Science.gov

Sample records for intracellular glutathione levels

  1. Biochemical manipulation of intracellular glutathione levels influences cytotoxicity to isolated human lymphocytes by sulfur mustard

    SciTech Connect

    Gross, C.L.; Innace, J.K.; Hovatter, R.C.; Meier, H.L.; Smith, W.J.

    1993-12-31

    Glutathione (GSH) is the major nonprotein thiol that can protect cells from damage due to electrophilic alkylating agents by forming conjugates with the agent. Sulfur mustard (HD) is an electrophilic alkylating agent that has potent mutagenic, carcinogenic, cytotoxic, and vesicant properties. Compounds that elevate or reduce intracellular levels of GSH may produce changes in cytotoxicity induced by sulfur mustard. Pretreatment of human peripheral blood lymphocytes (PBL) for 72 hr with 1 mM buthionine sulfoximine (BSO), which reduces intracellular GSH content to approximately 26% of control, appears to sensitize these in vitro cells to the cytotoxic effects of 10 AM HD but not to higher HD concentrations. Pretreatment of PBL for 48 hr with 10 mM N-acetyl cysteine (NA C), which elevates intracellular glutathione levels to 122% of control, appears to partially protect these in vitro cells from the cytotoxic effects of 10 LAIHD but not to higher HD concentrations. Augmentation of intracellular levels of glutathione may provide partial protection against cytotoxicity of sulfur mustard.

  2. Alteration of intracellular cysteine and glutathione levels in alveolar macrophages and lymphocytes by diesel exhaust particle exposure.

    PubMed Central

    Al-Humadi, Nabil H; Siegel, Paul D; Lewis, Daniel M; Barger, Mark W; Ma, Jane Y C; Weissman, David N; Ma, Joseph K H

    2002-01-01

    The purpose of this study was to characterize the effects of diesel exhaust particles (DEP) on thiol regulation in alveolar macrophages (AM) and lymphocytes. We obtained AM and lymph node (thymic and tracheal) cells (LNC) (at different time points) from rats exposed intratracheally to DEP (5 mg/kg) or saline, and measured inflammatory markers, thiol levels, and glutathione reductase (GSH-R) activity. DEP exposure produced significant increases in neutrophils, lactate dehydrogenase, total protein, and albumin content in the lavage fluid. AM from DEP-exposed rats showed a time-dependent increase in intracellular cysteine (CYSH) and GSH. In LNC the intracellular GSH reached peak level by 24 hr, declining toward control levels by 72 hr after exposure. LNC-CYSH and AM-CYSH and GSH were increased at both 24 and 72 hr. Both Sprague-Dawley and Brown Norway rats showed similar trends of responses to DEP exposure as per measurement of the inflammatory markers and thiol changes. AM and, to a lesser degree, LNC were both active in cystine uptake. The DEP exposure stimulated GSH-R activity and increased the conversion of cystine to CYSH in both cell types. The intracellular level of GSH in DEP-exposed AM was moderately increased compared with the saline control, and was further augmented when cells were incubated with cystine. In contrast, the intracellular level of GSH in DEP-exposed LNC was significantly reduced despite the increased CYSH level and GSH-R activity when these cells were cultured for 16 hr. DEP absorbed 23-31% of CYSH, cystine, and GSH, and only 8% of glutathione disulfide when incubated in cell free media. These results indicate that DEP exposure caused lung inflammation and affected thiol levels in both AM and LNC. PMID:11940452

  3. Neurotoxicity of a polybrominated diphenyl ether mixture (DE-71) in mouse neurons and astrocytes is modulated by intracellular glutathione levels

    SciTech Connect

    Giordano, Gennaro; Kavanagh, Terrance J.; Costa, Lucio G.

    2008-10-15

    Polybrominated diphenyl ether (PBDE) flame retardants have become widespread environmental contaminants. Body burden in the U.S. population has been shown to be higher than in other countries, and infants and toddlers have highest exposure through maternal breast milk and household dust. The primary concern for adverse health effects of PBDEs relates to their potential developmental neurotoxicity, which has been found in a number of animal studies. Information on the possible mechanisms of PBDE neurotoxicity is limited, though some studies have suggested that PBDEs may elicit oxidative stress. The present study examined the in vitro neurotoxicity of DE-71, a penta-BDE mixture, in primary neurons and astrocytes obtained from wild-type and Gclm knockout mice, which lack the modifier subunit of glutamate-cysteine ligase and, as a consequence, have very low levels of glutathione (GSH). These experiments show that neurotoxicity of DE-71 in these cells is modulated by cellular GSH levels. Cerebellar granule neurons (CGNs) from Gclm (-/-) mice displayed a higher sensitivity to DE-71 toxicity compared to CGNs from wild-type animals. DE-71 neurotoxicity in CGNs from Gclm (+/+) mice was exacerbated by GSH depletion, and in CGNs from both genotypes it was antagonized by increasing GSH levels and by antioxidants. DE-71 caused an increase in reactive oxygen species and in lipid peroxidation in CGNs, that was more pronounced in Gclm (-/-) mice. Toxicity of DE-71 was mostly due to the induction of apoptotic cell death. An analysis of DE-71-induced cytotoxicity and apoptosis in neurons and astrocytes from different brain areas (cerebellum, hippocampus, cerebral cortex) in both mouse genotypes showed a significant correlation with intracellular GSH levels. As an example, DE-71 caused cytotoxicity in hippocampal neurons with IC50s of 2.2 and 0.3 {mu}M, depending on genotype, and apoptosis with IC50s of 2.3 and 0.4 {mu}M, respectively. These findings suggest that the developmental

  4. The level of an intracellular antioxidant during development determines the adult phenotype in a bird species: a potential organizer role for glutathione.

    PubMed

    Romero-Haro, Ana Angela; Alonso-Alvarez, Carlos

    2015-03-01

    Life-history traits are often involved in trade-offs whose outcome would depend on the availability of resources but also on the state of specific molecular signals. Early conditions can influence trade-offs and program the phenotype throughout the lifetime, with oxidative stress likely involved in many taxa. Here we address the potential regulatory role of a single intracellular antioxidant in life-history trade-offs. Blood glutathione levels were reduced in a large sample of birds (zebra finch Taeniopygia guttata) during development using the synthesis inhibitor buthionine sulfoximine (BSO). Results revealed several modifications in the adult phenotype. BSO-treated nestlings showed lower glutathione and plasma antioxidant levels. In adulthood, BSO birds endured greater oxidative damage in erythrocytes but stronger expression of a sexual signal. Moreover, adult BSO females also showed weaker resistance to oxidative stress but were heavier and showed better body condition. Results suggest that low glutathione values during growth favor the investment in traits that should improve fitness returns, probably in the form of early reproduction. Higher oxidative stress in adulthood may be endured if this cost is paid later in life. Either the presence of specific signaling mechanisms or the indirect effect of increased oxidative stress can explain our findings. PMID:25674693

  5. Defects in a New Class of Sulfate/Anion Transporter Link Sulfur Acclimation Responses to Intracellular Glutathione Levels and Cell Cycle Control1[W][OPEN

    PubMed Central

    Fang, Su-Chiung; Chung, Chin-Lin; Chen, Chun-Han; Lopez-Paz, Cristina; Umen, James G.

    2014-01-01

    We previously identified a mutation, suppressor of mating type locus3 15-1 (smt15-1), that partially suppresses the cell cycle defects caused by loss of the retinoblastoma tumor suppressor-related protein encoded by the MAT3 gene in Chlamydomonas reinhardtii. smt15-1 single mutants were also found to have a cell cycle defect leading to a small-cell phenotype. SMT15 belongs to a previously uncharacterized subfamily of putative membrane-localized sulfate/anion transporters that contain a sulfate transporter domain and are found in a widely distributed subset of eukaryotes and bacteria. Although we observed that smt15-1 has a defect in acclimation to sulfur-limited growth conditions, sulfur acclimation (sac) mutants, which are more severely defective for acclimation to sulfur limitation, do not have cell cycle defects and cannot suppress mat3. Moreover, we found that smt15-1, but not sac mutants, overaccumulates glutathione. In wild-type cells, glutathione fluctuated during the cell cycle, with highest levels in mid G1 phase and lower levels during S and M phases, while in smt15-1, glutathione levels remained elevated during S and M. In addition to increased total glutathione levels, smt15-1 cells had an increased reduced-to-oxidized glutathione redox ratio throughout the cell cycle. These data suggest a role for SMT15 in maintaining glutathione homeostasis that impacts the cell cycle and sulfur acclimation responses. PMID:25361960

  6. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    SciTech Connect

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E. . E-mail: aaust@cc.usu.edu

    2006-01-15

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changes in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.

  7. Protective role of intracellular glutathione against ethanol-induced damage in cultured rat gastric mucosal cells

    SciTech Connect

    Mutoh, H.; Hiraishi, H.; Ota, S.; Yoshida, H.; Ivey, K.J.; Terano, A.; Sugimoto, T. )

    1990-06-01

    This study investigated whether intracellular glutathione is cytoprotective against ethanol-induced injury to cultured rat gastric mucosal cells in vitro. Secondly, it investigated whether reduced glutathione or oxidized glutathione is responsible for this cytoprotection. Cytolysis was quantified by measuring 51Cr release from prelabeled cells. Concentrations of ethanol greater than 12% caused cell damage and increased 51Cr release in a dose-dependent and time-related fashion. When a substrate for glutathione synthesis, N-acetyl-L-cysteine, was provided to cultured cells for 4 h before challenge with ethanol, cytolysis was significantly decreased corresponding with an increase in cellular glutathione content. Pretreatment with diethyl maleate, which depletes reduced glutathione without forming oxidized glutathione, potentiated ethanol-induced cell damage in a dose-dependent manner with the decrease of cellular glutathione content. The administration of tert-butyl hydroperoxide (which is specifically reduced by glutathione peroxidase to generate oxidized glutathione from reduced glutathione) or diamide (which nonenzymatically oxidizes reduced glutathione to oxidized glutathione) enhanced ethanol injury. We conclude that in cultured gastric mucosal cells, (a) intracellular glutathione maintains integrity of gastric mucosal cells against ethanol in vitro; and (b) reduced glutathione rather than oxidized glutathione is responsible for this cytoprotection. We postulate that the presence of reduced glutathione is essential to allow glutathione peroxidase to catalyze the ethanol-generated toxic oxygen radical, hydrogen peroxide.

  8. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione.

    PubMed

    Zhu, Jingsong; Krom, Bastiaan P; Sanglard, Dominique; Intapa, Chaidan; Dawson, Clinton C; Peters, Brian M; Shirtliff, Mark E; Jabra-Rizk, Mary Ann

    2011-01-01

    Farnesol is a key derivative in the sterol biosynthesis pathway in eukaryotic cells previously identified as a quorum sensing molecule in the human fungal pathogen Candida albicans. Recently, we demonstrated that above threshold concentrations, farnesol is capable of triggering apoptosis in C. albicans. However, the exact mechanism of farnesol cytotoxicity is not fully elucidated. Lipophilic compounds such as farnesol are known to conjugate with glutathione, an antioxidant crucial for cellular detoxification against damaging compounds. Glutathione conjugates act as substrates for ATP-dependent ABC transporters and are extruded from the cell. To that end, this current study was undertaken to validate the hypothesis that farnesol conjugation with intracellular glutathione coupled with Cdr1p-mediated extrusion of glutathione conjugates, results in total glutathione depletion, oxidative stress and ultimately fungal cell death. The combined findings demonstrated a significant decrease in intracellular glutathione levels concomitant with up-regulation of CDR1 and decreased cell viability. However, addition of exogenous reduced glutathione maintained intracellular glutathione levels and enhanced viability. In contrast, farnesol toxicity was decreased in a mutant lacking CDR1, whereas it was increased in a CDR1-overexpressing strain. Further, gene expression studies demonstrated significant up-regulation of the SOD genes, primary enzymes responsible for defense against oxidative stress, with no changes in expression in CDR1. This is the first study describing the involvement of Cdr1p-mediated glutathione efflux as a mechanism preceding the farnesol-induced apoptotic process in C. albicans. Understanding of the mechanisms underlying farnesol-cytotoxicity in C. albicans may lead to the development of this redox-cycling agent as an alternative antifungal agent. PMID:22205973

  9. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents.

    PubMed Central

    Wilhelm, D; Bender, K; Knebel, A; Angel, P

    1997-01-01

    Monofunctional alkylating agents like methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) are potent inducers of cellular stress leading to chromosomal aberrations, point mutations, and cell killing. We show that these agents induce a specific cellular stress response program which includes the activation of Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPKs), p38 mitogen-activated protein kinase, and the upstream kinase SEK1/MKK4 and which depends on the reaction mechanism of the alkylating agent in question. Similar to another inducer of cellular stress, UV irradiation, damage of nuclear DNA by alkylation is not involved in the MMS-induced response. However, in contrast to UV and other inducers of the JNK/SAPKs and p38 pathways, activation of growth factor and G-protein-coupled receptors does not play a role in the MMS response. We identified the intracellular glutathione (GSH) level as critical for JNK/SAPK activation by MMS: enhancing the GSH level by pretreatment of the cells with GSH or N-acetylcysteine inhibits, whereas depletion of the cellular GSH pool causes hyperinduction of JNK/SAPK activity by MMS. In light of the JNK/SAPK-dependent induction of c-jun and c-fos transcription, and the Jun/Fos-induced transcription of xenobiotic-metabolizing enzymes, these data provide a potential critical role of JNK/SAPK and p38 in the induction of a cellular defense program against cytotoxic xenobiotics such as MMS. PMID:9234735

  10. Intracellular glutathione depletion by oridonin leads to apoptosis in hepatic stellate cells.

    PubMed

    Kuo, Liang-Mou; Kuo, Chan-Yen; Lin, Chen-Yu; Hung, Min-Fa; Shen, Jiann-Jong; Hwang, Tsong-Long

    2014-01-01

    Proliferation of hepatic stellate cells (HSCs) plays a key role in the pathogenesis of liver fibrosis. Induction of HSC apoptosis by natural products is considered an effective strategy for treating liver fibrosis. Herein, the apoptotic effects of 7,20-epoxy-ent-kaurane (oridonin), a diterpenoid isolated from Rabdosia rubescens, and its underlying mechanisms were investigated in rat HSC cell line, HSC-T6. We found that oridonin inhibited cell viability of HSC-T6 in a concentration-dependent manner. Oridonin induced a reduction in mitochondrial membrane potential and increases in caspase 3 activation, subG1 phase, and DNA fragmentation. These apoptotic effects of oridonin were completely reversed by thiol antioxidants, N-acetylcysteine (NAC) and glutathione monoethyl ester. Moreover, oridonin increased production of reactive oxygen species (ROS), which was also inhibited by NAC. Significantly, oridonin reduced intracellular glutathione (GSH) level in a concentration- and time-dependent fashion. Additionally, oridonin induced phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). NAC prevented the activation of MAPKs in oridonin-induced cells. However, selective inhibitors of MAPKs failed to alter oridonin-induced cell death. In summary, these results demonstrate that induction of apoptosis in HSC-T6 by oridonin is associated with a decrease in cellular GSH level and increase in ROS production. PMID:24647034

  11. The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels.

    PubMed

    Xiang, C; Werner, B L; Christensen, E M; Oliver, D J

    2001-06-01

    A functional analysis of the role of glutathione in protecting plants from environmental stress was undertaken by studying Arabidopsis that had been genetically modified to have altered glutathione levels. The steady-state glutathione concentration in Arabidopsis plants was modified by expressing the cDNA for gamma-glutamyl-cysteine synthetase (GSH1) in both the sense and antisense orientation. The resulting plants had glutathione levels that ranged between 3% and 200% of the level in wild-type plants. Arabidopsis plants with low glutathione levels were hypersensitive to Cd due to the limited capacity of these plants to make phytochelatins. Plants with the lowest levels of reduced glutathione (10% of wild type) were sensitive to as little as 5 microM Cd, whereas those with 50% wild-type levels required higher Cd concentrations to inhibit growth. Elevating glutathione levels did not increase metal resistance. It is interesting that the plants with low glutathione levels were also less able to accumulate anthocyanins supporting a role for glutathione S-transferases for anthocyanin formation or for the vacuolar localization and therefore accumulation of these compounds. Plants with less than 5% of wild-type glutathione levels were smaller and more sensitive to environmental stress but otherwise grew normally. PMID:11402187

  12. Stress-induced inhibition of nonsense mediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11

    PubMed Central

    Martin, Leenus; Gardner, Lawrence B.

    2014-01-01

    SLC7A11 encodes a subunit of the xCT cystine/glutamate amino acid transport system and plays a critical role in the generation of glutathione and the protection of cells from oxidative stress. Expression of SLC7A11 promotes tumorigenesis and chemotherapy resistance, but while SLC7A11 has been previously noted to be upregulated in hypoxic cells its regulation has not been fully delineated. We have recently shown that nonsense mediated RNA decay (NMD) is inhibited by cellular stresses generated by the tumor microenvironment, including hypoxia, and augments tumorigenesis. Here we demonstrate that the inhibition of NMD by various cellular stresses leads to the stabilization and upregulation of SLC7A11 mRNA and protein. The inhibition of NMD and upregulation of SLC7A11 augments intracellular cystine transport, and increases intracellular levels of cysteine and glutathione. Accordinglyy, the inhibition of NMD protects cells against oxidative stress via SLC7A11 upregulation. Together our studies identify a mechanism for the dynamic regulation of SLC7A11, through the stress-inhibited regulation of NMD, and add to the growing evidence that the inhibition of NMD is an adaptive response. PMID:25399695

  13. Glutathione

    PubMed Central

    Noctor, Graham; Queval, Guillaume; Mhamdi, Amna; Chaouch, Sejir; Foyer, Christine H.

    2011-01-01

    Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores. PMID:22303267

  14. Sulforaphane Restores Cellular Glutathione Levels and Reduces Chronic Periodontitis Neutrophil Hyperactivity In Vitro

    PubMed Central

    Dias, Irundika H. K.; Chapple, Ian L. C.; Milward, Mike; Grant, Melissa M.; Hill, Eric; Brown, James; Griffiths, Helen R.

    2013-01-01

    The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2. - by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients’ neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2. - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis. PMID:23826097

  15. Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells.

    PubMed Central

    Schraufstätter, I U; Hinshaw, D B; Hyslop, P A; Spragg, R G; Cochrane, C G

    1985-01-01

    Exposure of target cells to a bolus of H2O2 induced cell lysis after a latent period of several hours, which was prevented only when the H2O2 was removed within the first 30 min of injury by addition of catalase. This indicated that early metabolic events take place that are important in the fate of the cell exposed to oxidants. In this study, we described two early and independent events of H2O2-induced injury in P388D1 macrophagelike tumor cells: activation of the glutathione cycle and depletion of cellular NAD. Glutathione cycle and hexose monophosphate shunt (HMPS) were activated within seconds after the addition of H2O2. High HMPS activity maintained glutathione that was largely reduced. However, when HMPS activity was inhibited--by glucose depletion or by incubation at 4 degrees C--glutathione remained in the oxidized state. Total pyridine nucleotide levels were diminished when cells were exposed to H2O2, and the breakdown product, nicotinamide, was recovered in the extracellular medium. Intracellular NAD levels fell by 80% within 20 min of exposure of cells to H2O2. The loss of NADP(H) and stimulation of the HMPS could be prevented when the glutathione cycle was inhibited by either blocking glutathione synthesis with buthionine sulfoximine (BSO) or by inhibiting glutathione reductase with (1,3-bis) 2 chlorethyl-1-nitrosourea. The loss of NAD developed independently of glutathione cycle and HMPS activity, as it also occurred in BSO-treated cells. PMID:3840176

  16. Glutathione: an intracellular and extracellular protective agent in Salmonella typhimurium and Escherichia coli

    SciTech Connect

    Owens, R.A.

    1986-01-01

    Levels of glutathione, were measured in several aerobically grown strains of Salmonella typhimurium and Escherichia coli. External accumulation of GSH was inhibited by 30 mM NaN/sub 3/. Thus, GSH export may be energy dependent. Greater than 50% of the glutathione detected in the media was in the reduced form. Since the oxidized glutathione in the media could be accounted for by oxidation during aerobic incubation as well as in sample processing, the glutathione was predominantly exported in the reduced form. Extracellular glutathione was detected in log phase cultures of 2 out of 2 E. coli strains and 6 of 8 Salmonella strains tested. Two-dimensional paper chromatography of supernatants from cultures labelled with Na/sub 2//sup 35/SO/sub 4/ confirmed the presence of GSH and revealed five other sulfur-containing compounds in the media of Salmonella and E. coli cultures. Since media from cultures of an E. coli GSH/sup -/ strain contained compounds with identical R/sub f/'s, the five unidentified compounds were not derivatives of GSH. The addition of 26 ..mu..M GSH to cultures of TA1534 partially protected the bacteria from the toxic effects of 54 ..mu..M N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). When MNNG was preincubated with equimolar GSH, the mutagenicity of the MNNG was neutralized. The addition of micromolar GSH to cultures and E. coli GSH/sup -/ strain protected the cells from growth inhibition by micromolar concentrations of mercuric chloride, silver nitrate, cisplatin, cadmium chloride, and iodoacetamide. The data presented demonstrate that micromolar concentrations of external GSH can significantly shorten the recovery time of cells after exposure to toxic agents in the environment.

  17. Do glutathione levels decline in aging human brain?

    PubMed

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. PMID:26845616

  18. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth.

    PubMed Central

    Muller, E G

    1996-01-01

    A glutathione reductase null mutant of Saccharomyces cerevisiae was isolated in a synthetic lethal genetic screen for mutations which confer a requirement for thioredoxin. Yeast mutants that lack glutathione reductase (glr1 delta) accumulate high levels of oxidized glutathione and have a twofold increase in total glutathione. The disulfide form of glutathione increases 200-fold and represents 63% of the total glutathione in a glr1 delta mutant compared with only 6% in wild type. High levels of oxidized glutathione are also observed in a trx1 delta, trx2 delta double mutant (22% of total), in a glr1 delta, trx1 delta double mutant (71% of total), and in a glr1 delta, trx2 delta double mutant (69% of total). Despite the exceptionally high ratio of oxidized/reduced glutathione, the glr1 delta mutant grows with a normal cell cycle. However, either one of the two thioredoxins is essential for growth. Cells lacking both thioredoxins and glutathione reductase are not viable under aerobic conditions and grow poorly anaerobically. In addition, the glr1 delta mutant shows increased sensitivity to the thiol oxidant diamide. The sensitivity to diamide was suppressed by deletion of the TRX2 gene. The genetic analysis of thioredoxin and glutathione reductase in yeast runs counter to previous studies in Escherichia coli and for the first time links thioredoxin with the redox state of glutathione in vivo. Images PMID:8930901

  19. Real-Time Imaging of the Intracellular Glutathione Redox Potential in the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Kasozi, Denis; Mohring, Franziska; Rahlfs, Stefan; Meyer, Andreas J.; Becker, Katja

    2013-01-01

    In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be −314.2±3.1 mV and −313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further

  20. Effect of hypoxic cell radiosensitizers on glutathione level and related enzyme activities in isolated rat hepatocytes

    SciTech Connect

    Noguchi, K.; Hattori, T.; Igarashi, T.; Ueno, K.; Satoh, T.; Kitagawa, H.; Hori, H.; Shibata, T.; Inayama, S.

    1985-08-19

    A comparative study of the effect of misonidazole and novel radiosensitizers on glutathione (GSH) levels and related enzyme activities in isolated rat hepatocytes was performed. Incubation of hepatocytes with 5 mM radiosensitizers led to a decrease in the intracellular GSH level. The most pronounced decrease in cellular GSH was evoked by 2,4-dinitromidazole-1-ethanol (DNIE); after incubation for only 15 min, GSH was hardly detected. DNIE-mediated GSH loss was dependent upon its concentration. DNIE reacted with GSH nonenzymatically as well as with diethylmaleate, while misonidazole and 1-methyl-2-methyl-sulfinyl-5-methoxycarbonylimidazole (KIH-3) did not. Addition of partially purified glutathione S-transferase (GST) did not enhance DNIE-mediated GSH loss in a cell-free system. DNIE inhibited glutathione peroxidase (GSH-Px), GST, and glutathione reductase (GSSG-R) activities in hepatocytes, while misonidazole and KIH-3 did not. GSH-Px activity assayed with H/sub 2/O/sub 2/ as substrate was the most inhibited. Inhibition of GSH-Px activity assayed with cumene hydroperoxide as substrate and GST was less than that of GSH-Px assayed with H/sub 2/O/sub 2/ as substrate. GSSG-R activity was decreased by DNIE, but not significantly. Incubation of purified GSH-Px with DNIE resulted in a little change in the activity when assayed with H/sub 2/O/sub 2/ as substrate. 26 references, 2 figures, 4 tables.

  1. Glutathione level after long-term occupational elemental mercury exposure

    SciTech Connect

    Kobal, Alfred Bogomir Prezelj, Marija; Horvat, Milena; Krsnik, Mladen; Gibicar, Darija; Osredkar, Josko

    2008-05-15

    Many in vitro and in vivo studies have elucidated the interaction of inorganic mercury (Hg) and glutathione. However, human studies are limited. In this study, we investigated the potential effects of remote long-term intermittent occupational elemental Hg vapour (Hg{sup o}) exposure on erythrocyte glutathione levels and some antioxidative enzyme activities in ex-mercury miners in the period after exposure. The study included 49 ex-mercury miners divided into subgroups of 28 still active, Hg{sup o}-not-exposed miners and 21 elderly retired miners, and 41 controls, age-matched to the miners subgroup. The control workers were taken from 'mercury-free works'. Reduced glutathione (GSH) and oxidized disulphide glutathione (GSSG) concentrations in haemolysed erythrocytes were determined by capillary electrophoresis, while total glutathione (total GSH) and the GSH/GSSG ratio were calculated from the determined values. Catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in erythrocytes were measured using commercially available reagent kits, while urine Hg (U-Hg) concentrations were determined by cold vapour atomic absorption (CVAAS). No correlation of present U-Hg levels, GSH, GSSG, and antioxidative enzymes with remote occupational biological exposure indices were found. The mean CAT activity in miners and retired miners was significantly higher (p<0.05) than in the controls. No differences in mean GPx activity among the three groups were found, whereas the mean GR activity was significantly higher (p<0.05) in miners than in retired miners. The mean concentrations of GSH (mmol/g Hb) in miners (13.03{+-}3.71) were significantly higher (p<0.05) than in the control group (11.68{+-}2.66). No differences in mean total GSH, GSSG levels, and GSH/GSSG ratio between miners and controls were found. A positive correlation between GSSG and present U-Hg excretion (r=0.41, p=0.001) in the whole group of ex-mercury miners was observed. The

  2. 4-Hydroxy-2-nonenal induces apoptosis by activating ERK1/2 signaling and depleting intracellular glutathione in intestinal epithelial cells.

    PubMed

    Ji, Yun; Dai, Zhaolai; Wu, Guoyao; Wu, Zhenlong

    2016-01-01

    Excessive reactive oxygen species (ROS) induces oxidative damage to cellular constituents, ultimately leading to induction of apoptotic cell death and the pathogenesis of various diseases. The molecular mechanisms for the action of ROS in intestinal diseases remain poorly defined. Here, we reported that 4-hydroxy-2-nonenal (4-HNE) treatment led to capses-3-dependent apoptosis accompanied by increased intracellular ROS level and reduced glutathione concentration in intestinal epithelial cells. These effects of 4-HNE were markedly abolished by the antioxidant L-cysteine derivative N-acetylcysteine (NAC). Further studies demonstrated that the protective effect of NAC was associated with restoration of intracellular redox state by Nrf2-related regulation of expression of genes involved in intracellular glutathione (GSH) biosynthesis and inactivation of 4-HNE-induced phosphorylation of extracellular signal-regulated protein kinases (ERK1/2). The 4-HNE-induced ERK1/2 activation was mediated by repressing mitogen-activated protein kinase phosphatase-1 (MKP-1), a negative regulator of ERK1/2, through a proteasome-dependent degradation mechanism. Importantly, either overexpression of MKP-1 or NAC treatment blocked 4-HNE-induced MKP-1 degradation, thereby protecting cell from apoptosis. These novel findings provide new insights into a functional role of MKP-1 in oxidative stress-induced cell death by regulating ERK1/2 MAP kinase in intestinal epithelial cells. PMID:27620528

  3. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary.

    PubMed Central

    Clancy, R M; Levartovsky, D; Leszczynska-Piziak, J; Yegudin, J; Abramson, S B

    1994-01-01

    We performed experiments to determine whether nitric oxide promoted the formation of intracellular S-nitrosothiol adducts in human neutrophils. At concentrations sufficient to inhibit chemoattractant-induced superoxide anion production, nitric oxide caused a depletion of measurable intracellular glutathione as determined by both the monobromobimane HPLC method and the glutathione reductase recycling assay. The depletion of glutathione could be shown to be due to the formation of intracellular S-nitrosoglutathione as indicated by the ability of sodium borohydride treatment of cytosol to result in the complete recovery of measurable glutathione. The formation of intracellular S-nitrosylated compounds was confirmed by the capacity of cytosol derived from nitric oxide-treated cells to ADP-ribosylate glyceraldehyde-3-phosphate dehydrogenase. Depletion of intracellular glutathione was accompanied by a rapid and concomitant activation of the hexose monophosphate shunt (HMPS) following exposure to nitric oxide. Kinetic studies demonstrated that nitric oxide-dependent activation of the HMPS was reversible and paralleled nitric oxide-induced glutathione depletion. Synthetic preparations of S-nitrosoglutathione shared with nitric oxide the capacity to inhibit superoxide anion production and activate the HMPS. These data suggest that nitric oxide may regulate cellular functions via the formation of intracellular S-nitrosothiol adducts and the activation of the HMPS. Images PMID:8170969

  4. Physical exercise intensity can be related to plasma glutathione levels.

    PubMed

    Gambelunghe, C; Rossi, R; Micheletti, A; Mariucci, G; Rufini, S

    2001-03-01

    The aim of the present study was to examine the effect of different kinds of physical exercise on plasma glutathione levels. Male Wistar rats were randomly divided into four groups: In walking group (W; n=6), rats were trained to walk 0.8 m/min for 45 min; slow running group (SR; n=6) were trained to run 4 m/min for 45 min; fast running group (FR; n=6) ran 8 m/min for 60 min and control rats (C; n=6) remained in their home cages. All animals were sacrificed after exercise and the levels of reduced glutathione (GSH) in plasma samples determined by high performance liquid chromatography (HPLC) with a fluorescent detector. Compared to controls, exercise did not change GSH plasma levels of the W group. A tendency to decrease blood GSH was observed in plasma samples of the SR group and in the FR group, physical exercise resulted in a dramatic decrease in GSH plasma levels. These data suggest that during light physical exercise there is a low production of reactive oxygen species (ROS) with a low request for antioxidant defence such as oxidation of GSH. The dramatic decrease observed in GSH levels in FR rats would indicate the presence of oxidative stress able to modify blood antioxidant profiles. Our results suggest that GSH plays a central antioxidant role in blood during intensive physical exercise and that its modifications are closely related to exercise intensity. PMID:11519887

  5. Physical exercise intensity can be related to plasma glutathione levels.

    PubMed

    Gambelunghe, C; Rossi, R; Micheletti, A; Mariucci, G; Rufini, S

    2001-03-01

    The aim of the present study was to examine the effect of different kinds of physical exercise on plasma glutathione levels. Male Wistar rats were randomly divided into four groups: In walking group (W; n=6), rats were trained to walk 0.8 m/min for 45 min; slow running group (SR; n=6) were trained to run 4 m/min for 45 min; fast running group (FR; n=6) ran 8m/min for 60 min and control rats (C; n=6) remained in their home cages. All animals were sacrificed after exercise and the levels of reduced glutathione (GSH) in plasma samples determined by high performance liquid chromatography (HPLC) with a fluorescent detector. Compared to controls, exercise did not change GSH plasma levels of the W group. A tendency to decrease blood GSH was observed in plasma samples of the SR group and in the FR group, physical exercise resulted in a dramatic decrease in GSH plasma levels. These data suggest that during light physical exercise there is a low production of reactive oxygen species (ROS) with a low request for antioxidant defence such as oxidation of GSH. The dramatic decrease observed in GSH levels in FR rats would indicate the presence of oxidative stress able to modify blood antioxidant profiles. Our results suggest that GSH plays a central antioxidant role in blood during intensive physical exercise and that its modifications are closely related to exercise intensity. PMID:11579999

  6. Kinetic analysis of the intracellular conjugation of monochlorobimane by IC-21 murine macrophage glutathione-S-transferase.

    PubMed

    Young, P R; ConnorsWhite, A L; Dzido, G A

    1994-12-15

    Monochlorobimane (MCB) reacts with glutathione (GSH) in a reaction catalyzed by the glutathione-S-transferase (GST) isozymes. The diffusion of MCB through cell membranes is rapid and the fluorescence conjugates are relatively insensitive to quenching and to pH effects, and are expelled slowly from the cell, allowing the rate of fluorescence increase to be used to probe the dynamics of the intracellular reaction. Using low-light microscopic cytometry to monitor the initial rates of fluorescence increase for the GST-catalyzed reaction within IC-21 macrophages yields Vmax = 8.4 x 10(-16) mol s-1 cell-1 and KMCBm = 65 microM. Combining these data with an integrated Michaelis analysis of the reaction course yields KIP approximately 1.5 x 10(-5) M, and KmGSH approximately 3.0 x 10(-4) M (at [MCB] = 50 microM). The values of Vmax and KMCBm for the cell-free (extracellular) GST-catalyzed conjugation reaction are 1.2 x 10(-18) mol s-1 cell-1 and 3.1 microM, respectively. The values of Vmax for the intra- and extracellular conjugation reactions differ by 700-fold, suggesting the presence of an intracellular activator for this enzyme system. PMID:7803478

  7. Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione.

    PubMed

    Kwak, Min-Kyu; Lee, Mun-Hyoung; Park, Seong-Jun; Shin, Sang-Min; Liu, Rui; Kang, Sa-Ouk

    2016-03-01

    Polyamines can presumably inhibit protein glycation, when associated with the methylglyoxal inevitably produced during glycolysis. Herein, we hypothesized a nonenzymatic interaction between putrescine and methylglyoxal in putrescine-deficient or -overexpressing Dictyostelium cells in high-glucose medium, which can control methylglyoxal production. Putrescine was essentially required for growth rescue accompanying methylglyoxal detoxification when cells underwent growth defect and cell cycle G1-arrest when supplemented with high glucose. Furthermore, methylglyoxal regulation by putrescine seemed to be a parallel pathway independent of the changes in cellular glutathione content in high-glucose medium. Consequently, we suggest that Dictyostelium cells need polyamines for normal growth and cellular methylglyoxal regulation. PMID:26898161

  8. Retention mechanism of technetium-99m-HM-PAO: intracellular reaction with glutathione

    SciTech Connect

    Neirinckx, R.D.; Burke, J.F.; Harrison, R.C.; Forster, A.M.; Andersen, A.R.; Lassen, N.A.

    1988-12-01

    Preparations of d,l- and meso-hexamethylpropyleneamine oxime (HM-PAO) labeled with technetium-99m were added to rat brain homogenates diluted with phosphate buffer (1:10). The conversion of d,l-HM-PAO to hydrophilic forms took place with an initial rate constant of 0.12 min-1. Incubation of the brain homogenate with 2% diethyl maleate for 5 h decreased the homogenate's measured glutathione (GSH) concentration from 160 to 16 microM and decreased the conversion rate to 0.012 min-1. Buffered aqueous solutions of glutathione rapidly converted the HM-PAO tracers to hydrophilic forms having the same chromatographic characteristics as found in the brain homogenates. The rate constant for the conversion reaction of d,l-HM-PAO in GSH aqueous solution was 208 and 317 L/mol/min in two different assay systems and for meso-HM-PAO the values were 14.7 and 23.2 L/mol/min, respectively. Rat brain has a GSH concentration of about 2.3 mM and the conversion of the d,l-HM-PAO due to GSH alone should proceed with a rate constant of 0.48 to 0.73 min-1 and be correspondingly 14-fold slower for meso-HM-PAO. In human brain, the in vivo data of Lassen et al. show a conversion rate constant of 0.80 min-1. This correspondence of values supports the notion that GSH may be important for the in vivo conversion of 99mTc-labeled HM-PAO to hydrophilic forms and may be the mechanism of trapping in brain and other cells. A kinetic model for the trapping of d,l- and meso-HM-PAO in tissue is developed that is based on data of GSH concentration in various organs.

  9. ELEVATED GLUTATHIONE LEVELS CONFER CELLULAR SENSITIZATION TO CISPLATIN TOXICITY BY UPREGULATION OF COPPER TRANSPORTER HCTR1*

    PubMed Central

    Chen, Helen H. W.; Song, Im-Sook; Hossain, Anwar; Choi, Min-Koo; Yamane, Yoshiaki; Liang, Zheng D.; Lu, Jia; Wu, Lily Y-H; Siddik, Zahid H.; Klomp, Leo W. J.; Savaraj, Niramol; Tien, Kuo Macus

    2008-01-01

    Previous studies have demonstrated that treating cultured cells with cisplatin (CDDP) upregulated the expression of glutathione (GSH) and its de novo rate-limiting enzyme, glutamate-cysteine ligase (GCL), which consists of a catalytic (GCLC) and a modifier (GCLM) subunits. It has also been shown that many CDDP-resistant cell lines exhibit high levels of GCLC/GCLM and GSH. Since GSH system is the major intracellular regulator of redox conditions that serve as an important detoxification cytoprotector, these results have been taken into considerations that elevated levels of GCL/GSH are responsible for the CDDP resistance. In contrast to this context, we demonstrated here that overexpression of GSH by transfection with expression plasmid containing the GCLC cDNA conferred sensitization to CDDP through upregulation of human copper transporter 1 (hCtr1), which is also a transporter for CDDP. Depleting GSH levels in these transfected cells reversed CDDP sensitivity with concomitant reduction of hCtr1 expression. While rates of Cu transport were also upregulated in the transfected cells, these cells exhibited biochemical signature of Cu deficiency, suggesting that GSH functions as an intracellular Cu-chelator and that overexpression of GSH can alter Cu metabolism. More importantly, our results reveal a new role of GSH in the regulation of CDDP sensitivity. Overproduction of GSH depletes bioavailable Cu pool, leading to upregulation of hCtr1 and sensitization of CDDP transport and cell killing. These findings also have important implications that modulation of intracellular Cu pool may be a novel strategy for improving chemotherapeutic efficacy of platinum-based antitumor agents. PMID:18523133

  10. Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress.

