this salt. To determine if this is feasible, cucumbers were fermented in brines that contained only calcium chloride to maintain f...

  6. Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron.

    PubMed

    Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V

    2013-09-15

    This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Stability of methacholine chloride in isotonic sodium chloride using a capillary electrophoresis assay.

    PubMed

    Henn, S; Monfort, P; Vigneron, J H; Hoffman, M A; Hoffman, M

    1999-10-01

    To investigate the stability of methacholine chloride in 0.9% sodium chloride solutions. Methacholine powder was mixed with diluent to a final concentration of 5 and 10 mg/ml. Duplicates of each admixture were divided and stored in glass vials at 25 degrees C, 4 degrees C and -20 degrees C for 12 months. At appropriate times intervals, samples were removed from solutions and analysed. Methacholine concentrations were measured using a high performance capillary electrophoresis assay. No colour or other visual changes were seen in any sample. However, an additional peak was observed in some samples. Methacholine chloride solutions 5 mg/ml were stable in isotonic sodium chloride after refrigeration or freezing over a period of one year; methacholine chloride solutions 10 mg/ml were stable for one year after freezing. The solutions stored at ambient temperature were stable for 35 days and for less than 14 days, respectively, for the 5 and the 10 mg/ml solutions.

  8. Sequential development of hepatocellular carcinoma and liver angiosarcoma in a vinyl chloride-exposed worker.

    PubMed

    Guido, Maria; Sarcognato, Samantha; Pelletti, Guido; Fassan, Matteo; Murer, Bruno; Snenghi, Rossella

    2016-11-01

    Strong experimental and clinical evidences have definitely linked occupational vinyl chloride exposure to development of angiosarcoma of the liver. In contrast, despite the International Agency for Research on Cancer having included vinyl chloride among the causes of hepatocellular carcinoma, the association between vinyl chloride exposure and hepatocellular carcinoma remains debated. This issue is relevant, because occupational exposure to high levels of vinyl chloride may still occur. We report a unique case of sequential occurrences of hepatocellular carcinoma and angiosarcoma of the liver, in a vinyl chloride-exposed worker without cirrhosis and any known risk factor for chronic liver disease. Both the hepatocellular carcinoma and the surrounding normal liver showed micronucleus formation, which reflects genotoxic effect of vinyl chloride. Angiosarcoma showed a KRAS G12D point mutation, which is considered to be characteristic of vinyl chloride-induced angiosarcoma. This case supports the pathogenic role of vinyl chloride in both hepatocellular carcinoma and angiosarcoma development. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Carcinogenicity of benzyl chloride, benzal chloride, benzotrichloride and benzoyl chloride in mice by skin application.

    PubMed

    Fukuda, K; Matsushita, H; Sakabe, H; Takemoto, K

    1981-10-01

    The carcinogenicity of benzyl chloride (BYC), benzal chloride (BAC), benzotrichloride (BTC) and benzoyl chloride (BOC), which were suspected as causative agents of lung cancer and maxillary malignant lymphoma of workers employed in factories producing BOC, was examined by skin applications in female ICR mice. After rather high dose exposure, BTC exhibited leukemogenic and pulmonary tumorigenic activities as well as potent dermal carcinogenic activity. After administration of the chemicals at the dose of 2.3 microliter/animal, twice a week for 50 weeks, BTC induced 68% incidence of skin cancers and 58% incidence of pulmonary tumors (including 10% of lung carcinomas) within 399 days. Incidence of skin cancers was 58% for BAC, 15% for BYC and 10% for BOC within 560 days. Considering the extent of possible exposure of the workers to these chemicals in the working environment and the carcinogenic potency of the chemicals tested, it can be concluded that BTC was very probably responsible for causing the cancers seen int he workers employed in manufacturing BOC.

  10. Relationship between sweat chloride, sodium, and age in clinically obtained samples.

    PubMed

    Traeger, Nadav; Shi, Qiuhu; Dozor, Allen J

    2014-01-01

    The relationship between sweat electrolytes and age is uncertain, as is the value of measuring sodium or the chloride:sodium ratio. 13,785 sweat tests performed over 23 years at one center through the Macroduct collection in clinically obtained samples were analyzed. Sweat chloride tended to decrease over the first year of life, slowly increase until the fourth decade, then either level off or slightly decrease. In children, sweat sodium overlapped between those with positive and negative sweat tests, but not in adults. If the sweat test was positive, there was a higher likelihood of having a chloride:sodium ratio >1, but most subjects with a ratio >1 did not have CF. Sweat chloride and sodium vary with age. Measurement of sweat sodium did not add discriminatory value. The proportion of subjects with a chloride:sodium ratio >1, with or without CF, varied greatly between age ranges. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  11. Lithium chloride protects retinal neurocytes from nutrient deprivation by promoting DNA non-homologous end-joining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang Jing; Li Fan; Liu Xuan

    2009-03-13

    Lithium chloride is a therapeutic agent for treatment of bipolar affective disorders. Increasing numbers of studies have indicated that lithium has neuroprotective effects. However, the molecular mechanisms underlying the actions of lithium have not been fully elucidated. This study aimed to investigate whether lithium chloride produces neuroprotective function by improving DNA repair pathway in retinal neurocyte. In vitro, the primary cultured retinal neurocytes (85.7% are MAP-2 positive cells) were treated with lithium chloride, then cultured with serum-free media to simulate the nutrient deprived state resulting from ischemic insult. The neurite outgrowth of the cultured cells increased significantly in a dose-dependentmore » manner when exposed to different levels of lithium chloride. Genomic DNA electrophoresis demonstrated greater DNA integrity of retinal neurocytes when treated with lithium chloride as compared to the control. Moreover, mRNA and protein levels of Ligase IV (involved in DNA non-homologous end-joining (NHEJ) pathway) in retinal neurocytes increased with lithium chloride. The end joining activity assay was performed to determine the role of lithium on NHEJ in the presence of extract from retinal neurocytes. The rejoining levels in retinal neurocytes treated with lithium were significantly increased as compared to the control. Furthermore, XRCC4, the Ligase IV partner, and the transcriptional factor, CREB and CTCF, were up-regulated in retinal cells after treating with 1.0 mM lithium chloride. Therefore, our data suggest that lithium chloride protects the retinal neural cells from nutrient deprivation in vitro, which may be similar to the mechanism of cell death in glaucoma. The improvement in DNA repair pathway involving in Ligase IV might have an important role in lithium neuroprotection. This study provides new insights into the neural protective mechanisms of lithium chloride.« less

  12. 21 CFR 173.375 - Cetylpyridinium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c) The...

  13. pH and chloride recordings in living cells using two-photon fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Lahn, Mattes; Hille, Carsten; Koberling, Felix; Kapusta, Peter; Dosche, Carsten

    2010-02-01

    Today fluorescence lifetime imaging microscopy (FLIM) has become an extremely powerful technique in life sciences. The independency of the fluorescence decay time on fluorescence dye concentration and emission intensity circumvents many artefacts arising from intensity based measurements. To minimize cell damage and improve scan depth, a combination with two-photon (2P) excitation is quite promising. Here, we describe the implementation of a 2P-FLIM setup for biological applications. For that we used a commercial fluorescence lifetime microscope system. 2P-excitation at 780nm was achieved by a non-tuneable, but inexpensive and easily manageable mode-locked fs-fiber laser. Time-resolved fluorescence image acquisition was performed by objective-scanning with the reversed time-correlated single photon counting (TCSPC) technique. We analyzed the suitability of the pH-sensitive dye BCECF and the chloride-sensitive dye MQAE for recordings in an insect tissue. Both parameters are quite important, since they affect a plethora of physiological processes in living tissues. We performed a straight forward in situ calibration method to link the fluorescence decay time with the respective ion concentration and carried out spatially resolved measurements under resting conditions. BCECF still offered only a limited dynamic range regarding fluorescence decay time changes under physiologically pH values. However, MQAE proofed to be well suited to record chloride concentrations in the physiologically relevant range. Subsequently, several chloride transport pathways underlying the intracellular chloride homeostasis were investigated pharmacologically. In conclusion, 2P-FLIM is well suited for ion detection in living tissues due to precise and reproducible decay time measurements in combination with reduced cell and dye damages.

  14. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission standard for ethylene... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene dichloride...

  15. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.

    PubMed

    Chiaraviglio, Lucius; Kirby, James E

    2015-12-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    PubMed

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms.

  17. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  18. 21 CFR 173.255 - Methylene chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methylene chloride. 173.255 Section 173.255 Food... Related Substances § 173.255 Methylene chloride. Methylene chloride may be present in food under the... label of the hops extract identifies the presence of the methylene chloride and provides for the use of...

  19. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  20. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg. No. 7447-40-7) is a white... manufacturing practice. Potassium chloride may be used in infant formula in accordance with section 412(g) of...

  1. 21 CFR 184.1138 - Ammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  2. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  3. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  4. Insights into metabolism and sodium chloride adaptability of carbaryl degrading halotolerant Pseudomonas sp. strain C7.

    PubMed

    Trivedi, Vikas D; Bharadwaj, Anahita; Varunjikar, Madhushri S; Singha, Arminder K; Upadhyay, Priya; Gautam, Kamini; Phale, Prashant S

    2017-08-01

    Pseudomonas sp. strain C7 isolated from sediment of Thane creek near Mumbai, India, showed the ability to grow on glucose and carbaryl in the presence of 7.5 and 3.5% of NaCl, respectively. It also showed good growth in the absence of NaCl indicating the strain to be halotolerant. Increasing salt concentration impacted the growth on carbaryl; however, the specific activity of various enzymes involved in the metabolism remained unaffected. Among various enzymes, 1-naphthol 2-hydroxylase was found to be sensitive to chloride as compared to carbaryl hydrolase and gentisate 1,2-dioxygenase. The intracellular concentration of Cl - ions remained constant (6-8 mM) for cells grown on carbaryl either in the presence or absence of NaCl. Thus the ability to adapt to the increasing concentration of NaCl is probably by employing chloride efflux pump and/or increase in the concentration of osmolytes as mechanism for halotolerance. The halotolerant nature of the strain will be beneficial to remediate carbaryl from saline agriculture fields, ecosystems and wastewaters.

  5. Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride

    USDA-ARS?s Scientific Manuscript database

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride instead of NaCl...

  6. Lithium-Thionyl Chloride Battery.

    DTIC Science & Technology

    1981-04-01

    EEEElhIhEEEEEE 1111 1 - MI(CRO( fy Hl ff1Sf UIIIUN Ift I IA I~t Research and Development Technical Report DELET - TR - 78 - 0563 - F Cq LITHIUM -THIONYL CHLORIDE...2b(1110) S. TYPE OF REPORT & PERIOD COVERED Lithium -Thionyl Chloride Battery -10/1/78 - 11/30/80 6. PNING ORG. REPORT NUMBER Z %A a.~as B.,OWRACT OR...block number) Inorganic Electrolyte battery, Thionyl Chloride, lithium , high rate D cell, high rate flat cylindrical cell, laser designator battery. C//i

  7. Subcellular characteristics of functional intracellular renin–angiotensin systems☆

    PubMed Central

    Abadir, Peter M.; Walston, Jeremy D.; Carey, Robert M.

    2013-01-01

    The renin–angio tensin system (RAS) is now regarded as an integral component in not only the development of hypertension, but also in physiologic and pathophysiologic mechanisms in multiple tissues and chronic disease states. While many of the endocrine (circulating), paracrine (cell-to-different cell) and autacrine (cell-to-same cell) effects of the RAS are believed to be mediated through the canonical extracellular RAS, a complete, independent and differentially regulated intracellular RAS (iRAS) has also been proposed. Angiotensinogen, the enzymes renin and angiotensin-converting enzyme (ACE) and the angiotensin peptides can all be synthesized and retained intracellularly. Angiotensin receptors (types I and 2) are also abundant intracellularly mainly at the nuclear and mitochondrial levels. The aim of this review is to focus on the most recent information concerning the subcellular localization, distribution and functions of the iRAS and to discuss the potential consequences of activation of the subcellular RAS on different organ systems. PMID:23032352

  8. 21 CFR 184.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium chloride. 184.1193 Section 184.1193 Food... GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially obtained as a byproduct in...

  9. Prognostic value of serum zinc levels in patients with acute HC/zinc chloride smoke inhalation

    PubMed Central

    Xie, Fei; Zhang, Xingang; Xie, Lixin

    2017-01-01

    Abstract Hexachloroethane (HC)/zinc chloride (ZnCl, smoke bomb) exposure in the military setting results in lung injury which is uncommon and has been rarely described in previous studies. The aim of this study is to investigate the correlation between the serum zinc in patients with HC/ZnCl smoke inhalation lung injury and disease severity. A total of 15 patients with HC/ZnCl-related conditions were recruited in this study. The serum zinc level and the pulmonary function tests and liver function tests including total lung capacity (TLC), forced vital capacity (FVC), forced expiratory pressure in 1 second (FEV1), alanine aminotransferase (ALT), and aspartate transaminase (AST) were analyzed. Eleven cases had mild clinical manifestations. Four cases rapidly developed features typical of severe adult respiratory distress syndrome. The level of serum zinc was increased, but FVC, FEV1, and TLC was decreased significantly in the moderate and severe cases. In addition, the serum zinc level correlated well with the TLC, FVC, and FEV1 (r = −0.587, −0.626, −0.617, respectively; P = .027, .017, .019, respectively). The 4 cases in moderate and severe group had delayed impairment of liver functions after the accident. This study suggested that the serum zinc level may be associated with the severity of lung and liver injuries after HC/ZnCl smoke inhalation. PMID:28953660

  10. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells.

    PubMed

    Klíma, Petr; Laňková, Martina; Vandenbussche, Filip; Van Der Straeten, Dominique; Petrášek, Jan

    2018-05-01

    Silver ions increase plasma membrane permeability for water and small organic compounds through their stimulatory effect on plasma membrane calcium channels, with subsequent modulation of intracellular calcium levels and ion homeostasis. The action of silver ions at the plant plasma membrane is largely connected with the inhibition of ethylene signalling thanks to the ability of silver ion to replace the copper cofactor in the ethylene receptor. A link coupling the action of silver ions and cellular auxin efflux has been suggested earlier by their possible direct interaction with auxin efflux carriers or by influencing plasma membrane permeability. Using tobacco BY-2 cells, we demonstrate here that besides a dramatic increase of efflux of synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthalene acetic acid (NAA), treatment with AgNO 3 resulted in enhanced efflux of the cytokinin trans-zeatin (tZ) as well as the auxin structural analogues tryptophan (Trp) and benzoic acid (BA). The application of AgNO 3 was accompanied by gradual water loss and plasmolysis. The observed effects were dependent on the availability of extracellular calcium ions (Ca 2+ ) as shown by comparison of transport assays in Ca 2+ -rich and Ca 2+ -free buffers and upon treatment with inhibitors of plasma membrane Ca 2+ -permeable channels Al 3+ and ruthenium red, both abolishing the effect of AgNO 3 . Confocal microscopy of Ca 2+ -sensitive fluorescence indicator Fluo-4FF, acetoxymethyl (AM) ester suggested that the extracellular Ca 2+ availability is necessary to trigger the response to silver ions and that the intracellular Ca 2+ pool alone is not sufficient for this effect. Altogether, our data suggest that in plant cells the effects of silver ions originate from the primal modification of the internal calcium levels, possibly by their interaction with Ca 2+ -permeable channels at the plasma membrane.

  11. Atmospheric Methyl Chloride

    DOE Data Explorer

    Khalil, M. A. K. [Portland State Univ., Portland, OR (United States); Rasmussen, R. A. [Oregon Graduate Institute, Portland, OR (USA)

    1999-01-01

    This data set provides monthly average concentrations of atmospheric methyl chloride taken from seven locations distributed among the polar, middle, and tropical latitudes of both hemispheres. The seven primary sites include Pt. Barrow, Alaska; Cape Kumukahi and Mauna Loa, Hawaii; Cape Matatula, Samoa; Cape Grim, Tasmania; and the South Pole and Palmer Station, Antarctica. Concentration measurements from these seven sites cover a period of 16 years, extending from 1981-1997. Monthly data taken between 1987-1989 from 20 short-term sites and vertical distribution measured at various latitudes are also provided. Air samples were collected from various sites in stainless steel flasks and methyl chloride concentrations were measured using an Electron Capture Gas Chromatograph. Concentrations are reported as mixing ratios in dry air. The concentrations are determined by using a set of calibration standards that are referenced against a primary standard which is also used to establish the absolute concentration. The primary standards were prepared by the investigators in the absence of an available standard from a centralized location. The data are useful in global methyl chloride budget analyses and for determining the atmospheric distribution and trends of methyl chloride and estimating the total emissions at various latitudes.

  12. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    PubMed Central

    Huang, Beijing K.; Sikes, Hadley D.

    2014-01-01

    Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies. PMID:25460730

  13. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris.

    PubMed

    Kittl, Roman; Mueangtoom, Kitti; Gonaus, Christoph; Khazaneh, Shima Tahvilda; Sygmund, Christoph; Haltrich, Dietmar; Ludwig, Roland

    2012-01-20

    Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L(-1) of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low K(M) values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I(50)=1.4M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Stability of Alprostadil in 0.9% Sodium Chloride Stored in Polyvinyl Chloride Containers.

    PubMed

    McCluskey, Susan V; Kirkham, Kylian; Munson, Jessica M

    2017-01-01

    The stability of alprostadil diluted in 0.9% sodium chloride stored in polyvinyl chloride (VIAFLEX) containers at refrigerated temperature, protected from light, is reported. Five solutions of alprostadil 11 mcg/mL were prepared in 250 mL 0.9% sodium chloride polyvinyl chloride (PL146) containers. The final concentration of alcohol was 2%. Samples were stored under refrigeration (2°C to 8°C) with protection from light. Two containers were submitted for potency testing and analyzed in duplicate with the stability-indicating high-performance liquid chromatography assay at specific time points over 14 days. Three containers were submitted for pH and visual testing at specific time points over 14 days. Stability was defined as retention of 90% to 110% of initial alprostadil concentration, with maintenance of the original clear, colorless, and visually particulate-free solution. Study results reported retention of 90% to 110% initial alprostadil concentration at all time points through day 10. One sample exceeded 110% potency at day 14. pH values did not change appreciably over the 14 days. There were no color changes or particle formation detected in the solutions over the study period. This study concluded that during refrigerated, light-protected storage in polyvinyl chloride (VIAFLEX) containers, a commercial alcohol-containing alprostadil formulation diluted to 11 mcg/mL with 0.9% sodium chloride 250 mL was stable for 10 days. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  15. The Two Electron Oxidation of Cobalt Phthalocyanines by Thionyl Chloride: Implications for Lithium/Thionyl Chloride Batteries

    DTIC Science & Technology

    1989-10-20

    Phthalocyanines by Thionyl Chloride. Implications for Lithium /Thionyl Chloride Batteries By P.A. Bernstein and A.B.P. Lever* D T IC in NOV.0 3.1W9. M...Thionyl Chloride. Implications forI Lithium /Thionvl Chloride Batteries 12 PERSONAL AUTHOR(S) P.A. Bernstein and A.B.P. Lever* 13a. TYPE OF REPORT 13b...SUBJECT TERMS (Continue on reverse if necessary and identify by olock numoer) FIELD GROUP SUB-GROUP .’ Phthalocyanine," Lithium Battery, Thionyl

  16. Comparison of the biological effects of {sup 18}F at different intracellular levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashino, Genro, E-mail: kashino@oita-u.ac.jp; Hayashi, Kazutaka; Douhara, Kazumasa

    Highlights: • We estimated the inductions of DNA DSB in cell treated with {sup 18}F-FDG. • We found that inductions of DNA DSB are dependent on accumulation of {sup 18}F in cell. • Accumulation of {sup 18}F in cell may be indispensable for risk estimation of PET. - Abstract: We herein examined the biological effects of cells treated with {sup 18}F labeled drugs for positron emission tomography (PET). The relationship between the intracellular distribution of {sup 18}F and levels of damaged DNA has yet to be clarified in detail. We used culture cells (Chinese Hamster Ovary cells) treated with twomore » types of {sup 18}F labeled drugs, fluorodeoxyglucose (FDG) and fluorine ion (HF). FDG efficiently accumulated in cells, whereas HF did not. To examine the induction of DNA double strand breaks (DSB), we measured the number of foci for 53BP1 that formed at the site of DNA DSB. The results revealed that although radioactivity levels were the same, the induction of 53BP1 foci was stronger in cells treated with {sup 18}F-FDG than in those treated with {sup 18}F-HF. The clonogenic survival of cells was significantly lower with {sup 18}F-FDG than with {sup 18}F-HF. We concluded that the efficient accumulation of {sup 18}F in cells led to stronger biological effects due to more severe cellular lethality via the induction of DNA DSB.« less

  17. Improved method for efficient imaging of intracellular Cl(-) with Cl-Sensor using conventional fluorescence setup.

    PubMed

    Friedel, Perrine; Bregestovski, Piotr; Medina, Igor

    2013-01-01

    Chloride (Cl(-)) homeostasis is known to be fundamental for central nervous system functioning. Alterations in intracellular Cl(-) concentration ([Cl(-)]i) and changes in the efficacy of Cl(-) extrusion are involved in numerous neurological disorders. Therefore, there is a strong need for studies of the dynamics of [Cl(-)]i in different cell types under physiological conditions and during pathology. Several previous works reported having successfully achieved recording of [Cl(-)]i using genetically encoded Cl-Sensor that is composed of the cyan fluorescent protein (CFP) and Cl(-)-sensitive mutant of the yellow fluorescent protein (YFPCl). However, all reported works were performed using specially designed setups with ultra-sensitive CCD cameras. Our multiple attempts to monitor Cl(-)-dependent fluorescence of Cl-Sensor using conventional epifluorescence microscopes did not yield successful results. In the present work, we have analysed the reason of our failures and found that they were caused by a strong inactivation of the YFPCl component of Cl-Sensor during excitation of the CFP with 430 nm light. Based on the obtained results, we reduced 20-fold the intensity of the 430 nm excitation and modified the recording protocol that allows now stable long-lasting ratiometric measurements of Cl-Sensor fluorescence in different cell types including cultured hippocampal neurons and their tiny dendrites and spines. Simultaneous imaging and patch clamp recording revealed that in mature neurons, the novel protocol allows detection of as little as 2 mM changes of [Cl(-)]i from the resting level of 5-10 mM. We demonstrate also a usefulness of the developed [Cl(-)]i measurement procedure for large scale screening of the activity of exogenously expressed potassium-chloride co-transporter KCC2, a major neuronal Cl(-) extruder that is implicated in numerous neurological disorders and is a target for novel therapeutical treatments.

