Science.gov

Sample records for intracellular salmonella enterica

  1. Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis

    PubMed Central

    Durkin, Charlotte H.; Helaine, Sophie; Boucrot, Emmanuel

    2016-01-01

    Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S. Typhimurium delays epithelial cell turnover in the intestine. PMID:27185791

  2. Salmonella enterica.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian Salmonella infections are important as both a cause of clinical disease in poultry and as a source of food-borne transmission of disease to humans. Host-adapted salmonellae (Salmonella enterica serovar Pullorum and Gallinarum) are responsible for severe systemic diseases, whereas numerous sero...

  3. Proteomes of Host Cell Membranes Modified by Intracellular Activities of Salmonella enterica*

    PubMed Central

    Vorwerk, Stephanie; Krieger, Viktoria; Deiwick, Jörg; Hensel, Michael; Hansmeier, Nicole

    2015-01-01

    Intracellular pathogens need to establish a growth-stimulating host niche for survival and replication. A unique feature of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium is the creation of extensive membrane networks within its host. An understanding of the origin and function of these membranes is crucial for the development of new treatment strategies. However, the characterization of this compartment is very challenging, and only fragmentary knowledge of its composition and biogenesis exists. Here, we describe a new proteome-based approach to enrich and characterize Salmonella-modified membranes. Using a Salmonella mutant strain that does not form this unique membrane network as a reference, we identified a high-confidence set of host proteins associated with Salmonella-modified membranes. This comprehensive analysis allowed us to reconstruct the interactions of Salmonella with host membranes. For example, we noted that Salmonella redirects endoplasmic reticulum (ER) membrane trafficking to its intracellular niche, a finding that has not been described for Salmonella previously. Our system-wide approach therefore has the potential to rapidly close gaps in our knowledge of the infection process of intracellular pathogens and demonstrates a hitherto unrecognized complexity in the formation of Salmonella host niches. PMID:25348832

  4. Novel Salmonella enterica serovar Typhimurium protein that is indispensable for virulence and intracellular replication.

    PubMed

    van der Straaten, T; van Diepen, A; Kwappenberg, K; van Voorden, S; Franken, K; Janssen, R; Kusters, J G; Granger, D L; van Dissel, J T

    2001-12-01

    Upon contact with host cells, the intracellular pathogen Salmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribed Salmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonella chromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 10(4) to 10(7) bacteria in C3H/HeN and 10(1) to 10(4) bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity. PMID:11705915

  5. Dormant intracellular Salmonella enterica serovar Typhimurium discriminates among Salmonella pathogenicity island 2 effectors to persist inside fibroblasts.

    PubMed

    Núñez-Hernández, Cristina; Alonso, Ana; Pucciarelli, M Graciela; Casadesús, Josep; García-del Portillo, Francisco

    2014-01-01

    Salmonella enterica uses effector proteins delivered by type III secretion systems (TTSS) to colonize eukaryotic cells. Recent in vivo studies have shown that intracellular bacteria activate the TTSS encoded by Salmonella pathogenicity island-2 (SPI-2) to restrain growth inside phagocytes. Growth attenuation is also observed in vivo in bacteria colonizing nonphagocytic stromal cells of the intestinal lamina propria and in cultured fibroblasts. SPI-2 is required for survival of nongrowing bacteria persisting inside fibroblasts, but its induction mode and the effectors involved remain unknown. Here, we show that nongrowing dormant intracellular bacteria use the two-component system OmpR-EnvZ to induce SPI-2 expression and the PhoP-PhoQ system to regulate the time at which induction takes place, 2 h postentry. Dormant bacteria were shown to discriminate the usage of SPI-2 effectors. Among the effectors tested, SseF, SseG, and SseJ were required for survival, while others, such as SifA and SifB, were not. SifA and SifB dispensability correlated with the inability of intracellular bacteria to secrete these effectors even when overexpressed. Conversely, SseJ overproduction resulted in augmented secretion and exacerbated bacterial growth. Dormant bacteria produced other effectors, such as PipB and PipB2, that, unlike what was reported for epithelial cells, did not to traffic outside the phagosomal compartment. Therefore, permissiveness for secreting only a subset of SPI-2 effectors may be instrumental for dormancy. We propose that the S. enterica serovar Typhimurium nonproliferative intracellular lifestyle is sustained by selection of SPI-2 effectors that are produced in tightly defined amounts and delivered to phagosome-confined locations. PMID:24144726

  6. sciS, an icmF Homolog in Salmonella enterica Serovar Typhimurium, Limits Intracellular Replication and Decreases Virulence

    PubMed Central

    Parsons, Duncan A.; Heffron, Fred

    2005-01-01

    Salmonella enterica serovar Typhimurium utilizes macrophages to disseminate from the intestine to deeper tissues within the body. While S. enterica serovar Typhimurium has been shown to kill its host macrophage, it can persist intracellularly beyond 18 h postinfection. To identify factors involved in late stages of infection, we screened a transposon library made in S. enterica serovar Typhimurium for the ability to persist in J774 macrophages at 24 h postinfection. Through this screen, we identified a gene, sciS, found to be homologous to icmF in Legionella pneumophila. icmF, which is required for intracellular multiplication, is conserved in several gram-negative pathogens, and its homolog appears to have been acquired horizontally in S. enterica serovar Typhimurium. We found that an sciS mutant displayed increased intracellular numbers in J774 macrophages when compared to the wild-type strain at 24 h postinfection. sciS was maximally transcribed at 27 h postinfection and is repressed by SsrB, an activator of genes required for promoting intracellular survival. Finally, we demonstrate that an sciS mutant is hypervirulent in mice when administered intragastrically. Taken together, these data indicate a role for SciS in controlling intracellular bacterial levels at later stages of infection and attenuating virulence in a murine host PMID:15972528

  7. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium.

    PubMed

    Yeom, Ji-Hyun; Lee, Boeun; Kim, Daeyoung; Lee, Jong-Kook; Kim, Suk; Bae, Jeehyeon; Park, Yoonkyung; Lee, Kangseok

    2016-10-01

    Antimicrobial peptides (AMPs) are a promising new class of antibacterial compounds. However, their applications in the treatment of intracellular pathogenic bacteria have been limited by their in vivo instability and low penetrating ability into mammalian cells. Here, we report that gold nanoparticles conjugated with DNA aptamer (AuNP-Apt) efficiently delivered AMPs into mammalian living systems with enhanced stability of the AMPs. C-terminally hexahistidine-tagged A3-APO (A3-APO(His)) AMPs were loaded onto AuNPs conjugated with His-tag DNA aptamer (AuNP-Apt(His)) by simple mixing and were delivered into Salmonella enterica serovar Typhimurium (S. Typhimurium)-infected HeLa cells, resulting in the increased viability of host cells due to the elimination of intracellular S. Typhimurium cells. Furthermore, the intravenous injection of AuNP-Apt(His) loaded with A3-APO(His) into S. Typhimurium-infected mice resulted in a complete inhibition of S. Typhimurium colonization in the mice organs, leading to 100% survival of the mice. Therefore, AuNP-Apt(His) can serve as an innovative platform for AMP therapeutics to treat intracellular bacterial infections in mammals. PMID:27424215

  8. Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells.

    PubMed

    Coconnier, M H; Liévin, V; Lorrot, M; Servin, A L

    2000-03-01

    To gain further insight into the mechanism by which lactobacilli develop antimicrobial activity, we have examined how Lactobacillus acidophilus LB inhibits the promoted cellular injuries and intracellular lifestyle of Salmonella enterica serovar Typhimurium SL1344 infecting the cultured, fully differentiated human intestinal cell line Caco-2/TC-7. We showed that the spent culture supernatant of strain LB (LB-SCS) decreases the number of apical serovar Typhimurium-induced F-actin rearrangements in infected cells. LB-SCS treatment efficiently decreased transcellular passage of S. enterica serovar Typhimurium. Moreover, LB-SCS treatment inhibited intracellular growth of serovar Typhimurium, since treated intracellular bacteria displayed a small, rounded morphology resembling that of resting bacteria. We also showed that LB-SCS treatment inhibits adhesion-dependent serovar Typhimurium-induced interleukin-8 production. PMID:10698785

  9. Slc11a1 limits intracellular growth of Salmonella enterica sv. Typhimurium by promoting macrophage immune effector functions and impairing bacterial iron acquisition

    PubMed Central

    Nairz, Manfred; Fritsche, Gernot; Crouch, Marie-Laure V.; Barton, Howard C.; Fang, Ferric C.; Weiss, Günter

    2009-01-01

    The natural-resistance associated macrophage protein 1, Slc11a1, is a phagolysosomal transporter for protons and divalent ions including iron, that confers host protection against diverse intracellular pathogens including Salmonella. We investigated and compared the regulation of iron homeostasis and immune function in RAW264.7 murine phagocytes stably transfected with non-functional Slc11a1 and functional Slc11a1 controls in response to an infection with Salmonella enterica serovar Typhimurium (S. Typhimurium). We report that macrophages lacking functional Slc11a1 displayed an increased expression of transferrin receptor 1, resulting in enhanced acquisition of transferrin-bound iron. In contrast, cellular iron release mediated via ferroportin 1 was significantly lower in Salmonella-infected Slc11a1-negative macrophages in comparison to phagocytes bearing Slc11a1. Lack of Slc11a1 led to intracellular persistence of S. Typhimurium within macrophages which was paralleled by a reduced formation of nitric oxide, tumour necrosis factor-alpha and interleukin-6 in Slc11a1-negative macrophages following Salmonella infection, whereas interleukin-10 production was increased. Moreover, Slc11a1-negative phagocytes exhibited higher cellular iron content, resulting in increased iron acquisition by intracellular Salmonella. Our observations indicate a bifunctional role for Slc11a1 within phagocytes. Slc11a restricts iron availability, which firstly augments pro-inflammatory macrophage effector functions and secondly concomitantly limits microbial iron access. PMID:19500110

  10. Molecular fingerprinting of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica derby isolated from tropical seafood in South India.

    PubMed

    Kumar, Rakesh; Surendran, P K; Thampuran, Nirmala

    2008-09-01

    Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby strains isolated from different seafood were genotyped by PCR-ribotyping and ERIC-PCR assays. This study has ascertained the genetic relatedness among serovars prevalent in tropical seafood. PCR-ribotyping exhibited genetic variation in both Salmonella serovars, and ribotype profile (II) was most predominant, which was observed in 10/18 of Salmonella enterica subsp. enterica Typhimurium and 7/17 Salmonella enterica subsp. enterica Derby isolates. Cluster analysis of ERIC-PCR for Salmonella enterica subsp. enterica Typhimurium strains exhibited nine different banding patterns and four strains showed >95% genetic homology within the cluster pairs. ERIC-PCR produced more genetic variations in Salmonella enterica subsp. enterica Typhimurium; nevertheless, both methods were found to be comparable for Salmonella enterica subsp. enterica Derby isolates. Discrimination index of PCR-ribotyping for Salmonella enterica subsp. enterica Typhimurium isolates was obtained at 0.674 and index value 0.714 was observed for Salmonella enterica subsp. enterica Derby strains. Molecular fingerprinting investigation highlighted the hypothesis of diverse routes of Salmonella contamination in seafood as multiple clones of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby were detected in same or different seafood throughout the study period. PMID:18480975

  11. Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells

    PubMed Central

    Liu, Yanhua; Zhang, Qiufeng; Hu, Mo; Yu, Kaiwen; Fu, Jiaqi; Zhou, Fan

    2015-01-01

    Salmonella species can gain access into nonphagocytic cells, where the bacterium proliferates in a unique membrane-bounded compartment. In order to reveal bacterial adaptations to their intracellular niche, here we conducted the first comprehensive proteomic survey of Salmonella isolated from infected epithelial cells. Among ∼3,300 identified bacterial proteins, we found that about 100 proteins were significantly altered at the onset of Salmonella intracellular replication. In addition to substantially increased iron-uptake capacities, bacterial high-affinity manganese and zinc transporters were also upregulated, suggesting an overall limitation of metal ions in host epithelial cells. We also found that Salmonella induced multiple phosphate utilization pathways. Furthermore, our data suggested upregulation of the two-component PhoPQ system as well as of many downstream virulence factors under its regulation. Our survey also revealed that intracellular Salmonella has increased needs for certain amino acids and biotin. In contrast, Salmonella downregulated glycerol and maltose utilization as well as chemotaxis pathways. PMID:25939512

  12. Complete Genome and Methylome Sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791)

    PubMed Central

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J.; Payne, Justin; Allard, Marc W.

    2016-01-01

    Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica serovar Sloterdijk (ATCC 15791). PMID:26988049

  13. Complete Genome and Methylome Sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791).

    PubMed

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J; Payne, Justin; Allard, Marc W; Hoffmann, Maria

    2016-01-01

    Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica serovar Sloterdijk (ATCC 15791). PMID:26988049

  14. Sensitization of Intracellular Salmonella enterica Serovar Typhimurium to Aminoglycosides In Vitro and In Vivo by a Host-Targeted Antimicrobial Agent

    PubMed Central

    Lo, Jung-Hsin; Kulp, Samuel K.; Chen, Ching-Shih

    2014-01-01

    Aminoglycosides exhibit relatively poor activity against intracellular Salmonella enterica serovar Typhimurium due to their low permeativity across eukaryotic cell membranes. Previously, we identified the unique ability of AR-12, a celecoxib-derived small-molecule agent, to eradicate intracellular Salmonella Typhimurium in macrophages by facilitating autophagosome formation and suppressing Akt kinase signaling. In light of this unique mode of antibacterial action, we investigated the ability of AR-12 to sensitize intracellular Salmonella to aminoglycosides in macrophages and in an animal model. The antibacterial activities of AR-12 combined with various aminoglycosides, including streptomycin, kanamycin, gentamicin, and amikacin, against intracellular S. Typhimurium in murine RAW264.7 macrophages were assessed. Cells were infected with S. Typhimurium followed by treatment with AR-12 or individual aminoglycosides or with combinations for 24 h. The in vivo efficacies of AR-12, alone or in combination with gentamicin or amikacin, were also assessed by treating S. Typhimurium-infected BALB/c mice daily for 14 consecutive days. Exposure of S. Typhimurium-infected RAW264.7 cells to a combination of AR-12 with individual aminoglycosides led to a reduction in bacterial survival (P < 0.05), both intracellular and extracellular, that was greater than that seen with the aminoglycosides alone. This sensitizing effect, however, was not associated with increased aminoglycoside penetration into bacteria or macrophages. Moreover, daily intraperitoneal injection of AR-12 at 0.1 mg/kg of body weight significantly increased the in vivo efficacy of gentamicin and amikacin in prolonging the survival of S. Typhimurium-infected mice. These findings indicate that the unique ability of AR-12 to enhance the in vivo efficacy of aminoglycosides might have translational potential for efforts to develop novel strategies for the treatment of salmonellosis. PMID:25267669

  15. Differential Responses of Macrophages to Salmonella enterica Serovars Enteritidis and Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophages are major effectors against Salmonella infection, and also transport bacteria between host tissues and provide a protected site for intracellular bacterial replication. We hypothesized that differences in chicken macrophage responses to Salmonella enterica serovar Enteritidis (SE) and s...

  16. Selectively Reduced Intracellular Proliferation of Salmonella enterica Serovar Typhimurium within APCs Limits Antigen Presentation and Development of a Rapid CD8 T Cell Response1

    PubMed Central

    Albaghdadi, Homam; Robinson, Nirmal; Finlay, Brett; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Ag presentation to CD8+ T cells commences immediately after infection, which facilitates their rapid expansion and control of pathogen. This paradigm is not followed during infection with virulent Salmonella enterica serovar Typhimurium (ST), an intracellular bacterium that causes mortality in susceptible C57BL/6J mice within 7 days and a chronic infection in resistant mice (129 × 1SvJ). Infection of mice with OVA-expressing ST results in the development of a CD8+ T cell response that is detectable only after the second week of infection despite the early detectable bacterial burden. The mechanism behind the delayed CD8+ T cell activation was evaluated, and it was found that dendritic cells/macrophages or mice infected with ST-OVA failed to present Ag to OVA-specific CD8+ T cells. Lack of early Ag presentation was not rescued when mice or dendritic cells/macrophages were infected with an attenuated aroA mutant of ST or with mutants having defective Salmonella pathogenicity island I/II genes. Although extracellular ST proliferated extensively, the replication of ST was highly muted once inside macrophages. This muted intracellular proliferation of ST resulted in the generation of poor levels of intracellular Ag and peptide-MHC complex on the surface of dendritic cells. Additional experiments revealed that ST did not actively inhibit Ag presentation, rather it inhibited the uptake of another intracellular pathogen, Listeria monocytogenes, thereby causing inhibition of Ag presentation against L. monocytogenes. Taken together, this study reveals a dichotomy in the proliferation of ST and indicates that selectively reduced intra-cellular proliferation of virulent pathogens may be an important mechanism of immune evasion. PMID:19692639

  17. Population structure of Salmonella enterica subspecies enterica (subspecies 1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We sequenced and assembled 354 new Salmonella enterica ssp. enterica genomes. These genomes were chosen to maximize genetic diversity, representing at least 100 different serovars and distinct PFGE patterns within these serovars. 119 of the strains were of known antibiotic resistance,...

  18. Substructure within Salmonella enterica subsp. enterica Isolates from Australian Wildlife▿

    PubMed Central

    Parsons, Sandra K.; Bull, C. Michael; Gordon, David M.

    2011-01-01

    Multilocus sequence typing of 56 Salmonella enterica subsp. enterica strains isolated from Australian wildlife hosts was performed. The results of population assignment algorithms revealed that the 56 strains could be subdivided into two distinct clades. Strains belonging to the two clades were further distinguished phenotypically, genotypically, and with respect to host distribution. PMID:21378038

  19. Interaction of Salmonella enterica with Fresh Produce Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attachment and colonization of Salmonella enterica serovars to fresh produce leaves was investigated. Biofilm assay and attachment of Salmonella serovars to intact and cut leaves were determined. Salmonella Tennessee and Salmonella Thompson produced stronger biofilms compared to Salmonella Newpor...

  20. Complete Genome and Methylome Sequences of Two Salmonella enterica spp.

    PubMed Central

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J.; Payne, Justin; Allard, Marc W.

    2016-01-01

    Salmonella enterica is responsible for major foodborne outbreaks worldwide. It can cause gastroenteritis characterized by diarrhea, vomiting, and fever. Salmonella infections raise public health concerns along with consequential economic impacts. In this report, we announce the first complete genome sequences of Salmonella enterica subsp. enterica serovar Choleraeuis (S. Choleraeuis) ATCC 10708 and Salmonella enterica subsp. enterica serovar Pullorum (S. Pullorum) ATCC 9120, isolated from patients with diarrhea. PMID:26798102

  1. The taxonomic structure of Salmonella enterica subspecies enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is the leading cause of food-borne bacterial infection in humans and has a high economic burden in agriculture. Strains differ by sequence additions and losses of up to ~10% of each genome. In the last few decades, some serovars have become more common. Many strains have acquired...

  2. Comparative proteomic analysis of Salmonella enterica serovar Typhimurium ppGpp-deficient mutant to identify a novel virulence protein required for intracellular survival in macrophages

    PubMed Central

    2010-01-01

    Background The global ppGpp-mediated stringent response in pathogenic bacteria plays an important role in the pathogenesis of bacterial infections. In Salmonella enterica serovar Typhimurium (S. Typhimurium), several genes, including virulence genes, are regulated by ppGpp when bacteria are under the stringent response. To understand the control of virulence genes by ppGpp in S. Typhimurium, agarose 2-dimensional electrophoresis (2-DE) combined with mass spectrometry was used and a comprehensive 2-DE reference map of amino acid-starved S. Typhimurium strain SH100, a derivative of ATCC 14028, was established. Results Of the 366 examined spots, 269 proteins were successfully identified. The comparative analysis of the wild-type and ppGpp0 mutant strains revealed 55 proteins, the expression patterns of which were affected by ppGpp. Using a mouse infection model, we further identified a novel virulence-associated factor, STM3169, from the ppGpp-regulated and Salmonella-specific proteins. In addition, Salmonella strains carrying mutations in the gene encoding STM3169 showed growth defects and impaired growth within macrophage-like RAW264.7 cells. Furthermore, we found that expression of stm3169 was controlled by ppGpp and SsrB, a response regulator of the two-component system located on Salmonella pathogenicity island 2. Conclusions A proteomic approach using a 2-DE reference map can prove a powerful tool for analyzing virulence factors and the regulatory network involved in Salmonella pathogenesis. Our results also provide evidence of a global response mediated by ppGpp in S. enterica. PMID:21176126

  3. Draft Genome Sequences of Salmonella enterica subsp. enterica Serovars Typhimurium and Nottingham Isolated from Food Products

    PubMed Central

    Zheng, Jie; Ayers, Sherry; Melka, David C.; Curry, Phillip E.; Payne, Justin S.; Laasri, Anna; Wang, Charles; Hammack, Thomas S.; Brown, Eric W.

    2016-01-01

    A quantitative real-time PCR (qPCR) designed to detect Salmonella enterica subsp. enterica serovar Enteritidis, targeting the sdf gene, generated positive results for S. enterica subsp. enterica serovar Typhimurium (CFSAN033950) and S. enterica subsp. enterica serovar Nottingham (CFSAN006803) isolated from food samples. Both strains show pulsed-field gel electrophoresis (PFGE) patterns distinct from those of S. Enteritidis. Here, we report the genome sequences of these two strains. PMID:27445384

  4. Muscle Abscess due to Salmonella Enterica

    PubMed Central

    Akkoyunlu, Yasemin; Ceylan, Bahadir; Iraz, Meryem; Elmadag, Nuh Mehmet; Aslan, Turan

    2013-01-01

    Non typhoidal Salmonellae spp. causes clinical symptoms especially in neonates, infants, aged and immunocompromised patients. Hematogenous dissemination may occur in complicated cases whereas the formation of abscess is rare. A 61-year old woman presented to our hospital with pain and a mass in her left arm, without fever and leukocytosis. She was using methotrexate, corticosteroids and quinine for rheumatoid arthritis. She had a history of cervix cancer and was given radiotherapy and chemotherapy 3 years ago. Upon physical examination and magnetic resonance imaging, the mass was considered as an abscess and was surgically drained. Salmonella enterica spp. enterica was yielded in the culture of the drainage material. Ceftriaxon 2g/day was started intramuscularly and continued for 4 weeks. Salmonellosis is usually a self-limited disease, generally restricted to gastrointestinal tract and acquired following food poisoning. Management of Salmonella abscess requires a combination of antibiotherapy, surgical drainage and eradication of primary foci. PMID:24396582

  5. An inducible and secreted eukaryote-like serine/threonine kinase of Salmonella enterica serovar Typhi promotes intracellular survival and pathogenesis.

    PubMed

    Theeya, Nagaraja; Ta, Atri; Das, Sayan; Mandal, Rahul S; Chakrabarti, Oishee; Chakrabarti, Saikat; Ghosh, Amar N; Das, Santasabuj

    2015-02-01

    Eukaryote-like serine/threonine kinases (eSTKs) constitute an important family of bacterial virulence factors. Genome analysis had predicted putative eSTKs in Salmonella enterica serovar Typhi, although their functional characterization and the elucidation of their role in pathogenesis are still awaited. We show here that the primary sequence and secondary structure of the t4519 locus of Salmonella Typhi Ty2 have all the signatures of eukaryotic superfamily kinases. t4519 encodes a ∼39-kDa protein (T4519), which shows serine/threonine kinase activities in vitro. Recombinant T4519 (rT4519) is autophosphorylated and phosphorylates the universal substrate myelin basic protein. Infection of macrophages results in decreased viability of the mutant (Ty2Δt4519) strain, which is reversed by gene complementation. Moreover, reactive oxygen species produced by the macrophages signal to the bacteria to induce T4519, which is translocated to the host cell cytoplasm. That T4519 may target a host substrate(s) is further supported by the activation of host cellular signaling pathways and the induction of cytokines/chemokines. Finally, the role of T4519 in the pathogenesis of Salmonella Typhi is underscored by the significantly decreased mortality of mice infected with the Ty2Δt4519 strain and the fact that the competitive index of this strain for causing systemic infection is 0.25% that of the wild-type strain. This study characterizes the first eSTK of Salmonella Typhi and demonstrates its role in promoting phagosomal survival of the bacteria within macrophages, which is a key determinant of pathogenesis. This, to the best of our knowledge, is the first study to describe the essential role of eSTKs in the in vivo pathogenesis of Salmonella spp. PMID:25404028

  6. Evolutionary Genomics of Salmonella enterica Subspecies.

    PubMed

    Desai, Prerak T; Porwollik, Steffen; Long, Fred; Cheng, Pui; Wollam, Aye; Bhonagiri-Palsikar, Veena; Hallsworth-Pepin, Kymberlie; Clifton, Sandra W; Weinstock, George M; McClelland, Michael

    2013-01-01

    ABSTRACT Six subspecies are currently recognized in Salmonella enterica. Subspecies I (subspecies enterica) is responsible for nearly all infections in humans and warm-blooded animals, while five other subspecies are isolated principally from cold-blooded animals. We sequenced 21 phylogenetically diverse strains, including two representatives from each of the previously unsequenced five subspecies and 11 diverse new strains from S. enterica subspecies enterica, to put this species into an evolutionary perspective. The phylogeny of the subspecies was partly obscured by abundant recombination events between lineages and a relatively short period of time within which subspeciation took place. Nevertheless, a variety of different tree-building methods gave congruent evolutionary tree topologies for subspeciation. A total of 285 gene families were identified that were recruited into subspecies enterica, and most of these are of unknown function. At least 2,807 gene families were identified in one or more of the other subspecies that are not found in subspecies I or Salmonella bongori. Among these gene families were 13 new candidate effectors and 7 new candidate fimbrial clusters. A third complete type III secretion system not present in subspecies enterica (I) isolates was found in both strains of subspecies salamae (II). Some gene families had complex taxonomies, such as the type VI secretion systems, which were recruited from four different lineages in five of six subspecies. Analysis of nonsynonymous-to-synonymous substitution rates indicated that the more-recently acquired regions in S. enterica are undergoing faster fixation rates than the rest of the genome. Recently acquired AT-rich regions, which often encode virulence functions, are under ongoing selection to maintain their high AT content. IMPORTANCE We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae

  7. Two Draft Genome Sequences of a New Serovar of Salmonella enterica, Serovar Lubbock

    PubMed Central

    den Bakker, Henk C.; Nightingale, Kendra K.; Brichta-Harhay, Dayna M.; Edrington, Thomas S.; Loneragan, Guy H.

    2015-01-01

    Salmonella enterica is principally a foodborne pathogen that shows considerable serovar diversity. In this report, we present two draft genome sequences of Salmonella enterica subsp. enterica serovar Lubbock, a novel serovar. PMID:25883279

  8. Two draft genome sequences of a new serovar of Salmonella enterica, serovar Lubbock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is principally a foodborne pathogen that shows considerable serovar diversity. In this report, we present two draft genome sequences of Salmonella enterica subsp. enterica serovar Lubbock, a novel serovar....