    PubMed

    Jaeschke, H; Ho, Y S; Fisher, M A; Lawson, J A; Farhood, A

    1999-02-01

    Neutrophils contribute to hepatocellular injury in a number of acute inflammatory reactions. However, the molecular mechanism of parenchymal cell injury remains controversial. To address the issue of whether or not reactive oxygen species (ROS) are important in the injury process, we used the galactosamine/endotoxin (Gal/ET) model of acute liver failure, which involves a neutrophil-mediated parenchymal cell injury. In C3Heb/FeJ mice, Gal/ET induced a significant increase of hepatic and plasma levels of glutathione disulfide (GSSG), an indicator of oxidant stress, selectively during the neutrophil-mediated injury phase. In glutathione peroxidase-deficient mice (Gpx1(-/-)), Gal/ET or Gal/tumor necrosis factor alpha (TNF-alpha) caused more severe neutrophil-mediated liver injury compared with wild-type animals. However, there was no significant difference in other critical parameters, e.g., activation of the transcription factor, nuclear factor-kappaB (NF-kappaB), and soluble intercellular adhesion molecule-1 (sICAM-1), parenchymal cell apoptosis, and neutrophil sequestration in the liver. Our results suggest that neutrophil-derived ROS are responsible for an intracellular oxidant stress in hepatocytes after Gal/ET treatment. Because of the higher susceptibility of Gpx1(-/-) mice to a neutrophil-mediated injury, we conclude that peroxides generated by neutrophils diffused into hepatocytes and contributed to parenchymal cell death in vivo. Thus, strengthening defense mechanisms against ROS in target cells can attenuate excessive inflammatory injury without affecting host defense reactions. PMID:9918921

  11. Transport of Glutathione Diethyl Ester Into Human Cells

    NASA Astrophysics Data System (ADS)

    Levy, Ellen J.; Anderson, Mary E.; Meister, Alton

    1993-10-01

    Glutathione monoesters in which the carboxyl group of the glycine residue is esterified were previously found, in contrast to glutathione itself, to be effectively transported into various types of cells and to be converted intracellularly into glutathione. Glutathione monoesters are thus useful for prevention of oxidative stress, certain toxicities, and for treatment of glutathione deficiency. Glutathione diethyl ester is rapidly split to the glutathione monoethyl ester by mouse plasma glutathione diester α-esterase activity. Thus, as expected, glutathione mono- and diesters have similar effects on cellular glutathione levels in mice. However, human plasma lacks glutathione diester α-esterase thus, it became of interest to compare the transport properties of glutathione mono- and diesters in human cells. We found that human cells (erythrocytes, peripheral blood mononuclear cells, fibroblasts, ovarian tumor cells, and purified T cells) transport glutathione diethyl ester much more effectively than the corresponding monoethyl (glycyl) ester. Human cells rapidly convert glutathione diethyl ester to the monoester, whose intracellular levels rise to levels that are significantly higher than levels found after application of the monoester to the cells. High levels of the monoester provide the cells with a means of producing glutathione over a period of time. We conclude that glutathione diethyl ester is highly effective as a delivery agent for glutathione monoester, and thus for glutathione, in human cells and therefore could serve to decrease oxidative stress and toxicity. Hamster (and certain other animals) also lack plasma glutathione diester α-esterase and therefore would be suitable animal models. Previously reported toxicity of certain glutathione ester preparations appears to reflect the presence of impurities rather than effects of the esters.

  12. Influence of glutathione S-transferase B (ligandin) on the intermembrane transfer of bilirubin. Implications for the intracellular transport of nonsubstrate ligands in hepatocytes.

    PubMed Central

    Zucker, S D; Goessling, W; Ransil, B J; Gollan, J L

    1995-01-01

    To examine the hypothesis that glutathione S-transferases (GST) play an important role in the hepatocellular transport of hydrophobic organic anions, the kinetics of the spontaneous transfer of unconjugated bilirubin between membrane vesicles and rat liver glutathione S-transferase B (ligandin) was studied, using stopped-flow fluorometry. Bilirubin transfer from glutathione S-transferase B to phosphatidylcholine vesicles was best described by a single exponential function, with a rate constant of 8.0 +/- 0.7 s-1 (+/- SD) at 25 degrees C. The variations in transfer rate with respect to acceptor phospholipid concentration provide strong evidence for aqueous diffusion of free bilirubin. This finding was verified using rhodamine-labeled microsomal membranes as acceptors. Bilirubin transfer from phospholipid vesicles to GST also exhibited diffusional kinetics. Thermodynamic parameters for bilirubin dissociation from GST were similar to those for human serum albumin. The rate of bilirubin transfer from rat liver basolateral plasma membranes to acceptor vesicles in the presence of glutathione S-transferase B declined asymptotically with increasing GST concentration. These data suggest that glutathione S-transferase B does not function as an intracellular bilirubin transporter, although expression of this protein may serve to regulate the delivery of bilirubin, and other nonsubstrate ligands, to sites of metabolism within the cell. Images PMID:7560084

  13. Intracellular GTP level determines cell's fate toward differentiation and apoptosis

    SciTech Connect

    Meshkini, Azadeh; Yazdanparast, Razieh Nouri, Kazem

    2011-06-15

    Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKC{alpha} and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis. - Graphical abstract: Display Omitted

  14. Analysis of intracellular reducing levels in human hepatocytes on three-dimensional focusing microchip.

    PubMed

    Xu, Chunxiu; Cai, Longfei

    2014-02-01

    A novel three-dimensional hydrodynamic focusing microfluidic device integrated with high-throughput cell sampling and detection of intracellular contents is presented. It has a pivotal role in maintaining the reducing environment in cells. Intracellular reducing species such as vitamin C and glutathione in normal and tumor cells were labeled by a newly synthesized 2,2,6,6-tetramethyl-piperidine-1-oxyl-based fluorescent probe. Hepatocytes are adherent cells, which are prone to attaching to the channel surface. To avoid the attachment of cells on the channel surface, a single channel microchip with three sheath-flow channels located on both sides of and below the sampling channel was developed. Hydrostatic pressure generated by emptying the sample waste reservoir was used as driving force of fluid on the microchip. Owing to the difference between the liquid levels of the reservoirs, the labeled cells were three-dimensional hydrodynamically focused and transported from the sample reservoir to the sample waste reservoir. Hydrostatic pressure takes advantage of its ease of generation on a microfluidic chip without any external pressure pump, which drives three sheath-flow streams to constrain a sample flow stream into a narrow stream to avoid blockage of the sampling channel by adhered cells. The intracellular reducing levels of HepG2 cells and L02 cells were detected by home-built laser-induced fluorescence detector. The analysis throughput achieved in this microfluidic system was about 59-68 cells/min. PMID:23297173

  15. Acute effects of mercuric chloride on intracellular GSH levels and mercury distribution in the fish Oreochromic aureus

    SciTech Connect

    Allen, P.; Min, S.Y.; Keong, W.M.

    1988-02-01

    In recent years there has been much interest in the effects of trace metals on intracellular levels of reduced glutathione (GSH). Most of the research has been performed on rats. As GSH is ubiquitous in living organisms it is of interest to establish a relationship between mercury intoxication and intracellular GSH levels in fish; especially as fish living in rivers and coastal areas are often expose to mercury as an aquatic pollutant. The role of GSH in fish trace metal toxicity has not been thoroughly investigated. The distribution of total glutathione (oxidized + reduced) in selected black sea bass organs seems to follow the established pattern for mammalian organs. Thus, it would appear that teleostian and mammalian glutathione metabolism may have many similarities. There are few reports concerning the effects of mercury during the first few hours of exposure. The aim of this investigation is to establish any changes in organ GSH and mercury levels following just 2 h exposure to mercuric chloride (HgCl/sub 2/).

  16. Intracellular calcium levels as screening tool for nanoparticle toxicity

    PubMed Central

    Meindl, Claudia; Kueznik, Tatjana; Bösch, Martina; Roblegg, Eva; Fröhlich, Eleonore

    2015-01-01

    The use of engineered nano-sized materials led to revolutionary developments in many industrial applications and in the medical field. These materials, however, also may cause cytotoxicity. In addition to size, surface properties and shape were identified as relevant parameters for cell damage. Cell damage may occur as disruption of membrane integrity, induction of apoptosis and by organelle damage. Generation of oxidative stress may serve as an indicator for cytotoxicity. Effects occurring upon short contact of particles with cells, for instance in the systemic blood circulation, could be identified according to increases of intracellular [Ca2+] levels, which are caused by variety of toxic stimuli. Negatively charged, neutral and positively charged polystyrene particles of different sizes were used to study the role of size and surface properties on viability, membrane disruption, apoptosis, lysosome function, intracellular [Ca2+] levels and generation of oxidative stress. Silica particles served to test this hypothesis. Twenty nm polystyrene particles as well as 12 nm and 40 nm silica particles caused membrane damage and apoptosis with no preference of the surface charge. Only 20 nm plain and amine functionalized polystyrene particles cause oxidative stress and only the plain particles lysosomal damage. A potential role of surface charge was identified for 200 nm polystyrene particles, where only the amidine particles caused lysosomal damage. Increases in intracellular [Ca2+] levels and cytotoxicity after 24 h was often linked but determination of intracellular [Ca2+] levels could serve to characterize further the type of membrane damage. © 2015 The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd. Nano-sized materials may cause cytotoxicity. Negatively charged, neutral and positively charged polystyrene particles of different sizes and silica nanoparticles were used to study the role of size and surface properties on viability, membrane

  17. Cruciferous vegetables and glutathione: their effects on colon mucosal glutathione level and colon tumor development in rats induced by DMH.

    PubMed

    Chen, M F; Chen, L T; Boyce, H W

    1995-01-01

    The effect of a diet containing 10-40% lyophilized cabbage or broccoli as cruciferous vegetable or 10-40% lyophilized potato as noncruciferous vegetable fed for 14 days on the colon mucosal glutathione (GSH) level was studied in male rats. The GSH levels of the duodenum mucosa and the liver were also measured. Cabbage and broccoli enhanced the colon and duodenum mucosal GSH levels in a dose-related manner; potato had no effect. All three vegetables had no effect on the liver GSH level. The effect of GSH on colon tumorigenesis induced by 1,2-dimethylhydrazine (DMH) was also examined in rats. Male Sprague-Dawley rats were injected with DMH (20 mg/kg body wt) weekly for 20 weeks. DMH lowered the colon mucosal GSH level. GSH (100 mg/day/rat) dissolved in the drinking water and given to rats during and after DMH injections had little or no effect on tumor incidence and total number of colon tumors. Tumors were larger in rats that received GSH than in those that received water. This study shows that the colon mucosal GSH level can be enhanced by feeding rats a diet high in cabbage or broccoli and that GSH added to the drinking water did not affect DMH-induced colon tumorigenesis under the experimental conditions used. PMID:7739917

  18. [Levels of glutathione and anaerobic glycolysis in the kidney and liver of rats treated with chloroethanol].

    PubMed

    Rinaudo, M T; Curto, M; Bruno, R

    1983-11-30

    Chloroethanol administration produces in rats a strong fall of glutathione levels in liver and kidney tissues. In liver, such a modification does not imply alterations in the levels of glucose, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-biphosphate, lactate and pyruvate and in the glycolytic activity. In kidney, the glycolytic activity does not result modified, while it appears a reduction in levels of glucose, glucose-6-phosphate, fructose-1,6-biphosphate and triose phosphates and a remarkable increase of pyruvate. The administration of chloroethanol produces a strong fall of glutathione in the soluble and nuclear fractions of liver and in the soluble and mitochondrial fractions of kidney. PMID:6230087

  19. High-intensity physical exercise disrupts implicit memory in mice: involvement of the striatal glutathione antioxidant system and intracellular signaling.

    PubMed

    Aguiar, A S; Boemer, G; Rial, D; Cordova, F M; Mancini, G; Walz, R; de Bem, A F; Latini, A; Leal, R B; Pinho, R A; Prediger, R D S

    2010-12-29

    Physical exercise is a widely accepted behavioral strategy to enhance overall health, including mental function. However, there is controversial evidence showing brain mitochondrial dysfunction, oxidative damage and decreased neurotrophin levels after high-intensity exercise, which presumably worsens cognitive performance. Here we investigated learning and memory performance dependent on different brain regions, glutathione antioxidant system, and extracellular signal-regulated protein kinase 1/2 (ERK1/2), serine/threonine protein kinase (AKT), cAMP response element binding (CREB) and dopamine- and cyclic AMP-regulated phosphoprotein (DARPP)-32 signaling in adult Swiss mice submitted to 9 weeks of high-intensity exercise. The exercise did not alter the animals' performance in the reference and working memory versions of the water maze task. On the other hand, we observed a significant impairment in the procedural memory (an implicit memory that depends on basal ganglia) accompanied by a reduced antioxidant capacity and ERK1/2 and CREB signaling in this region. In addition, we found increased striatal DARPP-32-Thr-75 phosphorylation in trained mice. These findings indicate an increased vulnerability of the striatum to high-intensity exercise associated with the disruption of implicit memory in mice and accompanied by alteration of signaling proteins involved in the plasticity of this brain structure. PMID:20888397

  20. Reduced glutathione disrupts the intracellular trafficking of tyrosinase and tyrosinase-related protein-1 but not dopachrome tautomerase and Pmel17 to melanosomes, which results in the attenuation of melanization.

    PubMed

    Nakajima, Hiroaki; Nagata, Takeshi; Koga, Shihiro; Imokawa, Genji

    2014-01-01

    We previously reported that treatment of B16 melanotic melanoma cells with reduced glutathione (GSH) converts them to amelanotic cells without any significant down-regulation of tyrosinase activity. To characterize the cellular mechanism(s) involved, we determined the intracellular distribution of melanocyte-specific proteins, especially in melanin synthesis-specific organelles, termed melanosomes by subcellular fractionation followed by Western blotting and confocal laser microscopy (CFLM). In the melanosome-rich large granule fraction and in highly purified melanosome fractions, while GSH-induced amelanotic B16 cells have significantly diminished levels of protein/activity of tyrosinase and tyrosinase-related protein-1 compared with control melanized B16 cells, there was substantially no difference in the distribution and levels of dopachrome tautomerase and the processed isoform of Pmel17 (HMB45) between control melanized and GSH-induced amelanotic B16 cells. Analysis of merged images obtained by CFLM revealed that whereas tyrosinase, Pmel17 and dopachrome tautomerase colocalize with each other in the control melanized B16 cells, tyrosinase does not colocalize with Pmel17 or its processed isoform and with dopachrome tautomerase in GSH-induced amelanotic B16 cells. The sum of these findings suggests that reduced glutathione selectively disrupts the intracellular trafficking of tyrosinase and tyrosinase-related protein-1 but not dopachrome tautomerase and Pmel17 to melanosomes, which results in the attenuation of melanization, probably serving as a putative model for oculocutaneous albinism type 4. PMID:23764898

  1. Effect of hyperoxia on glutamate uptake and glutathione levels in calf pulmonary artery endothelial cells

    SciTech Connect

    Deneke, S.M.; Lee, S.L.; Fanburg, B.L.

    1986-05-01

    Glutathione (GSH) levels increase 90 +/- 5% in cultured endothelial cells exposed to 80% O/sub 2/ for 24h. This is an early effect, preceding induced increases in such protective enzymes as superoxide dismutase (SOD). An increase in intracellular glutamate could stimulate synthesis of GSH via interference with the GSH feedback inhibition of the glutamylcysteine synthetase enzyme reaction, the control step of the synthesis of GSH. They have found that endothelial cells exposed to 80% O/sub 2/, 5% CO/sub 2/ for 24h in RPMI 1640 + 10% calf serum show an increase of 46 +/- 4% (N = 4 experiments) in uptake of 1.25 mM /sup 3/H glutamic acid. Cell densities were 0.8 to 1.3 x 10/sup 6/ cells per 35 mm dish and incubation time with the labeled glutamate was 10 min. This effect was concentration dependent with smaller O/sub 2/ induced increases in uptake at 1.25 x 10/sup -4/M glutamic acid and no significant differences at 1.25 x 10/sup -5/M suggesting a diffusion related phenomenon. The effect is not likely to be due to a general membrane leakiness since no significant changes were seen in uptake of 1.25 mM /sup 14/C aminosobutyric acid, a non-metabolized amino acid, and no membrane changes were observed by electron microscopy of cultured cells at 24h of exposure to 80% O/sub 2/. Thus increased glutamic acid uptake may be a factor in the observed increases in GSH in hyperoxic endothelial cells.

  2. Viral load is associated with abnormal serum levels of micronutrients and glutathione and glutathione-dependent enzymes in genotype 3 HCV patients

    PubMed Central

    Razzaq, Zarish; Malik, Arif

    2014-01-01

    Background Oxidative stress in hepatitis C patients has been linked to hepatitis C virus. We verified this assumption in HCV genotype 3 patients by detecting the relationship between viral load and certain specific oxidative stress markers like Cu, Mn, Fe, Se, Zn and glutathione and glutathione-dependent enzymes. Method Subjects (n = 200, average age 24 years) with quantitative HCV RNA polymerase chain reaction-proven genotype 3 hepatitis C were simultaneously evaluated. Cu, Mn, Fe, Se and Zn serum levels were by using atomic absorption spectrophotometer. Internationally accepted methods were used for viral load quantification of glutathione, GR and Gpx serum levels. Result There was a significant correlation between HCV viral load and studied parameters. With the increase of viral load from mild group (200,000–1,000,000 copies/ml) to severe group (5,000,000–25,000,000 copies/ml) the serum levels of Cu, Mn, Zn, and Fe and glutathione reductase were found to be abnormally high. However, in severe viral load group serum concentration of Se and glutathione was less than the healthy controls. Conclusion As a significant correlation was detected between the study parameters in genotype 3 HCV patients, it is concluded that the studied micronutrients and glutathione and glutathione-dependent enzymes are the biomolecular targets of HCV to induce oxidative stress. General significance Constant monitoring and regulation of the recommended biomolecular targets of HCV can improve the plight of more than 170 million patients suffering from hepatitis C virus around the globe. PMID:26674880

  3. Apoptosis in pyrogallol-treated Calu-6 cells is correlated with the changes of intracellular GSH levels rather than ROS levels.

    PubMed

    Han, Yong Hwan; Kim, Sung Zoo; Kim, Suhn Hee; Park, Woo Hyun

    2008-03-01

    We investigated the involvement of glutathione (GSH) and reactive oxygen species (ROS) such as H2O2 and O2-* in the deaths of pyrogallol-treated Calu-6 cells. Pyrogallol inhibited the growth of Calu-6 cells with an IC50 of approximately 50 microM. Levels of intracellular H2O2 were not altered or were decreased in pyrogallol-treated Calu-6 cells at 72 h. However, levels of O2*- were increased. Treatment with pyrogallol also reduced the intracellular GSH content. The activity of SOD was down-regulated, but the activity of catalase was up-regulated by pyrogallol at 72 h. ROS scavengers, including Tempol, Tiron, Trimetazidine, and N-acetylcysteine (NAC), did not reduce the levels of the intracellular O2*-. Tempol showing the recovery of GSH depletion in pyrogallol-treated cells significantly prevented apoptosis, while Tiron prevented the loss of mitochondrial transmembrane potential (DeltaPsi(m)). In contrast, treatment with NAC showing an increased effect on O2*- levels and depletion of GSH intensified pyrogallol-induced apoptosis. In addition, treatment with SOD and catalase significantly prevented the loss of mitochondrial transmembrane potential (DeltaPsi(m)) in pyrogallol-treated Calu-6 cells. However, only catalase showing a decreased effect on O2*- levels and depletion of GSH prevented pyrogallol-induced apoptosis. Taken together, apoptosis in pyrogallol-treated Calu-6 cells is correlated with the changes of intracellular GSH levels rather than ROS levels. PMID:17920721

  4. Control of intracellular heme levels: Heme transporters and Heme oxygenases

    PubMed Central

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology. PMID:21238504

  5. Sulforaphane reduces the alterations induced by quinolinic acid: modulation of glutathione levels.

    PubMed

    Santana-Martínez, R A; Galván-Arzáte, S; Hernández-Pando, R; Chánez-Cárdenas, M E; Avila-Chávez, E; López-Acosta, G; Pedraza-Chaverrí, J; Santamaría, A; Maldonado, P D

    2014-07-11

    Glutamate-induced excitotoxicity involves a state of acute oxidative stress, which is a crucial event during neuronal degeneration and is part of the physiopathology of neurodegenerative diseases. In this work, we evaluated the ability of sulforaphane (SULF), a natural dietary isothiocyanate, to induce the activation of transcription factor Nrf2 (a master regulator of redox state in the cell) in a model of striatal degeneration in rats infused with quinolinic acid (QUIN). Male Wistar rats received SULF (5mg/kg, i.p.) 24h and 5min before the intrastriatal infusion of QUIN. SULF increased the reduced glutathione (GSH) levels 4h after QUIN infusion, which was associated with its ability to increase the activity of glutathione reductase (GR), an antioxidant enzyme capable to regenerate GSH levels at 24h. Moreover, SULF treatment increased glutathione peroxidase (GPx) activity, while no changes were observed in γ-glutamyl cysteine ligase (GCL) activity. SULF treatment also prevented QUIN-induced oxidative stress (measured by oxidized proteins levels), the histological damage and the circling behavior. These results suggest that the protective effect of SULF could be related to its ability to preserve GSH levels and increase GPx and GR activities. PMID:24814729

  6. Low levels of glutathione are sufficient for survival of keratinocytes after UV irradiation and for healing of mouse skin wounds.

    PubMed

    Telorack, Michèle; Abplanalp, Jeannette; Werner, Sabine

    2016-08-01

    Reduced levels of the cellular antioxidant glutathione are associated with premature skin aging, cancer and impaired wound healing, but the in vivo functions of glutathione in the skin remain largely unknown. Therefore, we analyzed mice lacking the modifier subunit of the glutamate cysteine ligase (Gclm), the enzyme that catalyzes the rate-limiting step of glutathione biosynthesis. Glutathione levels in the skin of these mice were reduced by 70 %. However, neither skin development and homeostasis, nor UVA- or UVB-induced apoptosis in the epidermis were affected. Histomorphometric analysis of excisional wounds did not reveal wound healing abnormalities in young Gclm-deficient mice, while the area of hyperproliferative epithelium as well as keratinocyte proliferation were affected in aged mice. These findings suggest that low levels of glutathione are sufficient for wound repair in young mice, but become rate-limiting upon aging. PMID:27262586

  7. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

    PubMed Central

    Pastorello, Bruno F.; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A.; Garcia Otaduy, Maria Concepción

    2016-01-01

    Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm3) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. PMID:27207914

  8. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress

    PubMed Central

    Nakchat, Oranuch; Nalinratana, Nonthaneth; Meksuriyen, Duangdeun; Pongsamart, Sunanta

    2014-01-01

    Objective To investigate the role and mechanism of tamarind seed coat extract (TSCE) on normal human skin fibroblast CCD-1064Sk cells under normal and oxidative stress conditions induced by hydrogen peroxide (H2O2). Methods Tamarind seed coats were extracted with boiling water and then partitioned with ethyl acetate before the cell analysis. Effect of TSCE on intracellular reactive oxygen species (ROS), glutathione (GSH) level, antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activity including antioxidant protein expression was investigated. Results TSCE significantly attenuated intracellular ROS in the absence and presence of H2O2 by increasing GSH level. In the absence of H2O2, TSCE significantly enhanced SOD and catalase activity but did not affected on GPx. Meanwhile, TSCE significantly increased the protein expression of SOD and GPx in H2O2-treated cells. Conclusions TSCE exhibited antioxidant activities by scavenging ROS, attenuating GSH level that could protect human skin fibroblast cells from oxidative stress. Our results highlight the antioxidant mechanism of tamarind seed coat through an antioxidant enzyme system, the extract potentially benefits for health food and cosmeceutical application of tamarind seed coat. PMID:25182723

  9. Glutathione Sulfinamide Serves as a Selective, Endogenous Biomarker for Nitroxyl Following Exposure to Therapeutic Levels of Donors

    PubMed Central

    Johnson, Gail M.; Chozinski, Tyler J.; Gallagher, Elyssia S.; Aspinwall, Craig A.; Miranda, Katrina M.

    2014-01-01

    Nitroxyl (HNO) donors exhibit promising pharmacological characteristics for treatment of cardiovascular disorders, cancer and alcoholism. However, whether HNO also serves as an endogenous signaling agent is currently unknown, largely due to the inability to selectively and sensitively detect HNO in a cellular environment. Although a number of methods to detect HNO have been developed recently, sensitivity and selectivity against other nitrogen oxides or biological reductants remain problematic. To improve selectivity, the electrophilic nature of HNO has been harnessed to generate modifications of thiols and phosphines that are unique to HNO, especially compared to nitric oxide (NO). Given high bioavailability, glutathione (GSH) is expected to be a major target of HNO. As a result, the putative selective product glutathione sulfinamide (GS(O)NH2) may serve as a high yield biomarker of HNO production. In this work, the formation of GS(O)NH2 following exposure to HNO donors was investigated. Fluorescent labeling followed by separation and detection using capillary zone electrophoresis with laser-induced fluorescence allowed quantitation of GS(O)NH2 with nanomolar sensitivity, even in the presence of GSH and derivatives. Formation of GS(O)NH2 was found to occur exclusively upon exposure of GSH to HNO donors, thus confirming selectively. GS(O)NH2 was detected in the lysate of cells treated with low micromolar concentrations of HNO donors, verifying that this marker has sufficient stability to server as a biomarker of HNO. Additionally, the concentration-dependent formation of GS(O)NH2 in cells treated with an HNO donor suggests that the concentration of GS(O)NH2 can be correlated to intracellular levels of HNO. PMID:25064322

  10. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits.

    PubMed

    Rushworth, Gordon F; Megson, Ian L

    2014-02-01

    N-acetyl-l-cysteine (NAC) has long been used therapeutically for the treatment of acetaminophen (paracetamol) overdose, acting as a precursor for the substrate (l-cysteine) in synthesis of hepatic glutathione (GSH) depleted through drug conjugation. Other therapeutic uses of NAC have also emerged, including the alleviation of clinical symptoms of cystic fibrosis through cysteine-mediated disruption of disulfide cross-bridges in the glycoprotein matrix in mucus. More recently, however, a wide range of clinical studies have reported on the use of NAC as an antioxidant, most notably in the protection against contrast-induced nephropathy and thrombosis. The results from these studies are conflicting and a consensus is yet to be reached regarding the merits or otherwise of NAC in the antioxidant setting. This review seeks to re-evaluate the mechanism of action of NAC as a precursor for GSH synthesis in the context of its activity as an "antioxidant". Results from recent studies are examined to establish whether the pre-requisites for effective NAC-induced antioxidant activity (i.e. GSH depletion and the presence of functional metabolic pathways for conversion of NAC to GSH) have received adequate consideration in the interpretation of the data. A key conclusion is a reinforcement of the concept that NAC should not be considered to be a powerful antioxidant in its own right: its strength is the targeted replenishment of GSH in deficient cells and it is likely to be ineffective in cells replete in GSH. PMID:24080471

  11. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels.

    PubMed

    Chen, Xingxiang; Shi, Xiuli; Gan, Fang; Huang, Da; Huang, Kehe

    2015-01-01

    Glutamine has a positive effect on ameliorating reproductive failure caused by porcine circovirus type 2 (PCV2). However, the mechanism by which glutamine affects PCV2 replication remains unclear. This study was conducted to investigate the effects of glutamine on PCV2 replication and its underlying mechanisms in vitro. The results show that glutamine promoted PK-15 cell viability. Surprisingly, glutamine starvation significantly increased PCV2 replication. The promotion of PCV2 replication by glutamine starvation disappeared after fresh media with 4 mM glutamine was added. Likewise, promotion of PCV2 was observed after adding buthionine sulfoximine (BSO). Glutamine starvation or BSO treatment increased the level of p38 MAPK phosphorylation and PCV2 replication in PK-15 cells. Meanwhile, p38 MAPK phosphorylation and PCV2 replication significantly decreased in p38-knockdown PK-15 cells. Promotion of PCV2 replication caused by glutamine starvation could be blocked in p38-knockdown PK-15 cells. Therefore, glutamine starvation increased PCV2 replication by promoting p38 MAPK activation, which was associated with the down regulation of intracellular glutathione levels. Our findings may contribute toward interpreting the possible pathogenic mechanism of PCV2 and provide a theoretical reference for application of glutamine in controlling porcine circovirus-associated diseases. PMID:25879878

  12. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals.

    PubMed

    Goodrich, Jaclyn M; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2011-12-01

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione S-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n=515), and total mercury content was measured. Average urine (1.06±1.24 microg/L) and hair mercury levels (0.49±0.63 microg/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5'), or both (SEPP1 3'UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). PMID:21967774

  13. Moringa oleifera Lam prevents acetaminophen induced liver injury through restoration of glutathione level.

    PubMed

    Fakurazi, S; Hairuszah, I; Nanthini, U

    2008-08-01

    Initiation of acetaminophen (APAP) toxicities is believed to be promoted by oxidative stress during the event of overdosage. The aim of the present study was to evaluate the hepatoprotective action of Moringa oleifera Lam (MO), an Asian plant of high medicinal value, against a single high dose of APAP. Groups of five male Sprague-Dawley rats were pre-administered with MO (200 and 800 mg/kg) prior to a single dose of APAP (3g/kg body weight; p.o). Silymarin was used as an established hepatoprotective drug against APAP induced liver injury. The hepatoprotective activity of MO extract was observed following significant histopathological analysis and reduction of the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in groups pretreated with MO compared to those treated with APAP alone. Meanwhile, the level of glutathione (GSH) was found to be restored in MO-treated animals compared to the groups treated with APAP alone. These observations were comparable to the group pretreated with silymarin prior to APAP administration. Group that was treated with APAP alone exhibited high level of transaminases and ALP activities besides reduction in the GSH level. The histological hepatocellular deterioration was also evidenced. The results from the present study suggested that the leaves of MO can prevent hepatic injuries from APAP induced through preventing the decline of glutathione level. PMID:18514995

  14. Intracellular calcium levels can regulate Importin-dependent nuclear import

    SciTech Connect

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  15. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    PubMed

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. PMID:26091838

  16. LPS alters pattern of sickness behavior but does not affect glutathione level in aged male rats.

    PubMed

    Wrotek, Sylwia; Jędrzejewski, Tomasz; Nowakowska, Anna; Kozak, Wiesław

    2016-08-01

    Behavioral symptoms of sickness, such as fever and motor activity are a coordinated set of changes that develop during infection. The aim of study was to compare the sickness behaviour (SB) in healthy old and young rats treated with pyrogenic dose of endotoxin and to check their glutathione level. Before experimentation male Wistar rats were selected according to standard body mass, motor activity, and white blood cells count. Intraperitoneal injection of lipopolysaccharide (LPS) from E. coli was used to provoke SB. The level of liver glutathione, interleukin (IL) -6, deep body temperature (Tb) and motor activity were measured. Glutathione level in old and young rats did not differ significantly. In both young and old rats LPS administration provoked fever (the mean value of Tb was 38.06 ± 0.01 °C in old rats, and 38.19 ± 0.06 °C in young rats). LPS injection affected night-time activity in both groups (12 h averages were 1.56 ± 0.40 counts in old LPS-treated rats vs 2.74 ± 0.53 counts in not-treated old rats and 3.44 ± 0.60 counts for young LPS-treated vs 4.28 ± 0.57 counts for young not-treated rats). The injection of LPS provoked an elevation of plasma IL-6 concentration (from values below the lowest detectable standard in not-treated groups of animals to 6322.82 ± 537.00 pg/mL in old LPS-treated rats and 7415.62 ± 451.88 pg/mL in young LPS-treated rats). Based on these data, we conclude that good health of aged rats prevents decrease in the glutathione level. Old rats are still able to develop SB in response to pyrogenic dose of LPS, although its components have changed pattern compared to young animals. PMID:26829940

  17. Intracellular Metabolism of α,β-Unsaturated Carbonyl Compounds, Acrolein, Crotonaldehyde and Methyl Vinyl Ketone, Active Toxicants in Cigarette Smoke: Participation of Glutathione Conjugation Ability and Aldehyde-Ketone Sensitive Reductase Activity.

    PubMed

    Horiyama, Shizuyo; Hatai, Mayuko; Takahashi, Yuta; Date, Sachiko; Masujima, Tsutomu; Honda, Chie; Ichikawa, Atsushi; Yoshikawa, Noriko; Nakamura, Kazuki; Kunitomo, Masaru; Takayama, Mitsuo

    2016-01-01

    The major toxicants in cigarette smoke, α,β-unsaturated aldehydes, such as acrolein (ACR) and crotonaldehyde (CA), and α,β-unsaturated ketone, methyl vinyl ketone (MVK), are known to form Michael-type adducts with glutathione (GSH) and consequently cause intracellular GSH depletion, which is involved in cigarette smoke-induced cytotoxicity. We have previously clarified that exposure to cigarette smoke extract (CSE) of a mouse melanoma cell culture medium causes rapid reduction of intracellular GSH levels, and that the GSH-MVK adduct can be detected by LC/MS analysis while the GSH-CA adduct is hardly detected. In the present study, to clarify why the GSH-CA adduct is difficult to detect in the cell medium, we conducted detailed investigation of the structures of the reaction products of ACR, CA, MVK and CSE in the GSH solution or the cell culture medium. The mass spectra indicated that in the presence of the cells, the GSH-CA and GSH-ACR adducts were almost not detected while their corresponding alcohols were detected. On the other hand, both the GSH-MVK adducts and their reduced products were detected. In the absence of the cells, the reaction of GSH with all α,β-unsaturated carbonyls produced only their corresponding adducts. These results show that the GSH adducts of α,β-unsaturated aldehydes, CA and ACR, are quickly reduced by certain intracellular carbonyl reductase(s) and excreted from the cells, unlike the GSH adduct of α,β-unsaturated ketone, MVK. Such a difference in reactivity to the carbonyl reductase might be related to differences in the cytotoxicity of α,β-unsaturated aldehydes and ketones. PMID:27250793

  18. Graphene Quantum Dot-MnO2 Nanosheet Based Optical Sensing Platform: A Sensitive Fluorescence "Turn Off-On" Nanosensor for Glutathione Detection and Intracellular Imaging.

    PubMed

    Yan, Xu; Song, Yang; Zhu, Chengzhou; Song, Junhua; Du, Dan; Su, Xingguang; Lin, Yuehe

    2016-08-31

    Glutathione (GSH) monitoring has attracted extensive attention because it serves a vital role in human pathologies. Herein, a convenient fluorescence "turn off-on" nanosensor based on graphene quantum dots (GQDs)-manganese dioxide (MnO2) nanosheet has been designed for selective detection of GSH in living cells. The fluorescence intensity of GQDs can be quenched by MnO2 nanosheets via a fluorescence resonance energy transfer. However, GSH can reduce MnO2 nanosheets to Mn(2+) cations and release GQDs, causing sufficient recovery of fluorescent signal. The MnO2 nanosheets serve as both fluorescence nanoquencher and GSH recognizer in the sensing platform. The sensing platform displayed a sensitive response to GSH in the range of 0.5-10 μmol L(-1), with a detection limit of 150 nmol L(-1). Furthermore, the chemical response of the GQDs-MnO2 nanoprobe exhibits high selectivity toward GSH over other electrolytes and biomolecules. Most importantly, the promising platform was successfully applied in monitoring the intracellular GSH in living cells, indicating its great potential to be used in disease diagnosis. Meanwhile, this GQDs-MnO2 platform is also generalizable and can be easily expanded to the detection and imaging of other reactive species in living cells. PMID:27494553

  19. Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in citrus plants.

    PubMed

    López-Climent, M F; Arbona, V; Pérez-Clemente, R M; Zandalinas, S I; Gómez-Cadenas, A

    2014-01-01

    Industry residues, phosphate fertilisers and wastewater as a source of irrigation have considerably increased levels of heavy metals in the soil, mainly cadmium (Cd(2+)). To test the effects of a calcium (Ca(2+)) treatment on Cd(2+) accumulation and plant tolerance to this heavy metal, plants of two citrus genotypes, Cleopatra mandarin (CM) and Carrizo citrange (CC), were watered with increasing concentrations of Cd(2+), and phytochelatin (PC) and glutathione (GSH) content were measured. Both genotypes were able to synthesise PCs in response to heavy metal intoxication, although CM seems to be a better Cd(2+) excluder than CC. However, data indicate that CC plants had a higher capacity for regenerating GSH than CM plants. In this context, the effects of Ca(2+) treatment on Cd(2+) accumulation, plant survival and PC, GSH and oxidised glutathione (GSSG) content were assessed. Data indicate that treatment with Ca(2+) had two positive effects on citrus physiology: it reduced Cd(+2) uptake into roots and also increased GSH content (even in the absence of Cd(2+)). Overall, the data indicate that although Cd(2+) exclusion is a powerful mechanism to avoid heavy metal build-up into photosynthetic organs, the capacity to maintain optimum GSH levels to feed PC biosynthesis could also be an important factor in stress tolerance. PMID:23574491

  20. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    SciTech Connect

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2011-12-15

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black

  1. Glutathione redox cycle dysregulation in Huntington's disease knock-in striatal cells.

    PubMed

    Ribeiro, Márcio; Rosenstock, Tatiana R; Cunha-Oliveira, Teresa; Ferreira, Ildete L; Oliveira, Catarina R; Rego, A Cristina

    2012-11-15

    Huntington's disease (HD) is a CAG repeat disorder affecting the HD gene, which encodes for huntingtin (Htt) and is characterized by prominent cell death in the striatum. Oxidative stress was previously implicated in HD neurodegeneration, but the role of the major endogenous antioxidant system, the glutathione redox cycle, has been less studied following expression of full-length mutant Htt (FL-mHtt). Thus, in this work we analyzed the glutathione system in striatal cells derived from HD knock-in mice expressing mutant Htt versus wild-type cells. Mutant cells showed increased intracellular reactive oxygen species (ROS) and caspase-3 activity, which were significantly prevented following treatment with glutathione ethyl ester. Interestingly, mutant cells exhibited an increase in intracellular levels of both reduced and oxidized forms of glutathione, and enhanced activities of glutathione peroxidase (GPx) and glutathione reductase (GRed). Furthermore, glutathione-S-transferase (GST) and γ-glutamyl transpeptidase (γ-GT) activities were also increased in mutant cells. Nevertheless, glutamate-cysteine ligase (GCL) and glutathione synthetase (GS) activities and levels of GCL catalytic subunit were decreased in cells expressing FL-mHtt, highly suggesting decreased de novo synthesis of glutathione. Enhanced intracellular total glutathione, despite decreased synthesis, could be explained by decreased extracellular glutathione in mutant cells. This occurred concomitantly with decreased mRNA expression levels and activity of the multidrug resistance protein 1 (Mrp1), a transport protein that mediates cellular export of glutathione disulfide and glutathione conjugates. Additionally, inhibition of Mrp1 enhanced intracellular GSH in wild-type cells only. These data suggest that FL-mHtt affects the export of glutathione by decreasing the expression of Mrp1. Data further suggest that boosting of GSH-related antioxidant defense mechanisms induced by FL-mHtt is insufficient to

  2. Alterations in Glutathione Levels and Apoptotic Regulators Are Associated with Acquisition of Arsenic Trioxide Resistance in Multiple Myeloma

    PubMed Central

    Yehiayan, Lucy; Lee, Kelvin P.; Cai, Yong; Boise, Lawrence H.

    2012-01-01

    Arsenic trioxide (ATO) has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2–3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH) levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH) are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma. PMID:23285138

  3. Depletion of liver glutathione levels in rats: a potential confound of nose-only inhalation.

    PubMed

    Fechter, Laurence D; Nelson-Miller, Alisa; Gearhart, Caroline

    2008-07-01

    Nose-only inhalation exposure chambers offer key advantages to whole-body systems, particularly when aerosol or mixed aerosol-vapor exposures are used. Specifically, nose-only chambers provide enhanced control over the route of exposure and dose by minimizing the deposition of particles either on the subjects skin/fur or on surfaces of a whole-body exposure system. In the current series of experiments, liver, brain, and lung total glutathione (GSH) levels were assessed following either nose-only or whole-body exposures to either jet fuel or to clean, filtered air. The data were compared to untreated control subjects. Acute nose-only inhalation exposures of rats resulted in a significant depletion of liver GSH levels both in subjects that were exposed to clean, filtered air as well as those exposed to JP-8 jet fuel and to a synthetic jet fuel. Glutathione levels were not altered in lung or brain tissue. Whole-body inhalation exposure had no effect on GSH levels in any tissue for any of the treatment groups. A second experiment demonstrated that the loss of GSH did not occur if rats were anaesthetized prior to and during nose-only exposure to clean, filtered air or to mixed hydrocarbons. These data appear to be consistent with studies demonstrating depletion in liver GSH levels among rats subjected to restraint stress. Finally, the depletion of GSH that was observed in liver following a single acute exposure was reduced following five daily exposures to clean, filtered air, suggesting the possibility of habituation to restraint in the nose-only exposure chamber. The finding that placement in a nose-only exposure chamber per se yields liver GSH depletion raises the possibility of an interaction between this mode of toxicant exposure and the toxicological effects of certain inhaled test substances. PMID:18645729

  4. A novel silver iodide metalo-drug: experimental and computational modelling assessment of its interaction with intracellular DNA, lipoxygenase and glutathione.