  18. Improved method for efficient imaging of intracellular Cl− with Cl-Sensor using conventional fluorescence setup

    PubMed Central

    Friedel, Perrine; Bregestovski, Piotr; Medina, Igor

    2013-01-01

    Chloride (Cl−) homeostasis is known to be fundamental for central nervous system functioning. Alterations in intracellular Cl− concentration ([Cl−]i) and changes in the efficacy of Cl− extrusion are involved in numerous neurological disorders. Therefore, there is a strong need for studies of the dynamics of [Cl−]i in different cell types under physiological conditions and during pathology. Several previous works reported having successfully achieved recording of [Cl−]i using genetically encoded Cl-Sensor that is composed of the cyan fluorescent protein (CFP) and Cl−-sensitive mutant of the yellow fluorescent protein (YFPCl). However, all reported works were performed using specially designed setups with ultra-sensitive CCD cameras. Our multiple attempts to monitor Cl−-dependent fluorescence of Cl-Sensor using conventional epifluorescence microscopes did not yield successful results. In the present work, we have analysed the reason of our failures and found that they were caused by a strong inactivation of the YFPCl component of Cl-Sensor during excitation of the CFP with 430 nm light. Based on the obtained results, we reduced 20-fold the intensity of the 430 nm excitation and modified the recording protocol that allows now stable long-lasting ratiometric measurements of Cl-Sensor fluorescence in different cell types including cultured hippocampal neurons and their tiny dendrites and spines. Simultaneous imaging and patch clamp recording revealed that in mature neurons, the novel protocol allows detection of as little as 2 mM changes of [Cl−]i from the resting level of 5–10 mM. We demonstrate also a usefulness of the developed [Cl−]i measurement procedure for large scale screening of the activity of exogenously expressed potassium-chloride co-transporter KCC2, a major neuronal Cl− extruder that is implicated in numerous neurological disorders and is a target for novel therapeutical treatments. PMID:23596389

  19. KCC2-dependent Steady-state Intracellular Chloride Concentration and pH in Cortical Layer 2/3 Neurons of Anesthetized and Awake Mice.

    PubMed

    Boffi, Juan C; Knabbe, Johannes; Kaiser, Michaela; Kuner, Thomas

    2018-01-01

    Neuronal intracellular Cl - concentration ([Cl - ] i ) influences a wide range of processes such as neuronal inhibition, membrane potential dynamics, intracellular pH (pH i ) or cell volume. Up to date, neuronal [Cl - ] i has predominantly been studied in model systems of reduced complexity. Here, we implemented the genetically encoded ratiometric Cl - indicator Superclomeleon (SCLM) to estimate the steady-state [Cl - ] i in cortical neurons from anesthetized and awake mice using 2-photon microscopy. Additionally, we implemented superecliptic pHluorin (SE-pHluorin) as a ratiometric sensor to estimate the intracellular steady-state pH (pH i ) of mouse cortical neurons in vivo . We estimated an average resting [Cl - ] i of 6 ± 2 mM with no evidence of subcellular gradients in the proximal somato-dendritic domain and an average somatic pH i of 7.1 ± 0.2. Neither [Cl - ] i nor pH i were affected by isoflurane anesthesia. We deleted the cation-Cl - co-transporter KCC2 in single identified neurons of adult mice and found an increase of [Cl - ] i to approximately 26 ± 8 mM, demonstrating that under in vivo conditions KCC2 produces low [Cl - ] i in adult mouse neurons. In summary, neurons of the brain of awake adult mice exhibit a low and evenly distributed [Cl - ] i in the proximal somato-dendritic compartment that is independent of anesthesia and requires KCC2 expression for its maintenance.

  20. Differences in mortality among bobwhite fed methylmercury chloride dissolved in various carriers

    USGS Publications Warehouse

    Spann, J.W.; Heinz, G.H.; Camardese, M.B.; Hill, E.F.; Moore, John F.; Murray, H.C.

    1986-01-01

    Twelve-day-old bobwhite chicks were fed a diet containing 0, 5.4 or 20 ppm methylmercury chloride. The methylmercury chloride was added to the diet either in a dry, pulverized form or dissolved in acetone, propylene glycol or corn oil. Mortality was measured for 6 weeks, and samples of liver were saved for mercury analysis. Mortality was significantly lower in birds fed 20 ppm methylmercury chloride when acetone was the solvent. The reduced mortality could not be explained by effects of acetone on dietary level of mercury or on uptake of mercury into the body.

  1. Investigation of factors influencing chloride extraction efficiency during electrochemical chloride extraction from reinforcing concrete

    NASA Astrophysics Data System (ADS)

    Sharp, Stephen R.

    2005-11-01

    Electrochemical chloride extraction (ECE) is an accelerated bridge restoration method similar to cathodic protection, but operates at higher current densities and utilizes a temporary installation. Both techniques prolong the life of a bridge by reducing the corrosion rate of the reinforcing bar when properly applied. ECE achieves this by moving chlorides away from the reinforcement and out of the concrete while simultaneously increasing the alkalinity of the electrolyte near the reinforcing steel. Despite the proven success, significant use of ECE has not resulted in part due to an incomplete understanding in the following areas: (1) An estimation of the additional service life that can be expected following treatment when the treated member is again subjected to chlorides; (2) The cause of the decrease in current flow and, therefore, chloride removal rate during treatment; (3) Influence of water-to-cement (w/c) ratio and cover depth on the time required for treatment. This dissertation covers the research that is connected to the last two areas listed above. To begin examining these issues, plain carbon steel reinforcing bars (rebar) were embedded in portland cement concrete slabs of varying water-to-cement (w/c) ratios and cover depths, and then exposed to chlorides. A fraction of these slabs had sodium chloride added as an admixture, with all of the slabs subjected to cyclical ponding with a saturated solution of sodium chloride. ECE was then used to remove the chlorides from these slabs while making electrical measurements in the different layers between the rebar (cathode) and the titanium mat (anode) to follow the progress of the ECE process. During this study, it was revealed that the resistance of the outer concrete surface layer increases during ECE, inevitably restricting current flow, while the resistance of the underlying concrete decreases or remains constant. During ECE treatment, a white residue formed on the surface of the concrete. Analyses of the

  2. Intracellular protein determination using droplet-based immunoassays.

    PubMed

    Martino, Chiara; Zagnoni, Michele; Sandison, Mairi E; Chanasakulniyom, Mayuree; Pitt, Andrew R; Cooper, Jonathan M

    2011-07-01

    This paper describes the implementation of a sensitive, on-chip immunoassay for the analysis of intracellular proteins, developed using microdroplet technology. The system offers a number of analytical functionalities, enabling the lysis of low cell numbers, as well as protein detection and quantification, integrated within a single process flow. Cells were introduced into the device in suspension and were electrically lysed in situ. The cell lysate was subsequently encapsulated together with antibody-functionalized beads into stable, water-in-oil droplets, which were stored on-chip. The binding of intracellular proteins to the beads was monitored fluorescently. By analyzing many individual droplets and quantifying the data obtained against standard additions, we measured the level of two intracellular proteins, namely, HRas-mCitrine, expressed within HEK-293 cells, and actin-EGFP, expressed within MCF-7 cells. We determined the concentrations of these proteins over 5 orders of magnitude, from ~50 pM to 1 μM. The results from this semiautomated method were compared to those for determinations made using Western blots, and were found not only to be faster, but required a smaller number of cells.

  3. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, S.J.; Thomas, T.R.

    1975-11-14

    A method is described for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel, and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  4. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, Steven J.; Thomas, Thomas R.

    1977-01-01

    The present invention provides a method for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  5. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis.

    PubMed

    Micheva-Viteva, Sofiya N; Shou, Yulin; Ganguly, Kumkum; Wu, Terry H; Hong-Geller, Elizabeth

    2017-01-01

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis , we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host

  6. Microbial reductive dehalogenation of vinyl chloride

    DOEpatents

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Nannhein, DE; Meshulam-Simon, Galit [Los Altos, CA; McCarty, Perry L [Stanford, CA

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  7. Microbial reductive dehalogenation of vinyl chloride

    DOEpatents

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Mannheim, DE; Meshulam-Simon, Galit [Los Angeles, CA; McCarty, Perry L [Stanford, CA

    2014-02-11

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  8. Intracellular mechanisms of solar water disinfection

    NASA Astrophysics Data System (ADS)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  9. Intracellular mechanisms of solar water disinfection

    PubMed Central

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-01-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection. PMID:27909341

  10. Intracellular mechanisms of solar water disinfection.

    PubMed

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-02

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  11. Effects of inhibitors on chloride outflux from CSF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, M.; Johnson, D.C.; Pappagianopoulos, P.

    1986-03-05

    The regulation of the CSF (Cl/sup -/) plays a key role in CNS acid-base homeostasis. The authors have shown in previous studies that chloride influx from blood to CSF is largely dependent upon sodium-coupled carrier mediated movement. Therefore, the mechanism of chloride outflux from CSF to brain was evaluated in anesthetized dogs using ventricular-cisternal perfusion (VCP) with the short-lived isotope /sup 38/Cl/sup -/ and dextran. The outflux of /sup 38/Cl/sup -/ from CSF was determined from the different movements between /sup 38/Cl/sup -/ and dextran using a one compartment model. VCP was performed at a rate of 1.4 ml/min formore » 14 min, and then slowed to 0.28 ml/min. The /sup 38/Cl/sup -/ activity decreased to a steady state level about 12% lower than that of dextran within 40-50 minutes. Under control conditions (19 runs in 7 dogs), the rate of chloride outflux was 0.059 +/- 0.004 min/sup -1/ (mean +/- SE). It was not significantly changed after the inclusion of bumetanide (10/sup -5/ molar) in the VCP fluid (n=6), which inhibits sodium-coupled Cl/sup -/ transport, or with acetazolamide 4.5 x 10/sup -3/ molar (n=4) which inhibits carbonic anhydrase. The authors conclude that chloride outflux from CSF is not dependent upon sodium-coupled carrier mediated movement, which is in contrast with chloride influx from blood to CSF, nor is it dependent upon carbonic anhydrase activity.« less

  12. Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes.

    PubMed

    Krajcik, Rasti; Jung, Adrian; Hirsch, Andreas; Neuhuber, Winfried; Zolk, Oliver

    2008-05-02

    The lipophilic nature of biological membranes restricts the direct intracellular delivery of potential drugs and molecular probes and makes intracellular transport one of the key problems in gene therapy. Because of their ability to cross cell membranes, single walled carbon nanotubes (SWNTs) are of interest as carriers of biologically active molecules, such as small interfering RNAs (siRNAs). We developed a strategy for chemical functionalization of SWNTs with hexamethylenediamine (HMDA) and poly(diallyldimethylammonium)chloride (PDDA) to obtain a material that was able to bind negatively charged siRNA by electrostatic interactions. PDDA-HMDA-SWNTs exhibited negligible cytotoxic effects on isolated rat heart cells at concentrations up to 10mg/l. PDDA-HMDA-SWNTs loaded with extracellular signal-regulated kinase (ERK) siRNA were able to cross the cell membrane and to suppress expression of the ERK target proteins in primary cardiomyocytes by about 75%. PDDA-functionalized SWNTs thus present an effective carrier system for applications in siRNA-mediated gene silencing.

  13. 21 CFR 522.1862 - Sterile pralidoxime chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sterile pralidoxime chloride. 522.1862 Section 522....1862 Sterile pralidoxime chloride. (a) Chemical name. 2-Formyl-1-methylpyridinium chloride oxime. (b) Specifications. Sterile pralidoxime chloride is packaged in vials. Each vial contains 1 gram of sterile...

  14. Sodium and chloride levels in rainfall, mist. streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls

    NASA Astrophysics Data System (ADS)

    Neal, C.; Kirchner, J. W.

    Variations in sodium and chloride in atmospheric inputs (rainfall and mist), stream runoff and groundwater stores are documented for the upper Severn River (Afon Hafren and Afon Hore catchments), Plynlimon, mid-Wales. The results show five salient features.

    1. Sodium and chloride concentrations are highly variable and highly correlated in rainfall and mist. The sodium-chloride relationship in rainfall has a slope close to the sodium/chloride ratio in sea-water, and an intercept that is not significantly different from zero. This indicates that sea-salt is the dominant source of both sodium and chloride in rainfall, which would be expected given the maritime nature of the metrology. For mist, there is also a straight line with near-zero intercept, but with a slightly higher gradient than the sea-salt ratio, presumably due to small additional sodium inputs from other sources.
    2. There is an approximate input-output balance for both sodium and chloride, with the exception of one groundwater well, in which high chemical weathering results in an anomalous high Na/Cl ratio. Thus, atmospheric deposition is the dominant source of both sodium and chloride in groundwater and streamflow.
    3. The fluctuations in sodium and chloride concentrations in the streams and groundwaters are strongly damped compared to those in the rain and the mist, reflecting the storage and mixing of waters in the subsurface.
    4. On all timescales, from weeks to years, sodium fluctuations are more strongly damped than chloride fluctuations in streamflow. The additional damping of sodium is consistent with ion exchange buffering of sodium in the catchment soils.
    5. Sodium and chloride concentrations are linearly correlated in the streams and groundwaters, but the slope is almost universally less than the sea-salt ratio and there is a non-zero intercept. The Na/Cl ratio in streamflow and groundwater is higher than the sea-salt ratio when salinity is low and lower

    6. 49 CFR 173.322 - Ethyl chloride.

      Code of Federal Regulations, 2010 CFR

      2010-10-01

      ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must be...

    7. 21 CFR 178.3290 - Chromic chloride complexes.

      Code of Federal Regulations, 2010 CFR

      2010-04-01

      ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromic chloride complexes. 178.3290 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3290 Chromic chloride complexes. Myristo chromic chloride complex and stearato chromic chloride complex may be safely used as release agents in the closure...

    8. Wetting properties and critical micellar concentration of benzalkonium chloride mixed in sodium hypochlorite.

      PubMed

      Bukiet, Frédéric; Couderc, Guillaume; Camps, Jean; Tassery, Hervé; Cuisinier, Frederic; About, Imad; Charrier, Anne; Candoni, Nadine

      2012-11-01

      The purposes of the present study were to (1) assess the effect of the addition of benzalkonium chloride to sodium hypochlorite on its wetting properties, contact angle, and surface energy; (2) determine the critical micellar concentration of benzalkonium chloride in sodium hypochlorite; and (3) investigate the influence of addition of benzalkonium chloride on the free chlorine level, cytotoxicity, and antiseptic properties of the mixture. Solutions of benzalkonium chloride, with concentrations ranging from 0%-1%, were mixed in 2.4% sodium hypochlorite and tested as follows. The wetting properties were investigated by measuring the contact angle of the solutions on a nondehydrated dentin surface by using the static sessile drop method. The pending drop technique was subsequently used to determine the surface energy of the solutions. The critical micellar concentration of benzalkonium chloride mixed in sodium hypochlorite was calculated from the data. When 2.4% NaOCl was mixed with benzalkonium chloride at the critical micellar concentration, 3 parameters were tested: free chloride content, cytotoxicity, and antibacterial effects against Enterococcus faecalis. The contact angle (P < .001) as well as the surface energy (P < .001) significantly decreased with increasing benzalkonium chloride concentrations. The critical micellar concentration of benzalkonium chloride in sodium hypochlorite was 0.008%. At this concentration, the addition of benzalkonium chloride had no effect on the free chlorine content, cytotoxicity, or antibacterial efficiency of the mixture. The addition of benzalkonium chloride to sodium hypochlorite at the critical micellar concentration reduced the contact angle by 51.2% and the surface energy by 53.4%, without affecting the free chloride content, cytotoxicity, or antibacterial properties of the mixture. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

    9. 7 CFR 58.434 - Calcium chloride.

      Code of Federal Regulations, 2011 CFR

      2011-01-01

      ... 7 Agriculture 3 2011-01-01 2011-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

    10. 7 CFR 58.434 - Calcium chloride.

      Code of Federal Regulations, 2010 CFR

      2010-01-01

      ... 7 Agriculture 3 2010-01-01 2010-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

    11. 21 CFR 582.3845 - Stannous chloride.

      Code of Federal Regulations, 2010 CFR

      2010-04-01

      ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Stannous chloride. 582.3845 Section 582.3845 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3845 Stannous chloride. (a) Product. Stannous chloride. (b) Tolerance. This substance is generally...

  1. Streptozotocin-Induced Autophagy Reduces Intracellular Insulin in Insulinoma INS-1E Cells.

    PubMed

    Yoo, Yeong-Min; Park, Yung Chul

    2018-03-01

    Streptozotocin (STZ), a glucose analog, induces diabetes in experimental animals by inducing preferential cytotoxicity in pancreatic beta cells. We investigated whether STZ reduced the production of intracellular insulin through autophagy in insulinoma INS-1E cells. Typically, 2 mM STZ treatment for 24 h significantly decreased cell survival. STZ treatment led to significant decrease in phospho-AMP-activated protein kinase (p-AMPK) level; reduction in levels of phospho-protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α); significant reduction in levels of p85α, p110, phospho-serine and threonine kinase/protein kinase B (p-Akt/PKB) (Ser473), phospho-extracellular-regulated kinase (p-ERK), and phospho-mammalian target of rapamycin (p-mTOR); increase in levels of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase; decrease in B-cell lymphoma 2 (Bcl-2) expression; increase in Bcl-2-associated X protein (Bax) expression; increase in levels of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1; and reduction in production of intracellular insulin. These results suggest that insulin synthesis during STZ treatment involves autophagy in INS-1E cells and, subsequently, results in a decrease in intracellular production of insulin.

  2. An early-branching microbialite cyanobacterium forms intracellular carbonates.

    PubMed

    Couradeau, Estelle; Benzerara, Karim; Gérard, Emmanuelle; Moreira, David; Bernard, Sylvain; Brown, Gordon E; López-García, Purificación

    2012-04-27

    Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.

  3. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  4. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  5. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Choline chloride. 182.8252 Section 182.8252 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  6. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8252 Choline chloride. (a) Product. Choline chloride. (b...

  7. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  8. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  9. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  10. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  11. 21 CFR 582.6193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  12. Effects of salinity on chloride cells and Na+ K+-ATPase activity in the teleost Gillchthys mirabilis

    USGS Publications Warehouse

    Yoshikawa, J.S.M.; McCormick, S.D.; Young, G.; Bern, H.A.

    1993-01-01

    1. Longjawed mudsuckers, Gillichthys mirabilis, in 30ppt seawater (SW) were transferred to 1.5, 30 and 60ppt SW.2. In the first 1–3 days after transfer, plasma chloride level and plasma osmolarity rose in the 60ppt SW fish, and decreased in the 1.5ppt SW fish.3. By day 21, however, plasma chloride and osmolarity were at or near the levels seen in the controls (30ppt).4. Branchial and jawskin Na+, K+-ATPase activities were high in all salinities, and did not differ significantly among treatments.5. The vital fluorescent stains DASPEI and anthroylouabain were used to detect mitochondria and Na+, K+-ATPase, respectively, in chloride cells.6. Both stains indicated that jawskin chloride cell density did not differ among treatment groups.7. In contrast, chloride cell size increased significantly with increasing salinity.8. The chloride cells of fish in 60 ppt SW were noticeably angular in outline, whereas those of both the 1.5 and 30ppt SW fish were circular.9. The results are discussed in relation to the ion transport requirements encountered in the intertidal habitat of the mudsucker.

  13. Enhanced hydrophilicity of chlorided aluminum oxide particulates

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III

    1978-01-01

    An enhancement of hydrophilicity for chlorided aluminas was demonstrated by the results obtained from gaseous H2O sorptions at 70-, 80-, and 86-percent relative humidity on alpha and gamma aluminum oxide particulates and on alpha and gamma aluminum oxide particulates with a chemisorbed surface chloride phase (produced by reactions of gaseous HCl + H2O on alumina). Continuous sorption histories for H2O on chlorided aluminas having specific surface areas that range from 7 to 227 sq m/g before chloriding indicated that initial sorption rates were directly linked to the extent of chemisorbed chlorided coverage and implied the same relationship for sorption capacities. The initial sorption rate on chlorided aluminas was found to be slower for the first exposure to H2O than for subsequent exposures (which reached equilibrated H2O coverages much faster), suggesting that slow chemical reactions between H2O and chlorided alumina may have been operative during initial exposures. Chlorided alumina particles were found to remain very hydrophilic (relative to nonchlorided analogs) for several H2O sorption/desorption cycles.

  14. Ion-binding properties of the ClC chloride selectivity filter

    PubMed Central

    Lobet, Séverine; Dutzler, Raimund

    2006-01-01

    The ClC channels are members of a large protein family of chloride (Cl−) channels and secondary active Cl− transporters. Despite their diverse functions, the transmembrane architecture within the family is conserved. Here we present a crystallographic study on the ion-binding properties of the ClC selectivity filter in the close homolog from Escherichia coli (EcClC). The ClC selectivity filter contains three ion-binding sites that bridge the extra- and intracellular solutions. The sites bind Cl− ions with mM affinity. Despite their close proximity within the filter, the three sites can be occupied simultaneously. The ion-binding properties are found conserved from the bacterial transporter EcClC to the human Cl− channel ClC-1, suggesting a close functional link between ion permeation in the channels and active transport in the transporters. In resemblance to K+ channels, ions permeate the ClC channel in a single file, with mutual repulsion between the ions fostering rapid conduction. PMID:16341087

  15. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance...

  16. 21 CFR 173.255 - Methylene chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methylene chloride. 173.255 Section 173.255 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.255 Methylene chloride. Methylene chloride may be present in food under the following conditions: (a) In spice oleoresins as a residue from...

  17. 21 CFR 173.255 - Methylene chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methylene chloride. 173.255 Section 173.255 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.255 Methylene chloride. Methylene chloride may be present in food under the following conditions: (a) In spice oleoresins as a residue from...

  18. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions...

  19. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  20. 21 CFR 182.8252 - Choline chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  1. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  2. Poly(vinyl Chloride) Photostabilization in the Presence of Schiff Bases Containing a Thiadiazole Moiety.

    PubMed

    Shaalan, Naser; Laftah, Nawres; El-Hiti, Gamal A; Alotaibi, Mohammad Hayal; Muslih, Raad; Ahmed, Dina S; Yousif, Emad

    2018-04-15

    Five Schiff bases containing a thiadiazole moiety have been used as poly(vinyl chloride) photostabilizers at low concentrations. The efficiency of Schiff bases as photostabilizers was investigated using various techniques, for example, the changes in poly(vinyl chloride) infrared spectra, molecular weight, chain scission quantum yield, and surface morphology were monitored upon irradiation with an ultraviolet light. Evidently, all the additives used inhibited poly(vinyl chloride) photodegradation at a significant level. The most efficient Schiff base exhibited a high level of aromaticity and contained a hydroxyl group. It seems possible that such photostabilization could be due to the direct absorption of ultraviolet radiation by the additives. In addition, Schiff bases could act as radical scavengers and proton transfer facilitators to stabilize the polymeric materials.

  3. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis.

    PubMed

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Dominguez Rieg, Jessica A; Rieg, Timo

    2017-08-01

    The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3 loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3 loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3 loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3 loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3 loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3 loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  5. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  6. 21 CFR 582.5985 - Zinc chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  7. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  8. 21 CFR 172.180 - Stannous chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used for color...