  9. The Genomic Blueprint of Salmonella enterica subspecies enterica serovar Typhi P-stx-12

    PubMed Central

    Ong, Su Yean; Pratap, Chandra Bhan; Wan, Xuehua; Hou, Shaobin; Rahman, Ahmad Yamin Abdul; Saito, Jennifer A.; Nath, Gopal; Alam, Maqsudul

    2013-01-01

    Salmonella enterica subspecies enterica serovar Typhi is a rod-shaped, Gram-negative, facultatively anaerobic bacterium. It belongs to the family Enterobacteriaceae in the class Gammaproteobacteria, and has the capability of residing in the human gallbladder by forming a biofilm and hence causing the person to become a typhoid carrier. Here we present the complete genome of Salmonella enterica subspecies enterica serotype Typhi strain P-stx-12, which was isolated from a chronic carrier in Varanasi, India. The complete genome comprises a 4,768,352 bp chromosome with a total of 98 RNA genes, 4,691 protein-coding genes and a 181,431 bp plasmid. Genome analysis revealed that the organism is closely related to Salmonella enterica serovar Typhi strain Ty2 and Salmonella enterica serovar Typhi strain CT18, although their genome structure is slightly different. PMID:24019994

  10. Whole-genome sequencing of Salmonella enterica subsp. enterica serovar Cubana strains isolated from agricultural sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report draft genomes of Salmonella enterica subsp. enterica Serovar Cubana strain CVM42234 isolated from chick feed in 2012 and Salmonella Cubana strain 76814 isolated from swine in 2004. The genome sizes are 4,975,046 and 4,936,251 base pairs, respectively....

  11. Draft Genome Sequence of Salmonella enterica subsp. enterica Serotype Saintpaul Strain S-70, Isolated from an Aquatic Environment

    PubMed Central

    Estrada-Acosta, Mitzi; Medrano-Félix, Andrés; Jiménez, Maribel; Gómez-Gil, Bruno; León-Félix, Josefina; Amarillas, Luis

    2013-01-01

    Salmonella is a pathogen of worldwide importance, causing disease in a vast range of hosts, including humans. We report the genome sequence of Salmonella enterica subsp. enterica serotype Saintpaul strain S-70, isolated from an aquatic environment. PMID:24336367

  12. Complete and Closed Genome Sequences of 10 Salmonella enterica subsp. enterica Serovar Anatum Isolates from Human and Bovine Sources.

    PubMed

    Nguyen, Scott V; Harhay, Dayna M; Bono, James L; Smith, Timothy P L; Fields, Patricia I; Dinsmore, Blake A; Santovenia, Monica; Kelley, Christy M; Wang, Rong; Bosilevac, Joseph M; Harhay, Gregory P

    2016-01-01

    Salmonella enterica is an important pathogen transmitted by numerous vectors. Genomic comparisons of Salmonella strains from disparate hosts have the potential to further our understanding of mechanisms underlying host specificities and virulence. Here, we present the closed genome and plasmid sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolates from bovine and human sources. PMID:27257192

  13. Complete and Closed Genome Sequences of 10 Salmonella enterica subsp. enterica Serovar Anatum Isolates from Human and Bovine Sources

    PubMed Central

    Nguyen, Scott V.; Bono, James L.; Smith, Timothy P. L.; Fields, Patricia I.; Dinsmore, Blake A.; Santovenia, Monica; Kelley, Christy M.; Wang, Rong; Bosilevac, Joseph M.; Harhay, Gregory P.

    2016-01-01

    Salmonella enterica is an important pathogen transmitted by numerous vectors. Genomic comparisons of Salmonella strains from disparate hosts have the potential to further our understanding of mechanisms underlying host specificities and virulence. Here, we present the closed genome and plasmid sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolates from bovine and human sources. PMID:27257192

  14. Complete Genome Sequence and Methylome of Salmonella enterica subsp. enterica Cerro, a Frequent Dairy Cow Serovar

    PubMed Central

    Haley, Bradd J.; Pirone, Cary; Muruvanda, Tim; Brown, Eric; Allard, Marc; Karns, Jeffrey S.

    2016-01-01

    Salmonella enterica subsp. enterica serovar Cerro is an infrequent pathogen of humans and other mammals but is frequently isolated from the hindgut of asymptomatic cattle in the United States. To further understand the genomic determinants of S. Cerro specificity for the bovine hindgut, the genome of isolate CFSAN001588 was fully sequenced and deposited in the GenBank database. PMID:26823571

  15. Whole-Genome Sequencing of Salmonella enterica subsp. enterica Serovar Ouakam Isolated from Ground Turkey

    PubMed Central

    Marasini, Daya; Abo-Shama, Usama H.

    2016-01-01

    In this report, we announce the first whole-genome sequencing of Salmonella enterica subsp. enterica serovar Ouakam strain GNT-01, isolated from ground turkey retail meat. The strain has a chromosome of 5,088,451 bp long, with a G+C content of 52.3%, and a plasmid of 109,715 bp. PMID:26798110

  16. Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Mishmarhaemek Isolated from Bovine Feces

    PubMed Central

    Cooper, Ashley; Lambert, Dominic; Koziol, Adam G.; Seyer, Karine

    2015-01-01

    Salmonella enterica subsp. enterica serovar Mishmarhaemek is a Gram-negative, non-spore-forming, rod-shaped bacterium implicated in human clinical disease. Here, we report a 4.8-Mbp draft genome sequence of a nalidixic acid-resistant isolate of S. serovar Mishmarhaemek. PMID:26472847

  17. Complete genome sequence of salmonella enterica subsp. enterica Serovar Thompson Strain RM6836

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Thompson (S. Thompson) strain RM6836 was isolated from lettuce in 2002. We report the complete sequence and annotation of the genome of S. Thompson strain RM6836. This is the first reported complete genome sequence for S. Thompson and will provide a point ...

  18. Salmonella enterica Strains with Reduced Susceptibility to Quarternary Ammonium Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Salmonella spp. are responsible for 76 million illnesses per year in the U.S. Quaternary ammonium compounds (QAC) are commonly used antimicrobial agents. Reduced susceptibility to these compounds by a broad spectrum of organisms is a concern. Methods: Salmonella enterica strains with r...

  19. Salmonella enterica genomics and genetics of antimicrobial resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is an important food-borne pathogen and an excellent model system for the study of genomics, virulence and pathogenesis. . There are over 2,400 Salmonella serotypes each of which differs in their ability to cause disease in humans and animals, persist within the host, and survive...

  20. Limited Genetic Diversity in Salmonella enterica Serovar Enteritidis PT13

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Enteritidis has emerged as a significant food-borne pathogen throughout the world and it is commonly characterized by phage typing (PT). In Canada, PT4, 8 and 13 are the predominant PTs. Epidemiological subtyping of Salmonella is typically done by PFGE but plasmid profil...

  1. Draft Genome Sequence of Salmonella enterica subsp. enterica Serotype Oranienburg Strain S-76, Isolated from an Aquatic Environment

    PubMed Central

    Medrano-Félix, Andrés; Estrada-Acosta, Mitzi; Jiménez, Maribel; Gómez-Gil, Bruno; León-Félix, Josefina; Amarillas, Luis

    2013-01-01

    Salmonella is a widespread microorganism and a common causative agent of food-borne illnesses. Salmonella enterica subsp. enterica serotype Oranienburg is highly prevalent in surface water from tropical ecosystems and is not commonly related to illnesses. Here, we report the first genome sequence of Salmonella Oranienburg strain S-76, isolated from an aquatic environment. PMID:24336368

  2. Internal Colonization of Salmonella enterica Serovar Typhimurium in Tomato Plants

    PubMed Central

    Gu, Ganyu; Hu, Jiahuai; Cevallos-Cevallos, Juan M.; Richardson, Susanna M.; Bartz, Jerry A.; van Bruggen, Ariena H. C.

    2011-01-01

    Several Salmonella enterica outbreaks have been traced back to contaminated tomatoes. In this study, the internalization of S. enterica Typhimurium via tomato leaves was investigated as affected by surfactants and bacterial rdar morphotype, which was reported to be important for the environmental persistence and attachment of Salmonella to plants. Surfactants, especially Silwet L-77, promoted ingress and survival of S. enterica Typhimurium in tomato leaves. In each of two experiments, 84 tomato plants were inoculated two to four times before fruiting with GFP-labeled S. enterica Typhimurium strain MAE110 (with rdar morphotype) or MAE119 (without rdar). For each inoculation, single leaflets were dipped in 109 CFU/ml Salmonella suspension with Silwet L-77. Inoculated and adjacent leaflets were tested for Salmonella survival for 3 weeks after each inoculation. The surface and pulp of ripe fruits produced on these plants were also examined for Salmonella. Populations of both Salmonella strains in inoculated leaflets decreased during 2 weeks after inoculation but remained unchanged (at about 104 CFU/g) in week 3. Populations of MAE110 were significantly higher (P<0.05) than those of MAE119 from day 3 after inoculation. In the first year, nine fruits collected from one of the 42 MAE119 inoculated plants were positive for S. enterica Typhimurium. In the second year, Salmonella was detected in adjacent non-inoculated leaves of eight tomato plants (five inoculated with strain MAE110). The pulp of 12 fruits from two plants inoculated with MAE110 was Salmonella positive (about 106 CFU/g). Internalization was confirmed by fluorescence and confocal laser microscopy. For the first time, convincing evidence is presented that S. enterica can move inside tomato plants grown in natural field soil and colonize fruits at high levels without inducing any symptoms, except for a slight reduction in plant growth. PMID:22096553

  3. Colonization and internalization of Salmonella enterica in tomato plants.

    PubMed

    Zheng, Jie; Allard, Sarah; Reynolds, Sara; Millner, Patricia; Arce, Gabriela; Blodgett, Robert J; Brown, Eric W

    2013-04-01

    The consumption of fresh tomatoes has been linked to numerous food-borne outbreaks involving various serovars of Salmonella enterica. Recent advances in our understanding of plant-microbe interactions have shown that human enteric pathogenic bacteria, including S. enterica, are adapted to survive in the plant environment. In this study, tomato plants (Solanum lycopersicum cv. Micro-Tom) grown in sandy loam soil from Virginia's eastern shore (VES) were inoculated with S. enterica serovars to evaluate plausible internalization routes and to determine if there is any niche fitness for certain serovars. Both infested soil and contaminated blossoms can lead to low internal levels of fruit contamination with Salmonella. Salmonella serovars demonstrated a great ability to survive in environments under tomato cultivation, not only in soil but also on different parts of the tomato plant. Of the five serovars investigated, Salmonella enterica serovars Newport and Javiana were dominant in sandy loam soil, while Salmonella enterica serovars Montevideo and Newport were more prevalent on leaves and blossoms. It was also observed that Salmonella enterica serovar Typhimurium had a poor rate of survival in all the plant parts examined here, suggesting that postharvest contamination routes are more likely in S. Typhimurium contamination of tomato fruit. Conversely, S. Newport was the most prevalent serovar recovered in both the tomato rhizosphere and phyllosphere. Plants that were recently transplanted (within 3 days) had an increase in observable internalized bacteria, suggesting that plants were more susceptible to internalization right after transplant. These findings suggest that the particular Salmonella serovar and the growth stage of the plant were important factors for internalization through the root system. PMID:23377940

  4. Colonization and Internalization of Salmonella enterica in Tomato Plants

    PubMed Central

    Allard, Sarah; Reynolds, Sara; Millner, Patricia; Arce, Gabriela; Blodgett, Robert J.; Brown, Eric W.

    2013-01-01

    The consumption of fresh tomatoes has been linked to numerous food-borne outbreaks involving various serovars of Salmonella enterica. Recent advances in our understanding of plant-microbe interactions have shown that human enteric pathogenic bacteria, including S. enterica, are adapted to survive in the plant environment. In this study, tomato plants (Solanum lycopersicum cv. Micro-Tom) grown in sandy loam soil from Virginia's eastern shore (VES) were inoculated with S. enterica serovars to evaluate plausible internalization routes and to determine if there is any niche fitness for certain serovars. Both infested soil and contaminated blossoms can lead to low internal levels of fruit contamination with Salmonella. Salmonella serovars demonstrated a great ability to survive in environments under tomato cultivation, not only in soil but also on different parts of the tomato plant. Of the five serovars investigated, Salmonella enterica serovars Newport and Javiana were dominant in sandy loam soil, while Salmonella enterica serovars Montevideo and Newport were more prevalent on leaves and blossoms. It was also observed that Salmonella enterica serovar Typhimurium had a poor rate of survival in all the plant parts examined here, suggesting that postharvest contamination routes are more likely in S. Typhimurium contamination of tomato fruit. Conversely, S. Newport was the most prevalent serovar recovered in both the tomato rhizosphere and phyllosphere. Plants that were recently transplanted (within 3 days) had an increase in observable internalized bacteria, suggesting that plants were more susceptible to internalization right after transplant. These findings suggest that the particular Salmonella serovar and the growth stage of the plant were important factors for internalization through the root system. PMID:23377940

  5. Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars

    PubMed Central

    Andino, A.; Hanning, I.

    2015-01-01

    Data indicate that prevalence of specific serovars of Salmonella enterica in human foodborne illness is not correlated with their prevalence in feed. Given that feed is a suboptimal environment for S. enterica, it appears that survival in poultry feed may be an independent factor unrelated to virulence of specific serovars of Salmonella. Additionally, S. enterica serovars appear to have different host specificity and the ability to cause disease in those hosts is also serovar dependent. These differences among the serovars may be related to gene presence or absence and expression levels of those genes. With a better understanding of serovar specificity, mitigation methods can be implemented to control Salmonella at preharvest and postharvest levels. PMID:25664339

  6. Complete Genome Sequences of Two Outbreak Strains of Salmonella enterica subsp. enterica Serovar Thompson Associated with Cilantro

    PubMed Central

    Huynh, Steven; Gorski, Lisa; Cooper, Kerry K.; Miller, William G.

    2015-01-01

    Salmonella enterica subsp. enterica serovar Thompson strains RM1984 (CADPH-99A2334) and RM1986 (CADPH-99A2345) are associated with a 1999 outbreak in contaminated cilantro. We report here the complete genome sequences and annotation of these two S. Thompson strains. These genomes are distinct and provide additional data for our understanding of S. enterica. PMID:26586897

  7. Complete Genome Sequences of Two Outbreak Strains of Salmonella enterica subsp. enterica Serovar Thompson Associated with Cilantro.

    PubMed

    Parker, Craig T; Huynh, Steven; Gorski, Lisa; Cooper, Kerry K; Miller, William G

    2015-01-01

    Salmonella enterica subsp. enterica serovar Thompson strains RM1984 (CADPH-99A2334) and RM1986 (CADPH-99A2345) are associated with a 1999 outbreak in contaminated cilantro. We report here the complete genome sequences and annotation of these two S. Thompson strains. These genomes are distinct and provide additional data for our understanding of S. enterica. PMID:26586897

  8. Transmission and retention of Salmonella enterica by phytophagous hemipteran insects.

    PubMed

    Soto-Arias, José Pablo; Groves, Russell L; Barak, Jeri D

    2014-09-01

    Several pest insects of human and livestock habitations are known as vectors of Salmonella enterica; however, the role of plant-feeding insects as vectors of S. enterica to agricultural crops remains unexamined. Using a hemipteran insect pest-lettuce system, we investigated the potential for transmission and retention of S. enterica. Specifically, Macrosteles quadrilineatus and Myzus persicae insects were fed S. enterica-inoculated lettuce leaf discs or artificial liquid diets confined in Parafilm sachets to allow physical contact or exclusively oral ingestion of the pathogen, respectively. After a 24-h acquisition access period, insects were moved onto two consecutive noninoculated leaf discs or liquid diets and allowed a 24-h inoculation access period on each of the two discs or sachets. Similar proportions of individuals from both species ingested S. enterica after a 24-h acquisition access period from inoculated leaf discs, but a significantly higher proportion of M. quadrilineatus retained the pathogen internally after a 48-h inoculation access period. S. enterica was also recovered from the honeydew of both species. After a 48-h inoculation access period, bacteria were recovered from a significantly higher proportion of honeydew samples from M. quadrilineatus than from M. persicae insects. The recovery of S. enterica from leaf discs and liquid diets postfeeding demonstrated that both species of insects were capable of transmitting the bacteria in ways that are not limited to mechanical transmission. Overall, these results suggest that phytophagous insects may serve as potential vectors of S. enterica in association with plants. PMID:24973069

  9. Transmission and Retention of Salmonella enterica by Phytophagous Hemipteran Insects

    PubMed Central

    Soto-Arias, José Pablo; Groves, Russell L.

    2014-01-01

    Several pest insects of human and livestock habitations are known as vectors of Salmonella enterica; however, the role of plant-feeding insects as vectors of S. enterica to agricultural crops remains unexamined. Using a hemipteran insect pest-lettuce system, we investigated the potential for transmission and retention of S. enterica. Specifically, Macrosteles quadrilineatus and Myzus persicae insects were fed S. enterica-inoculated lettuce leaf discs or artificial liquid diets confined in Parafilm sachets to allow physical contact or exclusively oral ingestion of the pathogen, respectively. After a 24-h acquisition access period, insects were moved onto two consecutive noninoculated leaf discs or liquid diets and allowed a 24-h inoculation access period on each of the two discs or sachets. Similar proportions of individuals from both species ingested S. enterica after a 24-h acquisition access period from inoculated leaf discs, but a significantly higher proportion of M. quadrilineatus retained the pathogen internally after a 48-h inoculation access period. S. enterica was also recovered from the honeydew of both species. After a 48-h inoculation access period, bacteria were recovered from a significantly higher proportion of honeydew samples from M. quadrilineatus than from M. persicae insects. The recovery of S. enterica from leaf discs and liquid diets postfeeding demonstrated that both species of insects were capable of transmitting the bacteria in ways that are not limited to mechanical transmission. Overall, these results suggest that phytophagous insects may serve as potential vectors of S. enterica in association with plants. PMID:24973069

  10. Genome Sequences of Salmonella enterica subsp. enterica Serovar Lubbock Strains Isolated from Liver Abscesses of Feedlot Cattle

    PubMed Central

    Amachawadi, Raghavendra G.; Thomas, Milton

    2016-01-01

    The genome sequencing of 13 Salmonella enterica subsp. enterica serovar Lubbock strains isolated from liver abscesses of feedlot cattle is reported here. The availability of these genomes will help to further understand the etiologic role of Salmonella strains in liver abscesses of cattle and will serve as references in microbial trace-back studies to improve food safety. PMID:27151794

  11. Chromosome-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhi

    PubMed Central

    Alam, Munirul; Kuo, Jung-Che; Liu, Yen-Yi; Wang, Pei-Jen

    2014-01-01

    A salmonella genomic island, designated SGI11, was found in 18 of 26 multidrug-resistant Salmonella enterica serovar Typhi isolates from Bangladesh. SGI11 was an IS1 composite transposon and carried 7 resistance genes that conferred resistance to 5 first-line antimicrobials. Eleven of the 18 SGI11-carrying S. Typhi isolates had developed resistance to high levels of ciprofloxacin. PMID:25367917

  12. Regional distribution of two dairy-associated Salmonella enterica serotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is a zoonotic pathogen frequently associated with dairy farms. The organism can cause disease in cows but is also frequently shed in large numbers by dairy cows that are asymptomatic. Cows on a ~100 head dairy farm in Pennsylvania, USA, (focal dairy) were previously shown to have...

  13. Method for the detection of Salmonella enterica serovar Enteritidis

    DOEpatents

    Agron, Peter G.; Andersen, Gary L.; Walker, Richard L.

    2008-10-28

    Described herein is the identification of a novel Salmonella enterica serovar Enteritidis locus that serves as a marker for DNA-based identification of this bacterium. In addition, three primer pairs derived from this locus that may be used in a nucleotide detection method to detect the presence of the bacterium are also disclosed herein.

  14. Requirement of siderophore biosynthesis for plant colonization by Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminated fresh produce has become the number one vector of non-typhoidal salmonellosis to humans. However, Salmonella enterica genes essential for the life cycle of this organism outside the mammalian host are for the most part unknown. Screening deletion mutants led to the discovery that an aro...

  15. Multidrug-Resistant Salmonella enterica Serovar Infantis, Israel

    PubMed Central

    Valinsky, Lea; Weinberger, Miriam; Guy, Sara; Jaffe, Joseph; Schorr, Yosef Ilan; Raisfeld, Abraham; Agmon, Vered; Nissan, Israel

    2010-01-01

    To determine whether rapid emergence of Salmonella enterica serovar Infantis in Israel resulted from an increase in different biotypes or spread of 1 clone, we characterized 87 serovar Infantis isolates on the genotypic and phenotypic levels. The emerging strain comprised 1 genetic clone with a distinct pulsed-field gel electrophoresis profile and a common antimicrobial drug resistance pattern. PMID:21029536

  16. Nationwide pseudo-outbreak of Salmonella enterica ssp. diarizonae, France.

    PubMed

    Thiolet, J M; Jourdan-Da Silva, N; Reggiani, A; De Valk, H; Coignard, B; Weill, F X

    2011-06-01

    To investigate an increased incidence of human cultures growing Salmonella enterica ssp. diarizonae serotype 61:k:1,5,7 in France in 2008, we reviewed medical records of case patients and identified the material used during invasive procedures and for bacterial culture. Trace-back investigations incriminated culture media containing contaminated sheep blood agar. PMID:20718799

  17. Foodborne Outbreak and Nonmotile Salmonella enterica Variant, France

    PubMed Central

    Brisabois, Anne; Accou-Demartin, Marie; Josse, Adeline; Marault, Muriel; Francart, Sylvie; Da Silva, Nathalie Jourdan; Weill, François-Xavier

    2012-01-01

    We report a food-related outbreak of salmonellosis in humans caused by a nonmotile variant of Salmonella enterica serotype Typhimurium in France in 2009. This nonmotile variant had been circulating in laying hens but was not considered as Typhimurium and consequently escaped European poultry flock regulations. PMID:22257550

  18. Effect of residual sanitizers on Salmonella enterica biofilm formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Salmonella enterica are a diverse group of bacteria that represent a serious risk to public health. Bacterial attachment on food and contact surfaces can lead to biofilm formation, and once in this state, bacteria are more resistant to sanitization and may serve as a continuous contam...

  19. Limited genetic diversity in Salmonella enterica Serovar Enteritidis PT13

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Enteritidis has emerged as a significant foodborne pathogen throughout the world and is commonly characterized by phage typing. In Canada phage types (PT) 4, 8 and 13 predominate and in 2005 a large foodborne PT13 outbreak occurred in the province of Ontario. The ability ...

  20. Small Molecule Restores Itaconate Sensitivity in Salmonella enterica: A Potential New Approach to Treating Bacterial Infections.

    PubMed

    Hammerer, Fabien; Chang, Justin H; Duncan, Dustin; Castañeda Ruiz, Angel; Auclair, Karine

    2016-08-17

    In the context of increasing global antibiotic resistance, the need for alternative therapeutic targets is great. Although new antibiotics and resistance inhibitors provide temporary solutions, they are bound to become obsolete. In this work, we propose a new approach, coined "bacterio-modulation" that aims to restore macrophage potency towards bacterial strains that are able to survive in phagolysosomes. One key defense in the macrophage's arsenal is itaconate, an endogenous molecule with antimicrobial activity. Some intracellular pathogens have evolved to produce itaconate-degrading enzymes, which are required for intracellular proliferation and to promote pathogenicity. We herein present the first molecule able to resensitize Salmonella enterica to itaconate. PMID:27254798

  1. Diversity of Genome Structure in Salmonella enterica Serovar Typhi Populations†

    PubMed Central

    Kothapalli, Sushma; Nair, Satheesh; Alokam, Suneetha; Pang, Tikki; Khakhria, Rasik; Woodward, David; Johnson, Wendy; Stocker, Bruce A. D.; Sanderson, Kenneth E.; Liu, Shu-Lin

    2005-01-01

    The genomes of most strains of Salmonella and Escherichia coli are highly conserved. In contrast, all 136 wild-type strains of Salmonella enterica serovar Typhi analyzed by partial digestion with I-CeuI (an endonuclease which cuts within the rrn operons) and pulsed-field gel electrophoresis and by PCR have rearrangements due to homologous recombination between the rrn operons leading to inversions and translocations. Recombination between rrn operons in culture is known to be equally frequent in S. enterica serovar Typhi and S. enterica serovar Typhimurium; thus, the recombinants in S. enterica serovar Typhi, but not those in S. enterica serovar Typhimurium, are able to survive in nature. However, even in S. enterica serovar Typhi the need for genome balance and the need for gene dosage impose limits on rearrangements. Of 100 strains of genome types 1 to 6, 72 were only 25.5 kb off genome balance (the relative lengths of the replichores during bidirectional replication from oriC to the termination of replication [Ter]), while 28 strains were less balanced (41 kb off balance), indicating that the survival of the best-balanced strains was greater. In addition, the need for appropriate gene dosage apparently selected against rearrangements which moved genes from their accustomed distance from oriC. Although rearrangements involving the seven rrn operons are very common in S. enterica serovar Typhi, other duplicated regions, such as the 25 IS200 elements, are very rarely involved in rearrangements. Large deletions and insertions in the genome are uncommon, except for deletions of Salmonella pathogenicity island 7 (usually 134 kb) from fragment I-CeuI-G and 40-kb insertions, possibly a prophage, in fragment I-CeuI-E. The phage types were determined, and the origins of the phage types appeared to be independent of the origins of the genome types. PMID:15805510

  2. Quantitative Oligonucleotide Microarray Fingerprinting of Salmonella enterica isolates

    SciTech Connect

    Willse, Alan R.; Straub, Tim M.; Wunschel, Sharon C.; Small, Jack A.; Call, Douglas R.; Daly, Don S.; Chandler, Darrell P.

    2004-03-22

    We report on a genome-independent microbial fingerprinting method using nucleic acid microarrays for microbial forensics and epidemiology applications. We demonstrate that the microarray method provides high-resolution differentiation between closely related microorganisms using Salmonella enterica strains. In replicate trials we used a simple 192-probe nonamer array to construct a fingerprint library of 25 closely related Salmonella isolates. Controlling false discovery rate for multiple testing at alpha =.05, at least 295 of 300 pairs of S. enterica isolate fingerprints were found to be statistically distinct using a modified Hotelling Tsquared test. Although we find most pairs of Salmonella fingerprints to be distinct, forensic applications will also require a protocol for library construction and reliable microbial classification against a fingerprint library. We outline additional steps required to produce a protocol for library construction and reliable classification of unknown organisms.

  3. Salmonella enterica Diversity in Central Californian Coastal Waterways

    PubMed Central

    Walters, Sarah P.; González-Escalona, Narjol; Son, Insook; Melka, David C.; Sassoubre, Lauren M.