    PubMed

    Banti, C N; Kyros, L; Geromichalos, G D; Kourkoumelis, N; Kubicki, M; Hadjikakou, S K

    2014-04-22

    The new mixed ligand silver(I) complex of formula [AgI(TPP)2(MBZT)] (1) was obtained by reacting 2-mercapto-benzothiazole (MBZT) with triphenylphosphine (TPP). The complex was characterized by m.p., vibrational spectroscopy (FT-IR), (1)H NMR, UV-vis, ESI-MS spectroscopic techniques and its structure was confirmed by X-ray crystallography. Mixed ligand complexes of silver(I) iodide with thiones and phosphines are very rare in the literature and to the best of our knowledge compound 1 is the first of this kind exhibiting significant biological effects. Complex 1 was evaluated for its in vitro cytotoxic activity (cell viability) under irradiation with UV light and without irradiation against human cancer cell lines: MCF-7 (breast, ER positive), MDA-MB-231 (breast, ER negative), Caki-1 (renal), A549 (lung), OAW-42 (ovarian), HeLa (cervical) and additionally against the normal human lung cell line MRC-5 (normal human fetal lung fibroblast cells) and normal immortalized human mammary gland epithelial cell line (MTSV17) with SRB assay. The results showed that 1 mediates a strong cytotoxic response to the tested normal and cancer cell lines. It exhibits equal activity against MDA-MB-231 cells where estrogen receptors (ERs) are devoid with the one against MCF-7 where ERs are present. Molecular docking studies have shown that 1 is docked in the different pocket than that of the ERs modulators. The binding affinity of 1 towards the intracellular molecules DNA and lipoxygenase (LOX) was studied for the evaluation of the mechanism of its cytostasis. The binding constant (Kb) of 1 towards CT-DNA was calculated by UV-Vis and fluorescent spectra suggesting intercalation or electrostatic interactions of 1 into DNA. Docking studies on DNA-complex interactions confirm the binding of 1. Moreover, the influence of complex 1 on the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX) was kinetically and theoretically studied. In addition

  5. ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells

    PubMed Central

    Wang, Caixia; Hu, Xiaoke; Gao, Yan; Ji, Yinglu

    2015-01-01

    Owing to the wide use of novel nanoparticles (NPs) such as zinc oxide (ZnO) in all aspects of life, toxicological research on ZnO NPs is receiving increasing attention in these days. In this study, the toxicity of ZnO NPs in a human pulmonary adenocarcinoma cell line LTEP-a-2 was tested in vitro. Log-phase cells were exposed to different levels of ZnO NPs for hours, followed by colorimetric cell viability assay using tetrazolium salt and cell survival rate assay using trypan blue dye. Cell morphological changes were observed by Giemsa staining and light microscopy. Apoptosis was detected by using fluorescence microscopy and caspase-3 activity assay. Both intracellular reactive oxygen species (ROS) and reduced glutathione (GSH) were examined by a microplate-reader method. Results showed that ZnO NPs (≥0.01 μg/mL) significantly inhibited proliferation (P < 0.05) and induced substantial apoptosis in LTEP-a-2 cells after 4 h of exposure. The intracellular ROS level rose up to 30–40% corresponding to significant depletion (approximately 70–80%) in GSH content in LTEP-a-2 cells (P < 0.05), suggesting that ZnO NPs induced apoptosis mainly through increased ROS production. This study elucidates the toxicological mechanism of ZnO NPs in human pulmonary adenocarcinoma cells and provides reference data for application of nanomaterials in the environment. PMID:26339612

  6. Relationship between oxidizable fatty acid content and level of antioxidant glutathione peroxidases in marine fish

    PubMed Central

    Grim, Jeffrey M.; Hyndman, Kelly A.; Kriska, Tamas; Girotti, Albert W.; Crockett, Elizabeth L.

    2011-01-01

    SUMMARY Biological membranes can be protected from lipid peroxidation by antioxidant enzymes including catalase (CAT) and selenium-dependent glutathione peroxidases 1 and 4 (GPx1 and GPx4). Unlike GPx1, GPx4 can directly detoxify lipid hydroperoxides in membranes without prior action of phospholipase A2. We hypothesized that (1) GPx4 is enhanced in species that contain elevated levels of highly oxidizable polyunsaturated fatty acids (PUFA) and (2) activities of antioxidant enzymes are prioritized to meet species-specific oxidative stresses. In this study we examined (i) activities of the oxidative enzyme citrate synthase (CS) and antioxidant (CAT, GPx1 and GPx4) enzymes, (ii) GPx4 protein expression, and (iii) phospholipid composition in livers of five species of marine fish (Myxine glutinosa, Petromyzon marinus, Squalus acanthias, Fundulus heteroclitus and Myoxocephalus octodecemspinosus) that contain a range of PUFA. GPx4 activity was, on average, 5.8 times higher in F. heteroclitus and S. acanthias than in the other three marine fish species sampled. Similarly, activities of CAT and GPx1 were highest in S. acanthias and F. heteroclitus, respectively. GPx4 activity for all species correlates with membrane unsaturation, as well as oxidative activity as indicated by CS. These data support our hypothesis that GPx4 level in marine fish is a function, at least in part, of high PUFA content in these animals. GPx1 activity was also correlated with membrane unsaturation, indicating that marine species partition resources among glutathione-dependent defenses for protection from the initial oxidative insult (e.g. H2O2) and to repair damaged lipids within biological membranes. PMID:22031739

  7. Modulation of intracellular Ca2+ levels by Scorpaenidae venoms.

    PubMed

    Church, Jarrod E; Moldrich, Randal X; Beart, Philip M; Hodgson, Wayne C

    2003-05-01

    The crude venoms of the soldierfish (Gymnapistes marmoratus), the lionfish (Pterois volitans) and the stonefish (Synanceia trachynis) display pronounced neuromuscular activity. Since [Ca(2+)](i) is a key regulator in many aspects of neuromuscular function we sought to determine its involvement in the neuromuscular actions of the venoms. In the chick biventer cervicis muscle, all three venoms produced a sustained contraction (approx 20-30% of 1mM acetylcholine). Blockade of nicotinic receptors with tubocurarine (10 micro M) failed to attenuate the contractile response to either G. marmoratus venom or P. volitans venom, but produced slight inhibition of the response to S. trachynis venom. All three venoms produced a rise in intracellular Ca(2+) (approx. 200-300% of basal) in cultured murine cortical neurons. The Ca(2+)-channel blockers omega-conotoxin MVIIC, omega-conotoxin GVIA, omega-agatoxin IVa and nifedipine (each at 1 micro M) potentiated the increase in [Ca(2+)](i) in response to G. marmoratus venom and P. volitans venom, while attenuating the response to S. trachynis venom. Removal of extracellular Ca(2+), replacement of Ca(2+) with La(3+) (0.5mM), or addition of stonefish antivenom (3units/ml) inhibited both the venom-induced increase in [Ca(2+)](i) in cultured neurones and contraction in chick biventer cervicis muscle. Venom-induced increases in [Ca(2+)](i) correlated with an increased cell death of cultured neurones as measured using propidium iodide (1 micro g/ml). Morphological analysis revealed cellular swelling and neurite loss consistent with necrosis. These data indicate that the effects of all three venoms are due in part to an increase in intracellular Ca(2+), possibly via the formation of pores in the cellular membrane which, under certain conditions, can lead to necrosis. PMID:12727272

  8. [In vitro viability and glutathione levels in mesencephalic neurons after seven days hibernation].

    PubMed

    De La Cuétara-Bernal, K; Castillo-Díaz, L; Cruz-Aguado, R; González-Mena, Y; García-Varona, A Y

    In embryonic mesencephalic transplant in patients with Parkinson s disease dopaminergic survival is low (5 10%), and for this reason the use of multiple donors has been considered. The difficulty of obtaining more tissue determines the need for a procedure that enables human nigral tissue to be stored for a time without affecting its physiological state in any significant way. This study was designed to determine whether hibernation of tissue fragments has any influence on viability, how the viability of the mesencephalic cells behaves after 7 days hibernation and the glutathione levels in the hibernated tissue (HT). The viability of the HT in pieces (82.37 2.12) was found to be higher than the value for the whole mesencephalon (70.29 3.43). Viability of the HT, seven days at 4 C, at different post dissociation times, did not differ significantly. Despite the significant differences found between hibernated and fresh tissue at t= 0, this procedure does not seem to affect the mesencephalic tissue in any significant way, as it conserved a 94% viability after hibernation. No evidence was found of increased glutathione content as an antioxidizing response to the damage that might be caused by hibernation. These results suggest that since hibernation does not have any significant effect on the state of the cells it could be considered a useful procedure for conserving tissue to be used in clinical transplants. Moreover, further research is needed on survival and functionality of hibernated cells after being transplanted into animal models in order to evaluate their potential for use in cell therapy. PMID:12134300

  9. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity.

    PubMed

    Mazzari, Andre L D A; Milton, Flora; Frangos, Samantha; Carvalho, Ana C B; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  10. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  11. Implications of Glutathione Levels in the Plasmodium berghei Response to Chloroquine and Artemisinin.

    PubMed

    Vega-Rodríguez, Joel; Pastrana-Mena, Rebecca; Crespo-Lladó, Keila N; Ortiz, José G; Ferrer-Rodríguez, Iván; Serrano, Adelfa E

    2015-01-01

    Malaria is one of the most devastating parasitic diseases worldwide. Plasmodium drug resistance remains a major challenge to malaria control and has led to the re-emergence of the disease. Chloroquine (CQ) and artemisinin (ART) are thought to exert their anti-malarial activity inducing cytotoxicity in the parasite by blocking heme degradation (for CQ) and increasing oxidative stress. Besides the contribution of the CQ resistance transporter (PfCRT) and the multidrug resistant gene (pfmdr), CQ resistance has also been associated with increased parasite glutathione (GSH) levels. ART resistance was recently shown to be associated with mutations in the K13-propeller protein. To analyze the role of GSH levels in CQ and ART resistance, we generated transgenic Plasmodium berghei parasites either deficient in or overexpressing the gamma-glutamylcysteine synthetase gene (pbggcs) encoding the rate-limiting enzyme in GSH biosynthesis. These lines produce either lower (pbggcs-ko) or higher (pbggcs-oe) levels of GSH than wild type parasites. In addition, GSH levels were determined in P. berghei parasites resistant to CQ and mefloquine (MQ). Increased GSH levels were detected in both, CQ and MQ resistant parasites, when compared to the parental sensitive clone. Sensitivity to CQ and ART remained unaltered in both pgggcs-ko and pbggcs-oe parasites when tested in a 4 days drug suppressive assay. However, recrudescence assays after the parasites have been exposed to a sub-lethal dose of ART showed that parasites with low levels of GSH are more sensitive to ART treatment. These results suggest that GSH levels influence Plasmodium berghei response to ART treatment. PMID:26010448

  12. Implications of Glutathione Levels in the Plasmodium berghei Response to Chloroquine and Artemisinin

    PubMed Central

    Vega-Rodríguez, Joel; Pastrana-Mena, Rebecca; Crespo-Lladó, Keila N.; Ortiz, José G.; Ferrer-Rodríguez, Iván; Serrano, Adelfa E.

    2015-01-01

    Malaria is one of the most devastating parasitic diseases worldwide. Plasmodium drug resistance remains a major challenge to malaria control and has led to the re-emergence of the disease. Chloroquine (CQ) and artemisinin (ART) are thought to exert their anti-malarial activity inducing cytotoxicity in the parasite by blocking heme degradation (for CQ) and increasing oxidative stress. Besides the contribution of the CQ resistance transporter (PfCRT) and the multidrug resistant gene (pfmdr), CQ resistance has also been associated with increased parasite glutathione (GSH) levels. ART resistance was recently shown to be associated with mutations in the K13-propeller protein. To analyze the role of GSH levels in CQ and ART resistance, we generated transgenic Plasmodium berghei parasites either deficient in or overexpressing the gamma-glutamylcysteine synthetase gene (pbggcs) encoding the rate-limiting enzyme in GSH biosynthesis. These lines produce either lower (pbggcs-ko) or higher (pbggcs-oe) levels of GSH than wild type parasites. In addition, GSH levels were determined in P. berghei parasites resistant to CQ and mefloquine (MQ). Increased GSH levels were detected in both, CQ and MQ resistant parasites, when compared to the parental sensitive clone. Sensitivity to CQ and ART remained unaltered in both pgggcs-ko and pbggcs-oe parasites when tested in a 4 days drug suppressive assay. However, recrudescence assays after the parasites have been exposed to a sub-lethal dose of ART showed that parasites with low levels of GSH are more sensitive to ART treatment. These results suggest that GSH levels influence Plasmodium berghei response to ART treatment. PMID:26010448

  13. Lead concentration and the level of glutathione, glutathione S-transferase, reductase and peroxidase in the blood of some occupational workers from Irbid City, Jordan.

    PubMed

    Hunaiti, A; Soud, M; Khalil, A

    1995-08-18

    Blood samples were collected from 263 lead-exposed suspected males living in Irbid area in the northern part of Jordan. The blood lead concentrations in the samples were determined by atomic absorption and were related to the type of work performed by the workers. The blood lead concentration was higher in metal casters, 41.6, and radiator welders, 32,8 micrograms/dl, compared to non-suspected lead-exposed university students, 5.7 micrograms/dl. Workers such as mechanics, bus drivers, car painters and gas station workers showed slightly higher but not significant blood lead. The blood glutathione content and the activities of glutathione reductase, glutathione peroxidase and glutathione S-transferase were also determined in non-suspected subjects and in those with occupational exposure to lead. With increasing blood lead concentration, glutathione content decreases as well as the activities of the glutathione utilizing enzymes. PMID:7569882

  14. Glutathione is a Physiologic Reservoir of Neuronal Glutamate

    PubMed Central

    Koga, Minori; Serritella, Anthony V.; Messmer, Marcus M.; Hayashi-Takagi, Akiko; Hester, Lynda D.; Snyder, Solomon H.; Sawa, Akira; Sedlak, Thomas W.

    2013-01-01

    Glutamate, the principal excitatory neurotransmitter of the brain, participates in a multitude of physiologic and pathologic processes, including learning and memory. Glutathione, a tripeptide composed of the amino acids glutamate, cysteine, and glycine, serves important cofactor roles in antioxidant defense and drug detoxification, but glutathione deficits occur in multiple neuropsychiatric disorders. Glutathione synthesis and metabolism are governed by a cycle of enzymes, the γ-glutamyl cycle, which can achieve intracellular glutathione concentrations of 1-10 millimolar. Because of the considerable quantity of brain glutathione and its rapid turnover, we hypothesized that glutathione may serve as a reservoir of neural glutamate. We quantified glutamate in HT22 hippocampal neurons, PC12 cells and primary cortical neurons after treatment with molecular inhibitors targeting three different enzymes of the glutathione metabolic cycle. Inhibiting 5-oxoprolinase and γ-glutamyl transferase, enzymes that liberate glutamate from glutathione, leads to decreases in glutamate. In contrast, inhibition of γ-glutamyl cysteine ligase, which uses glutamate to synthesize glutathione, results in substantial glutamate accumulation. Increased glutamate levels following inhibition of glutathione synthesis temporally precede later effects upon oxidative stress. PMID:21539809

  15. Cortical and subcortical glutathione levels in adults with autism spectrum disorder.

    PubMed

    Durieux, Alice M S; Horder, Jamie; Mendez, M Andreina; Egerton, Alice; Williams, Steven C R; Wilson, C Ellie; Spain, Debbie; Murphy, Clodagh; Robertson, Dene; Barker, Gareth J; Murphy, Declan G; McAlonan, Grainne M

    2016-04-01

    Increased oxidative stress has been postulated to contribute to the pathogenesis of autism spectrum disorder (ASD). However, reports of alterations in oxidation markers including glutathione (GSH), the major endogenous antioxidant, are indirect, coming from blood plasma level measurements and postmortem studies. Therefore we used in-vivo 3 Tesla proton magnetic resonance spectroscopy ([1H]MRS) to directly measure GSH concentrations in the basal ganglia (BG) and the dorsomedial prefrontal cortex of 21 normally intelligent adult males with ASD and 29 controls who did not differ in age or IQ. There was no difference in brain GSH between patients and controls in either brain area; neither did GSH levels correlate with measures of clinical severity in patients. Thus [1H]MRS measures of cortical and subcortical GSH are not a biomarker for ASD in intellectually able adult men. Autism Res 2016, 9: 429-435. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research. PMID:26290215

  16. Glutathione level regulates HNE-induced genotoxicity in human erythroleukemia cells

    SciTech Connect

    Yadav, Umesh C.S.; Ramana, Kota V.; Awasthi, Yogesh C.; Srivastava, Satish K.

    2008-03-01

    4-Hydroxy-trans-2-nonenal (HNE) is one of the most abundant and toxic lipid aldehydes formed during lipid peroxidation by reactive oxygen species. We have investigated the genotoxic effects of HNE and its regulation by cellular glutathione (GSH) levels in human erythroleukemia (K562) cells. Incubation of K562 cells with HNE (5-10 {mu}M) significantly elicited a 3- to 5-fold increased DNA damage in a time- and dose-dependent manner as measured by comet assay. Depletion of GSH in cells by L-buthionine-[S,R]-sulfoximine (BSO) significantly increased HNE-induced DNA damage, whereas supplementation of GSH by incubating the cells with GSH-ethyl ester significantly decreased HNE-induced genotoxicity. Further, overexpression of mGSTA4-4, a HNE-detoxifying GST isozyme, significantly prevented HNE-induced DNA damage in cells, and ablation of GSTA4-4 and aldose reductase with respective siRNAs further augmented HNE-induced DNA damage. These results suggest that the genotoxicity of HNE is highly dependent on cellular GSH/GST/AR levels and favorable modulation of the aldehyde detoxification system may help in controlling the oxidative stress-induced complications.

  17. Glutathione Peroxidase Level in Patients with Vitiligo: A Meta-Analysis

    PubMed Central

    Xiao, Bi-huan; Shi, Meihui; Chen, Hongqiang; Cui, Shaoshan; Gao, Xing-Hua; Chen, Hong-Duo

    2016-01-01

    Abnormality of glutathione peroxidase (GPx) is involved in the etiology and pathogenesis of vitiligo. However, the results were controversial. Aim. The purpose of this meta-analysis is to compare the levels of GPx between vitiligo patients and healthy controls. Methods. Relevant published articles were searched according to eligibility criteria. A meta-analysis was conducted to pool estimates of the standardized mean difference (SMD) with 95% confidence interval (CI). Results. Twenty-three studies with a total of 1076 vitiligo patients and 770 healthy controls were included. The pooled meta-analysis showed that patients with vitiligo had equivalent levels of GPx with the healthy controls (SMD = −0.47, 95% CI: −1.03 to 0.08, and p = 0.095). Further subgroup analysis showed that the GPx levels of Asian patients or segmental vitiligo patients were, respectively, lower than those of healthy controls (Asian: SMD = −0.47, 95% CI: −1.08 to 0.14, and p = 0.001; segmental: SMD = −3.59, 95% CI: −6.38 to −0.80, and p = 0.012). Furthermore, the GPx levels in serum/plasma were significantly decreased in either stable or active vitiligo patients, comparing to healthy controls (stable: SMD = −2.01, 95% CI: −3.52 to −0.49, and p = 0.009; active: SMD = −2.34, 95% CI: −4.07 to −0.61, and p = 0.008). Conclusion. This meta-analysis showed a significant association between low GPx level and vitiligo. PMID:27218102

  18. Metal, metallothionein and glutathione levels in blue crab (Callinectes sp.) specimens from southeastern Brazil.

    PubMed

    Lavradas, Raquel Teixeira; Hauser-Davis, Rachel Ann; Lavandier, Ricardo Cavalcanti; Rocha, Rafael Christian Chávez; Saint' Pierre, Tatiana D; Seixas, Tércia; Kehrig, Helena Amaral; Moreira, Isabel

    2014-09-01

    Metal concentrations (Cu, Pb, Zn and Cd) were determined in muscle, gills, soft tissues and eggs in male, non-ovigerous and ovigerous female Callinectes sp. specimens from a reference site in Southeastern Brazil. Metallothionein (MT) and reduced glutathione (GSH) levels were also determined. Results demonstrate that sex has a significant influence on metal, MT and GSH concentrations. Significant maternal transfer of Pb and Zn from ovigerous females to eggs was verified, while female crabs, both ovigerous and non-ovigerous, showed elevated GSH and MT in viscera when compared to males, indicating possible MT role in excreting metals to eggs in ovigerous females of this species. Several strong statistical correlations between metals and MT indicate MTs role in detoxification of both toxic and essential elements in different organs. Pb and Zn were significantly correlated to GSH, indicating oxidative stress caused by the former and a direct link between Zn and GSH in maintaining homeostasis. Regarding human consumption, metal concentrations were lower than the maximum permissible levels established by international and Brazilian regulatory agencies, indicating that this species is safe for human consumption concerning this parameter. The presence of metals in Callinectes sp., however, is still of importance considering that this is a key species within the studied ecosystem and, therefore, plays a major role in the transference of pollutants to higher trophic levels. In addition, the presence of significant metal concentrations found in eggs must be considered in this context, since crab eggs are eaten by several other species, such as shorebirds, seabirds, and fish. Also, to the best of our knowledge, this is the first study regarding both MT and GSH levels in Callinectes sp. eggs and is of interest in the investigation of molecular mechanisms regarding metal exposure in these crustaceans. Data reported in this study support the conclusions from previous reports

  19. Investigating the Causes for Decreased Levels of Glutathione in Individuals with Type II Diabetes

    PubMed Central

    Lagman, Minette; Ly, Judy; Saing, Tommy; Morris, Devin; Chi, Po-Ting; Ochoa, Cesar; Sathananthan, Airani; Venketaraman, Vishwanath

    2015-01-01

    Tuberculosis (TB) remains an eminent global burden with one third of the world’s population latently infected with Mycobacterium tuberculosis (M. tb). Individuals with compromised immune systems are especially vulnerable to M. tb infection. In fact, individuals with Type 2 Diabetes Mellitus (T2DM) are two to three times more susceptible to TB than those without T2DM. In this study, we report that individuals with T2DM have lower levels of glutathione (GSH) due to compromised levels of GSH synthesis and metabolism enzymes. Transforming growth factor beta (TGF-β), a cytokine that is known to decrease the expression of the catalytic subunit of glutamine-cysteine ligase (GCLC) was found in increased levels in the plasma samples from individuals with T2DM, explaining the possible underlying mechanism that is responsible for decreased levels of GSH in individuals with T2DM. Moreover, increased levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) and interleukin-17 (IL-17) were observed in plasma samples isolated from individuals with T2DM. Increased levels of IL-6 and IL-17 was accompanied by enhanced production of free radicals further indicating an alternative mechanism for the decreased levels of GSH in individuals with T2DM. Augmenting the levels of GSH in macrophages isolated from individuals with T2DM resulted in improved control of M. tb infection. Furthermore, cytokines that are responsible for controlling M. tb infection at the cellular and granuloma level such as tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), interferon-gamma (IFN-γ), and interleukin-12 (IL-12), were found to be compromised in plasma samples isolated from individuals with T2DM. On the other hand, interleukin-10 (IL-10), an immunosuppressive cytokine was increased in plasma samples isolated from individuals with T2DM. Overall, these findings suggest that lower levels of GSH in individuals with T2DM lead to their increased susceptibility to

  20. Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities

    PubMed Central

    2013-01-01

    Background Excess light conditions induce the generation of reactive oxygen species (ROS) directly in the chloroplasts but also cause an accumulation and production of ROS in peroxisomes, cytosol and vacuoles. Antioxidants such as ascorbate and glutathione occur in all cell compartments where they detoxify ROS. In this study compartment specific changes in antioxidant levels and related enzymes were monitored among Arabidopsis wildtype plants and ascorbate and glutathione deficient mutants (vtc2-1 and pad2-1, respectively) exposed to different light intensities (50, 150 which was considered as control condition, 300, 700 and 1,500 μmol m-2 s-1) for 4 h and 14 d. Results The results revealed that wildtype plants reacted to short term exposure to excess light conditions with the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol and an increased activity of catalase in the leaves. Long term exposure led to an accumulation of ascorbate and glutathione mainly in chloroplasts. In wildtype plants an accumulation of ascorbate and hydrogen peroxide (H2O2) could be observed in vacuoles when exposed to high light conditions. The pad2-1 mutant reacted to long term excess light exposure with an accumulation of ascorbate in peroxisomes whereas the vtc2-1 mutant reacted with an accumulation of glutathione in the chloroplasts (relative to the wildtype) and nuclei during long term high light conditions indicating an important role of these antioxidants in these cell compartments for the protection of the mutants against high light stress. Conclusion The results obtained in this study demonstrate that the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol is an important reaction of plants to short term high light stress. The accumulation of ascorbate and H2O2 along the tonoplast and in vacuoles during these conditions indicates an important route for H2O2 detoxification under these conditions. PMID

  1. Selenium levels and Glutathione peroxidase activity in the plasma of patients with type II diabetes mellitus.

    PubMed

    González de Vega, Raquel; Fernández-Sánchez, María Luisa; Fernández, Juan Carlos; Álvarez Menéndez, Francisco Vicente; Sanz-Medel, Alfredo

    2016-09-01

    Selenium, an essential trace element, is involved in the complex system of defense against oxidative stress through selenium-dependent glutathione peroxidases (GPx) and other selenoproteins. Because of its antioxidant properties, selenium or its selenospecies at appropriate levels could hinder oxidative stress and so development of diabetes. In this vein, quantitative speciation of selenium in human plasma samples from healthy and diabetic patients (controlled and non-controlled) was carried out by affinity chromatography (AF) coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) and isotope dilution analysis (IDA). Similarly, it is well known that patients with diabetes who exhibit poor control of blood glucose show a decreased total antioxidant activity. Thus, we evaluated the enzymatic activity of GPx in diabetic and healthy individuals, using the Paglia and Valentine enzymatic method, observing a significant difference (p<0.05) between the three groups of assayed patients (healthy (n=24): 0.61±0.11U/ml, controlled diabetic (n=38): 0.40±0.12U/ml and non-controlled diabetic patients (n=40): 0.32±0.09U/ml). Our results show that hyperglycemia induces oxidative stress in diabetic patients compared with healthy controls. What is more, glycation of GPx experiments demonstrated that it is the degree of glycation of the selenoenzyme (another species of the Se protein) what actually modulates its eventual activity against ROS in type II diabetes mellitus patients. PMID:27473831

  2. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  3. Intracellular GSH Alterations and Its Relationship to Level of Resistance following Exposure to Cisplatin in Cancer Cells

    PubMed Central

    Jamali, Bardia; Nakhjavani, Maryam; Hosseinzadeh, Leila; Amidi, Salimeh; Nikounezhad, Nastaran; H. Shirazi, Farshad

    2015-01-01

    One of the major complications in cancer chemotherapy with cisplatin as one of the important medicines in treatment regimens of different cancers is the development of resistance. One of the most described cellular defense mechanisms involved in resistance is glutathione (GSH), thus in this study, the effects of cisplatin on the total intracellular GSH level (GSHi) in some sensitive and resistant variants of human cell lines (hepatocarcinoma HepG2, skin A375, cisplatin sensitive glioblastoma U373MG and cisplatin resistant glioblastoma U373MGCP, cisplatin sensitive ovary A2780S and cisplatin resistant A2780CP cells) were studied. MTT assay was performed to measure cytotoxicity of cisplatin (33.3 µM for 1 hour). Following cisplatin exposure, GSHi (per million cells) was evaluated using a photometrical assay up to 90 minutes. Our results indicate that there are significant differences between GSHi content of A2780CP and U373MGCP cells compared to other cell lines. Moreover, IC50 of cisplatin in different cells seems to have a relation with mean of GSH level in 90 minutes (GSH (mean)90). As a conclusion, it seems that resistance to cisplatin in different cell lines is more related with the diverse patterns of GSHi variations following cisplatin exposure than its original level, and/or its cellular increase or decrease. It is also suggested that GSH (mean)90 may be used as a factor for the prediction of cellular resistance to cisplatin. PMID:25901159

  4. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    PubMed

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism. PMID:22003434

  5. Nrf2 activation ameliorates cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cells through increased glutathione levels and arsenic efflux from cells.

    PubMed

    Nishimoto, Shoichi; Suzuki, Toshihiro; Koike, Shin; Yuan, Bo; Takagi, Norio; Ogasawara, Yuki

    2016-08-15

    Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, has been shown to activate nuclear transcription factor E2-related factor 2 (Nrf2), which plays a central role in cytoprotective responses to oxidative and electrophilic stress. Recently, the Nrf2-Kelch ECH associating protein 1 (Keap1) pathway has been associated with cancer drug resistance attributable to modulation of the expression and activation of antioxidant and detoxification enzymes. However, the exact mechanisms by which Nrf2 activation results in chemoresistance are insufficiently understood to date. This study investigated the mechanisms by which the cytotoxic effects of arsenic trioxide (ATO), an anticancer drug, were decreased in acute promyelocytic leukemia cells treated with CA, a typical activator of Nrf2 used to stimulate the Nrf2/Keap1 system. Our findings suggest that arsenic is non-enzymatically incorporated into NB4 cells and forms complexes that are dependent on intracellular glutathione (GSH) concentrations. In addition, the arsenic complexes are recognized as substrates by multidrug resistance proteins and subsequently excreted from the cells. Therefore, Nrf2-associated activation of the GSH biosynthetic pathway, followed by increased levels of intracellular GSH, are key mechanisms underlying accelerated arsenic efflux and attenuation of the cytotoxic effects of ATO. PMID:27317373

  6. Detection and adequacy evaluation of erythrocyte glutathione transferase on levels of circulating toxins in hemodialysis patients.

    PubMed

    Yin, Rui; Qiu, Hui; Zuo, Huaiyun; Cui, Min; Zhai, Nailiang; Zheng, Hongguang; Zhang, Dewei; Huo, Ping; Hong, Min

    2016-08-01

    To explore detection and adequacy evaluation of erythrocyte glutathione S transferase (GST) on levels of circulating toxins in hemodialysis patients in Qinhuangdao region in China, this study divided 84 cases of long-term, end-stage hemodialysis patients into 2 groups: one group of 33 cases of adequate hemodialysis (spKt/V ≥ 1.3) and another group of 51 cases of inadequate hemodialysis (spKt/V < 1.3), according to the urea index value of the unit chamber model (spKt/V). Another 50 cases of subjects found healthy by a physical examination were taken as the control group, and the differences in the related clinical and biochemical indexes of the 3 groups were compared and analyzed. The levels of GST, creatinine, high sensitivity C-reactive protein (hs-CRP), transferrin saturation (TSAT), parathyroid hormone (PTH), interleukin-2,6,8 (IL-2,6,8) and tumor necrosis factor-a (TNF-a) in the hemodialysis group were significantly higher than those in the control group (P < 0.05), and GST, IL-2, 6, 8, and TNF-a levels in the inadequate hemodialysis group were significantly higher than in the adequate hemodialysis group (P < 0.05). Pearson's relevant analysis showed that the levels of GST and spKt/V, IL-2, IL-6, IL-8, and TNF-a have a positive correlation (P < 0.05), and they have no correlation with levels of creatinine, hs-CRP, TSAT, and PHT (P > 0.05). There were 23 patients with levels of spKt/V ≥ 1.3 after adjusting the dialysis solution for 51 cases of inadequate hemodialysis patients, and the GST level after the adjustment was significantly lower than that before the adjustment, but still higher than that in the adequate dialysis group. This concludes that the maintenance of hemodialysis in patients has certain relevance on spKt/V and associated inflammatory factors. Through the study, it can be determined that GST can effectively respond to adequate hemodialysis, which has a guiding significance on adjusting the blood dialysis solution in clinical practice. PMID

  7. Elevation of intracellular Zn2+ level by nanomolar concentrations of triclocarban in rat thymocytes.

    PubMed

    Morita, Junpei; Teramachi, Aoi; Sanagawa, Yosuke; Toyson, Saramaiti; Yamamoto, Hiroshi; Oyama, Yasuo

    2012-12-17

    It was recently reported that nanomolar concentrations of triclocarban, an antimicrobial agent, were detected in human blood after the use of soap containing triclocarban. Due to the widespread use of triclocarban in adult and infant personal care products, the report prompted us to study its cytotoxicity. The cytotoxicity of triclocarban was examined in rat thymocytes by using a cytometric technique with propidium iodide for examining cell lethality, FluoZin-3-AM for monitoring the intracellular Zn(2+) level, and 5-chloromethylfluorescencein diacetate for estimating the cellular content of non-protein thiol. The incubation with triclocarban at nanomolar concentrations (50-500nM) for 1h did not affect cell lethality but significantly elevated the intracellular Zn(2+) level. The elevation of the intracellular Zn(2+) level by triclocarban was not significantly dependent on external Zn(2+) level. There was a negative correlation (r=-0.9225) between the effect on the intracellular Zn(2+) level and that on the cellular content of non-protein thiol. These results suggest that nanomolar concentrations of triclocarban decrease the cellular content of non-protein thiol, leading to intracellular Zn(2+) release. Since zinc plays physiological roles in mammalian cells, the percutaneous absorption of triclocarban from soap may, therefore, affect some cellular functions. PMID:23099084

  8. 3β-Acetyl tormentic acid reverts MRP1/ABCC1 mediated cancer resistance through modulation of intracellular levels of GSH and inhibition of GST activity.

    PubMed

    Rocha, Gleice da Graça; Oliveira, Rodrigo Rodrigues; Kaplan, Maria Auxiliadora Coelho; Gattass, Cerli Rocha

    2014-10-15

    ABC transporter overexpression is an important mechanism of multidrug resistance (MDR) and one of the main obstacles to successful cancer treatment. As these proteins actively remove chemotherapeutics from the tumor cells, the pharmacological inhibition of their activity is a possible strategy to revert drug resistance. Moreover, the ability of MDR inhibitors to sensitize resistant cells to conventional drugs is important for their clinical use. Evidence has shown that the multidrug resistance protein 1 (MRP1/ABCC1) is a negative prognostic marker in patients with lung, gastric, or breast cancers or neuroblastoma. Previous data have shown that 3β-acetyl tormentic acid (3ATA) inhibits the transport activity of the protein MRP1/ABCC1. In this study, we evaluated the ability of 3ATA to sensitize an MDR cell line (GLC4/ADR), which overexpresses MRP1, and investigated the anti-MRP1 mechanisms activated by 3ATA. The results showed that 3ATA is able to reverse the resistance of the MDR cell line to doxorubicin and vincristine, two drugs that are commonly used in cancer chemotherapy. Regarding the sensitizing mechanism induced by 3ATA, this work shows that the triterpene does not modulate the expression of MRP1/ABCC1 but is able to reduce total intracellular glutathione (GSH) levels and decrease the activity of glutathione-s-transferase (GST), the enzyme responsible for the glutathione conjugation of xenobiotics. Together, these results show that 3ATA sensitizes the MDR cell line overexpressing MRP1/ABCC1 to antineoplastic drugs and that this effect is mediated by the modulation of intracellular levels of GSH and GST activity. PMID:25111243

  9. Modification of bursting in a Helix neuron by drugs influencing intracellular regulation of calcium level.

    PubMed

    Salánki, J; Budai, D; Véró, M

    1983-01-01

    The effect of ruthenium red, caffein and EGTA (ethyleneglycol tetraacetic acid) influencing intracellular Ca2+ level as well as that of pH-lowering was investigated on identified RPal neuron of Helix pomatia characterized by bimodal pacemaker (bursting) activity. Drugs were applied both extracellularly and intracellularly. Intracellular injection was performed from micropipettes by pressure. It was found that intracellular injection of ruthenium red, caffein, EGTA and pH-lowering caused immediate short hyperpolarization and suspension of bursting. The effect of caffein and lowering of pH was biphasic, hyperpolarization was followed by an increase of spiking. Following EGTA injection the amplitudes of interburst hyperpolarizing waves decreased, and prolongation of spikes occurred. Extracellular application of ruthenium red caused slight depolarization, while caffein produced mainly effects that were similar to those of the intracellular injection. Adding EGTA into the bath resulted in cessation of bursting, and later on also spike generation was blocked. All these effects could be eliminated by washing. It is concluded that Ca-influx during spiking cannot be considered as a single factor in maintaining bursting activity, nevertheless, intracellular binding and liberation of Ca depending on the cell metabolism should also be taken into consideration as a possible mechanism of burst regulation. PMID:6198869

  10. Fecundity of Cryptosporidium parvum is Correlated with Intracellular Levels of the Viral Symbiont CPV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in the virulence and fecundity of Cryptosporidium parvum isolates have been observed by several researchers studying cryptosporidiosis. The purpose of the present study was to determine if there was a correlation between intracellular levels of the viral symbiont CPV in C. parvum and fe...

  11. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders. PMID:26923386

  12. Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels.

    PubMed

    Yang, Xinhui; Jiang, Jiangtao; Yang, Xinyan; Han, Jichun; Zheng, Qiusheng

    2016-07-01

    Licochalcone A (LCA) has been reported to significantly inhibit cell proliferation, increase reactive oxygen species (ROS) levels, and induce apoptosis of T24 human bladder cancer cells via mitochondria and endoplasmic reticulum (ER) stress-triggered signaling pathways. Based on these findings, the present study aimed to investigate the mechanisms by which LCA induces apoptosis of T24 cells. Cultured T24 cells were treated with LCA, and cell viability was measured using the sulforhodamine B assay. Apoptosis was detected by flow cytometry with Annexin V/propidium iodide staining, and by fluorescent microscopy with Hoechst 33258 staining. The levels of intracellular free calcium ions were determined using Fluo-3 AM dye marker. Intracellular ROS levels were assessed using the 2',7'-dichlorodihydrofluorescein diacetate probe assay. The mitochondrial membrane potential was measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazole carbocyanine iodide. Furthermore, the mRNA expression levels of B‑cell lymphoma (Bcl)‑extra large, Bcl‑2‑associated X protein, Bcl‑2‑interacting mediator of cell death, apoptotic protease activating factor‑1 (Apaf‑1), calpain 2, cysteinyl aspartate specific proteinase (caspase)‑3, caspase‑4 and caspase‑9 were determined using reverse transcription semiquantitative and quantitative polymerase chain reaction analyses. Treatment with LCA inhibited proliferation and induced apoptosis of T24 cells, and increased intracellular Ca2+ levels and ROS production. Furthermore, LCA induced mitochondrial dysfunction, decreased mitochondrial membrane potential, and increased the mRNA expression levels of Apaf‑1, caspase‑9 and caspase‑3. Exposure of T24 cells to LCA also triggered calpain 2 and caspase‑4 activation, resulting in apoptosis. These findings indicated that LCA increased intracellular Ca2+ levels, which may be associated with mitochondrial dysfunction. In addition, the ER stress pathway may be

  13. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration

    PubMed Central

    Wing, Boswell A.; Halevy, Itay

    2014-01-01

    We present a quantitative model for sulfur isotope fractionation accompanying bacterial and archaeal dissimilatory sulfate respiration. By incorporating independently available biochemical data, the model can reproduce a large number of recent experimental fractionation measurements with only three free parameters: (i) the sulfur isotope selectivity of sulfate uptake into the cytoplasm, (ii) the ratio of reduced to oxidized electron carriers supporting the respiration pathway, and (iii) the ratio of in vitro to in vivo levels of respiratory enzyme activity. Fractionation is influenced by all steps in the dissimilatory pathway, which means that environmental sulfate and sulfide levels control sulfur isotope fractionation through the proximate influence of intracellular metabolites. Although sulfur isotope fractionation is a phenotypic trait that appears to be strain specific, we show that it converges on near-thermodynamic behavior, even at micromolar sulfate levels, as long as intracellular sulfate reduction rates are low enough (<<1 fmol H2S⋅cell−1⋅d−1). PMID:25362045

  14. Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels.