  9. Intracellular Phosphate Dynamics in Muscle Measured by Magnetic Resonance Spectroscopy during Hemodialysis

    PubMed Central

    Fournier, Thomas; Kocevar, Gabriel; Belloi, Amélie; Normand, Gabrielle; Ibarrola, Danielle; Sappey-Marinier, Dominique; Juillard, Laurent

    2016-01-01

    Of the 600–700 mg inorganic phosphate (Pi) removed during a 4-hour hemodialysis session, a maximum of 10% may be extracted from the extracellular space. The origin of the other 90% of removed phosphate is unknown. This study tested the hypothesis that the main source of phosphate removed during hemodialysis is the intracellular compartment. Six binephrectomized pigs each underwent one 3-hour hemodialysis session, during which the extracorporeal circulation blood flow was maintained between 100 and 150 ml/min. To determine in vivo phosphate metabolism, we performed phosphorous (31P) magnetic resonance spectroscopy using a 1.5-Tesla system and a surface coil placed over the gluteal muscle region. 31P magnetic resonance spectra (repetition time =10 s; echo time =0.35 ms) were acquired every 160 seconds before, during, and after dialysis. During the dialysis sessions, plasma phosphate concentrations decreased rapidly (−30.4 %; P=0.003) and then, plateaued before increasing approximately 30 minutes before the end of the sessions; 16 mmol phosphate was removed in each session. When extracellular phosphate levels plateaued, intracellular Pi content increased significantly (11%; P<0.001). Moreover, βATP decreased significantly (P<0.001); however, calcium levels remained balanced. Results of this study show that intracellular Pi is the source of Pi removed during dialysis. The intracellular Pi increase may reflect cellular stress induced by hemodialysis and/or strong intracellular phosphate regulation. PMID:26561642

  10. Intracellular magnesium detection by fluorescent indicators.

    PubMed

    Trapani, Valentina; Schweigel-Röntgen, Monika; Cittadini, Achille; Wolf, Federica I

    2012-01-01

    Magnesium is essential for a wide variety of biochemical reactions and physiological functions, but its regulatory mechanisms (both at the cellular and at the systemic level) are still poorly characterized. Not least among the reasons for this gap are the technical difficulties in sensing minor changes occurring over a high background concentration. Specific fluorescent indicators are highly sensitive tools for dynamic evaluation of intracellular magnesium concentration. We herein discuss the main criteria to consider when choosing a magnesium-specific fluorescent indicator and provide examples among commercial as well as developmental sensors. We focus on spectrofluorimetric approaches to quantify Mg(2+) concentration in cell or mitochondria suspensions, and on imaging techniques to detect intracellular magnesium distribution and fluxes by live microscopy, reporting a detailed description of standard protocols for each method. The general guidelines we provide should be applicable to specific issues by any researcher in the field. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Review: Intracardiac intracellular angiotensin system in diabetes

    PubMed Central

    Kumar, Rajesh; Yong, Qian Chen; Thomas, Candice M.

    2012-01-01

    The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appears to differ from the circulating and the local RAS, in terms of components and the mechanism of action. These differences may alter treatment strategies that target the RAS in several pathological conditions. Recent work from our laboratory has demonstrated significant upregulation of the cardiac, intracellular RAS in diabetes, which is associated with cardiac dysfunction. Here, we have reviewed evidence supporting an intracellular RAS in different cell types, ANG II's actions in cardiac cells, and its mechanism of action, focusing on the intracellular cardiac RAS in diabetes. We have discussed the significance of an intracellular RAS in cardiac pathophysiology and implications for potential therapies. PMID:22170614

  12. Insecticide resistance and intracellular proteases.

    PubMed

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Salt, chloride, bleach, and innate host defense

    PubMed Central

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  14. Salt, chloride, bleach, and innate host defense.

    PubMed

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  15. [Quantitative evaluation of health risk associated with occupational inhalation exposure to vinyl chloride at production plants in Poland].

    PubMed

    Szymczak, W

    1997-01-01

    Vinyl chloride is classified by the IARC in group 1-human carcinogens. In Poland occupational exposure to vinyl chloride is found among workers employed in many branches of industry, among others in the industry of vinyl chloride synthesis and polymerization as well as in the plastics, footwear, rubber, pharmaceutical and metallurgical industries. Concentrations observed range from the noon-determinable level to 90 mg/m3, at the MAC value equal to 5 mg/m3. Neoplasm of liver is a major carcinogenic effect of vinyl chloride. Hence, the health assessment focused on this critical risk. Four different linear dose-response models, developed by several authors and based on results of different epidemiological studies, were used to characterise the extent of cancer risk depending on the level of vinyl chloride concentrations. The estimated risk related to a forty-year employment under exposure equal to MAC values (5 mg/m3) fell within the range from 2.9.10(-4) to 2.6.10(-3). As the figures depict it did not exceed the acceptable level (10(-3)).

  16. Cofilin-1 levels and intracellular localization are associated with melanoma prognosis in a cohort of patients

    PubMed Central

    Bracalente, Candelaria; Rinflerch, Adriana R.; Ibañez, Irene L.; García, Francisco M.; Volonteri, Victoria; Galimberti, Gastón N.; Klamt, Fabio; Durán, Hebe

    2018-01-01

    Melanoma is an aggressive cancer with highly metastatic ability. We propose cofilin-1, a key protein in the regulation of actin dynamics and migration, as a prognostic marker. We determined cofilin-1 levels in a retrospective cohort of patients with melanomas and benign lesions of melanocytes (nevi) by immunohistochemistry. Higher cofilin-1 levels were found in malignant melanoma (MM) with Breslow Index (BI)>2 vs MM with BI<2, melanoma in situ (MIS) and nevi and also in MM with metastasis vs MM without detected metastasis. Kaplan-Meier survival curves were performed, clustering patients according to either the type of melanocytic lesions or cofilin-1 level. Survival curves demonstrated worse prognosis of patients with high vs low cofilin-1 levels. TCGA database analysis of melanoma also showed low survival in patients with upregulated cofilin-1 mRNA vs patients without alteration in CFL1 mRNA expression. As cofilin-1 has a dual function depending on its intracellular localization, we evaluated nuclear and cytoplasmic levels of cofilin-1 in melanoma and nevi samples by immunofluorescence. MM with high Breslow index and metastatic cells not only presented cytoplasmic cofilin-1, but also showed this protein at the nucleus. An increase in nuclear/cytoplasmic cofilin-1 mean fluorescence ratio was observed in MM with BI>2 vs MM with BI<2, MIS and nevi. In conclusion, an association of cofilin-1 levels with malignant features and an inverse correlation with survival were demonstrated. Moreover, this study suggests that not only the higher levels of cofilin-1, but also its nuclear localization can be proposed as marker of worse outcome of patients with melanoma. PMID:29844875

  17. Cofilin-1 levels and intracellular localization are associated with melanoma prognosis in a cohort of patients.

    PubMed

    Bracalente, Candelaria; Rinflerch, Adriana R; Ibañez, Irene L; García, Francisco M; Volonteri, Victoria; Galimberti, Gastón N; Klamt, Fabio; Durán, Hebe

    2018-05-08

    Melanoma is an aggressive cancer with highly metastatic ability. We propose cofilin-1, a key protein in the regulation of actin dynamics and migration, as a prognostic marker. We determined cofilin-1 levels in a retrospective cohort of patients with melanomas and benign lesions of melanocytes (nevi) by immunohistochemistry. Higher cofilin-1 levels were found in malignant melanoma (MM) with Breslow Index (BI)>2 vs MM with BI<2, melanoma in situ (MIS) and nevi and also in MM with metastasis vs MM without detected metastasis. Kaplan-Meier survival curves were performed, clustering patients according to either the type of melanocytic lesions or cofilin-1 level. Survival curves demonstrated worse prognosis of patients with high vs low cofilin-1 levels. TCGA database analysis of melanoma also showed low survival in patients with upregulated cofilin-1 mRNA vs patients without alteration in CFL1 mRNA expression. As cofilin-1 has a dual function depending on its intracellular localization, we evaluated nuclear and cytoplasmic levels of cofilin-1 in melanoma and nevi samples by immunofluorescence. MM with high Breslow index and metastatic cells not only presented cytoplasmic cofilin-1, but also showed this protein at the nucleus. An increase in nuclear/cytoplasmic cofilin-1 mean fluorescence ratio was observed in MM with BI>2 vs MM with BI<2, MIS and nevi. In conclusion, an association of cofilin-1 levels with malignant features and an inverse correlation with survival were demonstrated. Moreover, this study suggests that not only the higher levels of cofilin-1, but also its nuclear localization can be proposed as marker of worse outcome of patients with melanoma.

  18. The interaction of intracellular Mg2+ and pH on Cl- fluxes associated with intracellular pH regulation in barnacle muscle fibers

    PubMed Central

    1988-01-01

    The intracellular dialysis technique was used to measure unidirectional Cl- fluxes and net acid extrusion by single muscle fibers from the giant barnacle. Decreasing pHi below normal levels of 7.35 stimulated both Cl- efflux and influx. These increases of Cl- fluxes were blocked by disulfonic acid stilbene derivatives such as SITS and DIDS. The SITS- sensitive Cl- efflux was sharply dependent upon pHi, increasing approximately 20-fold as pHi was decreased from 7.35 to 6.7. Under conditions of normal intracellular Mg2+ concentration, the apparent pKa for the activation of Cl- efflux was 7.0. We found that raising [Mg2+]i, but not [Mg2+]o, had a pronounced inhibitory effect on both SITS-sensitive unidirectional Cl- fluxes as well as on SITS-sensitive net acid extrusion. Increasing [Mg2+]i shifted the apparent pKa of Cl- efflux to a more acid value without affecting the maximal flux that could be attained. This relation between pHi and [Mg2+]i on SITS- sensitive Cl- efflux is consistent with a competition between H ions and Mg ions. We conclude that the SITS-inhibitable Cl- fluxes are mediated by the pHi-regulatory transport mechanism and that changes of intracellular Mg2+ levels can modify the activity of the pHi regulator/anion transporter. PMID:3392519

  19. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS Reg. No. 7786-30-3) is a... prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous hydrochloric acid solution and...

  20. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous...

  1. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous...

  2. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS...

  3. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS...

  4. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS...

  5. Is sweat chloride predictive of severity of cystic fibrosis lung disease assessed by chest computed tomography?

    PubMed

    Caudri, Daan; Zitter, David; Bronsveld, Inez; Tiddens, Harm

    2017-09-01

    Cystic Fibrosis (CF) lung disease is characterized by a marked heterogeneity. Sweat chloride-level is a functional marker of the CF Transmembrane Regulator (CFTR) protein and could be an important predictor of later disease severity. In this retrospective analysis children from the Rotterdam CF clinic with available sweat chloride level at diagnosis and at least one routine spirometry-controlled volumetric chest CT scan in follow-up were included. CT scans were scored using the CF-CT scoring system (% of maximum). Associations between sweat chloride-levels and CF-CT scores were calculated using linear regression models, adjusting for age at sweat test and age at follow-up. Because structural lung damage develops over the course of many years, effect modification by the age at follow-up CT-scan was tested for by age-stratification. In 59 children (30 male) sweat chloride was measured at diagnosis (median age 0.5 years, range 0-13) and later chest CT performed (median age 14 years, range 6-18). Sweat chloride was associated with significantly higher CT-CT total score, bronchiectasis score, and mucus plugging score. Stratification for age at follow-up in tertiles showed this association remained only in the oldest age group (range 15-18 years). In that subgroup associations were found with all but one of the CF-CT subscores, as well as with all tested lung functions parameters. Sweat chloride-level is a significant predictor of CF lung disease severity as determined by chest CT and lung function. This association could only be demonstrated in children with follow-up to age 15 years and above. © 2017 Wiley Periodicals, Inc.

  6. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

    NASA Astrophysics Data System (ADS)

    Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith; Vingarzan, Roxanne

    2018-05-01

    The nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx ( = NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low ( < 30 and < 100 parts-per-trillion by volume (pptv) and median nocturnal peak values of 7.8 and 7.9 pptv, respectively). Mixing ratios of ClNO2 frequently peaked 1-2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except

  7. Chloride Channel 3 Channels in the Activation and Migration of Human Blood Eosinophils in Allergic Asthma.

    PubMed

    Gaurav, Rohit; Bewtra, Againdra K; Agrawal, Devendra K

    2015-08-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is responsible for respiratory burst in immune cells. Chloride channel 3 (CLC3) has been linked to the respiratory burst in eosinophils and neutrophils. The effect of cytokines and the involvement of CLC3 in the regulation of NADPH-dependent oxidative stress and on cytokine-mediated migration of eosinophils are not known. Human peripheral blood eosinophils were isolated from healthy individuals and from individuals with asthma by negative selection. Real-time PCR was used to detect the expression of NADPH oxidases in eosinophils. Intracellular reactive oxygen species (ROS) measurement was done with flow cytometry. Superoxide generation was measured with transforming growth factor (TGF)-β, eotaxin, and CLC3 blockers. CLC3 dependence of eosinophils in TGF-β- and eotaxin-induced migration was also examined. The messenger RNA (mRNA) transcripts of NADPH oxidase (NOX) 2, dual oxidase (DUOX) 1, and DUOX2 were detected in blood eosinophils, with very low expression of NOX1, NOX3, and NOX5 and no NOX4 mRNA. The level of NOX2 mRNA transcripts increased with disease severity in the eosinophils of subjects with asthma compared with healthy nonatopic volunteers. Change in granularity and size in eosinophils, but no change in intracellular ROS, was observed with phorbol myristate acetate (PMA). PMA, TGF-β, and eotaxin used the CLC3-dependent pathway to increase superoxide radicals. TGF-β and eotaxin induced CLC3-dependent chemotaxis of eosinophils. These findings support the requirement of CLC3 in the activation and migration of human blood eosinophils and may provide a potential novel therapeutic target to regulate eosinophil hyperactivity in allergic airway inflammation in asthma.

  8. Chloride Channel 3 Channels in the Activation and Migration of Human Blood Eosinophils in Allergic Asthma

    PubMed Central

    Gaurav, Rohit; Bewtra, Againdra K.

    2015-01-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is responsible for respiratory burst in immune cells. Chloride channel 3 (CLC3) has been linked to the respiratory burst in eosinophils and neutrophils. The effect of cytokines and the involvement of CLC3 in the regulation of NADPH-dependent oxidative stress and on cytokine-mediated migration of eosinophils are not known. Human peripheral blood eosinophils were isolated from healthy individuals and from individuals with asthma by negative selection. Real-time PCR was used to detect the expression of NADPH oxidases in eosinophils. Intracellular reactive oxygen species (ROS) measurement was done with flow cytometry. Superoxide generation was measured with transforming growth factor (TGF)-β, eotaxin, and CLC3 blockers. CLC3 dependence of eosinophils in TGF-β– and eotaxin-induced migration was also examined. The messenger RNA (mRNA) transcripts of NADPH oxidase (NOX) 2, dual oxidase (DUOX) 1, and DUOX2 were detected in blood eosinophils, with very low expression of NOX1, NOX3, and NOX5 and no NOX4 mRNA. The level of NOX2 mRNA transcripts increased with disease severity in the eosinophils of subjects with asthma compared with healthy nonatopic volunteers. Change in granularity and size in eosinophils, but no change in intracellular ROS, was observed with phorbol myristate acetate (PMA). PMA, TGF-β, and eotaxin used the CLC3-dependent pathway to increase superoxide radicals. TGF-β and eotaxin induced CLC3-dependent chemotaxis of eosinophils. These findings support the requirement of CLC3 in the activation and migration of human blood eosinophils and may provide a potential novel therapeutic target to regulate eosinophil hyperactivity in allergic airway inflammation in asthma. PMID:25514499

  9. Mapping intracellular mechanics on micropatterned substrates

    PubMed Central

    Mandal, Kalpana; Asnacios, Atef; Goud, Bruno; Manneville, Jean-Baptiste

    2016-01-01

    The mechanical properties of cells impact on their architecture, their migration, intracellular trafficking, and many other cellular functions and have been shown to be modified during cancer progression. We have developed an approach to map the intracellular mechanical properties of living cells by combining micropatterning and optical tweezers-based active microrheology. We optically trap micrometer-sized beads internalized in cells plated on crossbow-shaped adhesive micropatterns and track their displacement following a step displacement of the cell. The local intracellular complex shear modulus is measured from the relaxation of the bead position assuming that the intracellular microenvironment of the bead obeys power-law rheology. We also analyze the data with a standard viscoelastic model and compare with the power-law approach. We show that the shear modulus decreases from the cell center to the periphery and from the cell rear to the front along the polarity axis of the micropattern. We use a variety of inhibitors to quantify the spatial contribution of the cytoskeleton, intracellular membranes, and ATP-dependent active forces to intracellular mechanics and apply our technique to differentiate normal and cancer cells. PMID:27799529

  10. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all... escape from vinyl chloride atmospheres containing adequate oxygen to support life, are described...

  11. Preparation and Characterization of a Calcium Phosphate Ceramic for the Immobilization of Chloride-containing Intermediate Level Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, Brian; Donald, Ian W.; Scheele, Randall D.

    2003-12-01

    Attention has recently been given to the immobilization of special categories of radioactive wastes, some of which contain high concentrations of actinide chlorides. Although vitrification in phosphate glass has been proposed, this was rejected because of the high losses of chloride. On the basis of non-radioactive and, more recently, radioactive studies, we have shown that calcium phosphate is an effective host for immobilizing the chloride constituents [1]. In this instance, the chlorine is retained as chloride, rather than evolved as a chlorine-bearing gas. The immobilized product is in the form of a free-flowing, non-hygroscopic powder, in which the chlorides aremore » chemically combined within the mineral phases chlorapatite [Ca5(PO4)3Cl] and spodiosite [Ca2(PO4)Cl]. Data from studies on non-radioactive simulated waste consisting of a mixture of CaCl2 and SmCl3, and radioactive simulated waste composed of CaCl2 with PuCl3 or PuCl3 and AmCl3, are presented and compared. The XRD data confirm the presence of chlorapatite and spodiosite in the non-radioactive and radioactive materials. The durability of all specimens was measured with a modified MCC-1 test. Releases of Cl after 28 days were 1.6 x 10-3 g m-2 for the non-radioactive specimens and 7 x 10-3 g m-2 for the Pu-bearing specimens. Releases of Ca after 28 days were 0.3 x 10-3 and 2.0 x 10-3 g m-2 for the non-radioactive composition and the Pu composition, respectively, whilst release of Pu from the radioactive specimens was lower for the mixed Pu/Am specimen at 1.2 x 10-5g m-2. The release of Am from the mixed Pu/Am composition was exceptionally low at 2.4 x 10-7 g m-2. Overall, the release rate data suggest that the ceramics dissolve congruently, followed by precipitation of Sm, Pu and Am as less soluble phases, possibly oxides or phosphates. The differences in behaviour noted between non-radioactive and radioactive specimens are interpreted in terms of the crystal chemistry of the individual systems.« less

  12. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells.

    PubMed

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A

    2017-08-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na + ) and, indirectly, serum potassium (K + ) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ( 22 Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22 Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K + , the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22 Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.

  13. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective

  14. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis

    DOE PAGES

    Micheva-Viteva, Sofiya N.; Shou, Yulin; Ganguly, Kumkum; ...

    2017-06-07

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signalingmore » as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. As a result, identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective

  15. Electron Detachment Dissociation of Underivatized Chloride-Adducted Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Kornacki, James R.; Adamson, Julie T.; Håkansson, Kristina

    2012-11-01

    Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto- N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.

  16. Washing bridges to reduce chloride : final report.

    DOT National Transportation Integrated Search

    2005-07-01

    Chloride ions are known to promote the corrosion of steel in reinforced concrete. This project was undertaken to investigate the efficacy of washing, to reduce existing chloride content and chloride ion uptake. The project consisted of a laboratory c...

  17. Chloride channels in stroke

    PubMed Central

    Zhang, Ya-ping; Zhang, Hao; Duan, Dayue Darrel

    2013-01-01

    Vascular remodeling of cerebral arterioles, including proliferation, migration, and apoptosis of vascular smooth muscle cells (VSMCs), is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain, ie, stroke. Accumulating evidence strongly supports an important role for chloride (Cl−) channels in vascular remodeling and stroke. At least three Cl− channel genes are expressed in VSMCs: 1) the TMEM16A (or Ano1), which may encode the calcium-activated Cl− channels (CACCs); 2) the CLC-3 Cl− channel and Cl−/H+ antiporter, which is closely related to the volume-regulated Cl− channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR), which encodes the PKA- and PKC-activated Cl− channels. Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization, vasoconstriction, and inhibition of VSMC proliferation. Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species, induces proliferation and inhibits apoptosis of VSMCs. Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension. In addition, Cl− current mediated by gamma-aminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death. This review focuses on the functional roles of Cl− channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Cl− channels as new targets for the prevention and treatment of stroke. PMID:23103617

  18. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  19. Washing bridges to reduce chloride : interim report.

    DOT National Transportation Integrated Search

    2003-12-01

    Chloride ions are known to promote the corrosion of steel in reinforced concrete. This project was undertaken to investigate the efficacy of washing, to reduce chloride content and chloride ion uptake. The project consists of a laboratory and a field...

  20. Metal chloride cathode for a battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Bankston, C. Perry (Inventor)

    1991-01-01

    A method of fabricating a rechargeable battery is disclosed which includes a positive electrode which contains a chloride of a selected metal when the electrode is in its active state. The improvement comprises fabricating the positive electrode by: providing a porous matrix composed of a metal; providing a solution of the chloride of the selected metal; and impregnating the matrix with the chloride from the solution.

  1. Formation of dioxins during the combustion of newspapers in the presence of sodium chloride and poly(vinyl chloride).

    PubMed

    Yasuhara, A; Katami, T; Okuda, T; Ohno, N; Shibamoto, T

    2001-04-01

    Exhaust gases from the combustion of newspaper alone, from branches of London plane tree alone, and from newspapers mixed with sodium chloride (NaCl), polyethylene, or poly(vinyl chloride) (PVC) were collected. The samples were analyzed for dioxins by gas chromatography/mass spectrometry. Total amounts of dioxins found in the samples were 0.186 ng/g from newspapers alone, 1.42 ng/g from the branches of London plane, 102 ng/g from newspapers impregnated with sodium chloride (CI wt % = 3.1), 101 ng/g from newspapers impregnated with sodium chloride mixed with PVC (Cl wt % = 2.6), and 146 ng/g from newspapers mixed with PVC (Cl wt % = 5.1). Samples with a higher chloride content produced more dioxins, and there is a clear correlation between dioxin formation and chloride content. The amount of dioxins formed in the samples according to the number of chlorides was Cl5 > Cl4 > Cl6 > Cl7 > Cl8 in PCDD isomers and Cl4 > Cl5 > Cl6 > Cl7 > Cl8 in PCDF isomers, except in the case of newspapers alone. Benzofurans composed 78-92% of the total dioxins formed in the exhaust gases. The higher the number of the chlorides, the lower the production of benzofuran observed. NaCl vaporized at the temperature of the flame used for combustion of the samples (760-1080 degrees C). The results indicate that NaCl and PVC contribute significantly to dioxin formation from waste materials combusted in incinerators.

  2. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment

    NASA Astrophysics Data System (ADS)

    Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu

    2018-03-01

    For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.