    2013-01-01

    Salmonella enterica is one of the most important bacterial enteric pathogens worldwide. However, little is known about its distribution and diversity in the environment. The present study explored the diversity of 104 strains of Salmonella enterica isolated over 2 years from 12 coastal waterways in central California. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing were used to probe species diversity. Seventy-four PFGE patterns and 38 sequence types (STs) were found, including 18 newly described STs. Nineteen of 25 PFGE patterns were indistinguishable from those of clinical isolates in PulseNet. The most common ST was consistent with S. enterica serovar Typhimurium, and other frequently detected STs were associated with the serovars Heidelberg and Enteritidis; all of these serovars are important etiologies of salmonellosis. An investigation into S. enterica biogeography was conducted at the level of ST and subspecies. At the ST and subspecies level, we found a taxon-time relationship but no taxon-area or taxon-environmental distance relationships. STs collected during wet versus dry conditions tended to be more similar; however, STs collected from waterways adjacent to watersheds with similar land covers did not tend to be similar. The results suggest that the lack of dispersal limitation may be an important factor affecting the diversity of S. enterica in the region. PMID:23624479

  4. High-throughput Assay to Phenotype Salmonella enterica Typhimurium Association, Invasion, and Replication in Macrophages

    PubMed Central

    Wu, Jing; Pugh, Roberta; Laughlin, Richard C.; Andrews-Polymenis, Helene; McClelland, Michael; Bäumler, Andreas J.; Adams, L. Garry

    2014-01-01

    Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock1. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions. PMID:25146526

  5. Salmonella enterica Genomics and Antimicrobial Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is a prevalent food-borne pathogen and a model system for the study of virulence and pathogenesis. The development of DNA microarray technology has furthered investigation of genome organization that leads to the variations in Salmonella serotypes. There are over 2400 Salmonella serotypes...

  6. Variable Carbon Catabolism among Salmonella enterica Serovar Typhi Isolates

    PubMed Central

    Chai, Lay Ching; Kong, Boon Hong; Elemfareji, Omar Ismail; Thong, Kwai Lin

    2012-01-01

    Background Salmonella enterica serovar Typhi (S. Typhi) is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever) and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. Methodology/Principal Findings To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas oftyphoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates) was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. Conclusion The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen. PMID:22662115

  7. Stress Response of Salmonella enterica Serovar Typhimurium to Acidified Nitrite

    PubMed Central

    Mühlig, Anna; Behr, Jürgen; Scherer, Siegfried

    2014-01-01

    The antimicrobial action of the curing agent sodium nitrite (NaNO2), which is added as a preservative to raw meat products, depends on its conversion to nitric oxide and other reactive nitrogen species under acidic conditions. In this study, we used RNA sequencing to analyze the acidified-NaNO2 shock and adaptive responses of Salmonella enterica serovar Typhimurium, a frequent contaminant in raw meat, considering parameters relevant for the production of raw-cured sausages. Upon a 10-min exposure to 150 mg/liter NaNO2 in LB (pH 5.5) acidified with lactic acid, genes involved in nitrosative-stress protection, together with several other stress-related genes, were induced. In contrast, genes involved in translation, transcription, replication, and motility were downregulated. The induction of stress tolerance and the reduction of cell proliferation obviously promote survival under harsh acidified-NaNO2 stress. The subsequent adaptive response was characterized by upregulation of NsrR-regulated genes and iron uptake systems and by downregulation of genes involved in anaerobic respiratory pathways. Strikingly, amino acid decarboxylase systems, which contribute to acid tolerance, displayed increased transcript levels in response to acidified NaNO2. The induction of systems known to be involved in acid resistance indicates a nitrite-mediated increase in the level of acid stress. Deletion of cadA, which encodes lysine decarboxylase, resulted in increased sensitivity to acidified NaNO2. Intracellular pH measurements using a pH-sensitive green fluorescent protein (GFP) variant showed that the cytoplasmic pH of S. Typhimurium in LB medium (pH 5.5) is decreased upon the addition of NaNO2. This study provides the first evidence that intracellular acidification is an additional antibacterial mode of action of acidified NaNO2. PMID:25107963

  8. Salmonella enterica induces and subverts the plant immune system

    PubMed Central

    García, Ana V.; Hirt, Heribert

    2014-01-01

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. PMID:24772109

  9. Analysis and construction of pathogenicity island regulatory pathways in Salmonella enterica serovar Typhi.

    PubMed

    Ong, Su Yean; Ng, Fui Ling; Badai, Siti Suriawati; Yuryev, Anton; Alam, Maqsudul

    2010-01-01

    Signal transduction through protein-protein interactions and protein modifications are the main mechanisms controlling many biological processes. Here we described the implementation of MedScan information extraction technology and Pathway Studio software (Ariadne Genomics Inc.) to create a Salmonella specific molecular interaction database. Using the database, we have constructed several signal transduction pathways in Salmonella enterica serovar Typhi which causes Typhoid Fever, a major health threat especially in developing countries. S. Typhi has several pathogenicity islands that control rapid switching between different phenotypes including adhesion and colonization, invasion, intracellular survival, proliferation, and biofilm formation in response to environmental changes. Understanding of the detailed mechanism for S. Typhi survival in host cells is necessary for development of efficient detection and treatment of this pathogen. The constructed pathways were validated using publically available gene expression microarray data for Salmonella. PMID:20861532

  10. Induction of the carrier state in pigeons infected with Salmonella enterica subspecies enterica serovar typhimurium PT99 by treatment with florfenicol: a matter of pharmacokinetics.

    PubMed

    Pasmans, Frank; Baert, Kris; Martel, An; Bousquet-Melou, Alain; Lanckriet, Ruben; De Boever, Sandra; Van Immerseel, Filip; Eeckhaut, Venessa; de Backer, Patrick; Haesebrouck, Freddy

    2008-03-01

    Paratyphoid caused by Salmonella enterica subsp. enterica serovar Typhimurium is the main bacterial disease in pigeons. The ability of Salmonella serovar Typhimurium to persist intracellularly inside pigeon macrophages results in the development of chronic carriers, which maintain the infection in the flock. In this study, the effect of drinking-water medication with florfenicol on Salmonella infection in pigeons was examined. The pharmacokinetics of florfenicol in pigeons revealed a relatively high volume of distribution of 2.02 liters/kg of body weight and maximum concentrations in plasma higher than the MICs for the Salmonella strain used (4 microg/ml) but quick clearance of florfenicol due to a short half-life of 1.73 h. Together with highly variable bioavailability and erratic drinking-water uptake, these parameters resulted in the inability to reach a steady-state concentration through the continuous administration of florfenicol in the drinking water. Florfenicol was capable of reducing only moderately the number of intracellular salmonellae in infected pigeon macrophages in vitro. Only at high extracellular concentrations (>16 microg/ml) was a more-than-10-fold reduction of the number of intracellular bacteria noticed. Florfenicol treatment of pigeons via the drinking water from 2 days after experimental inoculation with Salmonella serovar Typhimurium until euthanasia at 16 days postinoculation resulted in a reduction of Salmonella shedding and an improvement in the fecal consistency. However, internal organs in florfenicol-treated pigeons were significantly more heavily colonized than those in untreated pigeons. In conclusion, the oral application of florfenicol for the treatment of pigeon paratyphoid contributes to the development of carrier animals through sub-MIC concentrations in plasma that do not inhibit intracellular persistency. PMID:18180355

  11. Induction of the Carrier State in Pigeons Infected with Salmonella enterica Subspecies enterica Serovar Typhimurium PT99 by Treatment with Florfenicol: a Matter of Pharmacokinetics▿

    PubMed Central

    Pasmans, Frank; Baert, Kris; Martel, An; Bousquet-Melou, Alain; Lanckriet, Ruben; De Boever, Sandra; Van Immerseel, Filip; Eeckhaut, Venessa; de Backer, Patrick; Haesebrouck, Freddy

    2008-01-01

    Paratyphoid caused by Salmonella enterica subsp. enterica serovar Typhimurium is the main bacterial disease in pigeons. The ability of Salmonella serovar Typhimurium to persist intracellularly inside pigeon macrophages results in the development of chronic carriers, which maintain the infection in the flock. In this study, the effect of drinking-water medication with florfenicol on Salmonella infection in pigeons was examined. The pharmacokinetics of florfenicol in pigeons revealed a relatively high volume of distribution of 2.02 liters/kg of body weight and maximum concentrations in plasma higher than the MICs for the Salmonella strain used (4 μg/ml) but quick clearance of florfenicol due to a short half-life of 1.73 h. Together with highly variable bioavailability and erratic drinking-water uptake, these parameters resulted in the inability to reach a steady-state concentration through the continuous administration of florfenicol in the drinking water. Florfenicol was capable of reducing only moderately the number of intracellular salmonellae in infected pigeon macrophages in vitro. Only at high extracellular concentrations (>16 μg/ml) was a more-than-10-fold reduction of the number of intracellular bacteria noticed. Florfenicol treatment of pigeons via the drinking water from 2 days after experimental inoculation with Salmonella serovar Typhimurium until euthanasia at 16 days postinoculation resulted in a reduction of Salmonella shedding and an improvement in the fecal consistency. However, internal organs in florfenicol-treated pigeons were significantly more heavily colonized than those in untreated pigeons. In conclusion, the oral application of florfenicol for the treatment of pigeon paratyphoid contributes to the development of carrier animals through sub-MIC concentrations in plasma that do not inhibit intracellular persistency. PMID:18180355

  12. Virulence Gene Regulation by l-Arabinose in Salmonella enterica

    PubMed Central

    López-Garrido, Javier; Puerta-Fernández, Elena; Cota, Ignacio; Casadesús, Josep

    2015-01-01

    Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by l-arabinose, and not by other pentoses. Transport of l-arabinose is necessary to repress SPI-1; however, repression is independent of l-arabinose metabolism and of the l-arabinose-responsive regulator AraC. SPI-1 repression by l-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of l-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal. PMID:25991823

  13. Intestinal Cytokine Responses to Salmonella enterica Serovar Typhimurium Infection in Young Chicks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar typhimurium is one of the most frequently isolated strains in human salmonellosis worldwide, and is commonly found in broilers. Successful prevention and control of Salmonella colonization in poultry require better understanding of intestinal mucosal immune response to ...

  14. Identification and characterization of multidrug-resistant Salmonella enterica serotype Albert isolates in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment is critical for invasive salmonellosis. Primary antimicrobial treatment options include fluoroquinolones or extende...

  15. Mannanoligosaccharide agglutination by Salmonella enterica strains isolated from carrier pigs

    PubMed Central

    Borowsky, Luciane; Corção, Gertrudes; Cardoso, Marisa

    2009-01-01

    Type-1 fimbriae are associated with most Salmonella enterica serovars and are an essential factor for host colonization. Mannanoligosaccharides (MOS), a prebiotic that is agglutinated by type-1 fimbriae, are proposed for the control of enterobacteria colonization and may be an alternative to Salmonella control in pigs. The aim of this study was to evaluate the capability of porcine Salmonella strains to adhere to MOS in vitro. A total of 108 strains of Salmonella sp. isolated from carrier pigs were evaluated for the amplification of fimA and fimH genes, agglutination of MOS and hemagglutination. In all tested strains, amplicons of expected size were detected for both fimA and fimH gene. In the hemagglutination assays, 31 (28.7%) strains presented mannose–sensitive agglutination of erythrocytes, indicating that the strains were expressing type-1 fimbriae. Considering only strains expressing the type-1 fimbriae, 23 (74.2%) presented a strong agglutination of MOS, 3 (9.6%) a weak reaction and 5 (16.2%) none. The results indicate that Salmonella enterica strains expressing type-1 fimbriae can agglutinate effectively in vitro to MOS. PMID:24031388

  16. The complete genome sequence and methylome of Salmonella enterica subsp. enterica serovar Cerro, a frequent dairy cow strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Cerro is an infrequent pathogen of humans and other mammals, but is frequently isolated from the hindgut of asymptomatic cattle in the United States. To further understand the genomic determinants of S. Cerro specificity for the bovine hindgut, the genome ...

  17. Complete genomic sequences of two outbreak strains of Salmonella enterica subsp. enterica serovar Thompson associated with cilantro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Thompson strains RM1984 (CADPH-99A2334) and RM1986 (CADPH -99A2345) are clinical isolates from 1999, putatively related to an outbreak in California from contaminated cilantro. We report the complete genome sequences and annotation of these two S. Thompson...

  18. Complete Genomic Sequences of Two Outbreak Strains of Salmonella enterica subsp. enterica serovar Thompson Associated with Cilantro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Thompson strains RM1984 (CADPH-99A2334) and RM1986 (CADPH -99A2345) are clinical isolates from 1999, putatively related to an outbreak in California from contaminated cilantro. We report the complete genome sequences and annotation of these two S. Thompson...

  19. Genomic investigation of Salmonella enterica sequences associated with long-term colonization of the bovine gut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica is a leading cause of food and waterborne infections globally in both humans and livestock with an estimated 93 million annual human infections caused by nontyphoidal S. enterica alone. However, some serotypes within this species are known to cause mild infection...

  20. A comparison of cecal colonization of Salmonella enterica serotype Typhimurium in white leghorn chicks and Salmonella-resistant mice

    PubMed Central

    Sivula, Christine P; Bogomolnaya, Lydia M; Andrews-Polymenis, Helene L

    2008-01-01

    Background Salmonellosis is one of the most important bacterial food borne illnesses worldwide. A major source of infection for humans is consumption of chicken or egg products that have been contaminated with Salmonella enterica serotype Typhimurium, however our knowledge regarding colonization and persistence factors in the chicken is small. Results We compared intestinal and systemic colonization of 1-week-old White Leghorn chicks and Salmonella-resistant CBA/J mice during infection with Salmonella enterica serotype Typhimurium ATCC14028, one of the most commonly studied isolates. We also studied the distribution of wild type serotype Typhimurium ATCC14028 and an isogenic invA mutant during competitive infection in the cecum of 1-week-old White Leghorn chicks and 8-week-old CBA/J mice. We found that although the systemic levels of serotype Typhimurium in both infected animal models are low, infected mice have significant splenomegaly beginning at 15 days post infection. In the intestinal tract itself, the cecal contents are the major site for recovery of serotype Typhimurium in the cecum of 1-week-old chicks and Salmonella-resistant mice. Additionally we show that only a small minority of Salmonellae are intracellular in the cecal epithelium of both infected animal models, and while SPI-1 is important for successful infection in the murine model, it is important for association with the cecal epithelium of 1-week-old chicks. Finally, we show that in chicks infected with serotype Typhimurium at 1 week of age, the level of fecal shedding of this organism does not reflect the level of cecal colonization as it does in murine models. Conclusion In our study, we highlight important differences in systemic and intestinal colonization levels between chick and murine serotype Typhimurium infections, and provide evidence that suggests that the role of SPI-1 may not be the same during colonization of both animal models. PMID:18922185

  1. Complete Genome Sequence of Salmonella enterica subsp. enterica Serovar Typhi Isolate B/SF/13/03/195 Associated with a Typhoid Carrier in Pasir Mas, Kelantan, Malaysia

    PubMed Central

    Sim, Kee-Shin; Mohd Nor, Fauziah; Mat Hussin, Hani; Hamzah, Wan Mansor; Najimudin, Nazalan

    2015-01-01

    We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi B/SF/13/03/195 obtained from a typhoid carrier, who is a food handler in Pasir Mas, Kelantan. PMID:26564035

  2. Quinolone Resistance Mechanisms Among Salmonella enterica in Malaysia.

    PubMed

    Thong, Kwai Lin; Ngoi, Soo Tein; Chai, Lay Ching; Teh, Cindy Shuan Ju

    2016-06-01

    The prevalence of quinolone-resistant Salmonella enterica is on the rise worldwide. Salmonella enterica is one of the major foodborne pathogens in Malaysia. Therefore, we aim to investigate the occurrence and mechanisms of quinolone resistance among Salmonella strains isolated in Malaysia. A total of 283 Salmonella strains isolated from food, humans, and animals were studied. The disk diffusion method was used to examine the quinolone susceptibility of the strains, and the minimum inhibitory concentration (MIC) values of nalidixic acid and ciprofloxacin were also determined. DNA sequencing of the quinolone resistance-determining regions (QRDRs) of gyrase and topoisomerase IV genes and the plasmid-borne qnr genes was performed. The transfer of the qnr gene was examined through transconjugation experiment. A total of 101 nalidixic acid-resistant Salmonella strains were identified. In general, all strains were highly resistant to nalidixic acid (average MICNAL, 170 μg/ml). Resistance to ciprofloxacin was observed in 30.7% of the strains (1 ≤ MICCIP ≤ 2 μg/ml). Majority of the strains contained missense mutations in the QRDR of gyrA (69.3%). Silent mutations were frequently detected in gyrB (75.2%), parC (27.7%), and parE (51.5%) within and beyond the QRDRs. Novel mutations were detected in parC and parE. The plasmid-borne qnrS1 variant was found in 36.6% of the strains, and two strains were found to be able to transfer the qnrS1 gene. Overall, mutations in gyrA and the presence of qnrS1 genes might have contributed to the high level of quinolone resistance among the strains. Our study provided a better understanding on the status of quinolone resistance among Salmonella strains circulating in Malaysia. PMID:26683630

  3. pH sensing by intracellular Salmonella induces effector translocation.

    PubMed

    Yu, Xiu-Jun; McGourty, Kieran; Liu, Mei; Unsworth, Kate E; Holden, David W

    2010-05-21

    Salmonella enterica is an important intracellular bacterial pathogen of humans and animals. It replicates within host-cell vacuoles by delivering virulence (effector) proteins through a vacuolar membrane pore made by the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS). T3SS assembly follows vacuole acidification, but when bacteria are grown at low pH, effector secretion is negligible. We found that effector secretion was activated at low pH from mutant strains lacking a complex of SPI-2-encoded proteins SsaM, SpiC, and SsaL. Exposure of wild-type bacteria to pH 7.2 after growth at pH 5.0 caused dissociation and degradation of SsaM/SpiC/SsaL complexes and effector secretion. In infected cells, loss of the pH 7.2 signal through acidification of host-cell cytosol prevented complex degradation and effector translocation. Thus, intravacuolar Salmonella senses host cytosolic pH, resulting in the degradation of regulatory complex proteins and effector translocation. PMID:20395475

  4. Genome Sequence of Salmonella enterica subsp. enterica Serovar Typhi Isolate PM016/13 from Untreated Well Water Associated with a Typhoid Outbreak in Pasir Mas, Kelantan, Malaysia.

    PubMed

    Muhamad Harish, Salwani; Sim, Kee-Shin; Najimudin, Nazalan; Aziah, Ismail

    2015-01-01

    Salmonella enterica subsp. enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Even though it is a human-restricted pathogen, the bacterium is also isolated from environments such as groundwater and pond water. Here, we describe the genome sequence of the Salmonella enterica subsp. enterica serovar Typhi PM016/13 which was isolated from well water during a typhoid outbreak in Kelantan, Malaysia, in 2013. PMID:26564032

  5. Genome Sequence of Salmonella enterica subsp. enterica Serovar Typhi Isolate PM016/13 from Untreated Well Water Associated with a Typhoid Outbreak in Pasir Mas, Kelantan, Malaysia

    PubMed Central

    Sim, Kee-Shin; Najimudin, Nazalan

    2015-01-01

    Salmonella enterica subsp. enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Even though it is a human-restricted pathogen, the bacterium is also isolated from environments such as groundwater and pond water. Here, we describe the genome sequence of the Salmonella enterica subsp. enterica serovar Typhi PM016/13 which was isolated from well water during a typhoid outbreak in Kelantan, Malaysia, in 2013. PMID:26564032

  6. Salmonella enterica Genomics and Antimicrobial Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is a prevalent food-borne pathogen and a model system for the study of virulence and pathogenesis. The development of DNA microarray technology has furthered investigation of complicated regulatory pathways used during survival and pathogenesis as well as genome organization that leads to...

  7. Complete and closed genome sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolated from human and bovine sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is an important pathogen transmitted by numerous vectors. Genomic comparisons of Salmonella from disparate hosts have the potential to further our understanding of mechanisms underlying host specificities and virulence. Here, we present closed genome and plasmid sequences of 10...

  8. E-nose identification of Salmonella enterica in poultry manure.

    PubMed

    Kizil, Ü; Genç, L; Genç, T T; Rahman, S; Khaitsa, M L

    2015-04-01

    A DiagNose II electronic nose (e-nose) system was tested to evaluate the performance of such systems in the detection of the Salmonella enterica pathogen in poultry manure. To build a database, poultry manure samples were collected from 7 broiler houses, samples were homogenised, and subdivided into 4 portions. One portion was left as is; the other three portions were artificially infected with S. enterica. An artificial neural network (ANN) model was developed and validated using the developed database. In order to test the performance of DiagNose II and the ANN model, 16 manure samples were collected from 6 different broiler houses and tested using these two systems. The results showed that DiagNose II was able to classify manure samples correctly as infected or non-infected based on the ANN model developed with a 94% level of accuracy. PMID:25650129

  9. Flagella-independent surface motility in Salmonella enterica serovar Typhimurium.

    PubMed

    Park, Sun-Yang; Pontes, Mauricio H; Groisman, Eduardo A

    2015-02-10

    Flagella are multiprotein complexes necessary for swimming and swarming motility. In Salmonella enterica serovar Typhimurium, flagella-mediated motility is repressed by the PhoP/PhoQ regulatory system. We now report that Salmonella can move on 0.3% agarose media in a flagella-independent manner when experiencing the PhoP/PhoQ-inducing signal low Mg(2+). This motility requires the PhoP-activated mgtA, mgtC, and pagM genes, which specify a Mg(2+) transporter, an inhibitor of Salmonella's own F1Fo ATPase, and a small protein of unknown function, respectively. The MgtA and MgtC proteins are necessary for pagM expression because pagM mRNA levels were lower in mgtA and mgtC mutants than in wild-type Salmonella, and also because pagM expression from a heterologous promoter rescued motility in mgtA and mgtC mutants. PagM promotes group motility by a surface protein(s), as a pagM-expressing strain conferred motility upon a pagM null mutant, and proteinase K treatment eliminated motility. The pagM gene is rarely found outside subspecies I of S. enterica and often present in nonfunctional allelic forms in organisms lacking the identified motility. Deletion of the pagM gene reduced bacterial replication on 0.3% agarose low Mg(2+) media but not in low Mg(2+) liquid media. Our findings define a form of motility that allows Salmonella to scavenge nutrients and to escape toxic compounds in low Mg(2+) semisolid environments. PMID:25624475

  10. Cytotoxic T cell adjuvant effects of three Salmonella enterica flagellins

    PubMed Central

    Braga, Catarina J.M.; Massis, Liliana M.; Alencar, Bruna C.G.; Rodrigues, Maurício M.; Sbrogio-Almeida, M.E.; Ferreira, Luís C.S.

    2008-01-01

    Bacterial flagellins are important virulence-associated factors and strong inducers of inflammatory responses in mammalian hosts. Flagellins have also been investigated as potential vaccine adjuvants, either for induction of humoral or cellular immune responses, to different target antigens. In this study we investigated the adjuvant properties of three Salmonella enterica flagellins types (FliCd, FliCi and FljB) to an ovalbumin-derived CD8+ T cell-restricted epitope (OVA257–264). Although mice immunized with the three tested flagellins elicited antigen-specific activated CD8+ T cells, only animals immunized with FliCi and FliCd flagellins admixed with ovalbumin mounted specific in vivo cytotoxic responses to peptide-pulsed target cells. The present results indicate that Salmonella flagellins are endowed with type-specific adjuvant effects toward murine CD8+ T cells, a feature that may impact their use as adjuvants for prophylatic or therapeutic vaccines. PMID:24031176

  11. Osteomyelitis caused by Salmonella enterica serovar derby in boa constrictor.

    PubMed

    de Souza, Suyene O; Casagrande, Renata A; Guerra, Priscila R; Cruz, Cláudio E F; Veit, Evandro; Cardoso, Marisa R I; Driemeier, David

    2014-09-01

    After demonstrating chronic weight loss, prostration, and muscle flaccidness, a captive-bred 9-mo-old boa constrictor (Boa constrictor constrictor) died and was submitted for necropsy. Along the spinal column there were multiple, yellowish white, macroscopic nodules of 1-5 mm in diameter in the ventral side of the vertebral body and in the intervertebral spaces. Severe multifocal necrotizing osteomyelitis associated with granulomatous inflammation was the main histologic finding in the vertebral column. In the liver, there was discrete but similar granulomatous changes. Positive anti-Salmonella immunostaining was observed in the spinal column and in the liver. Salmonella enterica serovar Derby was isolated from fragments of the spinal column. These bacteria are important cause of disease in captive reptiles. PMID:25314834

  12. Gene expression analysis of Salmonella enterica Enteritidis NalR and Salmonella enterica Kentucky 3795 exposed to HCl and acetic acid in rich medium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States, serovar Kentucky has become one of the most frequently isolated Salmonella enterica serovars from chickens. The reasons for this prevalence are not well understood. Phenotypic comparisons of poultry Salmonella isolates belonging to various serovars demonstrated that serovar Ken...

  13. Flagella-independent surface motility in Salmonella enterica serovar Typhimurium

    PubMed Central

    Park, Sun-Yang; Pontes, Mauricio H.; Groisman, Eduardo A.

    2015-01-01

    Flagella are multiprotein complexes necessary for swimming and swarming motility. In Salmonella enterica serovar Typhimurium, flagella-mediated motility is repressed by the PhoP/PhoQ regulatory system. We now report that Salmonella can move on 0.3% agarose media in a flagella-independent manner when experiencing the PhoP/PhoQ-inducing signal low Mg2+. This motility requires the PhoP-activated mgtA, mgtC, and pagM genes, which specify a Mg2+ transporter, an inhibitor of Salmonella’s own F1Fo ATPase, and a small protein of unknown function, respectively. The MgtA and MgtC proteins are necessary for pagM expression because pagM mRNA levels were lower in mgtA and mgtC mutants than in wild-type Salmonella, and also because pagM expression from a heterologous promoter rescued motility in mgtA and mgtC mutants. PagM promotes group motility by a surface protein(s), as a pagM-expressing strain conferred motility upon a pagM null mutant, and proteinase K treatment eliminated motility. The pagM gene is rarely found outside subspecies I of S. enterica and often present in nonfunctional allelic forms in organisms lacking the identified motility. Deletion of the pagM gene reduced bacterial replication on 0.3% agarose low Mg2+ media but not in low Mg2+ liquid media. Our findings define a form of motility that allows Salmonella to scavenge nutrients and to escape toxic compounds in low Mg2+ semisolid environments. PMID:25624475

  14. Survival of Salmonella enterica in aerated and nonaerated wastewaters from dairy lagoons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is the most commonly identified foodborne pathogen in produce, meat and poultry. Cattle are known reservoirs of Salmonella and the pathogen excreted in feces end up in manure flush lagoons. Salmonella enterica survival was monitored in wastewater from on-site holding lagoons equipped with...