    PubMed

    Kong, Bo; Qia, Chengjia; Erkan, Mert; Kleeff, Jörg; Michalski, Christoph W

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease without clearly known disease causes. Recent epidemiological and animal studies suggest that the supplementation of dietary antioxidants (e.g., vitamins C and E) decreases cancer risk, implying that increased reactive oxygen species (ROS) may play a role in pancreatic carcinogenesis. However, oncogenic Kras mutations (e.g., Kras(G12D)), which are present in more than 90% of PDAC, have been proven to foster low intracellular ROS levels. Here, oncogenic Kras activates expression of a series of anti-oxidant genes via Nrf2 (nuclear factor, erythroid derived 2, like 2) and also mediates an unusual metabolic pathway of glutamine to generate NADPH. This can then be used as the reducing power for ROS detoxification, leading collectively to low ROS levels in pancreatic pre-neoplastic cells and in cancer cells. In adult stem cells and cancer stem cells, low ROS levels have been associated with the formation of a proliferation-permissive intracellular environment and with perseverance of self-renewal capacities. Therefore, it is conceivable that low intracellular ROS levels may contribute significantly to oncogenic Kras-mediated PDAC formation. PMID:24062691

  15. Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium.

    PubMed

    Smith, Cassandra L; Steele, Jessica E; Stauber, Jennifer L; Jolley, Dianne F

    2014-11-01

    Phytochelatins and glutathione (reduced (GSH) and oxidised (GSSG)) are important intracellular ligands involved in metal sequestration and detoxification in algae. Intracellular ratios of GSH:GSSG are sensitive indicators of metal stress in algae, and like phytochelatin production are influenced by metal speciation, concentration, exposure time and the biological species. This study investigated the effect of copper exposure on phytochelatin and glutathione content in two marine diatoms Phaeodactylum tricornutum and Ceratoneis closterium at various time intervals between 0.5 and 72h. Liberation of cellular glutathione and phytochelatins was optimised using freeze/thaw cycles and chemical extraction, respectively. Extracted phytochelatins were derivatised (by fluorescent tagging of thiol compounds), separated and quantified using HPLC with fluorescence detection. Glutathione ratios were determined using a commercially available kit, which uses the enzyme glutathione reductase to measure total and oxidised glutathione. Despite similarities in size and shape between the two diatoms, differences in internalised copper, phytochelatin production (both chain length and quantity) and reduced glutathione concentrations were observed. P. tricornutum maintained reduced glutathione at between 58 and 80% of total glutathione levels at all time points, which would indicate low cellular stress. In C. closterium reduced glutathione constituted <10% of total glutathione after 48h. P. tricornutum also produced more phytochelatins and phytochelatins of longer chain length than C. closterium despite the latter species internalising significantly more copper. PMID:25261820

  16. Intracellular ATP Levels are a Pivotal Determinant of Chemoresistance in Colon Cancer Cells

    PubMed Central

    Zhou, Yunfei; Tozzi, Federico; Chen, Jinyu; Fan, Fan; Xia, Ling; Wang, Jinrong; Gao, Guang; Zhang, Aijun; Xia, Xuefeng; Brasher, Heather; Widger, William; Ellis, Lee M; Weihua, Zhang

    2013-01-01

    Altered metabolism in cancer cells is suspected to contribute to chemoresistance but the precise mechanisms are unclear. Here we show that intracellular ATP levels are a core determinant in the development of acquired cross-drug resistance of human colon cancer cells that harbor different genetic backgrounds. Drug-resistant cells were characterized by defective mitochondrial ATP production, elevated aerobic glycolysis, higher absolute levels of intracellular ATP and enhanced HIF-1α-mediated signaling. Interestingly, direct delivery of ATP into cross-chemoresistant cells destabilized HIF-1α and inhibited glycolysis. Thus, drug-resistant cells exhibit a greater “ATP debt” defined as the extra amount of ATP needed to maintain homeostasis of survival pathways under genotoxic stress. Direct delivery of ATP was sufficient to render drug-sensitive cells drug resistant. Conversely, depleting ATP by cell treatment with an inhibitor of glycolysis, 3-bromopyruvate, was sufficient to sensitize cells cross-resistant to multiple chemotherapeutic drugs. In revealing intracellular ATP levels are a core determinant of chemoresistance in colon cancer cells, our findings may offer a foundation for new improvements to colon cancer treatment. PMID:22084398

  17. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells.

    PubMed

    Zhou, Yunfei; Tozzi, Federico; Chen, Jinyu; Fan, Fan; Xia, Ling; Wang, Jinrong; Gao, Guang; Zhang, Aijun; Xia, Xuefeng; Brasher, Heather; Widger, William; Ellis, Lee M; Weihua, Zhang

    2012-01-01

    Altered metabolism in cancer cells is suspected to contribute to chemoresistance, but the precise mechanisms are unclear. Here, we show that intracellular ATP levels are a core determinant in the development of acquired cross-drug resistance of human colon cancer cells that harbor different genetic backgrounds. Drug-resistant cells were characterized by defective mitochondrial ATP production, elevated aerobic glycolysis, higher absolute levels of intracellular ATP, and enhanced HIF-1α-mediated signaling. Interestingly, direct delivery of ATP into cross-chemoresistant cells destabilized HIF-1α and inhibited glycolysis. Thus, drug-resistant cells exhibit a greater "ATP debt" defined as the extra amount of ATP needed to maintain homeostasis of survival pathways under genotoxic stress. Direct delivery of ATP was sufficient to render drug-sensitive cells drug resistant. Conversely, depleting ATP by cell treatment with an inhibitor of glycolysis, 3-bromopyruvate, was sufficient to sensitize cells cross-resistant to multiple chemotherapeutic drugs. In revealing that intracellular ATP levels are a core determinant of chemoresistance in colon cancer cells, our findings may offer a foundation for new improvements to colon cancer treatment. PMID:22084398

  18. Cadmium-induced cell killing in Sacharomyces cerevisiae involves increases in intracellular NO levels.

    PubMed

    Wu, Lihua; Chen, Yanfei; Gao, Huixian; Yin, Jingjing; Huang, Liqun

    2016-03-01

    Cadmium is a widespread environmental pollutant and poses some potential risks to human health. However, the signaling events controlling cadmium toxicity are not fully understood. In this study, we examined the effect of cadmium chloride on cell viability and the intracellular nitric oxide (NO) level in yeast cells. The results showed that exposure of yeast cells to cadmium (0-100 μM) could induce cell killing with significantly increased intracellular NO levels. Morphological analysis of the nuclei with 4('),6-diamidino-2-phenylindole staining and DNA strand breaks analysis showed that cadmium at 50 μM can induce cell apoptosis in yeast cells. Treatment of yeast cells with cadmium (50 μM) and the nitric oxide scavenger c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-1-oxyl-3-oxide; 0.2 mM] showed that c-PTIO attenuated the cadmium-induced cell killing. Our findings indicated that cadmium-induced yeast cell killing is mediated by a directly increased intracellular NO level. PMID:26872495

  19. High glutathione and glutathione peroxidase-2 levels mediate cell-type-specific DNA damage protection in human induced pluripotent stem cells.

    PubMed

    Dannenmann, Benjamin; Lehle, Simon; Hildebrand, Dominic G; Kübler, Ayline; Grondona, Paula; Schmid, Vera; Holzer, Katharina; Fröschl, Mirjam; Essmann, Frank; Rothfuss, Oliver; Schulze-Osthoff, Klaus

    2015-05-12

    Pluripotent stem cells must strictly maintain genomic integrity to prevent transmission of mutations. In human induced pluripotent stem cells (iPSCs), we found that genome surveillance is achieved via two ways, namely, a hypersensitivity to apoptosis and a very low accumulation of DNA lesions. The low apoptosis threshold was mediated by constitutive p53 expression and a marked upregulation of proapoptotic p53 target genes of the BCL-2 family, ensuring the efficient iPSC removal upon genotoxic insults. Intriguingly, despite the elevated apoptosis sensitivity, both mitochondrial and nuclear DNA lesions induced by genotoxins were less frequent in iPSCs compared to fibroblasts. Gene profiling identified that mRNA expression of several antioxidant proteins was considerably upregulated in iPSCs. Knockdown of glutathione peroxidase-2 and depletion of glutathione impaired protection against DNA lesions. Thus, iPSCs ensure genomic integrity through enhanced apoptosis induction and increased antioxidant defense, contributing to protection against DNA damage. PMID:25937369

  20. High Glutathione and Glutathione Peroxidase-2 Levels Mediate Cell-Type-Specific DNA Damage Protection in Human Induced Pluripotent Stem Cells

    PubMed Central

    Dannenmann, Benjamin; Lehle, Simon; Hildebrand, Dominic G.; Kübler, Ayline; Grondona, Paula; Schmid, Vera; Holzer, Katharina; Fröschl, Mirjam; Essmann, Frank; Rothfuss, Oliver; Schulze-Osthoff, Klaus

    2015-01-01

    Summary Pluripotent stem cells must strictly maintain genomic integrity to prevent transmission of mutations. In human induced pluripotent stem cells (iPSCs), we found that genome surveillance is achieved via two ways, namely, a hypersensitivity to apoptosis and a very low accumulation of DNA lesions. The low apoptosis threshold was mediated by constitutive p53 expression and a marked upregulation of proapoptotic p53 target genes of the BCL-2 family, ensuring the efficient iPSC removal upon genotoxic insults. Intriguingly, despite the elevated apoptosis sensitivity, both mitochondrial and nuclear DNA lesions induced by genotoxins were less frequent in iPSCs compared to fibroblasts. Gene profiling identified that mRNA expression of several antioxidant proteins was considerably upregulated in iPSCs. Knockdown of glutathione peroxidase-2 and depletion of glutathione impaired protection against DNA lesions. Thus, iPSCs ensure genomic integrity through enhanced apoptosis induction and increased antioxidant defense, contributing to protection against DNA damage. PMID:25937369

  1. Association of Thymidylate Synthase Gene Polymorphisms with Stavudine Triphosphate Intracellular Levels and Lipodystrophy▿

    PubMed Central

    Domingo, Pere; Cabeza, M. Carmen; Pruvost, Alain; Torres, Ferran; Salazar, Juliana; del Mar Gutierrez, M.; Mateo, M. Gracia; Fontanet, Angels; Fernandez, Irene; Domingo, Joan C.; Villarroya, Francesc; Vidal, Francesc; Baiget, Montserrat

    2011-01-01

    The antiviral activity and toxicity of stavudine (d4T) depend on its triphosphate metabolite, stavudine triphosphate (d4T-TP). Therefore, modifications in intracellular levels of d4T-TP may change the toxicity profile of stavudine. d4T-TP intracellular levels in peripheral blood mononuclear cells were determined with a prominence liquid chromatograph connected to a triple-quadruple mass spectrometer. Polymorphisms in the thymidylate synthase (TS), methylenetetrahydrofolate reductase (MTHFR), dihydrofolate reductase (DHFR), reduced folate carrier 1 (RFC1; SLC19A1), and cyclin D1 (CCND1) genes were determined by direct sequencing using an ABI Prism 3100 genetic analyzer or Fluidigm's Biomark system. The Mann-Whitney test, rank analysis of variance (with Bonferroni's adjusted post hoc comparisons), and logistic regression were used for the inferential analyses. Thirty-three stavudine-treated patients were enrolled in this cross-sectional study. d4T-TP intracellular levels were 11.50 fmol/106 cells (interquartile range [IQR] = 8.12 to 13.87 fmol/106 cells) in patients with a high-expression TS genotype (2/3G, 3C/3G, and 3G/3G), whereas in those with a low-expression TS genotype (2/2, 2/3C, and 3C/3C), they were 21.40 fmol/106 cells (IQR = 18.90 to 27.0 fmol/106 cells) (P < 0.0001). Polymorphisms in the MTHFR, DHFR, RFC1, and CCND1 genes did not influence the intracellular concentration of d4T-TP. d4T-TP levels were independently associated with the TS genotype (low versus high expression; odds ratio [OR] = 86.22; 95% confidence interval [CI] = 8.48 to nonestimable; P = 0.0023). The low-expression TS genotype was associated with the development of HIV/highly active antiretroviral therapy-associated lypodystrophy syndrome (HALS) (OR = 14.0; 95% CI = 2.09 to 108.0; P = 0.0032). Our preliminary data show that polymorphisms in the thymidylate synthase gene are strongly associated with d4T-TP intracellular levels and with development of HALS. PMID:21282454

  2. Association of thymidylate synthase gene polymorphisms with stavudine triphosphate intracellular levels and lipodystrophy.

    PubMed

    Domingo, Pere; Cabeza, M Carmen; Pruvost, Alain; Torres, Ferran; Salazar, Juliana; del Mar Gutierrez, M; Mateo, M Gracia; Fontanet, Angels; Fernandez, Irene; Domingo, Joan C; Villarroya, Francesc; Vidal, Francesc; Baiget, Montserrat

    2011-04-01

    The antiviral activity and toxicity of stavudine (d4T) depend on its triphosphate metabolite, stavudine triphosphate (d4T-TP). Therefore, modifications in intracellular levels of d4T-TP may change the toxicity profile of stavudine. d4T-TP intracellular levels in peripheral blood mononuclear cells were determined with a prominence liquid chromatograph connected to a triple-quadruple mass spectrometer. Polymorphisms in the thymidylate synthase (TS), methylenetetrahydrofolate reductase (MTHFR), dihydrofolate reductase (DHFR), reduced folate carrier 1 (RFC1; SLC19A1), and cyclin D1 (CCND1) genes were determined by direct sequencing using an ABI Prism 3100 genetic analyzer or Fluidigm's Biomark system. The Mann-Whitney test, rank analysis of variance (with Bonferroni's adjusted post hoc comparisons), and logistic regression were used for the inferential analyses. Thirty-three stavudine-treated patients were enrolled in this cross-sectional study. d4T-TP intracellular levels were 11.50 fmol/10(6) cells (interquartile range [IQR] = 8.12 to 13.87 fmol/10(6) cells) in patients with a high-expression TS genotype (2/3G, 3C/3G, and 3G/3G), whereas in those with a low-expression TS genotype (2/2, 2/3C, and 3C/3C), they were 21.40 fmol/10(6) cells (IQR = 18.90 to 27.0 fmol/10(6) cells) (P < 0.0001). Polymorphisms in the MTHFR, DHFR, RFC1, and CCND1 genes did not influence the intracellular concentration of d4T-TP. d4T-TP levels were independently associated with the TS genotype (low versus high expression; odds ratio [OR] = 86.22; 95% confidence interval [CI] = 8.48 to nonestimable; P = 0.0023). The low-expression TS genotype was associated with the development of HIV/highly active antiretroviral therapy-associated lypodystrophy syndrome (HALS) (OR = 14.0; 95% CI = 2.09 to 108.0; P = 0.0032). Our preliminary data show that polymorphisms in the thymidylate synthase gene are strongly associated with d4T-TP intracellular levels and with development of HALS. PMID:21282454

  3. Sulfur mustard-induced increase in intracellular free calcium level and arachidonic acid release from cell membrane

    SciTech Connect

    Ray, R.; Legere, R.H.; Majerus, B.J.; Petrali, J.P.

    1995-12-31

    The mechanism of action of the alkylating agent bis-(2-chloroethyl)sulfide (sulfur mustard, SM) was studied using the in thai vitro mouse neuroblastoma-rat glioma hybrid NG 108-1 S clonal p cell line model. Following 0.3 mM SM exposure, cell viability remained high (>80% of untreated control) up to 9 hr and then declined steadily to about 40% of control after 20-24 hr. During the early period of SM exposure, when there was no significant cell viability loss, the following effects were observed. The cellular glutathione level decreased 20% after 1 hr and 34% after 6 hr. Between 2 and 6 hr, there was a time-dependent increase (about 10 to 30%) in intracellular free calcium (Ca2+), which was localized to the limiting membrane of swollen endoplasmic reticula and mitochondria, to euchromatin areas of the nucleus, and to areas of the cytosol and plasma membrane. Moreover,there was also a time-dependent increase in the release of isotopically labeled arachidonic acid ((3H)AA) from cellular membranes. Increase in (3H)AA release was 28% at 3 hr and about 60-80% between 6 and 9 hr. This increase in I3HIAA release was inhibited by quinacrine (20 uM), which is a phospholipase (PLA2) inhibitor. At 16 hr after SM exposure, there was a large increase (about 200% of control) in I3HIAA release, which was coincident with a 50% loss of cell viability. These results suggest a Ca2+-mediated toxic mechanism of SM via PLA2 activation and arachidonate release.

  4. The Effect of L-Carnitine Treatment on Levels of Malondialdehyde and Glutathione in Patients with Age Related Macular Degeneration

    PubMed Central

    Ates, Orhan; Alp, H. Hakan; Mumcu, Ugur; Azizi, Sedat; Cinici, Emine; Kiziltunc, Ahmet; Baykal, Orhan

    2008-01-01

    Objective: The aim of this study was to determine the antioxidant properties of the L-carnitine (LC) in the treatment of patients with age-related macular degeneration (AMD). Materials and Methods: This study involved 60 patients diagnosed with early AMD. The patients were divided into two groups. Group I was the study group that received LC supplementation for 3 months. Group II was the control group and did not consent to LC supplementation over the 3 months. At the end of the 3-month period, markers of lipid peroxidation, malondialdehyde (MDA) and reduced glutathione (GSH) were measured in the two groups. Results: In the study group, the MDA level was significantly reduced, while the GSH level was significantly increased at the end of the 3-month period (P<0.001). Conclusion: Our results suggest that LC may protect against oxidative damage by decreasing the MDA level, a marker of lipid peroxidation, and increasing GSH. PMID:25610013

  5. Glutathione permeability of CFTR.

    PubMed

    Linsdell, P; Hanrahan, J W

    1998-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) forms an ion channel that is permeable both to Cl- and to larger organic anions. Here we show, using macroscopic current recording from excised membrane patches, that the anionic antioxidant tripeptide glutathione is permeant in the CFTR channel. This permeability may account for the high concentrations of glutathione that have been measured in the surface fluid that coats airway epithelial cells. Furthermore, loss of this pathway for glutathione transport may contribute to the reduced levels of glutathione observed in airway surface fluid of cystic fibrosis patients, which has been suggested to contribute to the oxidative stress observed in the lung in cystic fibrosis. We suggest that release of glutathione into airway surface fluid may be a novel function of CFTR. PMID:9688865

  6. Glutathione in cyanobacteria

    NASA Technical Reports Server (NTRS)

    Bermudes, D.

    1985-01-01

    The effects of light and O2 on glutathione production were determined. Results of light and dark studies under normal and reduced oxygen tensions were compared to determine the effect of reduction in oxygen tension on glutathione levels. The growth rate of Anacystis nidulans and concurrent production of glutathione is presented. The generation of time of Anacystis nidulans was approximately 12 hours. Results of light and dark incubation of Aphanothece halophytica dominated planktonic microbial community from Pond 4 and Anacystis nidulans under high and low oxygen tension is also presented. It appears that light grown Anacystis nidulans cells have equal amounts of glutathione while dark grown cells produce more glutathione in the presence of increased O2.

  7. Hyperoside regulates the level of thymic stromal lymphopoietin through intracellular calcium signalling.

    PubMed

    Han, Na-Ra; Go, Ji-Hyun; Kim, Hyung-Min; Jeong, Hyun-Ja

    2014-07-01

    Hyperoside (HYP) is the principle active component of Crataegus pinnatifida. Thymic stromal lymphopoietin (TSLP) plays a vital role in the pathogenesis of allergic reactions. Here, we investigated how HYP regulates the levels of TSLP in a human mast cell line, HMC-1 cells. We analyzed the levels of TSLP by treatment with HYP in phorbol myristate acetate plus calcium ionophore A23187-stimulated HMC-1 cells with ELISA and a polymerase chain reaction analysis. We also analyzed the pathway that HYP regulates TSLP by measuring the level of fluorescent intracellular calcium and using a Western blot analysis. HYP decreased the level of intracellular calcium in stimulated HMC-1 cells. It also significantly decreased the production and mRNA expression of TSLP in stimulated HMC-1 cells. It significantly decreased the levels of receptor-interacting protein 2 and active caspase-1 in stimulated HMC-1 cells. HYP significantly decreased the translocation of NF-κB into the nucleus and degradation of IκBα in the cytoplasm in stimulated HMC-1 cells. Furthermore, it significantly decreased the production and mRNA expression of interleukin-1β and interleukin-6 in stimulated HMC-1 cells. Taken together, our findings establish HYP as a potential agent for the treatment of allergic reactions. PMID:24338918

  8. Predictive and Prognostic Significance of Glutathione Levels and DNA Damage in Cervix Cancer Patients Undergoing Radiotherapy

    SciTech Connect

    Vidyasagar, Mamidipudi Srinivasa; Kodali, Maheedhar; Prakash Saxena, Pu

    2010-10-01

    Purpose: To assess the predictive significance of serum glutathione (GSH) and tumor tissue DNA damage in the treatment of cervical cancer patients undergoing chemoradiotherapy. Methods and Materials: This study included subjects undergoing hysterectomy (for normal cervix tissue) and cervical cancer patients who underwent conventional concurrent chemoradiotherapy (cisplatin once per week for 5 weeks with concurrent external radiotherapy of 2 Gy per fraction for 5 weeks, followed by two applications of intracavitary brachytherapy once per week after 2 weeks' rest). Blood was collected after two fractions, whereas both blood and tissues were collected after five fractions of radiotherapy in separate groups of subjects. Serum for total GSH content and tissues were processed for single-cell gel electrophoresis (SCGE) assay for DNA damage analysis. Clinical tumor radioresponse was assessed 2 months after the completion of treatment as complete responders (CR) (100% shrinkage), partial responders (PR) (>50%), and nonresponders (NR) (<50%). Results: Serum GSH content depleted significantly after a total dose of 4 Gy and 10 Gy of radiotherapy with a single dose of cisplatin, which was significantly lesser in NR than of CR patients. Similarly, Olive Tail Moment, the index of DNA damage, indicated significantly higher values in the fifth fraction of radiotherapy (5-RT) than in pretreatment. The DNA damage after 5-RT in the NR subgroup was significantly lower than that of CR. Conclusions: Serum GSH analysis and tumor tissue SCGE assay found to be useful parameters for predicting chemoradioresponse prior to and also at an early stage of treatment of cervical cancers.

  9. Regulation of cAMP Intracellular Levels in Human Platelets Stimulated by 2-Arachidonoylglycerol.

    PubMed

    Signorello, Maria Grazia; Leoncini, Giuliana

    2016-05-01

    We demonstrated that in human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) decreased dose- and time-dependently cAMP intracellular levels. No effect on cAMP decrease induced by 2-AG was observed in the presence of the adenylate cyclase inhibitor SQ22536 as well in platelets pretreated with the thromboxane A2 receptor antagonist, SQ29548 or with aspirin, inhibitor of arachidonic acid metabolism through the cyclooxygenase pathway. An almost complete recovering of cAMP level was measured in platelets pretreated with the specific inhibitor of phosphodiesterase (PDE) 3A, milrinone. In platelets pretreated with LY294002 or MK2206, inhibitors of PI3K/AKT pathway, and with U73122, inhibitor of phospholipase C pathway, only a partial prevention was shown. cAMP intracellular level depends on synthesis by adenylate cyclase and hydrolysis by PDEs. In 2-AG-stimulated platelets adenylate cyclase activity seems to be unchanged. In contrast PDEs appear to be involved. In particular PDE3A was specifically activated, as milrinone reversed cAMP reduction by 2-AG. 2-AG enhanced PDE3A activity through its phosphorylation. The PI3K/AKT pathway and PKC participate to this PDE3A phosphorylation/activation mechanism as it was greatly inhibited by platelet pretreatment with LY294002, MK2206, U73122, or the PKC specific inhibitor GF109203X. Taken together these data suggest that 2-AG potentiates its power of platelet agonist reducing cAMP intracellular level. J. Cell. Biochem. 117: 1240-1249, 2016. © 2015 Wiley Periodicals, Inc. PMID:26460717

  10. Effect of Glutathione Administration on Serum Levels of Reactive Oxygen Metabolites in Patients with Paraquat Intoxication: A Pilot Study

    PubMed Central

    Kim, Jung-Hoon; Gil, Hyo-Wook; Yang, Jong-Oh; Lee, Eun-Young

    2010-01-01

    Background/Aims Based on preliminary in vitro data from a previous study, we proposed that 50 mg/kg glutathione (GSH) would be adequate for suppressing reactive oxygen species in patients with acute paraquat (PQ) intoxication. Methods Serum levels of reactive oxygen metabolites (ROM) were measured before and after the administration of 50 mg/kg GSH to each of five patients with acute PQ intoxication. Results In one patient, extremely high pretreatment ROM levels began to decrease prior to GSH administration. However, in the remaining four cases, ROM levels did not change significantly prior to GSH administration. ROM levels decreased significantly after GSH administration in all cases. In two cases, ROM levels decreased below that observed in the general population; one of these patients died after a cardiac arrest at 3 hours after PQ ingestion, while the other represented the sole survivor of PQ intoxication observed in this study. In the survivor, ROM levels decreased during the first 8 hours of GSH treatment, and finally dropped below the mean ROM level observed in the general population. Conclusions Treatment with 50 mg/kg GSH significantly suppressed serum ROM levels in PQ-intoxicated patients. However, this dose was not sufficient to suppress ROM levels when the PQ concentration was extremely high. PMID:20830225

  11. Effect of altitude on brain intracellular pH and inorganic phosphate levels

    PubMed Central

    Shi, Xian-Feng; Carlson, Paul J.; Kim, Tae-Suk; Sung, Young-Hoon; Hellem, Tracy L.; Fiedler, Kristen K.; Kim, Seong-Eun; Glaeser, Breanna; Wang, Kristina; Zuo, Chun S.; Jeong, Eun-Kee; Renshaw, Perry F.; Kondo, Douglas G.

    2015-01-01

    Normal brain activity is associated with task-related pH changes. Although central nervous system syndromes associated with significant acidosis and alkalosis are well understood, the effects of less dramatic and chronic changes in brain pH are uncertain. One environmental factor known to alter brain pH is the extreme, acute change in altitude encountered by mountaineers. However, the effect of long-term exposure to moderate altitude has not been studied. The aim of this two-site study was to measure brain intracellular pH and phosphate-bearing metabolite levels at two altitudes in healthy volunteers, using phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Increased brain pH and reduced inorganic phosphate (Pi) levels were found in healthy subjects who were long-term residents of Salt Lake City, UT (4720 ft/1438 m), compared with residents of Belmont, MA (20 ft/6 m). Brain intracellular pH at the altitude of 4720 ft was more alkaline than that observed near sea level. In addition, the ratio of inorganic phosphate to total phosphate signal also shifted toward lower values in the Salt Lake City region compared with the Belmont area. These results suggest that long-term residence at moderate altitude is associated with brain chemical changes. PMID:24768210

  12. Effects of low-level laser exposure on calcium channels and intracellular release in cultured astrocytes

    NASA Astrophysics Data System (ADS)

    Mang, Thomas S.; Maneshi, Mohammed M.; Shucard, David W.; Hua, Susan; Sachs, Frederick

    2016-03-01

    Prompted by a study of traumatic brain injury (TBI) in a model system of cultured astrocytes, we discovered that low level laser illumination (LLL) at 660nm elevates the level of intracellular Ca2+. The coherence of the illumination was not essential since incoherent red light also worked. For cells bathed in low Ca2+ saline so that influx was suppressed, the Ca2+ level rose with no significant latency following illumination and consistent with a slow leak of Ca2+ from storage such as from the endoplasmic reticulum and/or mitochondria. When the cells were bathed in normal Ca2+ saline, the internal Ca2+ rose, but with a latency of about 17 seconds from the beginning of illumination. Pharmacologic studies with ryanodine inhibited the light effect. Testing the cells with fluid shear stress as used in the TBI model showed that mechanically induced elevation of cell Ca2+ was unaffected by illumination.

  13. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. PMID:26836107

  14. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver.

    PubMed

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru; Yasutake, Akira

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  15. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    PubMed Central

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  16. Regulation of intracellular levels of calmodulin and tubulin in normal and transformed cells.

    PubMed Central

    Chafouleas, J G; Pardue, R L; Brinkley, B R; Dedman, J R; Means, A R

    1981-01-01

    Transformation of mammalian tissue culture cells by oncogenic viruses results in a 2-fold increase in the intracellular concentration of calmodulin quantitated by radioimmunoassay. The two pairs of companion cell lines used in this study were the Swiss mouse 3T3/simian virus 40-transformed 3T3 cells and the normal rat kidney (NRK)/Rous sarcoma virus-transformed NRK cells. The increased intracellular levels of calmodulin in the transformed cells are due to a greater increase in the rate of synthesis (3-fold) relative to the change in the rate of degradation (1.4-fold). On the other hand, no increases were observed in tubulin levels as quantitated by a colchicine-binding assay. The lack of change in tubulin concentration was accounted for by a 2-fold increase in the rate of degradation that is compensated by a similar increase in the rate of synthesis. The consequence of such changes in both transformed cell types is a 2-fold increase in the calmodulin-to-tubulin protein ratio relative to that in their nontransformed counterparts. PMID:6262788

  17. Elevation of intracellular calcium levels in spiral ganglion cells by trimethyltin.

    PubMed

    Fechter, L D; Liu, Y

    1995-11-01

    The neurotoxicant, trimethyltin (TMT) produces cochlear impairment at far lower dose levels and far more rapidly than it does central nervous system effects. The initial effects of TMT in the cochlea, in vivo, are consistent with disruption of the inner hair cell type-1 spiral ganglion cell synapse although it is uncertain whether the effect is on presynaptic and/or postsynaptic units. This synapse is believed to be an excitatory glutamatergic one, providing the possibility that TMT could induce an excitotoxic process resulting in elevations in intracellular calcium ([Ca2+]i). The objective of this study was to determine whether TMT had direct toxic effects on the postsynaptic spiral ganglion cells studied in primary culture and to identify the role of extracellular calcium in such an effect. The marker of interest was the effect of this agent on [Ca2+]i levels as determined using quantitation of the fluorescent calcium dye, Fura-2. TMT did induce a marked and sustained elevation in [Ca2+]i level in the spiral ganglion cells that appeared to have a rapid initial phase and a slower saturating phase. Studies performed using calcium-free medium showed that elevation of [Ca2+]i in spiral ganglion cells by TMT was attenuated but not entirely blocked. Further, the L-type calcium channel blocker, nifedipine, was able to inhibit the initial increase in [Ca2+]i, suggesting that at least this phase of the TMT effect was mediated by calcium channels, although nifedipine had no significant effect on the time to reach the maximal [Ca2+]i level. Parallel control experiments performed using application of exogenous glutamate and depolarizing K+ concentrations also produced elevation in [Ca2+]i levels. The data indicate that TMT elevates [Ca2+]i in isolated spiral ganglion cells both by increasing extracellular uptake via Ca2+ channels and also by releasing Ca2+ from intracellular stores. Thus TMT ototoxicity appears to include a direct postsynaptic toxic event. PMID:8647712

  18. Cis-acting elements are required for selenium regulation of glutathione peroxidase-1 mRNA levels.

    PubMed Central

    Weiss, S L; Sunde, R A

    1998-01-01

    Classical glutathione peroxidase (GPX1) mRNA levels can decrease to less than 10% in selenium (Se)-deficient rat liver. The cis-acting nucleic acid sequence requirements for Se regulation of GPX1 mRNA levels were studied by transfecting Chinese hamster ovary (CHO) cells with GPX1 DNA constructs in which specific regions of the GPX1 gene were mutated, deleted, or replaced by comparable regions from unregulated genes such as phospholipid hydroperoxide glutathione peroxidase (GPX4). For each construct, stable transfectants were pooled two weeks after transfection, divided into Se-deficient (2 nM Se) or Se-adequate (200 nM Se) medium, and grown for an additional four days. On day of harvest, Se-deficient GPX1 and GPX4 activities averaged 13 +/- 2% and 15 +/- 2% of Se adequate levels, confirming that cellular Se status was dramatically altered by Se supplementation. RNA was isolated from replicate plates of cells and transfected mRNA levels were specifically determined by RNase protection assay. Analysis of chimeric GPX1/GPX4 constructs showed that the GPX4 3'-UTR can completely replace the GPX1 3'-UTR in Se regulation of GPX1 mRNA. We did not find any GPX1 coding regions that could be replaced by the corresponding GPX4 coding regions without diminishing or eliminating Se regulation of the transfected GPX1 mRNA. Further analysis of the GPX1 coding region demonstrated that the GPX1 Sec codon (UGA) and the GPX1 intron sequences are required for full Se regulation of transfected GPX1 mRNA levels. Mutations that moved the GPX1 Sec codon to three different positions within the GPX1 coding region suggest that the mechanism for Se regulation of GPX1 mRNA requires a Sec codon within exon 1. Lastly, we found that addition of the GPX1 3'-UTR to beta-globin mRNA can convey significant Se regulation to beta-globin mRNA levels when a UGA codon is placed within exon 1. We conclude that Se regulation of GPX1 mRNA requires a functional selenocysteine insertion sequence (SECIS) in the 3

  19. The levels of serum vitamin C, malonyldialdehyde and erythrocyte reduced glutathione in chronic obstructive pulmonary disease and in healthy smokers.

    PubMed

    Calikoğlu, Mukadder; Unlü, Ali; Tamer, Lülüfer; Ercan, Bahadir; Buğdayci, Resul; Atik, Uğur

    2002-10-01

    There is an increasing interest in the concept that oxidant/antioxidant imbalance plays a role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, most of the studies are concentrated on the local antioxidant/oxidant balance. In this study, we investigated the oxidant/antioxidant balance in systemic circulation of patients with COPD. Serum malonyldialdehyde (MDA), vitamin C and erythrocyte reduced glutathione (GSH) were determined in patients during acute exacerbation and during the stable phase of the disease, and compared with age- and sex-matched healthy controls. The levels of serum MDA, vitamin C and erythrocyte GSH were determined according to Yagi, Beutler and Bauer et al., respectively. Serum MDA levels were significantly higher in patients compared to controls, and during acute exacerbation compared to the stable phase. MDA levels in patients with acute exacerbation and in those in stable phase were also higher than in controls. We found significantly decreased levels of erythrocyte GSH and serum vitamin C in patients with acute exacerbation and stable COPD compared to controls. Although smoking caused an increase in oxidative stress in controls, the measured parameters were not affected by smoking in the patient group. In conclusion, there is a systemic oxidant/antioxidant imbalance in COPD, and this imbalance is probably independent of smoking. PMID:12476943

  20. Seasonal- and temperature-dependent variation in CNS ascorbate and glutathione levels in anoxia-tolerant turtles.

    PubMed

    Pérez-Pinzón, M A; Rice, M E

    1995-12-24

    We determined the ascorbic acid (ascorbate) and glutathione (GSH) contents of eight regions of the CNS from anoxia-tolerant turtles collected in summer and in winter. Ascorbate was of special interest because it is found in exceptionally high levels in the turtle CNS. The temperature-dependence of CNS ascorbate content was established by comparing levels in animals collected from two geographic zones with different average winter temperatures and in animals re-acclimated to different temperatures in the laboratory. The analytical method was liquid chromatography with electrochemical detection. Turtle ascorbate levels were 30-40% lower in animals acclimatized to winter (2 degrees C) than to summer (23 degrees C) in all regions of the CNS. Similarly, GSH levels were 20-30% lower in winter than in summer. Winter ascorbate levels were higher in turtles from Louisiana (19 degrees C) than in turtles acclimatized to winter in Wisconsin (2 degrees C). Summer and winter levels of ascorbate could be reversed by re-acclimating animals to cold (1 degree C) or warm (23 degrees C) temperatures for at least one week. CNS water content did not differ between cold- and warm-acclimated turtles. Taken together, the data indicated that ascorbate and GSH undergo significant seasonal variation and that the catalyst for change is environmental temperature. Steady-state ascorbate content showed a linear dependence on temperature, with a slope of 1.5% per degree C that was independent of CNS region. Lower levels of cerebral antioxidants in turtles exposed to colder temperatures were consistent with the decreased rate of cerebral metabolism that accompanies winter hibernation. Cerebral ascorbate and GSH levels in the turtle remained similar to or higher than those in mammals, even during winter, however. These findings support the notion that unique mechanisms of antioxidant regulation in the turtle contribute to their tolerance of the hypoxia-reoxygenation that characterizes diving

  1. Alterations in superoxide dismutase activities, lipid peroxidation and glutathione levels in thinner inhaled rat lungs: relationship between histopathological properties.

    PubMed

    Ulakoğlu, E Z; Saygi, A; Gümüştaş, M K; Zor, E; Oztek, I; Kökoğlu, E

    1998-09-01

    Paint thinner has widespread use in industry. The use of thinner among children as a narcotic agent has become a social and health problem. There is some evidence that organic solvents may express their toxicity by the way of reactive oxygen species (ROS) induced cell damage. ROS has been shown to induce lipid peroxidation in biological membranes. This study examined peroxidative and histopathological changes in the rat lung, during 5 weeks of thinner inhalation. Significant increases were found in lipid peroxidation (MDA+4-DHA) levels related to the duration of inhalation. As opposed to increases in the lipid peroxidation levels, significant decreases in superoxide dismutase activities and glutathione levels were observed from the third inhalation week to the end of the fifth week. At the beginning of the inhalation slight inflammatory changes, intraalveolar and interstitial extravasation and oedema in lung parenchyma were noted. As the inhalation period extended, chronic inflammatory changes, alveolar epithelial proliferation, collapse, emphysematous changes and interstitial fibrosis in lung were detected. PMID:9782071

  2. Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury.

    PubMed

    Woo, Anthony Y H; Waye, Mary M Y; Tsui, Stephen K W; Yeung, Sandy T W; Cheng, Christopher H K

    2008-04-01

    Recent studies revealed that the herb Andrographis paniculata possesses cardioprotective activities. Using neonatal rat cardiomyocytes, the cardioprotective actions of several diterpene lactones derived from A. paniculata including andrographolide, 14-deoxyandrographolide, 14-deoxy-11,12-didehydroandrographolide, and sodium 14-deoxyandrographolide-12-sulfonate were investigated. Pretreatment with andrographolide but not with the other compounds protected the cardiomyocytes against hypoxia/ reoxygenation injury and up-regulated the cellular-reduced glutathione (GSH) level and antioxidant enzyme activities. The cardioprotective action of andrographolide was found to coincide in a time-dependent manner with the up-regulation of GSH, indicating the important role of GSH. The cardioprotective action of andrographolide was also completely abolished by buthionine sulfoximine, which acts as a specific gamma-glutamate cysteine ligase (GCL) inhibitor to deplete cellular GSH level. It was subsequently found that the mRNA and protein levels of the GCL catalytic subunit (GCLC) and modifier subunit (GCLM) were up-regulated by andrographolide. Luciferase reporter assay also demonstrated that andrographolide activated both the GCLC and the GCLM promoters in the transfected rat H9C2 cardiomyocyte cell line. The 12-O-tetradecanoylphorbo-13-acetate response element or the antioxidant response element may be involved in the transactivating actions of andrographolide on the GCLC and GCLM promoters. The present study pinpoints andrographolide as a cardioprotective principle in A. paniculata and reveals its cytoprotective mechanism. PMID:18174384

  3. Role of P-450 activity and glutathione levels in 1,2-dibromo-3-chloropropane tissue distribution, renal necrosis and in vivo DNA damage.