  3. Promotion and Rescue of Intracellular Brucella neotomae Replication during Coinfection with Legionella pneumophila.

    PubMed

    Kang, Yoon-Suk; Kirby, James E

    2017-05-01

    We established a new Brucella neotomae in vitro model system for study of type IV secretion system-dependent (T4SS) pathogenesis in the Brucella genus. Importantly, B. neotomae is a rodent pathogen, and unlike B. abortus , B. melitensis , and B. suis , B. neotomae has not been observed to infect humans. It therefore can be handled more facilely using biosafety level 2 practices. More particularly, using a series of novel fluorescent protein and lux operon reporter systems to differentially label pathogens and track intracellular replication, we confirmed T4SS-dependent intracellular growth of B. neotomae in macrophage cell lines. Furthermore, B. neotomae exhibited early endosomal (LAMP-1) and late endoplasmic reticulum (calreticulin)-associated phagosome maturation. These findings recapitulate prior observations for human-pathogenic Brucella spp. In addition, during coinfection experiments with Legionella pneumophila , we found that defective intracellular replication of a B. neotomae T4SS virB4 mutant was rescued and baseline levels of intracellular replication of wild-type B. neotomae were significantly stimulated by coinfection with wild-type but not T4SS mutant L. pneumophila Using confocal microscopy, it was determined that intracellular colocalization of B. neotomae and L. pneumophila was required for rescue and that colocalization came at a cost to L. pneumophila fitness. These findings were not completely expected based on known temporal and qualitative differences in the intracellular life cycles of these two pathogens. Taken together, we have developed a new system for studying in vitro Brucella pathogenesis and found a remarkable T4SS-dependent interplay between Brucella and Legionella during macrophage coinfection. Copyright © 2017 American Society for Microbiology.

  4. Effect of hypoxia mimetic cobalt chloride on the expression of extracellular-superoxide dismutase in retinal pericytes.

    PubMed

    Adachi, Tetsuo; Aida, Kazunari; Nishihara, Hiroko; Kamiya, Tetsuro; Hara, Hirokazu

    2011-01-01

    The initial clinical stage of diabetic retinopathy (DR) is characterized by the development of intraretinal microvascular abnormalities. The increased formation of reactive oxygen species (ROS) is thought to be a key event in the pathogenesis of DR. Extracellular-superoxide dismutase (EC-SOD) is an anti-inflammatory enzyme that is distributed mainly in vascular cells and protects cells from ROS by scavenging superoxide anion. Treatment with cobalt chloride (CoCl(2)) decreased the expression of EC-SOD but not other SOD isozymes in pericytes accompanied with an increase of intracellular ROS production. Pre-treatment with N-acetylcysteine (NAC) significantly suppressed the ROS production and down-regulation of EC-SOD. We observed the activation of caspase-3 and DNA fragmentation as signs of apoptotic process by CoCl(2) treatment. In addition, these phenomena were significantly inhibited by pre-treatment with NAC. EC-SOD enhancer 4-phenyl butyric acid also suppressed the caspase-3 activation. It is known that the presence of a high level of EC-SOD throughout the vessel walls might have an important protective role against superoxide in the vascular system. The decrease in EC-SOD expression accompanied with elevation of ROS level in pericytes under hypoxia might induce and/or promote the ROS-triggered apoptosis of pericytes and the development of pathogenesis in DR.

  5. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS.

    PubMed

    Shaw, Andrew D; Raghunathan, Karthik; Peyerl, Fred W; Munson, Sibyl H; Paluszkiewicz, Scott M; Schermer, Carol R

    2014-12-01

    Recent data suggest that both elevated serum chloride levels and volume overload may be harmful during fluid resuscitation. The purpose of this study was to examine the relationship between the intravenous chloride load and in-hospital mortality among patients with systemic inflammatory response syndrome (SIRS), with and without adjustment for the crystalloid volume administered. We conducted a retrospective analysis of 109,836 patients ≥ 18 years old that met criteria for SIRS and received fluid resuscitation with crystalloids. We examined the association between changes in serum chloride concentration, the administered chloride load and fluid volume, and the 'volume-adjusted chloride load' and in-hospital mortality. In general, increases in the serum chloride concentration were associated with increased mortality. Mortality was lowest (3.7%) among patients with minimal increases in serum chloride concentration (0-10 mmol/L) and when the total administered chloride load was low (3.5% among patients receiving 100-200 mmol; P < 0.05 versus patients receiving ≥ 500 mmol). After controlling for crystalloid fluid volume, mortality was lowest (2.6%) when the volume-adjusted chloride load was 105-115 mmol/L. With adjustment for severity of illness, the odds of mortality increased (1.094, 95% CI 1.062, 1.127) with increasing volume-adjusted chloride load (≥ 105 mmol/L). Among patients with SIRS, a fluid resuscitation strategy employing lower chloride loads was associated with lower in-hospital mortality. This association was independent of the total fluid volume administered and remained significant after adjustment for severity of illness, supporting the hypothesis that crystalloids with lower chloride content may be preferable for managing patients with SIRS.

  6. Structure of a CLC chloride ion channel by cryo-electron microscopy

    PubMed Central

    Park, Eunyong; Campbell, Ernest B.; MacKinnon, Roderick

    2017-01-01

    CLC proteins transport chloride (Cl−) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl− ions passively, whereas others are secondary active transporters that exchange two Cl− ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture based on sequence homology. To solve this puzzle we determined the structure of a mammalian CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl− transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl− passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl−/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl− down its electrochemical gradient. PMID:28002411

  7. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system

    PubMed Central

    Villar-Cheda, Begoña; Costa-Besada, Maria A; Valenzuela, Rita; Perez-Costas, Emma; Melendez-Ferro, Miguel; Labandeira-Garcia, Jose L

    2017-01-01

    The ‘classical’ renin–angiotensin system (RAS) is a circulating system that controls blood pressure. Local/paracrine RAS, identified in a variety of tissues, including the brain, is involved in different functions and diseases, and RAS blockers are commonly used in clinical practice. A third type of RAS (intracellular/intracrine RAS) has been observed in some types of cells, including neurons. However, its role is still unknown. The present results indicate that in brain cells the intracellular RAS counteracts the intracellular superoxide/H2O2 and oxidative stress induced by the extracellular/paracrine angiotensin II acting on plasma membrane receptors. Activation of nuclear receptors by intracellular or internalized angiotensin triggers a number of mechanisms that protect the cell, such as an increase in the levels of protective angiotensin type 2 receptors, intracellular angiotensin, PGC-1α and IGF-1/SIRT1. Interestingly, this protective mechanism is altered in isolated nuclei from brains of aged animals. The present results indicate that at least in the brain, AT1 receptor blockers acting only on the extracellular or paracrine RAS may offer better protection of cells. PMID:28880266

  8. Chloride Fluxes in Isolated Dialyzed Barnacle Muscle Fibers

    PubMed Central

    DiPolo, R.

    1972-01-01

    Chloride outflux and influx has been studied in single isolated muscle fibers from the giant barnacle under constant internal composition by means of a dialysis perfusion technique. Membrane potential was continually recorded. The chloride outfluxes and influxes were 143 and 144 pmoles/cm2-sec (mean resting potential: 58 mv, temperature: 22°–24°C) with internal and external chloride concentrations of 30 and 541 mM, respectively. The chloride conductance calculated from tracer measurements using constant field assumptions is about fourfold greater than that calculated from published electrical data. Replacing 97% of the external chloride ions by propionate reduces the chloride efflux by 51%. Nitrate ions applied either to the internal or external surface of the membrane slows the chloride efflux. The external pH dependence of the chloride efflux follows the external pH dependence of the membrane conductance, in the range pH 3.9–4.7, increasing with decreasing pH. In the range pH 5–9, the chloride efflux increased with increasing pH, in a manner similar to that observed in frog muscle fibers. The titration curve for internal pH changes in the range 4.0–7.0 was quantitatively much different from that for external pH change, indicating significant asymmetry in the internal and external pH dependence of the chloride efflux. PMID:5074810

  9. Tribasic copper chloride and copper sulfate as copper sources for weanling pigs.

    PubMed

    Cromwell, G L; Lindemann, M D; Monegue, H J; Hall, D D; Orr, D E

    1998-01-01

    We conducted three 28-d experiments involving a total of 915 pigs to assess the relative efficacy of tribasic Cu chloride (Cu2[OH]3Cl) and Cu sulfate pentahydrate (CuSO4.5H20) in diets for weanling pigs. Experiments 1 and 2 were conducted at an experiment station (University of Kentucky), and Exp. 3 was conducted at a commercial feed company's swine research facilities (United Feeds, Inc.). The basal diet was a fortified corn-soybean meal-dried whey diet (1.25% lysine) with no antimicrobials in Exp. 1 or with carbadox (55 mg/kg) in Exp. 2 and 3. In Exp. 1, 135 pigs were weaned at 27 to 31 d and fed the basal diet without or with 100 or 200 ppm Cu from Cu chloride, or 100 or 200 ppm Cu from Cu sulfate from 7.9 to 17.7 kg BW. The 200 ppm level of Cu from Cu sulfate improved ADG (P < .10), and both levels of Cu from Cu chloride tended to improve feed:gain. In Exp. 2, 150 pigs were weaned at 27 to 31 d and fed the basal diet without or with 100, 150, or 200 ppm Cu from Cu chloride, or 200 ppm Cu from Cu sulfate from 8.9 to 20.8 kg BW. Addition of 200 ppm Cu improved ADG (P < .08) and ADFI (P < .01), but not feed:gain. Source of Cu did not affect performance. In Exp. 3, 630 pigs were weaned at 16 to 20 d and fed a common diet for 10 to 12 d until the start of the experimental period. The same experimental diets as used in Exp. 2 were fed from 9.1 to 25.5 kg BW. Both Cu sources improved ADG (P < .01), and sources and levels of Cu did not differ. Liver Cu increased in pigs fed 200 ppm Cu, and Cu sulfate tended to increase liver Cu more than did Cu chloride in one experiment, but not in another experiment. The results indicate that tribasic Cu chloride is as effective as Cu sulfate in improving growth in weanling pigs.

  10. The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels.

    PubMed

    Gomes Castro, Allisson Jhonatan; Cazarolli, Luisa Helena; Bretanha, Lizandra C; Sulis, Paola Miranda; Rey Padilla, Diana Patricia; Aragón Novoa, Diana Marcela; Dambrós, Betina Fernanda; Pizzolatti, Moacir G; Mena Barreto Silva, Fátima Regina

    2018-06-15

    Betulinic acid (BA) has been described as an insulin secretagogue which may explain its potent antihyperglycemic effect; however, the exact role of BA as an insulinogenic agent is not clear. The aim of this study was to investigate the mechanism of BA on calcium influx and static insulin secretion in pancreatic islets isolated from euglycemic rats. We found that BA triggers calcium influx by a mechanism dependent on ATP-dependent potassium channels and L-type voltage-dependent calcium channels. Additionally, the voltage-dependent and calcium-dependent chloride channels are also involved in the mechanism of BA, probably due to an indirect stimulation of calcium entry and increased intracellular calcium. Additionally, the downstream activation of PKC, which is necessary for the effect of BA on calcium influx, is involved in the full stimulatory response of the triterpene. BA stimulated the static secretion of insulin in pancreatic islets, indicating that the abrupt calcium influx may be a key step in its secretagogue effect. As such, BA stimulates insulin secretion through the activation of electrophysiological mechanisms, such as the closure of potassium channels and opening of calcium and chloride channels, inducing cellular depolarization associated with metabolic-biochemical effects, in turn activating PKC and ensuring the secretion of insulin. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Mapping the spatial distribution of chloride deposition across Australia

    NASA Astrophysics Data System (ADS)

    Davies, P. J.; Crosbie, R. S.

    2018-06-01

    The high solubility and conservative behaviour of chloride make it ideal for use as an environmental tracer of water and salt movement through the hydrologic cycle. For such use the spatial distribution of chloride deposition in rainfall at a suitable scale must be known. A number of authors have used point data acquired from field studies of chloride deposition around Australia to construct relationships to characterise chloride deposition as a function of distance from the coast; these relationships have allowed chloride deposition to be interpolated in different regions around Australia. In this paper we took this a step further and developed a chloride deposition map for all of Australia which includes a quantification of uncertainty. A previously developed four parameter model of chloride deposition as a function of distance from the coast for Australia was used as the basis for producing a continental scale chloride deposition map. Each of the four model parameters were made spatially variable by creating parameter surfaces that were interpolated using a pilot point regularisation approach within a parameter estimation software. The observations of chloride deposition were drawn from a literature review that identified 291 point measurements of chloride deposition over a period of 80 years spread unevenly across all Australian States and Territories. A best estimate chloride deposition map was developed from the resulting surfaces on a 0.05 degree grid. The uncertainty in the chloride deposition map was quantified as the 5th and 95th percentile of 1000 calibrated models produced via Null Space Monte Carlo analysis and the spatial variability of chloride deposition across the continent was consistent with landscape morphology. The temporal variability in chloride deposition on a decadal scale was investigated in the Murray-Darling Basin, this highlighted the need for long-term monitoring of chloride deposition if the uncertainty of the continental scale map is

  12. Evolution of the Calcium-Based Intracellular Signaling System

    PubMed Central

    Marchadier, Elodie; Oates, Matt E.; Fang, Hai; Donoghue, Philip C.J.; Hetherington, Alistair M.; Gough, Julian

    2016-01-01

    To progress our understanding of molecular evolution from a collection of well-studied genes toward the level of the cell, we must consider whole systems. Here, we reveal the evolution of an important intracellular signaling system. The calcium-signaling toolkit is made up of different multidomain proteins that have undergone duplication, recombination, sequence divergence, and selection. The picture of evolution, considering the repertoire of proteins in the toolkit of both extant organisms and ancestors, is radically different from that of other systems. In eukaryotes, the repertoire increased in both abundance and diversity at a far greater rate than general genomic expansion. We describe how calcium-based intracellular signaling evolution differs not only in rate but in nature, and how this correlates with the disparity of plants and animals. PMID:27358427

  13. Influence of chloride on the chronic toxicity of sodium nitrate to Ceriodaphnia dubia and Hyalella azteca.

    PubMed

    Soucek, David J; Dickinson, Amy

    2016-09-01

    While it has been well established that increasing chloride concentration in water reduces the toxicity of nitrite to freshwater species, little work has been done to investigate the effect of chloride on nitrate toxicity. We conducted acute and chronic nitrate (as sodium nitrate) toxicity tests with the cladoceran Ceriodaphnia dubia and the amphipod Hyalella azteca (chronic tests only) over a range of chloride concentrations spanning natural chloride levels found in surface waters representative of watersheds of the Great Lakes Region. Chronic nitrate toxicity test results with both crustaceans were variable, with H. azteca appearing to be one of the more sensitive invertebrate species tested and C. dubia being less sensitive. While the variability in results for H. azteca were to an extent related to chloride concentration in test water that was distinctly not the case for C. dubia. We concluded that the chloride dependent toxicity of nitrate is not universal among freshwater crustaceans. An additional sodium chloride chronic toxicity test with the US Lab strain of H. azteca in the present study suggested that when present as predominantly sodium chloride and with relatively low concentrations of other ions, there is a narrow range of chloride concentrations over which this strain is most fit, and within which toxicity test data are reliable.

  14. Chloride channels as tools for developing selective insecticides.

    PubMed

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for

  15. Congenital chloride diarrhea misdiagnosed as pseudo-Bartter syndrome.

    PubMed

    Saneian, Hossein; Bahraminia, Emad

    2013-09-01

    Congenital chloride diarrhea (CCD) is a rare autosomal recessive disease which is characterized by intractable diarrhea of infancy, failure to thrive, high fecal chloride, hypochloremia, hypokalemia, hyponatremia and metabolic alkalosis. In this case report, we present the first female and the second official case of CCD in Iran. A 15-month-old girl referred to our hospital due to failure to thrive and poor feeding. She had normal kidneys, liver and spleen. Treating her with Shohl's solution, thiazide and zinc sulfate did not result in weight gain. Consequently, pseudo-Bartter syndrome was suspected, she was treated with intravenous (IV) therapy to which she responded dramatically. In addition, hypokalemia resolved quickly. Since this does not usually happen in patients with the pseudo-Bartter syndrome, stool tests were performed. Abnormal level of chloride in stool suggested CCD and she was thus treated with IV fluid replacement, Total parentral nutrition and high dose of oral omeprazole (3 mg/kg/day). She gained 1 kg of weight and is doing fine until present. CCD is a rare hereditary cause of intractable diarrhea of infancy. It should be considered in infants with unknown severe electrolyte disturbances.

  16. Charge Transport in the ClC-type Chloride-Proton Anti-porter from Escherichia coli*

    PubMed Central

    Kieseritzky, Gernot; Knapp, Ernst-Walter

    2011-01-01

    The first chloride transporter identified in the superfamily of ClC chloride channels was from Escherichia coli (EClC) (Accardi, A., and Miller, C. (2004) Nature 427, 803–807). Pathways, energetics, and mechanism of proton and chloride translocation and their coupling are up to now unclear. To bridge the hydrophobic gap of proton transport, we modeled four stable buried waters into both subunits of the WT EClC structure. Together they form a “water wire” connecting Glu-203 with the chloride at the central site, which in turn connects to Glu-148, the hypothetical proton exit site. Assuming the transient production of hydrochloride in the central chloride binding site of EClC, the water wire could establish a transmembrane proton transport pathway starting from Glu-203 all the way downstream onto Glu-148. We demonstrated by electrostatic and quantum chemical computations that protonation of the central chloride is energetically feasible. We characterized all chloride occupancies and protonation states possibly relevant for the proton-chloride transport cycle in EClC and constructed a working model. Accordingly, EClC evolves through states involving up to two excess protons and between one and three chlorides, which was required to fulfill the experimentally observed 2:1 stoichiometry. We show that the Y445F and E203H mutants of EClC can operate similarly, thus explaining why they exhibit almost WT activity levels. The proposed mechanism of coupled chloride-proton transport in EClC is consistent with available experimental data and allows predictions on the importance of specific amino acids, which may be probed by mutation experiments. PMID:21059656

  17. ROAD SALT APPLICATION CREATES A UNIQUE CHLORIDE BIOCHEMISTRY IN AN URBAN STREAM OF THE CHESAPEAKE BAY WATERSHED

    EPA Science Inventory

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a ...

  18. Preliminary simulation of chloride transport in the Equus Beds aquifer and simulated effects of well pumping and artificial recharge on groundwater flow and chloride transport near the city of Wichita, Kansas, 1990 through 2008

    USGS Publications Warehouse

    Klager, Brian J.; Kelly, Brian P.; Ziegler, Andrew C.

    2014-01-01

    The Equus Beds aquifer in south-central Kansas is a primary water-supply source for the city of Wichita. Water-level declines because of groundwater pumping for municipal and irrigation needs as well as sporadic drought conditions have caused concern about the adequacy of the Equus Beds aquifer as a future water supply for Wichita. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project, a plan to artificially recharge the aquifer with excess water from the Little Arkansas River. Artificial recharge will raise groundwater levels, increase storage volume in the aquifer, and deter or slow down a plume of chloride brine approaching the Wichita well field from the Burrton, Kansas area caused by oil production activities in the 1930s. Another source of high chloride water to the aquifer is the Arkansas River. This study was prepared in cooperation with the city of Wichita as part of the Equus Beds Aquifer Storage and Recovery project. Chloride transport in the Equus Beds aquifer was simulated between the Arkansas and Little Arkansas Rivers near the Wichita well field. Chloride transport was simulated for the Equus Beds aquifer using SEAWAT, a computer program that combines the groundwater-flow model MODFLOW-2000 and the solute-transport model MT3DMS. The chloride-transport model was used to simulate the period from 1990 through 2008 and the effects of five well pumping scenarios and one artificial recharge scenario. The chloride distribution in the aquifer for the beginning of 1990 was interpolated from groundwater samples from around that time, and the chloride concentrations in rivers for the study period were interpolated from surface water samples. Five well-pumping scenarios and one artificial-recharge scenario were assessed for their effects on simulated chloride transport and water levels in and around the Wichita well field. The scenarios were: (1) existing 1990 through 2008 pumping conditions, to serve as a

  19. Fabrication Of Metal Chloride Cathodes By Sintering

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Di Stefano, Salvador; Bankston, C. Perry

    1992-01-01

    Transition-metal chloride cathodes for use in high-temperature rechargeable sodium batteries prepared by sintering transition-metal powders mixed with sodium chloride. Need for difficult and dangerous chlorination process eliminated. Proportions of transition metal and sodium chloride in mixture adjusted to suit specific requirements. Cathodes integral to sodium/metal-chloride batteries, which have advantages over sodium/sulfur batteries including energy densities, increased safety, reduced material and thermal-management problems, and ease of operation and assembly. Being evaluated for supplying electrical power during peak demand and electric vehicles.

  20. Nanomedicine as an emerging approach against intracellular pathogens

    PubMed Central

    Armstead, Andrea L; Li, Bingyun

    2011-01-01

    Diseases such as tuberculosis, hepatitis, and HIV/AIDS are caused by intracellular pathogens and are a major burden to the global medical community. Conventional treatments for these diseases typically consist of long-term therapy with a combination of drugs, which may lead to side effects and contribute to low patient compliance. The pathogens reside within intracellular compartments of the cell, which provide additional barriers to effective treatment. Therefore, there is a need for improved and more effective therapies for such intracellular diseases. This review will summarize, for the first time, the intracellular compartments in which pathogens can reside and discuss how nanomedicine has the potential to improve intracellular disease therapy by offering properties such as targeting, sustained drug release, and drug delivery to the pathogen’s intracellular location. The characteristics of nanomedicine may prove advantageous in developing improved or alternative therapies for intracellular diseases. PMID:22228996

  1. Use of bromide:Chloride ratios to differentiate potential sources of chloride in a shallow, unconfined aquifer affected by brackish-water intrusion

    USGS Publications Warehouse

    Andreasen, D.C.; Fleck, W.B.

    1997-01-01

    Brackish water from Chesapeake Bay and its tributaries has entered the Aquia aquifer in east-central Anne Arundel County, Maryland, USA. This determination was made based on chloride analyses of water samples collected in wells screened in the Aquia aquifer between October 1988 and May 1989. The Aquia aquifer, which is composed of fine- to medium-grained sand, is a shallow, unconfined aquifer in this area. Land use is primarily urban, consisting of a mixture of residential and light commercial areas. Associated with the urban setting is the potential for chloride contamination to enter the Aquia aquifer from anthropogenic sources, such as residential septic-tank effluent, leaky public sewer lines, road-deicing salt, stormwater infiltration basins, and domestic water-conditioning recharge effluent. In order to map the distribution of bay-water intrusion in the Aquia aquifer, chloride derived from Chesapeake Bay was differentiated from chloride derived from anthropogenic sources by comparing the ratio of dissolved bromide to dissolved chloride (bromide:chloride) in groundwater to the distinctive ratio in Chesapeake Bay water. Two additional factors considered in determining the source of the chloride were nitrogen concentrations and well-screen positions of sampled wells in relation to the estimated depth of the fresh-water/brackish-water interface. Of 36 Aquia-aquifer water samples with chloride concentrations greater than 30 mg/L, 22 had bromide:chloride ratios similar to the ratio in Chesapeake Bay water, an indication that bay water is the primary source of the chloride. Of the other 14 samples with bromide:chloride ratios dissimilar to the ratio in Chesapeake Bay water, seven were from wells where screen positions were substantially above the estimated fresh-water/brackish-water interface. Three of these samples had nitrogen concentrations (as nitrite plus nitrate) greater than 3.0 mg/L, an indication that chloride in these groundwater samples comes from

  2. HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication.

    PubMed

    Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B

    2017-10-01

    In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p < 0.04) and 8 g/L (p = 0.05) treatments. HAMP expression showed alternating elevations and increased upon 1 g/L (p < 0.05) and 5 g/L (p < 0.05). However, in the recombinant cells that showed higher intracellular iron levels than wild-type cells, HFE and HAMP expressions were elevated only at low 1 g/L treatment (p < 0.03) and were repressed at 2 g/L treatment (p < 0.03). Under holotransferrin-untreated conditions, the iron-loaded recombinant cells showed higher expressions of HFE (p < 0.03) and HAMP (p = 0.05) than wild-type cells. HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.