  15. A Highly Effective Component Vaccine against Nontyphoidal Salmonella enterica Infections

    PubMed Central

    Ferreira, Rosana B. R.; Valdez, Yanet; Coombes, Brian K.; Sad, Subash; Gouw, Joost W.; Brown, Eric M.; Li, Yuling; Grassl, Guntram A.; Antunes, L. Caetano M.; Gill, Navkiran; Truong, Mimi; Scholz, Roland; Reynolds, Lisa A.; Krishnan, Laskshmi; Zafer, Ahmed A.; Sal-Man, Neta; Lowden, Michael J.; Auweter, Sigrid D.; Foster, Leonard J.

    2015-01-01

    ABSTRACT Nontyphoidal Salmonella enterica (NTS) infections are a major burden to global public health, as they lead to diseases ranging from gastroenteritis to systemic infections and there is currently no vaccine available. Here, we describe a highly effective component vaccine against S. enterica serovar Typhimurium in both gastroenteritis and systemic murine infection models. We devised an approach to generate supernatants of S. enterica serovar Typhimurium, an organism that is highly abundant in virulence factors. Immunization of mice with this supernatant resulted in dramatic protection against a challenge with serovar Typhimurium, showing increased survival in the systemic model and decreased intestinal pathology in the gastrointestinal model. Protection correlated with specific IgA and IgG levels in the serum and specific secretory IgA levels in the feces of immunized mice. Initial characterization of the protective antigens in the bacterial culture supernatants revealed a subset of antigens that exhibited remarkable stability, a highly desirable characteristic of an effective vaccine to be used under suboptimal environmental conditions in developing countries. We were able to purify a subset of the peptides present in the supernatants and show their potential for immunization of mice against serovar Typhimurium resulting in a decreased level of colonization. This component vaccine shows promise with regard to protecting against NTS, and further work should significantly help to establish vaccines against these prevalent infections. PMID:26396246

  16. A defective mutant of Salmonella enterica Serovar Gallinarum in cobalamin biosynthesis is avirulent in chickens

    PubMed Central

    de Paiva, Jacqueline Boldrin; Penha Filho, Rafael Antonio Casarin; Arguello, Yuli Melisa Sierra; Berchieri Junior, Ângelo; Lemos, Manuel Victor Franco; Barrow, Paul A.

    2009-01-01

    Salmonella enterica serovar Gallinarum (SG) is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain. PMID:24031393

  17. Regulation of the ansB gene of Salmonella enterica.

    PubMed

    Jennings, M P; Scott, S P; Beacham, I R

    1993-07-01

    The expression of L-asparaginase II (encoded by ansB) in Salmonella enterica was found to be positively regulated by the cAMP receptor protein (CRP) and anaerobiosis. The anaerobic regulation of the S. enterica ansB gene is not mediated by the anaerobic transcriptional activator FNR. This is unlike the situation of the ansB gene of Escherichia coli, which is dependent on both CRP and FNR. To investigate this fundamental difference in the regulation of L-asparaginase II expression in S. enterica, the ansB gene was cloned and the nucleotide sequence of the promoter region determined. Sequence analysis and transcript mapping of the 5' promoter region revealed a single transcriptional start point (tsp) and two regulatory sites with substantial homology with those found in E. coli. One site, centred -90.5 bp from the tsp, is homologous to a hybrid CRP/FNR ('CF') site which is the site of CRP regulation in the E. coli promoter. The other site, centred 40.5 bp upstream of the tsp, is homologous to the FNR binding site of the E. coli promoter. Significantly, however, a single base-pair difference exists in this site, at a position of the related CRP and FNR DNA-binding site consensus sequences known to be involved in CRP versus FNR specificity. Site-directed mutagenesis indicates that this single difference, relative to the homologous E. coli site, results in a CRP binding site and the observed FNR-independent ansB expression in S. enterica.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8412661

  18. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain YU15 (Sequence Type 19) Harboring the Salmonella Genomic Island 1 and Virulence Plasmid pSTV

    PubMed Central

    Calva, Edmundo; Puente, José L.; Zaidi, Mussaret B.

    2016-01-01

    The complete genome of Salmonella enterica subsp. enterica serovar Typhimurium sequence type 19 (ST19) strain YU15, isolated in Yucatán, Mexico, from a human baby stool culture, was determined using PacBio technology. The chromosome contains five intact prophages and the Salmonella genomic island 1 (SGI1). This strain carries the Salmonella virulence plasmid pSTV. PMID:27081132

  19. Draft Genome Sequences of Salmonella enterica subsp. enterica Serovar Berta ATCC 8392 and a Nalidixic Acid-Resistant Isolate of This Strain

    PubMed Central

    Cooper, Ashley; Koziol, Adam G.; Carrillo, Catherine D.

    2016-01-01

    Salmonella enterica subspecies enterica serovar Berta has been isolated in multiple animal species and has been implicated in human disease. Here, we report a 4.7-Mbp draft genome sequence of S. enterica serovar Berta (ATCC strain 8392) and a nalidixic acid-resistant isolate derived from this strain. PMID:27103707

  20. Human Genome-Wide RNAi Screen for Host Factors That Modulate Intracellular Salmonella Growth

    PubMed Central

    Thornbrough, Joshua M.; Hundley, Tom; Valdivia, Raphael; Worley, Micah J.

    2012-01-01

    Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity. PMID:22701604

  1. Antimicrobial susceptibility and plasmid replicon typing of Salmonella enterica serovar Kentucky isolates recovered from broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States, Salmonella enterica serotype Kentucky has become the predominate serotype recovered from broiler slaughter samples and the prevalence of resistance to streptomycin and tetracycline has increased dramatically in this serotype. To characterize the relationships between antimicro...

  2. Studies on Biofilm Formation and Interactions of Salmonella enterica with Romaine-Lettuce Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association between biofilm formation and the interactions of Salmonella enterica serovars with cut-Romaine-lettuce leaves was investigated. Biofilm formation by 8 S. enterica serovars was tested on polystyrene microtiter plates in the presence of different growth media. Maximal biofilm mass was...

  3. Genome sequences of ten Salmonella enterica serovars isolated from a single dairy farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report draft genomes of twenty-seven isolates of Salmonella enterica subsp. enterica representing the seven serotypes isolated from cows in a Pennsylvania dairy herd, the farm on which they were reared, and the associated off-site heifer-raising facility over an eight year sampling period. ...

  4. Antibiotic resistant Escherichia coli and Salmonella enterica in the beef production and processing chain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Concerns have been raised that extended-spectrum cephalosporin-resistant Escherichia coli (CefR EC), trimethoprim-sulfamethoxazole-resistant E. coli (TxsR EC), extended-spectrum cephalosporin-resistant Salmonella enterica (CefR SE), and nalidixic acid-resistant S. enterica (NalR SE) in c...

  5. Genome-scale screening and validation of targets for identification of Salmonella enterica and serovar prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is the most common foodborne pathogen worldwide, with a great diversity of 2500 recognized serovars. Detection of S. enterica and its classification into serovars are essential for food safety surveillance and clinical diagnosis. Recently, the polymerase chain reaction (PCR) meth...

  6. Improvements to a PCR-based serogrouping scheme for Salmonella enterica from dairy farm samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The PCR method described by Herrera-León, et al. (Research in Microbiology 158:122-127, 2007) has proved to be a simple and useful technique for characterizing isolates of Salmonella enterica enterica belonging to serogroups B, C1, C2, D1, and E1, groups which encompass a majority of the isolates fr...

  7. Role of Soil, Crop Debris, and a Plant Pathogen in Salmonella enterica Contamination of Tomato Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence...

  8. Previously uncharacterized Salmonella enterica genes required for swarming play a role in seedling colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incidences of bacterial foodborne illness caused by ingestion of fresh produce are rising. Instead of being a case of incidental contamination, the animal pathogen Salmonella enterica utilizes specific molecular mechanisms to attach to and colonize plants. This work characterizes two S. enterica gen...

  9. Draft Genome Sequences of 33 Salmonella enterica Clinical and Wildlife Isolates from Chile

    PubMed Central

    Toro, Magaly; Allard, Marc; Brown, Eric W.; Evans, Peter

    2015-01-01

    Salmonella enterica causes health problem worldwide. The relationships among strains that are from the same serotype but different hosts, countries, and continents remain elusive. Few genome sequences are available from S. enterica isolates from South America. Therefore, we sequenced the genomes of 33 strains from diverse sources isolated in Chile and determined that they were of different serotypes. These genomes will improve phylogenetic analysis of Salmonella strains from Chile and the rest of South America. PMID:25792040

  10. Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops.

    PubMed

    Meurens, François; Berri, Mustapha; Auray, Gael; Melo, Sandrine; Levast, Benoît; Virlogeux-Payant, Isabelle; Chevaleyre, Claire; Gerdts, Volker; Salmon, Henri

    2009-01-01

    Salmonella enterica subspecies enterica serovar Typhimurium, commonly called S. Typhimurium, can cause intestinal infections in humans and various animal species such as swine. To analyze the host response to Salmonella infection in the pig we used an in vivo gut loop model, which allows the analysis of multiple immune responses within the same animal. Four jejunal gut-loops were each inoculated with 3 x 10(8) cfu of S. Typhimurium in 3 one-month-old piglets and mRNA expressions of various cytokines, chemokines, transcription factors, antimicrobial peptides, toll like and chemokine receptors were assessed by quantitative real-time PCR in the Peyer's patch and the gut wall after 24 h. Several genes such as the newly cloned CCRL1/CCX-CKR were assessed for the first time in the pig at the mRNA level. Pro-inflammatory and T-helper type-1 (Th1) cytokine mRNA were expressed at higher levels in infected compared to non-infected control loops. Similarly, some B cell activation genes, NOD2 and toll like receptor 2 and 4 transcripts were more expressed in both tissues while TLR5 mRNA was down-regulated. Interestingly, CCL25 mRNA expression as well as the mRNA expressions of its receptors CCR9 and CCRL1 were decreased both in the Peyer's patch and gut wall suggesting a potential Salmonella strategy to reduce lymphocyte homing to the intestine. In conclusion, these results provide insight into the porcine innate mucosal immune response to infection with entero-invasive microorganisms such as S. Typhimurium. In the future, this knowledge should help in the development of improved prophylactic and therapeutic approaches against porcine intestinal S. Typhimurium infections. PMID:18922229

  11. Characterization of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar 4,[5],12:i:- isolates from pigs presenting with diarrhea in Korea

    PubMed Central

    LEE, Ki-Eun; LEE, Deog-Yong; CHOI, Hwan-Won; CHAE, Su-Jin; YUN, Young-Sun; LEE, Ki-Chan; CHO, Yun-Sang; YANG, Dong-Kun

    2015-01-01

    Between 2011 and 2012, a total of 896 pig fecal samples were collected from nine provinces in Korea, and 50 salmonella enterica susp. enterica serovar Typhimurium (S. Typhimurium) was isolated. The characteristics of the 50 strains were analyzed, and 4 strains were identified as Salmonella enterica subsp. enterica serovar 4,[5],12:i:-. Salmonella 4,[5],12:i:- could not be distinguished from S. Typhimurium through phage typing, antimicrobial resistance testing or multiple-locus variable-number tandem repeat analysis (MLVA). However, among the four Salmonella 4,[5],12:i:- strains, one (KVCC-BA1400078) was identified as a Salmonella 4,[5],12:i:- clone isolated from humans in the United States, and another (KVCC-BA1400080) was identified as DT193, which has been primarily isolated from humans and animals in European countries. The presence of Salmonella 4,[5],12:i:- in Korea poses a significant threat of horizontal transfer between pigs and humans. PMID:26074410

  12. Growth kinetics of Salmonella enterica in Hajna tetrathionate broth, Rappaport broth and modified semisolid Rappaport agar

    PubMed Central

    FUJIHARA, Masatoshi; TABUCHI, Hiroyuki; UEGAKI, Kaho

    2015-01-01

    To determine the appropriate method for isolating Salmonella enterica, we compared the growth of S. enterica serovars using three selective enrichment media. S. enterica was more successfully isolated from artificially contaminated fecal samples after enrichment in Hajna tetrathionate broth or modified semisolid Rappaport agar than in Rappaport broth. Since most bacteria (other than motile S. enterica) do not migrate on modified semisolid Rappaport agar, the growth characteristics of S. enterica can be interpreted easily and quickly. Two S. enterica isolates did not migrate on modified semisolid Rappaport agar, but did grow in Hajna tetrathionate broth, which suggests that the combined use of these selective enrichment media is appropriate for isolating S. enterica. PMID:26498402

  13. Transmission of an oxygen availability signal at the Salmonella enterica serovar Typhimurium fis promoter.

    PubMed

    Cameron, Andrew D S; Kröger, Carsten; Quinn, Heather J; Scally, Isobel K; Daly, Anne J; Kary, Stefani C; Dorman, Charles J

    2013-01-01

    The nucleoid-associated protein FIS is a global regulator of gene expression and chromosome structure in Escherichia coli and Salmonella enterica. Despite the importance of FIS for infection and intracellular invasion, very little is known about the regulation of S. enterica fis expression. Under standard laboratory growth conditions, fis is highly expressed during rapid growth but is then silenced as growth slows. However, if cells are cultured in non-aerated conditions, fis expression is sustained during stationary phase. This led us to test whether the redox-sensing transcription factors ArcA and FNR regulate S. enterica fis. Deletion of FNR had no detectable effect, whereas deletion of ArcA had the unexpected effect of further elevating fis expression in stationary phase. ArcA required RpoS for induction of fis expression, suggesting that ArcA indirectly affects fis expression. Other putative regulators were found to play diverse roles: FIS acted directly as an auto-repressor (as expected), whereas CRP had little direct effect on fis expression. Deleting regions of the fis promoter led to the discovery of a novel anaerobically-induced transcription start site (Pfis-2) upstream of the primary transcription start site (Pfis-1). Promoter truncation also revealed that the shortest functional fis promoter was incapable of sustained expression. Moreover, fis expression was observed to correlate directly with DNA supercoiling in non-aerated conditions. Thus, the full-length S. enterica fis promoter region may act as a topological switch that is sensitive to stress-induced duplex destabilisation and up-regulates expression in non-aerated conditions. PMID:24358360

  14. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    PubMed

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+). PMID:27491862

  15. First report of iliacus abscess caused by Salmonella enterica serovar Othmarschen.

    PubMed

    Jha, Babita; Kim, Choon-Mee; Kim, Dong-Min; Chung, Jong-Hoon; Yoon, Na-Ra; Jha, Piyush; Kim, Seok Won; Jang, Sook Jin; Kim, Seon Gyeong; Chung, Jae Keun

    2016-02-01

    The non-typhoidal bacterium Salmonella enterica subspecies enterica serovar Othmarschen (Salmonella Othmarschen) is a rare human pathogen. Abscess formation due to non-typhoidal Salmonella infections is a very rare complication in this antibiotic era. We report the first case of iliacus abscess after a short period of gastroenteritis which was caused by non-typhoidal Salmonella enterica belonging to group C1, serovar Othmarschen in a patient without any underlying conditions. A young female presented in our hospital complaining of pain in right hip joint area. She gave a history of watery diarrhea 3 days before the onset of pain. On examination the patient was ill-looking and there was tenderness in the right hip joint area. S. enterica was identified using 16S rRNA gene amplification by PCR and serotyped to be serovar Othmarschen from the pus sample of iliacus abscess. This is the first reported case of iliacus abscess due to Salmonella serover Othmarschen infection. Our case suggests that S. enterica serovar Othmarschen can cause severe focal infections associated with gastroenteritis. The literature on the rare association of Salmonella enterica and abscess formation is reviewed. PMID:26482919

  16. Gene Transfer between Salmonella enterica Serovar Typhimurium inside Epithelial Cells

    PubMed Central

    Ferguson, Gayle C.; Heinemann, Jack A.; Kennedy, Martin A.

    2002-01-01

    Virulence and antibiotic resistance genes transfer between bacteria by bacterial conjugation. Conjugation also mediates gene transfer from bacteria to eukaryotic organisms, including yeast and human cells. Predicting when and where genes transfer by conjugation could enhance our understanding of the risks involved in the release of genetically modified organisms, including those being developed for use as vaccines. We report here that Salmonella enterica serovar Typhimurium conjugated inside cultured human cells. The DNA transfer from donor to recipient bacteria was proportional to the probability that the two types of bacteria occupied the same cell, which was dependent on viable and invasive bacteria and on plasmid tra genes. Based on the high frequencies of gene transfer between bacteria inside human cells, we suggest that such gene transfers occur in situ. The implications of gene transfer between bacteria inside human cells, particularly in the context of antibiotic resistance, are discussed. PMID:11914355

  17. Development and application of novel SNP-based serotyping assays in targeting Salmonella enterica within the poultry production and processing continuum.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serotype Enteriditis (S. Enteriditis) is the leading cause of salmonellosis worldwide. While some S. enterica serotypes are specific to birds, many represent human zoonotic pathogens, thus their presence and survival throughout the continuum of poultry production...

  18. Rapid molecular pathotyping of major salmonella enterica serotypes based on single-nucleotide polymorphisms (SNPs) in the adenylate cyclase (cyaA) gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Salmonella enterica subsp. enterica serotype Enteriditis (S. Enteriditis) is the leading cause of salmonellosis worldwide, including the USA. Many S. enterica serotypes known to cause foodborne disease are associated with broiler meat contamination. While some serotypes are specific...

  19. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    DOE PAGESBeta

    Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.; Le Hello, Simon; Weill, François-Xavier; Baggesen, Dorte Lau; Jun, Se-Ran; Ussery, David W.; Lund, Ole; Crook, Derrick W.; Wilson, Daniel J.; et al

    2016-03-04

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. In this paper, we used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ~1948 (95% credible interval [CI], 1934more » to 1962) and later became MDR DT104 in ~1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ~1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. Finally, the results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections.« less

  20. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    PubMed Central

    Hendriksen, Rene S.; Le Hello, Simon; Weill, François-Xavier; Baggesen, Dorte Lau; Jun, Se-Ran; Lund, Ole; Crook, Derrick W.; Wilson, Daniel J.; Aarestrup, Frank M.

    2016-01-01

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections. PMID:26944846

  1. A MULTIPLEX PCR METHOD FOR THE RAPID SEROTYPING OF COMMON CLINICAL ISOLATES OF SALMONELLA ENTERICA SUBSPECIES ENTERICA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The bacterial species Salmonella enterica is one of the major causes of gastroenteritis in humans and has over 1,500 serotypes. Serotyping is the most common tool used to identify isolates from diseased patients. However, the serotyping method can take several weeks and sometimes can ...

  2. Biofilm Formation and Morphotypes of Salmonella enterica subsp.arizonae Differs from Those of Other Salmonella enterica Subspecies in Isolates from Poultry Houses.

    PubMed

    Lamas, A; Fernandez-No, I C; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-07-01

    Salmonella serovars are responsible for foodborne diseases around the world. The ability to form biofilms allows microorganisms to survive in the environment. In this study, 73 Salmonella strains, belonging to four different subspecies, were isolated from poultry houses and foodstuffs and tested. Biofilm formation was measured at four different temperatures and two nutrient concentrations. Morphotypes and cellulose production were evaluated at three different temperatures. The presence of several genes related to biofilm production was also examined. All strains and subspecies of Salmonella had the ability to form biofilms, and 46.57% of strains produced biofilms under all conditions tested. Biofilm formation was strain dependent and varied according to the conditions. This is the first study to analyze biofilm formation in a wide number of Salmonella enterica subsp. arizonae strains, and no direct relationship between the high prevalence of Salmonella enterica subsp. arizonae strains and their ability to form biofilm was established. Morphotypes and cellulose production varied as the temperature changed, with 20°C being the optimum temperature for expression of the red, dry, and rough morphotype and cellulose. Salmonella enterica subsp. arizonae, whose morphotype is poorly studied, only showed a smooth and white morphotype and lacked the csgD and gcpA genes that are implicated in biofilm production. Thus, Salmonella biofilm formation under different environmental conditions is a public health problem because it can survive and advance through the food chain to reach the consumer. PMID:27357031

  3. Cellular Requirements for Systemic Control of Salmonella enterica Serovar Typhimurium Infections in Mice

    PubMed Central

    Bedoui, Sammy

    2014-01-01

    The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555–577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95–101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4+ T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent. PMID:25225248

  4. MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Song, Saemee; Lee, Boeun; Yeom, Ji-Hyun; Hwang, Soonhye; Kang, Ilnam; Cho, Jang-Cheon; Ha, Nam-Chul; Bae, Jeehyeon

    2015-01-01

    MdsABC is a Salmonella-specific tripartite efflux pump that has been implicated in the virulence of Salmonella enterica serovar Typhimurium; however, little is known about the virulence factors associated with this pump. We observed MdsABC expression-dependent alterations in the degree of resistance to extracellular oxidative stress and macrophage-mediated killing. Thin-layer chromatography and tandem mass spectrometry analyses revealed that overexpression of MdsABC led to increased secretion of 1-palmitoyl-2-stearoyl-phosphatidylserine (PSPS), affecting the ability of the bacteria to invade and survive in host cells. Overexpression of MdsABC and external addition of PSPS similarly rendered the mdsABC deletion strain resistant to diamide. Diagonal gel analysis showed that PSPS treatment reduced the diamide-mediated formation of disulfide bonds, particularly in the membrane fraction of the bacteria. Salmonella infection of macrophages induced the upregulation of MdsABC expression and led to an increase of intracellular bacterial number and host cell death, similar to the effects of MdsABC overexpression and PSPS pretreatment on the mdsABC deletion strain. Our study shows that MdsABC mediates a previously uncharacterized pathway that involves PSPS as a key factor for the survival and virulence of S. Typhimurium in phagocytic cells. PMID:26283336

  5. Cellular requirements for systemic control of Salmonella enterica serovar Typhimurium infections in mice.

    PubMed

    Kupz, Andreas; Bedoui, Sammy; Strugnell, Richard A

    2014-12-01

    The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555-577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95-101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4(+) T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent. PMID:25225248

  6. Salmonella enterica serovars Typhimurium and Typhi as model organisms

    PubMed Central

    Garai, Preeti; Gnanadhas, Divya Prakash; Chakravortty, Dipshikha

    2012-01-01

    The lifestyle of intracellular pathogens has always questioned the skill of a microbiologist in the context of finding the permanent cure to the diseases caused by them. The best tool utilized by these pathogens is their ability to reside inside the host cell, which enables them to easily bypass the humoral immunity of the host, such as the complement system. They further escape from the intracellular immunity, such as lysosome and inflammasome, mostly by forming a protective vacuole-bound niche derived from the host itself. Some of the most dreadful diseases are caused by these vacuolar pathogens, for example, tuberculosis by Mycobacterium or typhoid fever by Salmonella. To deal with such successful pathogens therapeutically, the knowledge of a host-pathogen interaction system becomes primarily essential, which further depends on the use of a model system. A well characterized pathogen, namely Salmonella, suits the role of a model for this purpose, which can infect a wide array of hosts causing a variety of diseases. This review focuses on various such aspects of research on Salmonella which are useful for studying the pathogenesis of other intracellular pathogens. PMID:22722237

  7. A Murine Model to Study the Antibacterial Effect of Copper on Infectivity of Salmonella Enterica Serovar Typhimurium

    PubMed Central

    Sharan, Riti; Chhibber, Sanjay; Reed, Robert H.

    2011-01-01

    This study investigated the effect of copper as an antibacterial agent on the infectivity of Salmonella enterica serovar Typhimurium. Mice were infected orally with a standardized dose of unstressed Salmonella Typhimurium and copper-stressed cells of Salmonella Typhimurium. Bacterial counts in ileum, blood, liver and spleen were observed up to 168 h under normal aerobic conditions. Serum sensitivity, phagocytosis, malondialdehyde levels and histopathology were studied for both set of animals. A decreased bacterial count in the organs with mild symptoms of infection and a complete recovery by 48 h was observed in mice infected with copper-stressed bacteria. Histopathological examination of ileum tissue demonstrated regeneration of damaged tissue post-infection with copper-stressed bacteria and no malondialdehyde levels were detected after 24 h in ileum, spleen and liver. Exposure to copper sensitized Salmonella Typhimurium to the lytic action of serum and intracellular killing by peritoneal macrophages. It can be concluded that copper stress confers a decrease in the infectivity of healthy Salmonella Typhimurium in normal mice. This study highlights the significance of use of copper as an antibacterial agent against Salmonella Typhimurium in reducing the risk of incidence of Salmonella infections from contaminated water. PMID:21318012

  8. Salmonella enterica Serovar Typhimurium Invades Fibroblasts by Multiple Routes Differing from the Entry into Epithelial Cells▿

    PubMed Central

    Aiastui, Ana; Pucciarelli, M. Graciela; García-del Portillo, Francisco

    2010-01-01

    Fibroblasts are ubiquitous cells essential to tissue homeostasis. Despite their nonphagocytic nature, fibroblasts restrain replication of intracellular bacterial pathogens such as Salmonella enterica serovar Typhimurium. The extent to which the entry route of the pathogen determines this intracellular response is unknown. Here, we analyzed S. Typhimurium invasion in fibroblasts obtained from diverse origins, including primary cultures and stable nontransformed cell lines derived from normal tissues. Features distinct to the invasion of epithelial cells were found in all fibroblasts tested. In some fibroblasts, bacteria lacking the type III secretion system encoded in the Salmonella pathogenicity island 1 displayed significant invasion rates and induced the formation of lamellipodia and filopodia at the fibroblast-bacteria contact site. Other bacterial invasion traits observed in fibroblasts were the requirement of phosphatidylinositol 3-kinase, mitogen-activated protein kinase MEK1, and both actin filaments and microtubules. RNA interference studies showed that different Rho family GTPases are targeted by S. Typhimurium to enter into distinct fibroblasts. Rac1 and Cdc42 knockdown affected invasion of normal rat kidney fibroblasts, whereas none of the GTPases tested (Rac1, Cdc42, RhoA, or RhoG) was essential for invasion of immortalized human foreskin fibroblasts. Collectively, these data reveal a marked diversity in the modes used by S. Typhimurium to enter into fibroblasts. PMID:20368348

  9. Epidemiology of a Salmonella enterica subsp. Enterica serovar Typhimurium strain associated with a songbird outbreak.

    USGS Publications Warehouse

    Blehert, David S.; Hernandez, Sonia M.; Keel, Kevin; Sanchez, Susan; Trees, Eija; Peter Gerner-Smidt

    2012-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. This Salmonella serovar is also responsible for die-offs in songbird populations. In 2009, there was an S. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and human S. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This same S. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 total S. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature of S. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast.

  10. Evaluation and comparison of molecular techniques for epidemiological typing of Salmonella enterica subsp. enterica serovar dublin.