    PubMed

    Låg, M; Omichinski, J G; Søderlund, E J; Brunborg, G; Holme, J A; Dahl, J E; Nelson, S D; Dybing, E

    1989-06-16

    Treatments known to alter P-450 activity and glutathione levels were used to elucidate the involvement of P-450 and glutathione S-transferase metabolism in 1,2-dibromo-3-chloropropane (DBCP) organ toxicity in the rat. Phenobarbital pretreatment abolished DBCP-induced renal necrosis, whereas it had only a small effect on initial renal DNA damage. The DBCP levels in plasma and tissues were markedly reduced by phenobarbital pretreatment. Perdeuterated DBCP had much higher plasma and tissue levels than protio-DBCP in phenobarbital-pretreated animals, but perdeuteration was without effect in uninduced animals. This indicates that P-450 metabolism of DBCP is of major importance only in phenobarbital-pretreated animals. In order to study the effects of decreased glutathione levels on renal distribution and toxicity, rats were pretreated with either diethyl maleate or buthionine sulfoximine. The DBCP levels in plasma and tissues showed transitory elevations after diethyl maleate and buthionine sulfoximine pretreatment compared to the control situation. Despite the fact that diethyl maleate and buthionine sulfoximine pretreatments are known to block DBCP-induced DNA damage in vitro, these pretreatments did not significantly alter DBCP-induced renal necrosis nor DNA damage. Thus, a role for glutathione conjugation in DBCP-induced in vivo renal toxicity could not be established in the present study. PMID:2734806

  4. Apoptosis of macrophages during pulmonary Mycobacterium bovis infection: correlation with intracellular bacillary load and cytokine levels

    PubMed Central

    Rodrigues, Michele F; Barsante, Michele M; Alves, Caio C S; Souza, Maria A; Ferreira, Ana P; Amarante-Mendes, Gustavo P; Teixeira, Henrique C

    2009-01-01

    Apoptosis of macrophages infected with pathogenic mycobacteria is an alternative host defence capable of removing the environment supporting bacterial growth. In this work the influence of virulence and bacterial load on apoptosis of alveolar macrophages during the initial phase of infection by Mycobacterium bovis was investigated. BALB/c mice were infected intratracheally with high or low doses of the virulent (ATCC19274) or attenuated (bacillus Calmette–Guérin Moreau) strains of M. bovis. The frequency of macrophage apoptosis, the growth of mycobacteria in macrophages, and the in situ levels of the cytokines tumour necrosis factor-α (TNF-α), interleukin-10 (IL-10) and IL-12 and of the anti-apoptotic protein Bcl-2 were measured at day 3 and day 7 post-infection. An increase of macrophage apoptosis was observed after infection with both strains but the virulent strain induced less apoptosis than the attenuated strain. On the 3rd day after infection with the virulent strain macrophage apoptosis was reduced in the high-dose group, while on the 7th day post-infection macrophage apoptosis was reduced in the low-dose group. Inhibition of apoptosis was correlated with increased production of IL-10, reduced production of TNF-α and increased production of Bcl-2. In addition, the production of IL-12 was reduced at points where the lowest levels of macrophage apoptosis were observed. Our results indicate that virulent mycobacteria are able to modulate macrophage apoptosis to an extent dependent on the intracellular bacterial burden, which benefits its intracellular growth and dissemination to adjacent cells. PMID:19740330

  5. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants.

    PubMed

    Usta, Julnar; Hachem, Yassmine; El-Rifai, Omar; Bou-Moughlabey, Yolla; Echtay, Karim; Griffiths, David; Nakkash-Chmaisse, Hania; Makki, Rajaa Fakhoury

    2013-02-01

    We investigate in this study the biochemical effects on cells in culture of two commonly used fragrance chemicals: lyral and lilial. Whereas both chemicals exerted a significant effect on primary keratinocyte(s), HaCat cells, no effect was obtained with any of HepG2, Hek293, Caco2, NIH3T3, and MCF7 cells. Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Lipoic acid protected HaCat cells against the decrease in viability induced by either compound. Dehydrogenation of lyral and lilial produce α,β-unsaturated aldehydes, that reacts with lipoic acid requiring proteins resulting in their inhibition. We propose lyral and lilial as toxic to mitochondria that have a direct effect on electron transport chain, increase ROS production, derange mitochondrial membrane potential, and decrease cellular ATP level, leading thus to cell death. PMID:22940465

  6. Investigation into the Effects of Boron on Liver Tissue Protein Carbonyl, MDA, and Glutathione Levels in Endotoxemia.

    PubMed

    Balabanlı, Barbaros; Balaban, Tuba

    2015-10-01

    Endotoxin has been known to cause the formation and damage of free radical. The importance of boron for human life is increasing each passing day, and its consuming fields are continuing to expand due to the advances in science and technology. Therefore, in our study, we intended to investigate into the effects of boron on liver tissue oxidative events. Eighteen male Wistar albino rats were randomly separated into three equal groups in the experiments; control group, boron + endotoxin group, and endotoxin group. Dissolved in distilled water, boric acid (100 mg/kg) was administered to boron + endotoxin group via gavage procedure for 28 days. Only distilled water was administered to control and endotoxin groups via gavage procedure for 28 days. Then 4 mg/kg endotoxin (LPS; Escherichia coli 0111:B4) was intraperitoneally (ip) administered to boron + endotoxin and endotoxin groups on the 28th day. Sterile saline was injected into control group on the 28th day (ip). Malondialdehyde (MDA), which is the end product of lipid peroxidation in liver tissues, protein carbonyl compounds (PC), which are protein oxidization markers, and glutathione (GSH) levels were measured spectrophotometrically. The results were compared with Mann-Whitney U test. When boron + endotoxin group is compared with endotoxin group, PC levels of endotoxin group showed a significant increase. When GSH levels are compared, GSH level in boron + endotoxin group decreased according to endotoxin group. Variations among all groups in MDA levels were found to be statistically insignificant. We are of the opinion that endotoxin affects the proteins by forming free radicals, and boron may also cause the structural and/or functional changes in proteins in order to protect proteins from oxidization. PMID:25787825

  7. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions

    PubMed Central

    Lushchak, Volodymyr I.

    2012-01-01

    Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health. PMID:22500213

  8. Modification of SR 2508 sensitization in hypoxic V79 cells by manipulation of glutathione levels

    SciTech Connect

    Phillips, T.L.; Mitchell, J.B.; DeGraff, W.G.; Russo, A.; Albright, N.; Rajpal, R.

    1989-05-01

    This series of experiments employed the hypoxic cell sensitizer SR 2508 in concentrations ranging from 0.1 to 10 mM and V-79 cells irradiated in air or made hypoxic in glass syringes, then irradiated with 15 MV X rays. Using a series of survival curves measured at the various concentrations, K curves relating sensitizer enhancement ratio (SER) to SR 2508 concentration were calculated with normal GSH levels or with depletion of GSH to 0% using 1 mM buthionine sulfoximine (BSO) or elevation to 200% of normal using 1 mM oxothiazolidine carboxylate (OTZ). Survival curves were fitted by computer, allowing calculation of standard errors for the SER values. The depletion of GSH by BSO sensitized hypoxic and aerated cells significantly and caused more than additive enhancement of SR 2508 sensitization in hypoxic cells. Elevation of GSH with OTZ protects cells irradiated in air or hypoxia and reduces the SER obtained with SR 2508. The results further support the importance of GSH levels in influencing sensitization by nitroimidazoles.

  9. The Effect of Melatonin on Maturation, Glutathione Level and Expression of H MGB1 Gene in Brilliant Cresyl Blue (BCB) Stained Immature Oocyte

    PubMed Central

    Salimi, Maryam; Salehi, Mohammad; Masteri Farahani, Reza; Dehghani, Maryam; Abadi, Mohammad; Novin, Marefat Ghaffari; Nourozian, Mohsen; Hosseini, Ahmad

    2014-01-01

    Objective: Nutrients and antioxidants in the medium of immature oocyte have a profound effect on maturation, fertilization and development of resulting embryos. In this study the effects of melatonin as an antioxidant agent on maturation, glutathione level and expression of High mobility group box-1 (HMGB1) gene were evaluated in immature oocytes of mice stained with brilliant cresyl blue (BCB). Materials and Methods: In this experimental study, immature oocytes were harvested from ovaries of Naval Medical Research Institute (NMRI) mice. Oocytes were stained with 26 μM BCB for 90 minutes and transferred to in vitro maturation medium containing varying doses of melatonin (10-12, 10-9, 10-6, 10-3 M) and without melatonin, for 22-24 hours. Maturation was monitored using an inverted microscope. Glutathione was assessed by monochlorobimane (MCB) staining and HMGB1 expression in mature oocyte was analyzed using real-time polymerase chain reaction (PCR). Results: Melatonin in the concentration of 10-6 M had the most effect on maturation and HMGB1 expression of BCB+ oocytes (p<0.05). Meanwhile melatonin had no effects on glutathione levels. Additionally in immature BCB- oocytes, compared to the control group, melatonin did not affect cytoplasm maturation (p>0.05). Conclusion: In vitro treatment with melatonin increases the maturation and HMGB1 expression in BCB+ immature oocytes and has no significant effect on glutathione levels. PMID:24381853

  10. Glutathione peroxidase 1 expression, malondialdehyde levels and histological alterations in the liver of Acrossocheilus fasciatus exposed to cadmium chloride.

    PubMed

    Liu, Guo-Di; Sheng, Zhang; Wang, You-Fa; Han, Ying-Li; Zhou, Yang; Zhu, Jun-Quan

    2016-03-10

    Cadmium (Cd) is known as a widespread pollutant in aquatic environment. The accumulation of reactive oxygen species (ROS) is attributed to Cd exposure, which may affect the growth, development and physiological metabolism of aquatic organisms. In response to these unfavorable damages, antioxidant systems have been developed to protect against oxidative stress. In this study, we investigated the expression pattern of glutathione peroxidase 1 genes (GPx-1a and GPx-1b) in the liver of Acrossocheilus fasciatus after Cd administration. Total RNA extraction, reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) were performed in order to clone the A. fasciatus GPx-1a and GPx-1b full-length cDNA sequences and partial fragment of β-actin cDNA from the liver for the first time. Tissue-specific expression analysis proved that GPx-1 genes were widely expressed in the liver, kidney, gill, testis, muscle, spleen, heart and brain. The changes of GPx-1 mRNA and malondialdehyde (MDA) levels in the liver treated with Cd were measured. In addition, the acute toxic effects of Cd on the microstructure of the liver were studied using light microscopy. These results suggest that GPx-1, MDA and liver histology which represent molecular, biochemical and histological levels, can be used as potential biomarkers to monitor Cd pollution. The overall findings also highlight the potential use of those three bio-indicators combined together as a multi-level tool (molecular, biochemical and histological levels) when monitoring Cd contamination and other possible exogenetic pollutants in aquatic environment. PMID:26707212

  11. Inverse Association of Plasma Level of Glutathione Peroxidase with Liver Fibrosis in Chronic Hepatitis B: Potential Role of Iron

    PubMed Central

    Moossavi, Shirin; Besharat, Sima; Sharafkhah, Maryam; Ghanbari, Reza; Sharifi, Amrollah; Rezanejad, Parisa; Pourshams, Akram; Poustchi, Hossein; Mohamadkhani, Ashraf

    2016-01-01

    BACKGROUND Oxidative stress has a major pathogenic role for liver damage following chronic hepatitis B. Glutathione peroxidase (Gpx) is necessary in oxidative state mechanism that is generally down-regulated by Hepatitis B virus (HBV) infection. On the other hand, disorders of iron homeostasis have been found out in HBV infected patients. Therefore, the objective of this study was to assess the interplay of Gpx and serum iron on clinical and virological features of patients with chronic HBV infection. METHODS One hundred and fifty adult, treatment-naïve, patients with chronic hepatitis B were randomly designated from an ongoing cohort of patients with HBV. Plasma Gpx1 concentration and HBV DNA quantity were measured. Liver stiffness was measured by transient elastography. RESULTS Serum iron had a positive association with HBV DNA count in the total population. Serum iron was not associated with liver stiffness. However, HBV DNA was significantly associated with liver stiffness only in male patients. Serum Gpx was inversely associated with liver stiffness. Serum iron and Gpx had indirect effects on liver stiffness via HBV DNA count. We observed dissimilar effects of serum iron on HBV DNA and Gpx on liver stiffness in male and female patients. CONCLUSION We identified interplay of serum iron and Gpx1 in relation to level of liver fibrosis in patients with chronic hepatitis B. Our results propose that oxidative stress and serum iron are differentially implicated in the progression of chronic hepatitis B in male and female patients. PMID:27252819

  12. Evaluation of hepatic damage by reactive metabolites--with consideration of circadian variation of murine hepatic glutathione levels.

    PubMed

    Mori, Koji; Kumano, Atsushi; Kodama, Toshihisa; Takiguchi, Shigeyuki; Takano, Naomi; Kumada, Kohei; Hatao, Kana; Kimura, Takashi

    2014-08-01

    Generally, reactive metabolites are detoxified by conjugation with glutathione (GSH). A GSH-depleted model was prepared by administering L-buthionine-(S,R)-sulfoximine (BSO), which can be used to detect hepatic damage by reactive metabolites. However, BSO may cause adverse effects on other organs, such as renal damage by reactive metabolites because it depletes GSH in the whole body. The present study was designed to examine whether it was possible to specifically detect hepatic damage by reactive metabolites without reducing renal GSH levels by administering BSO in a time course when hepatic GSH levels are naturally reduced. Male BALB/c mice were administered reverse osmosis (RO) water or 20 mmol/l BSO in drinking water for 4 days. Subsequently, animals in the RO water group were orally administered 500 mg/kg acetaminophen (APAP) at 9:00 or 15:00 and in the BSO group at 9:00 for 4 days. As a result, severe hepatic damage and necrosis of the renal proximal tubules were observed in the BSO/APAP administration at 9:00 group, and all animals died on 1 or 2 days after APAP administration. Hepatic damage was clearly increased in the RO water/APAP administration at 15:00 group compared with the RO water/APAP administration at 9:00 group. However, renal damage and deaths were not observed. This BSO administration model may detect renal damage induced by reactive metabolites. Using an administration time course, whereby hepatic GSH levels were naturally reduced, hepatic damage by reactive metabolites can be detected without secondary renal effects. PMID:25056778

  13. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis

    PubMed Central

    Wei, Liting; Wang, Lina; Yang, Yang; Wang, Pengfei; Guo, Tiancai; Kang, Guozhang

    2015-01-01

    Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid (ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM) of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L.) suffering from 5 days of 15% polyethylene glycol (PEG)-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased content of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Under drought stress conditions, ABA markedly increased content of GSH and ASA in both leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of eight genes encoding ASA and GSH synthesis-related enzymes were measured using quantitative real-time reverse transcription polymerase chain reaction (qPCR). The results showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH cycle enzymes. Moreover, these genes exhibited differential expression patterns between the root and leaf organs of ABA-treated wheat seedlings during drought stress. These results implied that exogenous ABA increased the levels of GSH and ASA in drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue were compared between ABA- and salicylic acid (SA)-treated wheat seedlings under PEG-stimulated drought stress, suggesting that they increased the content of ASA and GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes. Our results increase our understanding of the molecular mechanism of ABA-induced drought tolerance in higher plants. PMID:26175737

  14. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis.

    PubMed

    Wei, Liting; Wang, Lina; Yang, Yang; Wang, Pengfei; Guo, Tiancai; Kang, Guozhang

    2015-01-01

    Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid (ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM) of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L.) suffering from 5 days of 15% polyethylene glycol (PEG)-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased content of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Under drought stress conditions, ABA markedly increased content of GSH and ASA in both leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of eight genes encoding ASA and GSH synthesis-related enzymes were measured using quantitative real-time reverse transcription polymerase chain reaction (qPCR). The results showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH cycle enzymes. Moreover, these genes exhibited differential expression patterns between the root and leaf organs of ABA-treated wheat seedlings during drought stress. These results implied that exogenous ABA increased the levels of GSH and ASA in drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue were compared between ABA- and salicylic acid (SA)-treated wheat seedlings under PEG-stimulated drought stress, suggesting that they increased the content of ASA and GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes. Our results increase our understanding of the molecular mechanism of ABA-induced drought tolerance in higher plants. PMID:26175737

  15. Correlation of α-Lipoic Acid and S. Glutathione Level with Free Radical Excess in Tobacco Consumers

    PubMed Central

    Kaur, Manjinder; Suhalka, M.L.; Shrivastav, Chanchal

    2016-01-01

    Introduction Tobacco consumption is a serious health hazard and most important avoidable cause of death worldwide. Tobacco is recognized as lethal toxin, ripping off 7-11 minutes of human life with each cigarette through harmful compounds and inducing free radical synthesis and a high rate of lipid peroxidation. These free radicals are scavenged by the endogenous antioxidants viz. S. Glutathione (S.GSH) and S. α-Lipoic acid (S. α-LA), thus preventing the endothelial damage. Aim The present study was designed with an aim to find out the lipid peroxidative stress through S. Malondialdehyde (S.MDA) and its correlation with antioxidant levels like S. Glutathione (S. GSH) and S. α- Lipoic acid (S. α- LA) among tobacco users (in both smokers and chewers). Materials and Methods A case control cross-sectional study was carried out in the Department of Physiology among 200 subjects; aged 18-50 years of both sexes which were chosen randomly from institutional campus and healthy volunteers. The subjects were broadly divided into two groups (A & B); group A comprised of tobacco users (n=150) with history of smoking cigarette/biddies and chewing tobacco daily, for at least one year and group B had controls (non tobacco users) (n=50). S. MDA, S.GSH and S. α-LA levels were estimated by standardized methods. The data was analysed by unpaired student t-test and Pearson’s correlation coefficient (r) for finding the correlation between antioxidants and S.MDA in group-A and group-B. Results The present study reports the significantly higher (p<0.0001) levels of S.MDA and lower (p<0.0001) levels of S.GSH and S. α-LA in tobacco users as compared to nontobacco users. The observed value of S.MDA was (2.72±0.87, 1.39±0.47) nmol/ml, S. α-LA was (9.94±5.96, 14.24 ± 4.34) μg/ml and S.GSH was (23.24±7.04, 32.82±2.95) mg/dl respectively in group-A and group-B. A significant (p<0.01) strong negative correlation was observed between S. MDA and antioxidants (S.GSH and S.

  16. Comparison of the biological effects of {sup 18}F at different intracellular levels

    SciTech Connect

    Kashino, Genro; Hayashi, Kazutaka; Douhara, Kazumasa; Kobashigawa, Shinko; Mori, Hiromu

    2014-11-07

    Highlights: • We estimated the inductions of DNA DSB in cell treated with {sup 18}F-FDG. • We found that inductions of DNA DSB are dependent on accumulation of {sup 18}F in cell. • Accumulation of {sup 18}F in cell may be indispensable for risk estimation of PET. - Abstract: We herein examined the biological effects of cells treated with {sup 18}F labeled drugs for positron emission tomography (PET). The relationship between the intracellular distribution of {sup 18}F and levels of damaged DNA has yet to be clarified in detail. We used culture cells (Chinese Hamster Ovary cells) treated with two types of {sup 18}F labeled drugs, fluorodeoxyglucose (FDG) and fluorine ion (HF). FDG efficiently accumulated in cells, whereas HF did not. To examine the induction of DNA double strand breaks (DSB), we measured the number of foci for 53BP1 that formed at the site of DNA DSB. The results revealed that although radioactivity levels were the same, the induction of 53BP1 foci was stronger in cells treated with {sup 18}F-FDG than in those treated with {sup 18}F-HF. The clonogenic survival of cells was significantly lower with {sup 18}F-FDG than with {sup 18}F-HF. We concluded that the efficient accumulation of {sup 18}F in cells led to stronger biological effects due to more severe cellular lethality via the induction of DNA DSB.

  17. Overexpression of Sly41 suppresses COPII vesicle–tethering deficiencies by elevating intracellular calcium levels

    PubMed Central

    Mukherjee, Indrani; Barlowe, Charles

    2016-01-01

    SLY41 was identified as a multicopy suppressor of loss of Ypt1, a Rab GTPase essential for COPII vesicle tethering at the Golgi complex. SLY41 encodes a polytopic membrane protein with homology to a class of solute transporter proteins, but how overexpression suppresses vesicle-tethering deficiencies is not known. Here we show that Sly41 is efficiently packaged into COPII vesicles and actively cycles between the ER and Golgi compartments. SLY41 displays synthetic negative genetic interactions with PMR1, which encodes the major Golgi-localized Ca2+/Mn2+ transporter and suggests that Sly41 influences cellular Ca2+ and Mn2+ homeostasis. Experiments using the calcium probe aequorin to measure intracellular Ca2+ concentrations in live cells reveal that Sly41 overexpression significantly increases cytosolic calcium levels. Although specific substrates of the Sly41 transporter were not identified, our findings indicate that localized overexpression of Sly41 to the early secretory pathway elevates cytosolic calcium levels to suppress vesicle-tethering mutants. In vitro SNARE cross-linking assays were used to directly monitor the influence of Ca2+ on tethering and fusion of COPII vesicles with Golgi membranes. Strikingly, calcium at suppressive concentrations stimulated SNARE-dependent membrane fusion when vesicle-tethering activity was reduced. These results show that calcium positively regulates the SNARE-dependent fusion stage of ER–Golgi transport. PMID:27030673

  18. Differential metallothionein, reduced glutathione and metal levels in Perna perna mussels in two environmentally impacted tropical bays in southeastern Brazil.

    PubMed

    Lavradas, Raquel T; Rocha, Rafael C C; Bordon, Isabella C A C; Saint'Pierre, Tatiana D; Godoy, José M; Hauser-Davis, Rachel A

    2016-07-01

    Mussel farming is an important economic activity in Brazil, and these organisms are consumed by the majority of the population in most coastal zones in the country. However, despite the increasing pollution of aquatic ecosystems in Brazil, little is known about the biochemical activity in mussels in response to metal exposure. In this context, the aim of the present study was to investigate metal and metalloid exposure effects in Perna perna mussels, by determining metal levels, the induction of metallothionein (MT) synthesis, and oxidative stress, in the form of reduced glutathione (GSH) in 3 contaminated areas from the Guanabara Bay in comparison to a reference site, Ilha Grande Bay, both in summer and winter. Metal and metalloid concentrations were also compared to Brazilian and international guidelines, to verify potential health risks to human consumers. Mussels from all sampling sites were shown to be improper for human consumption due to metal contamination, including Ilha Grande Bay, which has previously been considered a reference site. Several statistically significant correlations and seasonal differences were observed between MT, GSH and metals and metalloids in both analyzed tissues. A Discriminant Canonical Analysis indicated that the digestive gland is a better bioindicator for environmental contamination by metals and metalloids in this species and offers further proof that MT variations observed are due to metal exposure and not oxidative stress, since GSH influence for both muscle tissue and the digestive glands was non-significant in this analysis. These results show that P. perna mussels are an adequate sentinel species for metal contamination with significant effects on oxidative stress and metal exposure biomarkers. To the best of our knowledge, this is the first study to report metals, metalloids, MT and GSH levels in the muscle tissue of this species. PMID:26994306

  19. Intracellular calcium and cyclic nucleotide levels modulate neurite guidance by microtopographical substrate features.

    PubMed

    Li, Shufeng; Tuft, Bradley; Xu, Linjing; Polacco, Marc; Clarke, Joseph C; Guymon, C Allan; Hansen, Marlan R

    2016-08-01

    Micro- and nanoscale surface features have emerged as potential tools to direct neurite growth into close proximity with next generation neural prosthesis electrodes. However, the signaling events underlying the ability of growth cones to respond to topographical features remain largely unknown. Accordingly, this study probes the influence of [Ca(2+) ]i and cyclic nucleotide levels on the ability of neurites from spiral ganglion neurons (SGNs) to precisely track topographical micropatterns. Photopolymerization and photomasking were used to generate micropatterned methacrylate polymer substrates. Dissociated SGN cultures were plated on the micropatterned surfaces. Calcium influx and release from internal stores were manipulated by elevating extracellular K(+) , maintenance in calcium-free media, or bath application of various calcium channel blockers. Cyclic nucleotide activity was increased by application of cpt-cAMP or 8-Br-cGMP. Elevation of [Ca(2+) ]i by treatment of cultures with elevated potassium reduced neurite alignment to physical microfeatures. Maintenance of cultures in Ca(2+) -free medium or treatment with the non-selective voltage-gated calcium channel blocker cadmium or L-type Ca(2+) channel blocker nifedipine did not signficantly alter SGN neurite alignment. By contrast, ryanodine or xestospongin C, which block release of internal calcium stores via ryanodine-sensitive channels or inositol-1,4,5-trisphosphate receptors respectively, each significantly decreased neurite alignment. Cpt-cAMP significantly reduced neurite alignment while 8-Br-cGMP significantly enhanced neurite alignment. Manipulation of [Ca(2+) ]i or cAMP levels significantly disrupts neurite guidance while elevation of cGMP levels increases neurite alignment. The results suggest intracellular signaling pathways similar to those recruited by chemotactic cues are involved in neurite guidance by topographical features. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2037

  20. Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells

    PubMed Central

    Miraucourt, Loïs S; Tsui, Jennifer; Gobert, Delphine; Desjardins, Jean-François; Schohl, Anne; Sild, Mari; Spratt, Perry; Castonguay, Annie; De Koninck, Yves; Marsh-Armstrong, Nicholas; Wiseman, Paul W; Ruthazer, Edward S

    2016-01-01

    Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl− levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl− regulation. DOI: http://dx.doi.org/10.7554/eLife.15932.001 PMID:27501334

  1. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels.

    PubMed

    Mazuel, François; Espinosa, Ana; Luciani, Nathalie; Reffay, Myriam; Le Borgne, Rémi; Motte, Laurence; Desboeufs, Karine; Michel, Aude; Pellegrino, Teresa; Lalatonne, Yoann; Wilhelm, Claire

    2016-08-23

    Quantitative studies of the long-term fate of iron oxide nanoparticles inside cells, a prerequisite for regenerative medicine applications, are hampered by the lack of suitable biological tissue models and analytical methods. Here, we propose stem-cell spheroids as a tissue model to track intracellular magnetic nanoparticle transformations during long-term tissue maturation. We show that global spheroid magnetism can serve as a fingerprint of the degradation process, and we evidence a near-complete nanoparticle degradation over a month of tissue maturation, as confirmed by electron microscopy. Remarkably, the same massive degradation was measured at the endosome level by single-endosome nanomagnetophoretic tracking in cell-free endosomal extract. Interestingly, this spectacular nanoparticle breakdown barely affected iron homeostasis: only the genes coding for ferritin light chain (iron loading) and ferroportin (iron export) were up-regulated 2-fold by the degradation process. Besides, the magnetic and tissular tools developed here allow screening of the biostability of magnetic nanomaterials, as demonstrated with iron oxide nanocubes and nanodimers. Hence, stem-cell spheroids and purified endosomes are suitable models needed to monitor nanoparticle degradation in conjunction with magnetic, chemical, and biological characterizations at the cellular scale, quantitatively, in the long term, in situ, and in real time. PMID:27419260

  2. Fecundity of Cryptosporidium parvum is correlated with intracellular levels of the viral symbiont CPV.

    PubMed

    Jenkins, M C; Higgins, J; Abrahante, J E; Kniel, K E; O'Brien, C; Trout, J; Lancto, C A; Abrahamsen, M S; Fayer, R

    2008-07-01

    Differences in the virulence and fecundity of Cryptosporidium parvum isolates have been observed by several researchers studying cryptosporidiosis. The purpose of the present study was to determine if there was a correlation between intracellular levels of the viral symbiont CPV in C. parvum and fecundity of two isolates of the parasite, namely C. parvum Beltsville (B) and C. parvum Iowa (I). Dairy calves infected with 10(6)C. parvum-B excreted 5-fold more oocysts compared with calves infected with the same number of C. parvum-I oocysts. The increased fecundity of the former strain was corroborated by semi-quantitative PCR assay of DNA isolated from cell cultures infected with either C. parvum-B or C. parvum-I. Quantitative reverse transcriptase-PCR analysis of viral RNA revealed a 3-fold greater number of CPV in C. parvum-B compared with C. parvum-I oocysts. These findings may indicate a role for CPV in fecundity and possibly virulence of C. parvum. PMID:18096164

  3. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria.

    PubMed

    Agostoni, Marco; Waters, Christopher M; Montgomery, Beronda L

    2016-02-01

    The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters. PMID:26192200

  4. Expression level and DNA methylation status of Glutathione-S-transferase genes in normal murine prostate and TRAMP tumors

    PubMed Central

    Mavis, Cory K.; Kinney, Shannon R. Morey; Foster, Barbara A.; Karpf, Adam R.

    2010-01-01

    BACKGROUND Glutathione-S-transferase (Gst) genes are down-regulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n=15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5’ CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression. PMID:19444856

  5. Intracellular levels of the viral symbiont CPV in Cryptosporidium parvum correlate with fecundity of the parasite in dairy calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous reports have cited differences in clinical signs and oocyst output among strains of Cryptosporidium parvum. The purpose of this study was to determine if levels of the C. parvum intracellular viral symbiont CPV correlated with observed clinical and parasitological differences. Calves infe...

  6. Glutathione is required for efficient production of infectious picornavirus virions

    SciTech Connect

    Smith, Allen D. . E-mail: smitha@ba.ars.usda.gov; Dawson, Harry . E-mail: dawsonh@ba.ars.usda.gov

    2006-09-30

    Glutathione is an intracellular reducing agent that helps maintain the redox potential of the cell and is important for immune function. The drug L-buthionine sulfoximine (BSO) selectively inhibits glutathione synthesis. Glutathione has been reported to block replication of HIV, HSV-1, and influenza virus, whereas cells treated with BSO exhibit increased replication of Sendai virus. Pre-treatment of HeLa cell monolayers with BSO inhibited replication of CVB3, CVB4, and HRV14 with viral titers reduced by approximately 6, 5, and 3 log{sub 1}, respectively. The addition of glutathione ethyl ester, but not dithiothreitol or 2-mercaptoethanol, to the culture medium reversed the inhibitory effect of BSO. Viral RNA and protein synthesis were not inhibited by BSO treatment. Fractionation of lysates from CVB3-infected BSO-treated cells on cesium chloride and sucrose gradients revealed that empty capsids but not mature virions were being produced. The levels of the 5S and 14S assembly intermediates, however, were not affected by BSO treatment. These results demonstrate that glutathione is important for production of mature infectious picornavirus virions.

  7. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    PubMed Central

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  8. Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans

    PubMed Central

    Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Passos, Renata L. Freitas; Fonseca, Michele Atalla; Oliveira, Kenya Paula Moreira; Lima, Milene Rodrigues Malheiros; Guimarães, Juliana Bohen; Ferreira-Júnior, João Batista; Martini, Angelo R. P.; Lima, Nilo R. V.; Soares, Danusa Dias; Oliveira, Edilamar Menezes

    2010-01-01

    In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL−1; p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 ± 0.08, POST: 1.20 ± 0.15, 1 h POST: 1.17 ± 0.16 ng mL−1; p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 ± 0.02 vs. POST, 2.9 ± 0.9 density units, mean ± SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 ± 1.2 vs. POST, 4.4 ± 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = −0

  9. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    PubMed

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells. PMID:26608462

  10. Global metabolic profile identifies choline kinase alpha as a key regulator of glutathione-dependent antioxidant cell defense in ovarian carcinoma

    PubMed Central

    Granata, Anna; Nicoletti, Roberta; Perego, Paola; Iorio, Egidio; Krishnamachary, Balaji; Benigni, Fabio; Ricci, Alessandro; Podo, Franca; Bhujwalla, Zaver M.; Canevari, Silvana

    2015-01-01

    Epithelial Ovarian Cancer (EOC) “cholinic phenotype”, characterized by increased intracellular phosphocholine content sustained by over-expression/activity of choline kinase-alpha (ChoKα/CHKA), is a metabolic cellular reprogramming involved in chemoresistance with still unknown mechanisms. By stable CHKA silencing and global metabolic profiling here we demonstrate that CHKA knockdown hampers growth capability of EOC cell lines both in vitro and in xenotransplant in vivo models. It also affected antioxidant cellular defenses, decreasing glutathione and cysteine content while increasing intracellular levels of reactive oxygen species, overall sensitizing EOC cells to current chemotherapeutic regimens. Natural recovering of ChoKα expression after its transient silencing rescued the wild-type phenotype, restoring intracellular glutathione content and drug resistance. Rescue and phenocopy of siCHKA-related effects were also obtained by artificial modulation of glutathione levels. The direct relationship among CHKA expression, glutathione intracellular content and drug sensitivity was overall demonstrated in six different EOC cell lines but notably, siCHKA did not affect growth capability, glutathione metabolism and/or drug sensitivity of non-tumoral immortalized ovarian cells. The “cholinic phenotype”, by recapitulating EOC addiction to glutathione content for the maintenance of the antioxidant defense, can be therefore considered a unique feature of cancer cells and a suitable target to improve chemotherapeutics efficacy. PMID:25796169

  11. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    SciTech Connect

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E. . E-mail: j.p.e.spencer@reading.ac.uk

    2006-08-04

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of {gamma}-glutamylcysteine synthetase-heavy subunit ({gamma}-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis.

  12. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling

    PubMed Central

    Paul, MK; Bisht, B; Darmawan, DO; Chiou, R; Ha, VL; Wallace, WD; Chon, AC; Hegab, AE; Grogan, T; Elashoff, DA; Alva-Ornelas, JA; Gomperts, BN

    2014-01-01

    SUMMARY Airways are exposed to myriad environmental and damaging agents such as reactive oxygen species (ROS), which also have physiological roles as signaling molecules that regulate stem cell function. However, the functional significance of both steady and dynamically changing ROS levels in different stem cell populations, as well as downstream mechanisms that integrate ROS sensing into decisions regarding stem cell homeostasis, are unclear. Here, we show in mouse and human airway basal stem cells (ABSCs) that intracellular flux from low to moderate ROS levels is required for stem cell self-renewal and proliferation. Changing ROS levels activate Nrf2, which activates the Notch pathway to stimulate ABSC self-renewal as well an antioxidant program that scavenges intracellular ROS, returning overall ROS levels to a low state to maintain homeostatic balance. This redox-mediated regulation of lung stem cell function has significant implications for stem cell biology, repair of lung injuries, and diseases such as cancer. PMID:24953182

  13. The Depletion of Nuclear Glutathione Impairs Cell Proliferation in 3t3 Fibroblasts

    PubMed Central

    Markovic, Jelena; Mora, Nancy J.; Broseta, Ana M.; Gimeno, Amparo; de-la-Concepción, Noelia; Viña, José; Pallardó, Federico V.

    2009-01-01

    Background Glutathione is considered essential for survival in mammalian cells and yeast but not in prokaryotic cells. The presence of a nuclear pool of glutathione has been demonstrated but its role in cellular proliferation and differentiation is still a matter of debate. Principal Findings We have studied proliferation of 3T3 fibroblasts for a period of 5 days. Cells were treated with two well known depleting agents, diethyl maleate (DEM) and buthionine sulfoximine (BSO), and the cellular and nuclear glutathione levels were assessed by analytical and confocal microscopic techniques, respectively. Both agents decreased total cellular glutathione although depletion by BSO was more sustained. However, the nuclear glutathione pool resisted depletion by BSO but not with DEM. Interestingly, cell proliferation was impaired by DEM, but not by BSO. Treating the cells simultaneously with DEM and with glutathione ethyl ester to restore intracellular GSH levels completely prevented the effects of DEM on cell proliferation. Conclusions Our results demonstrate the importance of nuclear glutathione in the control of cell proliferation in 3T3 fibroblasts and suggest that a reduced nuclear environment is necessary for cells to progress in the cell cycle. PMID:19641610

  14. The relationship between the violet pigment PP-V production and intracellular ammonium level in Penicillium purpurogenum.

    PubMed

    Kojima, Ryo; Arai, Teppei; Matsufuji, Hiroshi; Kasumi, Takafumi; Watanabe, Taisuke; Ogihara, Jun

    2016-12-01

    Penicillium purpurogenum is the fungus that produces an azaphilone pigment. However, details about the pigment biosynthesis pathway are unknown. The violet pigment PP-V is the one of the main pigments biosynthesized by this fungus. This pigment contains an amino group in a pyran ring as its core structure. We focused on this pigment and examined the relationship between intracellular ammonium concentration and pigment production using glutamine as a nitrogen source. The intracellular ammonium level decreased about 1.5-fold in conditions favoring PP-V production. Moreover, P. purpurogenum was transferred to medium in which it commonly produces the related pigment PP-O after cultivating it in the presence or absence of glutamine to investigate whether this fungus biosynthesizes PP-V using surplus ammonium in cells. Only mycelia cultured in medium containing 10 mM glutamine produced the violet pigment, and simultaneously intracellular ammonium levels decreased under this condition. From comparisons of the amount of PP-V that was secreted with quantity of surplus intracellular ammonium, it is suggested that P. purpurogenum maintains ammonium homeostasis by excreting waste ammonium as PP-V. PMID:27368914

  15. Relationship between circadian oscillations of Rev-erb{alpha} expression and intracellular levels of its ligand, heme

    SciTech Connect

    Rogers, Pamela M.; Ying Ling; Burris, Thomas P.

    2008-04-18

    The nuclear hormone receptors, REV-ERB{alpha} [NR1D1] and REV-ERB{beta} [NR1D1], were recently demonstrated to be receptors for the porphyrin, heme. Heme regulates the ability of these receptors to repress transcription of their target genes via modulation of the affinity of the receptor's ligand binding domain for the corepressor, NCoR. The REV-ERBs function as critical components of the mammalian clock and their expression oscillates in a circadian manner. Here, we show that in NIH3T3 cells intracellular heme levels also oscillate in a circadian fashion. These data are the first to show the temporal relationship of intracellular heme levels to the expression of its receptor, Rev-erb{alpha}, and suggest that the rapid oscillations in heme levels may an important component regulating REV-ERB transcriptional activity.

  16. Time-resolved luminescence imaging of intracellular oxygen levels based on long-lived phosphorescent iridium(III) complex.

    PubMed

    Liu, Shujuan; Zhang, Yangliu; Liang, Hua; Chen, Zejing; Liu, Ziyu; Zhao, Qiang

    2016-07-11

    Time-resolved luminescence imaging of intracellular oxygen levels has been demonstrated based on long-lived phosphorescent signal. A phosphorescent dinuclear iridium(III) complex Ir1 has been designed and synthesized, which exhibits excellent optical properties, such as high quantum yields, large Stokes shift, high photostability and long emission lifetime. The phosphorescent intensity and lifetime of complex are very sensitive to oxygen levels. Thus, the application of Ir1 for monitoring intracellular oxygen levels has been realized successfully. Especially, utilizing the advantageous long emission lifetime of Ir1, the background fluorescence interference could be eliminated effectively by using the photoluminescence lifetime imaging and time-gated luminescence imaging techniques, improving the signal-to-noise ratios in bioimaging. PMID:27410847

  17. Ibuprofen administration attenuates serum TNF-{alpha} levels, hepatic glutathione depletion, hepatic apoptosis and mouse mortality after Fas stimulation

    SciTech Connect

    Cazanave, Sophie; Vadrot, Nathalie; Tinel, Marina; Berson, Alain; Letteron, Philippe; Larosche, Isabelle; Descatoire, Veronique; Feldmann, Gerard; Robin, Marie-Anne |; Pessayre, Dominique |

    2008-09-15

    Fas stimulation recruits neutrophils and activates macrophages that secrete tumor necrosis factor-{alpha} (TNF-{alpha}), which aggravates Fas-mediated liver injury. To determine whether nonsteroidal anti-inflammatory drugs modify these processes, we challenged 24-hour-fasted mice with the agonistic Jo2 anti-Fas antibody (4 {mu}g/mouse), and treated the animals 1 h later with saline or ibuprofen (250 mg/kg), a dual cyclooxygenase (COX)-1 and COX-2 inhibitor. Ibuprofen attenuated the Jo2-mediated recruitment/activation of myeloperoxidase-secreting neutrophils/macrophages in the liver, and attenuated the surge in serum TNF-{alpha}. Ibuprofen also minimized hepatic glutathione depletion, Bid truncation, caspase activation, outer mitochondrial membrane rupture, hepatocyte apoptosis and the increase in serum alanine aminotransferase (ALT) activity 5 h after Jo2 administration, to finally decrease mouse mortality at later times. The concomitant administration of pentoxifylline (decreasing TNF-{alpha} secretion) and infliximab (trapping TNF-{alpha}) likewise attenuated the Jo2-mediated increase in TNF-{alpha}, the decrease in hepatic glutathione, and the increase in serum ALT activity 5 h after Jo2 administration. The concomitant administration of the COX-1 inhibitor, SC-560 (10 mg/kg) and the COX-2 inhibitor, celecoxib (40 mg/kg) 1 h after Jo2 administration, also decreased liver injury 5 h after Jo2 administration. In contrast, SC-560 (10 mg/kg) or celecoxib (40 or 160 mg/kg) given alone had no significant protective effects. In conclusion, secondary TNF-{alpha} secretion plays an important role in Jo2-mediated glutathione depletion and liver injury. The combined inhibition of COX-1 and COX-2 by ibuprofen attenuates TNF-{alpha} secretion, glutathione depletion, mitochondrial alterations, hepatic apoptosis and mortality in Jo2-treated fasted mice.