  3. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    USGS Publications Warehouse

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  4. Intracellular Calcium Decreases Upon Hyper Gravity-Treatment of Arabidopsis Thaliana Cell Cultures

    NASA Astrophysics Data System (ADS)

    Neef, Maren; Denn, Tamara; Ecke, Margret; Hampp, Rüdiger

    2016-06-01

    Cell cultures of Arabidopsis thaliana ( A. t.) respond to changes in the gravitational field strength with fluctuations of the amount of cytosolic calcium (Ca2+). In parabolic flight experiments, where hyper- and μg phases follow each other, μg clearly increased Ca2+, while hyper-g caused a slight reduction. Since the latter observation had not been reported before, we studied this effect in more detail. Using a special centrifuge for heavy items (ZARM, Bremen, Germany), we determined the hyper-g-dependent intracellular Ca2+ level with transgenic cell lines expressing the Ca2+ sensor, cameleon. This sensor exhibits a shift in fluorescence from 480 to 530 nm in response to Ca2+ binding. The data show a drop in the intracellular Ca2+ concentration with a threshold gravity of around 3 g. This is above hypergravity levels achieved during parabolic flights (1.8 g). The use of mutants with different sub-cellular targets of cameleon expression (nucleus, tonoplast, plasma membrane) gave the same results, i.e. Ca2+ is obviously exported from several intracellular compartments.

  5. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  6. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  7. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  8. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  9. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  10. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  11. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  12. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  13. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  14. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  15. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  16. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  17. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  18. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  19. 21 CFR 582.5252 - Choline chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  20. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acids to form amines that are subsequently reacted with methyl chloride to form the quaternary ammonium... then reacted with 2-ethylhexanal, reduced, methylated, and subsequently reacted with methyl chloride to...

  1. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acids to form amines that are subsequently reacted with methyl chloride to form the quaternary ammonium... then reacted with 2-ethylhexanal, reduced, methylated, and subsequently reacted with methyl chloride to...

  2. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume.

    PubMed

    Duan, D; Cowley, S; Horowitz, B; Hume, J R

    1999-01-01

    In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.

  3. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  4. A Facile Preparation of Imidazolinium Chlorides

    PubMed Central

    Kuhn, Kevin M.; Grubbs, Robert H.

    2009-01-01

    A process for the preparation of symmetric and unsymmetric imidazolinium chlorides that involves reaction of a formamidine with dichloroethane and a base (a) is described. This method makes it possible to obtain numerous imidazolinium chlorides under solvent-free reaction conditions and in excellent yields with purification by simple filtration. Alternatively, symmetric imidazolinium chlorides can be prepared directly in moderate yields from substituted anilines by utilizing half of the formamidine intermediate as sacrificial base (b). PMID:18412354

  5. Organic cation transporter 3 modulates murine basophil functions by controlling intracellular histamine levels

    PubMed Central

    Schneider, Elke; Machavoine, François; Pléau, Jean-Marie; Bertron, Anne-France; Thurmond, Robin L.; Ohtsu, Hiroshi; Watanabe, Takehiko; Schinkel, Alfred H.; Dy, Michel

    2005-01-01

    In this study, we identify the bidirectional organic cation transporter 3 (OCT3/Slc22a3) as the molecule responsible for histamine uptake by murine basophils. We demonstrate that OCT3 participates in the control of basophil functions because exogenous histamine can inhibit its own synthesis—and that of interleukin (IL)-4, IL-6, and IL-13—through this means of transport. Furthermore, ligands of H3/H4 histamine receptors or OCT3 inhibit histamine uptake, and outward transport of newly synthesized histamine. By doing so, they increase the histamine content of basophils, which explains why they mimic the effect of exogenous histamine. These drugs were no longer effective in histamine-free histidine decarboxylase (HDC)-deficient mice, in contrast with histamine itself. Histamine was not taken up and lost its inhibitory effect in mice deficient for OCT3, which proved its specific involvement. Intracellular histamine levels were increased strongly in IL-3–induced OCT3 −/− bone marrow basophils, and explained why they generated fewer cytokines than their wild-type counterpart. Their production was enhanced when histamine synthesis was blocked by the specific HDC inhibitor α-fluoro-methyl histidine, and underscored the determinant role of histamine in the inhibitory effect. We postulate that pharmacologic modulation of histamine transport might become instrumental in the control of basophil functions during allergic diseases. PMID:16061728

  6. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  7. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  8. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  9. 21 CFR 582.1193 - Calcium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  10. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions

    NASA Astrophysics Data System (ADS)

    Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.

  11. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Mechanism of allosteric activation of TMEM16A/ANO1 channels by a commonly used chloride channel blocker

    PubMed Central

    Ta, Chau M; Adomaviciene, Aiste; Rorsman, Nils J G; Garnett, Hannah

    2016-01-01

    Background and Purpose Calcium‐activated chloride channels (CaCCs) play varied physiological roles and constitute potential therapeutic targets for conditions such as asthma and hypertension. TMEM16A encodes a CaCC. CaCC pharmacology is restricted to compounds with relatively low potency and poorly defined selectivity. Anthracene‐9‐carboxylic acid (A9C), an inhibitor of various chloride channel types, exhibits complex effects on native CaCCs and cloned TMEM16A channels providing both activation and inhibition. The mechanisms underlying these effects are not fully defined. Experimental Approach Patch‐clamp electrophysiology in conjunction with concentration jump experiments was employed to define the mode of interaction of A9C with TMEM16A channels. Key Results In the presence of high intracellular Ca2+, A9C inhibited TMEM16A currents in a voltage‐dependent manner by entering the channel from the outside. A9C activation, revealed in the presence of submaximal intracellular Ca2+ concentrations, was also voltage‐dependent. The electric distance of A9C inhibiting and activating binding site was ~0.6 in each case. Inhibition occurred according to an open‐channel block mechanism. Activation was due to a dramatic leftward shift in the steady‐state activation curve and slowed deactivation kinetics. Extracellular A9C competed with extracellular Cl−, suggesting that A9C binds deep in the channel's pore to exert both inhibiting and activating effects. Conclusions and Implications A9C is an open TMEM16A channel blocker and gating modifier. These effects require A9C to bind to a region within the pore that is accessible from the extracellular side of the membrane. These data will aid the future drug design of compounds that selectively activate or inhibit TMEM16A channels. PMID:26562072

  13. Alterations of the Intracellular Peptidome in Response to the Proteasome Inhibitor Bortezomib

    PubMed Central

    Berezniuk, Iryna; Dasgupta, Sayani; Castro, Leandro M.; Gozzo, Fabio C.; Ferro, Emer S.; Fricker, Lloyd D.

    2013-01-01

    Bortezomib is an antitumor drug that competitively inhibits proteasome beta-1 and beta-5 subunits. While the impact of bortezomib on protein stability is known, the effect of this drug on intracellular peptides has not been previously explored. A quantitative peptidomics technique was used to examine the effect of treating human embryonic kidney 293T (HEK293T) cells with 5–500 nM bortezomib for various lengths of time (30 minutes to 16 hours), and human neuroblastoma SH-SY5Y cells with 500 nM bortezomib for 1 hour. Although bortezomib treatment decreased the levels of some intracellular peptides, the majority of peptides were increased by 50–500 nM bortezomib. Peptides requiring cleavage at acidic and hydrophobic sites, which involve beta-1 and -5 proteasome subunits, were among those elevated by bortezomib. In contrast, the proteasome inhibitor epoxomicin caused a decrease in the levels of many of these peptides. Although bortezomib can induce autophagy under certain conditions, the rapid bortezomib-mediated increase in peptide levels did not correlate with the induction of autophagy. Taken together, the present data indicate that bortezomib alters the balance of intracellular peptides, which may contribute to the biological effects of this drug. PMID:23308178

  14. Sodium chloride inhibits IFN-γ, but not IL-4, production by invariant NKT cells.

    PubMed

    Jeong, Dongjin; Kim, Hye Young; Chung, Doo Hyun

    2018-01-01

    Invariant NKT (iNKT) cells are a distinct subset of T cells that exert Janus-like functions in vivo by producing IFN-γ and IL-4. Sodium chloride modulates the functions of various immune cells, including conventional CD4 + T cells and macrophages. However, it is not known whether sodium chloride affects iNKT cell function, so we addressed this issue. Sodium chloride inhibited IFN-γ, but not IL-4, production by iNKT cells upon TCR or TCR-independent (IL-12 and IL-18) stimulation in a dose-dependent manner. Consistently, sodium chloride reduced the expression level of tbx21, but not gata-3, in iNKT cells stimulated with TCR engagement or IL-12 + IL-18. Sodium chloride increased phosphorylated p38 expression in iNKT cells and inhibitors of p38, NFAT5, SGK1, and TCF-1 restored IFN-γ production by iNKT cells stimulated with sodium chloride and TCR engagement. Furthermore, adoptive transfer of iNKT cells pretreated with sodium chloride restored antibody-induced joint inflammation to a lesser extent than for untreated iNKT cells in Jα18 knockout mice. These findings suggest that sodium chloride inhibits IFN-γ production by iNKT cells in TCR-dependent and TCR-independent manners, which is dependent on p38, NFAT5, SGK1, and TCF-1. These findings highlight the functional role of sodium chloride in iNKT cell-mediated inflammatory diseases. ©2017 Society for Leukocyte Biology.

  15. Benefit and risk assessment of increasing potassium intake by replacement of sodium chloride with potassium chloride in industrial food products in Norway.

    PubMed

    Steffensen, Inger-Lise; Frølich, Wenche; Dahl, Knut Helkås; Iversen, Per Ole; Lyche, Jan Ludvig; Lillegaard, Inger Therese Laugsand; Alexander, Jan

    2018-01-01

    High sodium chloride (NaCl) intake is associated with health risks. NaCl may be replaced by potassium chloride (KCl) to decrease sodium intake. However, increased potassium may also have negative health effects. We conducted a benefit and risk assessment of increasing potassium by ratios of 30:70, 50:50, 70:30 (weight % K + : weight % Na + ) in children, adolescents and adults in Norway, using intake data from national food consumption surveys and available literature on potassium health effects. An intake of at least 3.5 g/day of potassium decreases risk of stroke and hypertension, and this level was used in the benefit assessment of the healthy population. Three g/day of potassium added to mean food intake is assumed safe, and these levels were used in the risk assessment. Not all persons reached the protective level of potassium, and increasing numbers exceeded the safe levels, in these scenarios. In addition, elderly above 85 years and infants below one year of age, as well as several patient groups and medication users, are particularly vulnerable to hyperkalemia. In conclusion, the number of Norwegians facing increased risk is far greater than the number likely to benefit from this replacement of sodium with potassium in industrially produced food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Congenitally learned helpless rats show abnormalities in intracellular signaling.

    PubMed

    Kohen, Ruth; Neumaier, John F; Hamblin, Mark W; Edwards, Emmeline

    2003-03-15

    Affective disorders and the drugs used to treat them lead to changes in intracellular signaling. We used a genetic animal model to investigate to what extent changes in intracellular signal transduction confer a vulnerability to mood or anxiety disorders. Levels of gene expression in a selectively bred strain of rats with a high vulnerability to develop congenitally learned helplessness (cLH), a strain highly resistant to the same behavior (cNLH) and outbred Sprague-Dawley (SD) control animals were compared using quantitative reverse transcription polymerase chain reaction. Congenitally learned helpless animals had a 24%-30% reduced expression of the cyclic adenosine monophosphate response element binding protein messenger ribonucleic acid (mRNA) in the hippocampus and a 40%-41% increased level of the antiapoptotic protein bcl-2 mRNA in the prefrontal cortex compared to cNLH and SD rats. Other significant changes included changes in the expression levels of the alpha catalytic subunit of protein kinase A, glycogen synthase kinase 3beta, and protein kinase C epsilon. Congenitally learned helpless animals show evidence of altered signal transduction and regulation of apoptosis compared to cNLH and SD control animals.

  17. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    PubMed Central

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  18. Measurement of Intracellular Ionized Calcium in a Free-living Soil Nematode, Caenorhabditis elegans.

    PubMed

    Kawaii, S; Yoshizawa, Y; Mizutani, J

    1993-01-01

    A calcium chelating fluorescence indicator, fura-2, was used to measure intracellular ionized calcium in Caenorhabditis elegans. The indicator loading process was harmless to the nematode, and completed within 2-3 h. Fura-2 was loaded mainly at its intestinal tract. The effects of DOPA on locomotion and the level of intracellular calcium were investigated and measured by using a microfluorometer. The addition of DOPA temporarily increased [Ca(2+)]i for several minutes.

  19. Skin sterility after application of ethyl chloride spray.

    PubMed

    Polishchuk, Daniil; Gehrmann, Robin; Tan, Virak

    2012-01-18

    Ethyl chloride topical anesthetic spray is labeled as nonsterile, yet it is widely used during injection procedures performed in an outpatient setting. The purpose of this study was to investigate the sterility of ethyl chloride topical anesthetic spray applied before an injection. Our a priori hypothesis was that application of the spray after the skin has been prepared would not alter the sterility of the injection site. We conducted a prospective, blinded, controlled study to assess the effect of ethyl chloride spray on skin sterility. Fifteen healthy adult subjects (age, twenty-three to sixty-one years) were prepared for mock injections into both shoulders and both knees, although no injection was actually performed. Three culture samples were obtained from each site on the skin: one before skin preparation with isopropyl alcohol, one after skin preparation and before application of ethyl chloride, and one after ethyl chloride had been sprayed on the site. In addition, the sterility of the ethyl chloride was tested directly by inoculating cultures with spray from the bottles. Growth occurred in 70% of the samples obtained before skin preparation, 3% of the samples obtained after skin preparation but before application of ethyl chloride, and 5% of the samples obtained after the injection site had been sprayed with ethyl chloride. The percentage of positive cultures did not increase significantly after application of ethyl chloride (p = 0.65). Spraying of ethyl chloride directly on agar plates resulted in growth on 13% of these plates compared with 11% of the control plates; this difference was also not significant (p = 0.80). Although ethyl chloride spray is not sterile, its application did not alter the sterility of the injection sites in the shoulder and knee.

  20. [Progress on suxamethonium chloride analysis].

    PubMed

    Jiang, Ming-Zhe; Cheng, Xiang-Wei; Chu, Jian-Xin

    2013-12-01

    Abstract: Suxamethonium chloride is a depolarizing muscle relaxant used in general anesthesia. In overdose, it causes adverse reactions such as bradycardia, arrhythmia, cardiac arrest, and death. The article reviews the progress on testing methods of suxamethonium chloride such as infrared spectroscopy, chemical color reaction, chemical titration, enzyme electrode, chromatography and mass spectrometry.

  1. Occupational asthma due to soft corrosive soldering fluxes containing zinc chloride and ammonium chloride.

    PubMed Central

    Weir, D C; Robertson, A S; Jones, S; Burge, P S

    1989-01-01

    Two cases of occupational asthma due to soft corrosive soldering fluxes used in metal jointing are described in which the diagnosis was based on work related deterioration in daily peak expiratory flow rate and positive responses in bronchial provocation tests. Both fluxes contained ammonium chloride and zinc chloride. Occupational asthma provoked by these agents has not previously been reported. PMID:2705153

  2. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    NASA Astrophysics Data System (ADS)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  3. Brucella canis Is an Intracellular Pathogen That Induces a Lower Proinflammatory Response than Smooth Zoonotic Counterparts

    PubMed Central

    Chacón-Díaz, Carlos; Altamirano-Silva, Pamela; González-Espinoza, Gabriela; Medina, María-Concepción; Alfaro-Alarcón, Alejandro; Bouza-Mora, Laura; Jiménez-Rojas, César; Wong, Melissa; Barquero-Calvo, Elías; Rojas, Norman; Guzmán-Verri, Caterina

    2015-01-01

    Canine brucellosis caused by Brucella canis is a disease of dogs and a zoonotic risk. B. canis harbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies of B. canis outbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulent B. canis strain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore, B. canis induced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than did B. abortus. When the interaction of B. canis with cells was studied ex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicative B. canis followed an intracellular trafficking route undistinguishable from that of B. abortus. Although B. canis induces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly. PMID:26438796

  4. Pathogenic mechanisms of intracellular bacteria.

    PubMed

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  5. Chloride Blood Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... https://medlineplus.gov/labtests/chloridebloodtest.html Chloride Blood Test To use the sharing features on this page, please enable JavaScript. What is a Chloride Blood Test? A chloride blood test measures the amount of ...

  6. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    PubMed

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  7. Sodium chloride and hypertension.

    PubMed

    Huang, Y W

    1997-09-01

    The hypothesis that sodium chloride deficiency, and not its overuse, is prime cause of hypertension and arteriosclerosis is presented. In the author's home town--a farflung part of northern China--hypertension is a rare disease and arteriosclerosis is a virtually unknown condition. The average intake of sodium chloride for these people is > 30 g/day compared with the typical sodium chloride intake of 10-12 g per day in the USA. When the 10-12 g salt ingested is mixed with the average daily water intake (2100 ml), 0.47% to 0.57% saline mixture is produced, which is hypotonic to extracellular fluid in salt content. Thus sodium conservation becomes necessary. All the hormones and ions involved in sodium conservation are inducers of hypertension; these include aldosterone, angiotensin 11, glucocorticoids, catecholamine, and vasopression. Plus, potassium waste, induced under the influence of aldosterone excess, participates in the development of hypertension.

  8. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: possible allosteric regulation and a conserved structural motif for the chloride-binding site.

    PubMed

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-03-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  9. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, H.; Qiu, Y; Philo, J

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. Amore » new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.« less

  10. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: Possible allosteric regulation and a conserved structural motif for the chloride-binding site

    PubMed Central

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666

  11. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    PubMed

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  12. IRIS Toxicological Review of Vinyl Chloride (Final Report ...

    EPA Pesticide Factsheets

    EPA is announcing the release of the final report, Toxicological Review of Vinyl Chloride: in support of the Integrated Risk Information System (IRIS). The updated Summary for Vinyl Chloride and accompanying Quickview have also been added to the IRIS Database. Common synonyms of vinyl chloride (VC) include chloroethene, chloroethylene, ethylene monochloride, and monochloroethene. VC is a synthetic chemical used as a chemical intermediate in the polymerization of polyvinyl chloride.

  13. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    PubMed

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  14. Embedded chloride detectors for roadways and bridges

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Huston, Dryver R.; McPadden, Adam P.; Cauley, Robert F.

    1996-04-01

    The problems associated with the application of chloride-based deicing agents to roadways and specifically bridges include chemical pollution and accelerated corrosion of strength members (especially rebar) within the structure. In many instances, local ordinances are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides (typically at the cost of increased driving hazards). With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. In response to this problem, particularly in high roadsalt usage areas, a chloride/water impermeable membrane is placed above the rebar matrix so if/when roadway cracking occurs, the roadsalts won't be able to damage the rebar. Such a membrane is costly -- and the question of its in-service performance is questionable. In a joint effort between the University of Vermont and the Vermont Agency of Transportation, we are developing fiber optic chloride detectors which are capable of being embedded into the rebar-concrete roadway under this membrane. The sensing mechanism relies on spectroscopic analysis of a chemical reaction of chloride and reagents (which have been coated onto the ends of fibers). Laboratory results of these detectors and a usable system configuration are presented.

  15. Novel agmatine analogue, {gamma}-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sushma; Jhingran, Anupam; Sharma, Ankur

    2008-10-10

    The efficacy of {gamma}-guanidinooxypropylamine (GAPA), a novel agmatine analogue against protozoan parasite, Leishmaniadonovani was evaluated. Wild-type and ornithine decarboxylase-overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. GAPA inhibited the growth of both promastigotes and amastigotes. Ornithine decarboxylase (ODC) activity and polyamine levels were markedly lower in cells treated with GAPA and proliferation was rescued by addition of putrescine or spermidine. GAPA inhibited L. donovani recombinant ODC with K{sub i} value of {approx}60 {mu}M. The ODC-overexpressors showed significant resistance to GAPA. GAPA has pK{sub a} 6.71 and at physiological pH the analoguemore » can mimic protonated state of putrescine and can probably use putrescine transport system. Transport of putrescine in wild-type L. donovani promastigotes was inhibited by GAPA. We for the first time report that GAPA is a potential antileishmanial lead compound and it possibly inhibits L. donovani growth by depletion of intracellular polyamine levels.« less

  16. Acid Chlorides as Formal Carbon Dianion Linchpin Reagents in the Aluminum Chloride-Mediated Dieckmann Cyclization of Dicarboxylic Acids.

    PubMed

    Armaly, Ahlam M; Bar, Sukanta; Schindler, Corinna S

    2017-08-04

    The development of acid chlorides as formal dianion linchpin reagents that enable access to cyclic 2-alkyl- and 2-acyl-1,3-alkanediones from dicarboxylic acids is described herein. Mechanistic experiments relying on 13 C-labeling studies confirm the role of acid chlorides as carbon dianion linchpin reagents and have led to a revised reaction mechanism for the aluminum(III)-mediated Dieckmann cyclization of dicarboxylic acids with acid chlorides.

  17. Stability study of carboplatin infusion solutions in 0.9% sodium chloride in polyvinyl chloride bags.

    PubMed

    Myers, Alan L; Zhang, Yang-Ping; Kawedia, Jitesh D; Trinh, Van A; Tran, Huyentran; Smith, Judith A; Kramer, Mark A

    2016-02-01

    Carboplatin is a platinum-containing compound with efficacy against various malignancies. The physico-chemical stability of carboplatin in dextrose 5% water (D5W) has been thoroughly studied; however, there is a paucity of stability data in clinically relevant 0.9% sodium chloride infusion solutions. The manufacturer's limited stability data in sodium chloride solutions hampers the flexibility of carboplatin usage in oncology patients. Hence, the purpose of this study is to determine the physical and chemical stability of carboplatin-sodium chloride intravenous solutions under different storage conditions. The physico-chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL carboplatin-sodium chloride solutions prepared in polyvinyl chloride bags was determined following storage at room temperature under ambient fluorescent light and under refrigeration in the dark. Concentrations of carboplatin were measured at predetermined time points up to seven days using a stability-indicating high-performance liquid chromatography method. All tested solutions were found physically stable for at least seven days. The greatest chemical stability was observed under refrigerated storage conditions. At 4℃, all tested solutions were found chemically stable for at least seven days, with nominal losses of ≤6%. Following storage at room temperature exposed to normal fluorescent light, the chemical stability of 0.5 mg/mL, 2.0 mg/mL, and 4.0 mg/mL solutions was three days, five days, and seven days, respectively. The extended physico-chemical stability of carboplatin prepared in sodium chloride reported herein permits advance preparation of these admixtures, facilitating pharmacy utility and operations. Since no antibacterial preservative is contained within these carboplatin solutions, we recommend storage, when prepared under specified aseptic conditions, no greater than 24 h at room temperature or three days under refrigeration. © The Author(s) 2014.