    PubMed Central

    Liebisch, B; Schwarz, S

    1996-01-01

    A total of 28 unrelated isolates of the Salmonella enterica subsp. enterica serovar dublin (S. dublin) collected during a 6-year period, as well as four samples of the S. dublin live vaccine strain Bovisaloral and its prototype strain S. dublin 442/039, were investigated by different molecular typing methods for the following reasons: (i) to find the most discriminatory method for the epidemiological typing of isolates belonging to this Salmonella serovar and (ii) to evaluate these methods for their capacity to discriminate among the live vaccine strain Bovisaloral, its prototype strain S. dublin 442/039, and field isolates of the serovar dublin. Five different plasmid profiles were observed; a virulence plasmid of 76 kbp as identified by hybridization with an spvB-spvC gene probe was present in all isolates. The detection of 16S rRNA genes and that of IS200 elements proved to be unsuitable for the epidemiological typing of S. dublin; only one hybridization pattern could be observed with each of these methods. The results obtained from macrorestriction analysis strongly depended on the choice of restriction enzyme. While the enzyme NotI yielded the lowest discriminatory index among all enzymes tested, it was the only enzyme that allowed discrimination between the Bovisaloral vaccine strain and its prototype strain. In contrast to the enzymes XbaI and SpeI, which only differentiated among the S. dublin field isolates, XhoI as well as AvrII also produced restriction fragment patterns of the Bovisaloral strain and of its prototype strain that were not shared by any of the S. dublin field isolates. Macrorestriction analysis proved to be the most discriminatory method not only for the epidemiological typing of S. dublin field isolates but also for the identification of the S. dublin live vaccine strain Bovisaloral. PMID:8904430

  11. Epidemiology of a Salmonella enterica subsp. enterica serovar Typhimurium strain associated with a songbird outbreak.

    PubMed

    Hernandez, Sonia M; Keel, Kevin; Sanchez, Susan; Trees, Eija; Gerner-Smidt, Peter; Adams, Jennifer K; Cheng, Ying; Ray, Al; Martin, Gordon; Presotto, Andrea; Ruder, Mark G; Brown, Justin; Blehert, David S; Cottrell, Walter; Maurer, John J

    2012-10-01

    Salmonella enterica subsp. enterica serovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. This Salmonella serovar is also responsible for die-offs in songbird populations. In 2009, there was an S. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and human S. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This same S. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 total S. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature of S. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast. PMID:22885752

  12. Diagnostic accuracy of rectoanal mucosal swab of feedlot cattle for detection and enumeration of Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle are noted carriers of the foodborne pathogen Salmonella enterica. The perceived need to decrease the potential human health risk posed by excretion of this pathogen has resulted in numerous studies examining the factors that influence cattle shedding of Salmonella. Fecal grab (FG) samples hav...

  13. Antibiotics induce the expression of attachment genes in specific isolates of Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 27 percent of Salmonella enterica serovar Typhimurium isolates from humans in the United States are resistant to three or more antibiotics. This presents an important food safety concern as multidrug-resistant (MDR) Salmonella is associated with increased morbidity in humans. It has been...

  14. Tetracycline promotes the expression of ten fimbrial operons in specific Salmonella enterica serovar Typhimurium isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multidrug-resistant (MDR) Salmonella is associated with increased morbidity in humans and presents an important food safety concern. Antibiotic resistance among isolates of Salmonella enterica serovar Typhimurium has become especially prevalent as over 27 per cent of isolates from humans in the Unit...

  15. Hydrogen-Stimulated carbon acquisition and conservation in salmonella enterica serovar typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Typhimurium can utilize molecular hydrogen for growth and amino acid transport during anaerobic growth. Via microarray we identified H2 gas-affected gene expression changes in Salmonella. Addition of H2 caused altered expression of 965 genes; 176 genes were H2-up-regulate...

  16. Salmonella enterica Subspecies diarizonae Maxillary Sinusitis in a Snake Handler: First Report

    PubMed Central

    Horvath, Lukas; Kraft, Marcel; Fostiropoulos, Karolos; Falkowski, Anna; Tarr, Philip E.

    2016-01-01

    In this study, we report the first case of reptile-associated maxillary sinusitis due to Salmonella enterica subspecies diarizonae in a snake handler and the third case of salmonella-associated sinusitis worldwide. The case highlights the potential of respiratory transmission and atypical salmonellosis presentations. PMID:27186588

  17. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the ability of five Salmonella enterica serovars to attach to and colonize intact and cut lettuce (Iceberg, Romaine) and cabbage surfaces. Biofilm assay and attachment of Salmonella serovars to intact and cut leaves were determined. Bacterial populations of loosely and strong...

  18. The giant adhesin SiiE of Salmonella enterica.

    PubMed

    Barlag, Britta; Hensel, Michael

    2015-01-01

    Salmonella enterica is a Gram-negative, food-borne pathogen, which colonizes the intestinal tract and invades enterocytes. Invasion of polarized cells depends on the SPI1-encoded type III secretion system (T3SS) and the SPI4-encoded type I secretion system (T1SS). The substrate of this T1SS is the non-fimbrial giant adhesin SiiE. With a size of 595 kDa, SiiE is the largest protein of the Salmonella proteome and consists of 53 repetitive bacterial immunoglobulin (BIg) domains, each containing several conserved residues. As known for other T1SS substrates, such as E. coli HlyA, Ca2+ ions bound by conserved D residues within the BIg domains stabilize the protein and facilitate secretion. The adhesin SiiE mediates the first contact to the host cell and thereby positions the SPI1-T3SS to initiate the translocation of a cocktail of effector proteins. This leads to actin remodeling, membrane ruffle formation and bacterial internalization. SiiE binds to host cell apical membranes in a lectin-like manner. GlcNAc and α2-3 linked sialic acid-containing structures are ligands of SiiE. Since SiiE shows repetitive domain architecture, we propose a zipper-like binding mediated by each individual BIg domain. In this review, we discuss the characteristics of the SPI4-T1SS and the giant adhesin SiiE. PMID:25587788

  19. Salmonella enterica Serotype Choleraesuis: Epidemiology, Pathogenesis, Clinical Disease, and Treatment†

    PubMed Central

    Chiu, Cheng-Hsun; Su, Lin-Hui; Chu, Chishih

    2004-01-01

    Nontyphoid Salmonella strains are important causes of reportable food-borne infection. Among more than 2,000 serotypes, Salmonella enterica serotype Choleraesuis shows the highest predilection to cause systemic infections in humans. The most feared complication of serotype Cholearesuis bacteremia in adults is the development of mycotic aneurysm, which previously was almost uniformally fatal. The advances in diagnostic techniques, surgical care, and antimicrobial therapy have greatly improved the survival of these patients. However, the recent emergence of serotype Choleraesuis that is resistant to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, and, notably, fluoroquinolone antibiotics has aroused concern about the use of these agents for the empirical treatment of systemic infection caused by this organism. In view of the serious implications of the situation, the chain of transmission and mechanism of resistance should be carefully studied to reduce the spread of infection and threat to human health. To date, there are no vaccines available to prevent serotype Choleraesuis infections in humans. The availability, in the near future, of the genome sequence of serotype Cholearesuis will facilitate the development of effective vaccines as well as the discovery of new targets for novel antimicrobial agents. PMID:15084503

  20. Salmonella enterica Serotype Choleraesuis Infection of the Knee and Femur in a Nonbacteremic Diabetic Patient

    PubMed Central

    Sy, Alexander M.; Sandhu, Jagbir; Lenox, Theodore

    2013-01-01

    Osteoarticular infections caused by Salmonella are rare. The rates of osteomyelitis and septic arthritis due to Salmonella are estimated to be less than 1% and 0.1%-0.2%, respectively (Kato et al., 2012). Salmonella enterica serotype Choleraesuis is a nontyphoidal Salmonella, highly pathogenic in humans, usually causing septicemic disease with little or no intestinal involvement. Serotype Choleraesuis accounts for a small percentage of published studies of Salmonella infections in the United States. It is not commonly reported in joint fluid and bones in contrast to serotype Enteritidis and Typhi, where a considerable number of cases have been published. Chen et al. in Taiwan found that 21% of bacteremic patients with this infection subsequently develop focal infections such as septic arthritis, pneumonia, peritonitis, and cutaneous abscess (Chen et al., 1999, Chiu et al., 2004). In contrast, our patient presented with localized osteoarticular infection with Salmonella enterica serotype Cholerasuis, but without evidence of bacteremia. PMID:23781356

  1. Pathogenicity of Salmonella enterica in Caenorhabditis elegans relies on disseminated oxidative stress in the infected host.

    PubMed

    Sem, XiaoHui; Rhen, Mikael

    2012-01-01

    Feeding Caenorhabditis elegans with Salmonella enterica serovar Typhimurium significantly shortens the lifespan of the nematode. S. Typhimurium-infected C. elegans, stained with 2',7'-dichlorodihydrofluorescein diacetate which fluoresces upon exposure to reactive oxygen species, revealed intestinal luminal staining that along with the time of infection progressed to a strong staining in the hypodermal tissues of the nematode. Still, we could not detect invasion beyond the nematode's intestinal epithelium at any stage of the infection. A similar dispersion of oxidative response was also noted in nematodes infected with S. Dublin, but not with non-pathogenic Escherichia coli or the defined pathogen Burkholderia thailandensis. Addition of catalase or the reductant ascorbic acid significantly restored the lifespan of S. Typhimurium-infected nematodes. Mutational inactivation of the bacterial thioredoxin 1 resulted in total ablation of the hypodermal oxidative response to infection, and in a strong attenuation of virulence. Virulence of the thioredoxin 1 mutant was restored by trans-complementation with redox-active variants of thioredoxin 1 or, surprisingly, by exposing the thioredoxin 1 mutant to sublethal concentrations of the disulphide catalyst copper chloride prior to infection. In summary, our observations define a new aspect in virulence of S. enterica that apparently does not involve the classical invasive or intracellular phenotype of the pathogen, but that depends on the ability to provoke overwhelming systemic oxidative stress in the host through the redox activity of bacterial thioredoxin 1. PMID:23028994

  2. Transcriptional profile of Salmonella enterica subsp. enterica serovar Weltevreden during alfalfa sprout colonization

    PubMed Central

    Brankatschk, Kerstin; Kamber, Tim; Pothier, Joël F; Duffy, Brion; Smits, Theo H M

    2014-01-01

    Sprouted seeds represent a great risk for infection by human enteric pathogens because of favourable growth conditions for pathogens during their germination. The aim of this study was to identify mechanisms of interactions of Salmonella enterica subsp. enterica Weltevreden with alfalfa sprouts. RNA-seq analysis of S. Weltevreden grown with sprouts in comparison with M9-glucose medium showed that among a total of 4158 annotated coding sequences, 177 genes (4.3%) and 345 genes (8.3%) were transcribed at higher levels with sprouts and in minimal medium respectively. Genes that were higher transcribed with sprouts are coding for proteins involved in mechanisms known to be important for attachment, motility and biofilm formation. Besides gene expression required for phenotypic adaption, genes involved in sulphate acquisition were higher transcribed, suggesting that the surface on alfalfa sprouts may be poor in sulphate. Genes encoding structural and effector proteins of Salmonella pathogenicity island 2, involved in survival within macrophages during infection of animal tissue, were higher transcribed with sprouts possibly as a response to environmental conditions. This study provides insight on additional mechanisms that may be important for pathogen interactions with sprouts. PMID:24308841

  3. Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves

    PubMed Central

    Potnis, Neha; Colee, James; Jones, Jeffrey B.

    2015-01-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. PMID:26386057

  4. Development of a rapid serotyping method for Salmonella enterica using serotype-specific single-nucleotide polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serotype Enteriditis (S. Enteriditis) is the leading cause of salmonellosis worldwide, including the USA. Many S. enterica serotypes known to cause foodborne disease are associated with broiler meat contamination. While some serotypes are specific to birds (S. e...

  5. Mobilome differences between Salmonella enterica serovars Anatum and Typhimurium isolated from cattle and humans and potential impact on virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica is an important group of pathogens capable of inhabiting a range of niches and hosts with varying degrees of impact, from commensal colonization to invasive infection. Recent outbreaks of multi-drug resistant S. enterica, attributed to consumption of contaminated ...

  6. Effects of postharvest handling conditions on internalization and growth of Salmonella enterica in tomatoes.

    PubMed

    Zhou, Bin; Luo, Yaguang; Nou, Xiangwu; Yang, Yang; Wu, Yunpeng; Wang, Qin

    2014-03-01

    Salmonella internalization in tomatoes during postharvest handling is a major food safety concern. This study was conducted to determine the effect of immersion time, immersion depth, and temperature differential between bacterial suspension and tomato pulp on the internalization of Salmonella enterica in tomato fruits. The effect of storage temperature and duration on the survival and growth of internalized Salmonella cells was also evaluated. Overall, immersion time significantly affected the incidence and extent of S. enterica internalization (P < 0.0001), with a linear correlation between immersion time and Salmonella internalization. The depth of Salmonella internalization in tomato tissues also increased with increasing immersion time. Immersion time also significantly influenced the degree to which the temperature differential affected Salmonella internalization. With an immersion time of 2 min, the temperature differential had no significant effect on Salmonella internalization (P = 0.2536). However, with an immersion time of 15 min, a significantly larger Salmonella population became internalized in tomatoes immersed in solutions with a -30°F (-16.7°C) temperature differential. Internalized S. enterica cells persisted in the core tissues during 14 days of storage. Strain type and storage duration significantly affected (P < 0.05) both the frequency detected and the population of internalized Salmonella recovered, but storage temperatures of 55 to 70°F (12.8 to 21.1°C) did not (P > 0.05). These findings indicate the importance of preventing pathogen internalization during postharvest handling. PMID:24674426

  7. Genome-Scale Screening and Validation of Targets for Identification of Salmonella enterica and Serovar Prediction.

    PubMed

    Zhou, Xiujuan; Zhang, Lida; Shi, Chunlei; Fratamico, Pina M; Liu, Bin; Paoli, George C; Dan, Xianlong; Zhuang, Xiaofei; Cui, Yan; Wang, Dapeng; Shi, Xianming

    2016-03-01

    Salmonella enterica is the most common foodborne pathogen worldwide, with 2,500 recognized serovars. Detection of S. enterica and its classification into serovars are essential for food safety surveillance and clinical diagnosis. The PCR method is useful for these applications because of its rapidity and high accuracy. We obtained 412 candidate detection targets for S. enterica using a comparative genomics mining approach. Gene ontology (GO) functional enrichment analysis of these candidate targets revealed that the GO term with the largest number of unigenes with known function (38 of 177, 21.5%) was significantly involved in pathogenesis (P < 10(-24)). All the candidate targets were then evaluated by PCR assays. Fifteen targets showed high specificity for the detection of S. enterica by verification with 151 S. enterica strains and 34 non-Salmonella strains. The phylogenetic trees of verified targets were highly comparable with those of housekeeping genes, especially for differentiating S. enterica strains into serovars. The serovar prediction ability was validated by sequencing one target (S9) for 39 S. enterica strains belonging to six serovars. Identical mutation sites existed in the same serovar, and different mutation sites were found in diverse serovars. Our findings revealed that 15 verified targets can be potentially used for molecular detection, and some of them can be used for serotyping of S. enterica strains. PMID:26939647

  8. Analysis of antimicrobial resistance genes detected in multidrug-resistant salmonella enterica serovar typhimurium isolated from food animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of multi drug resistance (MDR) in foodborne pathogens such as Salmonella enterica is a concern for both animal and human health. MDR Salmonella enterica serovar Typhimurium is the most prevalent penta-resistant serovar isolated from animals as part of the National Antimicrobial Resis...

  9. Acute Hepatic Necrosis Caused by Salmonella enterica Serotype I 4,5,12:−:1,2 in a Dog

    PubMed Central

    Meiring, Thelma; Grant, Andrew J.; Watson, Penny J.

    2015-01-01

    Acute hepatic necrosis was diagnosed in a dog. Gram staining and fluorescence in situ hybridization identified Salmonella enterica in the liver, subsequently confirmed as S. enterica serotype I 4,5,12:−:1,2. This is the first report of acute hepatic necrosis with liver failure caused by Salmonella in a dog. PMID:26292301

  10. Intergenic Sequence Ribotyping using a region neighboring dkgB links genovar to Kauffman-White serotype of Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intergenic Sequence Ribotyping using a region neighboring dkgB links genovar to Kauffman-White serotype of Salmonella enterica Previous research identified that the 5S ribosomal (rrn) gene and associated flanking sequences that are closely linked to the dkgB gene of Salmonella enterica were highly ...

  11. Development of a Rapid Multiplex PCR Technique for Determination of Salmonella enterica Serotypes Isolated from Pork and Poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: A multiplex PCR technique to discriminate Salmonella enterica serotypes was adapted to a high-throughput, automated assay. Methods: Fifteen target genes were chosen that varied in distribution among common Salmonella enterica serotypes isolated from various hosts. These targets were dete...

  12. Effects of integrated treatment of nonthermal UV-C light and different antimicrobial wash on Salmonella enterica on plum tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Produce contamination by foodborne pathogens remains a serious threat. This study investigated synergistic effects of ultraviolet-C and various active sanitizers’ washes against Salmonella enterica on plum tomatoes. A bacterial cocktail containing three serotypes of Salmonella enterica (S. Newport H...

  13. Salmonella enterica serovar Enteritidis enterocolitis during late stages of gestation induces an adverse pregnancy outcome in the murine model.

    PubMed

    Noto Llana, Mariángeles; Sarnacki, Sebastián Hernán; Aya Castañeda, María del Rosario; Pustovrh, María Carolina; Gartner, Alejandra Sonia; Buzzola, Fernanda Roxana; Cerquetti, María Cristina; Giacomodonato, Mónica Nancy

    2014-01-01

    Foodborne diseases caused by Salmonella enterica serovar Enteritidis (S. Enteritidis) are a significant health problem. Pregnancy, state of immunological tolerance, is a predisposing condition for the development of infections with intracellular pathogens. Salmonella species can cause pregnancy complications such as chorioamnionitis, transplacental fetal infection, pre term labor, abortions, neonatal and maternal septicemia. However, the specific mechanisms by which Salmonella infections trigger these alterations are not clear. In the present work, using a self-limiting enterocolitis murine model, we show that the ingestion of a low dose of S. Enteritidis at late stages of pregnancy (day 15 of gestation) is sufficient to induce massive maternal infection. We found that Salmonella infection leads to 40% of pre term delivery, 33% of abortion and fetal growth restriction. Placental dysfunction during S. Enteritidis enterocolitis was confirmed through cellular infiltration and hypoxia markers (MPO activity and COX-1 and COX-2 expression, respectively). Apoptosis in placental tissue due to Salmonella infection was also evident at day 18 of gestation when investigated by morphometric procedure, DNA fragmentation and Fas/FasL expression. Also, the expression of IFN-γ, TNF-α, IL-17 and IL-10 was up regulated in response to Salmonella not only in placenta, but also in amniotic fluid and maternal serum. Altogether, our results demonstrate that S. Enteritidis enterocolitis during late stages of gestation causes detrimental effect on pregnancy outcome. PMID:25365504

  14. The complete plasmid sequences of Salmonella enterica serovar Typhimurium U288.

    PubMed

    Hooton, Steven P T; Timms, Andrew R; Cummings, Nicola J; Moreton, Joanna; Wilson, Ray; Connerton, Ian F

    2014-08-28

    Salmonella enterica Serovar Typhimurium U288 is an emerging pathogen of pigs. The strain contains three plasmids of diverse origin that encode traits that are of concern for food security and safety, these include antibiotic resistant determinants, an array of functions that can modify cell physiology and permit genetic mobility. At 148,711 bp, pSTU288-1 appears to be a hybrid plasmid containing a conglomerate of genes found in pSLT of S. Typhimurium LT2, coupled with a mosaic of horizontally-acquired elements. Class I integron containing gene cassettes conferring resistance against clinically important antibiotics and compounds are present in pSTU288-1. A curious feature of the plasmid involves the deletion of two genes encoded in the Salmonella plasmid virulence operon (spvR and spvA) following the insertion of a tnpA IS26-like element coupled to a blaTEM gene. The spv operon is considered to be a major plasmid-encoded Salmonella virulence factor that is essential for the intracellular lifecycle. The loss of the positive regulator SpvR may impact on the pathogenesis of S. Typhimurium U288. A second 11,067 bp plasmid designated pSTU288-2 contains further antibiotic resistance determinants, as well as replication and mobilization genes. Finally, a small 4675 bp plasmid pSTU288-3 was identified containing mobilization genes and a pleD-like G-G-D/E-E-F conserved domain protein that modulate intracellular levels of cyclic di-GMP, and are associated with motile to sessile transitions in growth. PMID:25175817

  15. Survival of Salmonella enterica in poultry feed is strain dependent

    PubMed Central

    Andino, Ana; Pendleton, Sean; Zhang, Nan; Chen, Wei; Critzer, Faith; Hanning, Irene

    2014-01-01

    Feed components have low water activity, making bacterial survival difficult. The mechanisms of Salmonella survival in feed and subsequent colonization of poultry are unknown. The purpose of this research was to compare the ability of Salmonella serovars and strains to survive in broiler feed and to evaluate molecular mechanisms associated with survival and colonization by measuring the expression of genes associated with colonization (hilA, invA) and survival via fatty acid synthesis (cfa, fabA, fabB, fabD). Feed was inoculated with 1 of 15 strains of Salmonella enterica consisting of 11 serovars (Typhimurium, Enteriditis, Kentucky, Seftenburg, Heidelberg, Mbandanka, Newport, Bairely, Javiana, Montevideo, and Infantis). To inoculate feed, cultures were suspended in PBS and survival was evaluated by plating samples onto XLT4 agar plates at specific time points (0 h, 4 h, 8 h, 24 h, 4 d, and 7 d). To evaluate gene expression, RNA was extracted from the samples at the specific time points (0, 4, 8, and 24 h) and gene expression measured with real-time PCR. The largest reduction in Salmonella occurred at the first and third sampling time points (4 h and 4 d) with the average reductions being 1.9 and 1.6 log cfu per g, respectively. For the remaining time points (8 h, 24 h, and 7 d), the average reduction was less than 1 log cfu per g (0.6, 0.4, and 0.6, respectively). Most strains upregulated cfa (cyclopropane fatty acid synthesis) within 8 h, which would modify the fluidity of the cell wall to aid in survival. There was a weak negative correlation between survival and virulence gene expression indicating downregulation to focus energy on other gene expression efforts such as survival-related genes. These data indicate the ability of strains to survive over time in poultry feed was strain dependent and that upregulation of cyclopropane fatty acid synthesis and downregulation of virulence genes were associated with a response to desiccation stress. PMID:24570467

  16. Characterization of the novel T4-like Salmonella enterica bacteriophage STP4-a and its endolysin.

    PubMed

    Li, Meng; Li, Mengzhe; Lin, Hong; Wang, Jingxue; Jin, Yanqiu; Han, Feng

    2016-02-01

    While screening for new antimicrobial agents for multidrug-resistant Salmonella enterica, the novel lytic bacteriophage STP4-a was isolated and characterized. Phage morphology revealed that STP4-a belongs to the family Myoviridae. Bacterial challenge assays showed that different serovars of Salmonella enterica were susceptible to STP4-a infection. The genomic characteristics of STP4-a, containing 159,914 bp of dsDNA with an average GC content of 36.86 %, were determined. Furthermore, the endolysin of STP4-a was expressed and characterized. The novel endolysin, LysSTP4, has hydrolytic activity towards outer-membrane-permeabilized S. enterica and Escherichia coli. These results provide essential information for the development of novel phage-based biocontrol agents against S. enterica. PMID:26563319

  17. Identification of potential drug targets in Salmonella enterica sv. Typhimurium using metabolic modelling and experimental validation.

    PubMed

    Hartman, Hassan B; Fell, David A; Rossell, Sergio; Jensen, Peter Ruhdal; Woodward, Martin J; Thorndahl, Lotte; Jelsbak, Lotte; Olsen, John Elmerdahl; Raghunathan, Anu; Daefler, Simon; Poolman, Mark G

    2014-06-01

    Salmonella enterica sv. Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of S. Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in the energy demand while growing in glucose minimal medium. By grouping reactions with similar flux responses, a subnetwork of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions that when removed from the genome-scale model interfered with energy and biomass generation. Eleven such sets were found to be essential for the production of biomass precursors. Experimental investigation of seven of these showed that knockouts of the associated genes resulted in attenuated growth for four pairs of reactions, whilst three single reactions were shown to be essential for growth. PMID:24777662

  18. Expression divergence between Escherichia coli and Salmonella enterica serovar Typhimurium reflects their lifestyles.

    PubMed

    Meysman, Pieter; Sánchez-Rodríguez, Aminael; Fu, Qiang; Marchal, Kathleen; Engelen, Kristof

    2013-06-01

    Escherichia coli K12 is a commensal bacteria and one of the best-studied model organisms. Salmonella enterica serovar Typhimurium, on the other hand, is a facultative intracellular pathogen. These two prokaryotic species can be considered related phylogenetically, and they share a large amount of their genetic material, which is commonly termed the "core genome." Despite their shared core genome, both species display very different lifestyles, and it is unclear to what extent the core genome, apart from the species-specific genes, plays a role in this lifestyle divergence. In this study, we focus on the differences in expression domains for the orthologous genes in E. coli and S. Typhimurium. The iterative comparison of coexpression methodology was used on large expression compendia of both species to uncover the conservation and divergence of gene expression. We found that gene expression conservation occurs mostly independently from amino acid similarity. According to our estimates, at least more than one quarter of the orthologous genes has a different expression domain in E. coli than in S. Typhimurium. Genes involved with key cellular processes are most likely to have conserved their expression domains, whereas genes showing diverged expression are associated with metabolic processes that, although present in both species, are regulated differently. The expression domains of the shared "core" genome of E. coli and S. Typhimurium, consisting of highly conserved orthologs, have been tuned to help accommodate the differences in lifestyle and the pathogenic potential of Salmonella. PMID:23427276

  19. Direct ROS scavenging activity of CueP from Salmonella enterica serovar Typhimurium.

    PubMed

    Yoon, Bo-Young; Yeom, Ji-Hyun; Kim, Jin-Sik; Um, Si-Hyeon; Jo, Inseong; Lee, Kangseok; Kim, Yong-Hak; Ha, Nam-Chul

    2014-02-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages. PMID:24598994

  20. Increased water activity reduces the thermal resistance of Salmonella enterica in peanut butter.

    PubMed

    He, Yingshu; Li, Ye; Salazar, Joelle K; Yang, Jingyun; Tortorello, Mary Lou; Zhang, Wei

    2013-08-01

    Increased water activity in peanut butter significantly (P < 0.05) reduced the heat resistance of desiccation-stressed Salmonella enterica serotypes treated at 90 °C. The difference in thermal resistance was less notable when strains were treated at 126 °C. Using scanning electron microscopy, we observed minor morphological changes of S. enterica cells resulting from desiccation and rehydration processes in peanut oil. PMID:23728806

  1. Diversity and antimicrobial susceptibility of Salmonella enterica serovars isolated from pig farms in Ibadan, Nigeria.