  18. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology

    PubMed Central

    Ballatori, Nazzareno; Krance, Suzanne M.; Marchan, Rosemarie; Hammond, Christine L.

    2009-01-01

    Reduced glutathione (GSH) is critical for many cellular processes, and both its intracellular and extracellular concentrations are tightly regulated. Intracellular GSH levels are regulated by two main mechanisms: by adjusting the rates of synthesis and of export from cells. Some of the proteins responsible for GSH export from mammalian cells have recently been identified, and there is increasing evidence that these GSH exporters are multispecific and multifunctional, regulating a number of key biological processes. In particular, the multidrug resistance-associated proteins (Mrp/Abcc) appear to mediate GSH export and homeostasis. The Mrp proteins mediate not only GSH efflux, but they also export oxidized glutathione derivatives (e.g., glutathione disulfide (GSSG), S-nitrosoglutathione (GS-NO), and glutathione-metal complexes), as well as other glutathione S-conjugates. The ability to export both GSH and oxidized derivatives of GSH, endows these transporters with the capacity to directly regulate the cellular thiol-redox status, and therefore the ability to influence many key signaling and biochemical pathways. Among the many processes that are influenced by the GSH transporters are apoptosis, cell proliferation, and cell differentiation. This report summarizes the evidence that Mrps contribute to the regulation of cellular GSH levels and the thiol redox state, and thus to the many biochemical processes that are influenced by this tripeptide. PMID:18786560

  19. Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle.

    PubMed

    Peternelj, Tina Tinkara; Marsh, Susan A; Strobel, Natalie A; Matsumoto, Aya; Briskey, David; Dalbo, Vincent J; Tucker, Patrick S; Coombes, Jeff S

    2015-02-01

    Post-translational modification of intracellular proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) profoundly affects protein structure, function, and metabolism. Although many skeletal muscle proteins are O-GlcNAcylated, the modification has not been extensively studied in this tissue, especially in the context of exercise. This study investigated the effects of glutathione depletion and acute exercise on O-GlcNAc protein modification in rat skeletal muscle. Diethyl maleate (DEM) was used to deplete intracellular glutathione and rats were subjected to a treadmill run. White gastrocnemius and soleus muscles were analyzed for glutathione status, O-GlcNAc and O-GlcNAc transferase (OGT) protein levels, and mRNA expression of OGT, O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase. DEM and exercise both reduced intracellular glutathione and increased O-GlcNAc. DEM upregulated OGT protein expression. The effects of the interventions were significant 4 h after exercise (P < 0.05). The changes in the mRNA levels of O-GlcNAc enzymes were different in the two muscles, potentially resulting from different rates of oxidative stress and metabolic demands between the muscle types. These findings indicate that oxidative environment promotes O-GlcNAcylation in skeletal muscle and suggest an interrelationship between cellular redox state and O-GlcNAc protein modification. This could represent one mechanism underlying cellular adaptation to oxidative stress and health benefits of exercise. PMID:25416863

  20. Prostaglandin E2 inhibits apoptosis in human neutrophilic polymorphonuclear leukocytes: role of intracellular cyclic AMP levels.

    PubMed

    Ottonello, L; Gonella, R; Dapino, P; Sacchetti, C; Dallegri, F

    1998-08-01

    Human neutrophilic polymorphonuclear leukocytes (neutrophils) are terminally differentiated cells that die by undergoing apoptosis. At present, the intracellular pathways governing this process are only partially known. In particular, although the adenylate cyclase-dependent generation of cyclic AMP (cAMP) has been implicated in the triggering of apoptosis in lymphoid cells, the role of the intracellular cAMP pathway in neutrophil apoptosis remains controversial. In the present study, we found that two cAMP-elevating agents, prostaglandin E2 (PGE2) and the phosphodiesterase type IV inhibitor RO 20-1724, inhibit neutrophil apoptosis without inducing cell necrosis. When administered in combination, PGE2 and RO 20-1724 displayed additive effects. Moreover, neutrophil apoptosis was inhibited by a membrane-permeable analog of cAMP, dibutyryl-cAMP, in a dose-dependent manner. Finally, treatment of neutrophils with the protein kinase A inhibitor H-89 prevented PGE2- and RO 20-1724-induced inhibition of cell apoptosis. In conclusion, taking into account that PGE2 and other cAMP-elevating agents are well known downregulators of neutrophil functions, our results suggest that conditions favoring a state of functional rest, such as intracellular cAMP elevation, prolong the life span of neutrophils by delaying apoptosis. PMID:9694511

  1. Effects of chronic sleep deprivation on autonomic activity by examining heart rate variability, plasma catecholamine, and intracellular magnesium levels.

    PubMed

    Takase, Bonpei; Akima, Takashi; Satomura, Kimio; Ohsuzu, Fumitaka; Mastui, Takemi; Ishihara, Masayuki; Kurita, Akira

    2004-10-01

    Chronic sleep deprivation is associated with cardiovascular events. In addition, autonomic activity determined from the levels of the heart rate variability (HRV), plasma catecholamine, and intracellular magnesium (Mg) are important in the pathophysiology of cardiovascular events. This study therefore aimed to determine the effects of chronic sleep deprivation on autonomic activity by examining the HRV, plasma catecholamine, and intracellular magnesium levels. Thirty (30) healthy male college students ranging in age from 20 to 24 years of age (average 22 +/- 1 years; mean +/- SD) with no coronary risk factors such as hypertension, diabetes mellitus, hyperlipidemia or a family history of premature coronary artery disease (CAD) were included in the study. Over a 4-week period, the volunteers' plasma levels of epinephrine, norepinephrine, and erythrocyte-Mg were measured. The study was made during the 4 weeks before and immediately after college finals exams. HRV, obtained from 24-hour ambulatory ECG monitoring, included time and frequency domain indices. The HRV indices and erythrocyte-Mg decreased while norepinephrine increased during chronic sleep deprivation. It is concluded that chronic sleep deprivation causes an autonomic imbalance and decreases intracellular Mg, which could be associated with chronic sleep deprivation-induced cardiovascular events. PMID:15754837

  2. Short-term oral exposure to aluminium decreases glutathione intestinal levels and changes enzyme activities involved in its metabolism.

    PubMed

    Orihuela, Daniel; Meichtry, Verónica; Pregi, Nicolás; Pizarro, Manuel

    2005-09-01

    To study the effects of aluminium (Al) on glutathione (GSH) metabolism in the small intestine, adult male Wistar rats were orally treated with AlCl3.6H2O at doses of 30, 60, 120 and 200 mg/kg body weight (b.w.) per day, during seven days. Controls received deionized water. At doses above 120 mg/kg b.w., Al produced both a significant reduction of GSH content and an increase of oxidized/reduced glutathione ratio (P < 0.05). The index of oxidative stress of the intestine mucosa in terms of lipid peroxidation evaluated by thiobarbituric acid reactive substances was significantly increased (52%) at higher Al dose used. The duodenal expression of the multidrug resistance-associated protein 2 in brush border membranes, determined by Western blot technique, was increased 2.7-fold in rats treated with 200mg AlCl3/kg b.w (P < 0.01). Intestine activities of both GSH-synthase (from 60 mg/kg b.w.) and GSSG-reductase (from 120 mg/kg b.w.) were significantly reduced (26% and 31%, respectively) while glutathione-S-transferase showed to be slightly modified in the Al-treated groups. Conversely, gamma-glutamyltranspeptidase activity was significantly increased (P < 0.05) due to the Al treatment. Al reduced in vitro mucosa-to-lumen GSH efflux (P < 0.05). A positive linear correlation between the intestine GSH depletion and reduction of in situ 45Ca intestinal absorption, both produced by Al, was found (r = 0.923, P = 0.038). Taking as a whole, these results show that Al would alter GSH metabolism in small intestine by decreasing its turnover, leading to an unbalance of redox state in the epithelial cells, thus contributing to deteriorate GSH-dependent absorptive functions. PMID:16084594

  3. Effect of smoking reduction and cessation on the plasma levels of the oxidative stress biomarker glutathione--Post-hoc analysis of data from a smoking cessation trial.

    PubMed

    Mons, Ute; Muscat, Joshua E; Modesto, Jennifer; Richie, John P; Brenner, Hermann

    2016-02-01

    Cigarette smoke contains high concentrations of free radical components that induce oxidative stress. Smoking-induced oxidative stress is thought to contribute to chronic obstructive pulmonary disease, cardiovascular disease and lung cancer through degenerative processes in the lung and other tissues. It is uncertain however whether smoking cessation lowers the burden of oxidative stress. We used data from a randomized controlled cessation trial of 434 current smokers for a post-hoc examination of the effects of smoking cessation on blood plasma levels of total glutathione (tGSH), the most abundant endogenous antioxidant in cells, and total cysteine (tCys), an amino acid and constituent of glutathione. Smoking status was validated based on serum cotinine levels. Multivariate linear mixed models were fitted to examine the association of smoking cessation and change in cigarette consumption with tGSH and tCys. After 12 months follow-up, quitters (n=55) had significantly increased levels of tGSH compared to subjects who continued to smoke (P<0.01). No significant change in tGSH was found for subjects who continued to smoke but reduced their intensity of smoking. No significant effect of smoking cessation or reduction was observed on levels of tCys. These results suggest that smoking cessation but not smoking reduction reduces levels of oxidative stress. PMID:26708755

  4. Transforming growth factor alpha treatment alters intracellular calcium levels in hair cells and protects them from ototoxic damage in vitro.

    PubMed

    Staecker, H; Dazert, S; Malgrange, B; Lefebvre, P P; Ryan, A F; Van de Water, T R

    1997-07-01

    To determine if transforming growth factor alpha (TGF alpha) pretreatment protects hair cells from aminoglycoside induced injury by modifying their intracellular calcium concentration, we assayed hair cell calcium levels in organ of Corti explants both before and after aminoglycoside (i.e. neomycin, 10(-3) M) exposure either with or without growth factor pretreatment. After TGF alpha (500 ng/ml) treatment, the intracellular calcium level of hair cells showed a five-fold increase as compared to the levels observed in the hair cells of control cultures. After ototoxin exposure, calcium levels in hair cells of control explants showed an increase relative to their baseline levels, while in the presence of growth factors pretreatment, hair cells showed a relative reduction in calcium levels. Pretreatment of organ of Corti explants afforded significant protection of hair cell stereocilia bundle morphology from ototoxic damage when compared to explants exposed to ototoxin alone. This study correlates a rise in hair cell calcium levels with the otoprotection of hair cells by TGF alpha in organ of Corti explants. PMID:9263032

  5. CalQuo: automated, simultaneous single-cell and population-level quantification of global intracellular Ca2+ responses

    PubMed Central

    Fritzsche, Marco; Fernandes, Ricardo A.; Colin-York, Huw; Santos, Ana M.; Lee, Steven F.; Lagerholm, B. Christoffer; Davis, Simon J.; Eggeling, Christian

    2015-01-01

    Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines. PMID:26563585

  6. Assessment at the Single-Cell Level Identifies Neuronal Glutathione Depletion As Both a Cause and Effect of Ischemia-Reperfusion Oxidative Stress

    PubMed Central

    Kim, Ji-Eun; Cittolin-Santos, Giordano Fabricio; Swanson, Raymond A.

    2015-01-01

    Oxidative stress contributes to neuronal death in brain ischemia-reperfusion. Tissue levels of the endogenous antioxidant glutathione (GSH) are depleted during ischemia-reperfusion, but it is unknown whether this depletion is a cause or an effect of oxidative stress, and whether it occurs in neurons or other cell types. We used immunohistochemical methods to evaluate glutathione, superoxide, and oxidative stress in mouse hippocampal neurons after transient forebrain ischemia. GSH levels in CA1 pyramidal neurons were normally high relative to surrounding neuropil, and exhibited a time-dependent decrease during the first few hours of reperfusion. Colabeling for superoxide in the neurons showed a concurrent increase in detectable superoxide over this interval. To identify cause–effect relationships between these changes, we independently manipulated superoxide production and GSH metabolism during reperfusion. Mice in which NADPH oxidase activity was blocked to prevent superoxide production showed preservation of neuronal GSH content, thus demonstrating that neuronal GSH depletion is result of oxidative stress. Conversely, mice in which neuronal GSH levels were maintained by N-acetyl cysteine treatment during reperfusion showed less neuronal superoxide signal, oxidative stress, and neuronal death. At 3 d following ischemia, GSH content in reactive astrocytes and microglia was increased in the hippocampal CA1 relative to surviving neurons. Results of these studies demonstrate that neuronal GSH depletion is both a result and a cause of neuronal oxidative stress after ischemia-reperfusion, and that postischemic restoration of neuronal GSH levels can be neuroprotective. PMID:25948264

  7. Effect of catalase inactivation on levels of inorganic peroxides, superoxide dismutase, glutathione, oxygen consumption and life span in adult houseflies (Musca domestica).

    PubMed Central

    Allen, R G; Farmer, K J; Sohal, R S

    1983-01-01

    The effects of total inhibition of catalase, induced by 3-amino-1,2,4-triazole, on the adult housefly (Musca domestica) were examined. The lack of catalase activity had no effect on the longevity of the houseflies. Inorganic-peroxide concentration was elevated at younger ages, but declined in older flies. The rate of oxygen consumption by the flies was greatly decreased and the levels of oxidized as well as reduced glutathione were augmented. Superoxide dismutase activity showed a slight increase. This study suggests that loss of catalase activity does not affect survival of houseflies due to adaptive responses. PMID:6661212

  8. Cystamine induces AIF-mediated apoptosis through glutathione depletion.

    PubMed

    Cho, Sung-Yup; Lee, Jin-Haeng; Ju, Mi-kyeong; Jeong, Eui Man; Kim, Hyo-Jun; Lim, Jisun; Lee, Seungun; Cho, Nam-Hyuk; Park, Hyun Ho; Choi, Kihang; Jeon, Ju-Hong; Kim, In-Gyu

    2015-03-01

    Cystamine and its reduced form cysteamine showed protective effects in various models of neurodegenerative disease, including Huntington's disease and Parkinson's disease. Other lines of evidence demonstrated the cytotoxic effect of cysteamine on duodenal mucosa leading to ulcer development. However, the mechanism for cystamine cytotoxicity remains poorly understood. Here, we report a new pathway in which cystamine induces apoptosis by targeting apoptosis-inducing factor (AIF). By screening of various cell lines, we observed that cystamine and cysteamine induce cell death in a cell type-specific manner. Comparison between cystamine-sensitive and cystamine-resistant cell lines revealed that cystamine cytotoxicity is not associated with unfolded protein response, reactive oxygen species generation and transglutaminase or caspase activity; rather, it is associated with the ability of cystamine to trigger AIF nuclear translocation. In cystamine-sensitive cells, cystamine suppresses the levels of intracellular glutathione by inhibiting γ-glutamylcysteine synthetase expression that triggers AIF translocation. Conversely, glutathione supplementation completely prevents cystamine-induced AIF translocation and apoptosis. In rats, cysteamine administration induces glutathione depletion and AIF translocation leading to apoptosis of duodenal epithelium. These results indicate that AIF translocation through glutathione depletion is the molecular mechanism of cystamine toxicity, and provide important implications for cystamine in the neurodegenerative disease therapeutics as well as in the regulation of AIF-mediated cell death. PMID:25549939

  9. Imaging of Intracellular and Extracellular ROS Levels in Atherosclerotic Mouse Aortas Ex Vivo: Effects of Lipid Lowering by Diet or Atorvastatin

    PubMed Central

    Ekstrand, Matias; Gustafsson Trajkovska, Maria; Perman-Sundelin, Jeanna; Fogelstrand, Per; Adiels, Martin; Johansson, Martin; Mattsson-Hultén, Lillemor

    2015-01-01

    Objective The first objective was to investigate if intracellular and extracellular levels of reactive oxygen species (ROS) within the mouse aorta increase before or after diet-induced lesion formation. The second objective was to investigate if intracellular and extracellular ROS correlates to cell composition in atherosclerotic lesions. The third objective was to investigate if intracellular and extracellular ROS levels within established atherosclerotic lesions can be reduced by lipid lowering by diet or atorvastatin. Approach and Results To address our objectives, we established a new imaging technique to visualize and quantify intracellular and extracellular ROS levels within intact mouse aortas ex vivo. Using this technique, we found that intracellular, but not extracellular, ROS levels increased prior to lesion formation in mouse aortas. Both intracellular and extracellular ROS levels were increased in advanced lesions. Intracellular ROS correlated with lesion content of macrophages. Extracellular ROS correlated with lesion content of smooth muscle cells. The high levels of ROS in advanced lesions were reduced by 5 days high dose atorvastatin treatment but not by lipid lowering by diet. Atorvastatin treatment did not affect lesion inflammation (aortic arch mRNA levels of CXCL 1, ICAM-1, MCP-1, TNF-α, VCAM, IL-6, and IL-1β) or cellular composition (smooth muscle cell, macrophage, and T-cell content). Conclusions Aortic levels of intracellular ROS increase prior to lesion formation and may be important in initiation of atherosclerosis. Our results suggest that within lesions, macrophages produce mainly intracellular ROS whereas smooth muscle cells produce extracellular ROS. Short term atorvastatin treatment, but not lipid lowering by diet, decreases ROS levels within established advanced lesions; this may help explain the lesion stabilizing and anti-inflammatory effects of long term statin treatment. PMID:26098110

  10. Blood glutathione peroxidase-1 mRNA levels can be used as molecular biomarkers to determine dietary selenium requirements in rats.

    PubMed

    Sunde, Roger A; Thompson, Kevin M; Evenson, Jacqueline K; Thompson, Britta M

    2009-11-01

    Transcript (mRNA) levels are increasingly being used in medicine as molecular biomarkers for disease and disease risk, including use of whole blood as a target tissue for analysis. Development of blood molecular biomarkers for nutritional status, too, has potential application that parallels opportunities in medicine, including providing solid data for individualized nutrition. We previously reported that blood glutathione peroxidase-1 (Gpx1) mRNA was expressed at levels comparable to major tissues in rats and humans. To determine the efficacy of using blood Gpx1 mRNA to assess selenium (Se) status and requirements, we fed graded levels of Se (0-0.3 microg Se/g as selenite) to weanling male rats. Se status was determined by liver Se concentration and selenoenzyme activity, and selenoprotein mRNA abundance in liver and blood was determined by ribonuclease protection analysis. Liver Se and plasma glutathione peroxidase-3 and liver Gpx1 activities indicated that minimal Se requirements were at 0.08 microg Se/g diet. When total RNA was isolated from whole blood, Gpx1 mRNA in Se-deficient rats decreased to 10% of levels in Se-adequate (0.2 microg Se/g diet) rats. With Se supplementation, blood Gpx1 mRNA levels increased sigmoidally to a plateau with a minimum Se requirement of 0.08 microg Se/g diet, whereas glutathione peroxidase-4 mRNA levels were unaffected. Similarly, Gpx1 mRNA in RNA isolated from fractionated red blood cells decreased in Se-deficient rats to 23% of Se-adequate levels, with a minimum Se requirement of 0.09 microg Se/g diet. Additional studies showed that the preponderance of whole blood Gpx1 mRNA arises from erythroid cells, most likely reticulocytes and young erythrocytes. In summary, whole blood selenoprotein mRNA levels can be used as molecular biomarkers for assessing Se requirements, illustrating that whole blood has potential as a target tissue in development of molecular biomarkers for use in nutrition as well as in medicine. PMID:19855070

  11. Methamphetamine induces a rapid increase of intracellular Ca(++) levels in neurons overexpressing GCaMP5.

    PubMed

    Yu, Seong-Jin; Wu, Kou-Jen; Bae, Eun K; Hsu, Man-Jung; Richie, Christopher T; Harvey, Brandon K; Wang, Yun

    2016-03-01

    In this study, methamphetamine (Meth)- and glutamate (Glu)-mediated intracellular Ca(++) (Ca(++) i) signals were examined in real time in primary cortical neurons overexpressing an intracellular Ca(++) probe, GCaMP5, by adeno-associated viral (AAV) serotype 1. Binding of Ca(++) to GCaMP increased green fluorescence intensity in cells. Both Meth and Glu induced a rapid increase in Ca(++) i, which was blocked by MK801, suggesting that Meth enhanced Ca(++) i through Glu receptor in neurons. The Meth-mediated Ca(++) signal was also blocked by Mg(++) , low Ca(++) or the L-type Ca(++) channel inhibitor nifedipine. The ryanodine receptor inhibitor dantrolene did not alter the initial Ca(++) influx but partially reduced the peak of Ca(++) i. These data suggest that Meth enhanced Ca(++) influx through membrane Ca(++) channels, which then triggered the release of Ca(++) from the endoplasmic reticulum in the cytosol. AAV-GCaMP5 was also injected to the parietal cortex of adult rats. Administration of Meth enhanced fluorescence in the ipsilateral cortex. Using immunohistochemistry, Meth-induced green fluorescence was found in the NeuN-containing cells in the cortex, suggesting that Meth increased Ca(++) in neurons in vivo. In conclusion, we have used in vitro and in vivo techniques to demonstrate a rapid increase of Ca(++) i by Meth in cortical neurons through overexpression of GCaMP5. As Meth induces behavioral responses and neurotoxicity through Ca(++) i, modulation of Ca(++) i may be useful to reduce Meth-related reactions. PMID:25377775

  12. Transgenic tobacco plants overexpressing the Met25 gene of Saccharomyces cerevisiae exhibit enhanced levels of cysteine and glutathione and increased tolerance to oxidative stress.

    PubMed

    Matityahu, I; Kachan, L; Bar Ilan, I; Amir, R

    2006-03-01

    The cysteine biosynthesis pathway differs between plants and the yeast Saccharomyces cerevisiae. The yeast MET25 gene encoded to O-acetylhomoserine sulfhydrylase (AHS) catalyzed the reaction that form homocysteine, which later can be converted into cystiene. In vitro studies show that this enzyme possesses also the activity of O-acetyl(thiol)lyase (OASTL) that catalyzes synthesis of cysteine in plants. In this study, we generated transgenic tobacco plants expressing the yeast MET25 gene under the control of a constitutive promoter and targeted the yeast protein to the cytosol or to the chloroplasts. Both sets of transgenic plants were taller and greener than wild-type plants. Addition of SO(2), the substrate of the yeast enzyme caused a significant elevation of the glutathione content in representative plants from each of the two sets of transgenic plants expressing the yeast gene. Determination of non-protein thiol content indicated up to four-folds higher cysteine and 2.5-fold glutathione levels in these plants. In addition, the leaf discs of the transgenic plants were more tolerant to toxic levels of sulphite, and to paraquat, an herbicide generating active oxygen species. PMID:16193226

  13. Glutathione cycle in stable chronic obstructive pulmonary disease.

    PubMed

    Biljak, Vanja Radisić; Rumora, Lada; Cepelak, Ivana; Pancirov, Dolores; Popović-Grle, Sanja; Sorić, Jasna; Grubisić, Tihana Zanić

    2010-08-01

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and oxidant/antioxidant imbalance. Glutathione is the most abundant cellular low-molecular weight thiol and the glutathione redox cycle is the fundamental component of the cellular antioxidant defence system. Concentration of total glutathione and catalytic activities of glutathione peroxidase and glutathione reductase were determined in peripheral blood of patients (n = 109) and healthy subjects (n = 51). Concentration of total glutathione in patients was not changed in comparison to healthy controls. However, we found statistically significant difference between patients with moderate and severe disease stages. Glutathione reductase activity was increased, while glutathione proxidase activity was decreased in the patients with COPD, when compared to healthy controls. We found no significant difference in glutathione peroxidase and glutathione reductase activities between stages. Patients who smoked had lower concentration of total glutathione compared with former smokers and never-smoking patients. Lung function parameters were inversely associated with glutathione level. Evidence is presented for differential modulation of glutathione peroxidase and glutathione reductase activities in peripheral blood of patients with stable COPD. We suppose that in addition to glutathione biosynthesis, glutathione reductase-dependent regulation of the glutathione redox state is vital for protection against oxidative stress. PMID:20648694

  14. Effects of mild hypothermia therapy on the levels of glutathione in rabbit blood and cerebrospinal fluid after cardiopulmonary resuscitation

    PubMed Central

    Zhao, Hui; Chen, Yueliang

    2015-01-01

    Objective(s): The aim of this study was to investigate the effects of mild hypothermia therapy on oxidative stress injury of rabbit brain tissue after cardiopulmonary resuscitation (CPR). Materials and Methods: Rabbit models of cardiac arrest were established. After the restoration of spontaneous circulation, 50 rabbits were randomly divided into normothermia and hypothermia groups. The following five time points were selected: before CPR, immediately after CPR, 2 hr after CPR (hypothermia group reached the target temperature), 14 hr after CPR (hypothermia group before rewarming), and 24 hr after CPR (hypothermia group recovered to normal temperature). Glutathione (GSH) concentrations in both the blood and cerebrospinal fluid of the normothermia and hypothermia groups were measured. Results: At 2, 14, and 24 hr after CPR, the GSH concentrations in both the blood and cerebrospinal fluid were significantly higher in the hypothermia group than in the nomorthermia group. Conclusion: Mild hypothermia therapy may increase GSH concentrations in rabbit blood and cerebrospinal fluid after CPR as well as promote the recovery of cerebral function. PMID:25810895

  15. Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients

    PubMed Central

    Espino, Javier; Mediero, Matías; Lozano, Graciela M; Bejarano, Ignacio; Ortiz, Águeda; García, Juan F; Pariente, José A; Rodríguez, Ana B

    2009-01-01

    Background Asthenozoospermia is one of the most common findings present in infertile males characterized by reduced or absent sperm motility, but its aetiology remains unknown in most cases. In addition, calcium is one of the most important ions regulating sperm motility. In this study we have investigated the progesterone-evoked intracellular calcium signal in ejaculated spermatozoa from men with normospermia or asthenozoospermia. Methods Human ejaculates were obtained from healthy volunteers and asthenospermic men by masturbation after 4–5 days of abstinence. For determination of cytosolic free calcium concentration, spermatozoa were loaded with the fluorescent ratiometric calcium indicator Fura-2. Results Treatment of spermatozoa from normospermic men with 20 micromolar progesterone plus 1 micromolar thapsigargin in a calcium free medium induced a typical transient increase in cytosolic free calcium concentration due to calcium release from internal stores. Similar results were obtained when spermatozoa were stimulated with progesterone alone. Subsequent addition of calcium to the external medium evoked a sustained elevation in cytosolic free calcium concentration indicative of capacitative calcium entry. However, when progesterone plus thapsigargin were administered to spermatozoa from patients with asthenozoospermia, calcium signal and subsequent calcium entry was much smaller compared to normospermic patients. As expected, pretreatment of normospermic spermatozoa with both the anti-progesterone receptor c262 antibody and with progesterone receptor antagonist RU-38486 decreased the calcium release induced by progesterone. Treatment of spermatozoa with cytochalasin D or jasplakinolide decreased the calcium entry evoked by depletion of internal calcium stores in normospermic patients, whereas these treatments proved to be ineffective at modifying the calcium entry in patients with asthenozoospermia. Conclusion Our results suggest that spermatozoa from

  16. Dissecting the role of glutathione biosynthesis in Plasmodium falciparum

    PubMed Central

    Patzewitz, Eva-Maria; Wong, Eleanor H; Müller, Sylke

    2012-01-01

    Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG. PMID:22151036

  17. Decreased glutathione transferase levels in rd1/rd1 mouse retina: replenishment protects photoreceptors in retinal explants.

    PubMed

    Ahuja, P; Caffé, A R; Ahuja, S; Ekström, P; van Veen, T

    2005-01-01

    Currently much attention is focused on glutathione S transferase (GST)-induced suppression of apoptosis. The objective of our studies was therefore to see if GST isoenzymes rescue photoreceptors in retinal explants from rd1/rd1 mice, in which photoreceptors degenerate rapidly. Eyes from C3H rd1/rd1 and +/+ mice were collected at various time points between postnatal day (PN) 2 and PN28. Localization and content of alpha-GST and mu-GST was investigated by immunofluorescence and semi-quantitative Western blot analysis, respectively. In addition, PN2 and PN7 retinal explants were cultured till PN28, during which they were treated with 10 ng/ml alpha-GST or mu-GST. The spatiotemporal expression of both GST isoforms was closely similar: early presence in ganglion cell layer after which staining became restricted to Muller cells (particularly in the endfeet) and horizontal cell fibers in both rd1/rd1 and +/+. Doublets of alpha-GST and mu-GST were detected by Western blot analysis. Densitometry of these bands indicated steady reduction of alpha-GST content in rd1/rd1 retina starting from the second postnatal week. When alpha-GST and mu-GST were added exogenously to rd1/rd1 explants, photoreceptor rescue was produced that was more prominent in PN2 than in PN7 explants and more effective by alpha-GST than mu-GST. We propose that alpha-GST neuroprotection is mediated by reduction of tissue oxidative stress. PMID:15749346

  18. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo

    PubMed Central

    Rocha, C R R; Garcia, C C M; Vieira, D B; Quinet, A; de Andrade-Lima, L C; Munford, V; Belizário, J E; Menck, C F M

    2014-01-01

    Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma. However, several mechanisms of cellular resistance to cisplatin restrict therapy efficiency. In that sense, enhanced DNA repair, high glutathione levels and functional p53 have a critical role on cisplatin resistance. In this work, we explored several mechanisms of cisplatin resistance in human glioma. We showed that cellular survival was independent of the p53 status of those cells. In addition, in a host-cell reactivation assay using cisplatin-treated plasmid, we did not detect any difference in DNA repair capacity. We demonstrated that cisplatin-treated U138MG cells suffered fewer DNA double-strand breaks and DNA platination. Interestingly, the resistant cells carried higher levels of intracellular glutathione. Thus, preincubation with the glutathione inhibitor buthionine sulfoximine (BSO) induced massive cell death, whereas N-acetyl cysteine, a precursor of glutathione synthesis, improved the resistance to cisplatin treatment. In addition, BSO sensitized glioma cells to TMZ alone or in combination with cisplatin. Furthermore, using an in vivo model the combination of BSO, cisplatin and TMZ activated the caspase 3–7 apoptotic pathway. Remarkably, the combined treatment did not lead to severe side effects, while causing a huge impact on tumor progression. In fact, we noted a remarkable threefold increase in survival rate compared with other treatment regimens. Thus, the intracellular glutathione concentration is a potential molecular marker for cisplatin resistance in glioma, and the use of glutathione inhibitors, such as BSO, in association with cisplatin and TMZ seems a promising approach for the therapy of such devastating

  19. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo.

    PubMed

    Rocha, C R R; Garcia, C C M; Vieira, D B; Quinet, A; de Andrade-Lima, L C; Munford, V; Belizário, J E; Menck, C F M

    2014-01-01

    Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma. However, several mechanisms of cellular resistance to cisplatin restrict therapy efficiency. In that sense, enhanced DNA repair, high glutathione levels and functional p53 have a critical role on cisplatin resistance. In this work, we explored several mechanisms of cisplatin resistance in human glioma. We showed that cellular survival was independent of the p53 status of those cells. In addition, in a host-cell reactivation assay using cisplatin-treated plasmid, we did not detect any difference in DNA repair capacity. We demonstrated that cisplatin-treated U138MG cells suffered fewer DNA double-strand breaks and DNA platination. Interestingly, the resistant cells carried higher levels of intracellular glutathione. Thus, preincubation with the glutathione inhibitor buthionine sulfoximine (BSO) induced massive cell death, whereas N-acetyl cysteine, a precursor of glutathione synthesis, improved the resistance to cisplatin treatment. In addition, BSO sensitized glioma cells to TMZ alone or in combination with cisplatin. Furthermore, using an in vivo model the combination of BSO, cisplatin and TMZ activated the caspase 3-7 apoptotic pathway. Remarkably, the combined treatment did not lead to severe side effects, while causing a huge impact on tumor progression. In fact, we noted a remarkable threefold increase in survival rate compared with other treatment regimens. Thus, the intracellular glutathione concentration is a potential molecular marker for cisplatin resistance in glioma, and the use of glutathione inhibitors, such as BSO, in association with cisplatin and TMZ seems a promising approach for the therapy of such devastating

  20. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    PubMed Central

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  1. Effects of mace (Myristica fragrans, Houtt.) on cytosolic glutathione S-transferase activity and acid soluble sulfhydryl level in mouse liver.

    PubMed

    Kumari, M V; Rao, A R

    1989-07-15

    The aril of plant Myristica fragrans Houtt. commonly known as mace, which is consumed as a spice as well as used as a folk-medicine, was screened for its effects on the levels of cytosolic glutathione S-transferase (GST) and acid-soluble sulfhydryl (SH) groups in the liver of young adult male and female Swiss albino mice. Animals were assorted into 4 groups comprised of either sex and received either normal diet (negative control), 1% 2,3-tert-butyl-4-hydroxyanisole (BHA) diet (positive control), 1% mace diet or 2% mace diet for 10 days. There was a significant increase in the GST activity in the liver of mice exposed to BHA or mace. In addition, there was a significant increase in the SH content in the liver of mice fed on 1% BHA and 2% mace diets. PMID:2752386

  2. Glutathione depletion impairs transcriptional activation of heat shock genes in primary cultures of guinea pig gastric mucosal cells.

    PubMed

    Rokutan, K; Hirakawa, T; Teshima, S; Honda, S; Kishi, K

    1996-05-15

    When primary cultures of guinea pig gastric mucosal cells were exposed to heat (43 degree C), ethanol, hydrogen peroxide (H2O2), or diamide, heat shock proteins (HSP90, HSP70, HSP60, and HSC73) were rapidly synthesized. The extent of each HSP induction varied with the type of stress. Ethanol, H2O2, and diamide increased the syntheses of several other undefined proteins besides the HSPs. However, none of these proteins were induced by exposure to heat or the reagents, when intracellular glutathione was depleted to <10% of the control level by pretreatment with DL-buthionine-[S,R]-sulfoximine. Gel mobility shift assay using a synthetic oligonucleotide coding HSP70 heat shock element showed that glutathione depletion inhibited the heat- and the reagent-initiated activation of the heat shock factor 1 (HSF1) and did not promote the expression of HSP70 mRNA. Immunoblot analysis with antiserum against HSF1 demonstrated that the steady-state level of HSF1 was not changed in glutathione-depleted cells, but glutathione depletion inhibited the nuclear translocation of HSF1 after exposure to heat stress. These results suggest that intracellular glutathione may support early and important biochemical events in the acquisition by gastric mucosal cells of an adaptive response to irritants. PMID:8636403

  3. IN VITRO INHIBITION OF GLUTATHIONE REDUCTASE BY ARSENOTRI-GLUTATHIONE

    EPA Science Inventory

    Arsenotriglutathione, a product of the reduction of arsenate and the complexation of arsenite by glutathione, is a mixed type inhibitor of the reduction of glutathione disulfide by purified yeast glutathione reductase or the glutathione reductase activity in rabbit erythrocyte ly...

  4. Emerging regulatory paradigms in glutathione metabolism.

    PubMed

    Liu, Yilin; Hyde, Annastasia S; Simpson, Melanie A; Barycki, Joseph J

    2014-01-01

    One of the hallmarks of cancer is the ability to generate and withstand unusual levels of oxidative stress. In part, this property of tumor cells is conferred by elevation of the cellular redox buffer glutathione. Though enzymes of the glutathione synthesis and salvage pathways have been characterized for several decades, we still lack a comprehensive understanding of their independent and coordinate regulatory mechanisms. Recent studies have further revealed that overall central metabolic pathways are frequently altered in various tumor types, resulting in significant increases in biosynthetic capacity and feeding into glutathione synthesis. In this review, we will discuss the enzymes and pathways affecting glutathione flux in cancer and summarize current models for regulating cellular glutathione through both de novo synthesis and efficient salvage. In addition, we examine the integration of glutathione metabolism with other altered fates of intermediary metabolites and highlight remaining questions about molecular details of the accepted regulatory modes. PMID:24974179

  5. Emerging regulatory paradigms in glutathione metabolism

    PubMed Central

    Liu, Yilin; Hyde, Annastasia S.; Simpson, Melanie A.; Barycki, Joseph J.

    2015-01-01

    One of the hallmarks of cancer is the ability to generate and withstand unusual levels of oxidative stress. In part, this property of tumor cells is conferred by elevation of the cellular redox buffer glutathione. Though enzymes of the glutathione synthesis and salvage pathways have been characterized for several decades, we still lack a comprehensive understanding of their independent and coordinate regulatory mechanisms. Recent studies have further revealed that overall central metabolic pathways are frequently altered in various tumor types, resulting in significant increases in biosynthetic capacity, and feeding into glutathione synthesis. In this review, we will discuss the enzymes and pathways affecting glutathione flux in cancer, and summarize current models for regulating cellular glutathione through both de novo synthesis and efficient salvage. In addition, we examine the integration of glutathione metabolism with other altered fates of intermediary metabolites, and highlight remaining questions about molecular details of the accepted regulatory modes. PMID:24974179

  6. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  7. Hepatobiliary transport of glutathione and glutathione conjugate in rats with hereditary hyperbilirubinemia.