  18. [Forensic Analysis for 54 Cases of Suxamethonium Chloride Poisoning].

    PubMed

    Zhao, Y F; Zhao, B Q; Ma, K J; Zhang, J; Chen, F Y

    2017-08-01

    To observe and analyze the performance of forensic science in the cases of suxa- methonium chloride poisoning, and to improve the identification of suxamethonium chloride poisoning. Fifty-four cases of suxamethonium chloride poisoning were collected. The rules of determination of suxamethonium chloride poisoning were observed by the retrospective analysis of pathological and toxicological changes as well as case features. The pathological features of suxamethonium chloride poisoning were similar to the general changes of sudden death, which mainly included acute pulmonary congestion and edema, and partly showed myocardial disarray and fracture. Suxamethonium chloride could be detected in the heart blood of all cases and in skin tissue of part cases. Suxa-methonium chloride poisoning has the characteristics with fast death and covert means, which are difficult to rescue and easily miss inspection. For the cases of sudden death or suspicious death, determination of suxamethonium chloride should be taken as a routine detection index to prevent missing inspection. Copyright© by the Editorial Department of Journal of Forensic Medicine

  19. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... basis and analyzes the samples with gas chromatography or, if the owner or operator assumes that all... concentration of vinyl chloride in the exhaust gases does not exceed 10 ppm (average for 3-hour period), or... chloride in the exhaust gases does not exceed 10 ppm (average for 3-hour period), or equivalent as provided...

  20. On Membrane Motor Activity and Chloride Flux in the Outer Hair Cell: Lessons Learned from the Environmental Toxin Tributyltin

    PubMed Central

    Song, Lei; Seeger, Achim; Santos-Sacchi, Joseph

    2005-01-01

    The outer hair cell (OHC) underlies mammalian cochlea amplification, and its lateral membrane motor, prestin, which drives the cell's mechanical activity, is modulated by intracellular chloride ions. We have previously described a native nonselective conductance (GmetL) that influences OHC motor activity via Cl flux across the lateral membrane. Here we further investigate this conductance and use the environmental toxin tributyltin (TBT) to better understand Cl-prestin interactions. Capitalizing on measures of prestin-derived nonlinear capacitance to gauge Cl flux across the lateral membrane, we show that the Cl ionophore TBT, which affects neither the motor nor GmetL directly, is capable of augmenting the native flux of Cl in OHCs. These observations were confirmed using the chloride-sensitive dye MQAE. Furthermore, the compound's potent ability, at nanomolar concentrations, to equilibrate intra- and extracellular Cl concentrations is shown to surpass the effectiveness of GmetL in promoting Cl flux, and secure a quantitative analysis of Cl-prestin interactions in intact OHCs. Using malate as an anion replacement, we quantify chloride effects on the nonlinear charge density and operating voltage range of prestin. Our data additionally suggest that ototoxic effects of organotins can derive from their disruption of OHC Cl homeostasis, ultimately interfering with anionic modulation of the mammalian cochlear amplifier. Notably, this observation identifies a new environmental threat for marine mammals by TBT, which is known to accumulate in the food chain. PMID:15596517

  1. Feasibility demonstration for hydrogen chloride detection using a chemisorption technique and a quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Workman, G. L.

    1975-01-01

    A method of measuring concentrations of hydrogen chloride between 1 part per billion and 10 parts per million at standard temperature and pressure is presented. The feasibility of a low-cost device incorporating a chemisorption technique coupled with a quartz crystal microbalance was demonstrated in the field at the Viking B launch using a Titan-Centaur vehicle from Kennedy Space Center on August 20, 1975. Hydrogen chloride is a product of solid rocket combustion. The concentration level of hydrogen chloride for this particular launch was measured as approximately 0.2 parts per million at 4 km from the launch site.

  2. Chloride ion efflux regulates adherence, spreading, and respiratory burst of neutrophils stimulated by tumor necrosis factor-alpha (TNF) on biologic surfaces

    PubMed Central

    1996-01-01

    Chloride ion efflux is an early event occurring after exposure of neutrophilic polymorphonuclear leukocytes (PMN) in suspension to several agonists, including cytokines such as tumor necrosis factor- alpha (TNF) and granulocyte/macrophage-colony stimulating factor (Shimizu, Y., R.H. Daniels, M.A. Elmore, M.J. Finnen, M.E. Hill, and J.M. Lackie. 1993. Biochem. Pharmacol. 9:1743-1751). We have studied TNF-induced Cl- movements in PMN residing on fibronectin (FN) (FN-PMN) and their relationships to adherence, spreading, and activation of the respiratory burst. Occupancy of the TNF-R55 and engagement of beta 2 integrins cosignaled for an early, marked, and prolonged Cl- efflux that was accompanied by a fall in intracellular chloride levels (Cl-i). A possible causal relationship between Cl- efflux, adherence, and respiratory burst was first suggested by kinetic studies, showing that TNF-induced Cl- efflux preceded both the adhesive and metabolic response, and was then confirmed by inhibition of all three responses by pretreating PMN with inhibitors of Cl- efflux, such as ethacrynic acid. Moreover, Cl- efflux induced by means other than TNF treatment, i.e., by using Cl(-)-free media, was followed by increased adherence, spreading, and metabolic activation, thus mimicking TNF effects. These studies provide the first evidence that a drastic decrease of Cl-i in FN-PMN may represent an essential step in the cascade of events leading to activation of proadhesive molecules, reorganization of the cytoskeleton network, and assembly of the O2(-)-forming NADPH oxidase. PMID:8896606

  3. Inhibitory effect of plant-originated glycoprotein (27 kDa) on expression of matrix metalloproteinase-9 in cadmium chloride-induced BNL CL.2 cells.

    PubMed

    Lee, Jin; Lim, Kye-Taek

    2011-12-01

    Cadmium is very harmful to the environment and to human beings because of its long lifetime. The toxicity of cadmium as an industrial pollutant and a food contaminant, and as one of the major components in cigarette smoke is well known. Cadmium can cause a number of lesions in many organs, such as the kidney, the lung, the liver, the brain, the blood system. However, the mechanism of toxicity of cadmium is not yet clear. Also, it has been well known as human carcinogen which is indirectly caused inflammation-mediated hepatocarcinoma. In the present study it was demonstrated that glycoprotein (27 kDa) isolated from Gardenia jasminoides Ellis (GJE) protects BNL CL.2 cells from expression of inflammation-related factors stimulated by cadmium chloride (10 μM). Intracellular ROS and intracellular Ca(2+) using fluorescence, activities of activator protein (AP)-1, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and arachidonic acid (AA) using immunoblot analysis or radioactivity were evaluated. The results obtained from this experiment indicated that GJE glycoprotein (100 μg/mL) inhibits the production of intracellular ROS, and intracellular Ca(2+) mobilization. Also, it significantly suppressed inflammatory factors [expression of AP-1 (c-Jun and c-Fos), arachidonic acid, COX-2, and MMP-9]. Taken together, these findings suggest that GJE glycoprotein might be used for protection of inflammation caused by cadmium ion as one of natural compounds. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Recurring Slope Lineae (RSL) and Chloride Hydrates within Mars Subsurface

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Wang, A.

    2012-12-01

    thermodynamics and kinetics properties of chloride hydrates. The goals are to determine (1) the stability fields of Mg-, Fe2+-, Fe3+-, Ca-, Al-, Na-chloride hydrates in RH-T space, especially the phase boundaries of hydrates-deliquescence; (2) the rate of their dehydration, and especially the rate of their deliquescence as function of T, P, and PH2O; (3) the RH level that each chloride hydrate can maintain in an enclosure at T relevant to those within Mars subsurface. We will report the experimental results from (3), and will compare them with a similar set of data from hydrous sulfates (Mg, Fe, Ca, Al). The criticality of learning the property (3) is that the deliquescence of a hydrous salt at a T only occurs when RH is higher than a threshold. For example, deliquescence of ferricopiapite would happen when RH > 75% at 0°C. If the environmental RH is lower, the dehydration of hydrous salt will go through solid-solid phase transition, instead of deliquescence, such that water would be released to the atmosphere and brine would not form. It is possible that deliquescence of both hydrous sulfates and chlorides (as well as the melting of Cl-enriched brines) contributed the RSL. Our working hypothesis favors chloride hydrates because dry chloride (after releasing water) in RSL would not be visible by Vis-NIR spectroscopy, which is consistent with the mission observations.

  5. Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds.

    PubMed

    Kim, Ha Won; Chan, Qilin; Afton, Scott E; Caruso, Joseph A; Lai, Barry; Weintraub, Neal L; Qin, Zhenyu

    2012-02-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.

  6. Chloroquine uptake, altered partitioning and the basis of drug resistance: evidence for chloride-dependent ionic regulation.

    PubMed

    Martiney, J A; Ferrer, A S; Cerami, A; Dzekunov, S; Roepe, P

    1999-01-01

    The biochemical mechanism of chloroquine resistance in Plasmodium falciparum remains unknown. We postulated that chloroquine-resistant strains could alter ion fluxes that then indirectly control drug accumulation within the parasite by affecting pH and/or membrane potential ('altered partitioning mechanism'). Two principal intracellular pH-regulating systems in many cell types are the amiloride-sensitive Na+/H+ exchanger (NHE), and the sodium-independent, stilbene-sensitive Cl-/HCO3- antiporter (AE). We report that under physiological conditions (balanced CO2 and HCO3-) chloroquine uptake and susceptibility are not altered by amiloride analogues. We also do not detect a significant difference in NHE activity between chloroquine-sensitive and chloroquine-resistant strains via single cell photometry methods. AE activity is dependent on the intracellular and extracellular concentrations of Cl- and HCO3- ions. Chloroquine-resistant strains differentially respond to experimental modifications in chloride-dependent homeostasis, including growth, cytoplasmic pH and pH regulation. Chloroquine susceptibility is altered by stilbene DIDS only on chloroquine-resistant strains. Our results suggest that a Cl(-)-dependent system (perhaps AE) has a significant effect on the uptake of chloroquine by the infected erythrocyte, and that alterations of this biophysical parameter may be part of the mechanism of chloroquine resistance in P. falciparum.

  7. Imaging of intracellular fatty acids by scanning X-ray fluorescence microscopy

    PubMed Central

    Shimura, Mari; Shindou, Hideo; Szyrwiel, Lukasz; Tokuoka, Suzumi M.; Hamano, Fumie; Matsuyama, Satoshi; Okamoto, Mayumi; Matsunaga, Akihiro; Kita, Yoshihiro; Ishizaka, Yukihito; Yamauchi, Kazuto; Kohmura, Yoshiki; Lobinski, Ryszard; Shimizu, Isao; Shimizu, Takao

    2016-01-01

    Fatty acids are taken up by cells and incorporated into complex lipids such as neutral lipids and glycerophospholipids. Glycerophospholipids are major constituents of cellular membranes. More than 1000 molecular species of glycerophospholipids differ in their polar head groups and fatty acid compositions. They are related to cellular functions and diseases and have been well analyzed by mass spectrometry. However, intracellular imaging of fatty acids and glycerophospholipids has not been successful due to insufficient resolution using conventional methods. Here, we developed a method for labeling fatty acids with bromine (Br) and applied scanning X-ray fluorescence microscopy (SXFM) to obtain intracellular Br mapping data with submicrometer resolution. Mass spectrometry showed that cells took up Br-labeled fatty acids and metabolized them mainly into glycerophospholipids in CHO cells. Most Br signals observed by SXFM were in the perinuclear region. Higher resolution revealed a spot-like distribution of Br in the cytoplasm. The current method enabled successful visualization of intracellular Br-labeled fatty acids. Single-element labeling combined with SXFM technology facilitates the intracellular imaging of fatty acids, which provides a new tool to determine dynamic changes in fatty acids and their derivatives at the single-cell level.—Shimura, M., Shindou, H., Szyrwiel, L., Tokuoka, S. M., Hamano, F., Matsuyama, S., Okamoto, M., Matsunaga, A., Kita, Y., Ishizaka, Y., Yamauchi, K., Kohmura, Y., Lobinski, R., Shimizu, I., Shimizu, T. Imaging of intracellular fatty acids by scanning X-ray fluorescence microscopy. PMID:27601443

  8. Buried chloride stereochemistry in the Protein Data Bank

    PubMed Central

    2014-01-01

    Background Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. Results The analysis of a non-redundant set (pairwise sequence identity?chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. Conclusions The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions. PMID:25928393

  9. Buried chloride stereochemistry in the Protein Data Bank.

    PubMed

    Carugo, Oliviero

    2014-09-23

    Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. The analysis of a non-redundant set (pairwise sequence identity < 30%) of 1739 high resolution (<2 Å) crystal structures that contain at least one chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions.

  10. Measurement of ageing effect on chloride diffusion coefficients in cementitious matrices

    NASA Astrophysics Data System (ADS)

    Andrade, C.; Castellote, M.; d'Andrea, R.

    2011-05-01

    Most of the low-level nuclear waste disposal facilities are based in engineered multi barrier systems where reinforced concrete is one of the basic materials. The calculation of the time until steel reinforcement depassivation is a need due to the demand of prediction of the service life of concrete structures in radioactive repositories. In doing that, one of the main steps is the transport of chloride ions towards the reinforcement, as one of the most aggressive agents for the rebars in concrete is chloride ions. Ageing of concrete related to chloride penetration leads to significant decrease of the "apparent diffusion" coefficient with time. If this effect is not considered, considerable bias can be introduced when predicting service life of reinforced concrete of repositories. Several effects have been addressed on their influence on the ageing of concrete, including the evolution with time of the concrete pore refinement, the binding of chlorides to the cement phases and to the changes of chloride "surface concentration". These effects have been studied in specimens made with different mixes trying to represent a wide range of mineral addition proportions. The analysis of their evolution with time has shown that the resistivity alone or the joint consideration of resistivity and binding capacity ( Cb/ Cf), are appropriate parameters to appraise the diffusivity ageing. For practical reasons, an accelerated procedure is proposed in order to calculate ageing for short periods of time.

  11. Pharmacological Effect of Berberine Chloride in Propyl Thiouracil Induced Thyroidal Dysfunction - A Time Bound Study in Female Rats.

    PubMed

    Maurya, Harikesh; Dhiman, Sheena; Dua, Kamal; Gupta, Gaurav

    2016-01-01

    The present study is aimed at bringing out the information on the effect of berberine chloride in hyper and hypo thyroidal model with two dose levels. The research article also reviewed details of various existing patents associated with comprehensive compilation regarding the therapeutic application of berberine and related forms. Sixty female wistar rats weighing between 150-250 gm were divided in to 10 groups. The animals were grouped in to solvent control; hypothyroid; hyperthyroid; prophylactic with two different doses of berberine chloride (50 and 100 mg/kg); treatment groups similar to that of the prophylactic and therapeutic group. To substantiate the dose dependent effect of berberine chloride in 6-n-propyL-2-thiouracil (PTU) induced hypothyroidism, lipid profile, thyroid profile, enzymes profiles and blood profiles, in addition to histopathological studies were also carried out. There was no any significant difference in the lipid profile among solvent control, treatment and prophylactic groups. However, there was a significant difference (***p<0.001) in serum triglycerides, LDL and VLDL of hypothyroid group when compound to that of the rest. As far as thyroid profile is concerned, T3 level of berberine chloride (50 mg/kg) treated groups (prophylactic+ treatment) showed a significant rise compared to hypothyroid group. TSH level in prophylactic groups was far higher than the rest of the groups (3.002±0.0192, 1.051±0.0008 against the solvent control, 0.308±0.008). SGOT, SGPT levels were significantly higher with the therapeutic group than that of the normal and hypo-thyroidal group. Blood profile of berberine chloride (100 mg/kg) treated therapeutic group was comparable to that of the solvent control than all other groups. The probable mechanism underlying may be that inactivation of type I 5.-iodothyronine deiodinase (5.DI) enzyme by NF-kB pathway. From the findings of the current study it can be concluded that berberine chloride possesses both thyroid

  12. Mepiquat chloride

    Integrated Risk Information System (IRIS)

    Mepiquat chloride ; CASRN 24307 - 26 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  13. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  14. Synergistic Effect of Quercetin and α-Lipoic Acid on Aluminium Chloride Induced Neurotoxicity in Rats.

    PubMed

    Al-Otaibi, Sooad Saud; Arafah, Maha Mohamad; Sharma, Bechan; Alhomida, Abdullah Salih; Siddiqi, Nikhat Jamal

    2018-01-01

    The present study was carried out to study the protective effects of quercetin and α -lipoic acid alone and in combination against aluminum chloride induced neurotoxicity in rats. The study consisted of eight groups, namely, Group 1: control rats, Group 2: rats receiving aluminium chloride 7 mg/kg body weight intraperitoneal route (i.p) for two weeks, Group 3: rats receiving quercetin 50 mg/kg body weight i.p. for two weeks, Group 4: rats receiving quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 5: rats receiving α -lipoic acid 20 mg/kg body weight i.p. for two weeks, Group 6: rats receiving lipoic acid 20 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 7: rats receiving α -lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight i.p. for two weeks, and Group 8: rats receiving α -lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks. The animals were killed after 24 hours of the last dose by cervical dislocation. Aluminium chloride treatment of rats resulted in significant increases in lipid peroxidation, protein carbonyl levels, and acetylcholine esterase activity in the brain. This was accompanied with significant decreases in reduced glutathione, activities of the glutathione reductase, and superoxide dismutase. Pretreatment of AlCl 3 exposed rats to either quercetin or α -lipoic acid also restored altered lipid peroxidation and superoxide dismutase to near normal levels. Quercetin or α -lipoic acid pretreatment of AlCl 3 exposed rats improved the protein carbonyl and reduced glutathione, glutathione reductase, and acetylcholine esterase activities in rat brains towards normal levels. Combined pretreatment of AlCl3 exposed rats with quercetin and α -lipoic acid resulted in a tendency towards normalization of most of the parameters

  15. Synergistic Effect of Quercetin and α-Lipoic Acid on Aluminium Chloride Induced Neurotoxicity in Rats

    PubMed Central

    Al-Otaibi, Sooad Saud

    2018-01-01

    Objectives The present study was carried out to study the protective effects of quercetin and α-lipoic acid alone and in combination against aluminum chloride induced neurotoxicity in rats. Materials and Methods The study consisted of eight groups, namely, Group 1: control rats, Group 2: rats receiving aluminium chloride 7 mg/kg body weight intraperitoneal route (i.p) for two weeks, Group 3: rats receiving quercetin 50 mg/kg body weight i.p. for two weeks, Group 4: rats receiving quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 5: rats receiving α-lipoic acid 20 mg/kg body weight i.p. for two weeks, Group 6: rats receiving lipoic acid 20 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 7: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight i.p. for two weeks, and Group 8: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks. The animals were killed after 24 hours of the last dose by cervical dislocation. Results Aluminium chloride treatment of rats resulted in significant increases in lipid peroxidation, protein carbonyl levels, and acetylcholine esterase activity in the brain. This was accompanied with significant decreases in reduced glutathione, activities of the glutathione reductase, and superoxide dismutase. Pretreatment of AlCl3 exposed rats to either quercetin or α-lipoic acid also restored altered lipid peroxidation and superoxide dismutase to near normal levels. Quercetin or α-lipoic acid pretreatment of AlCl3 exposed rats improved the protein carbonyl and reduced glutathione, glutathione reductase, and acetylcholine esterase activities in rat brains towards normal levels. Combined pretreatment of AlCl3 exposed rats with quercetin and α-lipoic acid resulted in a tendency towards

  16. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.

    PubMed

    Wojciechowski, Daniel; Thiemann, Stefan; Schaal, Christina; Rahtz, Alina; de la Roche, Jeanne; Begemann, Birgit; Becher, Toni; Fischer, Martin

    2018-06-01

    ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. 46 CFR 154.1745 - Vinyl chloride: Transferring operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride: Transferring operations. 154.1745 Section 154.1745 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Operating Requirements § 154.1745 Vinyl chloride: Transferring operations. A vessel carrying vinyl chloride...

  18. Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism.

    PubMed

    Smith, Desirée E C; Hornstra, Jacqueline M; Kok, Robert M; Blom, Henk J; Smulders, Yvo M

    2013-08-01

    In randomized trails, folic acid (FA) lowered plasma homocysteine, but failed to reduce cardiovascular risk. We hypothesize this is due to a discrepancy between plasma and intracellular effects of FA. In a double-blind trial, 50 volunteers were randomized to received 500 µg FA daily for 8 weeks, or placebo. Plasma and peripheral blood mononuclear cell (PBMC) concentrations of homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine, methionine, cystathionine and 5-methyltetrahydrofolate (bioactive folate) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). PBMCs were used as a cellular model since they display the full spectrum of one-carbon (1C) enzymes and reactions. At baseline, plasma concentrations were a poor reflection of intracellular concentrations for most 1C metabolites, except 5-methyltetrahydrofolate (R=0.33, p=0.02), homocysteine (Hcy) (R=0.35, p=0.01), and cystathionine (R=0.45, p=0.001). FA significantly lowered plasma homocysteine (p=0.00), but failed to lower intracellular homocysteine or change the concentrations of any of the other PBMC 1C metabolites. At baseline, PBMC homocysteine concentrations correlated to PBMC SAM. After FA supplementation, PBMC homocysteine no longer correlated with PBMC SAM, suggesting a loss of SAM's regulatory function. In vitro experiments in lymphoblasts confirmed that at higher folate substrate concentrations, physiological concentrations of SAM no longer effectively inhibit the key regulatory enzyme methylenetetrahydrofolate reductase (MTHFR). FA supplementation does not reduce intracellular concentrations of Hcy or any of its closely related substances. Rather, FA may disturb physiological regulation of intracellular 1C metabolism by interfering with SAM's inhibitory effect on MTHFR activity.

  19. Polarization and charge transfer in the hydration of chloride ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Zhen; Rogers, David M.; Beck, Thomas L.

    2010-01-07

    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters.more » The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.« less

  20. The effect of solution nonideality on modeling transmembrane water transport and diffusion-limited intracellular ice formation during cryopreservation

    NASA Astrophysics Data System (ADS)

    Zhao, Gang; Takamatsu, Hiroshi; He, Xiaoming

    2014-04-01

    A new model was developed to predict transmembrane water transport and diffusion-limited ice formation in cells during freezing without the ideal-solution assumption that has been used in previous models. The model was applied to predict cell dehydration and intracellular ice formation (IIF) during cryopreservation of mouse oocytes and bovine carotid artery endothelial cells in aqueous sodium chloride (NaCl) solution with glycerol as the cryoprotectant or cryoprotective agent. A comparison of the predictions between the present model and the previously reported models indicated that the ideal-solution assumption results in under-prediction of the amount of intracellular ice at slow cooling rates (<50 K/min). In addition, the lower critical cooling rates for IIF that is lethal to cells predicted by the present model were much lower than those estimated with the ideal-solution assumption. This study represents the first investigation on how accounting for solution nonideality in modeling water transport across the cell membrane could affect the prediction of diffusion-limited ice formation in biological cells during freezing. Future studies are warranted to look at other assumptions alongside nonideality to further develop the model as a useful tool for optimizing the protocol of cell cryopreservation for practical applications.