    PubMed

    Fashae, Kayode; Hendriksen, Rene S

    2014-01-01

    Animals including food animals play a significant role in the epidemiology of Salmonella enterica. The control requires identification of sources and institution of targeted interventions. This study investigates the diversity of S. enterica serovars, antimicrobial susceptibility, and occurrence of plasmid-mediated quinolone resistance (PMQR) genes in pigs in Ibadan, Nigeria. Pooled fresh pen floor fecal samples of pigs collected from 31 pig farms were cultured; the Salmonella isolates were serotyped and their antimicrobial susceptibility was determined. PMQR genes were screened by polymerase chain reaction. The 229 Salmonella isolates were made of 50 serovars predominated by rare serovars Salmonella Give (n = 36; 15.7 %), Salmonella Brancaster (n = 17; 7.4 %), Salmonella Colindale (n = 15; 6.6 %), Salmonella Elisaberthville (n = 13; 5.7 %), Salmonella Hillingdon (n = 13; 5.7 %), and Salmonella Kingston (n = 13; 5.7 %). The most widely distributed serovars among the farms were Salmonella Give (six farms) and Salmonella Elisaberthville (six farms). Resistance to chloramphenicol, sulfonamides, nalidixic acid, streptomycin, and tetracycline ranged from 11.6 % (n = 26) to 22.8 % (n = 51). Resistance ciprofloxacin and gentamicin was low (n = 2; 0.9 %). Multiply resistant isolates included Salmonella Kentucky, the most resistant serovar. qnrB19 was found in two isolates of Salmonella Corvallis and one isolate of Salmonella Larochelle, respectively, while qnrS1 was found in two isolates of Salmonella Derby. Other PMQR genes were not detected. Pigs constitute an important source of diverse Salmonella serovars in Ibadan. The isolates were more resistant to old antimicrobials with some multiple resistant. Control measures and regulation of antimicrobials are warranted. PMID:23893398

  2. Rapid detection of Salmonella enterica with primers specific for iroB.

    PubMed Central

    Bäumler, A J; Heffron, F; Reissbrodt, R

    1997-01-01

    The iroB gene of Salmonella enterica is absent from the chromosome of the related organism Escherichia coli. We determined the distribution of this gene among 150 bacterial isolates, representing 51 serotypes of different Salmonella species and subspecies and 8 other bacterial species which are frequent contaminants during routine enrichment procedures by Southern hybridization. An iroB-specific DNA probe detected homologous sequences in all strains of S. enterica, including serotypes of S. enterica subsp. enterica (I), salamae (II), diarizonae (IIIb), and houtenae (IV). No hybridization signal was obtained with strains of Salmonella bongori or other bacterial species. In contrast, hybridization with a DNA probe specific for purD, a purine biosynthesis gene, detected homologs in all bacterial species tested. Primers specific for iroB were used to amplify this gene from 197 bacterial isolates by PCR. The iroB gene could be PCR amplified from S. enterica subsp. enterica (I), salamae (II), diarizonae (IIIb), houtenae (IV), arizonae (IIIa), and indica (VI), but not from S. bongori or other bacterial species. Thus, PCR amplification of iroB can be used to distinguish between S. enterica and other bacterial species, including S. bongori. A combination of preenrichment in buffered peptone water supplemented with ferrioxamine E and amplification of iroB by magnetic immuno-PCR allowed detection of S. enterica in albumen within 24 h. In conclusion, PCR amplification of iroB is a new sensitive and selective method which has the potential to rapidly detect S. enterica serotypes. PMID:9114411

  3. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt

    PubMed Central

    Osman, Kamelia M; Marouf, Sherif H; Zolnikov, Tara R; AlAtfeehy, Nayerah

    2014-01-01

    Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18.5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes. PMID:24548159

  4. A case of extended spectrum beta-lactamase producing Salmonella enterica serotype paratyphi A from India.

    PubMed

    Roy, Priyamvada; Rawat, Deepti; Malik, Sonia

    2015-01-01

    Enteric fever caused by Salmonella enterica is a systemic infection with high rates of morbidity and mortality. Increasing antibiotic resistance in S. enterica has led to shift in the choice of antibiotics used against this organism from chloramphenicol and ampicillin to trimethoprim-sulfamethoxazole, fluoroquinolones, and extended-spectrum cephalosporins. Resistance to cephalosporins, due to the production of extended-spectrum beta-lactamases (ESBLs), is the cause of serious concern worldwide. So far, these enzymes have been detected in many species of the family Enterobacteriaceae including different serotypes of S. enterica. To the best of our knowledge, however, ESBL production in Salmonella Paratyphi A has not yet been reported from India. We present here a case of ESBL producing Salmonella Paratyphi A from India. This is a worrisome finding with grave clinical implications, since the dissemination of this resistance trait would further limit the therapeutic options available for the treatment of enteric fever. PMID:25673610

  5. Complete Closed Genome Sequences of Salmonella enterica subsp. enterica Serotypes Anatum, Montevideo, Typhimurium, and Newport, Isolated from Beef, Cattle, and Humans.

    PubMed

    Harhay, Dayna M; Bono, James L; Smith, Timothy P L; Fields, Patricia I; Dinsmore, Blake A; Santovenia, Monica; Kelley, Christy M; Wang, Rong; Harhay, Gregory P

    2016-01-01

    Salmonella enterica spp. are a diverse group of bacteria with a wide range of virulence potential. To facilitate genome comparisons across this virulence spectrum, we present eight complete closed genome sequences of four S. enterica serotypes (Anatum, Montevideo, Typhimurium, and Newport), isolated from various cattle samples and from humans. PMID:26847891

  6. Draft Genome Sequence and Annotation of Phyllosphere-Persisting Salmonella enterica subsp. enterica Serovar Livingstone Strain CKY-S4, Isolated from an Urban Lake in Regina, Canada.

    PubMed

    Tambalo, Dinah D; Perry, Benjamin J; Fitzgerald, Stephen F; Cameron, Andrew D S; Yost, Christopher K

    2015-01-01

    Here, we report the first draft genome sequence of Salmonella enterica subsp. enterica serovar Livingstone. This S. Livingstone strain CKY-S4 displayed biofilm formation and cellulose production and could persist on lettuce. This genome may help the study of mechanisms by which enteric pathogens colonize food crops. PMID:26272568

  7. Draft Genome Sequence and Annotation of Phyllosphere-Persisting Salmonella enterica subsp. enterica Serovar Livingstone Strain CKY-S4, Isolated from an Urban Lake in Regina, Canada

    PubMed Central

    Tambalo, Dinah D.; Perry, Benjamin J.; Fitzgerald, Stephen F.; Cameron, Andrew D. S.

    2015-01-01

    Here, we report the first draft genome sequence of Salmonella enterica subsp. enterica serovar Livingstone. This S. Livingstone strain CKY-S4 displayed biofilm formation and cellulose production and could persist on lettuce. This genome may help the study of mechanisms by which enteric pathogens colonize food crops. PMID:26272568

  8. Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Napoli Strain SN310, Cause of a Multischool Outbreak in Milan, Italy, in 2014.

    PubMed

    Huedo, Pol; Gori, Maria; Scaltriti, Erika; Morganti, Marina; Casadei, Gabriele; Amato, Ettore; Pontello, Mirella

    2015-01-01

    We report the draft genome sequence of Salmonella enterica subsp. enterica serovar Napoli strain SN310, isolated from a stool sample of an affected pupil during a multischool outbreak in 2014 in Milan, Italy. This represents the first reported draft genome sequence of the emerging serovar Napoli. PMID:26358605

  9. Complete closed genome sequences of Salmonella enterica subsp. enterica serotypes Anatum, Montevideo, Typhimurium and Newport, isolated from beef, cattle, and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica are a versatile group of bacteria with a wide range in virulence potential. To facilitate genome comparisons across this virulence spectrum, we present eight complete closed genome sequences of four S. enterica serotypes (Anatum, Montevideo, Typhimurium, and Newport) isolated fro...

  10. Draft Genome Sequence of a Salmonella enterica subsp. enterica Serovar Gallinarum bv. Gallinarum Isolate Associated with Fowl Typhoid Outbreaks in Brazil

    PubMed Central

    De Carli, Silvia; Gräf, Tiago; Mayer, Fabiana Q.; Cibulski, Samuel; Lehmann, Fernanda K. M.; Fonseca, André S. K.; Ikuta, Nilo

    2016-01-01

    Salmonella enterica subsp. enterica serovar Gallinarum bv. Gallinarum strains are bird pathogens causing fowl typhoid (FT). Isolate BR_RS12 was obtained from a poultry flock with FT in 2014. The sequencing of this genome will enable to track the origin of the recent outbreaks in Brazil. PMID:26950322

  11. Diversity and Antimicrobial Resistance of Salmonella enterica Isolates from Surface Water in Southeastern United States

    PubMed Central

    Vellidis, George; Liu, Huanli; Jay-Russell, Michele; Zhao, Shaohua; Hu, Zonglin; Wright, Anita; Elkins, Christopher A.

    2014-01-01

    A study of prevalence, diversity, and antimicrobial resistance of Salmonella enterica in surface water in the southeastern United States was conducted. A new scheme was developed for recovery of Salmonella from irrigation pond water and compared with the FDA's Bacteriological Analytical Manual (8th ed., 2014) (BAM) method. Fifty-one isolates were recovered from 10 irrigation ponds in produce farms over a 2-year period; nine Salmonella serovars were identified by pulsed-field gel electrophoresis analysis, and the major serovar was Salmonella enterica serovar Newport (S. Newport, n = 29), followed by S. enterica serovar Enteritidis (n = 6), S. enterica serovar Muenchen (n = 4), S. enterica serovar Javiana (n = 3), S. enterica serovar Thompson (n = 2), and other serovars. It is noteworthy that the PulseNet patterns of some of the isolates were identical to those of the strains that were associated with the S. Thompson outbreaks in 2010, 2012, and 2013, S. Enteritidis outbreaks in 2011 and 2013, and an S. Javiana outbreak in 2012. Antimicrobial susceptibility testing confirmed 16 S. Newport isolates of the multidrug resistant-AmpC (MDR-AmpC) phenotype, which exhibited resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT), and to the 1st, 2nd, and 3rd generations of cephalosporins (cephalothin, amoxicillin-clavulanic acid, and ceftriaxone). Moreover, the S. Newport MDR-AmpC isolates had a PFGE pattern indistinguishable from the patterns of the isolates from clinical settings. These findings suggest that the irrigation water may be a potential source of contamination of Salmonella in fresh produce. The new Salmonella isolation scheme significantly increased recovery efficiency from 21.2 (36/170) to 29.4% (50/170) (P = 0.0002) and streamlined the turnaround time from 5 to 9 days with the BAM method to 4 days and thus may facilitate microbiological analysis of environmental water. PMID:25107969

  12. Phylogenomic analysis identifies gene gains that define Salmonella enterica subspecies I.

    PubMed

    Lienau, E Kurt; Blazar, Jeffrey M; Wang, Charles; Brown, Eric W; Stones, Robert; Musser, Steven; Allard, Marc W

    2013-01-01

    Comparative methods for analyzing whole genome sequence (WGS) data enable us to assess the genetic information available for reconstructing the evolutionary history of pathogens. We used the comparative approach to determine diagnostic genes for Salmonella enterica subspecies I. S. enterica subsp. I strains are known to infect warm-blooded organisms regularly while its close relatives tend to infect only cold-blooded organisms. We found 71 genes gained by the common ancestor of Salmonella enterica subspecies I and not subsequently lost by any member of this subspecies sequenced to date. These genes included many putative functional phenotypes. Twenty-seven of these genes are found only in Salmonella enterica subspecies I; we designed primers to test these genes for use as diagnostic sequence targets and data mined the NCBI Sequence Read Archive (SRA) database for draft genomes which carried these genes. We found that the sequence specificity and variability of these amplicons can be used to detect and discriminate among 317 different serovars and strains of Salmonella enterica subspecies I. PMID:24204679

  13. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium’s Adaptive Mechanisms of Intramacrophage Survival and Replication

    PubMed Central

    Aribam, Swarmistha Devi; Harada, Tomoyuki; Elsheimer-Matulova, Marta; Iwata, Taketoshi; Kanehira, Katsushi; Hikono, Hirokazu; Matsui, Hidenori; Ogawa, Yohsuke; Shimoji, Yoshihiro; Eguchi, Masahiro

    2016-01-01

    Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb)-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria. PMID:26986057

  14. Antibody Is Required for Protection against Virulent but Not Attenuated Salmonella enterica Serovar Typhimurium

    PubMed Central

    McSorley, Stephen J.; Jenkins, Marc K.

    2000-01-01

    Resolution of infection with attenuated Salmonella is an active process that requires CD4+ T cells. Here, we demonstrate that costimulation via the surface molecule CD28, but not antibody production by B cells, is required for clearance of attenuated aroA Salmonella enterica serovar typhimurium. In contrast, specific antibody is critical for vaccine-induced protection against virulent bacteria. Therefore, CD28+ CD4+ T cells are sufficient for clearance of avirulent Salmonella in naive hosts, whereas CD4+ T cells and specific antibodies are required for protection from virulent Salmonella in immune hosts. PMID:10816483

  15. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium.

    PubMed

    Espinel, Irene Cartas; Guerra, Priscila Regina; Jelsbak, Lotte

    2016-06-01

    Polyamines (putrescine and spermidine) are small-cationic amines ubiquitous in nature and present in most living cells. In recent years they have been linked to virulence of several human pathogens including Shigella spp and Salmonella enterica serovar Typhimurium (S. Typhimurium). Central to S. Typhimurium virulence is the ability to survive and replicate inside macrophages and resisting the antimicrobial attacks in the form of oxidative and nitrosative stress elicited from these cells. In the present study, we have investigated the role of polyamines in intracellular survival and systemic infections of mice. Using a S. Typhimurium mutant defective for putrescine and spermidine biosynthesis, we show that polyamines are essential for coping with reactive nitrogen species, possibly linking polyamines to increased intracellular stress resistance. However, using a mouse model defective for nitric oxide production, we find that polyamines are required for systemic infections independently of host-produced reactive nitrogen species. To distinguish between the physiological roles of putrescine and spermidine, we constructed a strain deficient for spermidine biosynthesis and uptake, but with retained ability to produce and import putrescine. Interestingly, in this mutant we observe a strong attenuation of virulence during infection of mice proficient and deficient for nitric oxide production suggesting that spermidine, specifically, is essential for virulence of S. Typhimurium. PMID:27041598

  16. [Fluorescent and Magnetic Relaxation Switch Immunosensor for the Detecting Foodborne Pathogen Salmonella enterica in Water Samples].

    PubMed

    Wang, Song-bai; Zhang, Yan; An, Wen-ting; Wei, Yan-li; Wang, Yu; Shuang, Shao-min

    2015-11-01

    Fluoroimmunoassay based on quantum dots (QDs) and magnetic relaxation switch (MRS) immunoassay based on superparamagnetic nanoparticles (SMN) were constructed to detect Salmonella enterica (S. enterica) in water samples. In fluoroimmunoassay, magnetic beads was conjugated with S. enterica capture antibody (MB-Ab2) to enrich S. enterica from sample solution, then the QDs was conjugated with the S. enterica detection antibody (QDs-Ab1) to detect S. enterica based on sandwich immunoassay format. And the fluorescence intensity is positive related to the bacteria concentration of the sample. Results showed that the limit of detection (LOD) of this method was 102 cfu · mL⁻¹ and analysis time was 2 h. In MRS assay, magnetic nanoparticle-antibody conjugate (MN-Ab1) can switch their dispersed and aggregated state in the presence of the target. This state of change can modulate the spin-spin relaxation time (T₂) of the neighboring water molecule. The change in T₂(ΔT₂) positively correlates with the amount of the target in the sample. Thus, AT can be used as a detection signal in MRS immunosensors. Results showed that LOD of MRS sensor for S. enterica was 10³ cfu · mL⁻¹ and analysis time was 0.5 h. Two methods were compared in terms of advantages and disadvantages in detecting S. enterica. PMID:26978918

  17. Molecular identification of Salmonella enterica subsp. enterica serovar Gallinarum biovars Gallinarum and Pullorum by a duplex PCR assay.

    PubMed

    Batista, Diego Felipe Alves; de Freitas Neto, Oliveiro Caetano; de Almeida, Adriana Maria; Barrow, Paul Andrew; de Oliveira Barbosa, Fernanda; Berchieri Junior, Angelo

    2016-07-01

    Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (S Gallinarum) and biovar Pullorum (S Pullorum) are 2 poultry pathogens that cause major economic losses to the poultry industry worldwide. Control of both diseases mainly relies on the adoption of biosecurity programs, and success is dependent on accurate and fast detection. Based on this concept, we developed a duplex PCR assay, targeting 2 chromosomal sequences, which allowed us to precisely identify and differentiate S Gallinarum and S Pullorum field strains. This assay was validated by testing genomic DNA from 40 S Gallinarum and 29 S Pullorum field strains, 87 other Salmonella serovars, and 7 non-Salmonella strains. The serovar identifier region (SIR) primers produced a fragment only in S Gallinarum and S Pullorum strains, whereas the fragment from the ratA coding sequence, which was previously demonstrated to differentiate the 2 biovars, was also amplified from other Salmonella serovars. Our results showed that the combination of both SIR and ratA amplifications could be used to identify as well as to differentiate colonies of S Gallinarum and S Pullorum reliably. Thus, we believe this methodology can be a useful ancillary tool for routine veterinary diagnostic laboratories by providing rapid, accurate results. PMID:27216724

  18. Serological response of swine to an attenuated Salmonella enterica serovar Typhimurium strain that reduces gastrointestinal colonization, fecal shedding and disease due to virulent Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine are often asymptomatic carriers of Salmonella spp. Interventions are needed to limit Salmonella colonization of swine to enhance food safety. An attenuated Salmonella enterica serovar Typhimurium mutant strain (BBS 202) was tested in swine to determine whether vaccination could provide protect...

  19. Dissemination of antimicrobial-resistant clones of Salmonella enterica among domestic animals, wild animals, and humans.

    PubMed

    Palomo, Gonzalo; Campos, Maria Jorge; Ugarte, María; Porrero, María Concepción; Alonso, Juan Manuel; Borge, Carmen; Vadillo, Santiago; Domínguez, Lucas; Quesada, Alberto; Píriz, Segundo

    2013-02-01

    Non-typhoidal salmonellosis is an important zoonotic disease caused by Salmonella enterica. This work focuses on the identification of Salmonella enterica clonal strains which, presenting a wide distribution potential, express resistance determinants that compromise effectiveness of the antimicrobial therapy. The screening was performed on 506 Salmonella enterica isolates from animals and humans, which were characterized by serovar and phage typing, genome macrorestriction and pulsed-field gel electrophoresis, and detection of phenotypic and genotypic traits for antimicrobial resistance. A Salmonella Enteritidis strain with strong quinolone resistance is spread on three host environments carrying one of the four variants found for the GyrA protein: (1) Asp87Tyr, the major polymorphism found in 39 Salmonella isolates from human origin and six from poultry; (2) Ser83Phe, with four isolates from human origin and one from white stork (Ciconia ciconia); and (3) Asp87Asn or (4) Asp87Gly, with two isolates each from human origins. Several Salmonella Typhimurium strains that presented int1 elements and the classically associated pentaresistance (ACSSuT) phenotype were found distributed between two host environments: domestic animals and humans, domestics and wild animals, or wild fauna plus humans. This study points out the importance of monitoring gut microbiota and its antimicrobial resistance from wildlife, in parallel to livestock animals and humans, especially for animal species that are in close contact with people. PMID:23360170

  20. Salmonella enterica bacteraemia: a multi-national population-based cohort study

    PubMed Central

    2010-01-01

    Background Salmonella enterica is an important emerging cause of invasive infections worldwide. However, population-based data are limited. The objective of this study was to define the occurrence of S. enterica bacteremia in a large international population and to evaluate temporal and regional differences. Methods We conducted population-based laboratory surveillance for all salmonella bacteremias in six regions (annual population at risk 7.7 million residents) in Finland, Australia, Denmark, and Canada during 2000-2007. Results A total of 622 cases were identified for an annual incidence of 1.02 per 100,000 population. The incidence of typhoidal (serotypes Typhi and Paratyphi) and non-typhoidal (other serotypes) disease was 0.21 and 0.81 per 100,000/year. There was major regional and moderate seasonal and year to year variability with an increased incidence observed in the latter years of the study related principally to increasing rates of non-typhoidal salmonella bacteremias. Advancing age and male gender were significant risk factors for acquiring non-typhoidal salmonella bacteremia. In contrast, typhoidal salmonella bacteremia showed a decreasing incidence with advancing age and no gender-related excess risk. Conclusions Salmonella enterica is an important emerging pathogen and regional determinants of risk merits further investigation. PMID:20398281

  1. Pork Meat as a Potential Source of Salmonella enterica subsp. arizonae Infection in Humans

    PubMed Central

    Kritas, Spyridon; Govaris, Alexander; Burriel, Angeliki R.

    2014-01-01

    Salmonella enterica subsp. arizonae was isolated from 13 of 123 slaughtered pigs in central Greece. The samples cultured were feces, ileum tissue, mesenteric lymph nodes, and gallbladder swabs. A total of 74 isolates from 492 samples were identified as Salmonella spp. by use of standard laboratory culture media and two commercial micromethods and by use of a polyvalent slide agglutination test for the detection of O and H antigens. Among them were 19 (25.68%) suspected to be S. enterica subsp. arizonae according to analysis with standard laboratory culture media. Of those, 14 were identified as S. enterica subsp. arizonae by the API 20E (bioMérieux, France) and the Microgen GnA+B-ID (Microgen Bioproducts, Ltd., United Kingdom) identification systems. All the isolates were tested for resistance to 23 antimicrobials. Strains identified as S. enterica subsp. arizonae were resistant to 17 (70.8%) antibiotics. The highest proportions of resistance were observed for sulfamethoxazole-trimethoprim (71.4%), tetracycline (71.4%), ampicillin (64.3%), and amoxicillin (57.1%). Two isolates were resistant to aztreonam (7.1%) and tigecycline (7.1%), used only for the treatment of humans. Thus, pork meat may play a role in the transmission of antibiotic-resistant S. enterica subsp. arizonae to human consumers. This is the first report of S. enterica subsp. arizonae isolation from pigs. PMID:24335956

  2. Genomic analysis and Next Generation Sequencing (NGS) of MDR plasmids in Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food animals harboring Multi-Drug Resistant (MDR) Salmonella enterica are a possible source of zoonotic human infections and are a potential risk to human health. MDR genes can be transmitted in a number of ways including via plasmids. MDR plasmid prevalence and distribution was investigated by stud...

  3. PRESENCE OF ANTIBIOTIC RESISTANT GENES IN SALMONELLA ENTERICA SEROTYPE UGANDA ISLOATES FROM 1997-2000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the poultry and meat industry, Salmonella enterica serotype Uganda is rarely isolated in the environment. However, recent reports from veterinary diagnostic laboratories indicate an increased frequency of recovery of S. Uganda. Between 1997 and 2000, the animal arm of the National Antimicrobial...

  4. Transcriptional Response of Chicken Macrophages to Salmonella enterica serovar Enteritidis Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Enteritidis (SE) continues to be the predominant etiologic agent of salmonellosis, with contaminated egg products being the primary source of infection. At the present time, the molecular and immunological mechanisms involved in SE colonization of chicken hosts are not we...

  5. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We purified osmoregulated periplasmic glucans (OPGs) from Salmonella enterica serovar Typhimurium and found them to be composed of 100% glucose with 2-linked glucose as the most abundant residue with terminal glucose, 2,3-linked and 2,6-linked glucose also present in high quantities. The two structu...

  6. Inc A/C Plasmids are Prevalent in Multidrug-Resistant Salmonella enterica Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the host organism like antibiotic resistance. The objective of this study was to characterize a collection of 437 Salmonella enterica isolates from diff...

  7. Survival and fate of Salmonella enterica serovar Montevideo in adult Horn Flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of cattle peripheral lymph nodes with Salmonella enterica is proposed to occur via a transdermal route of entry. If so, bacteria may be introduced to cattle by biting arthropods. Biting flies, such as horn flies (Haematobia irritans irritans (L.); Diptera: Muscidae), are intriguing ca...

  8. Genomic epidemiology of Salmonella enterica serotype Enteritidis based on population structure of prevalent lineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serotype Enteritidis (SE) is one of the most commonly reported causes of human salmonellosis. The low genetic diversity of SE measured by fingerprinting methods has made subtyping a challenge. In this study, we used whole genome sequencing to characterize a total of 125 SE and Sa...

  9. Assignment of serotype to Salmonella enterica isolates obtained from poultry and their environment in Southern Brazil.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess diversity of Salmonella enterica serotypes present in poultry and their environment from Southern Brazil, the Kauffman-White-LeMinor (KWL) scheme was used to serotype a total of 155 isolates. Isolates were then re-examined with nested PCR and sequencing of the dkgB-linked Intergenic Sequ...

  10. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  11. Impact of Strain Variation on the Ability of Biosensor Technology to Detect Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: It is important to develop methods that can quickly and accurately detect the presence of bacteria in the food supply that cause disease. Salmonella enterica is a bacteria that is often associated with contamination of food. Strains vary in their ability to cause illness and to spread...

  12. Invasive Salmonella enterica serotype typhimurium infections, Democratic Republic of the Congo, 2007-2011.

    PubMed

    Ley, Benedikt; Le Hello, Simon; Lunguya, Octavie; Lejon, Veerle; Muyembe, Jean-Jacques; Weill, François-Xavier; Jacobs, Jan

    2014-04-01

    Infection with Salmonella enterica serotype Typhimurium sequence type (ST) 313 is associated with high rates of drug resistance, bloodstream infections, and death. To determine whether ST313 is dominant in the Democratic Republic of the Congo, we studied 180 isolates collected during 2007-2011; 96% belonged to CRISPOL type CT28, which is associated with ST313. PMID:24655438

  13. Salmonella enterica serotype enteritidis in French Polynesia, South Pacific, 2008-2013.

    PubMed

    Le Hello, Simon; Maillard, Fiona; Mallet, Henri-Pierre; Daudens, Elise; Levy, Marc; Roy, Valérie; Branaa, Philippe; Bertrand, Sophie; Fabre, Laetitia; Weill, François-Xavier

    2015-06-01

    Outbreaks of Salmonella enterica serotype Enteritidis infections associated with eggs occurred in French Polynesia during 2008-2013. Molecular analysis of isolates by using clustered regularly interspaced short palindromic repeat polymorphisms and multilocus variable-number tandem-repeat analysis was performed. This subtyping made defining the epidemic strain, finding the source, and decontaminating affected poultry flocks possible. PMID:25988406

  14. Detection of Salmonella enterica subpopulations by phenotype microarray antibiotic resistance patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subspecies I is an important cause of food borne illness. We compared 6 strains of for resistance to 240 antibiotics that were included in a commercially available panel and also compared the strains by a conventional assay that is used to determine clinical resistance. Differen...

  15. Effects of Pseudomonas chlororaphis and gaseous chlorine dioxide on the survival of Salmonella enterica on tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Produce contamination incited by Salmonella enterica serovars on tomatoes and various outbreaks of Salmonellisis have been reported periodically. Post-harvest intervention measures applied to limit produce contamination will improve food and consumer safety. The aim of this reserach was to evaluat...