    PubMed Central

    Elferink, R P; Ottenhoff, R; Liefting, W; de Haan, J; Jansen, P L

    1989-01-01

    TR- mutant rats have an autosomal recessive mutation that is expressed as a severely impaired hepatobiliary secretion of organic anions like bilirubin-(di)glucuronide and dibromosulphthalein (DBSP). In this paper, the hepatobiliary transport of glutathione and a glutathione conjugate was studied in normal Wistar rats and TR- rats. It was shown that glutathione is virtually absent from the bile of TR- rats. In the isolated, perfused liver the secretion of glutathione and the glutathione conjugate, dinitrophenyl-glutathione (GS-DNP), from hepatocyte to bile is severely impaired, whereas the sinusoidal secretion from liver to blood is not affected. The secretion of GS-DNP was also studied in isolated hepatocytes. The secretion of GS-DNP from cells isolated from TR- rat liver was significantly slower than from normal hepatocytes. Efflux of GS-DNP was a saturable process with respect to intracellular GS-DNP concentration: Vmax and Km for efflux from TR- cells was 498 nmol/min.g dry wt and 3.3 mM, respectively, as compared with 1514 nmol/min.g dry wt and 0.92 mM in normal hepatocytes. These results suggest that the canalicular transport system for glutathione and glutathione conjugates is severely impaired in TR- rats, whereas sinusoidal efflux is unaffected. Because the defect also comes to expression in isolated hepatocytes, efflux of GS-DNP from normal hepatocytes must predominantly be mediated by the canalicular transport mechanism, which is deficient in TR- rats. PMID:2760197

  8. Protection of Cells against Oxidative Stress by Nanomolar Levels of Hydroxyflavones Indicates a New Type of Intracellular Antioxidant Mechanism

    PubMed Central

    Hájek, Jan; Staňková, Veronika; Filipský, Tomáš; Balducci, Valentina; De Vito, Paolo; Leone, Stefano; Bavavea, Eugenia I.; Silvestri, Ilaria Proietti; Righi, Giuliana; Luly, Paolo; Saso, Luciano; Bovicelli, Paolo; Pedersen, Jens Z.; Incerpi, Sandra

    2013-01-01

    Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous

  9. Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels

    PubMed Central

    Kinoshita, Chisato; Aoyama, Koji; Matsumura, Nobuko; Kikuchi-Utsumi, Kazue; Watabe, Masahiko; Nakaki, Toshio

    2014-01-01

    Glutathione (GSH) is a key antioxidant that plays an important neuroprotective role in the brain. Decreased GSH levels are associated with neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. Here we show that a diurnal fluctuation of GSH levels is correlated with neuroprotective activity against oxidative stress in dopaminergic cells. In addition, we found that the cysteine transporter excitatory amino acid carrier 1 (EAAC1), which is involved in neuronal GSH synthesis, is negatively regulated by the microRNA miR-96-5p, which exhibits a diurnal rhythm. Blocking miR-96-5p by intracerebroventricular administration of an inhibitor increased the level of EAAC1 as well as that of GSH and had a neuroprotective effect against oxidative stress in the mouse substantia nigra. Our results suggest that the diurnal rhythm of miR-96-5p may play a role in neuroprotection by regulating neuronal GSH levels via EAAC1. PMID:24804999

  10. A high precision apparatus for intracellular thermal response at single-cell level.

    PubMed

    Tian, Wenjuan; Wang, Cangling; Wang, Jianqing; Chen, Qiuhua; Sun, Jianfei; Li, Can; Wang, Xing; Gu, Ning

    2015-09-01

    In this work, a nanoprobe that is highly thermo-sensitive to tiny temperature changes was prepared based on a thermocouple metal junction. A series of electro-element apparatuses were integrated to accomplish single-cell temperature measurement. The temperature measurement probe (TMP) was constructed by tungsten (W), polyurethane (PU), and platinum (Pt). The tip size of TMP was characterized at less than 500 nm, and the tip angle was between 10 and 20° with the resistance in the range of 500 to 1500 Ω. The single-cell temperature measurement probes were calibrated and calculated with a Seebeck coefficient ranging from 6 to 8 μV °C(-1) at a precision of 0.1 °C. Monitoring the temperature at a single-cell level by inserting the TMP in marine lung epithelia (MLE)-12 cells displayed that the stimulation of lipopolysaccharide (LPS) and cobalt chloride induced different single-cell temperature fluctuation. This investigation could help reveal complex cellular functions and develop novel diagnoses. PMID:26267315

  11. A high precision apparatus for intracellular thermal response at single-cell level

    NASA Astrophysics Data System (ADS)

    Tian, Wenjuan; Wang, Cangling; Wang, Jianqing; Chen, Qiuhua; Sun, Jianfei; Li, Can; Wang, Xing; Gu, Ning

    2015-09-01

    In this work, a nanoprobe that is highly thermo-sensitive to tiny temperature changes was prepared based on a thermocouple metal junction. A series of electro-element apparatuses were integrated to accomplish single-cell temperature measurement. The temperature measurement probe (TMP) was constructed by tungsten (W), polyurethane (PU), and platinum (Pt). The tip size of TMP was characterized at less than 500 nm, and the tip angle was between 10 and 20° with the resistance in the range of 500 to 1500 Ω. The single-cell temperature measurement probes were calibrated and calculated with a Seebeck coefficient ranging from 6 to 8 μV °C-1 at a precision of 0.1 °C. Monitoring the temperature at a single-cell level by inserting the TMP in marine lung epithelia (MLE)-12 cells displayed that the stimulation of lipopolysaccharide (LPS) and cobalt chloride induced different single-cell temperature fluctuation. This investigation could help reveal complex cellular functions and develop novel diagnoses.

  12. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels.

    PubMed

    Bankaji, I; Caçador, I; Sleimi, N

    2015-09-01

    Environmental pollution by trace metal elements (TMEs) is a serious problem worldwide, increasing in parallel with the development of human technology. The present research aimed to examine the response of halophytic species Suaeda fruticosa to oxidative stress posed by combined abiotic stresses. Plants have been grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd(2+) or 400 μM Cu(2+). The level of glutathione (GSH), phytochelatins (PCs), and antioxidant enzyme activities [ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT)] as well as lipid peroxidation was studied to see the stress exerted by the TME and the level of tolerance and detoxification strategy adopted by S. fruticosa. Relative growth rate (RGR) decreased under Cd(2+) stress in this species, whereas Cu(2+) did not have any impact on S. fruticosa performance. Cd(2+) or Cu(2+) enhanced malondialdehyde, suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in S. fruticosa. On the other hand, the activities of the antioxidant enzymes CAT, APX, and GPX diminished and mineral nutrition was disturbed by metal stress. S. fruticosa was able to synthesize PCs in response to TME toxicity. However, data indicate that GSH levels underwent a significant decrease in roots and leaves of S. fruticosa stressed by Cd(2+) or Cu(2+). The GSH depletion accompanied by the increase of phytochelatin concentration suggests the involvement of GSH in the synthesis of phytochelatins. PMID:25925143

  13. Effect of dietary fat on plasma glutathione peroxidase levels and intestinal absorption of /sup 75/Se-labeled sodium selenite in chicks

    SciTech Connect

    Mutanen, M.L.; Mykkaenen, H.M.

    1984-05-01

    The effect of dietary fat on the availability of selenium was investigated in chicks fed either 4 or 20% butter, olive oil, rape oil, corn oil or sunflower oil in the diet for 3 weeks after hatching. Plasma glutathione peroxidase (GSH-Px) activity was used as an indicator of the body selenium status. In addition, the intestinal absorption of sodium selenite (/sup 75/Se-labeled) was determined by using both the in vivo ligated loop procedure and oral administration of the isotope. The plasma GSH-Px levels increased with increasing proportion of the polyunsaturated fatty acids in the diet. Increasing the amount of fat from 4 to 20% significantly enhanced the GSH-Px activity in the groups receiving butter or olive oil, but had no effect in animals fed the unsaturated fats. The absorption of (/sup 75/Se)selenite from the ligated duodenal loops tended to be reduced in chicks fed corn oil or sunflower oil as compared to the animals receiving butter in their diet. On the other hand, the type of dietary fat did not appear to affect the absorption of the orally administered selenite. The present study demonstrates that the type of dietary fat can affect the plasma GSH-Px levels in chicks without altering the intestinal absorption of selenite. However, the results on the absorption of the intraduodenally injected sodium selenite suggest that dietary fat plays some role in the intestinal transport of selenium.

  14. Free heme pool and activity of key enzyme of heme synthesis in the rat liver under action of agents affecting reduced glutathione level.

    PubMed

    Barannik, T V; Inshina, N M; Kaliman, P A

    2005-01-01

    The decrease of GSH level in the rat liver was found to be accompanied by an increase of tryptophan 2,3-dioxygenase (TDO) heme saturation during first hours after HgCl2, phenylhydrazine (Ph) injection or rhabdomyolysis (the coefficient of correlation -0.978). The activity of the key enzyme of heme synthesis--5-aminolevulinate synthase (ALAS) was 2.5-fold increased in the first hours after Ph injection and rhabdomyolysis. Glutathione injection in vivo as well as CdCl2 caused the increase of GSH content and the inhibition of ALAS. The coefficient of correlation for GSH content and ALAS activity under the action of agents altering both these parameters (CdCl2, Ph, GSH injection and rhabdomyolysis) is 0.938. Taking into account the presence of heme regulatory motif with conserved cystein in many proteins, including ALAS and TDO (accession number in SwissProt database AAH61793 and P21643, respectively), the link between alterations of GSH content, ALAS activity and heme saturation of TDO in the rat liver could be proposed. The further experiments should be performed in order to elucidate the mechanisms of GSH level influence on free heme pool formation in the liver cells. PMID:16846079

  15. Novel agmatine analogue, {gamma}-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels

    SciTech Connect

    Singh, Sushma; Jhingran, Anupam; Sharma, Ankur; Simonian, Alina R.; Soininen, Pasi; Vepsalainen, Jouko; Khomutov, Alex R.; Madhubala, Rentala

    2008-10-10

    The efficacy of {gamma}-guanidinooxypropylamine (GAPA), a novel agmatine analogue against protozoan parasite, Leishmaniadonovani was evaluated. Wild-type and ornithine decarboxylase-overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. GAPA inhibited the growth of both promastigotes and amastigotes. Ornithine decarboxylase (ODC) activity and polyamine levels were markedly lower in cells treated with GAPA and proliferation was rescued by addition of putrescine or spermidine. GAPA inhibited L. donovani recombinant ODC with K{sub i} value of {approx}60 {mu}M. The ODC-overexpressors showed significant resistance to GAPA. GAPA has pK{sub a} 6.71 and at physiological pH the analogue can mimic protonated state of putrescine and can probably use putrescine transport system. Transport of putrescine in wild-type L. donovani promastigotes was inhibited by GAPA. We for the first time report that GAPA is a potential antileishmanial lead compound and it possibly inhibits L. donovani growth by depletion of intracellular polyamine levels.

  16. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  17. The usefulness of cytogenetic parameters, level of p53 protein and endogenous glutathione as intermediate end-points in raw betel-nut genotoxicity.

    PubMed

    Kumpawat, K; Chatterjee, A

    2003-07-01

    Betel-nut (BN) chewing related oral mucosal lesions are potential hazards to a large population worldwide. Genotoxicity of betel alkaloids, polyphenol and tannin fractions have been reported. It has been shown earlier that BN ingredients altered the level of endogenous glutathione (GSH) which could modulate the host susceptibility to the action of other chemical carcinogens. The north-east Indian variety of BN, locally known as 'kwai', is raw, wet and consumed unprocessed with betel-leaf and slaked lime and contains higher alkaloids, polyphenol and tannins as compared to the dried one. Therefore, the purpose of this study was to investigate the extent of DNA damage, pattern of cell kinetics, the level of p53-protein and endogenous GSH in kwai chewers in the tribal population of Meghalaya state in the northeastern region of India with an aim to see whether these end-points could serve as biomarkers of genetic damage of relevance for genotoxic/carcinogenic process. The present data show higher DNA damage, delay in cell kinetics, p53 expression and lower GSH-level in heavy chewers (HC) than nonchewers (NC). The influence of bleomycin (BLM) on chromatid break induction in G2-phase of peripheral blood lymphocytes in NC and HC has been analysed to determine individual susceptibility to carcinogenic assaults. HC showed higher induction of chromatid breaks than NC. Risk assessment in this study suggests an interaction between carcinogen exposure and mutagen sensitivity measures, risk estimates being higher in those individuals who both consume kwai and express sensitivity to free radical oxygen damage in vitro. From this study it seems that besides cytogenetical parameters, the level of endogenous GSH and the level of p53 protein could act as effective biomarkers for kwai chewers. PMID:12929726

  18. Elevated Levels of Urinary 8-Hydroxy-2′-deoxyguanosine, Lymphocytic Micronuclei, and Serum Glutathione S-Transferase in Workers Exposed to Coke Oven Emissions

    PubMed Central

    Liu, Ai-Lin; Lu, Wen-Qing; Wang, Zeng-Zhen; Chen, Wei-Hong; Lu, Wen-Hong; Yuan, Jing; Nan, Pei-Hong; Sun, Jian-Ya; Zou, Ya-Lin; Zhou, Li-Hong; Zhang, Chi; Wu, Tang-Chun

    2006-01-01

    To investigate associations among occupational exposure to coke oven emissions (COEs), oxidative stress, cytogenotoxic effects, change in the metabolizing enzyme glutathione S-transferase (GST), and internal levels of polycyclic aromatic hydrocarbons (PAHs) in coke oven workers, we recruited 47 male coke oven workers and 31 male control subjects from a coke oven plant in northern China. We measured the levels of 1-hydroxypyrene (1-OHP) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) in urine, micronucleated binucleated cells (BNMNs) in peripheral blood lymphocyte, and GST in serum. Our results showed that the group exposed to COEs had significantly increased levels of 1-OHP [median 5.7; interquartile range (IQR), 1.4–12.0 μmol/mol creatinine] compared with the control group (3; 0.5–6.4 μmol/mol creatinine). In addition, the median levels (IQR) of 8-OHdG, BNMNs, and GST were markedly increased in the exposed [1.9 (1.4–15.4) μmol/mol creatinine; 6 (2–8) per thousand; 22.1 (14.9–31.2) U/L, respectively] compared with controls [1.3 (1.0–4.0) μmol/mol creatinine, 2 (0–4) per thousand; and 13.1 (9.5–16.7) U/L, respectively]. These results appeared to be modified by smoking. However, multivariate logistic regression analysis revealed that exposure to COEs had the highest odds ratio among variables analyzed and that smoking was not a significant confounder of the levels of studied biomarkers. Overall, the present findings suggest that COE exposure led to increased internal PAH burden, genetic damage, oxidative stress, and GST activity. The consequences of the changes in these biomarkers, such as risk of cancer, warrant further investigations. PMID:16675419

  19. Role of glutathione metabolism and glutathione-related antioxidant defense systems in hypertension.

    PubMed

    Robaczewska, J; Kedziora-Kornatowska, K; Kozakiewicz, M; Zary-Sikorska, E; Pawluk, H; Pawliszak, W; Kedziora, J

    2016-06-01

    The risk of developing chronic hypertension increases with age. Among others factors, increased oxidative stress is a well-recognized etiological factor for the development of hypertension. The co-occurrence of oxidative stress and hypertension may occur as a consequence of a decrease in antioxidant defense system activity or elevated reactive oxygen species generation. Glutathione is a major intracellular thiol-disulfide redox buffer that serves as a cofactor for many antioxidant enzymes. Glutathione-related parameters are altered in hypertension, suggesting that there is an association between the glutathione-related redox system and hypertension. In this review, we provide mechanistic explanations for how glutathione maintains blood pressure. More specifically, we discuss glutathione's role in combating oxidative stress and maintaining nitric oxide bioavailability via the formation of nitrosothiols and nitrosohemoglobin. Although impaired vasodilator responses are observed in S-nitrosothiol-deficient red blood cells, this potential hypertensive mechanism is currently overlooked in the literature. Here we fill in this gap by discussing the role of glutathione in nitric oxide metabolism and controlling blood pressure. We conclude that disturbances in glutathione metabolism might explain age-dependent increases in blood pressure. PMID:27511994

  20. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine.

    PubMed

    Sonni, Francesca; Clark, Andrew C; Prenzler, Paul D; Riponi, Claudio; Scollary, Geoffrey R

    2011-04-27

    Glutathione was assessed individually, and in combination with ascorbic acid, for its ability to act as an antioxidant with respect to color development in an oxidizing model white wine system. Glutathione was utilized at concentrations normally found in wine (30 mg/L), as well as at concentrations 20-fold higher (860 mg/L), the latter to afford ascorbic acid (500 mg/L) to glutathione ratios of 1:1. The model wine systems were stored at 45 °C without sulfur dioxide and at saturated oxygen levels, thereby in conditions highly conducive to oxidation. Under these conditions the results demonstrated the higher concentration of glutathione could initially provide protection against oxidative coloration, but eventually induced color formation. In the period during which glutathione offered a protective effect, the production of xanthylium cation pigment precursors and o-quinone-derived phenolic compounds was limited. When glutathione induced coloration, polymeric pigments were formed, but these were different from those found in model wine solutions without glutathione. In the presence of ascorbic acid, high concentrations of glutathione were able to delay the decay in ascorbic acid and inhibit the reaction of ascorbic acid degradation products with the wine flavanol compound (+)-catechin. However, on depletion, the glutathione again induced the production of a range of different polymeric pigments. These results highlight new mechanisms through which glutathione can offer both protection and spoilage during the oxidative coloration of a model wine. PMID:21384873

  1. Hepatic metallothionein and Glutathione-S-Transferase responses in two populations of rice frogs, Fejervarya limnocharis, naturally exposed to different environmental cadmium levels.

    PubMed

    Othman, Mohd Sham; Khonsue, Wichase; Kitana, Jirarach; Thirakhupt, Kumthorn; Robson, Mark; Borjan, Marija; Kitana, Noppadon

    2012-08-01

    Glutathione-S-Transferase (GST) and metallothionein are important biomarker endpoints in studying the effect of Cd exposure. The purpose of this research was to study the correlation between hepatic GST and metallothionein with hepatic Cd in wild Fejervarya limnocharis exposed to environmental Cd. Results showed that frogs from contaminated sites had significantly higher hepatic metallothionein (3.58 mg/kg wet weight) and GST activity (0.259 μmol/min/mg total protein) than those from the reference site (2.36 mg/kg wet weight and 0.157 μmol/min/mg total protein respectively). There was a significantly positive correlation between hepatic Cd and GST activity (r = 0.802, p = 0.009) but not between hepatic Cd and metallothionein (r = 0.548, p = 0.139). The results concluded that while frogs from the contaminated site had higher GST and metallothionein, only GST showed significant positive correlation with hepatic Cd levels, indicating that hepatic GST activity may be used as a biomarker endpoint. PMID:22722596

  2. Hepatic Metallothionein and Glutathione-S-Transferase Responses in Two Populations of Rice Frogs, Fejervarya limnocharis, Naturally Exposed to Different Environmental Cadmium Levels

    PubMed Central

    Othman, Mohd Sham; Khonsue, Wichase; Kitana, Jirarach; Thirakhupt, Kumthorn; Robson, Mark; Borjan, Marija

    2014-01-01

    Glutathione-S-Transferase (GST) and metallothionein are important biomarker endpoints in studying the effect of Cd exposure. The purpose of this research was to study the correlation between hepatic GST and metallothionein with hepatic Cd in wild Fejervarya limnocharis exposed to environmental Cd. Results showed that frogs from contaminated sites had significantly higher hepatic metallothionein (3.58 mg/kg wet weight) and GST activity (0.259 μmol/min/mg total protein) than those from the reference site (2.36 mg/kg wet weight and 0.157 μmol/min/mg total protein respectively). There was a significantly positive correlation between hepatic Cd and GST activity (r = 0.802, p = 0.009) but not between hepatic Cd and metallothionein (r = 0.548, p = 0.139). The results concluded that while frogs from the contaminated site had higher GST and metallothionein, only GST showed significant positive correlation with hepatic Cd levels, indicating that hepatic GST activity may be used as a biomarker endpoint. PMID:22722596

  3. Effect of vanadate on ATP-induced increase in intracellular calcium ion levels in human umbilical vein endothelial cells.

    PubMed

    Nejime, Namie; Tada, Yukari; Kagota, Satomi; Kubota, Yoko; Shibuichi, Ikuo; Shinoda, Yuki; Yamamoto, Tomohiro; Watanabe, Yasuo; Shinozuka, Kazumasa

    2010-01-01

    We investigated the effect of ammonium vanadate (vanadate) on ATP-induced increases in intracellular calcium ion level ([Ca(2+)](i)) of human umbilical vein endothelial cells (HUVEC) by fluorescence confocal microscopic imaging using the Ca(2+)-sensitive probe Calcium Green 1/AM. The ATP analogue 2-methylthio-ATP (2meS-ATP), at 10 microM, significantly increased the [Ca(2+)](i) of HUVEC, and this was abolished by 1 microM thapsigargin (a calcium pump inhibitor), whereas extracellular free calcium had no effect. Vanadate at 10 microM also significantly increased the [Ca(2+)](i) of HUVEC, which was abolished by 1 microM thapsigargin. However, vanadate at 1 microM did not exert such a significant effect. We thus examined the influence of < or =1 microM vanadate for 24 h on 2meS-ATP-induced increase in [Ca(2+)](i). Vanadate significantly reduced the action of 2meS-ATP at 1 microM but not at 0.1 microM. Endogenously released ATP is known to induce various actions on endothelial cells. The present results suggest that vanadate exerts a regulatory influence on the function of vascular endothelial cells. PMID:20522978

  4. Peptides from sesame cake extend healthspan of Caenorhabditis elegans via upregulation of skn-1 and inhibition of intracellular ROS levels.

    PubMed

    Wang, Zhuanhua; Ma, Xiaoli; Li, Jiao; Cui, Xiaodong

    2016-09-01

    The peptides from sesame cake (PSC) which are the main by-product of agricultural processing of sesame were prepared. To evaluate benefits of PSC for health and longevity, antioxidant activity and anti-aging effects were studied in vitro and in a Caenorhabditis elegans (C. elegans) model system. PSC exhibited antioxidant activity in vitro, and induced beneficial effects on lifespan and several health parameters of C.elegans, including pharyngeal pumping rate, locomotion and lipofuscin accumulation. In a mev-1 mutant, PSC increased lifespan, and it enhanced oxidative stress tolerance in wild-type nematodes. After treatment with PSC, SOD activity, GSH content, and GSH/GSSG ratio were increased, leading to low intracellular ROS levels in C. elegans. PSC up-regulated skn-1 mRNA, and its target gene gcs-1, and abolished the extension of lifespan in skn-1 mutant, indicating that PSC-mediated longevity is dependent on activation of the skn-1/Nrf-2 transcription factor. Current results warrant research into the use of PSC as nutraceuticals for overall health improvement. PMID:27381188

  5. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation.

    PubMed

    Mendoza-Cózatl, David G; Butko, Emerald; Springer, Franziska; Torpey, Justin W; Komives, Elizabeth A; Kehr, Julia; Schroeder, Julian I

    2008-04-01

    Phytochelatins (PCs) are glutathione-derived peptides that function in heavy metal detoxification in plants and certain fungi. Recent research in Arabidopsis has shown that PCs undergo long-distance transport between roots and shoots. However, it remains unknown which tissues or vascular systems, xylem or phloem, mediate PC translocation and whether PC transport contributes to physiologically relevant long-distance transport of cadmium (Cd) between shoots and roots. To address these questions, xylem and phloem sap were obtained from Brassica napus to quantitatively analyze which thiol species are present in response to Cd exposure. High levels of PCs were identified in the phloem sap within 24 h of Cd exposure using combined mass spectrometry and fluorescence HPLC analyses. Unexpectedly, the concentration of Cd was more than four-fold higher in phloem sap compared to xylem sap. Cadmium exposure dramatically decreased iron levels in xylem and phloem sap whereas other essential heavy metals such as zinc and manganese remained unchanged. Data suggest that Cd inhibits vascular loading of iron but not nicotianamine. The high ratios [PCs]/[Cd] and [glutathione]/[Cd] in the phloem sap suggest that PCs and glutathione (GSH) can function as long-distance carriers of Cd. In contrast, only traces of PCs were detected in xylem sap. Our results suggest that, in addition to directional xylem Cd transport, the phloem is a major vascular system for long-distance source to sink transport of Cd as PC-Cd and glutathione-Cd complexes. PMID:18208526

  6. Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis

    PubMed Central

    Doherty, Joanne R.; Yang, Chunying; Scott, Kristen E. N.; Cameron, Michael D.; Fallahi, Mohammad; Li, Weimin; Hall, Mark A.; Amelio, Antonio L.; Mishra, Jitendra K.; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J.; Lu, Yunqi; Dang, Chi. V.; Kumar, K. Ganesh; Butler, Andrew A.; Bannister, Thomas D.; Hooper, Andrea T.; Unsal-Kacmaz, Keziban; Roush, William R.; Cleveland, John L.

    2014-01-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1, and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, and reductions in glucose transport, and in levels of ATP, NADPH and glutathione. Reductions in glutathione then lead to increases in hydrogen peroxide, mitochondrial damage and, ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  7. Lipofundin® MCT/LCT 20% increase left ventricular systolic pressure in an ex vivo rat heart model via increase of intracellular calcium level

    PubMed Central

    Kim, Yeon A; Han, Jeong Yeol; Jin, Sangkyu; Ok, Seong-Ho; Lee, Heon-Keun; Chung, Young-Kyun

    2016-01-01

    Background Lipid emulsions have been used to treat various drug toxicities and for total parenteral nutrition therapy. Their usefulness has also been confirmed in patients with local anesthetic-induced cardiac toxicity. The purpose of this study was to measure the hemodynamic and composition effects of lipid emulsions and to elucidate the mechanism associated with changes in intracellular calcium levels in myocardiocytes. Methods We measured hemodynamic effects using a digital analysis system after Intralipid® and Lipofundin® MCT/LCT were infused into hearts hanging in a Langendorff perfusion system. We measured the effects of the lipid emulsions on intracellular calcium levels in H9c2 cells by confocal microscopy. Results Infusion of Lipofundin® MCT/LCT 20% (1 ml/kg) resulted in a significant increase in left ventricular systolic pressure compared to that after infusing modified Krebs-Henseleit solution (1 ml/kg) (P = 0.003, 95% confidence interval [CI], 2.4–12.5). Lipofundin® MCT/LCT 20% had a more positive inotropic effect than that of Intralipid® 20% (P = 0.009, 95% CI, 1.4–11.6). Both lipid emulsion treatments increased intracellular calcium levels. Lipofundin® MCT/LCT (0.01%) increased intracellular calcium level more than that of 0.01% Intralipid® (P < 0.05, 95% CI, 0.0–1.9). Conclusions These two lipid emulsions had different inotropic effects depending on their triglyceride component. The inotropic effect of lipid emulsions could be related with intracellular calcium level. PMID:26885303

  8. Glutathione modulation during sensitization as well as challenge phase regulates airway reactivity and inflammation in mouse model of allergic asthma.

    PubMed

    Nadeem, Ahmed; Siddiqui, Nahid; Alharbi, Naif O; Alharbi, Mohammad M; Imam, Faisal; Sayed-Ahmed, Mohamed M

    2014-08-01

    Glutathione, being a major intracellular redox regulator has been shown to be implicated in regulation of airway reactivity and inflammation. However, no study so far has investigated the effect of glutathione depletion/repletion during sensitization and challenge phases separately, which could provide an important insight into the pathophysiology of allergic asthma. The aim of the present study was to evaluate the role of glutathione depletion/repletion during sensitization and challenge phases separately in a mouse model of allergic asthma. Buthionine sulphoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase or N-acetyl cysteine (NAC), a thiol donor were used for depletion or repletion of glutathione levels respectively during both sensitization and challenge phases separately followed by assessment of airway reactivity, inflammation and oxidant-antioxidant balance in allergic mice. Depletion of glutathione with BSO during sensitization as well as challenge phase worsened allergen induced airway reactivity/inflammation and caused greater oxidant-antioxidant imbalance as reflected by increased NADPH oxidase expression/reactive oxygen species (ROS) generation/lipid peroxides formation and decreased total antioxidant capacity. On the other hand, repletion of glutathione pool by NAC during sensitization and challenge phases counteracted allergen induced airway reactivity/inflammation and restored oxidant-antioxidant balance through a decrease in NADPH oxidase expression/ROS generation/lipid peroxides formation and increase in total antioxidant capacity. Taken together, these findings suggest that depletion or repletion of glutathione exacerbates or ameliorates allergic asthma respectively by regulation of airway oxidant-antioxidant balance. This might have implications towards increased predisposition to allergy by glutathione depleting environmental pollutants. PMID:24742380

  9. Modulation of Intracellular Calcium Levels by Calcium Lactate Affects Colon Cancer Cell Motility through Calcium-Dependent Calpain

    PubMed Central

    Sundaramoorthy, Pasupathi; Sim, Jae Jun; Jang, Yeong-Su; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Mander, Poonam; Chul, Oh Byung; Shim, Won-Sik; Oh, Seung Hyun; Nam, Ky-Youb; Kim, Hwan Mook

    2015-01-01

    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer. PMID:25629974

  10. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  11. Glutathione synthesis and homeostasis in isolated type II alveolar cells

    SciTech Connect

    Saito, K.; Warshaw, J.B.; Prough, R.A.

    1986-03-05

    After isolation of Type II cells from neonatal rat lung, the glutathione (GSH) levels in these cells were greatly depressed. The total glutathione content could be increased 5-fold within 12-24 h by incubating the cells in media containing sulfur amino acids. Similarly, the activity of ..gamma..-glutamyltranspeptidase was low immediately after isolation, but was increased 2-fold during the first 24 h culture. Addition of either GSH or GSSG to the culture media increased the GSH content of Type II cells 2-2.5-fold. Buthionine sulfoximine and NaF prevented this replenishment of GSH during 24 h culture. When the rates of de novo synthesis of GSH and GSSG from /sup 35/S-cysteine were measured, the amounts of newly formed GSH decreased to 80% in the presence of GSH or GSSG. This suggests that exogenous GSH/GSSG can be taken up by the Type II cells to replenish the intracellular pool of GSH. Methionine was not as effective as cysteine in the synthesis of GSH. These results suggest that GSH levels in the isolated Type II cell can be maintained by de novo synthesis or uptake of exogenous GSH. Most of the GSH synthesized from cysteine, however, was excreted into the media of the cultured cells indicative of a potential role for the type II cell in export of the non-protein thiol.

  12. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans.

    PubMed

    Hala, Guedouari; Rachel, Gergondey; Arthur, Bourdais; Océane, Vanparis; Anne-Laure, Bulteau; Jean-Michel, Camadro; Françoise, Auchère

    2014-10-01

    Candia albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases called candidiasis. Its ability to grow in various morphological forms, such as unicellular budding yeast, filamentous pseudohyphae and hyphae, contributes to its survival in the diverse microenvironments it encounters in the host. During infection in vivo, C. albicans is faced with high levels of ROS generated by phagocytes, and the thiol-dependent redox status of the cells reflects their levels of oxidative stress. We investigated the role of glutathione during the transition between the yeast and hyphal forms of the pathogen, in relation to possible changes in mitochondrial bioenergetic pathways. Using various growth media and selective mutations affecting the filamentation process, we showed that C. albicans filamentation was always associated with a depletion of intracellular glutathione levels. Moreover, the induction of hypha formation resulted in general changes in thiol metabolism, including the oxidation of cell surface -SH groups and glutathione excretion. Metabolic adaptation involved TCA cycle activation, acceleration of mitochondrial respiration and a redistribution of electron transfer pathways, with an increase in the contribution of the alternative oxidase and rotenone-insensitive dehydrogenase. Changes in redox status and apparent oxidative stress may be necessary to the shift to adaptive metabolic pathways, ensuring normal mitochondrial function and ATP levels. The consumption of intracellular glutathione levels during the filamentation process may thus be the price paid by C. albicans for survival in the conditions encountered in the host. PMID:26461308

  13. The glutathione system: a new drug target in neuroimmune disorders.

    PubMed

    Morris, Gerwyn; Anderson, George; Dean, Olivia; Berk, Michael; Galecki, Piotr; Martin-Subero, Marta; Maes, Michael

    2014-12-01

    Glutathione (GSH) has a crucial role in cellular signaling and antioxidant defenses either by reacting directly with reactive oxygen or nitrogen species or by acting as an essential cofactor for GSH S-transferases and glutathione peroxidases. GSH acting in concert with its dependent enzymes, known as the glutathione system, is responsible for the detoxification of reactive oxygen and nitrogen species (ROS/RNS) and electrophiles produced by xenobiotics. Adequate levels of GSH are essential for the optimal functioning of the immune system in general and T cell activation and differentiation in particular. GSH is a ubiquitous regulator of the cell cycle per se. GSH also has crucial functions in the brain as an antioxidant, neuromodulator, neurotransmitter, and enabler of neuron survival. Depletion of GSH leads to exacerbation of damage by oxidative and nitrosative stress; hypernitrosylation; increased levels of proinflammatory mediators and inflammatory potential; dysfunctions of intracellular signaling networks, e.g., p53, nuclear factor-κB, and Janus kinases; decreased cell proliferation and DNA synthesis; inactivation of complex I of the electron transport chain; activation of cytochrome c and the apoptotic machinery; blockade of the methionine cycle; and compromised epigenetic regulation of gene expression. As such, GSH depletion has marked consequences for the homeostatic control of the immune system, oxidative and nitrosative stress (O&NS) pathways, regulation of energy production, and mitochondrial survival as well. GSH depletion and concomitant increase in O&NS and mitochondrial dysfunctions play a role in the pathophysiology of diverse neuroimmune disorders, including depression, myalgic encephalomyelitis/chronic fatigue syndrome and Parkinson's disease, suggesting that depleted GSH is an integral part of these diseases. Therapeutical interventions that aim to increase GSH concentrations in vivo include N-acetyl cysteine; Nrf-2 activation via hyperbaric

  14. Glutathione and mitochondria

    PubMed Central

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C.

    2014-01-01

    Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease, and Alzheimer’s disease. PMID:25024695

  15. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation

    PubMed Central

    Mendoza-Cózatl, David G.; Butko, Emerald; Springer, Franziska; Torpey, Justin W.; Komives, Elizabeth A.; Kehr, Julia; Schroeder, Julian I.

    2010-01-01

    Summary Phytochelatins (PCs) are glutathione-derived peptides that function in heavy metal detoxification in plants and certain fungi. Recent research in Arabidopsis has shown that PCs undergo long-distance transport between roots and shoots. However, it remains unknown which tissues or vascular systems, xylem or phloem, mediate PC translocation and whether PC transport contributes to physiologically relevant long-distance transport of cadmium (Cd) between shoots and roots. To address these questions, xylem and phloem sap were obtained from Brassica napus to quantitatively analyze which thiol species are present in response to Cd exposure. High levels of PCs were identified in the phloem sap within 24 h of Cd exposure using combined mass spectrometry and fluorescence HPLC analyses. Unexpectedly, the concentration of Cd was more than four-fold higher in phloem sap compared to xylem sap. Cadmium exposure dramatically decreased iron levels in xylem and phloem sap whereas other essential heavy metals such as zinc and manganese remained unchanged. Data suggest that Cd inhibits vascular loading of iron but not nicotianamine. The high ratios [PCs]/[Cd] and [glutathione]/[Cd] in the phloem sap suggest that PCs and glutathione (GSH) can function as long-distance carriers of Cd. In contrast, only traces of PCs were detected in xylem sap. Our results suggest that, in addition to directional xylem Cd transport, the phloem is a major vascular system for long-distance source to sink transport of Cd as PC–Cd and glutathione–Cd complexes. PMID:18208526

  16. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth

    PubMed Central

    Jin, Lingtao; Li, Dan; Alesi, Gina N.; Fan, Jun; Kang, Hee-Bum; Lu, Zhou; Boggon, Titus J.; Jin, Peng; Yi, Hong; Wright, Elizabeth R.; Duong, Duc; Seyfried, Nicholas T.; Egnatchik, Robert; DeBerardinis, Ralph J.; Magliocca, Kelly R.; He, Chuan; Arellano, Martha L.; Khoury, Hanna J.; Shin, Dong M.; Khuri, Fadlo R.; Kang, Sumin

    2015-01-01

    SUMMARY How mitochondrial glutaminolysis contributes to redox homeostasis in cancer cells remains unclear. Here we report that the mitochondrial enzyme glutamate dehydrogenase 1 (GDH1) is commonly upregulated in human cancers. GDH1 is important for redox homeostasis in cancer cells by controlling the intracellular levels of its product alpha-ketoglutarate (α-KG) and subsequent metabolite fumarate. Mechanistically, fumarate binds to and activates a ROS scavenging enzyme glutathione peroxidase 1 (GPx1). Targeting GDH1 by shRNA or a small molecule inhibitor R162 resulted in imbalanced redox homeostasis, leading to attenuated cancer cell proliferation and tumor growth. PMID:25670081

  17. Effect of Glutathione on Phytochelatin Synthesis in Tomato Cells 1

    PubMed Central

    Mendum, Mary Lou; Gupta, Subhash C.; Goldsbrough, Peter B.

    1990-01-01

    Growth of cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, in the presence of cadmium is inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. Cell growth and phytochelatin synthesis are restored to cells treated with buthionine sulfoximine by the addition of glutathione to the medium. Glutathione stimulates the accumulation of phytochelatins in cadmium treated cells, indicating that availability of glutathione can limit synthesis of these peptides. Exogenous glutathione causes a disproportionate increase in the level of smaller phytochelatins, notably [γ-Glu-Cys]2-Gly. In the presence of buthionine sulfoximine and glutathione, phytochelatins that are produced upon exposure to cadmium incorporate little [35S]cysteine, indicating that these peptides are probably not synthesized by sequential addition of cysteine and glutamate to glutathione. PMID:16667492

  18. Bergamot essential oil differentially modulates intracellular Ca2+ levels in vascular endothelial and smooth muscle cells: a new finding seen with fura-2.

    PubMed

    You, Ji H; Kang, Purum; Min, Sun Seek; Seol, Geun Hee

    2013-04-01

    In this study, we compared the effect of the essential oil of Citrus bergamia Risso [bergamot, bergamot essential oil (BEO)] on the intracellular Ca levels in vascular endothelial (EA) and mouse vascular smooth muscle (MOVAS) cells, using the fura-2 fluorescence technique. BEO caused an initial transient increase in intracellular Ca concentration ([Ca]i) in EA cells, followed by a decrease, whereas it induced a sustained increase in [Ca]i in MOVAS cells. Linalyl acetate (LA) as a major component of BEO-induced [Ca]i mobilization was similar to BEO in EA cells. The increase of [Ca]i by LA was higher in EA cells than in MOVAS cells. [Ca]i rise induced by extracellular Ca application was significantly blocked by BEO or LA in EA cells but not in MOVAS cells, suggesting that BEO and LA block Ca influx in EA cells. The present results suggest that BEO and LA differentially modulate intracellular Ca levels in vascular endothelial and smooth muscle cells. In addition, blockade of Ca influx by BEO and LA in EA cells may explain the protective effects of BEO on endothelial dysfunction associated with cardiovascular disease. PMID:23288200

  19. Changes in biosynthesis and metabolism of glutathione upon ochratoxin A stress in Arabidopsis thaliana.

    PubMed

    Wang, Yan; Zhao, Weiwei; Hao, Junran; Xu, Wentao; Luo, Yunbo; Wu, Weihong; Yang, Zhuojun; Liang, Zhihong; Huang, Kunlun

    2014-06-01

    Ochratoxin A (OTA) is one of the most toxic mycotoxins, which is toxic to plants and simulates oxidative stress. Glutathione is an important antioxidant in plants and is closely associated with detoxification in cells. We have previously shown that OTA exposure induces obvious expression differences in genes associated with glutathione metabolism. To characterize glutathione metabolism and understand its role in OTA phytotoxicity, we observed the accumulation of GSH in the detached leaves of Arabidopsis thaliana under OTA treatment. OTA stimulated a defense response through enhancing glutathione-S-transferase, glutathione peroxidase, glutathione reductase activities, and the transcript levels of these enzymes were increased to maintain the total glutathione content. Moreover, the level of oxidized glutathione (GSSG) was increased and the ascorbate-glutathione cycle fluctuated in response to OTA. The depletion of glutathione using buthionine sulfoximine (BSO, inhibitor of glutamate-cysteine ligase) had no profound effect on OTA toxicity, as glutathione was regenerated through the ascorbate-glutathione cycle to maintain the total glutathione content. The ROS, MDA and GSH accumulation was significantly affected in the mutant gsh1, gr1 and gpx2 after treatment with OTA, which indicated that glutathione metabolism is directly involved in the oxidative stress response of Arabidopsis thaliana subjected to OTA. In conclusion, date demonstrate that glutathione-associated metabolism is closely related with OTA stress and glutathione play a role in resistance of Arabidopsis subjected to OTA. PMID:24662377

  20. Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels

    SciTech Connect

    Heusinkveld, Harm J.; Westerink, Remco H.S.