  1. The effect of solution nonideality on modeling transmembrane water transport and diffusion-limited intracellular ice formation during cryopreservation.

    PubMed

    Zhao, Gang; Takamatsu, Hiroshi; He, Xiaoming

    2014-04-14

    A new model was developed to predict transmembrane water transport and diffusion-limited ice formation in cells during freezing without the ideal-solution assumption that has been used in previous models. The model was applied to predict cell dehydration and intracellular ice formation (IIF) during cryopreservation of mouse oocytes and bovine carotid artery endothelial cells in aqueous sodium chloride (NaCl) solution with glycerol as the cryoprotectant or cryoprotective agent. A comparison of the predictions between the present model and the previously reported models indicated that the ideal-solution assumption results in under-prediction of the amount of intracellular ice at slow cooling rates (<50 K/min). In addition, the lower critical cooling rates for IIF that is lethal to cells predicted by the present model were much lower than those estimated with the ideal-solution assumption. This study represents the first investigation on how accounting for solution nonideality in modeling water transport across the cell membrane could affect the prediction of diffusion-limited ice formation in biological cells during freezing. Future studies are warranted to look at other assumptions alongside nonideality to further develop the model as a useful tool for optimizing the protocol of cell cryopreservation for practical applications.

  2. TOLERANCE OF STAPHYLOCOCCUS AUREUS TO SODIUM CHLORIDE

    PubMed Central

    Parfentjev, I. A.; Catelli, Anna R.

    1964-01-01

    Parfentjev, I. A. (Institute of Applied Biology, New York, N.Y.), and Anna R. Catelli. Tolerance of Staphylococcus aureus to sodium chloride. J. Bacteriol. 88:1–3. 1964.—The tolerance of Staphylococcus aureus to high concentrations of sodium chloride in liquid medium has been reported. We found that S. aureus grows at 37 C in Tryptose Phosphate Broth saturated with sodium chloride. No difference was noticed between possibly pathogenic and nonpathogenic strains. Under the conditions of our tests, no changes in the original properties of S. aureus strains occurred. In contrast, solutions of sodium chloride in distilled water were injurious to staphylococci and killed most of these organisms in 1 hr. Staphylococci were killed faster at 37 C than at room temperature in a solution of 0.85% sodium chloride in water. Addition of traces of Tryptose Phosphate Broth had a protective effect and prolonged the life of these organisms in physiological saline. All tests were performed at pH 7.2. PMID:14197887

  3. Self-organization principles of intracellular pattern formation.

    PubMed

    Halatek, J; Brauns, F; Frey, E

    2018-05-26

    Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.

  4. Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    PubMed Central

    Doyon, Nicolas; Prescott, Steven A.; Castonguay, Annie; Godin, Antoine G.; Kröger, Helmut; De Koninck, Yves

    2011-01-01

    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention. PMID:21931544

  5. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Quaternary ammonium chloride combination. 172.165... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food additive, quaternary ammonium chloride combination, may be safely used in food in accordance with the...

  6. In Vivo Epithelial Wound Repair Requires Mobilization of Endogenous Intracellular and Extracellular Calcium*

    PubMed Central

    Aihara, Eitaro; Hentz, Courtney L.; Korman, Abraham M.; Perry, Nicholas P. J.; Prasad, Vikram; Shull, Gary E.; Montrose, Marshall H.

    2013-01-01

    We report that a localized intracellular and extracellular Ca2+ mobilization occurs at the site of microscopic epithelial damage in vivo and is required to mediate tissue repair. Intravital confocal/two-photon microscopy continuously imaged the surgically exposed stomach mucosa of anesthetized mice while photodamage of gastric epithelial surface cells created a microscopic lesion that healed within 15 min. Transgenic mice with an intracellular Ca2+-sensitive protein (yellow cameleon 3.0) report that intracellular Ca2+ selectively increases in restituting gastric epithelial cells adjacent to the damaged cells. Pretreatment with U-73122, indomethacin, 2-aminoethoxydiphenylborane, or verapamil inhibits repair of the damage and also inhibits the intracellular Ca2+ increase. Confocal imaging of Fura-Red dye in luminal superfusate shows a localized extracellular Ca2+ increase at the gastric surface adjacent to the damage that temporally follows intracellular Ca2+ mobilization. Indomethacin and verapamil also inhibit the luminal Ca2+ increase. Intracellular Ca2+ chelation (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid/acetoxymethyl ester, BAPTA/AM) fully inhibits intracellular and luminal Ca2+ increases, whereas luminal calcium chelation (N-(2-hydroxyetheyl)-ethylendiamin-N,N,N′-triacetic acid trisodium, HEDTA) blocks the increase of luminal Ca2+ and unevenly inhibits late-phase intracellular Ca2+ mobilization. Both modes of Ca2+ chelation slow gastric repair. In plasma membrane Ca-ATPase 1+/− mice, but not plasma membrane Ca-ATPase 4−/− mice, there is slowed epithelial repair and a diminished gastric surface Ca2+ increase. We conclude that endogenous Ca2+, mobilized by signaling pathways and transmembrane Ca2+ transport, causes increased Ca2+ levels at the epithelial damage site that are essential to gastric epithelial cell restitution in vivo. PMID:24121509

  7. In vivo epithelial wound repair requires mobilization of endogenous intracellular and extracellular calcium.

    PubMed

    Aihara, Eitaro; Hentz, Courtney L; Korman, Abraham M; Perry, Nicholas P J; Prasad, Vikram; Shull, Gary E; Montrose, Marshall H

    2013-11-22

    We report that a localized intracellular and extracellular Ca(2+) mobilization occurs at the site of microscopic epithelial damage in vivo and is required to mediate tissue repair. Intravital confocal/two-photon microscopy continuously imaged the surgically exposed stomach mucosa of anesthetized mice while photodamage of gastric epithelial surface cells created a microscopic lesion that healed within 15 min. Transgenic mice with an intracellular Ca(2+)-sensitive protein (yellow cameleon 3.0) report that intracellular Ca(2+) selectively increases in restituting gastric epithelial cells adjacent to the damaged cells. Pretreatment with U-73122, indomethacin, 2-aminoethoxydiphenylborane, or verapamil inhibits repair of the damage and also inhibits the intracellular Ca(2+) increase. Confocal imaging of Fura-Red dye in luminal superfusate shows a localized extracellular Ca(2+) increase at the gastric surface adjacent to the damage that temporally follows intracellular Ca(2+) mobilization. Indomethacin and verapamil also inhibit the luminal Ca(2+) increase. Intracellular Ca(2+) chelation (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxymethyl ester, BAPTA/AM) fully inhibits intracellular and luminal Ca(2+) increases, whereas luminal calcium chelation (N-(2-hydroxyetheyl)-ethylendiamin-N,N,N'-triacetic acid trisodium, HEDTA) blocks the increase of luminal Ca(2+) and unevenly inhibits late-phase intracellular Ca(2+) mobilization. Both modes of Ca(2+) chelation slow gastric repair. In plasma membrane Ca-ATPase 1(+/-) mice, but not plasma membrane Ca-ATPase 4(-/-) mice, there is slowed epithelial repair and a diminished gastric surface Ca(2+) increase. We conclude that endogenous Ca(2+), mobilized by signaling pathways and transmembrane Ca(2+) transport, causes increased Ca(2+) levels at the epithelial damage site that are essential to gastric epithelial cell restitution in vivo.

  8. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  9. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  10. Vinyl chloride

    Integrated Risk Information System (IRIS)

    EPA / 635R - 00 / 004 TOXICOLOGICAL REVIEW OF VINYL CHLORIDE ( CAS No . 75 - 01 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) May 2000 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in accordance w

  11. Benzyl chloride

    Integrated Risk Information System (IRIS)

    Benzyl chloride ; CASRN 100 - 44 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  12. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  13. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  14. Effects of antiemetics on the acquisition and recall of radiation- and lithium chloride-induced conditioned taste aversions.

    PubMed

    Rabin, B M; Hunt, W A

    1983-04-01

    A series of experiments were run to evaluate the effect of antiemetics on the acquisition and recall of a conditioned taste aversion induced by exposure to ionizing radiation or by injection of lithium chloride. Groups of male rats were exposed to 100 rad gamma radiation or 3 mEq/kg lithium chloride following consumption of a 10% sucrose solution. They were then injected with saline or with one of three antiemetics (prochlorperazine, trimethobenzamide, or cyclizine) at dose levels that have been reported to be effective in attenuating a previously acquired lithium chloride-induced taste aversion. The pretreatments with antiemetics had no effect on the acquisition or recall of either the lithium chloride- or radiation-induced taste aversion. The data suggest that antiemetics do not disrupt lithium chloride-induced taste aversions as previously reported, nor do they effect radiation-induced taste aversion learning.

  15. Derivation of an occupational exposure limit (OEL) for methylene chloride based on acute CNS effects and relative potency analysis.

    PubMed

    Storm, J E; Rozman, K K

    1998-06-01

    The Occupational Safety and Health Administration (OSHA) methylene chloride Permissible Exposure Level (PEL) or 25 ppm is quantitatively derived from mouse tumor results observed in a high-exposure National Toxicology Program bioassay. Because this approach depends on controversial interspecies and low-dose extrapolations, the PEL itself has stimulated heated debate. Here, an alternative safety assessment for methylene chloride is presented. It is based on an acute human lowest-observed-adverse-effect level (LOAEL) of 200 ppm for subtle central nervous system (CNS) depression. Steep, parallel exposure-response curves for anesthetic and subanesthetic CNS effects associated with compounds mechanistically and structurally related to methylene chloride are shown to support a safety factor of two to account for inter-individual variability in response. LOAEL/no-observed-adverse-effect ratios for subtle CNS effects associated with structurally related solvents are shown to support a safety factor range of two to four to account for uncertainty in identifying a subthreshold exposure level. Anesthetic relative potencies and anesthetic/subanesthetic effect level ratios are shown to be constant for the compounds evaluated, demonstrating that subanesthetic relative potencies are also constant. Relative potencies among similarly derived occupational exposure limits (OELs) for solvents structurally related to methylene chloride are therefore used to validate the derived methylene chloride OEL range of 25-50 ppm. Because this safety assessment is based on human (rather than rodent) data and empirical (rather than theoretical) exposure-response relationships and is supported by relative potency analysis, it is a defensible alternative to to the OSHA risk assessment and should positively contribute to the debate regarding the appropriate basis and value for a methylene chloride PEL.

  16. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  17. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  18. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  19. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  20. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  1. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  2. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  3. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  4. 29 CFR 1926.1152 - Methylene chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  5. 29 CFR 1915.1052 - Methylene chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  6. Sodium-metal chloride battery research at JPL

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Sodium metal chloride batteries have certain distinct advantages over sodium sulfur batteries such as increased safety, inherent overcharge capability and lower operation temperatures. Two systems, i.e., Na/FeCl2 and Na/NiCl2 were developed extensively elsewhere and evaluated for various applications including electric vehicles and space. Their performance has been very encouraging and prompted a detailed fundamental study of these cathodes here at the Jet Propulsion Laboratory. A brief review of our studies on these new cathode materials is presented here. The initial efforts focussed on the methods of fabrication of the electrodes and their electrochemical characterization. Subsequent studies were aimed at establishing the reaction mechanism, determining the kinetics and identifying the rate limiting processes in the reduction of metal chloride cathodes. Nickel chloride emerged from these studies as the most promising candidate material and was taken up for further detailed study on its passivation - a rate limiting process - under different experimental conditions. Also, the feasibility of using copper chloride, which is expected to have higher energy density, has been assessed. Based on the criteria established from the voltammetric response of FeCl2, NiCl2, and CuCl2, several other transition metal chlorides were screened. Of these, molybdenum and cobalt chlorides appear promising.

  7. Results of the Massachusetts methylene chloride end-users survey.

    PubMed

    Roelofs, Cora R; Ellenbecker, Michael J

    2003-02-01

    A survey of Massachusetts companies reporting use of methylene chloride between 1995 and 1999 was conducted to assess the status of industrial use of the chemical in 2000. Methylene chloride has had wide use in industry although it has been identified as potentially hazardous to exposed workers and the environment. New and tightened occupational and environmental regulations taking effect in the 1990s were hypothesized to have reduced use of the chemical in Massachusetts. Substitute technologies, especially aqueous cleaning, were expected to have replaced methylene chloride in many industries. Seventeen of the 21 Massachusetts manufacturing companies reporting use of over 10,000 lb/y of methylene chloride between 1995 and 1999 were surveyed by telephone regarding their experiences of methylene chloride use and elimination and/or replacement. Fifteen of the 17 companies had either eliminated (10) or reduced to below 10,000 lbs/yr (5) their use of methylene chloride at the time of the survey in 2000. Many of the surveyed companies moved to aqueous cleaning from methylene chloride degreasing operations. Environmental concerns were the most popular reason given for eliminating or reducing use of methylene chloride. Worker health and safety concerns, especially concern about compliance with the 1997 Occupational Safety and Health Administration methylene chloride standard, were also a motivation. In general, the companies associated many benefits and few problems with eliminating or reducing use of methylene chloride. Exposure reduction strategies based on toxics use reduction techniques appear to be feasible for many manufacturing companies. However, research should be conducted to assess the introduction of new hazards as a result of tightened regulations on methylene chloride.

  8. Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production.

    PubMed

    Besada, Cristina; Gil, Rebeca; Bonet, Luis; Quiñones, Ana; Intrigliolo, Diego; Salvador, Alejandra

    2016-03-01

    In recent years many hectares planted with persimmon trees in E Spain have been diagnosed with chloride toxicity. An effect of this abiotic stress on fruit quality has been reported in different crops. However, the impact of chloride stress on persimmon fruit quality is unknown. The harvest and postharvest quality of persimmons harvested from trees that manifest different intensities of chloride toxicity foliar symptoms was evaluated herein. Our results revealed that fruits from trees under chloride stress conditions underwent chloride accumulation in the calyx, which was more marked the greater the salt stress intensity trees were exposed to. Increased chloride concentrations in the calyx stimulated ethylene production in this tissue. In the fruits affected by slight and moderate chloride stress, calyx ethylene production accelerated the maturity process, as reflected by increased fruit colour and diminished fruit firmness. In the fruits under severe chloride stress, the high ethylene levels in the calyx triggered autocatalytic ethylene production in other fruit tissues, which led fruit maturity to drastically advance. In these fruits effectiveness of CO2 deastringency treatment was not complete and fruit softening enhanced during the postharvest period. Moreover, chloride stress conditions had a marked effect on reducing fruit weight, even in slightly stressed trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Phytoextraction of chloride from a cement kiln dust (CKD) contaminated landfill with Phragmites australis.

    PubMed

    McSorley, Kaitlin; Rutter, Allison; Cumming, Robert; Zeeb, Barbara A

    2016-05-01

    Cement kiln dust (CKD) is a globally produced by-product from cement manufacturing that is stockpiled or landfilled. Elevated concentrations of chloride pose toxic threats to plants and aquatic communities, as the anion is highly mobile in water and can leach into surrounding water sources. Re-vegetation and in situ phytoextraction of chloride from a CKD landfill in Bath, ON, Canada, was investigated with the resident invasive species Phragmites australis (haplotype M). Existing stands of P. australis were transplanted from the perimeter of the site into the highest areas of contamination (5.9×10(3)μg/g). Accumulation in the shoots of P. australis was quantified over one growing season by collecting samples from the site on a bi-weekly basis and analyzing for chloride. Concentrations decreased significantly from early May (24±2.2×10(3)μg/g) until mid-June (15±2.5×10(3)μg/g), and then remained stable from June to August. Shoot chloride accumulation was not significantly affected by water level fluctuations at the site, however elevated potassium concentrations in the soil may have contributed to uptake. Based on shoot chloride accumulation and total biomass, it was determined that phytoextraction from the CKD landfill can remove 65±4kg/km(2) of chloride per season. Based on this extraction rate, removal of chloride present in the highly contaminated top 10cm of soil can be achieved in 3-9years. This is the first study to apply phytotechnologies at a CKD landfill, and to successfully demonstrate in situ phytoextraction of chloride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Verification of chloride adsorption effect of mortar with salt adsorbent

    NASA Astrophysics Data System (ADS)

    Hoshina, T.; Nakajima, N.; Sudo, H.; Date, S.

    2017-11-01

    In order to investigate the chloride adsorption effect of mortar mixed with chloride adsorbent, electrophoresis test using mortar specimen and immersion dry repeated test were conducted to evaluate chloride adsorption effect. As a result, it was confirmed that soluble salt content that causes corrosion of rebar in the specimen was reduced by the chloride adsorbent and corrosion inhibiting effect of the rebar was also obtained. It was also confirmed that by increasing dosage of the chloride adsorbent, the chloride adsorbing effect becomes larger as well..

  11. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-0969-091) is the chloride salt of metallic tin that contains two...

  12. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-69-1) is the chloride salt of metallic tin that contains two...

  13. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-0969-091) is the chloride salt of metallic tin that contains two...

  14. 21 CFR 184.1845 - Stannous chloride (anhydrous and dihydrated).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Anhydrous stannous chloride (SnCl2, CAS Reg. No. 7772-99-8) is the chloride salt of metallic tin. It is prepared by reacting molten tin with either chlorine or gaseous tin tetrachloride. Dihydrated stannous chloride (SnCl2·2H2O, CAS Reg. No. 10025-69-1) is the chloride salt of metallic tin that contains two...

  15. 29 CFR 1926.1117 - Vinyl chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Vinyl chloride. 1926.1117 Section 1926.1117 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... chloride. Note: The requirements applicable to construction work under this section are identical to those...

  16. 29 CFR 1915.1017 - Vinyl chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Vinyl chloride. 1915.1017 Section 1915.1017 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1017 Vinyl chloride. Note: The requirements applicable to shipyard employment under this section...

  17. Intracellular GPCRs Play Key Roles in Synaptic Plasticity.

    PubMed

    Jong, Yuh-Jiin I; Harmon, Steven K; O'Malley, Karen L

    2018-02-16

    The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.

  18. Mechanistic characterization of chloride interferences in electrothermal atomization systems

    USGS Publications Warehouse

    Shekiro, J.M.; Skogerboe, R.K.; Taylor, Howard E.

    1988-01-01

    A computer-controlled spectrometer with a photodiode array detector has been used for wavelength and temperature resolved characterization of the vapor produced by an electrothermal atomizer. The system has been used to study the chloride matrix interference on the atomic absorption spectrometric determination of manganese and copper. The suppression of manganese and copper atom populations by matrix chlorides such as those of calcium and magnesium is due to the gas-phase formation of an analyte chloride species followed by the diffusion of significant fractions of these species from the atom cell prior to completion of the atomization process. The analyte chloride species cannot be formed when matrix chlorides with metal-chloride bond dissociation energies above those of the analyte chlorides are the principal entitles present. The results indicate that multiple wavelength spectrometry used to obtain temperature-resolved spectra is a viable tool in the mechanistic characterization of interference effects observed with electrothermal atomization systems. ?? 1988 American Chemical Society.

  19. REVEALING THE ACTIVATION PATHWAY FOR TMEM16A CHLORIDE CHANNELS FROM MACROSCOPIC CURRENTS AND KINETIC MODELS

    PubMed Central

    Contreras-Vite, Juan A.; Cruz-Rangel, Silvia; De Jesús-Pérez, José J.; Aréchiga Figueroa, Iván A.; Rodríguez-Menchaca, Aldo A.; Pérez-Cornejo, Patricia; Hartzell, H. Criss; Arreola, Jorge

    2017-01-01

    TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth, and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca2+]i), membrane depolarization, extracellular Cl− or permeant anions, and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. a) TMEM16A is activated by voltage in the absence of intracellular Ca2+. b) The Cl− conductance is decreased after reducing extracellular Cl− concentration ([Cl−]o). c) ICl is regulated by physiological concentrations of [Cl−]o. d) In cells dialyzed with 0.2 µM [Ca2+]i, Cl− has a bimodal effect: at [Cl−]o < 30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM [Cl−]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca2+ and Cl− to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca2+ ions coupled to a Vm-dependent binding of an external Cl− ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl− does not alter the apparent Ca2+ affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl− acts by stabilizing the open configuration induced by Ca2+ and by contributing to the Vm dependence of activation. PMID:27138167

  20. 21 CFR 520.260 - n-Butyl chloride capsules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false n-Butyl chloride capsules. 520.260 Section 520.260... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.260 n-Butyl chloride capsules. (a)(1) Specifications. n-Butyl chloride capsules, veterinary contain 272 milligrams or 816 milligrams...

  1. Gene expression in Listeria monocytogenes exposed to sublethal concentration of benzalkonium chloride.

    PubMed

    Tamburro, Manuela; Ripabelli, Giancarlo; Vitullo, Monia; Dallman, Timothy James; Pontello, Mirella; Amar, Corinne Francoise Laurence; Sammarco, Michela Lucia

    2015-06-01

    In this study, tolerance at sublethal concentration of benzalkonium chloride and transcription levels of mdrL, ladR, lde, sigB and bcrABC genes in Listeria monocytogenes strains were evaluated. Viable cells reduction occurred in 45% of strains and clinical isolates showed lower sensitivity than isolates from foods. An increased transcription of an efflux system encoding gene was found in 60% of strains, and simultaneous mdrL overexpression and ladR underexpression occurred in 30% of isolates. A significant association between reduced benzalkonium chloride activity and both mdrL and sigB overexpression was observed; sigB expression also correlated with both mdrL and ladR genes. The bcrABC gene was only found in six strains, all isolated from foods and sensitive to benzalkonium chloride, and in four strains an underexpression was observed. Disinfection at sublethal concentration was less effective in clinical isolates, and mdrL and sigB expression was significantly affected by disinfection. Further insights are needed to understand the adaptation to benzalkonium chloride and to evaluate whether changes in gene expression could affect the L. monocytogenes virulence traits and persistence in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  3. 29 CFR 1910.1052 - Methylene Chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 6 2014-07-01 2013-07-01 true Methylene Chloride. 1910.1052 Section 1910.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1052 Methylene Chloride. This occupational...

  4. 29 CFR 1910.1052 - Methylene Chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 6 2013-07-01 2013-07-01 false Methylene Chloride. 1910.1052 Section 1910.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1052 Methylene Chloride. This occupational...

  5. 29 CFR 1910.1052 - Methylene Chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 6 2011-07-01 2011-07-01 false Methylene Chloride. 1910.1052 Section 1910.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1052 Methylene Chloride. This occupational...

  6. 29 CFR 1910.1052 - Methylene Chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Methylene Chloride. 1910.1052 Section 1910.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1052 Methylene Chloride. This occupational...

  7. Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stress-mediated mechanisms in 3T3-L1 adipocytes.