  16. Carvacrol and cinnamaldehyde inactivate antibiotic-resistant Salmonella enterica in buffer and on celery and oysters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is one of the leading causes of gastrointestinal foodborne illness. The emergence of antibiotic resistant strains of this pathogen is of concern to food processors, including the produce, poultry, and oyster industries. The objective of this research was to identify the potenti...

  17. Polynucleotide phosphorlyase (PNPase) is required for Salmonella enterica serovar Typhimurium colonization in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pnp gene encodes polynucleotide phosphorylase, an exoribonuclease involved in RNA degradation. A mutation in the pnp gene was previously identified by our group in a signature-tagged mutagenesis screen designed to search for Salmonella enterica serovar Typhimurium genes required for survival in...

  18. Draft Genome Sequences of 37 Salmonella enterica Strains Isolated from Poultry Sources in Nigeria.

    PubMed

    Useh, Nicodemus M; Ngbede, Emmanuel O; Akange, Nguavese; Thomas, Milton; Foley, Andrew; Keena, Mitchel Chan; Nelson, Eric; Christopher-Hennings, Jane; Tomita, Masaru; Suzuki, Haruo; Scaria, Joy

    2016-01-01

    Here, we report the availability of draft genomes of several Salmonella serotypes, isolated from poultry sources from Nigeria. These genomes will help to further understand the biological diversity of S. enterica and will serve as references in microbial trace-back studies to improve food safety. PMID:27151793

  19. SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION MODULATES DIVERSE FUNCTIONAL PROCESSES OF CHICKEN MACROPHAGE AT THE TRANSCRIPTIONAL LEVEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Enteritidis (SE) is a major etiologic agent of non-typhoid salmonellosis. The organisms colonize adult chicken hosts without causing overt clinical signs. The immunological mechanisms underlying the silent and persistent infection of chickens by SE are not clearly underst...

  20. PORCINE DIFFERENTIAL GENE EXPRESSION IN RESPONSE TO SALMONELLA ENTERICA SEROVARS CHOLERAESUIS AND TYPHIMURIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using suppression subtractive hybridization (SSH) and real-time PCR, an investigation of the porcine response to infection with Salmonella enterica serovars Choleraesuis (narrow host range) and Typhimurium (broad host range) revealed different transcriptional profiles. Ten genes identified by SSH a...

  1. GLOBAL TRANSCRIPTIONAL RESPONSE OF PORCINE MESENTERIC LYMPH NODES TO SALMONELLA ENTERICA SEROVAR TYPHIMURIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonellosis is prevalent worldwide and is both a food safety and animal production problem. To understand the host transcriptional response to Salmonella enterica serovar Typhimurium, the Affymetrix GeneChip® porcine genome array was used to identify differentially expressed (DE) genes in mesente...

  2. Hypothesis: A role for the mouse as an amplifier of Salmonella enterica on-farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of the mouse in the environment of the hen has been consistently identified as a risk factor for the contamination of eggs by Salmonella enterica serovar Enteritidis (SE). To address how much risk the mouse poses for egg contamination, the spleens and intestines of mice caught on-farm f...

  3. THE POXR GENE OF SALMONELLA ENTERICA SEROVAR TYPHIMURIUM IS INVOLVED IN STRESS SURVIVAL AND SWINE COLONIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations in the poxR gene (STM4344; yjeA; poxA) of Salmonella enterica serovar Typhimurium (S. Typhimurium) have previously been shown to cause several phenotypic alterations including reduced pyruvate oxidase activity, virulence attenuation in the mouse model, and enhanced sensitivity to various ...

  4. Natural surface coating to inactivate Salmonella enterica Serovar Typhimurium and maintain quality of cherry tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the present study were to investigate the effectiveness of zein-based coatings in reducing populations of Salmonella enterica serovar Typhimurium and preserving quality of cherry tomatoes. Tomatoes were inoculated with a cocktail of S. Typhimurium LT2 plus three mutants on the smoo...

  5. Extremely Drug-Resistant Salmonella enterica Serovar Senftenberg Infections in Patients in Zambia

    PubMed Central

    Joensen, Katrine Grimstrup; Lukwesa-Musyani, Chileshe; Kalondaa, Annie; Leekitcharoenphon, Pimlapas; Nakazwe, Ruth; Aarestrup, Frank M.; Hasman, Henrik; Mwansa, James C. L.

    2013-01-01

    Two cases of extremely drug-resistant Salmonella enterica serovar Senftenberg isolated from patients in Zambia were investigated by utilizing MIC determinations and whole-genome sequencing. The isolates were resistant to, and harbored genes toward, nine drug classes, including fluoroquinolones and extended-spectrum cephalosporins, contained two plasmid replicons, and differed by 93 single-nucleotide polymorphisms. PMID:23077128

  6. Potential International Spread of Multidrug-Resistant Invasive Salmonella enterica Serovar Enteritidis

    PubMed Central

    Rodicio, M. Rosario; Guerra, Beatriz; Hopkins, Katie L.

    2012-01-01

    In developing countries, Salmonella enterica serovar Enteritidis causes substantial illness and death, and drug resistance is increasing. Isolates from the United Kingdom containing virulence-resistance plasmids were characterized. They mainly caused invasive infections in adults linked to Africa. The common features in isolates from these continents indicate the role of human travel in their spread. PMID:22709653

  7. Draft Whole-Genome Sequences of 25 Salmonella enterica Strains Representing 24 Serovars

    PubMed Central

    Brumwell, Stephanie L.; Lingohr, Erika J.; Ahmad, Aaminah; Blimkie, Travis M.; Kogan, Benjamin A.; Pilsworth, Jessica; Rehman, Muhammad A.; Schleicher, Krista L.; Shanmugaraj, Jenitta; Kropinski, Andrew M.; Nash, John H. E.

    2016-01-01

    We report the draft genome sequences of 25 Salmonella enterica strains representing 24 different serotypes, many of which were not available in public repositories during our selection process. These draft genomes will provide useful reference for the genetic variation between serotypes and aid in the development of molecular typing tools. PMID:26941156

  8. Rapid Molecular Determination of Serotype from Clinical Isolates of Salmonella Enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The conventional serotyping of Salmonella Enterica is time consuming, costly, and requires highly skilled staff. In the present study, we report a multiplex PCR typing method using capillary electrophoresis for fragment analysis that allows for the identification of the 30 most common h...

  9. Differential attachment to and subsequent contamination of agricultural crops by Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. salmonellosis outbreaks have occurred following consumption of tomato and cantaloupe but not lettuce. We report differential contamination among agricultural seedlings by Salmonella enterica via soil. Members of the family Brassicaceae had a higher incidence of outbreak than carrot, lettuce, an...

  10. The effect of UV radiation on survival of Salmonella enterica in dried manure dust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Animal manure has been shown to harbor Salmonella enterica, an enteric pathogen known to be resilient to environmental stresses such as desiccation and solar UV radiation. In farm settings, it has been observed that unintended aerosolization could occur when manure becomes dehydrated, ...

  11. Genome Sequence of Salmonella enterica Serovar Typhi Oral Vaccine Strain Ty21a.

    PubMed

    Xu, Deqi; Cisar, John O; Poly, Frédéric; Yang, Jinghua; Albanese, Jason; Dharmasena, Madushini; Wai, Tint; Guerry, Patricia; Kopecko, Dennis J

    2013-01-01

    Attenuated Salmonella enterica serovar Typhi strain Ty21a is an important vaccine for controlling typhoid fever and serves as an oral vector for delivering heterologous antigens. The key attenuating features of this randomly mutated strain remain in question. Genome sequencing has revealed 679 single nucleotide polymorphisms (SNPs), and will help define alterations contributing to Ty21a safety and immunogenicity. PMID:23969054

  12. TRANSCRIPTIONAL RESPONSE OF CHICKEN MACROPHAGES TO SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcriptional profiles of chicken macrophages (HD11) infected with Salmonella enterica serovar Enteritidis (SE) were analyzed by using avian macrophage microarray and real time RT-PCR. Out of 4,906 array elements interrogated, 269 genes exhibited a 2-fold change (P < 0.001) over a 24-hour time...

  13. Novel Surveillance of Salmonella enterica Serotype Heidelberg Epidemics in a Closed Community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2003-2005, a systematic and regularly timed human and farm-animal wastewater sampling scheme existed in several prison units in Texas. In early July 2003, an outbreak of gastroenteritis caused by Salmonella enterica serotype Heidelberg occurred in the human population at one site. Wastewate...

  14. Draft Genome Sequences of 37 Salmonella enterica Strains Isolated from Poultry Sources in Nigeria

    PubMed Central

    Useh, Nicodemus M.; Ngbede, Emmanuel O.; Akange, Nguavese; Thomas, Milton; Foley, Andrew; Keena, Mitchel Chan; Nelson, Eric; Christopher-Hennings, Jane; Tomita, Masaru

    2016-01-01

    Here, we report the availability of draft genomes of several Salmonella serotypes, isolated from poultry sources from Nigeria. These genomes will help to further understand the biological diversity of S. enterica and will serve as references in microbial trace-back studies to improve food safety. PMID:27151793

  15. Acquisition of extended-spectrum cephalosporin- and colistin-resistant Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj.

    PubMed

    Olaitan, Abiola Olumuyiwa; Dia, Ndèye Méry; Gautret, Philippe; Benkouiten, Samir; Belhouchat, Khadidja; Drali, Tassadit; Parola, Philippe; Brouqui, Philippe; Memish, Ziad; Raoult, Didier; Rolain, Jean-Marc

    2015-06-01

    Gatherings like the Hajj involving many people who travel from different parts of the world represent a risk for the acquisition and dissemination of infectious diseases. In this study, acquisition of multidrug-resistant (MDR) Salmonella spp. in 2013 Hajj pilgrims from Marseille, France, was investigated. In total, 267 rectal swabs were collected from 129 participants before their departure and after their return from the pilgrimage as well as during the pilgrimage from patients with diarrhoea. Samples were screened for the presence of Salmonella using quantitative real-time PCR and culture. Whole-genome sequencing was performed to characterise one of the isolates, and the mechanism leading to colistin resistance was investigated. Six post-Hajj samples and one sample collected during a diarrhoea episode in Hajj were positive for Salmonella by real-time PCR, with five Salmonella enterica belonging to several serotypes recovered by culture, whereas no pre-Hajj sample was positive. Two of the isolates belonged to the epidemic Newport serotype, were resistant to cephalosporins, gentamicin and colistin, and harboured the bla(CTX-M-2) gene and a 12-nucleotide deletion in the pmrB gene leading to colistin resistance. This study shows that pilgrims acquired Salmonella bacteria, including a novel MDR clone, during the Hajj pilgrimage. This calls for more improved public health surveillance during Hajj because Salmonella is one of the most common diarrhoea-causing bacteria worldwide. Therefore, returning pilgrims could disseminate MDR bacteria worldwide upon returning to their home countries. PMID:25769786

  16. Risk factors for Salmonella enterica subsp. enterica shedding by market-age pigs in French farrow-to-finish herds.

    PubMed

    Beloeil, P-A; Fravalo, P; Fablet, C; Jolly, J-P; Eveno, E; Hascoet, Y; Chauvin, C; Salvat, G; Madec, F

    2004-04-30

    Fattening-pigs carriers of Salmonella enterica are believed to be a main source of carcass and pork contamination at the later steps of the meat process. We did a prospective study in 2000-2001 in 105 French farrow-to-finish pig farms. In each farm, a batch of contemporary fattening pigs housed in the same room was followed throughout the fattening period. Salmonella shedding was assessed on environmental samples of faecal material (taken by means of pairs of gauze socks) analysed by classical bacteriological methods. 36.2% of the batches studied had at least one contaminated environmental sample and therefore were classified as Salmonella-shedding batches. Logistic regression was used to assess the association between managerial and hygiene practices and health status and the shedding risk at the end of the finishing period. Emptying the pit below the slatted floor after the previous batch of sows was removed and frequent removal of sow dung during the lactation period were protective. Presence of residual Salmonella contamination of the floor and pen partitions in the fattening rooms before loading the growing pigs also was a risk factor. The risk for Salmonella shedding at the end of the fattening period was increased when dry feed (versus wet feed) was provided during the fattening period. Lastly, Lawsonia intracellularis seroconversion and PRRSV seropositivity during the fattening period also was a risk factor for Salmonella shedding. PMID:15099720

  17. Prevalence and Characterization of Salmonella enterica and Salmonella Bacteriophages Recovered from Beef Cattle Feedlots in South Texas.

    PubMed

    Xie, Yicheng; Savell, Jeffrey W; Arnold, Ashley N; Gehring, Kerri B; Gill, Jason J; Taylor, T Matthew

    2016-08-01

    Asymptomatic Salmonella carriage in beef cattle is a food safety concern, and the beef feedlot environment may function as a reservoir of this pathogen. The goal of this study was to identify and isolate Salmonella and Salmonella bacteriophages from beef cattle feedlot environments in order to better understand the microbial ecology of Salmonella and identify phages that might be useful as anti-Salmonella beef safety interventions. Three feedlots in south Texas were visited, and 27 distinct samples from each source were collected from dropped feces, feed from feed bunks, drinking water from troughs, and soil in cattle pens (n = 108 samples). Preenrichment, selective enrichment, and selective/differential isolation of Salmonella were performed on each sample. A representative subset of presumptive Salmonella isolates was prepared for biochemical identification and serotyping. Samples were pooled by feedlot and sample type to create 36 samples and enriched to recover phages. Recovered phages were tested for host range against two panels of Salmonella hosts. Salmonella bacteria were identified in 20 (18.5%) of 108 samples by biochemical and/or serological testing. The serovars recovered included Salmonella enterica serovars Anatum, Muenchen, Altona, Kralingen, Kentucky, and Montevideo; Salmonella Anatum was the most frequently recovered serotype. Phage-positive samples were distributed evenly over the three feedlots, suggesting that phage prevalence is not strongly correlated with the presence of culturable Salmonella. Phages were found more frequently in soil and feces than in feed and water samples. The recovery of bacteriophages in the Salmonella-free feedlot suggests that phages might play a role in suppressing the Salmonella population in a feedlot environment. PMID:27497120

  18. Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages

    PubMed Central

    Desai, Prerak T.; den Bakker, Henk C.; Mikoleit, Matthew; Tolar, Beth; Trees, Eija; Hendriksen, Rene S.; Frye, Jonathan G.; Porwollik, Steffen; Weimer, Bart C.; Wiedmann, Martin; Weinstock, George M.; Fields, Patricia I.; McClelland, Michael

    2014-01-01

    Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. enterica serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th–18th centuries and diversified during the 1920s and 1950s. PMID:25147968

  19. Analysis of Plasmid and Chromosomal DNA of Multidrug-Resistant Salmonella enterica Serovar Typhi from Asia

    PubMed Central

    Mirza, S.; Kariuki, S.; Mamun, K. Z.; Beeching, N. J.; Hart, C. A.

    2000-01-01

    Molecular analysis of chromosomal DNA from 193 multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates from 1990 to 1995 from Pakistan, Kuwait, Malaysia, Bangladesh, and India produced a total of five major different pulsed-field gel electrophoresis (PFGE) patterns. Even within a particular country MDR S. enterica serovar Typhi DNA was found to be in different PFGE groups. Similar self-transferable 98-MDa plasmids belonging to either incompatibility group incHI1 or incHI1/FIIA were implicated in the MDR phenotype in S. enterica serovar Typhi isolates from all the locations except Quetta, Pakistan, where the majority were of incFIA. A total of five different PFGE genotypes with six different plasmids, based on incompatibility and restriction endonuclease analysis groups, were found among these MDR S. enterica serovar Typhi isolates. PMID:10747124

  20. Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

    SciTech Connect

    Niemann, George; Brown, Roslyn N.; Gustin, Jean K.; Stufkens, Afke; Shaikh-Kidwai, Afshan S.; Li, Jie; McDermott, Jason E.; Brewer, Heather M.; Schepmoes, Athena A.; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2011-01-01

    The intracellular pathogen Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis in the world. This pathogen has two type-III secretion systems (TTSS) necessary for virulence that are encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) and are expressed during extracellular or intracellular infectious states, respectively, to deliver virulence factors (effectors) to the host cell cytoplasm. While many have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this mass spectrometry-based proteomics study, we identified effector proteins secreted under minimal acidic medium growth conditions that induced the SPI-2 TTSS and its effectors, and compared the secretome from the parent strain to the secretome from strains missing either essential (SsaK) or regulatory components (SsaL) of the SPI-2 secretion apparatus. We identified 75% of the known TTSS effector repertoire. Excluding translocon components, 95% of the known effectors were biased for identification in the ssaL mutant background, which demonstrated that SsaL regulates SPI-2 type III secretion. To confirm secretion to animal cells, we made translational fusions of several of the best candidates to the calmodulin-dependent adenylate cyclase of Bordetella pertussis and assayed cAMP levels of infected J774 macrophage-like cells. From these infected cells we identified six new TTSS effectors and two others that are secreted independent of TTSS. Our results substantiate reports of additional secretion systems encoded by Salmonella other than TTSS.

  1. Mechanisms of antimicrobial resistant Salmonella enterica transmission associated with starling-livestock interactions.

    PubMed

    Carlson, James C; Hyatt, Doreene R; Ellis, Jeremy W; Pipkin, David R; Mangan, Anna M; Russell, Michael; Bolte, Denise S; Engeman, Richard M; DeLiberto, Thomas J; Linz, George M

    2015-08-31

    Bird-livestock interactions have been implicated as potential sources for bacteria within concentrated animal feeding operations (CAFO). European starlings (Sturnus vulgaris) in particular are known to contaminate cattle feed and water with Salmonella enterica through their fecal waste. We propose that fecal waste is not the only mechanisms through which starlings introduce S. enterica to CAFO. The goal of this study was to assess if starlings can mechanically move S. enterica. We define mechanical movement as the transportation of media containing S. enterica, on the exterior of starlings within CAFO. We collected 100 starlings and obtained external wash and gastrointestinal tract (GI) samples. We also collected 100 samples from animal pens. Within each pen we collected one cattle fecal, feed, and water trough sample. Isolates from all S. enterica positive samples were subjected to antimicrobial susceptibility testing. All sample types, including 17% of external starling wash samples, contained S. enterica. All sample types had at least one antimicrobial resistant (AMR) isolate and starling GI samples harbored multidrug resistant S. enterica. The serotypes isolated from the starling external wash samples were all found in the farm environment and 11.8% (2/17) of isolates from positive starling external wash samples were resistant to at least one class of antibiotics. This study provides evidence of a potential mechanism of wildlife introduced microbial contamination in CAFO. Mechanical movement of microbiological hazards, by starlings, should be considered a potential source of bacteria that is of concern to veterinary, environmental and public health. PMID:25960334

  2. Flagellin Is Required for Host Cell Invasion and Normal Salmonella Pathogenicity Island 1 Expression by Salmonella enterica Serovar Paratyphi A

    PubMed Central

    Elhadad, Dana; Desai, Prerak; Rahav, Galia; McClelland, Michael

    2015-01-01

    Salmonella enterica serovar Paratyphi A is a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever. Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi and S. Paratyphi A are characterized by inactivation of multiple genes, including in the flagellum-chemotaxis pathway. Here, we explored the motility phenotype of S. Paratyphi A and the role of flagellin in key virulence-associated phenotypes. Motility studies established that the human-adapted typhoidal S. Typhi, S. Paratyphi A, and S. Sendai are all noticeably less motile than S. Typhimurium, and comparative transcriptome sequencing (RNA-Seq) showed that in S. Paratyphi A, the entire motility-chemotaxis regulon is expressed at significantly lowers levels than in S. Typhimurium. Nevertheless, S. Paratyphi A, like S. Typhimurium, requires a functional flagellum for epithelial cell invasion and macrophage uptake, probably in a motility-independent mechanism. In contrast, flagella were found to be dispensable for host cell adhesion. Moreover, we demonstrate that in S. Paratyphi A, but not in S. Typhimurium, the lack of flagellin results in increased transcription of the flagellar and the Salmonella pathogenicity island 1 (SPI-1) regulons in a FliZ-dependent manner and in oversecretion of SPI-1 effectors via type three secretion system 1. Collectively, these results suggest a novel regulatory linkage between flagellin and SPI-1 in S. Paratyphi A that does not occur in S. Typhimurium and demonstrate curious distinctions in motility and the expression of the flagellum-chemotaxis regulon between these clinically relevant pathogens. PMID:26056383

  3. Flagellin Is Required for Host Cell Invasion and Normal Salmonella Pathogenicity Island 1 Expression by Salmonella enterica Serovar Paratyphi A.

    PubMed

    Elhadad, Dana; Desai, Prerak; Rahav, Galia; McClelland, Michael; Gal-Mor, Ohad

    2015-09-01

    Salmonella enterica serovar Paratyphi A is a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever. Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi and S. Paratyphi A are characterized by inactivation of multiple genes, including in the flagellum-chemotaxis pathway. Here, we explored the motility phenotype of S. Paratyphi A and the role of flagellin in key virulence-associated phenotypes. Motility studies established that the human-adapted typhoidal S. Typhi, S. Paratyphi A, and S. Sendai are all noticeably less motile than S. Typhimurium, and comparative transcriptome sequencing (RNA-Seq) showed that in S. Paratyphi A, the entire motility-chemotaxis regulon is expressed at significantly lowers levels than in S. Typhimurium. Nevertheless, S. Paratyphi A, like S. Typhimurium, requires a functional flagellum for epithelial cell invasion and macrophage uptake, probably in a motility-independent mechanism. In contrast, flagella were found to be dispensable for host cell adhesion. Moreover, we demonstrate that in S. Paratyphi A, but not in S. Typhimurium, the lack of flagellin results in increased transcription of the flagellar and the Salmonella pathogenicity island 1 (SPI-1) regulons in a FliZ-dependent manner and in oversecretion of SPI-1 effectors via type three secretion system 1. Collectively, these results suggest a novel regulatory linkage between flagellin and SPI-1 in S. Paratyphi A that does not occur in S. Typhimurium and demonstrate curious distinctions in motility and the expression of the flagellum-chemotaxis regulon between these clinically relevant pathogens. PMID:26056383

  4. Virulence Characterisation of Salmonella enterica Isolates of Differing Antimicrobial Resistance Recovered from UK Livestock and Imported Meat Samples

    PubMed Central

    Card, Roderick; Vaughan, Kelly; Bagnall, Mary; Spiropoulos, John; Cooley, William; Strickland, Tony; Davies, Rob; Anjum, Muna F.

    2016-01-01

    Salmonella enterica is a foodborne zoonotic pathogen of significant public health concern. We have characterized the virulence and antimicrobial resistance gene content of 95 Salmonella isolates from 11 serovars by DNA microarray recovered from UK livestock or imported meat. Genes encoding resistance to sulphonamides (sul1, sul2), tetracycline [tet(A), tet(B)], streptomycin (strA, strB), aminoglycoside (aadA1, aadA2), beta-lactam (blaTEM), and trimethoprim (dfrA17) were common. Virulence gene content differed between serovars; S. Typhimurium formed two subclades based on virulence plasmid presence. Thirteen isolates were selected by their virulence profile for pathotyping using the Galleria mellonella pathogenesis model. Infection with a chicken invasive S. Enteritidis or S. Gallinarum isolate, a multidrug resistant S. Kentucky, or a S. Typhimurium DT104 isolate resulted in high mortality of the larvae; notably presence of the virulence plasmid in S. Typhimurium was not associated with increased larvae mortality. Histopathological examination showed that infection caused severe damage to the Galleria gut structure. Enumeration of intracellular bacteria in the larvae 24 h post-infection showed increases of up to 7 log above the initial inoculum and transmission electron microscopy (TEM) showed bacterial replication in the haemolymph. TEM also revealed the presence of vacuoles containing bacteria in the haemocytes, similar to Salmonella containing vacuoles observed in mammalian macrophages; although there was no evidence from our work of bacterial replication within vacuoles. This work shows that microarrays can be used for rapid virulence genotyping of S. enterica and that the Galleria animal model replicates some aspects of Salmonella infection in mammals. These procedures can be used to help inform on the pathogenicity of isolates that may be antibiotic resistant and have scope to aid the assessment of their potential public and animal health risk. PMID:27199965

  5. Virulence Characterisation of Salmonella enterica Isolates of Differing Antimicrobial Resistance Recovered from UK Livestock and Imported Meat Samples.

    PubMed

    Card, Roderick; Vaughan, Kelly; Bagnall, Mary; Spiropoulos, John; Cooley, William; Strickland, Tony; Davies, Rob; Anjum, Muna F

    2016-01-01

    Salmonella enterica is a foodborne zoonotic pathogen of significant public health concern. We have characterized the virulence and antimicrobial resistance gene content of 95 Salmonella isolates from 11 serovars by DNA microarray recovered from UK livestock or imported meat. Genes encoding resistance to sulphonamides (sul1, sul2), tetracycline [tet(A), tet(B)], streptomycin (strA, strB), aminoglycoside (aadA1, aadA2), beta-lactam (bla TEM), and trimethoprim (dfrA17) were common. Virulence gene content differed between serovars; S. Typhimurium formed two subclades based on virulence plasmid presence. Thirteen isolates were selected by their virulence profile for pathotyping using the Galleria mellonella pathogenesis model. Infection with a chicken invasive S. Enteritidis or S. Gallinarum isolate, a multidrug resistant S. Kentucky, or a S. Typhimurium DT104 isolate resulted in high mortality of the larvae; notably presence of the virulence plasmid in S. Typhimurium was not associated with increased larvae mortality. Histopathological examination showed that infection caused severe damage to the Galleria gut structure. Enumeration of intracellular bacteria in the larvae 24 h post-infection showed increases of up to 7 log above the initial inoculum and transmission electron microscopy (TEM) showed bacterial replication in the haemolymph. TEM also revealed the presence of vacuoles containing bacteria in the haemocytes, similar to Salmonella containing vacuoles observed in mammalian macrophages; although there was no evidence from our work of bacterial replication within vacuoles. This work shows that microarrays can be used for rapid virulence genotyping of S. enterica and that the Galleria animal model replicates some aspects of Salmonella infection in mammals. These procedures can be used to help inform on the pathogenicity of isolates that may be antibiotic resistant and have scope to aid the assessment of their potential public and animal health risk. PMID:27199965

  6. Unsaturated long chain free fatty acids are input signals of the Salmonella enterica PhoP/PhoQ regulatory system.

    PubMed

    Viarengo, Gastón; Sciara, Mariela I; Salazar, Mario O; Kieffer, Pablo M; Furlán, Ricardo L E; García Véscovi, Eleonora

    2013-08-01

    The Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg(2+) limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ. We demonstrate that LCUFAs inhibit PhoQ autokinase activity, turning off the expression of the PhoP-dependent regulon. We also show that LCUFAs exert their action independently of their cellular uptake and metabolic utilization by means of the β-oxidative pathway. Our findings put forth the complexity of input signals that can converge to finely tune the activity of the PhoP/PhoQ system. In addition, they provide a new potential biochemical platform for the development of antibacterial strategies to fight against Salmonella infections. PMID:23782700

  7. Unsaturated Long Chain Free Fatty Acids Are Input Signals of the Salmonella enterica PhoP/PhoQ Regulatory System*

    PubMed Central

    Viarengo, Gastón; Sciara, Mariela I.; Salazar, Mario O.; Kieffer, Pablo M.; Furlán, Ricardo L. E.; García Véscovi, Eleonora

    2013-01-01

    The Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg2+ limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ. We demonstrate that LCUFAs inhibit PhoQ autokinase activity, turning off the expression of the PhoP-dependent regulon. We also show that LCUFAs exert their action independently of their cellular uptake and metabolic utilization by means of the β-oxidative pathway. Our findings put forth the complexity of input signals that can converge to finely tune the activity of the PhoP/PhoQ system. In addition, they provide a new potential biochemical platform for the development of antibacterial strategies to fight against Salmonella infections. PMID:23782700

  8. Structures of the SEp22 dodecamer, a Dps-like protein from Salmonella enterica subsp. enterica serovar Enteritidis

    PubMed Central

    Miyamoto, Takanori; Asahina, Yasuko; Miyazaki, Shohei; Shimizu, Hidetoshi; Ohto, Umeharu; Noguchi, Shuji; Satow, Yoshinori

    2011-01-01

    The crystal structure of SEp22, a DNA-binding protein from starved cells from Salmonella enterica subsp. enterica serovar Enteritidis, has been determined in two forms: the native state at 1.25 Å resolution and an iron-soaked form at 1.30 Å resolution. The SEp22 protomers form a dodecameric shell with 23 symmetry and a single iron ion per protomer was found at the ferroxidase centre in the iron-soaked form. Along the threefold axes of the 23 symmetry, hydrophilic Asp channels that consist of Asp146 were found. Iron ions may flow into the cavity of the dodecameric shell through the Asp channels. PMID:21206015

  9. Detection of Salmonella enterica in pigs at slaughter and comparison with human isolates in Italy.

    PubMed

    Bonardi, Silvia; Alpigiani, Irene; Bruini, Ilaria; Barilli, Elena; Brindani, Franco; Morganti, Marina; Cavallini, Pierugo; Bolzoni, Luca; Pongolini, Stefano

    2016-02-01

    In 2013-2014, 201 pigs belonging to 67 batches were tested for Salmonella in their mesenteric lymph nodes (MLN) in one abattoir of Northern Italy. For each batch, faecal material was collected at lairage by swabbing the pen floor for approximately 1600 cm(2). The aim of this study was to investigate the prevalence of Salmonella in MLN of pigs at slaughter, to assess Salmonella contamination at lairage and to evaluate the effect of lairage duration on its prevalence. Serotyping, XbaI PFGE typing and antimicrobial testing of the isolates were performed. Pig and human Salmonella isolates of the same region of Italy were compared to evaluate possible correlations. Salmonella enterica was isolated from 19.9% of the MLN and 49.3% of the environmental faecal samples. Nine different serovars were identified among 75 S. enterica isolates. In MLN Salmonella Derby was the most common (52.5%), followed by S. enterica 4,[5],12:i:- (17.5%) and Salmonella Rissen (10.0%). In faecal samples S. Derby was prevalent (51.4%), followed by S. enterica 4,[5], 12:i:- (20.0%) and Salmonella Brandenburg (14.3%). Lairage holding varied between 1 and ≥ 12 h (median value: 2.5h). In pigs held for 1-3h, 14.1% were positive for Salmonella in MLN but the prevalence reached 31.8% when they were held for ≥ 12 h. The contamination of MLN was statistically different (p=0.0045) between the two groups, thus confirming the role of long-lasting lairage in Salmonella contamination of pigs. XbaI PFGE typing detected 36 PFGE types. Twenty-three PFGE types were identified among the 40 MLN isolates and 22 PFGE types among the 35 faecal isolates. A total of 11 PFGE types were shared between the MLN of pigs and the lairage environment. Among S. Derby, 6 shared PFGE types between MLN and faeces were found and among S. enterica 4,[5],12:i:- one PFGE type was common between MLN and the faecal samples. Shared profiles between human and swine isolates of S. Derby, S. enterica 4,[5],12:i:-, S. Rissen, Salmonella

  10. A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Senftenberg grown at acidic conditions.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2009-11-01

    Acid and heat inactivation in orange and apple juices of Salmonella enterica serovar Typhimurium Colección Española de Cultivos Tipo (i.e., Spanish Type Culture Collection) 443 (CECT 443) (Salmonella Typhimurium) and S. enterica serovar Senftenberg CECT 4384 (Salmonella Senftenberg) grown in buffered brain heart infusion (pH 7.0) and acidified brain heart infusion up to pH 4.5 with acetic, citric, lactic, and hydrochloric acids was evaluated. Acid adaptation induced an adaptive response that increased the subsequent resistance to extreme pH conditions (pH 2.5) and to heat, although the magnitude of these responses differed between the two isolates and fruit juices. The acid resistance in orange juice for acid-adapted cells (D-values of 28.3-34.5 min for Salmonella Senftenberg and 30.0-39.2 min for Salmonella Typhimurium) resulted to be about two to three times higher than that corresponding to non-acid-adapted cells. In apple juice, acid-adapted Salmonella Senftenberg cells survived better than those of Salmonella Typhimurium, obtaining mean D-values of 114.8 +/- 12.3 and 41.9 +/- 2.5 min, respectively. The thermotolerance of non-acid-adapted Salmonella Typhimurium in orange (D(58)-value: 0.028 min) and apple juices (D(58)-value: 0.10 min) was approximately double for acid-adapted cells. This cross-protection to heat was more strongly expressed in Salmonella Senftenberg. D(58)-values obtained for non-acid-adapted cells in orange (0.11 min) and apple juices (0.19 min) increased approximately 10 and 5 times, respectively, after their growth in acidified media. The conditions prevailing during bacterial growth and heat treatment did not significantly influence the z-values observed (6.0 +/- 0.3 degrees C for Salmonella Typhimurium and 7.0 +/- 0.3 degrees C for Salmonella Senftenberg). The enhanced acid resistance found for both isolates could enable them to survive for prolonged time periods in the gastrointestinal tract, increasing the risk of illness. Further, it

  11. Salmonella enterica Burden in Harvest-Ready Cattle Populations from the Southern High Plains of the United States▿

    PubMed Central

    Kunze, David J.; Loneragan, Guy H.; Platt, Tammy M.; Miller, Mark F.; Besser, Thomas E.; Koohmaraie, Mohammad; Stephens, Tyler; Brashears, Mindy M.

    2008-01-01

    Our objectives were to quantify the Salmonella enterica burdens in harvest-ready cattle and to identify specific at-risk populations of cattle most likely to harbor multiply resistant S. enterica. Hide swabs were collected in abattoirs from three cohorts of cattle (feedlot origin cattle that had achieved desirable harvest characteristics and dairy- and beef-type cows harvested because of poor productivity). Feces were collected from two cohorts housed in feedlots (cattle that had achieved desirable harvest characteristics and animals identified for salvage recovery because of poor productivity). Facilities were visited on four occasions over a 12-month period. Salmonella enterica isolates were recovered, and organisms were quantified using standard microbiological methodologies. Susceptibility to antimicrobial drugs and serotype were determined for one S. enterica isolate per sample. Salmonella enterica was recovered from 55.6% of 1,681 samples. The prevalences on hides and in feces were 69.6% and 30.3%, respectively. The concentrations of S. enterica organisms averaged (as determined by the most probable number technique) 1.82 log10/100 cm2 of hides and 0.75 log10/g of feces. None of the isolates recovered from cattle that had achieved desirable harvest characteristics were resistant to four or more drugs. For isolates recovered from animals with poor productivity characteristics, 6.5% were resistant to four or more drugs. Twenty-two serovars were identified, with the most common being Salmonella enterica serovar Anatum (25.5%), Salmonella enterica serovar Montevideo (22.2%), and Salmonella enterica serovar Cerro (12.5%). High-level resistance, i.e., resistance to four or more drugs, was clustered within a few relatively uncommon serovars. These results demonstrate that even though S. enterica isolates are readily recoverable from harvest-ready cattle, multiply resistant variants are rare and are associated with specific serovars in cattle harvested because of

  12. Increased Persistence of Salmonella enterica Serovar Typhi in the Presence of Acanthamoeba castellanii▿

    PubMed Central

    Douesnard-Malo, Frédéric; Daigle, France

    2011-01-01

    Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of the systemic disease typhoid fever. Transmission occurs via ingestion of contaminated food or water. S. Typhi is specific to humans, and no animal or environmental reservoirs are known. As the free-living amoeba Acanthamoeba castellanii is an environmental host for many pathogenic bacteria, this study investigates interactions between S. Typhi and A. castellanii by using cocultures. Growth of both organisms was estimated by cell count, viable count, flow cytometry, and fluorescence microscopy. Results indicate that S. Typhi can survive at least 3 weeks when grown with A. castellanii, as opposed to less than 10 days when grown as singly cultured bacteria under the same conditions. Interestingly, growth rates of amoebae after 14 days were similar in cocultures or when amoebae were singly cultured, suggesting that S. Typhi is not cytotoxic to A. castellanii. Bacteria surviving in coculture were not intracellular and did not require a physical contact with amoebae for their survival. These results suggest that S. Typhi may have a selective advantage when it is associated with A. castellanii and that amoebae may contribute to S. Typhi persistence in the environment. PMID:21926221

  13. Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, ...

  14. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars

    PubMed Central

    Di Cesare, Andrea; Losasso, Carmen; Barco, Lisa; Eckert, Ester M.; Conficoni, Daniele; Sarasini, Giulia; Corno, Gianluca; Ricci, Antonia

    2016-01-01

    Type II Toxin-Antitoxin systems (TAs), known for their presence in virulent and antibiotic resistant bacterial strains, were recently identified in Salmonella enterica isolates. However, the relationships between the presence of TAs (ccdAB and vapBC) and the epidemiological and genetic features of different non-typhoidal Salmonella serovars are largely unknown, reducing our understanding of the ecological success of different serovars. Salmonella enterica isolates from different sources, belonging to different serovars and epidemiologically unrelated according to ERIC profiles, were investigated for the presence of type II TAs, plasmid content, and antibiotic resistance. The results showed the ubiquitous presence of the vapBC gene in all the investigated Salmonella isolates, but a diverse distribution of ccdAB, which was detected in the most widespread Salmonella serovars, only. Analysis of the plasmid toxin ccdB translated sequence of four selected Salmonella isolates showed the presence of the amino acid substitution R99W, known to impede in vitro the lethal effect of CcdB toxin in the absence of its cognate antitoxin CcdA. These findings suggest a direct role of the TAs in promoting adaptability and persistence of the most prevalent Salmonella serovars, thus implying a wider eco-physiological role for these type II TAs. PMID:27357537

  15. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars.

    PubMed

    Di Cesare, Andrea; Losasso, Carmen; Barco, Lisa; Eckert, Ester M; Conficoni, Daniele; Sarasini, Giulia; Corno, Gianluca; Ricci, Antonia

    2016-01-01

    Type II Toxin-Antitoxin systems (TAs), known for their presence in virulent and antibiotic resistant bacterial strains, were recently identified in Salmonella enterica isolates. However, the relationships between the presence of TAs (ccdAB and vapBC) and the epidemiological and genetic features of different non-typhoidal Salmonella serovars are largely unknown, reducing our understanding of the ecological success of different serovars. Salmonella enterica isolates from different sources, belonging to different serovars and epidemiologically unrelated according to ERIC profiles, were investigated for the presence of type II TAs, plasmid content, and antibiotic resistance. The results showed the ubiquitous presence of the vapBC gene in all the investigated Salmonella isolates, but a diverse distribution of ccdAB, which was detected in the most widespread Salmonella serovars, only. Analysis of the plasmid toxin ccdB translated sequence of four selected Salmonella isolates showed the presence of the amino acid substitution R99W, known to impede in vitro the lethal effect of CcdB toxin in the absence of its cognate antitoxin CcdA. These findings suggest a direct role of the TAs in promoting adaptability and persistence of the most prevalent Salmonella serovars, thus implying a wider eco-physiological role for these type II TAs. PMID:27357537

  16. Metabolic parameters linked by Phenotype MicroArray to acid resistance profiles of poultry-associated Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotype microarrays were analyzed for 51 datasets derived from Salmonella enterica. The top 4 serovars associated with poultry products and one associated with turkey, respectively Typhimurium, Enteritidis, Heidelberg, Infantis and Senftenberg, were represented. Datasets were clustered into two ...

  17. Assessing the prevalence of Salmonella enterica in poultry hatcheries by using hatched eggshell membranes.

    PubMed

    Chao, M-R; Hsien, C-H; Yeh, C-M; Chou, S-J; Chu, C; Su, Y-C; Yu, C-Y

    2007-08-01

    Salmonella enterica causes a number of significant poultry diseases and is also a major pathogen in humans. Most poultry infected by Salmonella become carriers; infection may also be fatal, depending on the particular serovar and the age of the bird at infection. Younger birds are more susceptible to infection by Salmonella, so it is critical that hatcheries monitor birds. We developed a method to use hatched eggshell membranes (HEM) to assess contamination by Salmonella in poultry hatching cabinets and to evaluate the prevalence of Salmonella in a goose hatchery and rearing farm. Comparison of the Salmonella isolation rate in hatching cabinets using 3 sampling methods showed that the highest Salmonella contamination was detected in HEM, and that these results differed significantly from those obtained from fluff samples and cabinet swab samples (P < 0.05). Analysis of HEM was also used to evaluate Salmonella contamination in goose, chicken, and duck hatcheries. The lowest Salmonella-positive rate was found for the chicken hatchery, followed by the goose and the duck hatcheries (P < 0.05). Six serogroups of Salmonella were detected in the 3 hatcheries: A, B, C1, C2, D, and E. The distribution of these serogroups differed among the hatcheries. Salmonella serogroup C1 was the major serogroup found in geese, compared with serogroup B in chickens and ducks. However, Salmonella Typhimurium was dominant in 1 goose hatchery and also in geese from this hatchery that had been transferred to a farm. Antibiotic susceptibility analysis showed that Salmonella Typhimurium strains isolated from the farm geese with diarrhea showed significantly higher resistance to doxycycline, colistin, sulfamethoxazole-trimethoprin, and cephalothin than those isolated from the hatchery (P < 0.05). Therefore, HEM as a detection target can be used to monitor Salmonella contamination in hatching cabinets and also be used to assess Salmonella prevalence in poultry hatcheries and rearing farms. PMID

  18. Changes in the Porcine Intestinal Microbiome in Response to Infection with Salmonella enterica and Lawsonia intracellularis

    PubMed Central

    Singer, Randall S.; Gebhart, Connie J.; Sreevatsan, Srinand; Johnson, Timothy; Isaacson, Richard E.

    2015-01-01

    Salmonella enterica is a leading cause of food borne illness. Recent studies have shown that S. enterica is a pathogen capable of causing alterations to the composition of the intestinal microbiome. A recent prospective study of French pork production farms found a statistically significant association between Lawsonia intracellularis and carriage of S. enterica. In the current study the composition of the gut microbiome was determined in pigs challenged with S. enterica serovar Typhimurium and or L. intracellularis and compared to non-challenged control pigs. Principal coordinate analysis demonstrated that there was a disruption in the composition of the gut microbiome in the colon and cecum of pigs challenged with either pathogen. The compositions of the microbiomes of challenged pigs were similar to each other but differed from the non-challenged controls. There also were statistically significant increases in Anaerobacter, Barnesiella, Pediococcus, Sporacetigenium, Turicibacter, Catenibacterium, Prevotella, Pseudobutyrivibrio, and Xylanibacter in the challenged pigs. To determine if these changes were specific to experimentally challenged pigs, we determined the compositions of the fecal microbiomes of naturally infected pigs that were carriers of S. enterica. Pigs that were frequent shedders of S. enterica were shown to have similar fecal microbiomes compared to non-shedders or pigs that shed S. enterica infrequently. In a comparison of the differentially abundant bacteria in the naturally infected pigs compared to experimentally challenged pigs, 9 genera were differentially abundant and each exhibited the same increase or decrease in abundance between the two groups. Thus, there were similar changes in the GI microbiome associated with carriage of S. enterica regardless of whether the pigs were experimentally challenged with S. enterica or acquired it naturally. PMID:26461107

  19. Changes in the Porcine Intestinal Microbiome in Response to Infection with Salmonella enterica and Lawsonia intracellularis.

    PubMed

    Borewicz, Klaudyna A; Kim, Hyeun Bum; Singer, Randall S; Gebhart, Connie J; Sreevatsan, Srinand; Johnson, Timothy; Isaacson, Richard E

    2015-01-01

    Salmonella enterica is a leading cause of food borne illness. Recent studies have shown that S. enterica is a pathogen capable of causing alterations to the composition of the intestinal microbiome. A recent prospective study of French pork production farms found a statistically significant association between Lawsonia intracellularis and carriage of S. enterica. In the current study the composition of the gut microbiome was determined in pigs challenged with S. enterica serovar Typhimurium and or L. intracellularis and compared to non-challenged control pigs. Principal coordinate analysis demonstrated that there was a disruption in the composition of the gut microbiome in the colon and cecum of pigs challenged with either pathogen. The compositions of the microbiomes of challenged pigs were similar to each other but differed from the non-challenged controls. There also were statistically significant increases in Anaerobacter, Barnesiella, Pediococcus, Sporacetigenium, Turicibacter, Catenibacterium, Prevotella, Pseudobutyrivibrio, and Xylanibacter in the challenged pigs. To determine if these changes were specific to experimentally challenged pigs, we determined the compositions of the fecal microbiomes of naturally infected pigs that were carriers of S. enterica. Pigs that were frequent shedders of S. enterica were shown to have similar fecal microbiomes compared to non-shedders or pigs that shed S. enterica infrequently. In a comparison of the differentially abundant bacteria in the naturally infected pigs compared to experimentally challenged pigs, 9 genera were differentially abundant and each exhibited the same increase or decrease in abundance between the two groups. Thus, there were similar changes in the GI microbiome associated with carriage of S. enterica regardless of whether the pigs were experimentally challenged with S. enterica or acquired it naturally. PMID:26461107

  20. Cross-sectional study examining Salmonella enterica carriage in subiliac lymph nodes of cull and feedlot cattle at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine peripheral lymph nodes, including subiliac lymph nodes, have been identified as a potential source of human exposure to Salmonella enterica when trim containing these nodes is incorporated into ground beef. In order to gain a better understanding of the burden of S. enterica in subiliac lymp...

  1. Characterization of tetracycline resistance in Salmonella enterica strains recovered from irrigation water in the Culiacan Valley, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is one of the most important pathogens responsible for gastrointestinal infections in humans. The increase of S. enterica strains showing resistance against antibiotics has resulted in limiting the effective treatment of human infections. The present study characterized the resi...

  2. Salmonella enterica serovar Kentucky isolates from dairy cows and poultry demonstrate different evolutionary histories and host-specific polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Kentucky is commonly isolated from dairy cows and poultry in the United States. Although it is not among the most frequently isolated serovars from cases of human salmonellosis, its high prevalence in livestock and poultry indicate it is a potential public...

  3. Cross-sectional study examining Salmonella enterica carriage in subiliac lymph nodes of cull and feedlot cattle at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine peripheral lymph nodes (LNs), including subiliac LNs, have been identified as a potential source of human exposure to Salmonella enterica, when adipose trim containing these nodes is incorporated into ground beef. In order to gain a better understanding of the burden of S. enterica in periphe...

  4. Occurrence of antimicrobial-resistant Escherichia coli and Salmonella enterica in the beef cattle production and processing continuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific concerns have been raised that 3rd-generation cephalosporin-resistant (3GCr) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr) E. coli, 3GCr Salmonella enterica, and nalidixic acid-resistant (NALr) S. enterica, may be present in cattle production environments, persist through...

  5. Role of Salmonella enterica exposure in Chilean Crohn's disease patients

    PubMed Central

    Alvarez-Lobos, Manuel; Pizarro, Daniela P; Palavecino, Christian E; Espinoza, Abner; Sebastián, Valentina P; Alvarado, Juan C; Ibañez, Patricio; Quintana, Carlos; Díaz, Orlando; Kalergis, Alexis M; Bueno, Susan M

    2013-01-01

    AIM: To study the association between exposure to Salmonella enterica (SE) and Crohn’s disease (CD) and its clinical implications in Chilean patients. METHODS: Ninety-four unrelated Chilean CD patients from CAREI (Active Cohort Registry of Inflammatory Bowel Disease) presenting to a single inflammatory bowel disease (IBD) unit of a University Hospital were prospectively included in this study. A complete clinical evaluation, including smoking history, was performed at the initial visit, and all the important data of clinical evolution of CD were obtained. Blood samples from these CD patients and 88 healthy sex- and age-matched control subjects were analyzed for exposure to SE and for their NOD2/CARD15 gene status using the presence of anti-Salmonella lipopolysaccharide antibodies [immunoglobulin-G type (IgG)] and polymerase chain reaction (PCR), respectively. We also evaluated exposure to SE in 90 sex- and age-matched patients without CD, but with known smoking status (30 smokers, 30 non-smokers, and 30 former smokers). RESULTS: CD patients comprised 54 females and 40 males, aged 35.5 ± 15.2 years at diagnosis with a mean follow-up of 9.0 ± 6.8 years. CD was inflammatory in 59 patients (62.7%), stricturing in 24 (25.5%) and penetrating in 15 (15.5%). Thirty cases (31.9%) had lesions in the ileum, 29 (30.8%) had ileocolonic lesions, 32 (34.0%) had colonic lesions and 23 (24.4%) had perianal disease. Sixteen CD patients (17%) were exposed to SE compared to 15 (17%) of 88 healthy control subjects (P = 0.8). Thirty-one CD patients (32.9%) were smokers, and 7 (7.4%) were former smokers at diagnosis. In the group exposed to SE, 10 of 16 patients (62.5%) were active smokers compared to 21 of 78 patients (26.9%) in the unexposed group (P = 0.01). On the other hand, 10 of 31 smoking patients (32%) were exposed to SE compared to 5 of 56 nonsmoking patients (9%), and one of the seven former smokers (14%) (P = 0.01). In the group of 90 patients without CD, but whose

  6. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  7. Real-time FRET PCR assay for Salmonella enterica serotype detection in food.

    PubMed

    Olsen, Eric V; Gibbins, Carl S; Grayson, J Kevin

    2009-09-01

    Salmonella enterica subsp. enterica serotypes are leading etiological agents of food-borne gastroenteritis. Traditional identification is laborious and time intensive. Faster molecular methods may allow early identification in contaminated food products. We developed a real-time, fluorescence resonance energy transfer hybridization probe polymerase chain reaction (PCR) assay for S. enterica serotypes on the basis of the exclusive presence of the apeE gene in Salmonella Typhimurium. Assay sensitivity for 12 S. enterica serotypes was as low as 1.87 x 10(2) genomic equivalents per milliliter. PCR efficiency was 94% and the dynamic range was linear over six orders of magnitude from 10(0) to 10(6) copies. The lower limit of detection for 12 different food matrices was between 1.5 x 10(2) and 1.5 x 10(5) CFU/mL without pre-enrichment. When combined with high-throughput automated DNA extraction, 32 food specimens were processed and assayed in less than 2 hours, allowing rapid, specific, sensitive detection of S. enterica serotypes in food products. PMID:19780376

  8. Inactivation of Salmonella enterica by UV-C Light Alone and in Combination with Mild Temperatures

    PubMed Central

    Gayán, E.; Serrano, M. J.; Raso, J.; Álvarez, I.

    2012-01-01

    The aim of this investigation was to study the efficacy of the combined processes of UV light and mild temperatures for the inactivation of Salmonella enterica subsp. enterica and to explore the mechanism of inactivation. The doses to inactivate the 99.99% (4D) of the initial population ranged from 18.03 (Salmonella enterica serovar Typhimurium STCC 878) to 12.75 J ml−1 (Salmonella enterica serovar Enteritidis ATCC 13076). The pH and water activity of the treatment medium did not change the UV tolerance, but it decreased exponentially by increasing the absorption coefficient. An inactivating synergistic effect was observed by applying simultaneous UV light and heat treatment (UV-H). A less synergistic effect was observed by applying UV light first and heat subsequently. UV did not damage cell envelopes, but the number of injured cells was higher after a UV-H treatment than after heating. The synergistic effect observed by combining simultaneous UV and heat treatment opens the possibility to design combined treatments for pasteurization of liquid food with high UV absorptivity, such as fruit juices. PMID:23001665

  9. A Lactobacillus acidophilus strain of human gastrointestinal microbiota origin elicits killing of enterovirulent Salmonella enterica Serovar Typhimurium by triggering lethal bacterial membrane damage.

    PubMed

    Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L

    2005-10-01

    The human gastrointestinal microbiota produces antagonistic activities against gastrointestinal bacterial pathogens. We undertook a study to investigate the mechanism(s) by which a Lactobacillus acidophilus strain of human microbiota origin antagonizes the gram-negative enteroinvasive pathogen Salmonella enterica serovar Typhimurium. We showed that the cell-free culture supernatant of L. acidophilus strain LB (LB-CFCS) induced the following effects in S. enterica SL1344: (i) a decrease in intracellular ATP that paralleled bacterial death, (ii) the release of lipopolysaccharide, (iii) permeabilization of the bacterial membrane, and (iv) an increase in the sensitivity of Salmonella to the lytic action of sodium dodecyl sulfate. Finally, we showed using two mutant strains of Salmonella, PhoP MS7953s and PmrA JKS1170, that the two-component regulatory systems PhoP-PhoQ and PmrA-PmrB that regulate the mechanisms of resistance to antibacterial agents in Salmonella did not influence the anti-Salmonella effect of LB-CFCS. PMID:16204528

  10. First Case of Lung Abscess due to Salmonella enterica Serovar Abony in an Immunocompetent Adult Patient.

    PubMed

    Pitiriga, Vassiliki; Dendrinos, John; Nikitiadis, Emanuel; Vrioni, Georgia; Tsakris, Athanassios

    2016-01-01

    In healthy individuals, nontyphoidal Salmonella species predominantly cause a self-limited form of gastroenteritis, while they infrequently invade or cause fatal disease. Extraintestinal manifestations of nontyphoidal Salmonella infections are not common and mainly occur among individuals with specific risk factors; among them, focal lung infection is a rare complication caused by nontyphoidal Salmonella strains typically occurring in immunocompromised patients with prior lung disease. We describe the first case of a localized lung abscess formation in an immunocompetent healthy female adult due to Salmonella enterica serovar Abony. The patient underwent lobectomy and was discharged after full clinical recovery. This case report highlights nontyphoidal Salmonellae infections as a potential causative agent of pleuropulmonary infections even in immunocompetent healthy adults. PMID:27429814