    2011-08-15

    Calcium plays a crucial role in virtually all cellular processes, including neurotransmission. The intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) is therefore an important readout in neurotoxicological and neuropharmacological studies. Consequently, there is an increasing demand for high-throughput measurements of [Ca{sup 2+}]{sub i}, e.g. using multi-well microplate readers, in hazard characterization, human risk assessment and drug development. However, changes in [Ca{sup 2+}]{sub i} are highly dynamic, thereby creating challenges for high-throughput measurements. Nonetheless, several protocols are now available for real-time kinetic measurement of [Ca{sup 2+}]{sub i} in plate reader systems, though the results of such plate reader-based measurements have been questioned. In view of the increasing use of plate reader systems for measurements of [Ca{sup 2+}]{sub i} a careful evaluation of current technologies is warranted. We therefore performed an extensive set of experiments, using two cell lines (PC12 and B35) and two fluorescent calcium-sensitive dyes (Fluo-4 and Fura-2), for comparison of a linear plate reader system with single cell fluorescence microscopy. Our data demonstrate that the use of plate reader systems for high-throughput real-time kinetic measurements of [Ca{sup 2+}]{sub i} is associated with many pitfalls and limitations, including erroneous sustained increases in fluorescence, limited sensitivity and lack of single cell resolution. Additionally, our data demonstrate that probenecid, which is often used to prevent dye leakage, effectively inhibits the depolarization-evoked increase in [Ca{sup 2+}]{sub i}. Overall, the data indicate that the use of current plate reader-based strategies for high-throughput real-time kinetic measurements of [Ca{sup 2+}]{sub i} is associated with caveats and limitations that require further investigation. - Research Highlights: > The use of plate readers for high-throughput screening of intracellular

  1. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency

    SciTech Connect

    Giordano, Gennaro; Afsharinejad, Zhara; Guizzetti, Marina; Vitalone, Annabella; Kavanagh, Terrance J.; Costa, Lucio G. . E-mail: lgcosta@u.washington.edu

    2007-03-15

    Over the past several years evidence has been accumulating from in vivo animal studies, observations in humans, and in vitro studies, that organophosphorus (OP) insecticides may induce oxidative stress. Such effects may contribute to some of the toxic manifestations of OPs, particularly upon chronic or developmental exposures. The aim of this study was to investigate the role of oxidative stress in the neurotoxicity of two commonly used OPs, chlorpyrifos (CPF) and diazinon (DZ), their oxygen analogs (CPO and DZO), and their 'inactive' metabolites (TCP and IMP), in neuronal cells from a genetic model of glutathione deficiency. Cerebellar granule neurons from wild type mice (Gclm +/+) and mice lacking the modifier subunit of glutamate cysteine ligase (Gclm -/-), the first and limiting step in the synthesis of glutathione (GSH), were utilized. The latter display very low levels of GSH and are more susceptible to the toxicity of agents that increase oxidative stress. CPO and DZO were the most cytotoxic compounds, followed by CPF and DZ, while TCP and IMP displayed lower toxicity. Toxicity was significantly higher (10- to 25-fold) in neurons from Gclm (-/-) mice, and was antagonized by various antioxidants. Depletion of GSH from Gclm (+/+) neurons significantly increased their sensitivity to OP toxicity. OPs increased intracellular levels of reactive oxygen species and lipid peroxidation and in both cases the effects were greater in neurons from Gclm (-/-) mice. OPs did not alter intracellular levels of GSH, but significantly increased those of oxidized glutathione (GSSG). Cytotoxicity was not antagonized by cholinergic antagonists, but was decreased by the calcium chelator BAPTA-AM. These studies indicate that cytotoxicity of OPs involves generation of reactive oxygen species and is modulated by intracellular GSH, and suggest that it may involve disturbances in intracellular homeostasis of calcium.

  2. Glutathione dysregulation and the etiology and progression of human diseases

    PubMed Central

    Ballatori, Nazzareno; Krance, Suzanne M.; Notenboom, Sylvia; Shi, Shujie; Tieu, Kim; Hammond, Christine L.

    2009-01-01

    Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Because of GSH’s pleiotropic effects on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates and/or oxidation state can be compromised by inherited or aquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide (GSSG) ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases such as cancer, Parkinson’s disease, and Alzheimer’s disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases

  3. Analysis of glutathione levels in the brain tissue samples from HIV-1-positive individuals and subject with Alzheimer's disease and its implication in the pathophysiology of the disease process.

    PubMed

    Saing, Tommy; Lagman, Minette; Castrillon, Jeffery; Gutierrez, Eutiquio; Guilford, Frederick T; Venketaraman, Vishwanath

    2016-12-01

    HIV-1 positive individuals are at high risk for susceptibility to both pulmonary tuberculosis (TB) and extra-pulmonary TB, including TB meningitis (TBM) which is an extreme form of TB. The goals of this study are to determine the mechanisms responsible for compromised levels of glutathione (GSH) in the brain tissue samples derived from HIV-1-infected individuals and individuals with Alzheimer's disease (AD), investigate the possible underlying mechanisms responsible for GSH deficiency in these pathological conditions, and establish a link between GSH levels and pathophysiology of the disease processes. We demonstrated in the autopsied human brain tissues that the levels of total and reduced forms of GSH were significantly compromised in HIV-1 infected individuals compared to in healthy subjects and individuals with AD. Brain tissue samples derived from HIV-1-positive individuals had substantially higher levels of free radicals than that derived from healthy and AD individuals. Enzymes that are responsible for the de novo synthesis of GSH such as γ-glutamate cysteine-ligase catalytic subunit (GCLC-rate limiting step enzyme) and glutathione synthetase (GSS-enzyme involved in the second step reaction) were significantly decreased in the brain tissue samples derived from HIV-1-positive individuals with low CD4 + T-cells (< 200 cells/mm(3)) compared to healthy and AD individuals. Levels of glutathione reductase (GSR) were also decreased in the brain tissue samples derived from HIV-1 infected individuals. Overall, our findings demonstrate causes for GSH deficiency in the brain tissue from HIV-1 infected individuals explaining the possible reasons for increased susceptibility to the most severe form of extra-pulmonary TB, TBM. PMID:27335804

  4. [The different aspects of the biological role of glutathione].

    PubMed

    Bilska, Anna; Kryczyk, Agata; Włodek, Lidia

    2007-01-01

    Glutathione plays a key role in maintaining a physiological balance between prooxidants and antioxidants, crucial for the life and death of a cell. Glutathione occurs in the human body in several redox forms, of which reduced glutathione (GSH), oxidized glutathione (GSSG), S-nitrosoglutathione (GSNO), and mixed disulfides of glutathione with proteins are the most important. There is a clear relationship between the levels of different redox forms of glutathione and the regulation of cellular metabolism in a broad sense. Therefore, each of these forms of glutathione can be beneficial or harmful to the organism depending on the cell type and its metabolic status. In such a situation, elevation of GSH level can constitute a very important factor aiding treatment. A rise in GSH level is beneficial in all pathological states, accompanied by lowered GSH content, while a lowering of GSH level is an indication to induce short-term immunosuppression required in organ transplantation and in tumor cells to selectively increase their sensitivity to chemo- and radiotherapy. GSH itself cannot be used as a therapeutic since it is not transported through plasma membranes. Cysteine, an amino acid which limits glutathione biosynthesis, also cannot be used in therapy due to its high neurotoxicity. For this reason, there is currently an intensive search for possibilities of modulating cellular glutathione and cysteine levels, and this problem can be the subject of interdisciplinary studies combining such scientific fields as biology, pharmacology, toxicology, and clinical medicine. PMID:17679914

  5. Cell free glutathione synthesizing activity of mercury resistant bacteria

    SciTech Connect

    Gachhui, R.; Pahan, K.; Ray, S., R.; Chaudhuri, J.; Mandal, A. )

    1991-03-01

    Reduced glutathione (GSH) is present in all living cells and is known to have a generalized role in protecting the cells from heavy metal toxicity. Depletion of both GSH and glutathione reductase (GR) level upon treatment with mercuric chloride (HgCl{sub 2}) is reported in various organs of rat. However, the effect of HgCl{sub 2} on glutathione level in bacterial system is not known. In the present communication, the authors report the results of their investigation on the glutathione status in mercury resistant bacterial cells exposed to HgCl{sub 2}.

  6. A spontaneous change in the intracellular cyclic AMP level in Aspergillus niger is influenced by the sucrose concentration in the medium and by light.

    PubMed Central

    Gradisnik-Grapulin, M; Legisa, M

    1997-01-01

    A spontaneous rise in intracellular cyclic AMP (cAMP) levels was observed in the early stages of Aspergillus niger growth under conditions yielding large amounts of citric acid. The amount of cAMP formed was found to depend on the initial concentration of sucrose in the medium. Under higher-sucrose conditions, the cAMP peak appeared earlier and was higher, while in lower-sucrose media a flattened peak was observed later in fermentation. Since in media with higher concentrations of sucrose intracellular citric acid starts to accumulate earlier and more rapidly, cAMP synthesis may be triggered by intracellular acidification, which is caused by the dissociation of citric acid. No spontaneous increase in cAMP concentrations could be detected when the cells were grown in continuously illuminated cultures, suggesting that A. niger phosphodiesterase (PDE) is photoregulated. More evidence for the activation of PDE by light was obtained from morphological studies under light and dark conditions in the presence of cAMP or N6,O2'-dibutyryl cAMP, and this idea was additionally supported by experiments in which PDE inhibitors were tested. PMID:9212431

  7. Effects of concentrated drinking water injection on glutathione and glutathione-dependent enzymes in liver of Cyprinus carpio L.

    PubMed

    Elia, Antonia Concetta; Fanetti, Alessia; Dörr, Ambrosius Josef Martin; Taticchi, Maria I

    2008-06-01

    Two drinking water production plants located in North Italy, collecting water from the River Po (Plants 1 and 2) were chosen for this study. Water samples were collected before and after the disinfection process and at two points along the piping system. Water samples were concentrated by the solid-phase extraction system and injected intraperitoneally into specimens of Cyprinus carpio. The concentration of water samples was 3 l/equiv. In order to assess the effects of the water samples on carp liver, total glutathione and glutathione-dependent enzymes, such as glutathione S-transferase, glutathione peroxidase, glutathione reductase and glyoxalase I, were measured following this treatment for 6 days at two experimental times (3 and 6 days). Both water plant-treated carp showed a general increase of the enzymatic activities of glutathione S-transferase, and glutathione reductase which might be employed as potential biomarkers of oxidative stress induced by disinfected river water. Plant 1-treated carp showed higher glyoxalase I and glutathione levels and lower glutathione peroxidase activity. A depleted level of total glutathione and of glyoxalase I for specimens of water plant 2 (for both experimental times), without correlation with the distances in the pipeline, suggests that river plant water can also lead to potentially adverse effects on selected biochemical parameters in C. carpio. PMID:18457861

  8. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    PubMed

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-01

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance. PMID:26806099

  9. Synthesis, structural characterization and effect on human granulocyte intracellular cAMP levels of abscisic acid analogs.

    PubMed

    Bellotti, Marta; Salis, Annalisa; Grozio, Alessia; Damonte, Gianluca; Vigliarolo, Tiziana; Galatini, Andrea; Zocchi, Elena; Benatti, Umberto; Millo, Enrico

    2015-01-01

    The phytohormone abscisic acid (ABA), in addition to regulating physiological functions in plants, is also produced and released by several mammalian cell types, including human granulocytes, where it stimulates innate immune functions via an increase of the intracellular cAMP concentration ([cAMP]i). We synthesized several ABA analogs and evaluated the structure-activity relationship, by the systematical modification of selected regions of these analogs. The resulting molecules were tested for their ability to inhibit the ABA-induced increase of [cAMP]i in human granulocytes. The analogs with modified configurations at C-2' and C-3' abrogated the ABA-induced increase of the [cAMP]i and also inhibited several pro-inflammatory effects induced by exogenous ABA on granulocytes and monocytes. Accordingly, these analogs could be suitable as novel putative anti-inflammatory compounds. PMID:25496807

  10. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level

    PubMed Central

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-01

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance. PMID:26806099

  11. Application of "FLUOR-P" device for analysis of the space flight effects on the intracellular level.

    NASA Astrophysics Data System (ADS)

    Grigorieva, Olga; Rudimov, Evgeny; Buravkova, Ludmila; Galchuk, Sergey

    The mechanisms of cellular gravisensitivity still remain unclear despite the intensive research in the hypogravity effects on cellular function. In most cell culture experiments on unmanned vehicles "Bion" and "Photon", as well as on the ISS only allow post-flight analysis of biological material, including fixed cells is provided. The dynamic evaluation cellular parameters over a prolonged period of time is not possible. Thus, a promising direction is the development of equipment for onboard autonomous experiments. For this purpose, the SSC RF IBMP RAS has developed "FLUOR-P" device for measurement and recording of the dynamic differential fluorescent signal from nano- and microsized objects of organic and inorganic nature (human and animal cells, unicellular algae, bacteria, cellular organelles suspension) in hermetically sealed cuvettes. Besides, the device allows to record the main physical factors affecting the analyzed object (temperature and gravity loads: position in space, any vector acceleration, shock) in sync with the main measurements. The device is designed to perform long-term programmable autonomous experiments in space flight on biological satellites. The device software of allows to carry out complex experiments using cell. Permanent registration of data on built-in flash will give the opportunity to analyze the dynamics of the estimated parameters. FLUOR-P is designed as a monobloc (5.5 kg weight), 8 functional blocks are located in the inner space of the device. Each registration unit of the FLUOR-P has two channels of fluorescence intensity and excitation light source with the wavelength range from 300 nm to 700 nm. During biosatellite "Photon" flight is supposed to conduct a full analysis of the most important intracellular parameters (mitochondria activity and intracellular pH) dynamics under space flight factors and to assess the possible contribution of temperature on the effects of microgravity. Work is supported by Roskosmos and the

  12. Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate.

    PubMed

    Homolya, László; Váradi, András; Sarkadi, Balázs

    2003-01-01

    Many endogenous or xenobiotic lipophilic substances are eliminated from the cells by the sequence of oxidation, conjugation to an anionic group (glutathione, glucuronate or sulfate) and transport across the plasma membrane into the extracellular space. The latter step is mediated by integral membrane glycoproteins belonging to the superfamily of ATP-Binding Cassette (ABC) transporters. A subfamily, referred as ABCC, includes the famous/infamous cystic fibrosis transmembrane regulator (CFTR), the sulfonylurea receptors (SUR 1 and 2), and the multidrug resistance-associated proteins (MRPs). The name of the MRPs refers to their potential role in clinical multidrug resistance, a phenomenon that hinders the effective chemotherapy of tumors. The MRPs that have been functionally characterized so far share the property of ATP-dependent export pumps for conjugates with glutathione (GSH), glucuronate or sulfate. MRP1 and MRP2 are also mediating the cotransport of unconjugated amphiphilic compounds together with free GSH. MRP3 preferentially transports glucuronides but not glutathione S-conjugates or free GSH. MRP1 and MRP2 also contribute to the control of the intracellular glutathione disulfide (GSSG) level. Although these proteins are low affinity GSSG transporters, they can play essential role in response to oxidative stress when the activity of GSSG reductase becomes rate limiting. The human MRP4, MRP5 and MRP6 have only partially been characterized. However, it has been revealed that MRP4 can function as an efflux pump for cyclic nucleotides and nucleoside analogues, used as anti-HIV drugs. MRP5 also transports GSH conjugates, nucleoside analogues, and possibly heavy metal complexes. Transport of glutathione S-conjugates mediated by MRP6, the mutation of which causes pseudoxantoma elasticum, has recently been shown. In summary, numerous members of the multidrug resistance-associated protein family serve as export pumps that prevent the accumulation of anionic conjugates

  13. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter

    PubMed Central

    2013-01-01

    Background In past years research has focused on the development of alternative Gram positive bacterial expression systems to produce industrially relevant proteins. Brevibacillus choshinensis is an easy to handle non-sporulating bacterium, lacking extracellular proteases, that has been already shown to provide a high level of recombinant protein expression. One major drawback, limiting the applicability of the Brevibacillus expression system, is the absence of expression vectors based on inducible promoters. Here we used the PxylA inducible promoter, commonly employed in other Bacillae expression systems, in Brevibacillus. Results Using GFP, α-amylase and TcdA-GT as model proteins, high level of intracellular protein expression (up to 250 mg/L for the GFP) was achieved in Brevibacillus, using the pHis1522 vector carrying the B. megaterium xylose-inducible promoter (PxylA). The GFP expression yields were more than 25 fold higher than those reported for B. megaterium carrying the same vector. All the tested proteins show significant increment in their expression levels (2-10 folds) than those obtained using the available plasmids based on the P2 constitutive promoter. Conclusion Combining the components of two different commercially available Gram positive expression systems, such as Brevibacillus (from Takara Bio) and B. megaterium (from Mobitec), we demonstrate that vectors based on the B. megaterium PxylA xylose inducible promoter can be successfully used to induce high level of intracellular expression of heterologous proteins in Brevibacillus. PMID:23374160

  14. Status of antioxidant enzyme: glutathione peroxidase and total polyphenol level in plasma of Tunisian patients suffering from colorectal and gastric cancer: interaction with clinical outcome.

    PubMed

    Baroudi, Olfa; Younes, Sonia Ben; Mézlini, Amel; Bignon, Yves Jean; Medimeg, Imen; Uhrhammer, Nancy; Gaiied, Amel Ben Ammar E L; Ellouz, Soufia Chabchoub

    2013-12-01

    In our case-control study, we measure the antioxidant status by dosing enzymes involved in oxidant stress in plasma of patients with colorectal and gastric cancer, and in the second step, we investigate the impact of chemotherapy before and after surgery on plasma antioxidant status and polyphenols in patients. Blood serum was collected from patients with stomach and colorectal cancer before conventional treatment, and glutathione peroxidase (GSHPX) enzyme activities and total polyphenols were determined by spectrophotometric methods. In our study, we found a significant decrease in glutathione peroxidase activity in plasma of patients compared with controls (P = 0.02), although we did not find a significant association between total polyphenols and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) or ABTS in plasma of colorectal and stomach cancer compared with control; furthermore, we observed no significant difference in the average plasma polyphenols in patients treated with chemotherapy before and after surgery. We have shown the decrease in GSHPX activity in plasma of cases with colorectal and gastric cancer, and this decrease reflects that the oxidative stress is associated with tumor tract and related to oxidative metabolism; however, no association was found between total polyphenols and ABTS in our study. PMID:24072511

  15. A mode of action of glucosinolate-derived isothiocyanates: Detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis.

    PubMed

    Jeschke, Verena; Gershenzon, Jonathan; Vassão, Daniel Giddings

    2016-04-01

    Glucosinolates are activated plant defenses common in the order Brassicales that release isothiocyanates (ITCs) and other hydrolysis products upon tissue damage. The reactive ITCs are toxic to insects resulting in reduced growth, delayed development and occasionally mortality. Generalist lepidopteran larvae often detoxify ingested ITCs via conjugation to glutathione (GSH) and survive on low glucosinolate diets, but it is not known how this process influences other aspects of metabolism. We investigated the impact of the aliphatic 4-methylsulfinylbutyl-ITC (4msob-ITC, sulforaphane) on the metabolism of Spodoptera littoralis larvae, which suffer a significant growth decline on 4msob-ITC-containing diets while excreting ITC-glutathione conjugates and their derivatives in the frass. The most striking effects were a decrease of GSH in midgut tissue and hemolymph due to losses by conjugation to ITC during detoxification, and a decline of the GSH biosynthetic precursor cysteine. Protein content was likewise reduced by ITC treatment suggesting that protein is actively catabolized in an attempt to supply cysteine for GSH biosynthesis. The negative growth and protein effects were relieved by dietary supplementation with cystine. Other consequences of protein breakdown included deamination of amino acids with increased excretion of uric acid and elevated lipid content. Thus metabolic detoxification of ITCs provokes a cascade of negative effects on insects that result in reduced fitness. PMID:26855197

  16. Correction of glutathione deficiency in the lower respiratory tract of HIV seropositive individuals by glutathione aerosol treatment.

    PubMed Central

    Holroyd, K. J.; Buhl, R.; Borok, Z.; Roum, J. H.; Bokser, A. D.; Grimes, G. J.; Czerski, D.; Cantin, A. M.; Crystal, R. G.

    1993-01-01

    BACKGROUND--Concentrations of glutathione, a ubiquitous tripeptide with immune enhancing and antioxidant properties, are decreased in the blood and lung epithelial lining fluid of human immunodeficiency virus (HIV) seropositive individuals. Since the lung is the most common site of infection in those who progress to AIDS it is rational to consider whether it is possible to safely augment glutathione levels in the epithelial lining fluid of HIV seropositive individuals, thus potentially improving local host defence. METHODS--Purified reduced glutathione was delivered by aerosol to HIV seropositive individuals (n = 14) and the glutathione levels in lung epithelial lining fluid were compared before and at one, two, and three hours after aerosol administration. RESULTS--Before treatment total glutathione concentrations in the epithelial lining fluid were approximately 60% of controls. After three days of twice daily doses each of 600 mg reduced glutathione, total glutathione levels in the epithelial lining fluid increased and remained in the normal range for at least three hours after treatment. Strikingly, even though > 95% of the glutathione in the aerosol was in its reduced form, the percentage of oxidised glutathione in epithelial lining fluid increased from 5% before treatment to about 40% three hours after treatment, probably reflecting the use of glutathione as an antioxidant in vivo. No adverse effects were observed. CONCLUSIONS--It is feasible and safe to use aerosolised reduced glutathione to augment the deficient glutathione levels of the lower respiratory tract of HIV seropositive individuals. It is rational to evaluate further the efficacy of this tripeptide in improving host defence in HIV seropositive individuals. PMID:8256245

  17. A new insight into the role of intracellular nickel levels for the stress response, surface properties and twitching motility by Haemophilus influenzae.

    PubMed

    Tikhomirova, Alexandra; Jiang, Donald; Kidd, Stephen P

    2015-04-01

    Nickel acts as a co-factor for a small number of enzymes in bacteria. Urease is one of the two nickel-dependent enzymes that have been identified in Haemophilus influenzae; glyoxalase I is the other. However, nickel has been suggested to have roles in H. influenzae that can not attributed to the function of these enzymes. We have previously shown that in the H. influenzae strain Rd KW20 the inability to acquire nickel led to alterations to the cell-type; an increased biofilm formation and changes in cell surface properties. Here we report the differences in the genome wide gene expression between Rd KW20 and a strain incapable of importing nickel (nikQ); revealing a link between intracellular nickel levels and genes involved in metabolic pathways, stress responses and genes associated with surface factors such as type IV pili. We have then taken a strain previously shown to use type IV pili both in biofilm formation and for twitching motility (86-028NP) and have shown its homologous genes (NTHI1417-1422; annotated as cobalt transporter, cbiKLMOQ) did import nickel and mutations in this locus had pleiotropic effects correlating to stress response and motility. Compared to wild type cells, the nickel depleted cells were more electronegativity charged, they aggregated and formed a biofilm. Correct intracellular nickel levels were also important for resistance to oxidative stress; the nickel depleted cells were more sensitive to oxidative stress. The nickel depleted cells were also non-motile, but the addition specifically of nickel returned these cells to a wild type motility state. We have also analysed the role of nickel uptake in a naturally, urease negative strain (the blood isolate R2866) and depleting intracellular nickel (a nikQ mutant) in this strain effected a similar range of cell functions. These data reveal a role for the capacity to acquire nickel from the environment and for the correct intracellular nickel levels as part of H. influenzae stress response

  18. Suppression of the increasing level of acetylcholine-stimulated intracellular Ca2+ in guinea pig airway smooth muscle cells by mabuterol

    PubMed Central

    SONG, XIRUI; ZHAO, CHAO; DAI, CAILING; REN, YANXIN; AN, NAN; WEN, HUIMIN; PAN, LI; CHENG, MAOSHENG; ZHANG, YUYANG

    2015-01-01

    The present study aimed to establish an effective method for the in vitro culture of guinea pig airway smooth muscle (ASM) cells, and also investigate the suppressive effect of mabuterol hydrochloride (Mab) on the increased level of intracellular Ca2+ in ASM cells induced with acetylcholine (Ach). Two different methods, i.e. with or without collagenase to pretreat tracheal tissues, were applied to the manufacture of ASM cells. Cell viability was determined with the 3-(4,5-dimethylthinazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Immunocytochemistry and immunofluorescence were used for the identification of ASM cells. Different concentration levels (10−3, 10−4, 10−5, 10−6 and 10−7 mmol/l) of Mab were administered 5 min before Ach (10−4 M) treatment, respectively. The Ca2+ fluorescent probe, Fura-2/AM or Fluo-3/AM were applied to the inspection of Ca2+ fluorescent intensity with Varioskan Flash, immunocytometry systems and an inverted system microscope, respectively. The results showed that the fresh method, in which isolated tracheal tissues were previously treated with collagenase for 20 min, was more advantageous for the preparation of guinea pig ASM cells compared to when the enzyme was not used. The time for the ASM cells to initially migrate out of the ‘tissue blocks’ and the culture having to be generated due to the thick cell density was significantly less. On identification with immunocytochemistry or immunofluorescent staining, >95% of the cells were ASM cells. Mab (10−3−10−7 mmol/l) significantly suppressed the elevation of intracellular Ca2+ induced by Ach in a concentration-dependent manner. The inhibitory rates of intracellular Ca2+ by different concentrations of Mab, from low to high, were 14.93, 24.73, 40.06, 48.54 and 57.13%, respectively, when Varioskan Flash was used for determination. In conclusion, this novel method has a shorter harvesting period for ASM cells. Mab can suppress the increasing level of intracellular Ca2

  19. Sperm motility-initiating substance in newt egg-jelly induces differential initiation of sperm motility based on sperm intracellular calcium levels.

    PubMed

    Watanabe, Akihiko; Takayama-Watanabe, Eriko; Vines, Carol A; Cherr, Gary N

    2011-01-01

    Sperm motility-initiating substance (SMIS), a novel motility inducer from newt egg-jelly, is activated by the release from associated jelly substances at the beginning of internal fertilization and affects female-stored sperm. We examined motility initiation kinetics of newt sperm in response to SMIS by monitoring the changes of sperm intracellular calcium ([Ca²(+)](i)). In quiescent non-motile sperm loaded with the Ca²(+) indicator Fluo-4, intracellular free Ca²(+) was observed around mitochondria using confocal scanning laser microscopy. A slight increase in [Ca²(+)](i) occurred simultaneously and transiently at motility initiation in sperm treated with either heated jelly extract (hJE) containing activated SMIS, or a low osmotic solution, which naturally initiates motility in externally-fertilizing amphibians and can initiate motility in urodele sperm. When the increase of [Ca²(+)](i) at motility-initiation was monitored using spectrofluorometry, large increases in [Ca²(+)](i) occurred immediately in the low osmotic solution and within 1.5 min in the hJE. In the intact jelly extract (no heating), small increases of [Ca²(+)](i) irregularly occurred from around 1 min and for about 4 min, during which motility was differentially initiated among sperm. These results indicate that the SMIS induces differential initiation of sperm motility depending on the activational states of the SMIS and its overall activity. The motility initiation in the jelly extract was delayed in sperm whose intracellular Ca²(+) had been chelated with BAPTA-AM. The relative levels of [Ca²(+)](i) were variable with a mean of 414 ± 256 nmol/L among resting sperm, suggesting that the level of [Ca²(+)](i) in the resting sperm modulates the responsiveness to the SMIS. PMID:21261606

  20. Activation of the adenosine A2A receptor attenuates experimental autoimmune encephalomyelitis and is associated with increased intracellular calcium levels.

    PubMed

    Liu, Yumei; Zou, Haifeng; Zhao, Ping; Sun, Bo; Wang, Jinghua; Kong, Qingfei; Mu, Lili; Zhao, Sihan; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Zhao, Jiaying; Yin, Pengqi; Liu, Lei; Zhao, Xiuli; Li, Hulun

    2016-08-25

    Multiple sclerosis (MS) is a common autoimmune disease that inevitably causes inflammatory nerve demyelination. However, an effective approach to prevent its course is still lacking and urgently needed. Recently, the adenosine A2A receptor (A2AR) has emerged as a novel inflammation regulator. Manipulation of A2AR activity may suppress the MS process and protect against nerve damage. To test this hypothesis, we treated murine experimental autoimmune encephalomyelitis (EAE), a model for MS, with the selective A2AR agonist, CGS21680 (CGS). We evaluated the effects of CGS on the pathological features of EAE progression, including CNS cellular infiltration, inflammatory cytokine expression, lymphocyte proliferation, and cell surface markers. Treatment with CGS significantly suppressed specific lymphocyte proliferation, reduced infiltration of CD4(+) T lymphocytes, and attenuated the expression of inflammatory cytokines, which in turn inhibited the EAE progression. For the first time, we demonstrate that CGS can increase the intracellular calcium concentration ([Ca(2+)]i) in murine lymphocytes, which may be the mechanism underlying the suppressive effects of CGS-induced A2AR activation on EAE progression. Our findings strongly suggest that A2AR is a potential therapeutic target for MS and provide insight into the mechanism of action of A2AR agonists, which may offer a therapeutic option for this disease. PMID:27217214

  1. Glutathione Redox System in β-Thalassemia/Hb E Patients

    PubMed Central

    Tangjaidee, Thongchai; Hatairaktham, Suneerat; Charoensakdi, Ratiya; Panichkul, Narumol; Siritanaratkul, Noppadol; Fucharoen, Suthat

    2013-01-01

    β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH)/glutathione disulfide (GSSG) and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body's first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores. PMID:24223032

  2. Glutathione and gamma-glutamyl transferases are involved in the formation of cadmium-glutathione complex.

    PubMed

    Adamis, Paula Daniela Braga; Mannarino, Sérgio Cantú; Eleutherio, Elis Cristina Araújo

    2009-05-01

    In a wild-type strain of Saccharomyces cerevisiae, cadmium induces the activities of both gamma-glutamyl transferase (gamma-GT) and glutathione transferase 2 (Gtt2). However, Gtt2 activity did not increase under gamma-GT or Ycf1 deficiencies, suggesting that the accumulation of glutathione-cadmium in the cytosol inhibits Gtt2. On the other hand, the balance between the cytoplasmic and vacuolar level of glutathione seems to regulate gamma-GT activity, since this enzyme was not activated in a gtt2 strain. Taken together, these results suggest that gamma-GT and Gtt2 work together to remove cadmium from the cytoplasm, a crucial mechanism for metal detoxification that is dependent on glutathione. PMID:19345220

  3. The Assessments of the Intracellular Antioxidant Protection of the Organism after LLLT Irradiation

    SciTech Connect

    Freitinger-Skalicka, Zuzana; Navratil, Leos; Zolzer, Friedo; Hon, Zdenek

    2009-06-19

    The antioxidants are chemical compounds that can bind to free oxygen radicals preventing these radicals from damaging healthy cells. Low levels of antioxidants, or inhibition of the antioxidant enzymes causes oxidative stress and may damage or kill cells. The purpose of this project was to establish the changes at intracellular antioxidant protection of the organism after LLLT irradiation. We used female mice of the strain CD1. The mice were exposed in the abdomen region to laser light. From the blood was assessment the Glutathione peroxidase, Reduced Glutathione and Plasma Antioxidant Capacity. The results obtained in the present study demonstrated that in vivo irradiation of the mice with low level lasers did not cause any statistically significant changes in superoxide dismutase and Glutathione peroxidase but we found changes in Reduced Glutathione and Plasma Antioxidant Capacity after exposing the mice to the LLLT during the 30 minutes after irradiation, as well on the 4th day. Do not replace the word ''abstract,'' but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your ''Enter'' key. You may want to print this page and refer to it as a style sample before you begin working on your paper.

  4. Diethyldithiocarbamate induces apoptosis in neuroblastoma cells by raising the intracellular copper level, triggering cytochrome c release and caspase activation.

    PubMed

    Matias, Andreza C; Manieri, Tânia M; Cipriano, Samantha S; Carioni, Vivian M O; Nomura, Cassiana S; Machado, Camila M L; Cerchiaro, Giselle

    2013-02-01

    Dithiocarbamates are nitrogen- and sulfur-containing compounds commonly used in pharmacology, medicine and agriculture. The molecular effects of dithiocarbamates on neuronal cell systems are not fully understood, especially in terms of their ability to accumulate copper ions inside the cell. In this work, the molecular effects of N,N-diethyldithiocarbamate (DEDTC) were studied in human SH-SY5Y neuroblastoma cells to determine the role of copper in the DEDTC toxicity and the pathway trigged in cell by the complex Cu-DEDTC. From concentration-dependent studies, we found that 5 μM of this compound induced a drastic decrease in viable cells with a concomitant accumulation in intracellular copper resulted from complexation with DEDTC, measured by atomic absorption spectroscopy. The mechanism of DEDTC-induced apoptosis in neuronal model cells is thought to occur through the death receptor signaling triggered by DEDTC-copper complex in low concentration that is associated with the activation of caspase 8. Our results indicated that the mechanism of cell death involves cytochrome c release forming the apoptosome together with Apaf-1 and caspase 9, converting the caspase 9 into its active form, allowing it to activate caspase 3 as observed by immunofluorescence. This pathway is induced by the cytotoxic effects that occur when DEDTC forms a complex with the copper ions present in the culture medium and transports them into the cell, suggesting that the DEDTC by itself was not able to cause cell death and the major effect is from its copper-complex in neuroblastoma cells. The present study suggests a role for the influence of copper by low concentrations of DEDTC in the extracellular media, the absorption and accumulation of copper in the cell and apoptotic events, induced by the cytotoxic effects that occur when DEDTC forms a complex with the copper ions. PMID:22951949

  5. Intracellular microlasers

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Hyun Yun, Seok

    2015-09-01

    Optical microresonators, which confine light within a small cavity, are widely exploited for various applications ranging from the realization of lasers and nonlinear devices to biochemical and optomechanical sensing. Here we use microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explore two distinct types of microresonator—soft and hard—that support whispering-gallery modes. Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (˜500 pN μm-2) and its dynamic fluctuations at a sensitivity of 20 pN μm-2 (20 Pa). In a second form, whispering-gallery modes within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.

  6. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents.

    PubMed

    Degola, Francesca; Fattorini, Laura; Bona, Elisa; Sprimuto, Christian Triscari; Argese, Emanuele; Berta, Graziella; Sanità di Toppi, Luigi

    2015-07-01

    Over time, anthropogenic activities have led to severe cadmium (Cd) and arsenic (As) pollution in several environments. Plants inhabiting metal(loid)-contaminated areas should be able to sequester and detoxify these toxic elements as soon as they enter roots and leaves. We postulated here that an important role in protecting plants from excessive metal(loid) accumulation and toxicity might be played by arbuscular mycorrhizal (AM) fungi. In fact, human exploitation of plant material derived from Cd- and As-polluted environments may lead to a noxious intake of these toxic elements; in particular, a possible source of Cd and As for humans is given by cigarette and cigar smoke. We investigated the role of AM fungus Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler in protecting Nicotiana tabacum L. (cv. Petit Havana) from the above-mentioned metal(loid) stress. Our findings proved that the AM symbiosis is effective in increasing the plant tissue content of the antioxidant glutathione (GSH), in influencing the amount of metal(loid)-induced chelators as phytochelatins, and in reducing the Cd and As content in leaves and roots of adult tobacco plants. These results might also prove useful in improving the quality of commercial tobacco, thus reducing the risks to human health due to inhalation of toxic elements contained in smoking products. PMID:25900420

  7. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans.

    PubMed

    Yun, JiEun; Lee, Dong Gun

    2016-08-01

    Cecropin A, isolated from the giant silk moth Hyalophora cecropia, is a 37-mer peptide that exerts potent antimicrobial effects. We investigated cecropin A-induced apoptosis associated with ion balance and redox state of Candida albicans. The antifungal effect of cecropin A, associated with ion movement was verified by significant increase of cell viability following pretreatment of ion channel blockers. Cecropin A induced undesired ion movement such as calcium accumulation and potassium leakage. Furthermore, the reduction of phosphatidylserine (PS) externalization was detected following pretreatment of ion channel blockers. Based on these results, we confirmed that ion imbalance regulates the apoptotic activity of cecropin A. Moreover, cecropin A decreased NADPH and glutathione levels, which are crucial factors in the intracellular antioxidant defense system. The decreased intracellular antioxidant capacity induced oxidative stress by generating reactive oxygen species (ROS). Moreover, several apoptotic features such as mitochondrial depolarization, caspase activation, and DNA fragmentation were observed in cecropin A-treated cells. In conclusion, disrupted ion balance and intracellular glutathione redox state play a key role in cecropin A-induced apoptosis in C. albicans. © 2016 IUBMB Life, 68(8):652-662, 2016. PMID:27338801

  8. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney

    PubMed Central

    Gerbino, Andrea; Schena, Giorgia; Milano, Serena; Milella, Luigi; Barbosa, Alan Franco; Armentano, Francesca; Procino, Giuseppe; Svelto, Maria; Carmosino, Monica

    2016-01-01

    Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2) activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl−-dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic. PMID:27213818

  9. Spilanthol from Acmella Oleracea Lowers the Intracellular Levels of cAMP Impairing NKCC2 Phosphorylation and Water Channel AQP2 Membrane Expression in Mouse Kidney.

    PubMed

    Gerbino, Andrea; Schena, Giorgia; Milano, Serena; Milella, Luigi; Barbosa, Alan Franco; Armentano, Francesca; Procino, Giuseppe; Svelto, Maria; Carmosino, Monica

    2016-01-01

    Acmella oleracea is well recognized in Brazilian traditional medicine as diuretic, although few scientific data have been published to support this effect. Aim of this study was to determine the molecular effect of Acmella oleracea extract and its main alkylamide spilanthol on two major processes involved in the urine concentrating mechanism: Na-K-2Cl symporter (NKCC2) activity in the thick ascending limb and water channel aquaporin 2 accumulation at the apical plasma membrane of collecting duct cells. Phosphorylation of NKCC2 was evaluated as index of its activation by Western blotting. Rate of aquaporin 2 apical expression was analyzed by confocal laser microscopy. Spilanthol-induced intracellular signalling events were dissected by video-imaging experiments. Exposure to spilanthol reduced the basal phosphorylation level of NKCC2 both in freshly isolated mouse kidney slices and in NKCC2-expresing HEK293 cells. In addition, exposure to spilanthol strongly reduced both desmopressin and low Cl--dependent increase in NKCC2 phosphorylation in mouse kidney slices and NKCC2-expressing HEK293 cells, respectively. Similarly, spilanthol reduced both desmopressin- and forskolin-stimulated aquaporin 2 accumulation at the apical plasma membrane of collecting duct in mouse kidney slice and MCD4 cells, respectively. Of note, when orally administered, spilanthol induced a significant increase in both urine output and salt urinary excretion associated with a markedly reduced urine osmolality compared with control mice. Finally, at cellular level, spilanthol rapidly reduced or reversed basal and agonist-increased cAMP levels through a mechanism involving increases in intracellular [Ca2+]. In conclusion, spilanthol-induced inhibition of cAMP production negatively modulates urine-concentrating mechanisms thus holding great promise for its use as diuretic. PMID:27213818

  10. Intracellular microlasers

    PubMed Central

    Humar, Matjaž; Yun, Seok Hyun

    2015-01-01

    Optical microresonators1 which confine light within a small cavity are widely exploited for various applications ranging from the realization of lasers2 and nonlinear devices3, 4, 5 to biochemical and optomechanical sensing6, 7, 8, 9, 10, 11. Here we employ microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explored two distinct types of microresonators: soft and hard, that support whispering-gallery modes (WGM). Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (~500 pN/μm2) and its dynamic fluctuations at a sensitivity of 20 pN/μm2 (20 Pa). In a second form, WGMs within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes. PMID:26417383