    PubMed

    Xiao, Xiao; Qi, Weipeng; Clark, John M; Park, Yeonhwa

    2017-11-01

    Permethrin, a pyrethroid insecticide, was previously reported to promote adipogenesis in vitro and weight gain in vivo. The mechanism by which permethrin promotes adipogenesis/obesity, however, has not been fully explored. Intracellular calcium and endoplasmic reticulum (ER) stress have been reported to be linked with adipogenesis and obesity. Because pyrethroid insecticides have been determined to influence intracellular calcium and ER stress in vitro, the purpose of this current study was to investigate whether permethrin potentiates adipogenesis via a change in intracellular calcium, leading to endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. 3T3-L1 cells were exposed to four different concentrations of permethrin (0.01, 0.1, 1 & 10 μM) for 6 days during differentiation. Treatment of permethrin increased intracellular calcium level in a concentration-dependent manner. Similarly, permethrin treatment increased protein levels of ER stress markers in a concentration-dependent manner. These data suggest that intracellular calcium and ER stress may be involved in permethrin-induced adipogenesis of 3T3-L1 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Method for the regeneration of spent molten zinc chloride

    DOEpatents

    Zielke, Clyde W.; Rosenhoover, William A.

    1981-01-01

    In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

  9. Making Positive Electrodes For Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Bankston, C. Perry

    1992-01-01

    High coulombic yields provided by sodium/metal chloride battery in which cathode formed by impregnating sintered nickel plaque with saturated solution of nickel chloride. Charge/discharge cycling of nickel chloride electrode results in very little loss of capacity. Used in spacecraft, electric land vehicles, and other applications in which high-energy-density power systems required.

  10. Lead and methylene chloride exposures among automotive repair technicians.

    PubMed

    Enander, Richard T; Cohen, Howard J; Gute, David M; Brown, Linfield C; Desmaris, Anne Marie C; Missaghian, Richard

    2004-02-01

    Potential exposures among repair technicians engaged in vehicle resurfacing operations prior to spray painting have not been thoroughly characterized. Environmental and personal air monitoring conducted in the State of Rhode Island have shown that automotive repair technicians may be exposed to metal particulates in sanding dust and methylene chloride vapors during vehicle paint removal operations. Hand wipe samples demonstrated that metals in sanding dust adhered to the hands of workers throughout the duration of the work day and were available for incidental ingestion from the handling of food/nonfood items and hand-to-mouth contact. A blood lead (PbB) screening effort among 21 workers at 2 facilities showed that 4 non-/less-exposed workers had mean PbB levels at the U.S. geometric mean of 2.8 microg/dL, while 2 out of 9 (22%) dedicated vehicle repair technicians had PbB levels at or above 30 microg Pb/dL whole blood--the level for potential adverse reproductive effects. Methylene chloride exposures were also found to exceed the Occupational Safety and Health Administrations (OSHA) 8-hr time-weighted average (TWA) action level and permissible exposure limit (PEL) in a limited number of samples (120 and 26 ppm, integrated work shift samples). Our findings suggest that thousands of professional technicians and vocational high school students may be at increased risk of adverse reproductive and/or other systemic effects.

  11. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  12. Zinc-chloride battery technology - Status 1983

    NASA Astrophysics Data System (ADS)

    Rowan, J. W.; Carr, P.; Warde, C. J.; Henriksen, G. L.

    Zinc-chloride batteries are presently under development at Energy Development Associates (EDA) for load-leveling, electric-vehicle, and specialty applications. A 500-kWh battery system has been built at Detroit Edison's Charlotte substation near downtown Detroit. Following shakedown testing, this system will be installed at the Battery Energy Storage Test (BEST) Facility in Hillsborough, New Jersey, in July 1983. Data is presented also for a prototype 50-kWh battery which has successfully operated through 150 cycles. EDA has built and tested three 4-passenger automobiles. The maximum range achieved on a single charge was 200 miles at 40 mph. Recently, the electric-vehicle battery program at EDA has focused on commercial vehicles. Two vans, each powered with a 45-kWh zinc-chloride battery, have been built and track tested. These vehicles, which carry a payload of 1,000 pounds, have a top speed of 55 mph and an operational range in excess of 80 miles. In the specialty battery area, two 6-kWh 12-V reserve batteries have been built and tested. This type of battery offers the prospect of long shelf life and an energy density in excess of 100 Wh/lb.

  13. Remote monitoring of sub ppb levels of vinyl chloride, dichloroethylene and trichloroethylene via modem operated automated GC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linenberg, A.; Lander, N.J.

    1994-12-31

    The need for remote monitoring of certain compounds in a sparsely populated area with limited user assistance led to the development and manufacture of a self contained, portable gas chromatography with the appropriate software. Part per billion levels of vinyl chloride, cis 1,2 dichloroethylene and trichloroethylene were detected in air using a trap for preconcentration of the compounds. The units were continuously calibrated with certified standards from Scott Specialty Gases, which in one case was 1 part per billion of the aforementioned compounds. The entire operation of the units, including monitoring instrument responses, changing operating parameters, data transfer, data reviewmore » and data reporting was done entirely on a remote basis from approximately 600 miles away using a remote computer with a modem and remote operating software. The entire system concept promises the availability of highly sensitive remote monitoring in sparsely populated areas for long periods of time.« less

  14. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  15. [Effects of aluminium chloride on the methylation of app in hippocampal of rats].

    PubMed

    Yang, Xiaojuan; Yuan, Yuzhou; Niu, Qiao

    2016-05-01

    To study the effect of aluminum chloride on amyloid precursor protein ( APP ) promoter methylation and the content of amyloid beta-protein (Abeta) in hippocampus of rats. Forty male SPF grade SD rats were divided into four groups: control group (0.9% NaCl), 10 mg/kg AlCl3 group, 20 mg/kg AlCl3 group, and 30 mg/kg AlCl3 group, respectively. After treatment for 8 weeks, the APP methylation level and expressions of APP mRNA was detected by methylation specific PCR and quantitative real time PCR, respectively. The content of APP and Abeta were detected with enzym-linked immunosorbent assay (ELISA). With the increase of the content of aluminium chloride, the escape latency were significantly prolong (P < 0.05), numbers of traversing flat in AlCl3 20 mg/kg and AlCl3 30 mg/kg group high and were significantly decreased (P < 0.05), the methylation level of APP contaminated by AlCl3 were decreased (chi2 = 27.61, P < 0.05), the level of APP methylation in 30 mg/kg AlCl3 group was lower than three groups (P < 0.01). With the increase of aluminium chloride, the level of APP methylation were decreased (chi2 = 19.08, P < 0.01). With the increase of the content of aluminium chloride, the methylation level of APP treated with 20 mg/kg AlCl3 and 30 mg/kg AlCl3 were decreased compared with control group (P < 0.05), the level of APP methylation in 30 mg/kg AlCl3 group was lower than 10mg/kg AlCl3 group (P < 0.05), the APP mRNA expression level in AlCl3 group was of statistical significance compared to the control group (F = 8.973, P < 0.05), the level of APP mRNA in 30 mg/kg AlCl3 were higher than 10 mg/kg AlCl3 (P < 0.05). Compared with the control group, the content of APP and Abeta in hippocampus of AlCl3 group were increased (F = 11.14, P = 0. 032, F = 17.82, P = 0.018), and 30 mg/kg AlCl3 group were higher than 10 mg/kg AlCl3 (P < 0.05), the content of APP in 20 mg/kg AlCl3 group were higher than 10 mg/kg AlCl3 (P < 0.05). The result of immunohistochemistry revealed that the

  16. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a...

  17. 21 CFR 182.8985 - Zinc chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Zinc chloride. 182.8985 Section 182.8985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a...

  18. Electromagnetic-induction logging to monitor changing chloride concentrations

    USGS Publications Warehouse

    Metzger, Loren F.; Izbicki, John A.

    2013-01-01

    Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple-well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride-cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high-chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high-chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.

  19. The ability of the Antarctic nematode Panagrolaimus davidi to survive intracellular freezing is dependent upon nutritional status.

    PubMed

    Raymond, Mélianie R; Wharton, David A

    2013-02-01

    The Antarctic nematode Panagrolaimus davidi is the best documented example of an animal surviving intracellular freezing and the only animal so far shown to survive such freezing throughout its tissues. However, a recent study found that after exposure to a freezing stress that produced intracellular freezing in a proportion of nematodes, the resulting survival levels could be explained if those nematodes that froze intracellularly had died. We have thus re-examined the survival of intracellular freezing in this nematode. The ability to survive a freezing exposure that is likely to produce intracellular freezing (freezing at -10 °C) declines with culture age. In cultures that are fed regularly, the ability to survive freezing at -10 °C increases, but in starved cultures freezing survival declines. Survival of intracellular freezing in fed cultures was confirmed using cryomicroscopy, staining of cells with vital dyes and by freeze substitution and transmission electron microscopy. We have thus confirmed that P. davidi can survive intracellular freezing and shown that this ability is dependent upon them being well fed. The effect of culture conditions on the nutrient status of the nematodes should thus be an important factor in the design of experiments.

  20. Methylene Chloride.

    PubMed

    Phillips, Jennan A

    2018-02-01

    Methylene chloride is an industrial solvent used in commercial paint strippers and degreasing agents. This chemical is widely used in consumer products, yet without appropriate protections, exposure may lead to death. Already banned in some countries, the Environmental Protection Agency (EPA) recently proposed limiting its use in the United States.

  1. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells.

    PubMed

    Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea

    2017-08-01

    Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent

  2. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Comparison of effects of isotonic sodium chloride with diltiazem in prevention of contrast-induced nephropathy.

    PubMed

    Beyazal, Hatice; Caliskan, Zuhal; Utaç, Cengiz

    2014-04-01

    Contrast-induced nephropathy (CIN) significantly increases the morbidity and mortality of patients. The aim of this study is to investigate and compare the protective effects of isotonic sodium chloride with sodium bicarbonate infusion and isotonic sodium chloride infusion with diltiazem, a calcium channel blocker, in preventing CIN. Our study included patients who were administered 30-60 mL of iodinated contrast agent for percutaneous coronary angiography (PCAG), all with creatinine values between 1.1 and 3.1 mg/dL. Patients were divided into three groups and each group had 20 patients. The first group of patients was administered isotonic sodium chloride; the second group was administered a solution that of 5% dextrose and sodium bicarbonate, while the third group was administered isotonic sodium chloride before and after the contrast injection. The third group received an additional injection of diltiazem the day before and first 2 days after the contrast injection. All of the patients' plasma blood urea nitrogen (BUN) and creatinine levels were measured on the second and seventh day after the administration of intravenous contrast material. The basal creatinine levels were similar for all three groups (p > 0.05). Among a total of 60 patients included in the study, 16 patients developed acute renal failure (ARF) on the second day after contrast material was injected (26.6%). The number of patients who developed ARF on the second day after the injection in the first group was five (25%), in the second group was six (30%) and the third group was five (25%) (p > 0.05). There was no significant difference between isotonic sodium chloride, sodium bicarbonate and isotonic sodium chloride with diltiazem application in prevention of CIN.

  4. Rapid fixation of methylene chloride by a macrocyclic amine.

    PubMed

    Lee, Jung-Jae; Stanger, Keith J; Noll, Bruce C; Gonzalez, Carlos; Marquez, Manuel; Smith, Bradley D

    2005-03-30

    A simple macrocyclic amine is alkylated by methylene chloride to give a quaternary ammonium chloride salt. When methylene chloride is the solvent, the reaction exhibits pseudo-first-order kinetics, and the reaction half-life at 25.0 degrees C is 2.0 min. The reaction half-life for a structurally related, acyclic amine is approximately 50 000 times longer. Detailed calculations favor a mechanism where the methylene chloride associates with the macrocycle to form an activated prereaction complex. The macrocyclic nitrogen subsequently attacks the methylene chloride with a classic SN2 trajectory, and although the carbon-chlorine bond breaks, the chloride leaving group does not separate from the newly formed cationic macrocycle, such that the product is a tightly associated ion-pair. X-ray crystal structures of the starting amine and the product salt, as well as kinetic data, support this mechanism.

  5. Molecular Determinants of the Human α2C-Adrenergic Receptor Temperature-Sensitive Intracellular Traffic

    PubMed Central

    Pullikuth, Ashok K.; Guidry, Jessie J.

    2015-01-01

    The human α2C-adrenergic receptor (α2C-AR) is localized intracellularly at physiologic temperature. Decreasing the environmental temperature strongly stimulates the receptor transport to the cell surface. In contrast, rat and mouse α2C-AR plasma membrane levels are less sensitive to decrease in temperature, whereas the opossum α2C-AR cell surface levels are not changed in these conditions. Structural analysis demonstrated that human α2C-AR has a high number of arginine residues in the third intracellular loop and in the C-terminus, organized as putative RXR motifs. Although these motifs do not affect the receptor subcellular localization at 37°C, deletion of the arginine clusters significantly enhanced receptor plasma membrane levels at reduced temperature. We found that this exaggerated transport of the human receptor is mediated by two functional arginine clusters, one in the third intracellular loop and one in the C-terminus. This effect is mediated by interactions with COPI vesicles, but not by 14-3-3 proteins. In rat α2C-AR, the arginine cluster from the third intracellular loop is shifted to the left due to three missing residues. Reinsertion of these residues in the rat α2C-AR restored the same temperature sensitivity as in the human receptor. Proteomic and coimmunoprecipitation experiments identified pontin as a molecule having stronger interactions with human α2C-AR compared with rat α2C-AR. Inhibition of pontin activity enhanced human receptor plasma membrane levels and signaling at 37°C. Our results demonstrate that human α2C-AR has a unique temperature-sensitive traffic pattern within the G protein–coupled receptor class due to interactions with different molecular chaperones, mediated in part by strict spatial localization of specific arginine residues. PMID:25680754

  6. Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of Cystic Fibrosis.

    PubMed

    Kim, Jimin P; Xie, Zhiwei; Creer, Michael; Liu, Zhiwen; Yang, Jian

    2017-01-01

    Chloride is an essential electrolyte that maintains homeostasis within the body, where abnormal chloride levels in biological fluids may indicate various diseases such as Cystic Fibrosis. However, current analytical solutions for chloride detection fail to meet the clinical needs of both high performance and low material or labor costs, hindering translation into clinical settings. Here we present a new class of fluorescence chloride sensors derived from a facile citrate -based synthesis platform that utilize dynamic quenching mechanisms. Based on this low-cost platform, we demonstrate for the first time a selective sensing strategy that uses a single fluorophore to detect multiple halides simultaneously, promising both selectivity and automation to improve performance and reduce labor costs. We also demonstrate the clinical utility of citrate-based sensors as a new sweat chloride test method for the diagnosis of Cystic Fibrosis by performing analytical validation with sweat controls and clinical validation with sweat from individuals with or without Cystic Fibrosis. Lastly, molecular modeling studies reveal the structural mechanism behind chloride sensing, serving to expand this class of fluorescence sensors with improved chloride sensitivities. Thus citrate-based fluorescent materials may enable low-cost, automated multi-analysis systems for simpler, yet accurate, point-of-care diagnostics that can be readily translated into clinical settings. More broadly, a wide range of medical, industrial, and environmental applications can be achieved with such a facile synthesis platform, demonstrated in our citrate-based biodegradable polymers with intrinsic fluorescence sensing.

  7. Intracellular pH Recovery Rates in Bivalve Hemocytes Following Exposure to Acidic Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G. H.

    2012-12-01

    Predictions of ocean acidification effects upon carbonate shell-forming species have caused great concern for the future of shellfisheries. Nevertheless, bivalve species inhabiting an estuarine environment have evolved in these environments with fluctuating pH levels. Previous experimental studies conducted in our laboratory have demonstrated the ability of oyster hemocytes to maintain intracellular homeostasis under acidic external conditions. However, little information is known of this homeostatic mechanism in other molluscan shellfish species present in these same habitats. In the current study we propose to determine if other bivalve species of aquaculture interest also possess this intracellular regulation by applying an in vitro hemocyte pH-recovery assay, previously developed for oysters, on the northern quahog, Mercenaria mercenaria, the blue mussel, Mytilus edulis, and the softshell clam, Mya arenaria. Preliminary results from the determination of initial intracellular pH levels, the initial step in the rate recovery assay, indicated a pH range between 7.0-7.4. This range was comparable to initial values measured in oysters, and consistent with data reported in the current literature. The second step of the hemocyte pH-recovery assay involves exposing oyster hemocytes to acidic external conditions and measuring the ability of the hemocyte intracellular pH to maintain homeostasis (i.e. recovery rate). Results from the recovery rate process will be presented.

  8. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chloride plants. 61.64 Section 61.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator of a polyvinyl chloride plant shall comply with the requirements of this section and § 61.65. (a...

  9. Inhibition of membrane Na(+)-K+ Atpase of the brain, liver and RBC in rats administered di(2-ethyl hexyl) phthalate (DEHP) a plasticizer used in polyvinyl chloride (PVC) blood storage bags.

    PubMed

    Dhanya, C R; Indu, A R; Deepadevi, K V; Kurup, P A

    2003-08-01

    Significant amounts of di(2-ethylhexyl) phthalate (DEHP) leach out into blood stored in DEHP plasticized polyvinyl chloride (PVC) bags resulting in the exposure of recipients of blood transfusion to this compound. The aim of this study was to find out whether DEHP at these low levels has any effect on the activity of membrane Na(+)-K+ ATPase, since a decrease in this enzyme activity has been reported to take place in a number of disorders like neurodegenerative and psychiatric disorders, coronary artery disease and stroke, syndrome-X, tumours etc. DEHP was administered (ip) at a low dose of 750 microg/100 g body weight to rats and the activity of membrane Na(+)-K+ ATPase in liver, brain and RBC was estimated. Histopathology of brain, activity of HMG CoA reductase (a major rate limiting enzyme in the isoprenoid pathway of which digoxin, the physiological inhibitor of Na(+)-K+ ATPase is a product), intracellular concentration of Ca2+ and Mg2+ in RBC (which is altered as a result of inhibition of Na(+)-K+ ATPase) were also studied. (In the light of the observation of increase of intracellular Ca2+ load and intracellular depletion of Mg2+ when Na(+)-K+ ATPase is inhibited). Histopathology of brain revealed areas of degeneration in the rats administered DEHP. There was significant inhibition of membrane Na(+)-K+ ATPase in brain, liver and RBC. Intracellular Ca2+ increased in the RBC while intracellular Mg2+ decreased. However activity of hepatic HMG CoA reductase decreased. Activity of Na(+)-K+ ATPase and HMG CoA reductase, however returned to normal levels within 7 days of stopping administration of DEHP. The inhibition of membrane Na(+)-K+ ATPase activity by DEHP may indicate the possibility of predisposing recipients of transfusion of blood or hemodialysis to the various disorders mentioned above. However since this effect is reversed when DEHP administration is stopped, it may not be a serious problem in the case of a few transfusion; but in patients receiving

  10. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice

    PubMed Central

    MacDonald, Kelvin D.; McKenzie, Karen R.; Henderson, Mark J.; Hawkins, Charles E.; Vij, Neeraj; Zeitlin, Pamela L.

    2008-01-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl− transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 μM lubiprostone was −5.8 ± 2.1 mV (CF, n = 12), −8.1 ± 2.6 mV (C57Bl/6 wild-type, n = 12), and −5.3 ± 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 μM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia. PMID:18805957

  11. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice.

    PubMed

    MacDonald, Kelvin D; McKenzie, Karen R; Henderson, Mark J; Hawkins, Charles E; Vij, Neeraj; Zeitlin, Pamela L

    2008-11-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.

  12. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  13. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions.

    PubMed

    Dopson, Mark; Holmes, David S; Lazcano, Marcelo; McCredden, Timothy J; Bryan, Christopher G; Mulroney, Kieran T; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L J

    2016-01-01

    Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of "biomining." A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans . Ac. prosperus had optimum iron oxidation at 20 g L -1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L -1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F 0 F 1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl - with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a

  14. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions

    PubMed Central

    Dopson, Mark; Holmes, David S.; Lazcano, Marcelo; McCredden, Timothy J.; Bryan, Christopher G.; Mulroney, Kieran T.; Steuart, Robert; Jackaman, Connie; Watkin, Elizabeth L. J.

    2017-01-01

    Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L−1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L−1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl− with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a

  15. Branchial and renal pathology in the fish exposed chronically to methoxy ethyl mercuric chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, T.S.; Pant, J.C.; Tewari, H.

    1988-08-01

    Pathological manifestations causally related to pesticide poisoning have been described in both surficial and internal tissues of the fishes. Among the various organomercurials are phenyl mercuric acetate, methyl mercuric dicyanidiamide, methoxy ethyl mercuric chloride, methoxy ethyl mercuric silicate etc. Of these, the methoxy ethyl mercuric chloride (MEMC) is used in agriculture as an antifungal seed dressing, and its toxicity is primarily manifest in the Hg/sup 2 +/ ion. This report describes pathogenesis of branchial and renal lesions in the common freshwater fish, Puntius conchonius exposed chronically to sublethal levels of MEMC. Prior to this, alterations in the peripheral blood andmore » metabolite levels in response to experimental MEMC poisoning have been demonstrated in this species.« less

  16. NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).

    PubMed

    Swartz, M L

    1992-02-01

    NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.

  17. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    PubMed

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  18. Pulmonary edema in meningococcal septicemia associated with reduced epithelial chloride transport.

    PubMed

    Eisenhut, Michael; Wallace, Helen; Barton, Paul; Gaillard, Erol; Newland, Paul; Diver, Michael; Southern, Kevin W

    2006-03-01

    To test the hypothesis that meningococcal septicemia-related pulmonary edema is associated with a systemic abnormality of epithelial sodium and chloride transport and to investigate an association with hormones regulating Na transport. Prospective observational study. The 24-bed pediatric intensive care unit and pediatric wards of Royal Liverpool Children's Hospital. Consecutive children admitted to the pediatric intensive care unit and pediatric wards with a diagnosis of meningococcal septicemia and children (controls) with noninfectious critical illness receiving ventilatory support in the pediatric intensive care unit. We measured sweat and saliva electrolytes, renal electrolyte excretion, nasal potential difference, and aldosterone, thyroxine, and cortisol levels. Pulmonary edema was diagnosed by chest radiography and its severity quantified by calculation of ventilation index at admission and duration of mechanical ventilation. We recruited 17 patients with severe meningococcal septicemia (nine patients with pulmonary edema), 14 patients with mild meningococcal septicemia, and 20 controls. Sweat and saliva Na and Cl concentrations and renal Na excretion were significantly (p < .05) higher in patients with pulmonary edema compared with controls. Nasal potential difference and amiloride response in patients with pulmonary edema were not significantly different to controls, but response to a low Cl solution was reduced in the nasal airway of patients with pulmonary edema (p < .05). Sweat and saliva chloride concentrations correlated significantly and better with ventilation index and duration of ventilation than sodium concentrations. Aldosterone, thyroxine, and cortisol levels were not significantly different between groups. We have confirmed that meningococcal septicemia-related pulmonary edema is associated with reduced systemic sodium and chloride transport. Features of reduced Cl transport were most closely associated with markers of respiratory compromise

  19. Detection of colloidal silver chloride near solubility limit

    NASA Astrophysics Data System (ADS)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  20. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.

    PubMed

    Xie, Shuyu; Yang, Fei; Tao, Yanfei; Chen, Dongmei; Qu, Wei; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Yuan, Zonghui

    2017-01-23

    Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06-37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from -8.1 to -24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment.