Science.gov

Sample records for intracellular salmonella enterica

  1. Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis

    PubMed Central

    Durkin, Charlotte H.; Helaine, Sophie; Boucrot, Emmanuel

    2016-01-01

    Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S. Typhimurium delays epithelial cell turnover in the intestine. PMID:27185791

  2. Salmonella enterica.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian Salmonella infections are important as both a cause of clinical disease in poultry and as a source of food-borne transmission of disease to humans. Host-adapted salmonellae (Salmonella enterica serovar Pullorum and Gallinarum) are responsible for severe systemic diseases, whereas numerous sero...

  3. Proteomes of Host Cell Membranes Modified by Intracellular Activities of Salmonella enterica*

    PubMed Central

    Vorwerk, Stephanie; Krieger, Viktoria; Deiwick, Jörg; Hensel, Michael; Hansmeier, Nicole

    2015-01-01

    Intracellular pathogens need to establish a growth-stimulating host niche for survival and replication. A unique feature of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium is the creation of extensive membrane networks within its host. An understanding of the origin and function of these membranes is crucial for the development of new treatment strategies. However, the characterization of this compartment is very challenging, and only fragmentary knowledge of its composition and biogenesis exists. Here, we describe a new proteome-based approach to enrich and characterize Salmonella-modified membranes. Using a Salmonella mutant strain that does not form this unique membrane network as a reference, we identified a high-confidence set of host proteins associated with Salmonella-modified membranes. This comprehensive analysis allowed us to reconstruct the interactions of Salmonella with host membranes. For example, we noted that Salmonella redirects endoplasmic reticulum (ER) membrane trafficking to its intracellular niche, a finding that has not been described for Salmonella previously. Our system-wide approach therefore has the potential to rapidly close gaps in our knowledge of the infection process of intracellular pathogens and demonstrates a hitherto unrecognized complexity in the formation of Salmonella host niches. PMID:25348832

  4. Novel Salmonella enterica serovar Typhimurium protein that is indispensable for virulence and intracellular replication.

    PubMed

    van der Straaten, T; van Diepen, A; Kwappenberg, K; van Voorden, S; Franken, K; Janssen, R; Kusters, J G; Granger, D L; van Dissel, J T

    2001-12-01

    Upon contact with host cells, the intracellular pathogen Salmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribed Salmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonella chromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 10(4) to 10(7) bacteria in C3H/HeN and 10(1) to 10(4) bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity. PMID:11705915

  5. Dormant intracellular Salmonella enterica serovar Typhimurium discriminates among Salmonella pathogenicity island 2 effectors to persist inside fibroblasts.

    PubMed

    Núñez-Hernández, Cristina; Alonso, Ana; Pucciarelli, M Graciela; Casadesús, Josep; García-del Portillo, Francisco

    2014-01-01

    Salmonella enterica uses effector proteins delivered by type III secretion systems (TTSS) to colonize eukaryotic cells. Recent in vivo studies have shown that intracellular bacteria activate the TTSS encoded by Salmonella pathogenicity island-2 (SPI-2) to restrain growth inside phagocytes. Growth attenuation is also observed in vivo in bacteria colonizing nonphagocytic stromal cells of the intestinal lamina propria and in cultured fibroblasts. SPI-2 is required for survival of nongrowing bacteria persisting inside fibroblasts, but its induction mode and the effectors involved remain unknown. Here, we show that nongrowing dormant intracellular bacteria use the two-component system OmpR-EnvZ to induce SPI-2 expression and the PhoP-PhoQ system to regulate the time at which induction takes place, 2 h postentry. Dormant bacteria were shown to discriminate the usage of SPI-2 effectors. Among the effectors tested, SseF, SseG, and SseJ were required for survival, while others, such as SifA and SifB, were not. SifA and SifB dispensability correlated with the inability of intracellular bacteria to secrete these effectors even when overexpressed. Conversely, SseJ overproduction resulted in augmented secretion and exacerbated bacterial growth. Dormant bacteria produced other effectors, such as PipB and PipB2, that, unlike what was reported for epithelial cells, did not to traffic outside the phagosomal compartment. Therefore, permissiveness for secreting only a subset of SPI-2 effectors may be instrumental for dormancy. We propose that the S. enterica serovar Typhimurium nonproliferative intracellular lifestyle is sustained by selection of SPI-2 effectors that are produced in tightly defined amounts and delivered to phagosome-confined locations. PMID:24144726

  6. sciS, an icmF Homolog in Salmonella enterica Serovar Typhimurium, Limits Intracellular Replication and Decreases Virulence

    PubMed Central

    Parsons, Duncan A.; Heffron, Fred

    2005-01-01

    Salmonella enterica serovar Typhimurium utilizes macrophages to disseminate from the intestine to deeper tissues within the body. While S. enterica serovar Typhimurium has been shown to kill its host macrophage, it can persist intracellularly beyond 18 h postinfection. To identify factors involved in late stages of infection, we screened a transposon library made in S. enterica serovar Typhimurium for the ability to persist in J774 macrophages at 24 h postinfection. Through this screen, we identified a gene, sciS, found to be homologous to icmF in Legionella pneumophila. icmF, which is required for intracellular multiplication, is conserved in several gram-negative pathogens, and its homolog appears to have been acquired horizontally in S. enterica serovar Typhimurium. We found that an sciS mutant displayed increased intracellular numbers in J774 macrophages when compared to the wild-type strain at 24 h postinfection. sciS was maximally transcribed at 27 h postinfection and is repressed by SsrB, an activator of genes required for promoting intracellular survival. Finally, we demonstrate that an sciS mutant is hypervirulent in mice when administered intragastrically. Taken together, these data indicate a role for SciS in controlling intracellular bacterial levels at later stages of infection and attenuating virulence in a murine host PMID:15972528

  7. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium.

    PubMed

    Yeom, Ji-Hyun; Lee, Boeun; Kim, Daeyoung; Lee, Jong-Kook; Kim, Suk; Bae, Jeehyeon; Park, Yoonkyung; Lee, Kangseok

    2016-10-01

    Antimicrobial peptides (AMPs) are a promising new class of antibacterial compounds. However, their applications in the treatment of intracellular pathogenic bacteria have been limited by their in vivo instability and low penetrating ability into mammalian cells. Here, we report that gold nanoparticles conjugated with DNA aptamer (AuNP-Apt) efficiently delivered AMPs into mammalian living systems with enhanced stability of the AMPs. C-terminally hexahistidine-tagged A3-APO (A3-APO(His)) AMPs were loaded onto AuNPs conjugated with His-tag DNA aptamer (AuNP-Apt(His)) by simple mixing and were delivered into Salmonella enterica serovar Typhimurium (S. Typhimurium)-infected HeLa cells, resulting in the increased viability of host cells due to the elimination of intracellular S. Typhimurium cells. Furthermore, the intravenous injection of AuNP-Apt(His) loaded with A3-APO(His) into S. Typhimurium-infected mice resulted in a complete inhibition of S. Typhimurium colonization in the mice organs, leading to 100% survival of the mice. Therefore, AuNP-Apt(His) can serve as an innovative platform for AMP therapeutics to treat intracellular bacterial infections in mammals. PMID:27424215

  8. Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells.

    PubMed

    Coconnier, M H; Liévin, V; Lorrot, M; Servin, A L

    2000-03-01

    To gain further insight into the mechanism by which lactobacilli develop antimicrobial activity, we have examined how Lactobacillus acidophilus LB inhibits the promoted cellular injuries and intracellular lifestyle of Salmonella enterica serovar Typhimurium SL1344 infecting the cultured, fully differentiated human intestinal cell line Caco-2/TC-7. We showed that the spent culture supernatant of strain LB (LB-SCS) decreases the number of apical serovar Typhimurium-induced F-actin rearrangements in infected cells. LB-SCS treatment efficiently decreased transcellular passage of S. enterica serovar Typhimurium. Moreover, LB-SCS treatment inhibited intracellular growth of serovar Typhimurium, since treated intracellular bacteria displayed a small, rounded morphology resembling that of resting bacteria. We also showed that LB-SCS treatment inhibits adhesion-dependent serovar Typhimurium-induced interleukin-8 production. PMID:10698785

  9. Slc11a1 limits intracellular growth of Salmonella enterica sv. Typhimurium by promoting macrophage immune effector functions and impairing bacterial iron acquisition

    PubMed Central

    Nairz, Manfred; Fritsche, Gernot; Crouch, Marie-Laure V.; Barton, Howard C.; Fang, Ferric C.; Weiss, Günter

    2009-01-01

    The natural-resistance associated macrophage protein 1, Slc11a1, is a phagolysosomal transporter for protons and divalent ions including iron, that confers host protection against diverse intracellular pathogens including Salmonella. We investigated and compared the regulation of iron homeostasis and immune function in RAW264.7 murine phagocytes stably transfected with non-functional Slc11a1 and functional Slc11a1 controls in response to an infection with Salmonella enterica serovar Typhimurium (S. Typhimurium). We report that macrophages lacking functional Slc11a1 displayed an increased expression of transferrin receptor 1, resulting in enhanced acquisition of transferrin-bound iron. In contrast, cellular iron release mediated via ferroportin 1 was significantly lower in Salmonella-infected Slc11a1-negative macrophages in comparison to phagocytes bearing Slc11a1. Lack of Slc11a1 led to intracellular persistence of S. Typhimurium within macrophages which was paralleled by a reduced formation of nitric oxide, tumour necrosis factor-alpha and interleukin-6 in Slc11a1-negative macrophages following Salmonella infection, whereas interleukin-10 production was increased. Moreover, Slc11a1-negative phagocytes exhibited higher cellular iron content, resulting in increased iron acquisition by intracellular Salmonella. Our observations indicate a bifunctional role for Slc11a1 within phagocytes. Slc11a restricts iron availability, which firstly augments pro-inflammatory macrophage effector functions and secondly concomitantly limits microbial iron access. PMID:19500110

  10. Molecular fingerprinting of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica derby isolated from tropical seafood in South India.

    PubMed

    Kumar, Rakesh; Surendran, P K; Thampuran, Nirmala

    2008-09-01

    Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby strains isolated from different seafood were genotyped by PCR-ribotyping and ERIC-PCR assays. This study has ascertained the genetic relatedness among serovars prevalent in tropical seafood. PCR-ribotyping exhibited genetic variation in both Salmonella serovars, and ribotype profile (II) was most predominant, which was observed in 10/18 of Salmonella enterica subsp. enterica Typhimurium and 7/17 Salmonella enterica subsp. enterica Derby isolates. Cluster analysis of ERIC-PCR for Salmonella enterica subsp. enterica Typhimurium strains exhibited nine different banding patterns and four strains showed >95% genetic homology within the cluster pairs. ERIC-PCR produced more genetic variations in Salmonella enterica subsp. enterica Typhimurium; nevertheless, both methods were found to be comparable for Salmonella enterica subsp. enterica Derby isolates. Discrimination index of PCR-ribotyping for Salmonella enterica subsp. enterica Typhimurium isolates was obtained at 0.674 and index value 0.714 was observed for Salmonella enterica subsp. enterica Derby strains. Molecular fingerprinting investigation highlighted the hypothesis of diverse routes of Salmonella contamination in seafood as multiple clones of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby were detected in same or different seafood throughout the study period. PMID:18480975

  11. Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells

    PubMed Central

    Liu, Yanhua; Zhang, Qiufeng; Hu, Mo; Yu, Kaiwen; Fu, Jiaqi; Zhou, Fan

    2015-01-01

    Salmonella species can gain access into nonphagocytic cells, where the bacterium proliferates in a unique membrane-bounded compartment. In order to reveal bacterial adaptations to their intracellular niche, here we conducted the first comprehensive proteomic survey of Salmonella isolated from infected epithelial cells. Among ∼3,300 identified bacterial proteins, we found that about 100 proteins were significantly altered at the onset of Salmonella intracellular replication. In addition to substantially increased iron-uptake capacities, bacterial high-affinity manganese and zinc transporters were also upregulated, suggesting an overall limitation of metal ions in host epithelial cells. We also found that Salmonella induced multiple phosphate utilization pathways. Furthermore, our data suggested upregulation of the two-component PhoPQ system as well as of many downstream virulence factors under its regulation. Our survey also revealed that intracellular Salmonella has increased needs for certain amino acids and biotin. In contrast, Salmonella downregulated glycerol and maltose utilization as well as chemotaxis pathways. PMID:25939512

  12. Complete Genome and Methylome Sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791).

    PubMed

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J; Payne, Justin; Allard, Marc W; Hoffmann, Maria

    2016-01-01

    Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica serovar Sloterdijk (ATCC 15791). PMID:26988049

  13. Complete Genome and Methylome Sequences of Salmonella enterica subsp. enterica Serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica Serovar Sloterdijk (ATCC 15791)

    PubMed Central

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J.; Payne, Justin; Allard, Marc W.

    2016-01-01

    Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica serovar Sloterdijk (ATCC 15791). PMID:26988049

  14. Sensitization of Intracellular Salmonella enterica Serovar Typhimurium to Aminoglycosides In Vitro and In Vivo by a Host-Targeted Antimicrobial Agent

    PubMed Central

    Lo, Jung-Hsin; Kulp, Samuel K.; Chen, Ching-Shih

    2014-01-01

    Aminoglycosides exhibit relatively poor activity against intracellular Salmonella enterica serovar Typhimurium due to their low permeativity across eukaryotic cell membranes. Previously, we identified the unique ability of AR-12, a celecoxib-derived small-molecule agent, to eradicate intracellular Salmonella Typhimurium in macrophages by facilitating autophagosome formation and suppressing Akt kinase signaling. In light of this unique mode of antibacterial action, we investigated the ability of AR-12 to sensitize intracellular Salmonella to aminoglycosides in macrophages and in an animal model. The antibacterial activities of AR-12 combined with various aminoglycosides, including streptomycin, kanamycin, gentamicin, and amikacin, against intracellular S. Typhimurium in murine RAW264.7 macrophages were assessed. Cells were infected with S. Typhimurium followed by treatment with AR-12 or individual aminoglycosides or with combinations for 24 h. The in vivo efficacies of AR-12, alone or in combination with gentamicin or amikacin, were also assessed by treating S. Typhimurium-infected BALB/c mice daily for 14 consecutive days. Exposure of S. Typhimurium-infected RAW264.7 cells to a combination of AR-12 with individual aminoglycosides led to a reduction in bacterial survival (P < 0.05), both intracellular and extracellular, that was greater than that seen with the aminoglycosides alone. This sensitizing effect, however, was not associated with increased aminoglycoside penetration into bacteria or macrophages. Moreover, daily intraperitoneal injection of AR-12 at 0.1 mg/kg of body weight significantly increased the in vivo efficacy of gentamicin and amikacin in prolonging the survival of S. Typhimurium-infected mice. These findings indicate that the unique ability of AR-12 to enhance the in vivo efficacy of aminoglycosides might have translational potential for efforts to develop novel strategies for the treatment of salmonellosis. PMID:25267669

  15. Differential Responses of Macrophages to Salmonella enterica Serovars Enteritidis and Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophages are major effectors against Salmonella infection, and also transport bacteria between host tissues and provide a protected site for intracellular bacterial replication. We hypothesized that differences in chicken macrophage responses to Salmonella enterica serovar Enteritidis (SE) and s...

  16. Selectively Reduced Intracellular Proliferation of Salmonella enterica Serovar Typhimurium within APCs Limits Antigen Presentation and Development of a Rapid CD8 T Cell Response1

    PubMed Central

    Albaghdadi, Homam; Robinson, Nirmal; Finlay, Brett; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Ag presentation to CD8+ T cells commences immediately after infection, which facilitates their rapid expansion and control of pathogen. This paradigm is not followed during infection with virulent Salmonella enterica serovar Typhimurium (ST), an intracellular bacterium that causes mortality in susceptible C57BL/6J mice within 7 days and a chronic infection in resistant mice (129 × 1SvJ). Infection of mice with OVA-expressing ST results in the development of a CD8+ T cell response that is detectable only after the second week of infection despite the early detectable bacterial burden. The mechanism behind the delayed CD8+ T cell activation was evaluated, and it was found that dendritic cells/macrophages or mice infected with ST-OVA failed to present Ag to OVA-specific CD8+ T cells. Lack of early Ag presentation was not rescued when mice or dendritic cells/macrophages were infected with an attenuated aroA mutant of ST or with mutants having defective Salmonella pathogenicity island I/II genes. Although extracellular ST proliferated extensively, the replication of ST was highly muted once inside macrophages. This muted intracellular proliferation of ST resulted in the generation of poor levels of intracellular Ag and peptide-MHC complex on the surface of dendritic cells. Additional experiments revealed that ST did not actively inhibit Ag presentation, rather it inhibited the uptake of another intracellular pathogen, Listeria monocytogenes, thereby causing inhibition of Ag presentation against L. monocytogenes. Taken together, this study reveals a dichotomy in the proliferation of ST and indicates that selectively reduced intra-cellular proliferation of virulent pathogens may be an important mechanism of immune evasion. PMID:19692639

  17. Population structure of Salmonella enterica subspecies enterica (subspecies 1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We sequenced and assembled 354 new Salmonella enterica ssp. enterica genomes. These genomes were chosen to maximize genetic diversity, representing at least 100 different serovars and distinct PFGE patterns within these serovars. 119 of the strains were of known antibiotic resistance,...

  18. Substructure within Salmonella enterica subsp. enterica Isolates from Australian Wildlife▿

    PubMed Central

    Parsons, Sandra K.; Bull, C. Michael; Gordon, David M.

    2011-01-01

    Multilocus sequence typing of 56 Salmonella enterica subsp. enterica strains isolated from Australian wildlife hosts was performed. The results of population assignment algorithms revealed that the 56 strains could be subdivided into two distinct clades. Strains belonging to the two clades were further distinguished phenotypically, genotypically, and with respect to host distribution. PMID:21378038

  19. Interaction of Salmonella enterica with Fresh Produce Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attachment and colonization of Salmonella enterica serovars to fresh produce leaves was investigated. Biofilm assay and attachment of Salmonella serovars to intact and cut leaves were determined. Salmonella Tennessee and Salmonella Thompson produced stronger biofilms compared to Salmonella Newpor...

  20. Complete Genome and Methylome Sequences of Two Salmonella enterica spp.

    PubMed Central

    Yao, Kuan; Muruvanda, Tim; Roberts, Richard J.; Payne, Justin; Allard, Marc W.

    2016-01-01

    Salmonella enterica is responsible for major foodborne outbreaks worldwide. It can cause gastroenteritis characterized by diarrhea, vomiting, and fever. Salmonella infections raise public health concerns along with consequential economic impacts. In this report, we announce the first complete genome sequences of Salmonella enterica subsp. enterica serovar Choleraeuis (S. Choleraeuis) ATCC 10708 and Salmonella enterica subsp. enterica serovar Pullorum (S. Pullorum) ATCC 9120, isolated from patients with diarrhea. PMID:26798102

  1. The taxonomic structure of Salmonella enterica subspecies enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is the leading cause of food-borne bacterial infection in humans and has a high economic burden in agriculture. Strains differ by sequence additions and losses of up to ~10% of each genome. In the last few decades, some serovars have become more common. Many strains have acquired...

  2. Comparative proteomic analysis of Salmonella enterica serovar Typhimurium ppGpp-deficient mutant to identify a novel virulence protein required for intracellular survival in macrophages

    PubMed Central

    2010-01-01

    Background The global ppGpp-mediated stringent response in pathogenic bacteria plays an important role in the pathogenesis of bacterial infections. In Salmonella enterica serovar Typhimurium (S. Typhimurium), several genes, including virulence genes, are regulated by ppGpp when bacteria are under the stringent response. To understand the control of virulence genes by ppGpp in S. Typhimurium, agarose 2-dimensional electrophoresis (2-DE) combined with mass spectrometry was used and a comprehensive 2-DE reference map of amino acid-starved S. Typhimurium strain SH100, a derivative of ATCC 14028, was established. Results Of the 366 examined spots, 269 proteins were successfully identified. The comparative analysis of the wild-type and ppGpp0 mutant strains revealed 55 proteins, the expression patterns of which were affected by ppGpp. Using a mouse infection model, we further identified a novel virulence-associated factor, STM3169, from the ppGpp-regulated and Salmonella-specific proteins. In addition, Salmonella strains carrying mutations in the gene encoding STM3169 showed growth defects and impaired growth within macrophage-like RAW264.7 cells. Furthermore, we found that expression of stm3169 was controlled by ppGpp and SsrB, a response regulator of the two-component system located on Salmonella pathogenicity island 2. Conclusions A proteomic approach using a 2-DE reference map can prove a powerful tool for analyzing virulence factors and the regulatory network involved in Salmonella pathogenesis. Our results also provide evidence of a global response mediated by ppGpp in S. enterica. PMID:21176126

  3. Draft Genome Sequences of Salmonella enterica subsp. enterica Serovars Typhimurium and Nottingham Isolated from Food Products

    PubMed Central

    Zheng, Jie; Ayers, Sherry; Melka, David C.; Curry, Phillip E.; Payne, Justin S.; Laasri, Anna; Wang, Charles; Hammack, Thomas S.; Brown, Eric W.

    2016-01-01

    A quantitative real-time PCR (qPCR) designed to detect Salmonella enterica subsp. enterica serovar Enteritidis, targeting the sdf gene, generated positive results for S. enterica subsp. enterica serovar Typhimurium (CFSAN033950) and S. enterica subsp. enterica serovar Nottingham (CFSAN006803) isolated from food samples. Both strains show pulsed-field gel electrophoresis (PFGE) patterns distinct from those of S. Enteritidis. Here, we report the genome sequences of these two strains. PMID:27445384

  4. Muscle Abscess due to Salmonella Enterica

    PubMed Central

    Akkoyunlu, Yasemin; Ceylan, Bahadir; Iraz, Meryem; Elmadag, Nuh Mehmet; Aslan, Turan

    2013-01-01

    Non typhoidal Salmonellae spp. causes clinical symptoms especially in neonates, infants, aged and immunocompromised patients. Hematogenous dissemination may occur in complicated cases whereas the formation of abscess is rare. A 61-year old woman presented to our hospital with pain and a mass in her left arm, without fever and leukocytosis. She was using methotrexate, corticosteroids and quinine for rheumatoid arthritis. She had a history of cervix cancer and was given radiotherapy and chemotherapy 3 years ago. Upon physical examination and magnetic resonance imaging, the mass was considered as an abscess and was surgically drained. Salmonella enterica spp. enterica was yielded in the culture of the drainage material. Ceftriaxon 2g/day was started intramuscularly and continued for 4 weeks. Salmonellosis is usually a self-limited disease, generally restricted to gastrointestinal tract and acquired following food poisoning. Management of Salmonella abscess requires a combination of antibiotherapy, surgical drainage and eradication of primary foci. PMID:24396582

  5. An inducible and secreted eukaryote-like serine/threonine kinase of Salmonella enterica serovar Typhi promotes intracellular survival and pathogenesis.

    PubMed

    Theeya, Nagaraja; Ta, Atri; Das, Sayan; Mandal, Rahul S; Chakrabarti, Oishee; Chakrabarti, Saikat; Ghosh, Amar N; Das, Santasabuj

    2015-02-01

    Eukaryote-like serine/threonine kinases (eSTKs) constitute an important family of bacterial virulence factors. Genome analysis had predicted putative eSTKs in Salmonella enterica serovar Typhi, although their functional characterization and the elucidation of their role in pathogenesis are still awaited. We show here that the primary sequence and secondary structure of the t4519 locus of Salmonella Typhi Ty2 have all the signatures of eukaryotic superfamily kinases. t4519 encodes a ∼39-kDa protein (T4519), which shows serine/threonine kinase activities in vitro. Recombinant T4519 (rT4519) is autophosphorylated and phosphorylates the universal substrate myelin basic protein. Infection of macrophages results in decreased viability of the mutant (Ty2Δt4519) strain, which is reversed by gene complementation. Moreover, reactive oxygen species produced by the macrophages signal to the bacteria to induce T4519, which is translocated to the host cell cytoplasm. That T4519 may target a host substrate(s) is further supported by the activation of host cellular signaling pathways and the induction of cytokines/chemokines. Finally, the role of T4519 in the pathogenesis of Salmonella Typhi is underscored by the significantly decreased mortality of mice infected with the Ty2Δt4519 strain and the fact that the competitive index of this strain for causing systemic infection is 0.25% that of the wild-type strain. This study characterizes the first eSTK of Salmonella Typhi and demonstrates its role in promoting phagosomal survival of the bacteria within macrophages, which is a key determinant of pathogenesis. This, to the best of our knowledge, is the first study to describe the essential role of eSTKs in the in vivo pathogenesis of Salmonella spp. PMID:25404028

  6. Evolutionary Genomics of Salmonella enterica Subspecies.

    PubMed

    Desai, Prerak T; Porwollik, Steffen; Long, Fred; Cheng, Pui; Wollam, Aye; Bhonagiri-Palsikar, Veena; Hallsworth-Pepin, Kymberlie; Clifton, Sandra W; Weinstock, George M; McClelland, Michael

    2013-01-01

    ABSTRACT Six subspecies are currently recognized in Salmonella enterica. Subspecies I (subspecies enterica) is responsible for nearly all infections in humans and warm-blooded animals, while five other subspecies are isolated principally from cold-blooded animals. We sequenced 21 phylogenetically diverse strains, including two representatives from each of the previously unsequenced five subspecies and 11 diverse new strains from S. enterica subspecies enterica, to put this species into an evolutionary perspective. The phylogeny of the subspecies was partly obscured by abundant recombination events between lineages and a relatively short period of time within which subspeciation took place. Nevertheless, a variety of different tree-building methods gave congruent evolutionary tree topologies for subspeciation. A total of 285 gene families were identified that were recruited into subspecies enterica, and most of these are of unknown function. At least 2,807 gene families were identified in one or more of the other subspecies that are not found in subspecies I or Salmonella bongori. Among these gene families were 13 new candidate effectors and 7 new candidate fimbrial clusters. A third complete type III secretion system not present in subspecies enterica (I) isolates was found in both strains of subspecies salamae (II). Some gene families had complex taxonomies, such as the type VI secretion systems, which were recruited from four different lineages in five of six subspecies. Analysis of nonsynonymous-to-synonymous substitution rates indicated that the more-recently acquired regions in S. enterica are undergoing faster fixation rates than the rest of the genome. Recently acquired AT-rich regions, which often encode virulence functions, are under ongoing selection to maintain their high AT content. IMPORTANCE We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae

  7. Two Draft Genome Sequences of a New Serovar of Salmonella enterica, Serovar Lubbock

    PubMed Central

    den Bakker, Henk C.; Nightingale, Kendra K.; Brichta-Harhay, Dayna M.; Edrington, Thomas S.; Loneragan, Guy H.

    2015-01-01

    Salmonella enterica is principally a foodborne pathogen that shows considerable serovar diversity. In this report, we present two draft genome sequences of Salmonella enterica subsp. enterica serovar Lubbock, a novel serovar. PMID:25883279

  8. Two draft genome sequences of a new serovar of Salmonella enterica, serovar Lubbock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is principally a foodborne pathogen that shows considerable serovar diversity. In this report, we present two draft genome sequences of Salmonella enterica subsp. enterica serovar Lubbock, a novel serovar....

  9. The Genomic Blueprint of Salmonella enterica subspecies enterica serovar Typhi P-stx-12

    PubMed Central

    Ong, Su Yean; Pratap, Chandra Bhan; Wan, Xuehua; Hou, Shaobin; Rahman, Ahmad Yamin Abdul; Saito, Jennifer A.; Nath, Gopal; Alam, Maqsudul

    2013-01-01

    Salmonella enterica subspecies enterica serovar Typhi is a rod-shaped, Gram-negative, facultatively anaerobic bacterium. It belongs to the family Enterobacteriaceae in the class Gammaproteobacteria, and has the capability of residing in the human gallbladder by forming a biofilm and hence causing the person to become a typhoid carrier. Here we present the complete genome of Salmonella enterica subspecies enterica serotype Typhi strain P-stx-12, which was isolated from a chronic carrier in Varanasi, India. The complete genome comprises a 4,768,352 bp chromosome with a total of 98 RNA genes, 4,691 protein-coding genes and a 181,431 bp plasmid. Genome analysis revealed that the organism is closely related to Salmonella enterica serovar Typhi strain Ty2 and Salmonella enterica serovar Typhi strain CT18, although their genome structure is slightly different. PMID:24019994

  10. Whole-genome sequencing of Salmonella enterica subsp. enterica serovar Cubana strains isolated from agricultural sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report draft genomes of Salmonella enterica subsp. enterica Serovar Cubana strain CVM42234 isolated from chick feed in 2012 and Salmonella Cubana strain 76814 isolated from swine in 2004. The genome sizes are 4,975,046 and 4,936,251 base pairs, respectively....

  11. Draft Genome Sequence of Salmonella enterica subsp. enterica Serotype Saintpaul Strain S-70, Isolated from an Aquatic Environment

    PubMed Central

    Estrada-Acosta, Mitzi; Medrano-Félix, Andrés; Jiménez, Maribel; Gómez-Gil, Bruno; León-Félix, Josefina; Amarillas, Luis

    2013-01-01

    Salmonella is a pathogen of worldwide importance, causing disease in a vast range of hosts, including humans. We report the genome sequence of Salmonella enterica subsp. enterica serotype Saintpaul strain S-70, isolated from an aquatic environment. PMID:24336367

  12. Complete and Closed Genome Sequences of 10 Salmonella enterica subsp. enterica Serovar Anatum Isolates from Human and Bovine Sources

    PubMed Central

    Nguyen, Scott V.; Bono, James L.; Smith, Timothy P. L.; Fields, Patricia I.; Dinsmore, Blake A.; Santovenia, Monica; Kelley, Christy M.; Wang, Rong; Bosilevac, Joseph M.; Harhay, Gregory P.

    2016-01-01

    Salmonella enterica is an important pathogen transmitted by numerous vectors. Genomic comparisons of Salmonella strains from disparate hosts have the potential to further our understanding of mechanisms underlying host specificities and virulence. Here, we present the closed genome and plasmid sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolates from bovine and human sources. PMID:27257192

  13. Complete and Closed Genome Sequences of 10 Salmonella enterica subsp. enterica Serovar Anatum Isolates from Human and Bovine Sources.

    PubMed

    Nguyen, Scott V; Harhay, Dayna M; Bono, James L; Smith, Timothy P L; Fields, Patricia I; Dinsmore, Blake A; Santovenia, Monica; Kelley, Christy M; Wang, Rong; Bosilevac, Joseph M; Harhay, Gregory P

    2016-01-01

    Salmonella enterica is an important pathogen transmitted by numerous vectors. Genomic comparisons of Salmonella strains from disparate hosts have the potential to further our understanding of mechanisms underlying host specificities and virulence. Here, we present the closed genome and plasmid sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolates from bovine and human sources. PMID:27257192

  14. Complete Genome Sequence and Methylome of Salmonella enterica subsp. enterica Cerro, a Frequent Dairy Cow Serovar

    PubMed Central

    Haley, Bradd J.; Pirone, Cary; Muruvanda, Tim; Brown, Eric; Allard, Marc; Karns, Jeffrey S.

    2016-01-01

    Salmonella enterica subsp. enterica serovar Cerro is an infrequent pathogen of humans and other mammals but is frequently isolated from the hindgut of asymptomatic cattle in the United States. To further understand the genomic determinants of S. Cerro specificity for the bovine hindgut, the genome of isolate CFSAN001588 was fully sequenced and deposited in the GenBank database. PMID:26823571

  15. Whole-Genome Sequencing of Salmonella enterica subsp. enterica Serovar Ouakam Isolated from Ground Turkey

    PubMed Central

    Marasini, Daya; Abo-Shama, Usama H.

    2016-01-01

    In this report, we announce the first whole-genome sequencing of Salmonella enterica subsp. enterica serovar Ouakam strain GNT-01, isolated from ground turkey retail meat. The strain has a chromosome of 5,088,451 bp long, with a G+C content of 52.3%, and a plasmid of 109,715 bp. PMID:26798110

  16. Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Mishmarhaemek Isolated from Bovine Feces

    PubMed Central

    Cooper, Ashley; Lambert, Dominic; Koziol, Adam G.; Seyer, Karine

    2015-01-01

    Salmonella enterica subsp. enterica serovar Mishmarhaemek is a Gram-negative, non-spore-forming, rod-shaped bacterium implicated in human clinical disease. Here, we report a 4.8-Mbp draft genome sequence of a nalidixic acid-resistant isolate of S. serovar Mishmarhaemek. PMID:26472847

  17. Complete genome sequence of salmonella enterica subsp. enterica Serovar Thompson Strain RM6836

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Thompson (S. Thompson) strain RM6836 was isolated from lettuce in 2002. We report the complete sequence and annotation of the genome of S. Thompson strain RM6836. This is the first reported complete genome sequence for S. Thompson and will provide a point ...

  18. Limited Genetic Diversity in Salmonella enterica Serovar Enteritidis PT13

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Enteritidis has emerged as a significant food-borne pathogen throughout the world and it is commonly characterized by phage typing (PT). In Canada, PT4, 8 and 13 are the predominant PTs. Epidemiological subtyping of Salmonella is typically done by PFGE but plasmid profil...

  19. Salmonella enterica genomics and genetics of antimicrobial resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is an important food-borne pathogen and an excellent model system for the study of genomics, virulence and pathogenesis. . There are over 2,400 Salmonella serotypes each of which differs in their ability to cause disease in humans and animals, persist within the host, and survive...

  20. Salmonella enterica Strains with Reduced Susceptibility to Quarternary Ammonium Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Salmonella spp. are responsible for 76 million illnesses per year in the U.S. Quaternary ammonium compounds (QAC) are commonly used antimicrobial agents. Reduced susceptibility to these compounds by a broad spectrum of organisms is a concern. Methods: Salmonella enterica strains with r...

  1. Draft Genome Sequence of Salmonella enterica subsp. enterica Serotype Oranienburg Strain S-76, Isolated from an Aquatic Environment

    PubMed Central

    Medrano-Félix, Andrés; Estrada-Acosta, Mitzi; Jiménez, Maribel; Gómez-Gil, Bruno; León-Félix, Josefina; Amarillas, Luis

    2013-01-01

    Salmonella is a widespread microorganism and a common causative agent of food-borne illnesses. Salmonella enterica subsp. enterica serotype Oranienburg is highly prevalent in surface water from tropical ecosystems and is not commonly related to illnesses. Here, we report the first genome sequence of Salmonella Oranienburg strain S-76, isolated from an aquatic environment. PMID:24336368

  2. Internal Colonization of Salmonella enterica Serovar Typhimurium in Tomato Plants

    PubMed Central

    Gu, Ganyu; Hu, Jiahuai; Cevallos-Cevallos, Juan M.; Richardson, Susanna M.; Bartz, Jerry A.; van Bruggen, Ariena H. C.

    2011-01-01

    Several Salmonella enterica outbreaks have been traced back to contaminated tomatoes. In this study, the internalization of S. enterica Typhimurium via tomato leaves was investigated as affected by surfactants and bacterial rdar morphotype, which was reported to be important for the environmental persistence and attachment of Salmonella to plants. Surfactants, especially Silwet L-77, promoted ingress and survival of S. enterica Typhimurium in tomato leaves. In each of two experiments, 84 tomato plants were inoculated two to four times before fruiting with GFP-labeled S. enterica Typhimurium strain MAE110 (with rdar morphotype) or MAE119 (without rdar). For each inoculation, single leaflets were dipped in 109 CFU/ml Salmonella suspension with Silwet L-77. Inoculated and adjacent leaflets were tested for Salmonella survival for 3 weeks after each inoculation. The surface and pulp of ripe fruits produced on these plants were also examined for Salmonella. Populations of both Salmonella strains in inoculated leaflets decreased during 2 weeks after inoculation but remained unchanged (at about 104 CFU/g) in week 3. Populations of MAE110 were significantly higher (P<0.05) than those of MAE119 from day 3 after inoculation. In the first year, nine fruits collected from one of the 42 MAE119 inoculated plants were positive for S. enterica Typhimurium. In the second year, Salmonella was detected in adjacent non-inoculated leaves of eight tomato plants (five inoculated with strain MAE110). The pulp of 12 fruits from two plants inoculated with MAE110 was Salmonella positive (about 106 CFU/g). Internalization was confirmed by fluorescence and confocal laser microscopy. For the first time, convincing evidence is presented that S. enterica can move inside tomato plants grown in natural field soil and colonize fruits at high levels without inducing any symptoms, except for a slight reduction in plant growth. PMID:22096553

  3. Colonization and internalization of Salmonella enterica in tomato plants.

    PubMed

    Zheng, Jie; Allard, Sarah; Reynolds, Sara; Millner, Patricia; Arce, Gabriela; Blodgett, Robert J; Brown, Eric W

    2013-04-01

    The consumption of fresh tomatoes has been linked to numerous food-borne outbreaks involving various serovars of Salmonella enterica. Recent advances in our understanding of plant-microbe interactions have shown that human enteric pathogenic bacteria, including S. enterica, are adapted to survive in the plant environment. In this study, tomato plants (Solanum lycopersicum cv. Micro-Tom) grown in sandy loam soil from Virginia's eastern shore (VES) were inoculated with S. enterica serovars to evaluate plausible internalization routes and to determine if there is any niche fitness for certain serovars. Both infested soil and contaminated blossoms can lead to low internal levels of fruit contamination with Salmonella. Salmonella serovars demonstrated a great ability to survive in environments under tomato cultivation, not only in soil but also on different parts of the tomato plant. Of the five serovars investigated, Salmonella enterica serovars Newport and Javiana were dominant in sandy loam soil, while Salmonella enterica serovars Montevideo and Newport were more prevalent on leaves and blossoms. It was also observed that Salmonella enterica serovar Typhimurium had a poor rate of survival in all the plant parts examined here, suggesting that postharvest contamination routes are more likely in S. Typhimurium contamination of tomato fruit. Conversely, S. Newport was the most prevalent serovar recovered in both the tomato rhizosphere and phyllosphere. Plants that were recently transplanted (within 3 days) had an increase in observable internalized bacteria, suggesting that plants were more susceptible to internalization right after transplant. These findings suggest that the particular Salmonella serovar and the growth stage of the plant were important factors for internalization through the root system. PMID:23377940

  4. Colonization and Internalization of Salmonella enterica in Tomato Plants

    PubMed Central

    Allard, Sarah; Reynolds, Sara; Millner, Patricia; Arce, Gabriela; Blodgett, Robert J.; Brown, Eric W.

    2013-01-01

    The consumption of fresh tomatoes has been linked to numerous food-borne outbreaks involving various serovars of Salmonella enterica. Recent advances in our understanding of plant-microbe interactions have shown that human enteric pathogenic bacteria, including S. enterica, are adapted to survive in the plant environment. In this study, tomato plants (Solanum lycopersicum cv. Micro-Tom) grown in sandy loam soil from Virginia's eastern shore (VES) were inoculated with S. enterica serovars to evaluate plausible internalization routes and to determine if there is any niche fitness for certain serovars. Both infested soil and contaminated blossoms can lead to low internal levels of fruit contamination with Salmonella. Salmonella serovars demonstrated a great ability to survive in environments under tomato cultivation, not only in soil but also on different parts of the tomato plant. Of the five serovars investigated, Salmonella enterica serovars Newport and Javiana were dominant in sandy loam soil, while Salmonella enterica serovars Montevideo and Newport were more prevalent on leaves and blossoms. It was also observed that Salmonella enterica serovar Typhimurium had a poor rate of survival in all the plant parts examined here, suggesting that postharvest contamination routes are more likely in S. Typhimurium contamination of tomato fruit. Conversely, S. Newport was the most prevalent serovar recovered in both the tomato rhizosphere and phyllosphere. Plants that were recently transplanted (within 3 days) had an increase in observable internalized bacteria, suggesting that plants were more susceptible to internalization right after transplant. These findings suggest that the particular Salmonella serovar and the growth stage of the plant were important factors for internalization through the root system. PMID:23377940

  5. Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars

    PubMed Central

    Andino, A.; Hanning, I.

    2015-01-01

    Data indicate that prevalence of specific serovars of Salmonella enterica in human foodborne illness is not correlated with their prevalence in feed. Given that feed is a suboptimal environment for S. enterica, it appears that survival in poultry feed may be an independent factor unrelated to virulence of specific serovars of Salmonella. Additionally, S. enterica serovars appear to have different host specificity and the ability to cause disease in those hosts is also serovar dependent. These differences among the serovars may be related to gene presence or absence and expression levels of those genes. With a better understanding of serovar specificity, mitigation methods can be implemented to control Salmonella at preharvest and postharvest levels. PMID:25664339

  6. Complete Genome Sequences of Two Outbreak Strains of Salmonella enterica subsp. enterica Serovar Thompson Associated with Cilantro

    PubMed Central

    Huynh, Steven; Gorski, Lisa; Cooper, Kerry K.; Miller, William G.

    2015-01-01

    Salmonella enterica subsp. enterica serovar Thompson strains RM1984 (CADPH-99A2334) and RM1986 (CADPH-99A2345) are associated with a 1999 outbreak in contaminated cilantro. We report here the complete genome sequences and annotation of these two S. Thompson strains. These genomes are distinct and provide additional data for our understanding of S. enterica. PMID:26586897

  7. Complete Genome Sequences of Two Outbreak Strains of Salmonella enterica subsp. enterica Serovar Thompson Associated with Cilantro.

    PubMed

    Parker, Craig T; Huynh, Steven; Gorski, Lisa; Cooper, Kerry K; Miller, William G

    2015-01-01

    Salmonella enterica subsp. enterica serovar Thompson strains RM1984 (CADPH-99A2334) and RM1986 (CADPH-99A2345) are associated with a 1999 outbreak in contaminated cilantro. We report here the complete genome sequences and annotation of these two S. Thompson strains. These genomes are distinct and provide additional data for our understanding of S. enterica. PMID:26586897

  8. Transmission and retention of Salmonella enterica by phytophagous hemipteran insects.

    PubMed

    Soto-Arias, José Pablo; Groves, Russell L; Barak, Jeri D

    2014-09-01

    Several pest insects of human and livestock habitations are known as vectors of Salmonella enterica; however, the role of plant-feeding insects as vectors of S. enterica to agricultural crops remains unexamined. Using a hemipteran insect pest-lettuce system, we investigated the potential for transmission and retention of S. enterica. Specifically, Macrosteles quadrilineatus and Myzus persicae insects were fed S. enterica-inoculated lettuce leaf discs or artificial liquid diets confined in Parafilm sachets to allow physical contact or exclusively oral ingestion of the pathogen, respectively. After a 24-h acquisition access period, insects were moved onto two consecutive noninoculated leaf discs or liquid diets and allowed a 24-h inoculation access period on each of the two discs or sachets. Similar proportions of individuals from both species ingested S. enterica after a 24-h acquisition access period from inoculated leaf discs, but a significantly higher proportion of M. quadrilineatus retained the pathogen internally after a 48-h inoculation access period. S. enterica was also recovered from the honeydew of both species. After a 48-h inoculation access period, bacteria were recovered from a significantly higher proportion of honeydew samples from M. quadrilineatus than from M. persicae insects. The recovery of S. enterica from leaf discs and liquid diets postfeeding demonstrated that both species of insects were capable of transmitting the bacteria in ways that are not limited to mechanical transmission. Overall, these results suggest that phytophagous insects may serve as potential vectors of S. enterica in association with plants. PMID:24973069

  9. Transmission and Retention of Salmonella enterica by Phytophagous Hemipteran Insects

    PubMed Central

    Soto-Arias, José Pablo; Groves, Russell L.

    2014-01-01

    Several pest insects of human and livestock habitations are known as vectors of Salmonella enterica; however, the role of plant-feeding insects as vectors of S. enterica to agricultural crops remains unexamined. Using a hemipteran insect pest-lettuce system, we investigated the potential for transmission and retention of S. enterica. Specifically, Macrosteles quadrilineatus and Myzus persicae insects were fed S. enterica-inoculated lettuce leaf discs or artificial liquid diets confined in Parafilm sachets to allow physical contact or exclusively oral ingestion of the pathogen, respectively. After a 24-h acquisition access period, insects were moved onto two consecutive noninoculated leaf discs or liquid diets and allowed a 24-h inoculation access period on each of the two discs or sachets. Similar proportions of individuals from both species ingested S. enterica after a 24-h acquisition access period from inoculated leaf discs, but a significantly higher proportion of M. quadrilineatus retained the pathogen internally after a 48-h inoculation access period. S. enterica was also recovered from the honeydew of both species. After a 48-h inoculation access period, bacteria were recovered from a significantly higher proportion of honeydew samples from M. quadrilineatus than from M. persicae insects. The recovery of S. enterica from leaf discs and liquid diets postfeeding demonstrated that both species of insects were capable of transmitting the bacteria in ways that are not limited to mechanical transmission. Overall, these results suggest that phytophagous insects may serve as potential vectors of S. enterica in association with plants. PMID:24973069

  10. Genome Sequences of Salmonella enterica subsp. enterica Serovar Lubbock Strains Isolated from Liver Abscesses of Feedlot Cattle

    PubMed Central

    Amachawadi, Raghavendra G.; Thomas, Milton

    2016-01-01

    The genome sequencing of 13 Salmonella enterica subsp. enterica serovar Lubbock strains isolated from liver abscesses of feedlot cattle is reported here. The availability of these genomes will help to further understand the etiologic role of Salmonella strains in liver abscesses of cattle and will serve as references in microbial trace-back studies to improve food safety. PMID:27151794

  11. Chromosome-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhi

    PubMed Central

    Alam, Munirul; Kuo, Jung-Che; Liu, Yen-Yi; Wang, Pei-Jen

    2014-01-01

    A salmonella genomic island, designated SGI11, was found in 18 of 26 multidrug-resistant Salmonella enterica serovar Typhi isolates from Bangladesh. SGI11 was an IS1 composite transposon and carried 7 resistance genes that conferred resistance to 5 first-line antimicrobials. Eleven of the 18 SGI11-carrying S. Typhi isolates had developed resistance to high levels of ciprofloxacin. PMID:25367917

  12. Requirement of siderophore biosynthesis for plant colonization by Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminated fresh produce has become the number one vector of non-typhoidal salmonellosis to humans. However, Salmonella enterica genes essential for the life cycle of this organism outside the mammalian host are for the most part unknown. Screening deletion mutants led to the discovery that an aro...

  13. Multidrug-Resistant Salmonella enterica Serovar Infantis, Israel

    PubMed Central

    Valinsky, Lea; Weinberger, Miriam; Guy, Sara; Jaffe, Joseph; Schorr, Yosef Ilan; Raisfeld, Abraham; Agmon, Vered; Nissan, Israel

    2010-01-01

    To determine whether rapid emergence of Salmonella enterica serovar Infantis in Israel resulted from an increase in different biotypes or spread of 1 clone, we characterized 87 serovar Infantis isolates on the genotypic and phenotypic levels. The emerging strain comprised 1 genetic clone with a distinct pulsed-field gel electrophoresis profile and a common antimicrobial drug resistance pattern. PMID:21029536

  14. Nationwide pseudo-outbreak of Salmonella enterica ssp. diarizonae, France.

    PubMed

    Thiolet, J M; Jourdan-Da Silva, N; Reggiani, A; De Valk, H; Coignard, B; Weill, F X

    2011-06-01

    To investigate an increased incidence of human cultures growing Salmonella enterica ssp. diarizonae serotype 61:k:1,5,7 in France in 2008, we reviewed medical records of case patients and identified the material used during invasive procedures and for bacterial culture. Trace-back investigations incriminated culture media containing contaminated sheep blood agar. PMID:20718799

  15. Foodborne Outbreak and Nonmotile Salmonella enterica Variant, France

    PubMed Central

    Brisabois, Anne; Accou-Demartin, Marie; Josse, Adeline; Marault, Muriel; Francart, Sylvie; Da Silva, Nathalie Jourdan; Weill, François-Xavier

    2012-01-01

    We report a food-related outbreak of salmonellosis in humans caused by a nonmotile variant of Salmonella enterica serotype Typhimurium in France in 2009. This nonmotile variant had been circulating in laying hens but was not considered as Typhimurium and consequently escaped European poultry flock regulations. PMID:22257550

  16. Regional distribution of two dairy-associated Salmonella enterica serotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is a zoonotic pathogen frequently associated with dairy farms. The organism can cause disease in cows but is also frequently shed in large numbers by dairy cows that are asymptomatic. Cows on a ~100 head dairy farm in Pennsylvania, USA, (focal dairy) were previously shown to have...

  17. Method for the detection of Salmonella enterica serovar Enteritidis

    DOEpatents

    Agron, Peter G.; Andersen, Gary L.; Walker, Richard L.

    2008-10-28

    Described herein is the identification of a novel Salmonella enterica serovar Enteritidis locus that serves as a marker for DNA-based identification of this bacterium. In addition, three primer pairs derived from this locus that may be used in a nucleotide detection method to detect the presence of the bacterium are also disclosed herein.

  18. Limited genetic diversity in Salmonella enterica Serovar Enteritidis PT13

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Enteritidis has emerged as a significant foodborne pathogen throughout the world and is commonly characterized by phage typing. In Canada phage types (PT) 4, 8 and 13 predominate and in 2005 a large foodborne PT13 outbreak occurred in the province of Ontario. The ability ...

  19. Effect of residual sanitizers on Salmonella enterica biofilm formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Salmonella enterica are a diverse group of bacteria that represent a serious risk to public health. Bacterial attachment on food and contact surfaces can lead to biofilm formation, and once in this state, bacteria are more resistant to sanitization and may serve as a continuous contam...

  20. Small Molecule Restores Itaconate Sensitivity in Salmonella enterica: A Potential New Approach to Treating Bacterial Infections.

    PubMed

    Hammerer, Fabien; Chang, Justin H; Duncan, Dustin; Castañeda Ruiz, Angel; Auclair, Karine

    2016-08-17

    In the context of increasing global antibiotic resistance, the need for alternative therapeutic targets is great. Although new antibiotics and resistance inhibitors provide temporary solutions, they are bound to become obsolete. In this work, we propose a new approach, coined "bacterio-modulation" that aims to restore macrophage potency towards bacterial strains that are able to survive in phagolysosomes. One key defense in the macrophage's arsenal is itaconate, an endogenous molecule with antimicrobial activity. Some intracellular pathogens have evolved to produce itaconate-degrading enzymes, which are required for intracellular proliferation and to promote pathogenicity. We herein present the first molecule able to resensitize Salmonella enterica to itaconate. PMID:27254798

  1. Diversity of Genome Structure in Salmonella enterica Serovar Typhi Populations†

    PubMed Central

    Kothapalli, Sushma; Nair, Satheesh; Alokam, Suneetha; Pang, Tikki; Khakhria, Rasik; Woodward, David; Johnson, Wendy; Stocker, Bruce A. D.; Sanderson, Kenneth E.; Liu, Shu-Lin

    2005-01-01

    The genomes of most strains of Salmonella and Escherichia coli are highly conserved. In contrast, all 136 wild-type strains of Salmonella enterica serovar Typhi analyzed by partial digestion with I-CeuI (an endonuclease which cuts within the rrn operons) and pulsed-field gel electrophoresis and by PCR have rearrangements due to homologous recombination between the rrn operons leading to inversions and translocations. Recombination between rrn operons in culture is known to be equally frequent in S. enterica serovar Typhi and S. enterica serovar Typhimurium; thus, the recombinants in S. enterica serovar Typhi, but not those in S. enterica serovar Typhimurium, are able to survive in nature. However, even in S. enterica serovar Typhi the need for genome balance and the need for gene dosage impose limits on rearrangements. Of 100 strains of genome types 1 to 6, 72 were only 25.5 kb off genome balance (the relative lengths of the replichores during bidirectional replication from oriC to the termination of replication [Ter]), while 28 strains were less balanced (41 kb off balance), indicating that the survival of the best-balanced strains was greater. In addition, the need for appropriate gene dosage apparently selected against rearrangements which moved genes from their accustomed distance from oriC. Although rearrangements involving the seven rrn operons are very common in S. enterica serovar Typhi, other duplicated regions, such as the 25 IS200 elements, are very rarely involved in rearrangements. Large deletions and insertions in the genome are uncommon, except for deletions of Salmonella pathogenicity island 7 (usually 134 kb) from fragment I-CeuI-G and 40-kb insertions, possibly a prophage, in fragment I-CeuI-E. The phage types were determined, and the origins of the phage types appeared to be independent of the origins of the genome types. PMID:15805510

  2. Quantitative Oligonucleotide Microarray Fingerprinting of Salmonella enterica isolates

    SciTech Connect

    Willse, Alan R.; Straub, Tim M.; Wunschel, Sharon C.; Small, Jack A.; Call, Douglas R.; Daly, Don S.; Chandler, Darrell P.

    2004-03-22

    We report on a genome-independent microbial fingerprinting method using nucleic acid microarrays for microbial forensics and epidemiology applications. We demonstrate that the microarray method provides high-resolution differentiation between closely related microorganisms using Salmonella enterica strains. In replicate trials we used a simple 192-probe nonamer array to construct a fingerprint library of 25 closely related Salmonella isolates. Controlling false discovery rate for multiple testing at alpha =.05, at least 295 of 300 pairs of S. enterica isolate fingerprints were found to be statistically distinct using a modified Hotelling Tsquared test. Although we find most pairs of Salmonella fingerprints to be distinct, forensic applications will also require a protocol for library construction and reliable microbial classification against a fingerprint library. We outline additional steps required to produce a protocol for library construction and reliable classification of unknown organisms.

  3. Salmonella enterica Diversity in Central Californian Coastal Waterways

    PubMed Central

    Walters, Sarah P.; González-Escalona, Narjol; Son, Insook; Melka, David C.; Sassoubre, Lauren M.

    2013-01-01

    Salmonella enterica is one of the most important bacterial enteric pathogens worldwide. However, little is known about its distribution and diversity in the environment. The present study explored the diversity of 104 strains of Salmonella enterica isolated over 2 years from 12 coastal waterways in central California. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing were used to probe species diversity. Seventy-four PFGE patterns and 38 sequence types (STs) were found, including 18 newly described STs. Nineteen of 25 PFGE patterns were indistinguishable from those of clinical isolates in PulseNet. The most common ST was consistent with S. enterica serovar Typhimurium, and other frequently detected STs were associated with the serovars Heidelberg and Enteritidis; all of these serovars are important etiologies of salmonellosis. An investigation into S. enterica biogeography was conducted at the level of ST and subspecies. At the ST and subspecies level, we found a taxon-time relationship but no taxon-area or taxon-environmental distance relationships. STs collected during wet versus dry conditions tended to be more similar; however, STs collected from waterways adjacent to watersheds with similar land covers did not tend to be similar. The results suggest that the lack of dispersal limitation may be an important factor affecting the diversity of S. enterica in the region. PMID:23624479

  4. High-throughput Assay to Phenotype Salmonella enterica Typhimurium Association, Invasion, and Replication in Macrophages

    PubMed Central

    Wu, Jing; Pugh, Roberta; Laughlin, Richard C.; Andrews-Polymenis, Helene; McClelland, Michael; Bäumler, Andreas J.; Adams, L. Garry

    2014-01-01

    Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock1. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions. PMID:25146526

  5. Salmonella enterica Genomics and Antimicrobial Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is a prevalent food-borne pathogen and a model system for the study of virulence and pathogenesis. The development of DNA microarray technology has furthered investigation of genome organization that leads to the variations in Salmonella serotypes. There are over 2400 Salmonella serotypes...

  6. Variable Carbon Catabolism among Salmonella enterica Serovar Typhi Isolates

    PubMed Central

    Chai, Lay Ching; Kong, Boon Hong; Elemfareji, Omar Ismail; Thong, Kwai Lin

    2012-01-01

    Background Salmonella enterica serovar Typhi (S. Typhi) is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever) and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. Methodology/Principal Findings To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas oftyphoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates) was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. Conclusion The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen. PMID:22662115

  7. Stress Response of Salmonella enterica Serovar Typhimurium to Acidified Nitrite

    PubMed Central

    Mühlig, Anna; Behr, Jürgen; Scherer, Siegfried

    2014-01-01

    The antimicrobial action of the curing agent sodium nitrite (NaNO2), which is added as a preservative to raw meat products, depends on its conversion to nitric oxide and other reactive nitrogen species under acidic conditions. In this study, we used RNA sequencing to analyze the acidified-NaNO2 shock and adaptive responses of Salmonella enterica serovar Typhimurium, a frequent contaminant in raw meat, considering parameters relevant for the production of raw-cured sausages. Upon a 10-min exposure to 150 mg/liter NaNO2 in LB (pH 5.5) acidified with lactic acid, genes involved in nitrosative-stress protection, together with several other stress-related genes, were induced. In contrast, genes involved in translation, transcription, replication, and motility were downregulated. The induction of stress tolerance and the reduction of cell proliferation obviously promote survival under harsh acidified-NaNO2 stress. The subsequent adaptive response was characterized by upregulation of NsrR-regulated genes and iron uptake systems and by downregulation of genes involved in anaerobic respiratory pathways. Strikingly, amino acid decarboxylase systems, which contribute to acid tolerance, displayed increased transcript levels in response to acidified NaNO2. The induction of systems known to be involved in acid resistance indicates a nitrite-mediated increase in the level of acid stress. Deletion of cadA, which encodes lysine decarboxylase, resulted in increased sensitivity to acidified NaNO2. Intracellular pH measurements using a pH-sensitive green fluorescent protein (GFP) variant showed that the cytoplasmic pH of S. Typhimurium in LB medium (pH 5.5) is decreased upon the addition of NaNO2. This study provides the first evidence that intracellular acidification is an additional antibacterial mode of action of acidified NaNO2. PMID:25107963

  8. Salmonella enterica induces and subverts the plant immune system

    PubMed Central

    García, Ana V.; Hirt, Heribert

    2014-01-01

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. PMID:24772109

  9. Analysis and construction of pathogenicity island regulatory pathways in Salmonella enterica serovar Typhi.

    PubMed

    Ong, Su Yean; Ng, Fui Ling; Badai, Siti Suriawati; Yuryev, Anton; Alam, Maqsudul

    2010-01-01

    Signal transduction through protein-protein interactions and protein modifications are the main mechanisms controlling many biological processes. Here we described the implementation of MedScan information extraction technology and Pathway Studio software (Ariadne Genomics Inc.) to create a Salmonella specific molecular interaction database. Using the database, we have constructed several signal transduction pathways in Salmonella enterica serovar Typhi which causes Typhoid Fever, a major health threat especially in developing countries. S. Typhi has several pathogenicity islands that control rapid switching between different phenotypes including adhesion and colonization, invasion, intracellular survival, proliferation, and biofilm formation in response to environmental changes. Understanding of the detailed mechanism for S. Typhi survival in host cells is necessary for development of efficient detection and treatment of this pathogen. The constructed pathways were validated using publically available gene expression microarray data for Salmonella. PMID:20861532

  10. Induction of the carrier state in pigeons infected with Salmonella enterica subspecies enterica serovar typhimurium PT99 by treatment with florfenicol: a matter of pharmacokinetics.

    PubMed

    Pasmans, Frank; Baert, Kris; Martel, An; Bousquet-Melou, Alain; Lanckriet, Ruben; De Boever, Sandra; Van Immerseel, Filip; Eeckhaut, Venessa; de Backer, Patrick; Haesebrouck, Freddy

    2008-03-01

    Paratyphoid caused by Salmonella enterica subsp. enterica serovar Typhimurium is the main bacterial disease in pigeons. The ability of Salmonella serovar Typhimurium to persist intracellularly inside pigeon macrophages results in the development of chronic carriers, which maintain the infection in the flock. In this study, the effect of drinking-water medication with florfenicol on Salmonella infection in pigeons was examined. The pharmacokinetics of florfenicol in pigeons revealed a relatively high volume of distribution of 2.02 liters/kg of body weight and maximum concentrations in plasma higher than the MICs for the Salmonella strain used (4 microg/ml) but quick clearance of florfenicol due to a short half-life of 1.73 h. Together with highly variable bioavailability and erratic drinking-water uptake, these parameters resulted in the inability to reach a steady-state concentration through the continuous administration of florfenicol in the drinking water. Florfenicol was capable of reducing only moderately the number of intracellular salmonellae in infected pigeon macrophages in vitro. Only at high extracellular concentrations (>16 microg/ml) was a more-than-10-fold reduction of the number of intracellular bacteria noticed. Florfenicol treatment of pigeons via the drinking water from 2 days after experimental inoculation with Salmonella serovar Typhimurium until euthanasia at 16 days postinoculation resulted in a reduction of Salmonella shedding and an improvement in the fecal consistency. However, internal organs in florfenicol-treated pigeons were significantly more heavily colonized than those in untreated pigeons. In conclusion, the oral application of florfenicol for the treatment of pigeon paratyphoid contributes to the development of carrier animals through sub-MIC concentrations in plasma that do not inhibit intracellular persistency. PMID:18180355

  11. Induction of the Carrier State in Pigeons Infected with Salmonella enterica Subspecies enterica Serovar Typhimurium PT99 by Treatment with Florfenicol: a Matter of Pharmacokinetics▿

    PubMed Central

    Pasmans, Frank; Baert, Kris; Martel, An; Bousquet-Melou, Alain; Lanckriet, Ruben; De Boever, Sandra; Van Immerseel, Filip; Eeckhaut, Venessa; de Backer, Patrick; Haesebrouck, Freddy

    2008-01-01

    Paratyphoid caused by Salmonella enterica subsp. enterica serovar Typhimurium is the main bacterial disease in pigeons. The ability of Salmonella serovar Typhimurium to persist intracellularly inside pigeon macrophages results in the development of chronic carriers, which maintain the infection in the flock. In this study, the effect of drinking-water medication with florfenicol on Salmonella infection in pigeons was examined. The pharmacokinetics of florfenicol in pigeons revealed a relatively high volume of distribution of 2.02 liters/kg of body weight and maximum concentrations in plasma higher than the MICs for the Salmonella strain used (4 μg/ml) but quick clearance of florfenicol due to a short half-life of 1.73 h. Together with highly variable bioavailability and erratic drinking-water uptake, these parameters resulted in the inability to reach a steady-state concentration through the continuous administration of florfenicol in the drinking water. Florfenicol was capable of reducing only moderately the number of intracellular salmonellae in infected pigeon macrophages in vitro. Only at high extracellular concentrations (>16 μg/ml) was a more-than-10-fold reduction of the number of intracellular bacteria noticed. Florfenicol treatment of pigeons via the drinking water from 2 days after experimental inoculation with Salmonella serovar Typhimurium until euthanasia at 16 days postinoculation resulted in a reduction of Salmonella shedding and an improvement in the fecal consistency. However, internal organs in florfenicol-treated pigeons were significantly more heavily colonized than those in untreated pigeons. In conclusion, the oral application of florfenicol for the treatment of pigeon paratyphoid contributes to the development of carrier animals through sub-MIC concentrations in plasma that do not inhibit intracellular persistency. PMID:18180355

  12. Virulence Gene Regulation by l-Arabinose in Salmonella enterica

    PubMed Central

    López-Garrido, Javier; Puerta-Fernández, Elena; Cota, Ignacio; Casadesús, Josep

    2015-01-01

    Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by l-arabinose, and not by other pentoses. Transport of l-arabinose is necessary to repress SPI-1; however, repression is independent of l-arabinose metabolism and of the l-arabinose-responsive regulator AraC. SPI-1 repression by l-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of l-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal. PMID:25991823

  13. Intestinal Cytokine Responses to Salmonella enterica Serovar Typhimurium Infection in Young Chicks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar typhimurium is one of the most frequently isolated strains in human salmonellosis worldwide, and is commonly found in broilers. Successful prevention and control of Salmonella colonization in poultry require better understanding of intestinal mucosal immune response to ...

  14. Identification and characterization of multidrug-resistant Salmonella enterica serotype Albert isolates in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment is critical for invasive salmonellosis. Primary antimicrobial treatment options include fluoroquinolones or extende...

  15. Mannanoligosaccharide agglutination by Salmonella enterica strains isolated from carrier pigs

    PubMed Central

    Borowsky, Luciane; Corção, Gertrudes; Cardoso, Marisa

    2009-01-01

    Type-1 fimbriae are associated with most Salmonella enterica serovars and are an essential factor for host colonization. Mannanoligosaccharides (MOS), a prebiotic that is agglutinated by type-1 fimbriae, are proposed for the control of enterobacteria colonization and may be an alternative to Salmonella control in pigs. The aim of this study was to evaluate the capability of porcine Salmonella strains to adhere to MOS in vitro. A total of 108 strains of Salmonella sp. isolated from carrier pigs were evaluated for the amplification of fimA and fimH genes, agglutination of MOS and hemagglutination. In all tested strains, amplicons of expected size were detected for both fimA and fimH gene. In the hemagglutination assays, 31 (28.7%) strains presented mannose–sensitive agglutination of erythrocytes, indicating that the strains were expressing type-1 fimbriae. Considering only strains expressing the type-1 fimbriae, 23 (74.2%) presented a strong agglutination of MOS, 3 (9.6%) a weak reaction and 5 (16.2%) none. The results indicate that Salmonella enterica strains expressing type-1 fimbriae can agglutinate effectively in vitro to MOS. PMID:24031388

  16. Complete genomic sequences of two outbreak strains of Salmonella enterica subsp. enterica serovar Thompson associated with cilantro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Thompson strains RM1984 (CADPH-99A2334) and RM1986 (CADPH -99A2345) are clinical isolates from 1999, putatively related to an outbreak in California from contaminated cilantro. We report the complete genome sequences and annotation of these two S. Thompson...

  17. The complete genome sequence and methylome of Salmonella enterica subsp. enterica serovar Cerro, a frequent dairy cow strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Cerro is an infrequent pathogen of humans and other mammals, but is frequently isolated from the hindgut of asymptomatic cattle in the United States. To further understand the genomic determinants of S. Cerro specificity for the bovine hindgut, the genome ...

  18. Complete Genomic Sequences of Two Outbreak Strains of Salmonella enterica subsp. enterica serovar Thompson Associated with Cilantro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Thompson strains RM1984 (CADPH-99A2334) and RM1986 (CADPH -99A2345) are clinical isolates from 1999, putatively related to an outbreak in California from contaminated cilantro. We report the complete genome sequences and annotation of these two S. Thompson...

  19. Genomic investigation of Salmonella enterica sequences associated with long-term colonization of the bovine gut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica is a leading cause of food and waterborne infections globally in both humans and livestock with an estimated 93 million annual human infections caused by nontyphoidal S. enterica alone. However, some serotypes within this species are known to cause mild infection...

  20. A comparison of cecal colonization of Salmonella enterica serotype Typhimurium in white leghorn chicks and Salmonella-resistant mice

    PubMed Central

    Sivula, Christine P; Bogomolnaya, Lydia M; Andrews-Polymenis, Helene L

    2008-01-01

    Background Salmonellosis is one of the most important bacterial food borne illnesses worldwide. A major source of infection for humans is consumption of chicken or egg products that have been contaminated with Salmonella enterica serotype Typhimurium, however our knowledge regarding colonization and persistence factors in the chicken is small. Results We compared intestinal and systemic colonization of 1-week-old White Leghorn chicks and Salmonella-resistant CBA/J mice during infection with Salmonella enterica serotype Typhimurium ATCC14028, one of the most commonly studied isolates. We also studied the distribution of wild type serotype Typhimurium ATCC14028 and an isogenic invA mutant during competitive infection in the cecum of 1-week-old White Leghorn chicks and 8-week-old CBA/J mice. We found that although the systemic levels of serotype Typhimurium in both infected animal models are low, infected mice have significant splenomegaly beginning at 15 days post infection. In the intestinal tract itself, the cecal contents are the major site for recovery of serotype Typhimurium in the cecum of 1-week-old chicks and Salmonella-resistant mice. Additionally we show that only a small minority of Salmonellae are intracellular in the cecal epithelium of both infected animal models, and while SPI-1 is important for successful infection in the murine model, it is important for association with the cecal epithelium of 1-week-old chicks. Finally, we show that in chicks infected with serotype Typhimurium at 1 week of age, the level of fecal shedding of this organism does not reflect the level of cecal colonization as it does in murine models. Conclusion In our study, we highlight important differences in systemic and intestinal colonization levels between chick and murine serotype Typhimurium infections, and provide evidence that suggests that the role of SPI-1 may not be the same during colonization of both animal models. PMID:18922185

  1. Complete Genome Sequence of Salmonella enterica subsp. enterica Serovar Typhi Isolate B/SF/13/03/195 Associated with a Typhoid Carrier in Pasir Mas, Kelantan, Malaysia

    PubMed Central

    Sim, Kee-Shin; Mohd Nor, Fauziah; Mat Hussin, Hani; Hamzah, Wan Mansor; Najimudin, Nazalan

    2015-01-01

    We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi B/SF/13/03/195 obtained from a typhoid carrier, who is a food handler in Pasir Mas, Kelantan. PMID:26564035

  2. Quinolone Resistance Mechanisms Among Salmonella enterica in Malaysia.

    PubMed

    Thong, Kwai Lin; Ngoi, Soo Tein; Chai, Lay Ching; Teh, Cindy Shuan Ju

    2016-06-01

    The prevalence of quinolone-resistant Salmonella enterica is on the rise worldwide. Salmonella enterica is one of the major foodborne pathogens in Malaysia. Therefore, we aim to investigate the occurrence and mechanisms of quinolone resistance among Salmonella strains isolated in Malaysia. A total of 283 Salmonella strains isolated from food, humans, and animals were studied. The disk diffusion method was used to examine the quinolone susceptibility of the strains, and the minimum inhibitory concentration (MIC) values of nalidixic acid and ciprofloxacin were also determined. DNA sequencing of the quinolone resistance-determining regions (QRDRs) of gyrase and topoisomerase IV genes and the plasmid-borne qnr genes was performed. The transfer of the qnr gene was examined through transconjugation experiment. A total of 101 nalidixic acid-resistant Salmonella strains were identified. In general, all strains were highly resistant to nalidixic acid (average MICNAL, 170 μg/ml). Resistance to ciprofloxacin was observed in 30.7% of the strains (1 ≤ MICCIP ≤ 2 μg/ml). Majority of the strains contained missense mutations in the QRDR of gyrA (69.3%). Silent mutations were frequently detected in gyrB (75.2%), parC (27.7%), and parE (51.5%) within and beyond the QRDRs. Novel mutations were detected in parC and parE. The plasmid-borne qnrS1 variant was found in 36.6% of the strains, and two strains were found to be able to transfer the qnrS1 gene. Overall, mutations in gyrA and the presence of qnrS1 genes might have contributed to the high level of quinolone resistance among the strains. Our study provided a better understanding on the status of quinolone resistance among Salmonella strains circulating in Malaysia. PMID:26683630

  3. pH sensing by intracellular Salmonella induces effector translocation.

    PubMed

    Yu, Xiu-Jun; McGourty, Kieran; Liu, Mei; Unsworth, Kate E; Holden, David W

    2010-05-21

    Salmonella enterica is an important intracellular bacterial pathogen of humans and animals. It replicates within host-cell vacuoles by delivering virulence (effector) proteins through a vacuolar membrane pore made by the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS). T3SS assembly follows vacuole acidification, but when bacteria are grown at low pH, effector secretion is negligible. We found that effector secretion was activated at low pH from mutant strains lacking a complex of SPI-2-encoded proteins SsaM, SpiC, and SsaL. Exposure of wild-type bacteria to pH 7.2 after growth at pH 5.0 caused dissociation and degradation of SsaM/SpiC/SsaL complexes and effector secretion. In infected cells, loss of the pH 7.2 signal through acidification of host-cell cytosol prevented complex degradation and effector translocation. Thus, intravacuolar Salmonella senses host cytosolic pH, resulting in the degradation of regulatory complex proteins and effector translocation. PMID:20395475

  4. Genome Sequence of Salmonella enterica subsp. enterica Serovar Typhi Isolate PM016/13 from Untreated Well Water Associated with a Typhoid Outbreak in Pasir Mas, Kelantan, Malaysia.

    PubMed

    Muhamad Harish, Salwani; Sim, Kee-Shin; Najimudin, Nazalan; Aziah, Ismail

    2015-01-01

    Salmonella enterica subsp. enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Even though it is a human-restricted pathogen, the bacterium is also isolated from environments such as groundwater and pond water. Here, we describe the genome sequence of the Salmonella enterica subsp. enterica serovar Typhi PM016/13 which was isolated from well water during a typhoid outbreak in Kelantan, Malaysia, in 2013. PMID:26564032

  5. Genome Sequence of Salmonella enterica subsp. enterica Serovar Typhi Isolate PM016/13 from Untreated Well Water Associated with a Typhoid Outbreak in Pasir Mas, Kelantan, Malaysia

    PubMed Central

    Sim, Kee-Shin; Najimudin, Nazalan

    2015-01-01

    Salmonella enterica subsp. enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Even though it is a human-restricted pathogen, the bacterium is also isolated from environments such as groundwater and pond water. Here, we describe the genome sequence of the Salmonella enterica subsp. enterica serovar Typhi PM016/13 which was isolated from well water during a typhoid outbreak in Kelantan, Malaysia, in 2013. PMID:26564032

  6. Salmonella enterica Genomics and Antimicrobial Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is a prevalent food-borne pathogen and a model system for the study of virulence and pathogenesis. The development of DNA microarray technology has furthered investigation of complicated regulatory pathways used during survival and pathogenesis as well as genome organization that leads to...

  7. Complete and closed genome sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolated from human and bovine sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is an important pathogen transmitted by numerous vectors. Genomic comparisons of Salmonella from disparate hosts have the potential to further our understanding of mechanisms underlying host specificities and virulence. Here, we present closed genome and plasmid sequences of 10...

  8. E-nose identification of Salmonella enterica in poultry manure.

    PubMed

    Kizil, Ü; Genç, L; Genç, T T; Rahman, S; Khaitsa, M L

    2015-04-01

    A DiagNose II electronic nose (e-nose) system was tested to evaluate the performance of such systems in the detection of the Salmonella enterica pathogen in poultry manure. To build a database, poultry manure samples were collected from 7 broiler houses, samples were homogenised, and subdivided into 4 portions. One portion was left as is; the other three portions were artificially infected with S. enterica. An artificial neural network (ANN) model was developed and validated using the developed database. In order to test the performance of DiagNose II and the ANN model, 16 manure samples were collected from 6 different broiler houses and tested using these two systems. The results showed that DiagNose II was able to classify manure samples correctly as infected or non-infected based on the ANN model developed with a 94% level of accuracy. PMID:25650129

  9. Flagella-independent surface motility in Salmonella enterica serovar Typhimurium.

    PubMed

    Park, Sun-Yang; Pontes, Mauricio H; Groisman, Eduardo A

    2015-02-10

    Flagella are multiprotein complexes necessary for swimming and swarming motility. In Salmonella enterica serovar Typhimurium, flagella-mediated motility is repressed by the PhoP/PhoQ regulatory system. We now report that Salmonella can move on 0.3% agarose media in a flagella-independent manner when experiencing the PhoP/PhoQ-inducing signal low Mg(2+). This motility requires the PhoP-activated mgtA, mgtC, and pagM genes, which specify a Mg(2+) transporter, an inhibitor of Salmonella's own F1Fo ATPase, and a small protein of unknown function, respectively. The MgtA and MgtC proteins are necessary for pagM expression because pagM mRNA levels were lower in mgtA and mgtC mutants than in wild-type Salmonella, and also because pagM expression from a heterologous promoter rescued motility in mgtA and mgtC mutants. PagM promotes group motility by a surface protein(s), as a pagM-expressing strain conferred motility upon a pagM null mutant, and proteinase K treatment eliminated motility. The pagM gene is rarely found outside subspecies I of S. enterica and often present in nonfunctional allelic forms in organisms lacking the identified motility. Deletion of the pagM gene reduced bacterial replication on 0.3% agarose low Mg(2+) media but not in low Mg(2+) liquid media. Our findings define a form of motility that allows Salmonella to scavenge nutrients and to escape toxic compounds in low Mg(2+) semisolid environments. PMID:25624475

  10. Osteomyelitis caused by Salmonella enterica serovar derby in boa constrictor.

    PubMed

    de Souza, Suyene O; Casagrande, Renata A; Guerra, Priscila R; Cruz, Cláudio E F; Veit, Evandro; Cardoso, Marisa R I; Driemeier, David

    2014-09-01

    After demonstrating chronic weight loss, prostration, and muscle flaccidness, a captive-bred 9-mo-old boa constrictor (Boa constrictor constrictor) died and was submitted for necropsy. Along the spinal column there were multiple, yellowish white, macroscopic nodules of 1-5 mm in diameter in the ventral side of the vertebral body and in the intervertebral spaces. Severe multifocal necrotizing osteomyelitis associated with granulomatous inflammation was the main histologic finding in the vertebral column. In the liver, there was discrete but similar granulomatous changes. Positive anti-Salmonella immunostaining was observed in the spinal column and in the liver. Salmonella enterica serovar Derby was isolated from fragments of the spinal column. These bacteria are important cause of disease in captive reptiles. PMID:25314834

  11. Cytotoxic T cell adjuvant effects of three Salmonella enterica flagellins

    PubMed Central

    Braga, Catarina J.M.; Massis, Liliana M.; Alencar, Bruna C.G.; Rodrigues, Maurício M.; Sbrogio-Almeida, M.E.; Ferreira, Luís C.S.

    2008-01-01

    Bacterial flagellins are important virulence-associated factors and strong inducers of inflammatory responses in mammalian hosts. Flagellins have also been investigated as potential vaccine adjuvants, either for induction of humoral or cellular immune responses, to different target antigens. In this study we investigated the adjuvant properties of three Salmonella enterica flagellins types (FliCd, FliCi and FljB) to an ovalbumin-derived CD8+ T cell-restricted epitope (OVA257–264). Although mice immunized with the three tested flagellins elicited antigen-specific activated CD8+ T cells, only animals immunized with FliCi and FliCd flagellins admixed with ovalbumin mounted specific in vivo cytotoxic responses to peptide-pulsed target cells. The present results indicate that Salmonella flagellins are endowed with type-specific adjuvant effects toward murine CD8+ T cells, a feature that may impact their use as adjuvants for prophylatic or therapeutic vaccines. PMID:24031176

  12. Gene expression analysis of Salmonella enterica Enteritidis NalR and Salmonella enterica Kentucky 3795 exposed to HCl and acetic acid in rich medium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States, serovar Kentucky has become one of the most frequently isolated Salmonella enterica serovars from chickens. The reasons for this prevalence are not well understood. Phenotypic comparisons of poultry Salmonella isolates belonging to various serovars demonstrated that serovar Ken...

  13. Flagella-independent surface motility in Salmonella enterica serovar Typhimurium

    PubMed Central

    Park, Sun-Yang; Pontes, Mauricio H.; Groisman, Eduardo A.

    2015-01-01

    Flagella are multiprotein complexes necessary for swimming and swarming motility. In Salmonella enterica serovar Typhimurium, flagella-mediated motility is repressed by the PhoP/PhoQ regulatory system. We now report that Salmonella can move on 0.3% agarose media in a flagella-independent manner when experiencing the PhoP/PhoQ-inducing signal low Mg2+. This motility requires the PhoP-activated mgtA, mgtC, and pagM genes, which specify a Mg2+ transporter, an inhibitor of Salmonella’s own F1Fo ATPase, and a small protein of unknown function, respectively. The MgtA and MgtC proteins are necessary for pagM expression because pagM mRNA levels were lower in mgtA and mgtC mutants than in wild-type Salmonella, and also because pagM expression from a heterologous promoter rescued motility in mgtA and mgtC mutants. PagM promotes group motility by a surface protein(s), as a pagM-expressing strain conferred motility upon a pagM null mutant, and proteinase K treatment eliminated motility. The pagM gene is rarely found outside subspecies I of S. enterica and often present in nonfunctional allelic forms in organisms lacking the identified motility. Deletion of the pagM gene reduced bacterial replication on 0.3% agarose low Mg2+ media but not in low Mg2+ liquid media. Our findings define a form of motility that allows Salmonella to scavenge nutrients and to escape toxic compounds in low Mg2+ semisolid environments. PMID:25624475

  14. Survival of Salmonella enterica in aerated and nonaerated wastewaters from dairy lagoons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is the most commonly identified foodborne pathogen in produce, meat and poultry. Cattle are known reservoirs of Salmonella and the pathogen excreted in feces end up in manure flush lagoons. Salmonella enterica survival was monitored in wastewater from on-site holding lagoons equipped with...

  15. A Highly Effective Component Vaccine against Nontyphoidal Salmonella enterica Infections

    PubMed Central

    Ferreira, Rosana B. R.; Valdez, Yanet; Coombes, Brian K.; Sad, Subash; Gouw, Joost W.; Brown, Eric M.; Li, Yuling; Grassl, Guntram A.; Antunes, L. Caetano M.; Gill, Navkiran; Truong, Mimi; Scholz, Roland; Reynolds, Lisa A.; Krishnan, Laskshmi; Zafer, Ahmed A.; Sal-Man, Neta; Lowden, Michael J.; Auweter, Sigrid D.; Foster, Leonard J.

    2015-01-01

    ABSTRACT Nontyphoidal Salmonella enterica (NTS) infections are a major burden to global public health, as they lead to diseases ranging from gastroenteritis to systemic infections and there is currently no vaccine available. Here, we describe a highly effective component vaccine against S. enterica serovar Typhimurium in both gastroenteritis and systemic murine infection models. We devised an approach to generate supernatants of S. enterica serovar Typhimurium, an organism that is highly abundant in virulence factors. Immunization of mice with this supernatant resulted in dramatic protection against a challenge with serovar Typhimurium, showing increased survival in the systemic model and decreased intestinal pathology in the gastrointestinal model. Protection correlated with specific IgA and IgG levels in the serum and specific secretory IgA levels in the feces of immunized mice. Initial characterization of the protective antigens in the bacterial culture supernatants revealed a subset of antigens that exhibited remarkable stability, a highly desirable characteristic of an effective vaccine to be used under suboptimal environmental conditions in developing countries. We were able to purify a subset of the peptides present in the supernatants and show their potential for immunization of mice against serovar Typhimurium resulting in a decreased level of colonization. This component vaccine shows promise with regard to protecting against NTS, and further work should significantly help to establish vaccines against these prevalent infections. PMID:26396246

  16. A defective mutant of Salmonella enterica Serovar Gallinarum in cobalamin biosynthesis is avirulent in chickens

    PubMed Central

    de Paiva, Jacqueline Boldrin; Penha Filho, Rafael Antonio Casarin; Arguello, Yuli Melisa Sierra; Berchieri Junior, Ângelo; Lemos, Manuel Victor Franco; Barrow, Paul A.

    2009-01-01

    Salmonella enterica serovar Gallinarum (SG) is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain. PMID:24031393

  17. Regulation of the ansB gene of Salmonella enterica.

    PubMed

    Jennings, M P; Scott, S P; Beacham, I R

    1993-07-01

    The expression of L-asparaginase II (encoded by ansB) in Salmonella enterica was found to be positively regulated by the cAMP receptor protein (CRP) and anaerobiosis. The anaerobic regulation of the S. enterica ansB gene is not mediated by the anaerobic transcriptional activator FNR. This is unlike the situation of the ansB gene of Escherichia coli, which is dependent on both CRP and FNR. To investigate this fundamental difference in the regulation of L-asparaginase II expression in S. enterica, the ansB gene was cloned and the nucleotide sequence of the promoter region determined. Sequence analysis and transcript mapping of the 5' promoter region revealed a single transcriptional start point (tsp) and two regulatory sites with substantial homology with those found in E. coli. One site, centred -90.5 bp from the tsp, is homologous to a hybrid CRP/FNR ('CF') site which is the site of CRP regulation in the E. coli promoter. The other site, centred 40.5 bp upstream of the tsp, is homologous to the FNR binding site of the E. coli promoter. Significantly, however, a single base-pair difference exists in this site, at a position of the related CRP and FNR DNA-binding site consensus sequences known to be involved in CRP versus FNR specificity. Site-directed mutagenesis indicates that this single difference, relative to the homologous E. coli site, results in a CRP binding site and the observed FNR-independent ansB expression in S. enterica.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8412661

  18. Draft Genome Sequences of Salmonella enterica subsp. enterica Serovar Berta ATCC 8392 and a Nalidixic Acid-Resistant Isolate of This Strain

    PubMed Central

    Cooper, Ashley; Koziol, Adam G.; Carrillo, Catherine D.

    2016-01-01

    Salmonella enterica subspecies enterica serovar Berta has been isolated in multiple animal species and has been implicated in human disease. Here, we report a 4.7-Mbp draft genome sequence of S. enterica serovar Berta (ATCC strain 8392) and a nalidixic acid-resistant isolate derived from this strain. PMID:27103707

  19. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain YU15 (Sequence Type 19) Harboring the Salmonella Genomic Island 1 and Virulence Plasmid pSTV

    PubMed Central

    Calva, Edmundo; Puente, José L.; Zaidi, Mussaret B.

    2016-01-01

    The complete genome of Salmonella enterica subsp. enterica serovar Typhimurium sequence type 19 (ST19) strain YU15, isolated in Yucatán, Mexico, from a human baby stool culture, was determined using PacBio technology. The chromosome contains five intact prophages and the Salmonella genomic island 1 (SGI1). This strain carries the Salmonella virulence plasmid pSTV. PMID:27081132

  20. Human Genome-Wide RNAi Screen for Host Factors That Modulate Intracellular Salmonella Growth

    PubMed Central

    Thornbrough, Joshua M.; Hundley, Tom; Valdivia, Raphael; Worley, Micah J.

    2012-01-01

    Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity. PMID:22701604

  1. Antimicrobial susceptibility and plasmid replicon typing of Salmonella enterica serovar Kentucky isolates recovered from broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States, Salmonella enterica serotype Kentucky has become the predominate serotype recovered from broiler slaughter samples and the prevalence of resistance to streptomycin and tetracycline has increased dramatically in this serotype. To characterize the relationships between antimicro...

  2. Antibiotic resistant Escherichia coli and Salmonella enterica in the beef production and processing chain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Concerns have been raised that extended-spectrum cephalosporin-resistant Escherichia coli (CefR EC), trimethoprim-sulfamethoxazole-resistant E. coli (TxsR EC), extended-spectrum cephalosporin-resistant Salmonella enterica (CefR SE), and nalidixic acid-resistant S. enterica (NalR SE) in c...

  3. Genome-scale screening and validation of targets for identification of Salmonella enterica and serovar prediction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is the most common foodborne pathogen worldwide, with a great diversity of 2500 recognized serovars. Detection of S. enterica and its classification into serovars are essential for food safety surveillance and clinical diagnosis. Recently, the polymerase chain reaction (PCR) meth...

  4. Improvements to a PCR-based serogrouping scheme for Salmonella enterica from dairy farm samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The PCR method described by Herrera-León, et al. (Research in Microbiology 158:122-127, 2007) has proved to be a simple and useful technique for characterizing isolates of Salmonella enterica enterica belonging to serogroups B, C1, C2, D1, and E1, groups which encompass a majority of the isolates fr...

  5. Role of Soil, Crop Debris, and a Plant Pathogen in Salmonella enterica Contamination of Tomato Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence...

  6. Studies on Biofilm Formation and Interactions of Salmonella enterica with Romaine-Lettuce Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association between biofilm formation and the interactions of Salmonella enterica serovars with cut-Romaine-lettuce leaves was investigated. Biofilm formation by 8 S. enterica serovars was tested on polystyrene microtiter plates in the presence of different growth media. Maximal biofilm mass was...

  7. Genome sequences of ten Salmonella enterica serovars isolated from a single dairy farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report draft genomes of twenty-seven isolates of Salmonella enterica subsp. enterica representing the seven serotypes isolated from cows in a Pennsylvania dairy herd, the farm on which they were reared, and the associated off-site heifer-raising facility over an eight year sampling period. ...

  8. Previously uncharacterized Salmonella enterica genes required for swarming play a role in seedling colonization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incidences of bacterial foodborne illness caused by ingestion of fresh produce are rising. Instead of being a case of incidental contamination, the animal pathogen Salmonella enterica utilizes specific molecular mechanisms to attach to and colonize plants. This work characterizes two S. enterica gen...

  9. Draft Genome Sequences of 33 Salmonella enterica Clinical and Wildlife Isolates from Chile

    PubMed Central

    Toro, Magaly; Allard, Marc; Brown, Eric W.; Evans, Peter

    2015-01-01

    Salmonella enterica causes health problem worldwide. The relationships among strains that are from the same serotype but different hosts, countries, and continents remain elusive. Few genome sequences are available from S. enterica isolates from South America. Therefore, we sequenced the genomes of 33 strains from diverse sources isolated in Chile and determined that they were of different serotypes. These genomes will improve phylogenetic analysis of Salmonella strains from Chile and the rest of South America. PMID:25792040

  10. Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops.

    PubMed

    Meurens, François; Berri, Mustapha; Auray, Gael; Melo, Sandrine; Levast, Benoît; Virlogeux-Payant, Isabelle; Chevaleyre, Claire; Gerdts, Volker; Salmon, Henri

    2009-01-01

    Salmonella enterica subspecies enterica serovar Typhimurium, commonly called S. Typhimurium, can cause intestinal infections in humans and various animal species such as swine. To analyze the host response to Salmonella infection in the pig we used an in vivo gut loop model, which allows the analysis of multiple immune responses within the same animal. Four jejunal gut-loops were each inoculated with 3 x 10(8) cfu of S. Typhimurium in 3 one-month-old piglets and mRNA expressions of various cytokines, chemokines, transcription factors, antimicrobial peptides, toll like and chemokine receptors were assessed by quantitative real-time PCR in the Peyer's patch and the gut wall after 24 h. Several genes such as the newly cloned CCRL1/CCX-CKR were assessed for the first time in the pig at the mRNA level. Pro-inflammatory and T-helper type-1 (Th1) cytokine mRNA were expressed at higher levels in infected compared to non-infected control loops. Similarly, some B cell activation genes, NOD2 and toll like receptor 2 and 4 transcripts were more expressed in both tissues while TLR5 mRNA was down-regulated. Interestingly, CCL25 mRNA expression as well as the mRNA expressions of its receptors CCR9 and CCRL1 were decreased both in the Peyer's patch and gut wall suggesting a potential Salmonella strategy to reduce lymphocyte homing to the intestine. In conclusion, these results provide insight into the porcine innate mucosal immune response to infection with entero-invasive microorganisms such as S. Typhimurium. In the future, this knowledge should help in the development of improved prophylactic and therapeutic approaches against porcine intestinal S. Typhimurium infections. PMID:18922229

  11. Characterization of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar 4,[5],12:i:- isolates from pigs presenting with diarrhea in Korea

    PubMed Central

    LEE, Ki-Eun; LEE, Deog-Yong; CHOI, Hwan-Won; CHAE, Su-Jin; YUN, Young-Sun; LEE, Ki-Chan; CHO, Yun-Sang; YANG, Dong-Kun

    2015-01-01

    Between 2011 and 2012, a total of 896 pig fecal samples were collected from nine provinces in Korea, and 50 salmonella enterica susp. enterica serovar Typhimurium (S. Typhimurium) was isolated. The characteristics of the 50 strains were analyzed, and 4 strains were identified as Salmonella enterica subsp. enterica serovar 4,[5],12:i:-. Salmonella 4,[5],12:i:- could not be distinguished from S. Typhimurium through phage typing, antimicrobial resistance testing or multiple-locus variable-number tandem repeat analysis (MLVA). However, among the four Salmonella 4,[5],12:i:- strains, one (KVCC-BA1400078) was identified as a Salmonella 4,[5],12:i:- clone isolated from humans in the United States, and another (KVCC-BA1400080) was identified as DT193, which has been primarily isolated from humans and animals in European countries. The presence of Salmonella 4,[5],12:i:- in Korea poses a significant threat of horizontal transfer between pigs and humans. PMID:26074410

  12. Growth kinetics of Salmonella enterica in Hajna tetrathionate broth, Rappaport broth and modified semisolid Rappaport agar

    PubMed Central

    FUJIHARA, Masatoshi; TABUCHI, Hiroyuki; UEGAKI, Kaho

    2015-01-01

    To determine the appropriate method for isolating Salmonella enterica, we compared the growth of S. enterica serovars using three selective enrichment media. S. enterica was more successfully isolated from artificially contaminated fecal samples after enrichment in Hajna tetrathionate broth or modified semisolid Rappaport agar than in Rappaport broth. Since most bacteria (other than motile S. enterica) do not migrate on modified semisolid Rappaport agar, the growth characteristics of S. enterica can be interpreted easily and quickly. Two S. enterica isolates did not migrate on modified semisolid Rappaport agar, but did grow in Hajna tetrathionate broth, which suggests that the combined use of these selective enrichment media is appropriate for isolating S. enterica. PMID:26498402

  13. Transmission of an oxygen availability signal at the Salmonella enterica serovar Typhimurium fis promoter.

    PubMed

    Cameron, Andrew D S; Kröger, Carsten; Quinn, Heather J; Scally, Isobel K; Daly, Anne J; Kary, Stefani C; Dorman, Charles J

    2013-01-01

    The nucleoid-associated protein FIS is a global regulator of gene expression and chromosome structure in Escherichia coli and Salmonella enterica. Despite the importance of FIS for infection and intracellular invasion, very little is known about the regulation of S. enterica fis expression. Under standard laboratory growth conditions, fis is highly expressed during rapid growth but is then silenced as growth slows. However, if cells are cultured in non-aerated conditions, fis expression is sustained during stationary phase. This led us to test whether the redox-sensing transcription factors ArcA and FNR regulate S. enterica fis. Deletion of FNR had no detectable effect, whereas deletion of ArcA had the unexpected effect of further elevating fis expression in stationary phase. ArcA required RpoS for induction of fis expression, suggesting that ArcA indirectly affects fis expression. Other putative regulators were found to play diverse roles: FIS acted directly as an auto-repressor (as expected), whereas CRP had little direct effect on fis expression. Deleting regions of the fis promoter led to the discovery of a novel anaerobically-induced transcription start site (Pfis-2) upstream of the primary transcription start site (Pfis-1). Promoter truncation also revealed that the shortest functional fis promoter was incapable of sustained expression. Moreover, fis expression was observed to correlate directly with DNA supercoiling in non-aerated conditions. Thus, the full-length S. enterica fis promoter region may act as a topological switch that is sensitive to stress-induced duplex destabilisation and up-regulates expression in non-aerated conditions. PMID:24358360

  14. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    PubMed

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+). PMID:27491862

  15. First report of iliacus abscess caused by Salmonella enterica serovar Othmarschen.

    PubMed

    Jha, Babita; Kim, Choon-Mee; Kim, Dong-Min; Chung, Jong-Hoon; Yoon, Na-Ra; Jha, Piyush; Kim, Seok Won; Jang, Sook Jin; Kim, Seon Gyeong; Chung, Jae Keun

    2016-02-01

    The non-typhoidal bacterium Salmonella enterica subspecies enterica serovar Othmarschen (Salmonella Othmarschen) is a rare human pathogen. Abscess formation due to non-typhoidal Salmonella infections is a very rare complication in this antibiotic era. We report the first case of iliacus abscess after a short period of gastroenteritis which was caused by non-typhoidal Salmonella enterica belonging to group C1, serovar Othmarschen in a patient without any underlying conditions. A young female presented in our hospital complaining of pain in right hip joint area. She gave a history of watery diarrhea 3 days before the onset of pain. On examination the patient was ill-looking and there was tenderness in the right hip joint area. S. enterica was identified using 16S rRNA gene amplification by PCR and serotyped to be serovar Othmarschen from the pus sample of iliacus abscess. This is the first reported case of iliacus abscess due to Salmonella serover Othmarschen infection. Our case suggests that S. enterica serovar Othmarschen can cause severe focal infections associated with gastroenteritis. The literature on the rare association of Salmonella enterica and abscess formation is reviewed. PMID:26482919

  16. Gene Transfer between Salmonella enterica Serovar Typhimurium inside Epithelial Cells

    PubMed Central

    Ferguson, Gayle C.; Heinemann, Jack A.; Kennedy, Martin A.

    2002-01-01

    Virulence and antibiotic resistance genes transfer between bacteria by bacterial conjugation. Conjugation also mediates gene transfer from bacteria to eukaryotic organisms, including yeast and human cells. Predicting when and where genes transfer by conjugation could enhance our understanding of the risks involved in the release of genetically modified organisms, including those being developed for use as vaccines. We report here that Salmonella enterica serovar Typhimurium conjugated inside cultured human cells. The DNA transfer from donor to recipient bacteria was proportional to the probability that the two types of bacteria occupied the same cell, which was dependent on viable and invasive bacteria and on plasmid tra genes. Based on the high frequencies of gene transfer between bacteria inside human cells, we suggest that such gene transfers occur in situ. The implications of gene transfer between bacteria inside human cells, particularly in the context of antibiotic resistance, are discussed. PMID:11914355

  17. Development and application of novel SNP-based serotyping assays in targeting Salmonella enterica within the poultry production and processing continuum.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serotype Enteriditis (S. Enteriditis) is the leading cause of salmonellosis worldwide. While some S. enterica serotypes are specific to birds, many represent human zoonotic pathogens, thus their presence and survival throughout the continuum of poultry production...

  18. Rapid molecular pathotyping of major salmonella enterica serotypes based on single-nucleotide polymorphisms (SNPs) in the adenylate cyclase (cyaA) gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Salmonella enterica subsp. enterica serotype Enteriditis (S. Enteriditis) is the leading cause of salmonellosis worldwide, including the USA. Many S. enterica serotypes known to cause foodborne disease are associated with broiler meat contamination. While some serotypes are specific...

  19. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    DOE PAGESBeta

    Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.; Le Hello, Simon; Weill, François-Xavier; Baggesen, Dorte Lau; Jun, Se-Ran; Ussery, David W.; Lund, Ole; Crook, Derrick W.; Wilson, Daniel J.; et al

    2016-03-04

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. In this paper, we used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ~1948 (95% credible interval [CI], 1934more » to 1962) and later became MDR DT104 in ~1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ~1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. Finally, the results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections.« less

  20. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    PubMed Central

    Hendriksen, Rene S.; Le Hello, Simon; Weill, François-Xavier; Baggesen, Dorte Lau; Jun, Se-Ran; Lund, Ole; Crook, Derrick W.; Wilson, Daniel J.; Aarestrup, Frank M.

    2016-01-01

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections. PMID:26944846

  1. A MULTIPLEX PCR METHOD FOR THE RAPID SEROTYPING OF COMMON CLINICAL ISOLATES OF SALMONELLA ENTERICA SUBSPECIES ENTERICA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The bacterial species Salmonella enterica is one of the major causes of gastroenteritis in humans and has over 1,500 serotypes. Serotyping is the most common tool used to identify isolates from diseased patients. However, the serotyping method can take several weeks and sometimes can ...

  2. Biofilm Formation and Morphotypes of Salmonella enterica subsp.arizonae Differs from Those of Other Salmonella enterica Subspecies in Isolates from Poultry Houses.

    PubMed

    Lamas, A; Fernandez-No, I C; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-07-01

    Salmonella serovars are responsible for foodborne diseases around the world. The ability to form biofilms allows microorganisms to survive in the environment. In this study, 73 Salmonella strains, belonging to four different subspecies, were isolated from poultry houses and foodstuffs and tested. Biofilm formation was measured at four different temperatures and two nutrient concentrations. Morphotypes and cellulose production were evaluated at three different temperatures. The presence of several genes related to biofilm production was also examined. All strains and subspecies of Salmonella had the ability to form biofilms, and 46.57% of strains produced biofilms under all conditions tested. Biofilm formation was strain dependent and varied according to the conditions. This is the first study to analyze biofilm formation in a wide number of Salmonella enterica subsp. arizonae strains, and no direct relationship between the high prevalence of Salmonella enterica subsp. arizonae strains and their ability to form biofilm was established. Morphotypes and cellulose production varied as the temperature changed, with 20°C being the optimum temperature for expression of the red, dry, and rough morphotype and cellulose. Salmonella enterica subsp. arizonae, whose morphotype is poorly studied, only showed a smooth and white morphotype and lacked the csgD and gcpA genes that are implicated in biofilm production. Thus, Salmonella biofilm formation under different environmental conditions is a public health problem because it can survive and advance through the food chain to reach the consumer. PMID:27357031

  3. Cellular Requirements for Systemic Control of Salmonella enterica Serovar Typhimurium Infections in Mice

    PubMed Central

    Bedoui, Sammy

    2014-01-01

    The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555–577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95–101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4+ T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent. PMID:25225248

  4. MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Song, Saemee; Lee, Boeun; Yeom, Ji-Hyun; Hwang, Soonhye; Kang, Ilnam; Cho, Jang-Cheon; Ha, Nam-Chul; Bae, Jeehyeon

    2015-01-01

    MdsABC is a Salmonella-specific tripartite efflux pump that has been implicated in the virulence of Salmonella enterica serovar Typhimurium; however, little is known about the virulence factors associated with this pump. We observed MdsABC expression-dependent alterations in the degree of resistance to extracellular oxidative stress and macrophage-mediated killing. Thin-layer chromatography and tandem mass spectrometry analyses revealed that overexpression of MdsABC led to increased secretion of 1-palmitoyl-2-stearoyl-phosphatidylserine (PSPS), affecting the ability of the bacteria to invade and survive in host cells. Overexpression of MdsABC and external addition of PSPS similarly rendered the mdsABC deletion strain resistant to diamide. Diagonal gel analysis showed that PSPS treatment reduced the diamide-mediated formation of disulfide bonds, particularly in the membrane fraction of the bacteria. Salmonella infection of macrophages induced the upregulation of MdsABC expression and led to an increase of intracellular bacterial number and host cell death, similar to the effects of MdsABC overexpression and PSPS pretreatment on the mdsABC deletion strain. Our study shows that MdsABC mediates a previously uncharacterized pathway that involves PSPS as a key factor for the survival and virulence of S. Typhimurium in phagocytic cells. PMID:26283336

  5. Cellular requirements for systemic control of Salmonella enterica serovar Typhimurium infections in mice.

    PubMed

    Kupz, Andreas; Bedoui, Sammy; Strugnell, Richard A

    2014-12-01

    The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555-577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95-101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4(+) T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent. PMID:25225248

  6. Salmonella enterica serovars Typhimurium and Typhi as model organisms

    PubMed Central

    Garai, Preeti; Gnanadhas, Divya Prakash; Chakravortty, Dipshikha

    2012-01-01

    The lifestyle of intracellular pathogens has always questioned the skill of a microbiologist in the context of finding the permanent cure to the diseases caused by them. The best tool utilized by these pathogens is their ability to reside inside the host cell, which enables them to easily bypass the humoral immunity of the host, such as the complement system. They further escape from the intracellular immunity, such as lysosome and inflammasome, mostly by forming a protective vacuole-bound niche derived from the host itself. Some of the most dreadful diseases are caused by these vacuolar pathogens, for example, tuberculosis by Mycobacterium or typhoid fever by Salmonella. To deal with such successful pathogens therapeutically, the knowledge of a host-pathogen interaction system becomes primarily essential, which further depends on the use of a model system. A well characterized pathogen, namely Salmonella, suits the role of a model for this purpose, which can infect a wide array of hosts causing a variety of diseases. This review focuses on various such aspects of research on Salmonella which are useful for studying the pathogenesis of other intracellular pathogens. PMID:22722237

  7. A Murine Model to Study the Antibacterial Effect of Copper on Infectivity of Salmonella Enterica Serovar Typhimurium

    PubMed Central

    Sharan, Riti; Chhibber, Sanjay; Reed, Robert H.

    2011-01-01

    This study investigated the effect of copper as an antibacterial agent on the infectivity of Salmonella enterica serovar Typhimurium. Mice were infected orally with a standardized dose of unstressed Salmonella Typhimurium and copper-stressed cells of Salmonella Typhimurium. Bacterial counts in ileum, blood, liver and spleen were observed up to 168 h under normal aerobic conditions. Serum sensitivity, phagocytosis, malondialdehyde levels and histopathology were studied for both set of animals. A decreased bacterial count in the organs with mild symptoms of infection and a complete recovery by 48 h was observed in mice infected with copper-stressed bacteria. Histopathological examination of ileum tissue demonstrated regeneration of damaged tissue post-infection with copper-stressed bacteria and no malondialdehyde levels were detected after 24 h in ileum, spleen and liver. Exposure to copper sensitized Salmonella Typhimurium to the lytic action of serum and intracellular killing by peritoneal macrophages. It can be concluded that copper stress confers a decrease in the infectivity of healthy Salmonella Typhimurium in normal mice. This study highlights the significance of use of copper as an antibacterial agent against Salmonella Typhimurium in reducing the risk of incidence of Salmonella infections from contaminated water. PMID:21318012

  8. Salmonella enterica Serovar Typhimurium Invades Fibroblasts by Multiple Routes Differing from the Entry into Epithelial Cells▿

    PubMed Central

    Aiastui, Ana; Pucciarelli, M. Graciela; García-del Portillo, Francisco

    2010-01-01

    Fibroblasts are ubiquitous cells essential to tissue homeostasis. Despite their nonphagocytic nature, fibroblasts restrain replication of intracellular bacterial pathogens such as Salmonella enterica serovar Typhimurium. The extent to which the entry route of the pathogen determines this intracellular response is unknown. Here, we analyzed S. Typhimurium invasion in fibroblasts obtained from diverse origins, including primary cultures and stable nontransformed cell lines derived from normal tissues. Features distinct to the invasion of epithelial cells were found in all fibroblasts tested. In some fibroblasts, bacteria lacking the type III secretion system encoded in the Salmonella pathogenicity island 1 displayed significant invasion rates and induced the formation of lamellipodia and filopodia at the fibroblast-bacteria contact site. Other bacterial invasion traits observed in fibroblasts were the requirement of phosphatidylinositol 3-kinase, mitogen-activated protein kinase MEK1, and both actin filaments and microtubules. RNA interference studies showed that different Rho family GTPases are targeted by S. Typhimurium to enter into distinct fibroblasts. Rac1 and Cdc42 knockdown affected invasion of normal rat kidney fibroblasts, whereas none of the GTPases tested (Rac1, Cdc42, RhoA, or RhoG) was essential for invasion of immortalized human foreskin fibroblasts. Collectively, these data reveal a marked diversity in the modes used by S. Typhimurium to enter into fibroblasts. PMID:20368348

  9. Epidemiology of a Salmonella enterica subsp. enterica serovar Typhimurium strain associated with a songbird outbreak.

    PubMed

    Hernandez, Sonia M; Keel, Kevin; Sanchez, Susan; Trees, Eija; Gerner-Smidt, Peter; Adams, Jennifer K; Cheng, Ying; Ray, Al; Martin, Gordon; Presotto, Andrea; Ruder, Mark G; Brown, Justin; Blehert, David S; Cottrell, Walter; Maurer, John J

    2012-10-01

    Salmonella enterica subsp. enterica serovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. This Salmonella serovar is also responsible for die-offs in songbird populations. In 2009, there was an S. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and human S. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This same S. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 total S. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature of S. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast. PMID:22885752

  10. Epidemiology of a Salmonella enterica subsp. Enterica serovar Typhimurium strain associated with a songbird outbreak.

    USGS Publications Warehouse

    Blehert, David S.; Hernandez, Sonia M.; Keel, Kevin; Sanchez, Susan; Trees, Eija; Peter Gerner-Smidt

    2012-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. This Salmonella serovar is also responsible for die-offs in songbird populations. In 2009, there was an S. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and human S. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This same S. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 total S. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature of S. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast.

  11. Evaluation and comparison of molecular techniques for epidemiological typing of Salmonella enterica subsp. enterica serovar dublin.

    PubMed Central

    Liebisch, B; Schwarz, S

    1996-01-01

    A total of 28 unrelated isolates of the Salmonella enterica subsp. enterica serovar dublin (S. dublin) collected during a 6-year period, as well as four samples of the S. dublin live vaccine strain Bovisaloral and its prototype strain S. dublin 442/039, were investigated by different molecular typing methods for the following reasons: (i) to find the most discriminatory method for the epidemiological typing of isolates belonging to this Salmonella serovar and (ii) to evaluate these methods for their capacity to discriminate among the live vaccine strain Bovisaloral, its prototype strain S. dublin 442/039, and field isolates of the serovar dublin. Five different plasmid profiles were observed; a virulence plasmid of 76 kbp as identified by hybridization with an spvB-spvC gene probe was present in all isolates. The detection of 16S rRNA genes and that of IS200 elements proved to be unsuitable for the epidemiological typing of S. dublin; only one hybridization pattern could be observed with each of these methods. The results obtained from macrorestriction analysis strongly depended on the choice of restriction enzyme. While the enzyme NotI yielded the lowest discriminatory index among all enzymes tested, it was the only enzyme that allowed discrimination between the Bovisaloral vaccine strain and its prototype strain. In contrast to the enzymes XbaI and SpeI, which only differentiated among the S. dublin field isolates, XhoI as well as AvrII also produced restriction fragment patterns of the Bovisaloral strain and of its prototype strain that were not shared by any of the S. dublin field isolates. Macrorestriction analysis proved to be the most discriminatory method not only for the epidemiological typing of S. dublin field isolates but also for the identification of the S. dublin live vaccine strain Bovisaloral. PMID:8904430

  12. Tetracycline promotes the expression of ten fimbrial operons in specific Salmonella enterica serovar Typhimurium isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multidrug-resistant (MDR) Salmonella is associated with increased morbidity in humans and presents an important food safety concern. Antibiotic resistance among isolates of Salmonella enterica serovar Typhimurium has become especially prevalent as over 27 per cent of isolates from humans in the Unit...

  13. Hydrogen-Stimulated carbon acquisition and conservation in salmonella enterica serovar typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Typhimurium can utilize molecular hydrogen for growth and amino acid transport during anaerobic growth. Via microarray we identified H2 gas-affected gene expression changes in Salmonella. Addition of H2 caused altered expression of 965 genes; 176 genes were H2-up-regulate...

  14. Diagnostic accuracy of rectoanal mucosal swab of feedlot cattle for detection and enumeration of Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle are noted carriers of the foodborne pathogen Salmonella enterica. The perceived need to decrease the potential human health risk posed by excretion of this pathogen has resulted in numerous studies examining the factors that influence cattle shedding of Salmonella. Fecal grab (FG) samples hav...

  15. Antibiotics induce the expression of attachment genes in specific isolates of Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 27 percent of Salmonella enterica serovar Typhimurium isolates from humans in the United States are resistant to three or more antibiotics. This presents an important food safety concern as multidrug-resistant (MDR) Salmonella is associated with increased morbidity in humans. It has been...

  16. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the ability of five Salmonella enterica serovars to attach to and colonize intact and cut lettuce (Iceberg, Romaine) and cabbage surfaces. Biofilm assay and attachment of Salmonella serovars to intact and cut leaves were determined. Bacterial populations of loosely and strong...

  17. Salmonella enterica Subspecies diarizonae Maxillary Sinusitis in a Snake Handler: First Report

    PubMed Central

    Horvath, Lukas; Kraft, Marcel; Fostiropoulos, Karolos; Falkowski, Anna; Tarr, Philip E.

    2016-01-01

    In this study, we report the first case of reptile-associated maxillary sinusitis due to Salmonella enterica subspecies diarizonae in a snake handler and the third case of salmonella-associated sinusitis worldwide. The case highlights the potential of respiratory transmission and atypical salmonellosis presentations. PMID:27186588

  18. The giant adhesin SiiE of Salmonella enterica.

    PubMed

    Barlag, Britta; Hensel, Michael

    2015-01-01

    Salmonella enterica is a Gram-negative, food-borne pathogen, which colonizes the intestinal tract and invades enterocytes. Invasion of polarized cells depends on the SPI1-encoded type III secretion system (T3SS) and the SPI4-encoded type I secretion system (T1SS). The substrate of this T1SS is the non-fimbrial giant adhesin SiiE. With a size of 595 kDa, SiiE is the largest protein of the Salmonella proteome and consists of 53 repetitive bacterial immunoglobulin (BIg) domains, each containing several conserved residues. As known for other T1SS substrates, such as E. coli HlyA, Ca2+ ions bound by conserved D residues within the BIg domains stabilize the protein and facilitate secretion. The adhesin SiiE mediates the first contact to the host cell and thereby positions the SPI1-T3SS to initiate the translocation of a cocktail of effector proteins. This leads to actin remodeling, membrane ruffle formation and bacterial internalization. SiiE binds to host cell apical membranes in a lectin-like manner. GlcNAc and α2-3 linked sialic acid-containing structures are ligands of SiiE. Since SiiE shows repetitive domain architecture, we propose a zipper-like binding mediated by each individual BIg domain. In this review, we discuss the characteristics of the SPI4-T1SS and the giant adhesin SiiE. PMID:25587788

  19. Salmonella enterica Serotype Choleraesuis: Epidemiology, Pathogenesis, Clinical Disease, and Treatment†

    PubMed Central

    Chiu, Cheng-Hsun; Su, Lin-Hui; Chu, Chishih

    2004-01-01

    Nontyphoid Salmonella strains are important causes of reportable food-borne infection. Among more than 2,000 serotypes, Salmonella enterica serotype Choleraesuis shows the highest predilection to cause systemic infections in humans. The most feared complication of serotype Cholearesuis bacteremia in adults is the development of mycotic aneurysm, which previously was almost uniformally fatal. The advances in diagnostic techniques, surgical care, and antimicrobial therapy have greatly improved the survival of these patients. However, the recent emergence of serotype Choleraesuis that is resistant to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, and, notably, fluoroquinolone antibiotics has aroused concern about the use of these agents for the empirical treatment of systemic infection caused by this organism. In view of the serious implications of the situation, the chain of transmission and mechanism of resistance should be carefully studied to reduce the spread of infection and threat to human health. To date, there are no vaccines available to prevent serotype Choleraesuis infections in humans. The availability, in the near future, of the genome sequence of serotype Cholearesuis will facilitate the development of effective vaccines as well as the discovery of new targets for novel antimicrobial agents. PMID:15084503

  20. Salmonella enterica Serotype Choleraesuis Infection of the Knee and Femur in a Nonbacteremic Diabetic Patient

    PubMed Central

    Sy, Alexander M.; Sandhu, Jagbir; Lenox, Theodore

    2013-01-01

    Osteoarticular infections caused by Salmonella are rare. The rates of osteomyelitis and septic arthritis due to Salmonella are estimated to be less than 1% and 0.1%-0.2%, respectively (Kato et al., 2012). Salmonella enterica serotype Choleraesuis is a nontyphoidal Salmonella, highly pathogenic in humans, usually causing septicemic disease with little or no intestinal involvement. Serotype Choleraesuis accounts for a small percentage of published studies of Salmonella infections in the United States. It is not commonly reported in joint fluid and bones in contrast to serotype Enteritidis and Typhi, where a considerable number of cases have been published. Chen et al. in Taiwan found that 21% of bacteremic patients with this infection subsequently develop focal infections such as septic arthritis, pneumonia, peritonitis, and cutaneous abscess (Chen et al., 1999, Chiu et al., 2004). In contrast, our patient presented with localized osteoarticular infection with Salmonella enterica serotype Cholerasuis, but without evidence of bacteremia. PMID:23781356

  1. Pathogenicity of Salmonella enterica in Caenorhabditis elegans relies on disseminated oxidative stress in the infected host.

    PubMed

    Sem, XiaoHui; Rhen, Mikael

    2012-01-01

    Feeding Caenorhabditis elegans with Salmonella enterica serovar Typhimurium significantly shortens the lifespan of the nematode. S. Typhimurium-infected C. elegans, stained with 2',7'-dichlorodihydrofluorescein diacetate which fluoresces upon exposure to reactive oxygen species, revealed intestinal luminal staining that along with the time of infection progressed to a strong staining in the hypodermal tissues of the nematode. Still, we could not detect invasion beyond the nematode's intestinal epithelium at any stage of the infection. A similar dispersion of oxidative response was also noted in nematodes infected with S. Dublin, but not with non-pathogenic Escherichia coli or the defined pathogen Burkholderia thailandensis. Addition of catalase or the reductant ascorbic acid significantly restored the lifespan of S. Typhimurium-infected nematodes. Mutational inactivation of the bacterial thioredoxin 1 resulted in total ablation of the hypodermal oxidative response to infection, and in a strong attenuation of virulence. Virulence of the thioredoxin 1 mutant was restored by trans-complementation with redox-active variants of thioredoxin 1 or, surprisingly, by exposing the thioredoxin 1 mutant to sublethal concentrations of the disulphide catalyst copper chloride prior to infection. In summary, our observations define a new aspect in virulence of S. enterica that apparently does not involve the classical invasive or intracellular phenotype of the pathogen, but that depends on the ability to provoke overwhelming systemic oxidative stress in the host through the redox activity of bacterial thioredoxin 1. PMID:23028994

  2. Transcriptional profile of Salmonella enterica subsp. enterica serovar Weltevreden during alfalfa sprout colonization

    PubMed Central

    Brankatschk, Kerstin; Kamber, Tim; Pothier, Joël F; Duffy, Brion; Smits, Theo H M

    2014-01-01

    Sprouted seeds represent a great risk for infection by human enteric pathogens because of favourable growth conditions for pathogens during their germination. The aim of this study was to identify mechanisms of interactions of Salmonella enterica subsp. enterica Weltevreden with alfalfa sprouts. RNA-seq analysis of S. Weltevreden grown with sprouts in comparison with M9-glucose medium showed that among a total of 4158 annotated coding sequences, 177 genes (4.3%) and 345 genes (8.3%) were transcribed at higher levels with sprouts and in minimal medium respectively. Genes that were higher transcribed with sprouts are coding for proteins involved in mechanisms known to be important for attachment, motility and biofilm formation. Besides gene expression required for phenotypic adaption, genes involved in sulphate acquisition were higher transcribed, suggesting that the surface on alfalfa sprouts may be poor in sulphate. Genes encoding structural and effector proteins of Salmonella pathogenicity island 2, involved in survival within macrophages during infection of animal tissue, were higher transcribed with sprouts possibly as a response to environmental conditions. This study provides insight on additional mechanisms that may be important for pathogen interactions with sprouts. PMID:24308841

  3. Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves

    PubMed Central

    Potnis, Neha; Colee, James; Jones, Jeffrey B.

    2015-01-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. PMID:26386057

  4. Mobilome differences between Salmonella enterica serovars Anatum and Typhimurium isolated from cattle and humans and potential impact on virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica is an important group of pathogens capable of inhabiting a range of niches and hosts with varying degrees of impact, from commensal colonization to invasive infection. Recent outbreaks of multi-drug resistant S. enterica, attributed to consumption of contaminated ...

  5. Development of a rapid serotyping method for Salmonella enterica using serotype-specific single-nucleotide polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serotype Enteriditis (S. Enteriditis) is the leading cause of salmonellosis worldwide, including the USA. Many S. enterica serotypes known to cause foodborne disease are associated with broiler meat contamination. While some serotypes are specific to birds (S. e...

  6. Effects of postharvest handling conditions on internalization and growth of Salmonella enterica in tomatoes.

    PubMed

    Zhou, Bin; Luo, Yaguang; Nou, Xiangwu; Yang, Yang; Wu, Yunpeng; Wang, Qin

    2014-03-01

    Salmonella internalization in tomatoes during postharvest handling is a major food safety concern. This study was conducted to determine the effect of immersion time, immersion depth, and temperature differential between bacterial suspension and tomato pulp on the internalization of Salmonella enterica in tomato fruits. The effect of storage temperature and duration on the survival and growth of internalized Salmonella cells was also evaluated. Overall, immersion time significantly affected the incidence and extent of S. enterica internalization (P < 0.0001), with a linear correlation between immersion time and Salmonella internalization. The depth of Salmonella internalization in tomato tissues also increased with increasing immersion time. Immersion time also significantly influenced the degree to which the temperature differential affected Salmonella internalization. With an immersion time of 2 min, the temperature differential had no significant effect on Salmonella internalization (P = 0.2536). However, with an immersion time of 15 min, a significantly larger Salmonella population became internalized in tomatoes immersed in solutions with a -30°F (-16.7°C) temperature differential. Internalized S. enterica cells persisted in the core tissues during 14 days of storage. Strain type and storage duration significantly affected (P < 0.05) both the frequency detected and the population of internalized Salmonella recovered, but storage temperatures of 55 to 70°F (12.8 to 21.1°C) did not (P > 0.05). These findings indicate the importance of preventing pathogen internalization during postharvest handling. PMID:24674426

  7. Genome-Scale Screening and Validation of Targets for Identification of Salmonella enterica and Serovar Prediction.

    PubMed

    Zhou, Xiujuan; Zhang, Lida; Shi, Chunlei; Fratamico, Pina M; Liu, Bin; Paoli, George C; Dan, Xianlong; Zhuang, Xiaofei; Cui, Yan; Wang, Dapeng; Shi, Xianming

    2016-03-01

    Salmonella enterica is the most common foodborne pathogen worldwide, with 2,500 recognized serovars. Detection of S. enterica and its classification into serovars are essential for food safety surveillance and clinical diagnosis. The PCR method is useful for these applications because of its rapidity and high accuracy. We obtained 412 candidate detection targets for S. enterica using a comparative genomics mining approach. Gene ontology (GO) functional enrichment analysis of these candidate targets revealed that the GO term with the largest number of unigenes with known function (38 of 177, 21.5%) was significantly involved in pathogenesis (P < 10(-24)). All the candidate targets were then evaluated by PCR assays. Fifteen targets showed high specificity for the detection of S. enterica by verification with 151 S. enterica strains and 34 non-Salmonella strains. The phylogenetic trees of verified targets were highly comparable with those of housekeeping genes, especially for differentiating S. enterica strains into serovars. The serovar prediction ability was validated by sequencing one target (S9) for 39 S. enterica strains belonging to six serovars. Identical mutation sites existed in the same serovar, and different mutation sites were found in diverse serovars. Our findings revealed that 15 verified targets can be potentially used for molecular detection, and some of them can be used for serotyping of S. enterica strains. PMID:26939647

  8. Acute Hepatic Necrosis Caused by Salmonella enterica Serotype I 4,5,12:−:1,2 in a Dog

    PubMed Central

    Meiring, Thelma; Grant, Andrew J.; Watson, Penny J.

    2015-01-01

    Acute hepatic necrosis was diagnosed in a dog. Gram staining and fluorescence in situ hybridization identified Salmonella enterica in the liver, subsequently confirmed as S. enterica serotype I 4,5,12:−:1,2. This is the first report of acute hepatic necrosis with liver failure caused by Salmonella in a dog. PMID:26292301

  9. Intergenic Sequence Ribotyping using a region neighboring dkgB links genovar to Kauffman-White serotype of Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intergenic Sequence Ribotyping using a region neighboring dkgB links genovar to Kauffman-White serotype of Salmonella enterica Previous research identified that the 5S ribosomal (rrn) gene and associated flanking sequences that are closely linked to the dkgB gene of Salmonella enterica were highly ...

  10. Effects of integrated treatment of nonthermal UV-C light and different antimicrobial wash on Salmonella enterica on plum tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Produce contamination by foodborne pathogens remains a serious threat. This study investigated synergistic effects of ultraviolet-C and various active sanitizers’ washes against Salmonella enterica on plum tomatoes. A bacterial cocktail containing three serotypes of Salmonella enterica (S. Newport H...

  11. Development of a Rapid Multiplex PCR Technique for Determination of Salmonella enterica Serotypes Isolated from Pork and Poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: A multiplex PCR technique to discriminate Salmonella enterica serotypes was adapted to a high-throughput, automated assay. Methods: Fifteen target genes were chosen that varied in distribution among common Salmonella enterica serotypes isolated from various hosts. These targets were dete...

  12. Analysis of antimicrobial resistance genes detected in multidrug-resistant salmonella enterica serovar typhimurium isolated from food animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of multi drug resistance (MDR) in foodborne pathogens such as Salmonella enterica is a concern for both animal and human health. MDR Salmonella enterica serovar Typhimurium is the most prevalent penta-resistant serovar isolated from animals as part of the National Antimicrobial Resis...

  13. Salmonella enterica serovar Enteritidis enterocolitis during late stages of gestation induces an adverse pregnancy outcome in the murine model.

    PubMed

    Noto Llana, Mariángeles; Sarnacki, Sebastián Hernán; Aya Castañeda, María del Rosario; Pustovrh, María Carolina; Gartner, Alejandra Sonia; Buzzola, Fernanda Roxana; Cerquetti, María Cristina; Giacomodonato, Mónica Nancy

    2014-01-01

    Foodborne diseases caused by Salmonella enterica serovar Enteritidis (S. Enteritidis) are a significant health problem. Pregnancy, state of immunological tolerance, is a predisposing condition for the development of infections with intracellular pathogens. Salmonella species can cause pregnancy complications such as chorioamnionitis, transplacental fetal infection, pre term labor, abortions, neonatal and maternal septicemia. However, the specific mechanisms by which Salmonella infections trigger these alterations are not clear. In the present work, using a self-limiting enterocolitis murine model, we show that the ingestion of a low dose of S. Enteritidis at late stages of pregnancy (day 15 of gestation) is sufficient to induce massive maternal infection. We found that Salmonella infection leads to 40% of pre term delivery, 33% of abortion and fetal growth restriction. Placental dysfunction during S. Enteritidis enterocolitis was confirmed through cellular infiltration and hypoxia markers (MPO activity and COX-1 and COX-2 expression, respectively). Apoptosis in placental tissue due to Salmonella infection was also evident at day 18 of gestation when investigated by morphometric procedure, DNA fragmentation and Fas/FasL expression. Also, the expression of IFN-γ, TNF-α, IL-17 and IL-10 was up regulated in response to Salmonella not only in placenta, but also in amniotic fluid and maternal serum. Altogether, our results demonstrate that S. Enteritidis enterocolitis during late stages of gestation causes detrimental effect on pregnancy outcome. PMID:25365504

  14. The complete plasmid sequences of Salmonella enterica serovar Typhimurium U288.

    PubMed

    Hooton, Steven P T; Timms, Andrew R; Cummings, Nicola J; Moreton, Joanna; Wilson, Ray; Connerton, Ian F

    2014-08-28

    Salmonella enterica Serovar Typhimurium U288 is an emerging pathogen of pigs. The strain contains three plasmids of diverse origin that encode traits that are of concern for food security and safety, these include antibiotic resistant determinants, an array of functions that can modify cell physiology and permit genetic mobility. At 148,711 bp, pSTU288-1 appears to be a hybrid plasmid containing a conglomerate of genes found in pSLT of S. Typhimurium LT2, coupled with a mosaic of horizontally-acquired elements. Class I integron containing gene cassettes conferring resistance against clinically important antibiotics and compounds are present in pSTU288-1. A curious feature of the plasmid involves the deletion of two genes encoded in the Salmonella plasmid virulence operon (spvR and spvA) following the insertion of a tnpA IS26-like element coupled to a blaTEM gene. The spv operon is considered to be a major plasmid-encoded Salmonella virulence factor that is essential for the intracellular lifecycle. The loss of the positive regulator SpvR may impact on the pathogenesis of S. Typhimurium U288. A second 11,067 bp plasmid designated pSTU288-2 contains further antibiotic resistance determinants, as well as replication and mobilization genes. Finally, a small 4675 bp plasmid pSTU288-3 was identified containing mobilization genes and a pleD-like G-G-D/E-E-F conserved domain protein that modulate intracellular levels of cyclic di-GMP, and are associated with motile to sessile transitions in growth. PMID:25175817

  15. Survival of Salmonella enterica in poultry feed is strain dependent

    PubMed Central

    Andino, Ana; Pendleton, Sean; Zhang, Nan; Chen, Wei; Critzer, Faith; Hanning, Irene

    2014-01-01

    Feed components have low water activity, making bacterial survival difficult. The mechanisms of Salmonella survival in feed and subsequent colonization of poultry are unknown. The purpose of this research was to compare the ability of Salmonella serovars and strains to survive in broiler feed and to evaluate molecular mechanisms associated with survival and colonization by measuring the expression of genes associated with colonization (hilA, invA) and survival via fatty acid synthesis (cfa, fabA, fabB, fabD). Feed was inoculated with 1 of 15 strains of Salmonella enterica consisting of 11 serovars (Typhimurium, Enteriditis, Kentucky, Seftenburg, Heidelberg, Mbandanka, Newport, Bairely, Javiana, Montevideo, and Infantis). To inoculate feed, cultures were suspended in PBS and survival was evaluated by plating samples onto XLT4 agar plates at specific time points (0 h, 4 h, 8 h, 24 h, 4 d, and 7 d). To evaluate gene expression, RNA was extracted from the samples at the specific time points (0, 4, 8, and 24 h) and gene expression measured with real-time PCR. The largest reduction in Salmonella occurred at the first and third sampling time points (4 h and 4 d) with the average reductions being 1.9 and 1.6 log cfu per g, respectively. For the remaining time points (8 h, 24 h, and 7 d), the average reduction was less than 1 log cfu per g (0.6, 0.4, and 0.6, respectively). Most strains upregulated cfa (cyclopropane fatty acid synthesis) within 8 h, which would modify the fluidity of the cell wall to aid in survival. There was a weak negative correlation between survival and virulence gene expression indicating downregulation to focus energy on other gene expression efforts such as survival-related genes. These data indicate the ability of strains to survive over time in poultry feed was strain dependent and that upregulation of cyclopropane fatty acid synthesis and downregulation of virulence genes were associated with a response to desiccation stress. PMID:24570467

  16. Characterization of the novel T4-like Salmonella enterica bacteriophage STP4-a and its endolysin.

    PubMed

    Li, Meng; Li, Mengzhe; Lin, Hong; Wang, Jingxue; Jin, Yanqiu; Han, Feng

    2016-02-01

    While screening for new antimicrobial agents for multidrug-resistant Salmonella enterica, the novel lytic bacteriophage STP4-a was isolated and characterized. Phage morphology revealed that STP4-a belongs to the family Myoviridae. Bacterial challenge assays showed that different serovars of Salmonella enterica were susceptible to STP4-a infection. The genomic characteristics of STP4-a, containing 159,914 bp of dsDNA with an average GC content of 36.86 %, were determined. Furthermore, the endolysin of STP4-a was expressed and characterized. The novel endolysin, LysSTP4, has hydrolytic activity towards outer-membrane-permeabilized S. enterica and Escherichia coli. These results provide essential information for the development of novel phage-based biocontrol agents against S. enterica. PMID:26563319

  17. Direct ROS scavenging activity of CueP from Salmonella enterica serovar Typhimurium.

    PubMed

    Yoon, Bo-Young; Yeom, Ji-Hyun; Kim, Jin-Sik; Um, Si-Hyeon; Jo, Inseong; Lee, Kangseok; Kim, Yong-Hak; Ha, Nam-Chul

    2014-02-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages. PMID:24598994

  18. Expression divergence between Escherichia coli and Salmonella enterica serovar Typhimurium reflects their lifestyles.

    PubMed

    Meysman, Pieter; Sánchez-Rodríguez, Aminael; Fu, Qiang; Marchal, Kathleen; Engelen, Kristof

    2013-06-01

    Escherichia coli K12 is a commensal bacteria and one of the best-studied model organisms. Salmonella enterica serovar Typhimurium, on the other hand, is a facultative intracellular pathogen. These two prokaryotic species can be considered related phylogenetically, and they share a large amount of their genetic material, which is commonly termed the "core genome." Despite their shared core genome, both species display very different lifestyles, and it is unclear to what extent the core genome, apart from the species-specific genes, plays a role in this lifestyle divergence. In this study, we focus on the differences in expression domains for the orthologous genes in E. coli and S. Typhimurium. The iterative comparison of coexpression methodology was used on large expression compendia of both species to uncover the conservation and divergence of gene expression. We found that gene expression conservation occurs mostly independently from amino acid similarity. According to our estimates, at least more than one quarter of the orthologous genes has a different expression domain in E. coli than in S. Typhimurium. Genes involved with key cellular processes are most likely to have conserved their expression domains, whereas genes showing diverged expression are associated with metabolic processes that, although present in both species, are regulated differently. The expression domains of the shared "core" genome of E. coli and S. Typhimurium, consisting of highly conserved orthologs, have been tuned to help accommodate the differences in lifestyle and the pathogenic potential of Salmonella. PMID:23427276

  19. Identification of potential drug targets in Salmonella enterica sv. Typhimurium using metabolic modelling and experimental validation.

    PubMed

    Hartman, Hassan B; Fell, David A; Rossell, Sergio; Jensen, Peter Ruhdal; Woodward, Martin J; Thorndahl, Lotte; Jelsbak, Lotte; Olsen, John Elmerdahl; Raghunathan, Anu; Daefler, Simon; Poolman, Mark G

    2014-06-01

    Salmonella enterica sv. Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of S. Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in the energy demand while growing in glucose minimal medium. By grouping reactions with similar flux responses, a subnetwork of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions that when removed from the genome-scale model interfered with energy and biomass generation. Eleven such sets were found to be essential for the production of biomass precursors. Experimental investigation of seven of these showed that knockouts of the associated genes resulted in attenuated growth for four pairs of reactions, whilst three single reactions were shown to be essential for growth. PMID:24777662

  20. Increased water activity reduces the thermal resistance of Salmonella enterica in peanut butter.

    PubMed

    He, Yingshu; Li, Ye; Salazar, Joelle K; Yang, Jingyun; Tortorello, Mary Lou; Zhang, Wei

    2013-08-01

    Increased water activity in peanut butter significantly (P < 0.05) reduced the heat resistance of desiccation-stressed Salmonella enterica serotypes treated at 90 °C. The difference in thermal resistance was less notable when strains were treated at 126 °C. Using scanning electron microscopy, we observed minor morphological changes of S. enterica cells resulting from desiccation and rehydration processes in peanut oil. PMID:23728806

  1. Diversity and antimicrobial susceptibility of Salmonella enterica serovars isolated from pig farms in Ibadan, Nigeria.

    PubMed

    Fashae, Kayode; Hendriksen, Rene S

    2014-01-01

    Animals including food animals play a significant role in the epidemiology of Salmonella enterica. The control requires identification of sources and institution of targeted interventions. This study investigates the diversity of S. enterica serovars, antimicrobial susceptibility, and occurrence of plasmid-mediated quinolone resistance (PMQR) genes in pigs in Ibadan, Nigeria. Pooled fresh pen floor fecal samples of pigs collected from 31 pig farms were cultured; the Salmonella isolates were serotyped and their antimicrobial susceptibility was determined. PMQR genes were screened by polymerase chain reaction. The 229 Salmonella isolates were made of 50 serovars predominated by rare serovars Salmonella Give (n = 36; 15.7 %), Salmonella Brancaster (n = 17; 7.4 %), Salmonella Colindale (n = 15; 6.6 %), Salmonella Elisaberthville (n = 13; 5.7 %), Salmonella Hillingdon (n = 13; 5.7 %), and Salmonella Kingston (n = 13; 5.7 %). The most widely distributed serovars among the farms were Salmonella Give (six farms) and Salmonella Elisaberthville (six farms). Resistance to chloramphenicol, sulfonamides, nalidixic acid, streptomycin, and tetracycline ranged from 11.6 % (n = 26) to 22.8 % (n = 51). Resistance ciprofloxacin and gentamicin was low (n = 2; 0.9 %). Multiply resistant isolates included Salmonella Kentucky, the most resistant serovar. qnrB19 was found in two isolates of Salmonella Corvallis and one isolate of Salmonella Larochelle, respectively, while qnrS1 was found in two isolates of Salmonella Derby. Other PMQR genes were not detected. Pigs constitute an important source of diverse Salmonella serovars in Ibadan. The isolates were more resistant to old antimicrobials with some multiple resistant. Control measures and regulation of antimicrobials are warranted. PMID:23893398

  2. Rapid detection of Salmonella enterica with primers specific for iroB.

    PubMed Central

    Bäumler, A J; Heffron, F; Reissbrodt, R

    1997-01-01

    The iroB gene of Salmonella enterica is absent from the chromosome of the related organism Escherichia coli. We determined the distribution of this gene among 150 bacterial isolates, representing 51 serotypes of different Salmonella species and subspecies and 8 other bacterial species which are frequent contaminants during routine enrichment procedures by Southern hybridization. An iroB-specific DNA probe detected homologous sequences in all strains of S. enterica, including serotypes of S. enterica subsp. enterica (I), salamae (II), diarizonae (IIIb), and houtenae (IV). No hybridization signal was obtained with strains of Salmonella bongori or other bacterial species. In contrast, hybridization with a DNA probe specific for purD, a purine biosynthesis gene, detected homologs in all bacterial species tested. Primers specific for iroB were used to amplify this gene from 197 bacterial isolates by PCR. The iroB gene could be PCR amplified from S. enterica subsp. enterica (I), salamae (II), diarizonae (IIIb), houtenae (IV), arizonae (IIIa), and indica (VI), but not from S. bongori or other bacterial species. Thus, PCR amplification of iroB can be used to distinguish between S. enterica and other bacterial species, including S. bongori. A combination of preenrichment in buffered peptone water supplemented with ferrioxamine E and amplification of iroB by magnetic immuno-PCR allowed detection of S. enterica in albumen within 24 h. In conclusion, PCR amplification of iroB is a new sensitive and selective method which has the potential to rapidly detect S. enterica serotypes. PMID:9114411

  3. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt

    PubMed Central

    Osman, Kamelia M; Marouf, Sherif H; Zolnikov, Tara R; AlAtfeehy, Nayerah

    2014-01-01

    Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18.5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes. PMID:24548159

  4. A case of extended spectrum beta-lactamase producing Salmonella enterica serotype paratyphi A from India.

    PubMed

    Roy, Priyamvada; Rawat, Deepti; Malik, Sonia

    2015-01-01

    Enteric fever caused by Salmonella enterica is a systemic infection with high rates of morbidity and mortality. Increasing antibiotic resistance in S. enterica has led to shift in the choice of antibiotics used against this organism from chloramphenicol and ampicillin to trimethoprim-sulfamethoxazole, fluoroquinolones, and extended-spectrum cephalosporins. Resistance to cephalosporins, due to the production of extended-spectrum beta-lactamases (ESBLs), is the cause of serious concern worldwide. So far, these enzymes have been detected in many species of the family Enterobacteriaceae including different serotypes of S. enterica. To the best of our knowledge, however, ESBL production in Salmonella Paratyphi A has not yet been reported from India. We present here a case of ESBL producing Salmonella Paratyphi A from India. This is a worrisome finding with grave clinical implications, since the dissemination of this resistance trait would further limit the therapeutic options available for the treatment of enteric fever. PMID:25673610

  5. Draft Genome Sequence of a Salmonella enterica subsp. enterica Serovar Gallinarum bv. Gallinarum Isolate Associated with Fowl Typhoid Outbreaks in Brazil

    PubMed Central

    De Carli, Silvia; Gräf, Tiago; Mayer, Fabiana Q.; Cibulski, Samuel; Lehmann, Fernanda K. M.; Fonseca, André S. K.; Ikuta, Nilo

    2016-01-01

    Salmonella enterica subsp. enterica serovar Gallinarum bv. Gallinarum strains are bird pathogens causing fowl typhoid (FT). Isolate BR_RS12 was obtained from a poultry flock with FT in 2014. The sequencing of this genome will enable to track the origin of the recent outbreaks in Brazil. PMID:26950322

  6. Complete Closed Genome Sequences of Salmonella enterica subsp. enterica Serotypes Anatum, Montevideo, Typhimurium, and Newport, Isolated from Beef, Cattle, and Humans.

    PubMed

    Harhay, Dayna M; Bono, James L; Smith, Timothy P L; Fields, Patricia I; Dinsmore, Blake A; Santovenia, Monica; Kelley, Christy M; Wang, Rong; Harhay, Gregory P

    2016-01-01

    Salmonella enterica spp. are a diverse group of bacteria with a wide range of virulence potential. To facilitate genome comparisons across this virulence spectrum, we present eight complete closed genome sequences of four S. enterica serotypes (Anatum, Montevideo, Typhimurium, and Newport), isolated from various cattle samples and from humans. PMID:26847891

  7. Draft Genome Sequence and Annotation of Phyllosphere-Persisting Salmonella enterica subsp. enterica Serovar Livingstone Strain CKY-S4, Isolated from an Urban Lake in Regina, Canada.

    PubMed

    Tambalo, Dinah D; Perry, Benjamin J; Fitzgerald, Stephen F; Cameron, Andrew D S; Yost, Christopher K

    2015-01-01

    Here, we report the first draft genome sequence of Salmonella enterica subsp. enterica serovar Livingstone. This S. Livingstone strain CKY-S4 displayed biofilm formation and cellulose production and could persist on lettuce. This genome may help the study of mechanisms by which enteric pathogens colonize food crops. PMID:26272568

  8. Draft Genome Sequence and Annotation of Phyllosphere-Persisting Salmonella enterica subsp. enterica Serovar Livingstone Strain CKY-S4, Isolated from an Urban Lake in Regina, Canada

    PubMed Central

    Tambalo, Dinah D.; Perry, Benjamin J.; Fitzgerald, Stephen F.; Cameron, Andrew D. S.

    2015-01-01

    Here, we report the first draft genome sequence of Salmonella enterica subsp. enterica serovar Livingstone. This S. Livingstone strain CKY-S4 displayed biofilm formation and cellulose production and could persist on lettuce. This genome may help the study of mechanisms by which enteric pathogens colonize food crops. PMID:26272568

  9. Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Napoli Strain SN310, Cause of a Multischool Outbreak in Milan, Italy, in 2014.

    PubMed

    Huedo, Pol; Gori, Maria; Scaltriti, Erika; Morganti, Marina; Casadei, Gabriele; Amato, Ettore; Pontello, Mirella

    2015-01-01

    We report the draft genome sequence of Salmonella enterica subsp. enterica serovar Napoli strain SN310, isolated from a stool sample of an affected pupil during a multischool outbreak in 2014 in Milan, Italy. This represents the first reported draft genome sequence of the emerging serovar Napoli. PMID:26358605

  10. Complete closed genome sequences of Salmonella enterica subsp. enterica serotypes Anatum, Montevideo, Typhimurium and Newport, isolated from beef, cattle, and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica are a versatile group of bacteria with a wide range in virulence potential. To facilitate genome comparisons across this virulence spectrum, we present eight complete closed genome sequences of four S. enterica serotypes (Anatum, Montevideo, Typhimurium, and Newport) isolated fro...

  11. Diversity and Antimicrobial Resistance of Salmonella enterica Isolates from Surface Water in Southeastern United States

    PubMed Central

    Vellidis, George; Liu, Huanli; Jay-Russell, Michele; Zhao, Shaohua; Hu, Zonglin; Wright, Anita; Elkins, Christopher A.

    2014-01-01

    A study of prevalence, diversity, and antimicrobial resistance of Salmonella enterica in surface water in the southeastern United States was conducted. A new scheme was developed for recovery of Salmonella from irrigation pond water and compared with the FDA's Bacteriological Analytical Manual (8th ed., 2014) (BAM) method. Fifty-one isolates were recovered from 10 irrigation ponds in produce farms over a 2-year period; nine Salmonella serovars were identified by pulsed-field gel electrophoresis analysis, and the major serovar was Salmonella enterica serovar Newport (S. Newport, n = 29), followed by S. enterica serovar Enteritidis (n = 6), S. enterica serovar Muenchen (n = 4), S. enterica serovar Javiana (n = 3), S. enterica serovar Thompson (n = 2), and other serovars. It is noteworthy that the PulseNet patterns of some of the isolates were identical to those of the strains that were associated with the S. Thompson outbreaks in 2010, 2012, and 2013, S. Enteritidis outbreaks in 2011 and 2013, and an S. Javiana outbreak in 2012. Antimicrobial susceptibility testing confirmed 16 S. Newport isolates of the multidrug resistant-AmpC (MDR-AmpC) phenotype, which exhibited resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT), and to the 1st, 2nd, and 3rd generations of cephalosporins (cephalothin, amoxicillin-clavulanic acid, and ceftriaxone). Moreover, the S. Newport MDR-AmpC isolates had a PFGE pattern indistinguishable from the patterns of the isolates from clinical settings. These findings suggest that the irrigation water may be a potential source of contamination of Salmonella in fresh produce. The new Salmonella isolation scheme significantly increased recovery efficiency from 21.2 (36/170) to 29.4% (50/170) (P = 0.0002) and streamlined the turnaround time from 5 to 9 days with the BAM method to 4 days and thus may facilitate microbiological analysis of environmental water. PMID:25107969

  12. Phylogenomic analysis identifies gene gains that define Salmonella enterica subspecies I.

    PubMed

    Lienau, E Kurt; Blazar, Jeffrey M; Wang, Charles; Brown, Eric W; Stones, Robert; Musser, Steven; Allard, Marc W

    2013-01-01

    Comparative methods for analyzing whole genome sequence (WGS) data enable us to assess the genetic information available for reconstructing the evolutionary history of pathogens. We used the comparative approach to determine diagnostic genes for Salmonella enterica subspecies I. S. enterica subsp. I strains are known to infect warm-blooded organisms regularly while its close relatives tend to infect only cold-blooded organisms. We found 71 genes gained by the common ancestor of Salmonella enterica subspecies I and not subsequently lost by any member of this subspecies sequenced to date. These genes included many putative functional phenotypes. Twenty-seven of these genes are found only in Salmonella enterica subspecies I; we designed primers to test these genes for use as diagnostic sequence targets and data mined the NCBI Sequence Read Archive (SRA) database for draft genomes which carried these genes. We found that the sequence specificity and variability of these amplicons can be used to detect and discriminate among 317 different serovars and strains of Salmonella enterica subspecies I. PMID:24204679

  13. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium’s Adaptive Mechanisms of Intramacrophage Survival and Replication

    PubMed Central

    Aribam, Swarmistha Devi; Harada, Tomoyuki; Elsheimer-Matulova, Marta; Iwata, Taketoshi; Kanehira, Katsushi; Hikono, Hirokazu; Matsui, Hidenori; Ogawa, Yohsuke; Shimoji, Yoshihiro; Eguchi, Masahiro

    2016-01-01

    Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb)-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria. PMID:26986057

  14. Antibody Is Required for Protection against Virulent but Not Attenuated Salmonella enterica Serovar Typhimurium

    PubMed Central

    McSorley, Stephen J.; Jenkins, Marc K.

    2000-01-01

    Resolution of infection with attenuated Salmonella is an active process that requires CD4+ T cells. Here, we demonstrate that costimulation via the surface molecule CD28, but not antibody production by B cells, is required for clearance of attenuated aroA Salmonella enterica serovar typhimurium. In contrast, specific antibody is critical for vaccine-induced protection against virulent bacteria. Therefore, CD28+ CD4+ T cells are sufficient for clearance of avirulent Salmonella in naive hosts, whereas CD4+ T cells and specific antibodies are required for protection from virulent Salmonella in immune hosts. PMID:10816483

  15. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium.

    PubMed

    Espinel, Irene Cartas; Guerra, Priscila Regina; Jelsbak, Lotte

    2016-06-01

    Polyamines (putrescine and spermidine) are small-cationic amines ubiquitous in nature and present in most living cells. In recent years they have been linked to virulence of several human pathogens including Shigella spp and Salmonella enterica serovar Typhimurium (S. Typhimurium). Central to S. Typhimurium virulence is the ability to survive and replicate inside macrophages and resisting the antimicrobial attacks in the form of oxidative and nitrosative stress elicited from these cells. In the present study, we have investigated the role of polyamines in intracellular survival and systemic infections of mice. Using a S. Typhimurium mutant defective for putrescine and spermidine biosynthesis, we show that polyamines are essential for coping with reactive nitrogen species, possibly linking polyamines to increased intracellular stress resistance. However, using a mouse model defective for nitric oxide production, we find that polyamines are required for systemic infections independently of host-produced reactive nitrogen species. To distinguish between the physiological roles of putrescine and spermidine, we constructed a strain deficient for spermidine biosynthesis and uptake, but with retained ability to produce and import putrescine. Interestingly, in this mutant we observe a strong attenuation of virulence during infection of mice proficient and deficient for nitric oxide production suggesting that spermidine, specifically, is essential for virulence of S. Typhimurium. PMID:27041598

  16. [Fluorescent and Magnetic Relaxation Switch Immunosensor for the Detecting Foodborne Pathogen Salmonella enterica in Water Samples].

    PubMed

    Wang, Song-bai; Zhang, Yan; An, Wen-ting; Wei, Yan-li; Wang, Yu; Shuang, Shao-min

    2015-11-01

    Fluoroimmunoassay based on quantum dots (QDs) and magnetic relaxation switch (MRS) immunoassay based on superparamagnetic nanoparticles (SMN) were constructed to detect Salmonella enterica (S. enterica) in water samples. In fluoroimmunoassay, magnetic beads was conjugated with S. enterica capture antibody (MB-Ab2) to enrich S. enterica from sample solution, then the QDs was conjugated with the S. enterica detection antibody (QDs-Ab1) to detect S. enterica based on sandwich immunoassay format. And the fluorescence intensity is positive related to the bacteria concentration of the sample. Results showed that the limit of detection (LOD) of this method was 102 cfu · mL⁻¹ and analysis time was 2 h. In MRS assay, magnetic nanoparticle-antibody conjugate (MN-Ab1) can switch their dispersed and aggregated state in the presence of the target. This state of change can modulate the spin-spin relaxation time (T₂) of the neighboring water molecule. The change in T₂(ΔT₂) positively correlates with the amount of the target in the sample. Thus, AT can be used as a detection signal in MRS immunosensors. Results showed that LOD of MRS sensor for S. enterica was 10³ cfu · mL⁻¹ and analysis time was 0.5 h. Two methods were compared in terms of advantages and disadvantages in detecting S. enterica. PMID:26978918

  17. Molecular identification of Salmonella enterica subsp. enterica serovar Gallinarum biovars Gallinarum and Pullorum by a duplex PCR assay.

    PubMed

    Batista, Diego Felipe Alves; de Freitas Neto, Oliveiro Caetano; de Almeida, Adriana Maria; Barrow, Paul Andrew; de Oliveira Barbosa, Fernanda; Berchieri Junior, Angelo

    2016-07-01

    Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (S Gallinarum) and biovar Pullorum (S Pullorum) are 2 poultry pathogens that cause major economic losses to the poultry industry worldwide. Control of both diseases mainly relies on the adoption of biosecurity programs, and success is dependent on accurate and fast detection. Based on this concept, we developed a duplex PCR assay, targeting 2 chromosomal sequences, which allowed us to precisely identify and differentiate S Gallinarum and S Pullorum field strains. This assay was validated by testing genomic DNA from 40 S Gallinarum and 29 S Pullorum field strains, 87 other Salmonella serovars, and 7 non-Salmonella strains. The serovar identifier region (SIR) primers produced a fragment only in S Gallinarum and S Pullorum strains, whereas the fragment from the ratA coding sequence, which was previously demonstrated to differentiate the 2 biovars, was also amplified from other Salmonella serovars. Our results showed that the combination of both SIR and ratA amplifications could be used to identify as well as to differentiate colonies of S Gallinarum and S Pullorum reliably. Thus, we believe this methodology can be a useful ancillary tool for routine veterinary diagnostic laboratories by providing rapid, accurate results. PMID:27216724

  18. Serological response of swine to an attenuated Salmonella enterica serovar Typhimurium strain that reduces gastrointestinal colonization, fecal shedding and disease due to virulent Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine are often asymptomatic carriers of Salmonella spp. Interventions are needed to limit Salmonella colonization of swine to enhance food safety. An attenuated Salmonella enterica serovar Typhimurium mutant strain (BBS 202) was tested in swine to determine whether vaccination could provide protect...

  19. Dissemination of antimicrobial-resistant clones of Salmonella enterica among domestic animals, wild animals, and humans.

    PubMed

    Palomo, Gonzalo; Campos, Maria Jorge; Ugarte, María; Porrero, María Concepción; Alonso, Juan Manuel; Borge, Carmen; Vadillo, Santiago; Domínguez, Lucas; Quesada, Alberto; Píriz, Segundo

    2013-02-01

    Non-typhoidal salmonellosis is an important zoonotic disease caused by Salmonella enterica. This work focuses on the identification of Salmonella enterica clonal strains which, presenting a wide distribution potential, express resistance determinants that compromise effectiveness of the antimicrobial therapy. The screening was performed on 506 Salmonella enterica isolates from animals and humans, which were characterized by serovar and phage typing, genome macrorestriction and pulsed-field gel electrophoresis, and detection of phenotypic and genotypic traits for antimicrobial resistance. A Salmonella Enteritidis strain with strong quinolone resistance is spread on three host environments carrying one of the four variants found for the GyrA protein: (1) Asp87Tyr, the major polymorphism found in 39 Salmonella isolates from human origin and six from poultry; (2) Ser83Phe, with four isolates from human origin and one from white stork (Ciconia ciconia); and (3) Asp87Asn or (4) Asp87Gly, with two isolates each from human origins. Several Salmonella Typhimurium strains that presented int1 elements and the classically associated pentaresistance (ACSSuT) phenotype were found distributed between two host environments: domestic animals and humans, domestics and wild animals, or wild fauna plus humans. This study points out the importance of monitoring gut microbiota and its antimicrobial resistance from wildlife, in parallel to livestock animals and humans, especially for animal species that are in close contact with people. PMID:23360170

  20. Salmonella enterica bacteraemia: a multi-national population-based cohort study

    PubMed Central

    2010-01-01

    Background Salmonella enterica is an important emerging cause of invasive infections worldwide. However, population-based data are limited. The objective of this study was to define the occurrence of S. enterica bacteremia in a large international population and to evaluate temporal and regional differences. Methods We conducted population-based laboratory surveillance for all salmonella bacteremias in six regions (annual population at risk 7.7 million residents) in Finland, Australia, Denmark, and Canada during 2000-2007. Results A total of 622 cases were identified for an annual incidence of 1.02 per 100,000 population. The incidence of typhoidal (serotypes Typhi and Paratyphi) and non-typhoidal (other serotypes) disease was 0.21 and 0.81 per 100,000/year. There was major regional and moderate seasonal and year to year variability with an increased incidence observed in the latter years of the study related principally to increasing rates of non-typhoidal salmonella bacteremias. Advancing age and male gender were significant risk factors for acquiring non-typhoidal salmonella bacteremia. In contrast, typhoidal salmonella bacteremia showed a decreasing incidence with advancing age and no gender-related excess risk. Conclusions Salmonella enterica is an important emerging pathogen and regional determinants of risk merits further investigation. PMID:20398281

  1. Pork Meat as a Potential Source of Salmonella enterica subsp. arizonae Infection in Humans

    PubMed Central

    Kritas, Spyridon; Govaris, Alexander; Burriel, Angeliki R.

    2014-01-01

    Salmonella enterica subsp. arizonae was isolated from 13 of 123 slaughtered pigs in central Greece. The samples cultured were feces, ileum tissue, mesenteric lymph nodes, and gallbladder swabs. A total of 74 isolates from 492 samples were identified as Salmonella spp. by use of standard laboratory culture media and two commercial micromethods and by use of a polyvalent slide agglutination test for the detection of O and H antigens. Among them were 19 (25.68%) suspected to be S. enterica subsp. arizonae according to analysis with standard laboratory culture media. Of those, 14 were identified as S. enterica subsp. arizonae by the API 20E (bioMérieux, France) and the Microgen GnA+B-ID (Microgen Bioproducts, Ltd., United Kingdom) identification systems. All the isolates were tested for resistance to 23 antimicrobials. Strains identified as S. enterica subsp. arizonae were resistant to 17 (70.8%) antibiotics. The highest proportions of resistance were observed for sulfamethoxazole-trimethoprim (71.4%), tetracycline (71.4%), ampicillin (64.3%), and amoxicillin (57.1%). Two isolates were resistant to aztreonam (7.1%) and tigecycline (7.1%), used only for the treatment of humans. Thus, pork meat may play a role in the transmission of antibiotic-resistant S. enterica subsp. arizonae to human consumers. This is the first report of S. enterica subsp. arizonae isolation from pigs. PMID:24335956

  2. Detection of Salmonella enterica subpopulations by phenotype microarray antibiotic resistance patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subspecies I is an important cause of food borne illness. We compared 6 strains of for resistance to 240 antibiotics that were included in a commercially available panel and also compared the strains by a conventional assay that is used to determine clinical resistance. Differen...

  3. Effects of Pseudomonas chlororaphis and gaseous chlorine dioxide on the survival of Salmonella enterica on tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Produce contamination incited by Salmonella enterica serovars on tomatoes and various outbreaks of Salmonellisis have been reported periodically. Post-harvest intervention measures applied to limit produce contamination will improve food and consumer safety. The aim of this reserach was to evaluat...

  4. Carvacrol and cinnamaldehyde inactivate antibiotic-resistant Salmonella enterica in buffer and on celery and oysters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is one of the leading causes of gastrointestinal foodborne illness. The emergence of antibiotic resistant strains of this pathogen is of concern to food processors, including the produce, poultry, and oyster industries. The objective of this research was to identify the potenti...

  5. Polynucleotide phosphorlyase (PNPase) is required for Salmonella enterica serovar Typhimurium colonization in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pnp gene encodes polynucleotide phosphorylase, an exoribonuclease involved in RNA degradation. A mutation in the pnp gene was previously identified by our group in a signature-tagged mutagenesis screen designed to search for Salmonella enterica serovar Typhimurium genes required for survival in...

  6. Draft Genome Sequences of 37 Salmonella enterica Strains Isolated from Poultry Sources in Nigeria.

    PubMed

    Useh, Nicodemus M; Ngbede, Emmanuel O; Akange, Nguavese; Thomas, Milton; Foley, Andrew; Keena, Mitchel Chan; Nelson, Eric; Christopher-Hennings, Jane; Tomita, Masaru; Suzuki, Haruo; Scaria, Joy

    2016-01-01

    Here, we report the availability of draft genomes of several Salmonella serotypes, isolated from poultry sources from Nigeria. These genomes will help to further understand the biological diversity of S. enterica and will serve as references in microbial trace-back studies to improve food safety. PMID:27151793

  7. SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION MODULATES DIVERSE FUNCTIONAL PROCESSES OF CHICKEN MACROPHAGE AT THE TRANSCRIPTIONAL LEVEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Enteritidis (SE) is a major etiologic agent of non-typhoid salmonellosis. The organisms colonize adult chicken hosts without causing overt clinical signs. The immunological mechanisms underlying the silent and persistent infection of chickens by SE are not clearly underst...

  8. PORCINE DIFFERENTIAL GENE EXPRESSION IN RESPONSE TO SALMONELLA ENTERICA SEROVARS CHOLERAESUIS AND TYPHIMURIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using suppression subtractive hybridization (SSH) and real-time PCR, an investigation of the porcine response to infection with Salmonella enterica serovars Choleraesuis (narrow host range) and Typhimurium (broad host range) revealed different transcriptional profiles. Ten genes identified by SSH a...

  9. GLOBAL TRANSCRIPTIONAL RESPONSE OF PORCINE MESENTERIC LYMPH NODES TO SALMONELLA ENTERICA SEROVAR TYPHIMURIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonellosis is prevalent worldwide and is both a food safety and animal production problem. To understand the host transcriptional response to Salmonella enterica serovar Typhimurium, the Affymetrix GeneChip® porcine genome array was used to identify differentially expressed (DE) genes in mesente...

  10. Hypothesis: A role for the mouse as an amplifier of Salmonella enterica on-farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of the mouse in the environment of the hen has been consistently identified as a risk factor for the contamination of eggs by Salmonella enterica serovar Enteritidis (SE). To address how much risk the mouse poses for egg contamination, the spleens and intestines of mice caught on-farm f...

  11. THE POXR GENE OF SALMONELLA ENTERICA SEROVAR TYPHIMURIUM IS INVOLVED IN STRESS SURVIVAL AND SWINE COLONIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations in the poxR gene (STM4344; yjeA; poxA) of Salmonella enterica serovar Typhimurium (S. Typhimurium) have previously been shown to cause several phenotypic alterations including reduced pyruvate oxidase activity, virulence attenuation in the mouse model, and enhanced sensitivity to various ...

  12. Natural surface coating to inactivate Salmonella enterica Serovar Typhimurium and maintain quality of cherry tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the present study were to investigate the effectiveness of zein-based coatings in reducing populations of Salmonella enterica serovar Typhimurium and preserving quality of cherry tomatoes. Tomatoes were inoculated with a cocktail of S. Typhimurium LT2 plus three mutants on the smoo...

  13. Extremely Drug-Resistant Salmonella enterica Serovar Senftenberg Infections in Patients in Zambia

    PubMed Central

    Joensen, Katrine Grimstrup; Lukwesa-Musyani, Chileshe; Kalondaa, Annie; Leekitcharoenphon, Pimlapas; Nakazwe, Ruth; Aarestrup, Frank M.; Hasman, Henrik; Mwansa, James C. L.

    2013-01-01

    Two cases of extremely drug-resistant Salmonella enterica serovar Senftenberg isolated from patients in Zambia were investigated by utilizing MIC determinations and whole-genome sequencing. The isolates were resistant to, and harbored genes toward, nine drug classes, including fluoroquinolones and extended-spectrum cephalosporins, contained two plasmid replicons, and differed by 93 single-nucleotide polymorphisms. PMID:23077128

  14. Potential International Spread of Multidrug-Resistant Invasive Salmonella enterica Serovar Enteritidis

    PubMed Central

    Rodicio, M. Rosario; Guerra, Beatriz; Hopkins, Katie L.

    2012-01-01

    In developing countries, Salmonella enterica serovar Enteritidis causes substantial illness and death, and drug resistance is increasing. Isolates from the United Kingdom containing virulence-resistance plasmids were characterized. They mainly caused invasive infections in adults linked to Africa. The common features in isolates from these continents indicate the role of human travel in their spread. PMID:22709653

  15. Transcriptional Response of Chicken Macrophages to Salmonella enterica serovar Enteritidis Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Enteritidis (SE) continues to be the predominant etiologic agent of salmonellosis, with contaminated egg products being the primary source of infection. At the present time, the molecular and immunological mechanisms involved in SE colonization of chicken hosts are not we...

  16. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We purified osmoregulated periplasmic glucans (OPGs) from Salmonella enterica serovar Typhimurium and found them to be composed of 100% glucose with 2-linked glucose as the most abundant residue with terminal glucose, 2,3-linked and 2,6-linked glucose also present in high quantities. The two structu...

  17. Inc A/C Plasmids are Prevalent in Multidrug-Resistant Salmonella enterica Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteria plasmids are fragments of extra-chromosomal double stranded deoxyribonucleic acid (DNA) that can contain a variety of genes beneficial to the host organism like antibiotic resistance. The objective of this study was to characterize a collection of 437 Salmonella enterica isolates from diff...

  18. Survival and fate of Salmonella enterica serovar Montevideo in adult Horn Flies (Diptera: Muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of cattle peripheral lymph nodes with Salmonella enterica is proposed to occur via a transdermal route of entry. If so, bacteria may be introduced to cattle by biting arthropods. Biting flies, such as horn flies (Haematobia irritans irritans (L.); Diptera: Muscidae), are intriguing ca...

  19. Genomic epidemiology of Salmonella enterica serotype Enteritidis based on population structure of prevalent lineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serotype Enteritidis (SE) is one of the most commonly reported causes of human salmonellosis. The low genetic diversity of SE measured by fingerprinting methods has made subtyping a challenge. In this study, we used whole genome sequencing to characterize a total of 125 SE and Sa...

  20. Assignment of serotype to Salmonella enterica isolates obtained from poultry and their environment in Southern Brazil.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess diversity of Salmonella enterica serotypes present in poultry and their environment from Southern Brazil, the Kauffman-White-LeMinor (KWL) scheme was used to serotype a total of 155 isolates. Isolates were then re-examined with nested PCR and sequencing of the dkgB-linked Intergenic Sequ...

  1. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  2. Impact of Strain Variation on the Ability of Biosensor Technology to Detect Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: It is important to develop methods that can quickly and accurately detect the presence of bacteria in the food supply that cause disease. Salmonella enterica is a bacteria that is often associated with contamination of food. Strains vary in their ability to cause illness and to spread...

  3. Invasive Salmonella enterica serotype typhimurium infections, Democratic Republic of the Congo, 2007-2011.

    PubMed

    Ley, Benedikt; Le Hello, Simon; Lunguya, Octavie; Lejon, Veerle; Muyembe, Jean-Jacques; Weill, François-Xavier; Jacobs, Jan

    2014-04-01

    Infection with Salmonella enterica serotype Typhimurium sequence type (ST) 313 is associated with high rates of drug resistance, bloodstream infections, and death. To determine whether ST313 is dominant in the Democratic Republic of the Congo, we studied 180 isolates collected during 2007-2011; 96% belonged to CRISPOL type CT28, which is associated with ST313. PMID:24655438

  4. Salmonella enterica serotype enteritidis in French Polynesia, South Pacific, 2008-2013.

    PubMed

    Le Hello, Simon; Maillard, Fiona; Mallet, Henri-Pierre; Daudens, Elise; Levy, Marc; Roy, Valérie; Branaa, Philippe; Bertrand, Sophie; Fabre, Laetitia; Weill, François-Xavier

    2015-06-01

    Outbreaks of Salmonella enterica serotype Enteritidis infections associated with eggs occurred in French Polynesia during 2008-2013. Molecular analysis of isolates by using clustered regularly interspaced short palindromic repeat polymorphisms and multilocus variable-number tandem-repeat analysis was performed. This subtyping made defining the epidemic strain, finding the source, and decontaminating affected poultry flocks possible. PMID:25988406

  5. TRANSCRIPTIONAL RESPONSE OF CHICKEN MACROPHAGES TO SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcriptional profiles of chicken macrophages (HD11) infected with Salmonella enterica serovar Enteritidis (SE) were analyzed by using avian macrophage microarray and real time RT-PCR. Out of 4,906 array elements interrogated, 269 genes exhibited a 2-fold change (P < 0.001) over a 24-hour time...

  6. Novel Surveillance of Salmonella enterica Serotype Heidelberg Epidemics in a Closed Community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2003-2005, a systematic and regularly timed human and farm-animal wastewater sampling scheme existed in several prison units in Texas. In early July 2003, an outbreak of gastroenteritis caused by Salmonella enterica serotype Heidelberg occurred in the human population at one site. Wastewate...

  7. Genome Sequence of Salmonella enterica Serovar Typhi Oral Vaccine Strain Ty21a.

    PubMed

    Xu, Deqi; Cisar, John O; Poly, Frédéric; Yang, Jinghua; Albanese, Jason; Dharmasena, Madushini; Wai, Tint; Guerry, Patricia; Kopecko, Dennis J

    2013-01-01

    Attenuated Salmonella enterica serovar Typhi strain Ty21a is an important vaccine for controlling typhoid fever and serves as an oral vector for delivering heterologous antigens. The key attenuating features of this randomly mutated strain remain in question. Genome sequencing has revealed 679 single nucleotide polymorphisms (SNPs), and will help define alterations contributing to Ty21a safety and immunogenicity. PMID:23969054

  8. Draft Genome Sequences of 37 Salmonella enterica Strains Isolated from Poultry Sources in Nigeria

    PubMed Central

    Useh, Nicodemus M.; Ngbede, Emmanuel O.; Akange, Nguavese; Thomas, Milton; Foley, Andrew; Keena, Mitchel Chan; Nelson, Eric; Christopher-Hennings, Jane; Tomita, Masaru

    2016-01-01

    Here, we report the availability of draft genomes of several Salmonella serotypes, isolated from poultry sources from Nigeria. These genomes will help to further understand the biological diversity of S. enterica and will serve as references in microbial trace-back studies to improve food safety. PMID:27151793

  9. Genomic analysis and Next Generation Sequencing (NGS) of MDR plasmids in Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food animals harboring Multi-Drug Resistant (MDR) Salmonella enterica are a possible source of zoonotic human infections and are a potential risk to human health. MDR genes can be transmitted in a number of ways including via plasmids. MDR plasmid prevalence and distribution was investigated by stud...

  10. PRESENCE OF ANTIBIOTIC RESISTANT GENES IN SALMONELLA ENTERICA SEROTYPE UGANDA ISLOATES FROM 1997-2000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the poultry and meat industry, Salmonella enterica serotype Uganda is rarely isolated in the environment. However, recent reports from veterinary diagnostic laboratories indicate an increased frequency of recovery of S. Uganda. Between 1997 and 2000, the animal arm of the National Antimicrobial...

  11. The effect of UV radiation on survival of Salmonella enterica in dried manure dust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Animal manure has been shown to harbor Salmonella enterica, an enteric pathogen known to be resilient to environmental stresses such as desiccation and solar UV radiation. In farm settings, it has been observed that unintended aerosolization could occur when manure becomes dehydrated, ...

  12. Draft Whole-Genome Sequences of 25 Salmonella enterica Strains Representing 24 Serovars

    PubMed Central

    Brumwell, Stephanie L.; Lingohr, Erika J.; Ahmad, Aaminah; Blimkie, Travis M.; Kogan, Benjamin A.; Pilsworth, Jessica; Rehman, Muhammad A.; Schleicher, Krista L.; Shanmugaraj, Jenitta; Kropinski, Andrew M.; Nash, John H. E.

    2016-01-01

    We report the draft genome sequences of 25 Salmonella enterica strains representing 24 different serotypes, many of which were not available in public repositories during our selection process. These draft genomes will provide useful reference for the genetic variation between serotypes and aid in the development of molecular typing tools. PMID:26941156

  13. Rapid Molecular Determination of Serotype from Clinical Isolates of Salmonella Enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The conventional serotyping of Salmonella Enterica is time consuming, costly, and requires highly skilled staff. In the present study, we report a multiplex PCR typing method using capillary electrophoresis for fragment analysis that allows for the identification of the 30 most common h...

  14. Differential attachment to and subsequent contamination of agricultural crops by Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. salmonellosis outbreaks have occurred following consumption of tomato and cantaloupe but not lettuce. We report differential contamination among agricultural seedlings by Salmonella enterica via soil. Members of the family Brassicaceae had a higher incidence of outbreak than carrot, lettuce, an...

  15. Acquisition of extended-spectrum cephalosporin- and colistin-resistant Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj.

    PubMed

    Olaitan, Abiola Olumuyiwa; Dia, Ndèye Méry; Gautret, Philippe; Benkouiten, Samir; Belhouchat, Khadidja; Drali, Tassadit; Parola, Philippe; Brouqui, Philippe; Memish, Ziad; Raoult, Didier; Rolain, Jean-Marc

    2015-06-01

    Gatherings like the Hajj involving many people who travel from different parts of the world represent a risk for the acquisition and dissemination of infectious diseases. In this study, acquisition of multidrug-resistant (MDR) Salmonella spp. in 2013 Hajj pilgrims from Marseille, France, was investigated. In total, 267 rectal swabs were collected from 129 participants before their departure and after their return from the pilgrimage as well as during the pilgrimage from patients with diarrhoea. Samples were screened for the presence of Salmonella using quantitative real-time PCR and culture. Whole-genome sequencing was performed to characterise one of the isolates, and the mechanism leading to colistin resistance was investigated. Six post-Hajj samples and one sample collected during a diarrhoea episode in Hajj were positive for Salmonella by real-time PCR, with five Salmonella enterica belonging to several serotypes recovered by culture, whereas no pre-Hajj sample was positive. Two of the isolates belonged to the epidemic Newport serotype, were resistant to cephalosporins, gentamicin and colistin, and harboured the bla(CTX-M-2) gene and a 12-nucleotide deletion in the pmrB gene leading to colistin resistance. This study shows that pilgrims acquired Salmonella bacteria, including a novel MDR clone, during the Hajj pilgrimage. This calls for more improved public health surveillance during Hajj because Salmonella is one of the most common diarrhoea-causing bacteria worldwide. Therefore, returning pilgrims could disseminate MDR bacteria worldwide upon returning to their home countries. PMID:25769786

  16. Risk factors for Salmonella enterica subsp. enterica shedding by market-age pigs in French farrow-to-finish herds.

    PubMed

    Beloeil, P-A; Fravalo, P; Fablet, C; Jolly, J-P; Eveno, E; Hascoet, Y; Chauvin, C; Salvat, G; Madec, F

    2004-04-30

    Fattening-pigs carriers of Salmonella enterica are believed to be a main source of carcass and pork contamination at the later steps of the meat process. We did a prospective study in 2000-2001 in 105 French farrow-to-finish pig farms. In each farm, a batch of contemporary fattening pigs housed in the same room was followed throughout the fattening period. Salmonella shedding was assessed on environmental samples of faecal material (taken by means of pairs of gauze socks) analysed by classical bacteriological methods. 36.2% of the batches studied had at least one contaminated environmental sample and therefore were classified as Salmonella-shedding batches. Logistic regression was used to assess the association between managerial and hygiene practices and health status and the shedding risk at the end of the finishing period. Emptying the pit below the slatted floor after the previous batch of sows was removed and frequent removal of sow dung during the lactation period were protective. Presence of residual Salmonella contamination of the floor and pen partitions in the fattening rooms before loading the growing pigs also was a risk factor. The risk for Salmonella shedding at the end of the fattening period was increased when dry feed (versus wet feed) was provided during the fattening period. Lastly, Lawsonia intracellularis seroconversion and PRRSV seropositivity during the fattening period also was a risk factor for Salmonella shedding. PMID:15099720

  17. Prevalence and Characterization of Salmonella enterica and Salmonella Bacteriophages Recovered from Beef Cattle Feedlots in South Texas.

    PubMed

    Xie, Yicheng; Savell, Jeffrey W; Arnold, Ashley N; Gehring, Kerri B; Gill, Jason J; Taylor, T Matthew

    2016-08-01

    Asymptomatic Salmonella carriage in beef cattle is a food safety concern, and the beef feedlot environment may function as a reservoir of this pathogen. The goal of this study was to identify and isolate Salmonella and Salmonella bacteriophages from beef cattle feedlot environments in order to better understand the microbial ecology of Salmonella and identify phages that might be useful as anti-Salmonella beef safety interventions. Three feedlots in south Texas were visited, and 27 distinct samples from each source were collected from dropped feces, feed from feed bunks, drinking water from troughs, and soil in cattle pens (n = 108 samples). Preenrichment, selective enrichment, and selective/differential isolation of Salmonella were performed on each sample. A representative subset of presumptive Salmonella isolates was prepared for biochemical identification and serotyping. Samples were pooled by feedlot and sample type to create 36 samples and enriched to recover phages. Recovered phages were tested for host range against two panels of Salmonella hosts. Salmonella bacteria were identified in 20 (18.5%) of 108 samples by biochemical and/or serological testing. The serovars recovered included Salmonella enterica serovars Anatum, Muenchen, Altona, Kralingen, Kentucky, and Montevideo; Salmonella Anatum was the most frequently recovered serotype. Phage-positive samples were distributed evenly over the three feedlots, suggesting that phage prevalence is not strongly correlated with the presence of culturable Salmonella. Phages were found more frequently in soil and feces than in feed and water samples. The recovery of bacteriophages in the Salmonella-free feedlot suggests that phages might play a role in suppressing the Salmonella population in a feedlot environment. PMID:27497120

  18. Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages

    PubMed Central

    Desai, Prerak T.; den Bakker, Henk C.; Mikoleit, Matthew; Tolar, Beth; Trees, Eija; Hendriksen, Rene S.; Frye, Jonathan G.; Porwollik, Steffen; Weimer, Bart C.; Wiedmann, Martin; Weinstock, George M.; Fields, Patricia I.; McClelland, Michael

    2014-01-01

    Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. enterica serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th–18th centuries and diversified during the 1920s and 1950s. PMID:25147968

  19. Analysis of Plasmid and Chromosomal DNA of Multidrug-Resistant Salmonella enterica Serovar Typhi from Asia

    PubMed Central

    Mirza, S.; Kariuki, S.; Mamun, K. Z.; Beeching, N. J.; Hart, C. A.

    2000-01-01

    Molecular analysis of chromosomal DNA from 193 multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates from 1990 to 1995 from Pakistan, Kuwait, Malaysia, Bangladesh, and India produced a total of five major different pulsed-field gel electrophoresis (PFGE) patterns. Even within a particular country MDR S. enterica serovar Typhi DNA was found to be in different PFGE groups. Similar self-transferable 98-MDa plasmids belonging to either incompatibility group incHI1 or incHI1/FIIA were implicated in the MDR phenotype in S. enterica serovar Typhi isolates from all the locations except Quetta, Pakistan, where the majority were of incFIA. A total of five different PFGE genotypes with six different plasmids, based on incompatibility and restriction endonuclease analysis groups, were found among these MDR S. enterica serovar Typhi isolates. PMID:10747124

  20. Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

    SciTech Connect

    Niemann, George; Brown, Roslyn N.; Gustin, Jean K.; Stufkens, Afke; Shaikh-Kidwai, Afshan S.; Li, Jie; McDermott, Jason E.; Brewer, Heather M.; Schepmoes, Athena A.; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2011-01-01

    The intracellular pathogen Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis in the world. This pathogen has two type-III secretion systems (TTSS) necessary for virulence that are encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) and are expressed during extracellular or intracellular infectious states, respectively, to deliver virulence factors (effectors) to the host cell cytoplasm. While many have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this mass spectrometry-based proteomics study, we identified effector proteins secreted under minimal acidic medium growth conditions that induced the SPI-2 TTSS and its effectors, and compared the secretome from the parent strain to the secretome from strains missing either essential (SsaK) or regulatory components (SsaL) of the SPI-2 secretion apparatus. We identified 75% of the known TTSS effector repertoire. Excluding translocon components, 95% of the known effectors were biased for identification in the ssaL mutant background, which demonstrated that SsaL regulates SPI-2 type III secretion. To confirm secretion to animal cells, we made translational fusions of several of the best candidates to the calmodulin-dependent adenylate cyclase of Bordetella pertussis and assayed cAMP levels of infected J774 macrophage-like cells. From these infected cells we identified six new TTSS effectors and two others that are secreted independent of TTSS. Our results substantiate reports of additional secretion systems encoded by Salmonella other than TTSS.

  1. Mechanisms of antimicrobial resistant Salmonella enterica transmission associated with starling-livestock interactions.

    PubMed

    Carlson, James C; Hyatt, Doreene R; Ellis, Jeremy W; Pipkin, David R; Mangan, Anna M; Russell, Michael; Bolte, Denise S; Engeman, Richard M; DeLiberto, Thomas J; Linz, George M

    2015-08-31

    Bird-livestock interactions have been implicated as potential sources for bacteria within concentrated animal feeding operations (CAFO). European starlings (Sturnus vulgaris) in particular are known to contaminate cattle feed and water with Salmonella enterica through their fecal waste. We propose that fecal waste is not the only mechanisms through which starlings introduce S. enterica to CAFO. The goal of this study was to assess if starlings can mechanically move S. enterica. We define mechanical movement as the transportation of media containing S. enterica, on the exterior of starlings within CAFO. We collected 100 starlings and obtained external wash and gastrointestinal tract (GI) samples. We also collected 100 samples from animal pens. Within each pen we collected one cattle fecal, feed, and water trough sample. Isolates from all S. enterica positive samples were subjected to antimicrobial susceptibility testing. All sample types, including 17% of external starling wash samples, contained S. enterica. All sample types had at least one antimicrobial resistant (AMR) isolate and starling GI samples harbored multidrug resistant S. enterica. The serotypes isolated from the starling external wash samples were all found in the farm environment and 11.8% (2/17) of isolates from positive starling external wash samples were resistant to at least one class of antibiotics. This study provides evidence of a potential mechanism of wildlife introduced microbial contamination in CAFO. Mechanical movement of microbiological hazards, by starlings, should be considered a potential source of bacteria that is of concern to veterinary, environmental and public health. PMID:25960334

  2. Flagellin Is Required for Host Cell Invasion and Normal Salmonella Pathogenicity Island 1 Expression by Salmonella enterica Serovar Paratyphi A

    PubMed Central

    Elhadad, Dana; Desai, Prerak; Rahav, Galia; McClelland, Michael

    2015-01-01

    Salmonella enterica serovar Paratyphi A is a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever. Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi and S. Paratyphi A are characterized by inactivation of multiple genes, including in the flagellum-chemotaxis pathway. Here, we explored the motility phenotype of S. Paratyphi A and the role of flagellin in key virulence-associated phenotypes. Motility studies established that the human-adapted typhoidal S. Typhi, S. Paratyphi A, and S. Sendai are all noticeably less motile than S. Typhimurium, and comparative transcriptome sequencing (RNA-Seq) showed that in S. Paratyphi A, the entire motility-chemotaxis regulon is expressed at significantly lowers levels than in S. Typhimurium. Nevertheless, S. Paratyphi A, like S. Typhimurium, requires a functional flagellum for epithelial cell invasion and macrophage uptake, probably in a motility-independent mechanism. In contrast, flagella were found to be dispensable for host cell adhesion. Moreover, we demonstrate that in S. Paratyphi A, but not in S. Typhimurium, the lack of flagellin results in increased transcription of the flagellar and the Salmonella pathogenicity island 1 (SPI-1) regulons in a FliZ-dependent manner and in oversecretion of SPI-1 effectors via type three secretion system 1. Collectively, these results suggest a novel regulatory linkage between flagellin and SPI-1 in S. Paratyphi A that does not occur in S. Typhimurium and demonstrate curious distinctions in motility and the expression of the flagellum-chemotaxis regulon between these clinically relevant pathogens. PMID:26056383

  3. Flagellin Is Required for Host Cell Invasion and Normal Salmonella Pathogenicity Island 1 Expression by Salmonella enterica Serovar Paratyphi A.

    PubMed

    Elhadad, Dana; Desai, Prerak; Rahav, Galia; McClelland, Michael; Gal-Mor, Ohad

    2015-09-01

    Salmonella enterica serovar Paratyphi A is a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever. Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi and S. Paratyphi A are characterized by inactivation of multiple genes, including in the flagellum-chemotaxis pathway. Here, we explored the motility phenotype of S. Paratyphi A and the role of flagellin in key virulence-associated phenotypes. Motility studies established that the human-adapted typhoidal S. Typhi, S. Paratyphi A, and S. Sendai are all noticeably less motile than S. Typhimurium, and comparative transcriptome sequencing (RNA-Seq) showed that in S. Paratyphi A, the entire motility-chemotaxis regulon is expressed at significantly lowers levels than in S. Typhimurium. Nevertheless, S. Paratyphi A, like S. Typhimurium, requires a functional flagellum for epithelial cell invasion and macrophage uptake, probably in a motility-independent mechanism. In contrast, flagella were found to be dispensable for host cell adhesion. Moreover, we demonstrate that in S. Paratyphi A, but not in S. Typhimurium, the lack of flagellin results in increased transcription of the flagellar and the Salmonella pathogenicity island 1 (SPI-1) regulons in a FliZ-dependent manner and in oversecretion of SPI-1 effectors via type three secretion system 1. Collectively, these results suggest a novel regulatory linkage between flagellin and SPI-1 in S. Paratyphi A that does not occur in S. Typhimurium and demonstrate curious distinctions in motility and the expression of the flagellum-chemotaxis regulon between these clinically relevant pathogens. PMID:26056383

  4. Virulence Characterisation of Salmonella enterica Isolates of Differing Antimicrobial Resistance Recovered from UK Livestock and Imported Meat Samples.

    PubMed

    Card, Roderick; Vaughan, Kelly; Bagnall, Mary; Spiropoulos, John; Cooley, William; Strickland, Tony; Davies, Rob; Anjum, Muna F

    2016-01-01

    Salmonella enterica is a foodborne zoonotic pathogen of significant public health concern. We have characterized the virulence and antimicrobial resistance gene content of 95 Salmonella isolates from 11 serovars by DNA microarray recovered from UK livestock or imported meat. Genes encoding resistance to sulphonamides (sul1, sul2), tetracycline [tet(A), tet(B)], streptomycin (strA, strB), aminoglycoside (aadA1, aadA2), beta-lactam (bla TEM), and trimethoprim (dfrA17) were common. Virulence gene content differed between serovars; S. Typhimurium formed two subclades based on virulence plasmid presence. Thirteen isolates were selected by their virulence profile for pathotyping using the Galleria mellonella pathogenesis model. Infection with a chicken invasive S. Enteritidis or S. Gallinarum isolate, a multidrug resistant S. Kentucky, or a S. Typhimurium DT104 isolate resulted in high mortality of the larvae; notably presence of the virulence plasmid in S. Typhimurium was not associated with increased larvae mortality. Histopathological examination showed that infection caused severe damage to the Galleria gut structure. Enumeration of intracellular bacteria in the larvae 24 h post-infection showed increases of up to 7 log above the initial inoculum and transmission electron microscopy (TEM) showed bacterial replication in the haemolymph. TEM also revealed the presence of vacuoles containing bacteria in the haemocytes, similar to Salmonella containing vacuoles observed in mammalian macrophages; although there was no evidence from our work of bacterial replication within vacuoles. This work shows that microarrays can be used for rapid virulence genotyping of S. enterica and that the Galleria animal model replicates some aspects of Salmonella infection in mammals. These procedures can be used to help inform on the pathogenicity of isolates that may be antibiotic resistant and have scope to aid the assessment of their potential public and animal health risk. PMID:27199965

  5. Virulence Characterisation of Salmonella enterica Isolates of Differing Antimicrobial Resistance Recovered from UK Livestock and Imported Meat Samples

    PubMed Central

    Card, Roderick; Vaughan, Kelly; Bagnall, Mary; Spiropoulos, John; Cooley, William; Strickland, Tony; Davies, Rob; Anjum, Muna F.

    2016-01-01

    Salmonella enterica is a foodborne zoonotic pathogen of significant public health concern. We have characterized the virulence and antimicrobial resistance gene content of 95 Salmonella isolates from 11 serovars by DNA microarray recovered from UK livestock or imported meat. Genes encoding resistance to sulphonamides (sul1, sul2), tetracycline [tet(A), tet(B)], streptomycin (strA, strB), aminoglycoside (aadA1, aadA2), beta-lactam (blaTEM), and trimethoprim (dfrA17) were common. Virulence gene content differed between serovars; S. Typhimurium formed two subclades based on virulence plasmid presence. Thirteen isolates were selected by their virulence profile for pathotyping using the Galleria mellonella pathogenesis model. Infection with a chicken invasive S. Enteritidis or S. Gallinarum isolate, a multidrug resistant S. Kentucky, or a S. Typhimurium DT104 isolate resulted in high mortality of the larvae; notably presence of the virulence plasmid in S. Typhimurium was not associated with increased larvae mortality. Histopathological examination showed that infection caused severe damage to the Galleria gut structure. Enumeration of intracellular bacteria in the larvae 24 h post-infection showed increases of up to 7 log above the initial inoculum and transmission electron microscopy (TEM) showed bacterial replication in the haemolymph. TEM also revealed the presence of vacuoles containing bacteria in the haemocytes, similar to Salmonella containing vacuoles observed in mammalian macrophages; although there was no evidence from our work of bacterial replication within vacuoles. This work shows that microarrays can be used for rapid virulence genotyping of S. enterica and that the Galleria animal model replicates some aspects of Salmonella infection in mammals. These procedures can be used to help inform on the pathogenicity of isolates that may be antibiotic resistant and have scope to aid the assessment of their potential public and animal health risk. PMID:27199965

  6. Unsaturated Long Chain Free Fatty Acids Are Input Signals of the Salmonella enterica PhoP/PhoQ Regulatory System*

    PubMed Central

    Viarengo, Gastón; Sciara, Mariela I.; Salazar, Mario O.; Kieffer, Pablo M.; Furlán, Ricardo L. E.; García Véscovi, Eleonora

    2013-01-01

    The Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg2+ limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ. We demonstrate that LCUFAs inhibit PhoQ autokinase activity, turning off the expression of the PhoP-dependent regulon. We also show that LCUFAs exert their action independently of their cellular uptake and metabolic utilization by means of the β-oxidative pathway. Our findings put forth the complexity of input signals that can converge to finely tune the activity of the PhoP/PhoQ system. In addition, they provide a new potential biochemical platform for the development of antibacterial strategies to fight against Salmonella infections. PMID:23782700

  7. Unsaturated long chain free fatty acids are input signals of the Salmonella enterica PhoP/PhoQ regulatory system.

    PubMed

    Viarengo, Gastón; Sciara, Mariela I; Salazar, Mario O; Kieffer, Pablo M; Furlán, Ricardo L E; García Véscovi, Eleonora

    2013-08-01

    The Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg(2+) limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ. We demonstrate that LCUFAs inhibit PhoQ autokinase activity, turning off the expression of the PhoP-dependent regulon. We also show that LCUFAs exert their action independently of their cellular uptake and metabolic utilization by means of the β-oxidative pathway. Our findings put forth the complexity of input signals that can converge to finely tune the activity of the PhoP/PhoQ system. In addition, they provide a new potential biochemical platform for the development of antibacterial strategies to fight against Salmonella infections. PMID:23782700

  8. Structures of the SEp22 dodecamer, a Dps-like protein from Salmonella enterica subsp. enterica serovar Enteritidis

    PubMed Central

    Miyamoto, Takanori; Asahina, Yasuko; Miyazaki, Shohei; Shimizu, Hidetoshi; Ohto, Umeharu; Noguchi, Shuji; Satow, Yoshinori

    2011-01-01

    The crystal structure of SEp22, a DNA-binding protein from starved cells from Salmonella enterica subsp. enterica serovar Enteritidis, has been determined in two forms: the native state at 1.25 Å resolution and an iron-soaked form at 1.30 Å resolution. The SEp22 protomers form a dodecameric shell with 23 symmetry and a single iron ion per protomer was found at the ferroxidase centre in the iron-soaked form. Along the threefold axes of the 23 symmetry, hydrophilic Asp channels that consist of Asp146 were found. Iron ions may flow into the cavity of the dodecameric shell through the Asp channels. PMID:21206015

  9. Detection of Salmonella enterica in pigs at slaughter and comparison with human isolates in Italy.

    PubMed

    Bonardi, Silvia; Alpigiani, Irene; Bruini, Ilaria; Barilli, Elena; Brindani, Franco; Morganti, Marina; Cavallini, Pierugo; Bolzoni, Luca; Pongolini, Stefano

    2016-02-01

    In 2013-2014, 201 pigs belonging to 67 batches were tested for Salmonella in their mesenteric lymph nodes (MLN) in one abattoir of Northern Italy. For each batch, faecal material was collected at lairage by swabbing the pen floor for approximately 1600 cm(2). The aim of this study was to investigate the prevalence of Salmonella in MLN of pigs at slaughter, to assess Salmonella contamination at lairage and to evaluate the effect of lairage duration on its prevalence. Serotyping, XbaI PFGE typing and antimicrobial testing of the isolates were performed. Pig and human Salmonella isolates of the same region of Italy were compared to evaluate possible correlations. Salmonella enterica was isolated from 19.9% of the MLN and 49.3% of the environmental faecal samples. Nine different serovars were identified among 75 S. enterica isolates. In MLN Salmonella Derby was the most common (52.5%), followed by S. enterica 4,[5],12:i:- (17.5%) and Salmonella Rissen (10.0%). In faecal samples S. Derby was prevalent (51.4%), followed by S. enterica 4,[5], 12:i:- (20.0%) and Salmonella Brandenburg (14.3%). Lairage holding varied between 1 and ≥ 12 h (median value: 2.5h). In pigs held for 1-3h, 14.1% were positive for Salmonella in MLN but the prevalence reached 31.8% when they were held for ≥ 12 h. The contamination of MLN was statistically different (p=0.0045) between the two groups, thus confirming the role of long-lasting lairage in Salmonella contamination of pigs. XbaI PFGE typing detected 36 PFGE types. Twenty-three PFGE types were identified among the 40 MLN isolates and 22 PFGE types among the 35 faecal isolates. A total of 11 PFGE types were shared between the MLN of pigs and the lairage environment. Among S. Derby, 6 shared PFGE types between MLN and faeces were found and among S. enterica 4,[5],12:i:- one PFGE type was common between MLN and the faecal samples. Shared profiles between human and swine isolates of S. Derby, S. enterica 4,[5],12:i:-, S. Rissen, Salmonella

  10. A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Senftenberg grown at acidic conditions.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2009-11-01

    Acid and heat inactivation in orange and apple juices of Salmonella enterica serovar Typhimurium Colección Española de Cultivos Tipo (i.e., Spanish Type Culture Collection) 443 (CECT 443) (Salmonella Typhimurium) and S. enterica serovar Senftenberg CECT 4384 (Salmonella Senftenberg) grown in buffered brain heart infusion (pH 7.0) and acidified brain heart infusion up to pH 4.5 with acetic, citric, lactic, and hydrochloric acids was evaluated. Acid adaptation induced an adaptive response that increased the subsequent resistance to extreme pH conditions (pH 2.5) and to heat, although the magnitude of these responses differed between the two isolates and fruit juices. The acid resistance in orange juice for acid-adapted cells (D-values of 28.3-34.5 min for Salmonella Senftenberg and 30.0-39.2 min for Salmonella Typhimurium) resulted to be about two to three times higher than that corresponding to non-acid-adapted cells. In apple juice, acid-adapted Salmonella Senftenberg cells survived better than those of Salmonella Typhimurium, obtaining mean D-values of 114.8 +/- 12.3 and 41.9 +/- 2.5 min, respectively. The thermotolerance of non-acid-adapted Salmonella Typhimurium in orange (D(58)-value: 0.028 min) and apple juices (D(58)-value: 0.10 min) was approximately double for acid-adapted cells. This cross-protection to heat was more strongly expressed in Salmonella Senftenberg. D(58)-values obtained for non-acid-adapted cells in orange (0.11 min) and apple juices (0.19 min) increased approximately 10 and 5 times, respectively, after their growth in acidified media. The conditions prevailing during bacterial growth and heat treatment did not significantly influence the z-values observed (6.0 +/- 0.3 degrees C for Salmonella Typhimurium and 7.0 +/- 0.3 degrees C for Salmonella Senftenberg). The enhanced acid resistance found for both isolates could enable them to survive for prolonged time periods in the gastrointestinal tract, increasing the risk of illness. Further, it

  11. Salmonella enterica Burden in Harvest-Ready Cattle Populations from the Southern High Plains of the United States▿

    PubMed Central

    Kunze, David J.; Loneragan, Guy H.; Platt, Tammy M.; Miller, Mark F.; Besser, Thomas E.; Koohmaraie, Mohammad; Stephens, Tyler; Brashears, Mindy M.

    2008-01-01

    Our objectives were to quantify the Salmonella enterica burdens in harvest-ready cattle and to identify specific at-risk populations of cattle most likely to harbor multiply resistant S. enterica. Hide swabs were collected in abattoirs from three cohorts of cattle (feedlot origin cattle that had achieved desirable harvest characteristics and dairy- and beef-type cows harvested because of poor productivity). Feces were collected from two cohorts housed in feedlots (cattle that had achieved desirable harvest characteristics and animals identified for salvage recovery because of poor productivity). Facilities were visited on four occasions over a 12-month period. Salmonella enterica isolates were recovered, and organisms were quantified using standard microbiological methodologies. Susceptibility to antimicrobial drugs and serotype were determined for one S. enterica isolate per sample. Salmonella enterica was recovered from 55.6% of 1,681 samples. The prevalences on hides and in feces were 69.6% and 30.3%, respectively. The concentrations of S. enterica organisms averaged (as determined by the most probable number technique) 1.82 log10/100 cm2 of hides and 0.75 log10/g of feces. None of the isolates recovered from cattle that had achieved desirable harvest characteristics were resistant to four or more drugs. For isolates recovered from animals with poor productivity characteristics, 6.5% were resistant to four or more drugs. Twenty-two serovars were identified, with the most common being Salmonella enterica serovar Anatum (25.5%), Salmonella enterica serovar Montevideo (22.2%), and Salmonella enterica serovar Cerro (12.5%). High-level resistance, i.e., resistance to four or more drugs, was clustered within a few relatively uncommon serovars. These results demonstrate that even though S. enterica isolates are readily recoverable from harvest-ready cattle, multiply resistant variants are rare and are associated with specific serovars in cattle harvested because of

  12. Increased Persistence of Salmonella enterica Serovar Typhi in the Presence of Acanthamoeba castellanii▿

    PubMed Central

    Douesnard-Malo, Frédéric; Daigle, France

    2011-01-01

    Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of the systemic disease typhoid fever. Transmission occurs via ingestion of contaminated food or water. S. Typhi is specific to humans, and no animal or environmental reservoirs are known. As the free-living amoeba Acanthamoeba castellanii is an environmental host for many pathogenic bacteria, this study investigates interactions between S. Typhi and A. castellanii by using cocultures. Growth of both organisms was estimated by cell count, viable count, flow cytometry, and fluorescence microscopy. Results indicate that S. Typhi can survive at least 3 weeks when grown with A. castellanii, as opposed to less than 10 days when grown as singly cultured bacteria under the same conditions. Interestingly, growth rates of amoebae after 14 days were similar in cocultures or when amoebae were singly cultured, suggesting that S. Typhi is not cytotoxic to A. castellanii. Bacteria surviving in coculture were not intracellular and did not require a physical contact with amoebae for their survival. These results suggest that S. Typhi may have a selective advantage when it is associated with A. castellanii and that amoebae may contribute to S. Typhi persistence in the environment. PMID:21926221

  13. Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, ...

  14. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars

    PubMed Central

    Di Cesare, Andrea; Losasso, Carmen; Barco, Lisa; Eckert, Ester M.; Conficoni, Daniele; Sarasini, Giulia; Corno, Gianluca; Ricci, Antonia

    2016-01-01

    Type II Toxin-Antitoxin systems (TAs), known for their presence in virulent and antibiotic resistant bacterial strains, were recently identified in Salmonella enterica isolates. However, the relationships between the presence of TAs (ccdAB and vapBC) and the epidemiological and genetic features of different non-typhoidal Salmonella serovars are largely unknown, reducing our understanding of the ecological success of different serovars. Salmonella enterica isolates from different sources, belonging to different serovars and epidemiologically unrelated according to ERIC profiles, were investigated for the presence of type II TAs, plasmid content, and antibiotic resistance. The results showed the ubiquitous presence of the vapBC gene in all the investigated Salmonella isolates, but a diverse distribution of ccdAB, which was detected in the most widespread Salmonella serovars, only. Analysis of the plasmid toxin ccdB translated sequence of four selected Salmonella isolates showed the presence of the amino acid substitution R99W, known to impede in vitro the lethal effect of CcdB toxin in the absence of its cognate antitoxin CcdA. These findings suggest a direct role of the TAs in promoting adaptability and persistence of the most prevalent Salmonella serovars, thus implying a wider eco-physiological role for these type II TAs. PMID:27357537

  15. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars.

    PubMed

    Di Cesare, Andrea; Losasso, Carmen; Barco, Lisa; Eckert, Ester M; Conficoni, Daniele; Sarasini, Giulia; Corno, Gianluca; Ricci, Antonia

    2016-01-01

    Type II Toxin-Antitoxin systems (TAs), known for their presence in virulent and antibiotic resistant bacterial strains, were recently identified in Salmonella enterica isolates. However, the relationships between the presence of TAs (ccdAB and vapBC) and the epidemiological and genetic features of different non-typhoidal Salmonella serovars are largely unknown, reducing our understanding of the ecological success of different serovars. Salmonella enterica isolates from different sources, belonging to different serovars and epidemiologically unrelated according to ERIC profiles, were investigated for the presence of type II TAs, plasmid content, and antibiotic resistance. The results showed the ubiquitous presence of the vapBC gene in all the investigated Salmonella isolates, but a diverse distribution of ccdAB, which was detected in the most widespread Salmonella serovars, only. Analysis of the plasmid toxin ccdB translated sequence of four selected Salmonella isolates showed the presence of the amino acid substitution R99W, known to impede in vitro the lethal effect of CcdB toxin in the absence of its cognate antitoxin CcdA. These findings suggest a direct role of the TAs in promoting adaptability and persistence of the most prevalent Salmonella serovars, thus implying a wider eco-physiological role for these type II TAs. PMID:27357537

  16. Metabolic parameters linked by Phenotype MicroArray to acid resistance profiles of poultry-associated Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotype microarrays were analyzed for 51 datasets derived from Salmonella enterica. The top 4 serovars associated with poultry products and one associated with turkey, respectively Typhimurium, Enteritidis, Heidelberg, Infantis and Senftenberg, were represented. Datasets were clustered into two ...

  17. Assessing the prevalence of Salmonella enterica in poultry hatcheries by using hatched eggshell membranes.

    PubMed

    Chao, M-R; Hsien, C-H; Yeh, C-M; Chou, S-J; Chu, C; Su, Y-C; Yu, C-Y

    2007-08-01

    Salmonella enterica causes a number of significant poultry diseases and is also a major pathogen in humans. Most poultry infected by Salmonella become carriers; infection may also be fatal, depending on the particular serovar and the age of the bird at infection. Younger birds are more susceptible to infection by Salmonella, so it is critical that hatcheries monitor birds. We developed a method to use hatched eggshell membranes (HEM) to assess contamination by Salmonella in poultry hatching cabinets and to evaluate the prevalence of Salmonella in a goose hatchery and rearing farm. Comparison of the Salmonella isolation rate in hatching cabinets using 3 sampling methods showed that the highest Salmonella contamination was detected in HEM, and that these results differed significantly from those obtained from fluff samples and cabinet swab samples (P < 0.05). Analysis of HEM was also used to evaluate Salmonella contamination in goose, chicken, and duck hatcheries. The lowest Salmonella-positive rate was found for the chicken hatchery, followed by the goose and the duck hatcheries (P < 0.05). Six serogroups of Salmonella were detected in the 3 hatcheries: A, B, C1, C2, D, and E. The distribution of these serogroups differed among the hatcheries. Salmonella serogroup C1 was the major serogroup found in geese, compared with serogroup B in chickens and ducks. However, Salmonella Typhimurium was dominant in 1 goose hatchery and also in geese from this hatchery that had been transferred to a farm. Antibiotic susceptibility analysis showed that Salmonella Typhimurium strains isolated from the farm geese with diarrhea showed significantly higher resistance to doxycycline, colistin, sulfamethoxazole-trimethoprin, and cephalothin than those isolated from the hatchery (P < 0.05). Therefore, HEM as a detection target can be used to monitor Salmonella contamination in hatching cabinets and also be used to assess Salmonella prevalence in poultry hatcheries and rearing farms. PMID

  18. Changes in the Porcine Intestinal Microbiome in Response to Infection with Salmonella enterica and Lawsonia intracellularis

    PubMed Central

    Singer, Randall S.; Gebhart, Connie J.; Sreevatsan, Srinand; Johnson, Timothy; Isaacson, Richard E.

    2015-01-01

    Salmonella enterica is a leading cause of food borne illness. Recent studies have shown that S. enterica is a pathogen capable of causing alterations to the composition of the intestinal microbiome. A recent prospective study of French pork production farms found a statistically significant association between Lawsonia intracellularis and carriage of S. enterica. In the current study the composition of the gut microbiome was determined in pigs challenged with S. enterica serovar Typhimurium and or L. intracellularis and compared to non-challenged control pigs. Principal coordinate analysis demonstrated that there was a disruption in the composition of the gut microbiome in the colon and cecum of pigs challenged with either pathogen. The compositions of the microbiomes of challenged pigs were similar to each other but differed from the non-challenged controls. There also were statistically significant increases in Anaerobacter, Barnesiella, Pediococcus, Sporacetigenium, Turicibacter, Catenibacterium, Prevotella, Pseudobutyrivibrio, and Xylanibacter in the challenged pigs. To determine if these changes were specific to experimentally challenged pigs, we determined the compositions of the fecal microbiomes of naturally infected pigs that were carriers of S. enterica. Pigs that were frequent shedders of S. enterica were shown to have similar fecal microbiomes compared to non-shedders or pigs that shed S. enterica infrequently. In a comparison of the differentially abundant bacteria in the naturally infected pigs compared to experimentally challenged pigs, 9 genera were differentially abundant and each exhibited the same increase or decrease in abundance between the two groups. Thus, there were similar changes in the GI microbiome associated with carriage of S. enterica regardless of whether the pigs were experimentally challenged with S. enterica or acquired it naturally. PMID:26461107

  19. Changes in the Porcine Intestinal Microbiome in Response to Infection with Salmonella enterica and Lawsonia intracellularis.

    PubMed

    Borewicz, Klaudyna A; Kim, Hyeun Bum; Singer, Randall S; Gebhart, Connie J; Sreevatsan, Srinand; Johnson, Timothy; Isaacson, Richard E

    2015-01-01

    Salmonella enterica is a leading cause of food borne illness. Recent studies have shown that S. enterica is a pathogen capable of causing alterations to the composition of the intestinal microbiome. A recent prospective study of French pork production farms found a statistically significant association between Lawsonia intracellularis and carriage of S. enterica. In the current study the composition of the gut microbiome was determined in pigs challenged with S. enterica serovar Typhimurium and or L. intracellularis and compared to non-challenged control pigs. Principal coordinate analysis demonstrated that there was a disruption in the composition of the gut microbiome in the colon and cecum of pigs challenged with either pathogen. The compositions of the microbiomes of challenged pigs were similar to each other but differed from the non-challenged controls. There also were statistically significant increases in Anaerobacter, Barnesiella, Pediococcus, Sporacetigenium, Turicibacter, Catenibacterium, Prevotella, Pseudobutyrivibrio, and Xylanibacter in the challenged pigs. To determine if these changes were specific to experimentally challenged pigs, we determined the compositions of the fecal microbiomes of naturally infected pigs that were carriers of S. enterica. Pigs that were frequent shedders of S. enterica were shown to have similar fecal microbiomes compared to non-shedders or pigs that shed S. enterica infrequently. In a comparison of the differentially abundant bacteria in the naturally infected pigs compared to experimentally challenged pigs, 9 genera were differentially abundant and each exhibited the same increase or decrease in abundance between the two groups. Thus, there were similar changes in the GI microbiome associated with carriage of S. enterica regardless of whether the pigs were experimentally challenged with S. enterica or acquired it naturally. PMID:26461107

  20. Cross-sectional study examining Salmonella enterica carriage in subiliac lymph nodes of cull and feedlot cattle at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine peripheral lymph nodes (LNs), including subiliac LNs, have been identified as a potential source of human exposure to Salmonella enterica, when adipose trim containing these nodes is incorporated into ground beef. In order to gain a better understanding of the burden of S. enterica in periphe...

  1. Characterization of tetracycline resistance in Salmonella enterica strains recovered from irrigation water in the Culiacan Valley, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is one of the most important pathogens responsible for gastrointestinal infections in humans. The increase of S. enterica strains showing resistance against antibiotics has resulted in limiting the effective treatment of human infections. The present study characterized the resi...

  2. Salmonella enterica serovar Kentucky isolates from dairy cows and poultry demonstrate different evolutionary histories and host-specific polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. enterica serovar Kentucky is commonly isolated from dairy cows and poultry in the United States. Although it is not among the most frequently isolated serovars from cases of human salmonellosis, its high prevalence in livestock and poultry indicate it is a potential public...

  3. Cross-sectional study examining Salmonella enterica carriage in subiliac lymph nodes of cull and feedlot cattle at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine peripheral lymph nodes, including subiliac lymph nodes, have been identified as a potential source of human exposure to Salmonella enterica when trim containing these nodes is incorporated into ground beef. In order to gain a better understanding of the burden of S. enterica in subiliac lymp...

  4. Occurrence of antimicrobial-resistant Escherichia coli and Salmonella enterica in the beef cattle production and processing continuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific concerns have been raised that 3rd-generation cephalosporin-resistant (3GCr) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr) E. coli, 3GCr Salmonella enterica, and nalidixic acid-resistant (NALr) S. enterica, may be present in cattle production environments, persist through...

  5. Role of Salmonella enterica exposure in Chilean Crohn's disease patients

    PubMed Central

    Alvarez-Lobos, Manuel; Pizarro, Daniela P; Palavecino, Christian E; Espinoza, Abner; Sebastián, Valentina P; Alvarado, Juan C; Ibañez, Patricio; Quintana, Carlos; Díaz, Orlando; Kalergis, Alexis M; Bueno, Susan M

    2013-01-01

    AIM: To study the association between exposure to Salmonella enterica (SE) and Crohn’s disease (CD) and its clinical implications in Chilean patients. METHODS: Ninety-four unrelated Chilean CD patients from CAREI (Active Cohort Registry of Inflammatory Bowel Disease) presenting to a single inflammatory bowel disease (IBD) unit of a University Hospital were prospectively included in this study. A complete clinical evaluation, including smoking history, was performed at the initial visit, and all the important data of clinical evolution of CD were obtained. Blood samples from these CD patients and 88 healthy sex- and age-matched control subjects were analyzed for exposure to SE and for their NOD2/CARD15 gene status using the presence of anti-Salmonella lipopolysaccharide antibodies [immunoglobulin-G type (IgG)] and polymerase chain reaction (PCR), respectively. We also evaluated exposure to SE in 90 sex- and age-matched patients without CD, but with known smoking status (30 smokers, 30 non-smokers, and 30 former smokers). RESULTS: CD patients comprised 54 females and 40 males, aged 35.5 ± 15.2 years at diagnosis with a mean follow-up of 9.0 ± 6.8 years. CD was inflammatory in 59 patients (62.7%), stricturing in 24 (25.5%) and penetrating in 15 (15.5%). Thirty cases (31.9%) had lesions in the ileum, 29 (30.8%) had ileocolonic lesions, 32 (34.0%) had colonic lesions and 23 (24.4%) had perianal disease. Sixteen CD patients (17%) were exposed to SE compared to 15 (17%) of 88 healthy control subjects (P = 0.8). Thirty-one CD patients (32.9%) were smokers, and 7 (7.4%) were former smokers at diagnosis. In the group exposed to SE, 10 of 16 patients (62.5%) were active smokers compared to 21 of 78 patients (26.9%) in the unexposed group (P = 0.01). On the other hand, 10 of 31 smoking patients (32%) were exposed to SE compared to 5 of 56 nonsmoking patients (9%), and one of the seven former smokers (14%) (P = 0.01). In the group of 90 patients without CD, but whose

  6. Real-time FRET PCR assay for Salmonella enterica serotype detection in food.

    PubMed

    Olsen, Eric V; Gibbins, Carl S; Grayson, J Kevin

    2009-09-01

    Salmonella enterica subsp. enterica serotypes are leading etiological agents of food-borne gastroenteritis. Traditional identification is laborious and time intensive. Faster molecular methods may allow early identification in contaminated food products. We developed a real-time, fluorescence resonance energy transfer hybridization probe polymerase chain reaction (PCR) assay for S. enterica serotypes on the basis of the exclusive presence of the apeE gene in Salmonella Typhimurium. Assay sensitivity for 12 S. enterica serotypes was as low as 1.87 x 10(2) genomic equivalents per milliliter. PCR efficiency was 94% and the dynamic range was linear over six orders of magnitude from 10(0) to 10(6) copies. The lower limit of detection for 12 different food matrices was between 1.5 x 10(2) and 1.5 x 10(5) CFU/mL without pre-enrichment. When combined with high-throughput automated DNA extraction, 32 food specimens were processed and assayed in less than 2 hours, allowing rapid, specific, sensitive detection of S. enterica serotypes in food products. PMID:19780376

  7. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  8. Inactivation of Salmonella enterica by UV-C Light Alone and in Combination with Mild Temperatures

    PubMed Central

    Gayán, E.; Serrano, M. J.; Raso, J.; Álvarez, I.

    2012-01-01

    The aim of this investigation was to study the efficacy of the combined processes of UV light and mild temperatures for the inactivation of Salmonella enterica subsp. enterica and to explore the mechanism of inactivation. The doses to inactivate the 99.99% (4D) of the initial population ranged from 18.03 (Salmonella enterica serovar Typhimurium STCC 878) to 12.75 J ml−1 (Salmonella enterica serovar Enteritidis ATCC 13076). The pH and water activity of the treatment medium did not change the UV tolerance, but it decreased exponentially by increasing the absorption coefficient. An inactivating synergistic effect was observed by applying simultaneous UV light and heat treatment (UV-H). A less synergistic effect was observed by applying UV light first and heat subsequently. UV did not damage cell envelopes, but the number of injured cells was higher after a UV-H treatment than after heating. The synergistic effect observed by combining simultaneous UV and heat treatment opens the possibility to design combined treatments for pasteurization of liquid food with high UV absorptivity, such as fruit juices. PMID:23001665

  9. A Lactobacillus acidophilus strain of human gastrointestinal microbiota origin elicits killing of enterovirulent Salmonella enterica Serovar Typhimurium by triggering lethal bacterial membrane damage.

    PubMed

    Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L

    2005-10-01

    The human gastrointestinal microbiota produces antagonistic activities against gastrointestinal bacterial pathogens. We undertook a study to investigate the mechanism(s) by which a Lactobacillus acidophilus strain of human microbiota origin antagonizes the gram-negative enteroinvasive pathogen Salmonella enterica serovar Typhimurium. We showed that the cell-free culture supernatant of L. acidophilus strain LB (LB-CFCS) induced the following effects in S. enterica SL1344: (i) a decrease in intracellular ATP that paralleled bacterial death, (ii) the release of lipopolysaccharide, (iii) permeabilization of the bacterial membrane, and (iv) an increase in the sensitivity of Salmonella to the lytic action of sodium dodecyl sulfate. Finally, we showed using two mutant strains of Salmonella, PhoP MS7953s and PmrA JKS1170, that the two-component regulatory systems PhoP-PhoQ and PmrA-PmrB that regulate the mechanisms of resistance to antibacterial agents in Salmonella did not influence the anti-Salmonella effect of LB-CFCS. PMID:16204528

  10. First Case of Lung Abscess due to Salmonella enterica Serovar Abony in an Immunocompetent Adult Patient.

    PubMed

    Pitiriga, Vassiliki; Dendrinos, John; Nikitiadis, Emanuel; Vrioni, Georgia; Tsakris, Athanassios

    2016-01-01

    In healthy individuals, nontyphoidal Salmonella species predominantly cause a self-limited form of gastroenteritis, while they infrequently invade or cause fatal disease. Extraintestinal manifestations of nontyphoidal Salmonella infections are not common and mainly occur among individuals with specific risk factors; among them, focal lung infection is a rare complication caused by nontyphoidal Salmonella strains typically occurring in immunocompromised patients with prior lung disease. We describe the first case of a localized lung abscess formation in an immunocompetent healthy female adult due to Salmonella enterica serovar Abony. The patient underwent lobectomy and was discharged after full clinical recovery. This case report highlights nontyphoidal Salmonellae infections as a potential causative agent of pleuropulmonary infections even in immunocompetent healthy adults. PMID:27429814

  11. Survival of Salmonella enterica in Aerated and Nonaerated Wastewaters from Dairy Lagoons

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.

    2014-01-01

    Salmonella is the most commonly identified foodborne pathogen in produce, meat and poultry. Cattle are known reservoirs of Salmonella and the pathogen excreted in feces ends up in manure flush lagoons. Salmonella enterica survival was monitored in wastewater from on-site holding lagoons equipped or not with circulating aerators at two dairies. All strains had poor survival rates and none proliferated in waters from aerated or settling lagoons. Populations of all three Salmonella serovars declined rapidly with decimal reduction times (D) of <2 days in aerated microcosms prepared from lagoon equipped with circulators. Populations of Salmonella decreased significantly in aerated microcosms (D = 4.2 d) compared to nonaerated waters (D = 7.4 d) and in summer (D = 3.4 d) compared to winter (D = 9.0 d). We propose holding the wastewater for sufficient decimal reduction cycles in lagoons to yield pathogen-free nutrient-rich water for crop irrigations and fertilization. PMID:25358096

  12. First Case of Lung Abscess due to Salmonella enterica Serovar Abony in an Immunocompetent Adult Patient

    PubMed Central

    Dendrinos, John; Nikitiadis, Emanuel; Vrioni, Georgia; Tsakris, Athanassios

    2016-01-01

    In healthy individuals, nontyphoidal Salmonella species predominantly cause a self-limited form of gastroenteritis, while they infrequently invade or cause fatal disease. Extraintestinal manifestations of nontyphoidal Salmonella infections are not common and mainly occur among individuals with specific risk factors; among them, focal lung infection is a rare complication caused by nontyphoidal Salmonella strains typically occurring in immunocompromised patients with prior lung disease. We describe the first case of a localized lung abscess formation in an immunocompetent healthy female adult due to Salmonella enterica serovar Abony. The patient underwent lobectomy and was discharged after full clinical recovery. This case report highlights nontyphoidal Salmonellae infections as a potential causative agent of pleuropulmonary infections even in immunocompetent healthy adults. PMID:27429814

  13. Effect of the O-antigen length of lipopolysaccharide on the functions of Type III secretion systems in Salmonella enterica.

    PubMed

    Hölzer, Stefanie U; Schlumberger, Markus C; Jäckel, Daniela; Hensel, Michael

    2009-12-01

    The virulence of Salmonella enterica critically depends on the functions of two type III secretion systems (T3SS), with the Salmonella pathogenicity island 1 (SPI1)-encoded T3SS required for host cell invasion and the SPI2-T3SS enabling Salmonella to proliferate within host cells. A further T3SS is required for the assembly of the flagella. Most serovars of Salmonella also possess a lipopolysaccharide with a complex O-antigen (OAg) structure. The number of OAg units attached to the core polysaccharide varies between 16 and more than 100 repeats, with a trimodal distribution. This work investigated the correlation of the OAg length with the functions of the SPI1-T3SS and the SPI2-T3SS. We observed that the number of repeats of OAg units had no effect on bacterial motility. The interaction of Salmonella with epithelial cells was altered if the OAg structure was changed by mutations in regulators of OAg. Strains defective in synthesis of very long or long and very long OAg species showed increased translocation of a SPI1-T3SS effector protein and increased invasion. Invasion of a strain entirely lacking OAg was increased, but this mutant strain also showed increased adhesion. In contrast, translocation of a SPI2-T3SS effector protein and intracellular replication were not affected by modification of the OAg length. Mutant strains lacking the entire OAg or long and very long OAg were highly susceptible to complement killing. These observations indicate that the architecture of the outer membrane of Salmonella is balanced to permit sufficient T3SS function but also to confer optimal protection against antimicrobial defense mechanisms. PMID:19797066

  14. Complete genome sequence of Salmonella enterica serovar typhimurium bacteriophage SPN1S.

    PubMed

    Shin, Hakdong; Lee, Ju-Hoon; Lim, Jeong-A; Kim, Hyeryen; Ryu, Sangryeol

    2012-01-01

    To understand the interaction between the host of pathogenic Salmonella enterica serovar Typhimurium and its bacteriophage, we isolated the bacteriophage SPN1S. It is a lysogenic phage in the Podoviridae family and uses the O-antigen of lipopolysaccharides (LPS) as a host receptor. Comparative genomic analysis of phage SPN1S and the S. enterica serovar Anatum-specific phage ε15 revealed different host specificities, probably due to the low homology of host specificity-related genes. Here we report the complete circular genome sequence of S. Typhimurium-specific bacteriophage SPN1S and show the results of our analysis. PMID:22205721

  15. Molecular characterization of Salmonella enterica isolates associated with starling-livestock interactions.

    PubMed

    Carlson, James C; Hyatt, Doreene R; Bentler, Kevin; Mangan, Anna M; Russell, Michael; Piaggio, Antoinette J; Linz, George M

    2015-08-31

    Bird-livestock interactions have been implicated as potential sources for bacteria within concentrated animal feeding operations (CAFO). In this study we characterized XbaI-digested genomic DNA from Salmonella enterica using pulsed-field gel electrophoresis (PFGE). The PFGE analysis was conducted using 182 S. enterica isolates collected from a single CAFO between 2009 and 2012. Samples collected in 2012 were subjected to antimicrobial susceptibility testing. The analysis was limited to S. enterica serotypes, with at least 10 isolates, known to occur in both European starlings (Sturnus vulgaris) and cattle (Bos taurus) within this CAFO. A total of five different serotypes were screened; S. Anatum, S. Kentucky, S. Meleagridis, S. Montevideo, S. Muenchen. These samples were recovered from five different sample types; starling gastrointestinal tracts (GI), starling external wash, cattle feces, cattle feed and cattle water troughs. Indistinguishable S. enterica PFGE profiles were recovered from isolates originating in all sample types. Antimicrobial resistance (AMR) was also associated with indistinguishable S. enterica isolates recovered from all samples types. These data suggests that AMR S. enterica is transmitted between cattle and starlings and that shared feed sources are likely contributing to infections within both species. Moreover we isolated indistinguishable PFGE profiles across all years of data collection, suggesting long-term environmental persistence may be mediated by starling visits to CAFO. PMID:25866128

  16. Complete Genome Sequence of Salmonella enterica subsp. enterica Serovar Indiana C629, a Carbapenem-Resistant Bacterium Isolated from Chicken Carcass in China

    PubMed Central

    Liu, Feng; Peng, Zixin; Li, Fengqin

    2016-01-01

    The carbapenem-resistant Salmonella enterica subsp. enterica serovar Indiana strain C629 was isolated from a chicken carcass collected from a slaughterhouse in Qingdao, China. The complete genome sequence of C629 contains a circular 4,791,723-bp chromosome and a circular 210,106-bp plasmid. Genes involved in carbapenem resistance of this bacterium were identified by whole-genome analysis. PMID:27417837

  17. Identification of Key Genes in the Response to Salmonella enterica Enteritidis, Salmonella enterica Pullorum, and Poly(I:C) in Chicken Spleen and Caecum

    PubMed Central

    Sheng, Zhongwei; Dai, Aiqin; Zhai, Fei; Li, Jianchao; Xia, Mingxiu; Hua, Dengke; Xu, Lu; Wang, Hongzhi; Chen, Jing; Liu, Lu; Chen, Guohong

    2014-01-01

    Salmonella enterica Enteritidis (S. Enteritidis) and Salmonella enterica Pullorum (S. pullorum) are regarded as a threat to poultry production. This study's aim is to characterize the expression profiles in response to three different challenges and to identify infection-related genes in the chicken spleen and caecum. Groups of the Chinese chicken breed Langshan were challenged with either S. Enteritidis, S. pullorum, or poly(I:C). The concentrations of cytokines and antibodies and the Salmonella colonization level of the caecum and liver were detected in each group at 7 days postinfection. Expression microarray experiments were conducted using mRNA isolated from both spleen and caecum. Crucial differentially expressed genes (DEGs) associated with immunity were identified. Four DEGs were identified in spleen of all three challenge groups (RBM16, FAH, SOX5, and RBM9) and different four genes in caecum (SOUL, FCN2, ANLN, and ACSL1). Expression profiles were clearly different among the three challenged groups. Genes enriched in the spleen of birds infected with S. pullorum were enriched in lymphocyte proliferation related pathways, but the enriched genes in the caecum of the same group were primarily enriched in innate immunity or antibacterial responses. The DEGs that appear across all three challenge groups might represent global response factors for different pathogens. PMID:24707473

  18. Molecular and Cellular Characterization of a Salmonella enterica Serovar Paratyphi A Outbreak Strain and the Human Immune Response to Infection

    PubMed Central

    Suez, Jotham; Elhadad, Dana; Porwollik, Steffen; Leshem, Eyal; Valinsky, Lea; McClelland, Michael; Schwartz, Eliezer; Rahav, Galia

    2012-01-01

    Enteric fever is an invasive life-threatening systemic disease caused by the Salmonella enterica human-adapted serovars Typhi and Paratyphi. Increasing incidence of infections with Salmonella enterica serovar Paratyphi A and the spreading of its antibiotic-resistant derivates pose a significant health concern in some areas of the world. Herein, we describe a molecular and phenotypic characterization of an S. Paratyphi A strain accounted for a recent paratyphoid outbreak in Nepal that affected at least 37 travelers. Pulsed-field gel electrophoresis analysis of the outbreak isolates revealed one genetic clone (pulsotype), confirming a single infecting source. Genetic profiling of the outbreak strain demonstrated the contribution of specific bacteriophages as a prime source of genetic diversity among clinical isolates of S. Paratyphi A. Phenotypic characterization in comparison with the S. Paratyphi A ATCC 9150 reference sequenced strain showed differences in flagellar morphology and increased abilities of the outbreak strain with respect to its motility, invasion into nonphagocytic cells, intracellular multiplication, survival within macrophages, and higher induction of interleukin-8 (IL-8) secreted by host cells. Collectively, these differences suggest an enhanced virulence potential of this strain and demonstrate an interesting phenotypic variation among S. Paratyphi A isolates. In vivo profiling of 16 inflammatory cytokines in patients infected with the outbreak strain revealed a common profile of a remarkable gamma interferon (IFN-γ) induction together with elevated concentrations of tumor necrosis factor alpha (TNF-α), IL-6, IL-8, IL-10, and IL-15, but not IL-12, which was previously demonstrated as elevated in nontyphoidal Salmonella infections. This apparent profile implies a distinct immune response to paratyphoid infections. PMID:22190395

  19. Quantification of the Sensitivity of Mycobacterium avium subsp paratuberculosis and Salmonella enterica subsp enterica to Low pH and High Organic Acids using Propidium Monoazide and Quantitative PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycobacterium avium subsp paratuberculosis (Map) and Salmonella enterica subsp enterica (S. enterica) are two pathogens that are a concern to food and animal safety due to their ability to withstand harsh conditions encountered in the natural environment and within the host during pathogenesis. Acid...

  20. Association between Indoor Environmental Contamination by Salmonella enterica and Contamination of Eggs on Layer Farms

    PubMed Central

    Gole, Vaibhav C.; Torok, Valeria; Sexton, Margaret; Caraguel, Charles G. B.

    2014-01-01

    This study involves longitudinal and point-in-time surveys of Salmonella carriage and environmental contamination on two commercial cage layer farms positive for Salmonella enterica subsp. enterica serovar Typhimurium (flock A age, 32 weeks; flock B age, 34 weeks). Salmonella-positive fecal, egg belt, and dust samples were all unconditionally associated with eggshells testing positive for Salmonella. The odds of an eggshell testing positive for Salmonella were 91.8, 61.5, and 18.2 times higher when fecal, egg belt, and dust samples, respectively, tested positive for Salmonella. The agreement between the culture-based methods and real-time PCR on preenriched broths for detecting Salmonella was almost perfect for eggshell (observed agreement, 99.19%; kappa coefficient, 0.94) and egg belt samples (observed agreement, 95%; kappa coefficient, 0.88), and it was substantial for fecal (observed agreement, 87.14%; kappa coefficient, 0.47) and floor dust samples (observed agreement, 80.61%; kappa coefficient, 0.58). A 1-log increase in the load of Salmonella detected in the fecal, egg belt, and floor dust samples resulted in 35%, 43%, and 45% increases, respectively (P < 0.001), in the odds of an eggshell testing positive for Salmonella. The multilocus variable-number tandem-repeat analysis (MLVA) patterns of the S. Typhimurium strains isolated from flock A were distinct from those of flock B. S. Typhimurium strains detected from human food poisoning cases exhibited an MLVA pattern similar to those of the strains isolated from flocks A and B. PMID:24966362

  1. PCR Method To Identify Salmonella enterica Serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella Isolates from the Blood of Patients with Clinical Enteric Fever▿

    PubMed Central

    Levy, Haim; Diallo, Souleymane; Tennant, Sharon M.; Livio, Sofie; Sow, Samba O.; Tapia, Milagritos; Fields, Patricia I.; Mikoleit, Matthew; Tamboura, Boubou; Kotloff, Karen L.; Lagos, Rosanna; Nataro, James P.; Galen, James E.; Levine, Myron M.

    2008-01-01

    PCR methodology was developed to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B. One multiplex PCR identifies serogroup D, A, and B and Vi-positive strains; another confirms flagellar antigen “d,” “a,” or “b.” Blinded testing of 664 Malian and Chilean Salmonella blood isolates demonstrated 100% sensitivity and specificity. PMID:18367574

  2. An rfaH mutant of Salmonella enterica serovar typhimurium is attenuated in swine and reduces intestinal colonization, fecal shedding, and disease severity due to virulent Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine are often asymptomatic carriers of Salmonella spp., and interventions are needed to limit colonization of swine to enhance food safety and reduce environmental contamination. We evaluated the attenuation and potential vaccine use in pigs of a Salmonella enterica serovar Typhimurium mutant of r...

  3. Assignment of serotype to Salmonella enterica isolates obtained from poultry and their environment in southern Brazil

    PubMed Central

    Pulido-Landínez, M; Sánchez-Ingunza, R; Guard, J; do Nascimento, V Pinheiro

    2013-01-01

    To assess diversity of Salmonella enterica serotypes present in poultry and their environment from southern Brazil, the Kauffmann–White–Le Minor (KWL) scheme was used to serotype a total of 155 isolates. Isolates were then re-examined with nested PCR and sequencing of the dkgB-linked intergenic sequence ribotyping (ISR) region that assesses single nucleotide polymorphisms occurring around a 5S ribosomal gene. Serotypes identified were Heidelberg (40·6%), Enteritidis (34·2%), Hadar (8·4%), Typhimurium (3·9%), Gallinarum (3·2%), Agona (1·3%), Cerro (1·3%), Livingstone (1·3%), Infantis (0·6%), Isangi (0·6%), Mbandaka (0·6%), Montevideo (0·6%) and Senftenberg (0·6%). Three unique ISRs were detected from four strains. Day old chicks yielded only S. Enteritidis, whereas S. Heidelberg was most often associated with poultry carcasses. Overall agreement between KWL and ISR was 85·2%, with disagreement possibly due to the ability of ISR to detect mixtures of serotypes in culture. Overall, ISR provided more information than did KWL about the ecology of Salm. enterica on-farm. The O-antigen group D Salm. enterica serovars such as Pullorum, Gallinarum and Enteritidis appear susceptible to overgrowth by other serotypes. Significance and Impact of the Study Single nucleotide polymorphisms found in a group of poultry-associated Salmonella isolates from southern Brazil provided evidence of mixtures of serovar group D serotypes on-farm and in single samples from birds. This finding suggests that co-infection and interserotype competition of Salmonella enterica in poultry could impact the incidence of disease in animals or humans. In addition, unique serotypes were identified on-farm that escaped characterization by antibody typing. Application of cost-efficient and highly discriminatory genomic methods for assigning serotype may alter concepts about the epidemiology of Salm. enterica on-farm and in foods. PMID:23734786

  4. Inhibition of Salmonella enterica Biofilm Formation Using Small-Molecule Adenosine Mimetics

    PubMed Central

    Koopman, Jacob A.; Marshall, Joanna M.; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J.

    2014-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens. PMID:25313216

  5. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica.

    PubMed

    Poza-Carrion, Cesar; Suslow, Trevor; Lindow, Steven

    2013-04-01

    Although Salmonella enterica apparently has comparatively low epiphytic fitness on plants, external factors that would influence its ability to survive on plants after contamination would be of significance in the epidemiology of human diseases caused by this human pathogen. Viable population sizes of S. enterica applied to plants preinoculated with Pseudomonas syringae or either of two Erwinia herbicola strains was ≥10-fold higher than that on control plants that were not precolonized by such indigenous bacteria when assessed 24 to 72 h after the imposition of desiccation stress. The protective effect of P. fluorescens, which exhibited antibiosis toward S. enterica in vitro, was only ≈50% that conferred by other bacterial strains. Although S. enterica could produce small cellular aggregates after incubation on wet leaves for several days, and the cells in such aggregates were less susceptible to death upon acute dehydration than solitary cells (as determined by propidium iodide staining), most Salmonella cells were found as isolated cells when it was applied to leaves previously colonized by other bacterial species. The proportion of solitary cells of S. enterica coincident with aggregates of cells of preexisting epiphytic species that subsequently were judged as nonviable by viability staining on dry leaves was as much as 10-fold less than those that had landed on uncolonized portions of the leaf. Thus, survival of immigrant cells of S. enterica on plants appears to be strongly context dependent, and the presence of common epiphytic bacteria on plants can protect such immigrants from at least one key stress (i.e., desiccation) encountered on leaf surfaces. PMID:23506362

  6. Repeated isolation of Salmonella enterica Goverdhan, a very rare serovar, from Danish poultry surveillance samples.

    PubMed

    Pedersen, Karl; Sørensen, Gitte; Szabo, Istvan; Hächler, Herbert; Le Hello, Simon

    2014-12-01

    We report here the appearance of a very rare serovar of Salmonella, S. enterica subsp. enterica serovar Goverdhan, in routine Salmonella surveillance samples from Danish poultry production. S. Goverdhan was found on nine occasions: in one broiler breeder farm in October 2010, four broiler farms and one broiler breeder farm in June-September 2012, two broiler breeder flocks simultaneously in June 2013, and one layer flock in July 2013. The five isolates from 2012 and the three isolates from 2013 had identical pulsed-field gel electrophoresis profiles, whereas the profile of the isolate from 2010 deviated in a single band. It is the first time this serovar has been described in samples from poultry. The origin of the bacterium is still unknown, but it is suggested that it may have been a pseudo-outbreak caused by contaminated sampling material. PMID:25448451

  7. Involvement of a Salmonella Genomic Island 1 Gene in the Rumen Protozoan-Mediated Enhancement of Invasion for Multiple-Antibiotic-Resistant Salmonella enterica Serovar Typhimurium▿

    PubMed Central

    Carlson, Steve A.; Sharma, Vijay K.; McCuddin, Zoe P.; Rasmussen, Mark A.; Franklin, Sharon K.

    2007-01-01

    Multiple-antibiotic-resistant Salmonella enterica serotype Typhimurium is a food-borne pathogen that may be more virulent than related strains lacking the multiresistance phenotype. Salmonella enterica serotype Typhimurium phage type DT104 is the most prevalent of these multiresistant/hypervirulent strains. Multiresistance in DT104 is conferred by an integron structure, designated Salmonella genomic island 1 (SGI1), while we recently demonstrated DT104 hyperinvasion mediated by rumen protozoa (RPz) that are normal flora of cattle. Hyperinvasion was also observed in other Salmonella strains, i.e., other S. enterica serovar Typhimurium phage types and other S. enterica serovars, like S. enterica serovar Infantis, possessing SGI1, while DT104 strains lacking SGI1 were not hyperinvasive. Herein we attempted to identify SGI1 genes involved in the RPz-mediated hyperinvasion of Salmonella strains bearing SGI1. Transposon mutagenesis, coupled with a novel reporter system, revealed the involvement of an SGI1 gene previously designated SO13. Disruption of SO13 expression led to an abrogation of hyperinvasion as assessed by tissue culture invasion assays and by bovine challenge experiments. However, hyperinvasion was not observed in non-SGI1-bearing strains of Salmonella engineered to express SO13. That is, SO13 and another SGI1 gene(s) may coordinately upregulate invasion in DT104 exposed to RPz. PMID:17145942

  8. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Ott, C. M.; Mister, S. J.; Morrow, B. J.; Burns-Keliher, L.; Pierson, D. L.

    2000-01-01

    The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonella virulence.

  9. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ

    PubMed Central

    Gal-Mor, Ohad; Boyle, Erin C.; Grassl, Guntram A.

    2014-01-01

    Human infections by the bacterial pathogen Salmonella enterica represent major disease burdens worldwide. This highly ubiquitous species consists of more than 2600 different serovars that can be divided into typhoidal and non-typhoidal Salmonella (NTS) serovars. Despite their genetic similarity, these two groups elicit very different diseases and distinct immune responses in humans. Comparative analyses of the genomes of multiple Salmonella serovars have begun to explain the basis of the variation in disease manifestations. Recent advances in modeling both enteric fever and intestinal gastroenteritis in mice will facilitate investigation into both the bacterial- and host-mediated mechanisms involved in salmonelloses. Understanding the genetic and molecular mechanisms responsible for differences in disease outcome will augment our understanding of Salmonella pathogenesis, host immunity, and the molecular basis of host specificity. This review outlines the differences in epidemiology, clinical manifestations, and the human immune response to typhoidal and NTS infections and summarizes the current thinking on why these differences might exist. PMID:25136336

  10. Microarray-Based Detection of Salmonella enterica Serovar Enteritidis Genes Involved in Chicken Reproductive Tract Colonization

    PubMed Central

    Raspoet, R.; Appia-Ayme, C.; Shearer, N.; Martel, A.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R.; Thompson, A.

    2014-01-01

    Salmonella enterica serovar Enteritidis has developed the potential to contaminate table eggs internally, by colonization of the chicken reproductive tract and internalization in the forming egg. The serotype Enteritidis has developed mechanisms to colonize the chicken oviduct more successfully than other serotypes. Until now, the strategies exploited by Salmonella Enteritidis to do so have remained largely unknown. For that reason, a microarray-based transposon library screen was used to identify genes that are essential for the persistence of Salmonella Enteritidis inside primary chicken oviduct gland cells in vitro and inside the reproductive tract in vivo. A total of 81 genes with a potential role in persistence in both the oviduct cells and the oviduct tissue were identified. Major groups of importance include the Salmonella pathogenicity islands 1 and 2, genes involved in stress responses, cell wall, and lipopolysaccharide structure, and the region-of-difference genomic islands 9, 21, and 40. PMID:25281378

  11. Development of Microarray and Multiplex Polymerase Chain Reaction Assays for Identification of Serovars and Virulence Genes in Salmonella enterica of Human or Animal Origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is an important enteric pathogen consisting of many serotypes that can cause severe clinical diseases in animals and humans. Rapid identification of Salmonella isolates is especially important for epidemiological monitoring and controlling outbreaks of disease. Although immunolo...

  12. Differences in the motility phenotype of multidrug-resistant Salmonella enterica serovar Typhimurium exposed to various antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most prevalent foodborne-associated bacteria in humans and livestock, and over 35 per cent of these isolates are resistant to three or more antibiotics. This is a concern as multidrug-resistant (MDR) Salmonella has been associat...

  13. Identification of multidrug-resistant Salmonella enterica serovar typhimurium isolates that have an antibiotic-induced invasion phenotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multidrug-resistant (MDR) Salmonella is an important food safety issue in humans and animals. The National Antimicrobial Resistance Monitoring System (NARMS) has reported that 27.3% of Salmonella enterica serotype Typhimurium isolates in humans were resistant to three or more classes of antibiotics...

  14. First report of extended-spectrum-beta-lactamase-producing Salmonella enterica serovar Kentucky isolated from poultry in Ireland.

    PubMed

    Boyle, F; Morris, D; O'Connor, J; Delappe, N; Ward, J; Cormican, M

    2010-01-01

    Therapy of invasive human salmonellosis is complicated by increasing antimicrobial resistance. Food animals are the principal source of infection with nontyphoid Salmonella. We report the emergence of broad-spectrum-cephalosporin resistance in Salmonella enterica serovar Kentucky in poultry in Ireland. PMID:19884382

  15. Clinical Isolates of Salmonella enterica Serovar Agona Producing NDM-1 Metallo-β-Lactamase: First Report from Pakistan

    PubMed Central

    Khan, Erum; Jabeen, Kauser; Bhawan, Pushpa; Hopkins, Katie L.; Day, Martin; Nasir, Amna; Meunier, Daniele; Woodford, Neil

    2014-01-01

    We report two cases of infantile diarrhea due to multidrug-resistant, NDM-1 metallo-β-lactamase-producing Salmonella enterica serovar Agona from Pakistan. This study alerts toward possible risk of NDM-1 transmission to enteric fever pathogens and encourages microbiologists to consider active screening of carbapenem resistance in nontyphoidal Salmonella isolates. PMID:25378577

  16. Tetracycline accelerates the temporally-regulated invasion response in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Multidrug-resistant (MDR) Salmonella is associated with increased morbidity compared to antibiotic-sensitive strains and is an important health and safety concern in both humans and animals. Salmonella enterica serovar Typhimurium is a prevalent cause of foodborne disease, and a consider...

  17. High-throughput Molecular Determination of Salmonella enterica Serovars Use of Multiplex PCR and Capillary Electrophoresis Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is a zoonotic pathogen and is a leading cause of food-borne illness worldwide. There are over 2,500 serotypes of Salmonella reported. Identification of the serotype is key in defining the etiological agent during an outbreak investigation. In the current study, a high-throughput ...

  18. Evolutionary trends associated with niche specialization as modeled by whole genome analysis of egg-contaminating Salmonella enterica serovar Enteritidis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mosaic nature of the Salmonella enterica genome facilitates its access to multiple environments. Many large scale genomic events have been described that contribute to the combinatorial complexity of the pathogenic Salmonellae. However, the impact of small scale genetic change occurring at the ...

  19. Correlating Blood Immune Parameters and a CCT7 Genetic Variant with the Shedding of Salmonella enterica Serovar Typhimurium in Swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the current study, 40 crossbred pigs were intranasally inoculated with Salmonella enterica serovar Typhimurium and monitored for Salmonella fecal shedding and blood immune parameters at 2, 7, 14 and 20 days post-inoculation (dpi). Using a multivariate permutation test, a positive correlation was...

  20. Serotypes of Salmonella enterica Present in the Internal Organs of Mice Caught On-farm From 1995 – 1998.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Salmonella enterica is a persistent and pervasive pathogen that impacts the safety of the food supply, especially in regards to poultry and poultry products. The house mouse Mus musculus is a recognized risk factor for introduction on-farm. More information is needed about Salmonella serotypes tha...

  1. Population Dynamics of Salmonella enterica Serotypes in Commercial Egg and Poultry Production ▿

    PubMed Central

    Foley, Steven L.; Nayak, Rajesh; Hanning, Irene B.; Johnson, Timothy J.; Han, Jing; Ricke, Steven C.

    2011-01-01

    Fresh and processed poultry have been frequently implicated in cases of human salmonellosis. Furthermore, increased consumption of meat and poultry has increased the potential for exposure to Salmonella enterica. While advances have been made in reducing the prevalence and frequency of Salmonella contamination in processed poultry, there is mounting pressure on commercial growers to prevent and/or eliminate these human pathogens in preharvest production facilities. Several factors contribute to Salmonella colonization in commercial poultry, including the serovar and the infectious dose. In the early 1900s, Salmonella enterica serovars Pullorum and Gallinarum caused widespread diseases in poultry, but vaccination and other voluntary programs helped eradicate pullorum disease and fowl typhoid from commercial flocks. However, the niche created by the eradication of these serovars was likely filled by S. Enteritidis, which proliferated in the bird populations. While this pathogen remains a significant problem in commercial egg and poultry production, its prevalence among poultry has been declining since the 1990s. Coinciding with the decrease of S. Enteritidis, S. Heidelberg and S. Kentucky have emerged as the predominant serovars in commercial broilers. In this review, we have highlighted bacterial genetic and host-related factors that may contribute to such shifts in Salmonella populations in commercial poultry and intervention strategies that could limit their colonization. PMID:21571882

  2. Intermediate Susceptibility to Ciprofloxacin among Salmonella enterica Serovar Typhi Isolates in Lima, Peru

    PubMed Central

    Lejon, Veerle; Horna, Gertrudis; Astocondor, Lizeth; Vanhoof, Raymond; Bertrand, Sophie; Jacobs, Jan

    2014-01-01

    Thirty-three Salmonella enterica serovar Typhi blood isolates from Lima, Peru (2008 to 2012), were fully susceptible to trimethoprim-sulfamethoxazole, chloramphenicol, ceftriaxone, and tetracycline; 8/33 (24.2%) showed intermediate susceptibility to ciprofloxacin carrying mutations in the quinolone resistance-determining region of the gyrA gene (Ser83-Phe and Asp87-Asn) and in the gyrB gene (Ser464-Phe). PMID:24371234

  3. Multidrug-resistant Salmonella enterica serotype Typhi, Gulf of Guinea Region, Africa.

    PubMed

    Baltazar, Murielle; Ngandjio, Antoinette; Holt, Kathryn Elizabeth; Lepillet, Elodie; Pardos de la Gandara, Maria; Collard, Jean-Marc; Bercion, Raymond; Nzouankeu, Ariane; Le Hello, Simon; Dougan, Gordon; Fonkoua, Marie-Christine; Weill, François-Xavier

    2015-04-01

    We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid. PMID:25811307

  4. Multidrug-Resistant Salmonella enterica Serotype Typhi, Gulf of Guinea Region, Africa

    PubMed Central

    Baltazar, Murielle; Ngandjio, Antoinette; Holt, Kathryn Elizabeth; Lepillet, Elodie; Pardos de la Gandara, Maria; Collard, Jean-Marc; Bercion, Raymond; Nzouankeu, Ariane; Le Hello, Simon; Dougan, Gordon; Fonkoua, Marie-Christine

    2015-01-01

    We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid. PMID:25811307

  5. Mitsuokella jalaludinii inhibits growth of Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella continues to be a significant human health threat, and the objective of this study was to identify microorganisms with the potential to improve porcine food-safety through their antagonism of Salmonella. Anaerobic culture supernatants of 973 bacterial isolates from the gastrointestinal tr...

  6. Mitsuokella jalaludinii inhibits growth of Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella continues to be a significant human health threat, and the objective of this study was to identify microorganisms with the potential to improve porcine food-safety through their antagonism of Salmonella. Anaerobic culture supernates of 973 bacterial isolates from the gastrointestinal trac...

  7. Predicting Salmonella enterica serotypes by repetitive sequence-based PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repetitive extragenic palindromic sequence-based PCR (rep-PCR) utilizing a semi-automated system, was evaluated as a method to determine Salmonella serotypes. A group of 216 Salmonella isolates belonging to 13 frequently isolated serotypes and one rarer serotype from poultry were used to create a D...

  8. Experimental Salmonella Enterica Infection in Market-weight Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Market pigs infected with Salmonella pose a significant food safety risk by carrying the pathogen into abattoirs. A study was conducted to determine the dynamic of Salmonella infection in market-weight pigs (220-240 lbs.). Pigs (n=24) were individually inoculated (intranasally; 108 cfu/mL) with Salm...

  9. Salmonella enterica Serotype Dublin Infection: an Emerging Infectious Disease for the Northeastern United States

    PubMed Central

    McDonough, Patrick L.; Fogelman, David; Shin, Sang J.; Brunner, Michael A.; Lein, Donald H.

    1999-01-01

    Salmonella enterica subspecies enterica serotype Dublin (S. enterica Dublin) emerged for the first time in New York, Pennsylvania, and Ohio in 1988. Since that time this host-adapted serotype has spread throughout the veal- and dairy beef-raising operations in the region; very few dairy farms have experienced clinical S. enterica Dublin infections. This study details the epidemiology of the outbreaks in cattle. During the period 1988 through 1995, nine New York and four Pennsylvania counties have been affected; 13 different locations were involved in New York, and 10 were involved in Pennsylvania. The morbidity and mortality and seasonal distribution of outbreaks, which totaled 35, is described. The antimicrobial susceptibility pattern of isolates revealed that many of the strains were resistant to a number of commonly used drugs. Clinical case details and pathology information are provided, with a caution to clinicians and microbiologists presented with suspect animals, i.e., most cases occurred in older calves, which is atypical for salmonellosis for this region (calves were 8 or more weeks old) and presented as pneumonia and septicemia rather than the primarily diarrheal syndrome that is more typically recognized for the region. The epidemiology of cases is analyzed through cluster analysis of bacterial isolates and their fatty acid methyl ester profiles; at least six clones appeared in the region during the study period. Results of the epidemiology analysis are used to support a hypothesis regarding the source of S. enterica Dublin for the region and its manner of dissemination. PMID:10405378

  10. Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival.

    PubMed

    Verma, Smriti; Mohapatra, Gayatree; Ahmad, Salman Mustfa; Rana, Sarika; Jain, Swati; Khalsa, Jasneet Kaur; Srikanth, C V

    2015-09-01

    Posttranslational modifications (PTMs) can alter many fundamental properties of a protein. One or combinations of them have been known to regulate the dynamics of many cellular pathways and consequently regulate all vital processes. Understandably, pathogens have evolved sophisticated strategies to subvert these mechanisms to achieve instantaneous control over host functions. Here, we present the first report of modulation by intestinal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) of host SUMOylation, a PTM pathway central to all fundamental cellular processes. Both in cell culture and in a mouse model, we observed that S. Typhimurium infection led to a dynamic SUMO-conjugated proteome alteration. The intracellular survival of S. Typhimurium was dependent on SUMO status as revealed by reduced infection and Salmonella-induced filaments (SIFs) in SUMO-upregulated cells. S. Typhimurium-dependent SUMO modulation was seen as a result of depletion of crucial SUMO pathway enzymes Ubc-9 and PIAS1, at both the protein and the transcript levels. Mechanistically, depletion of Ubc-9 relied on upregulation of small noncoding RNAs miR30c and miR30e during S. Typhimurium infection. This was necessary and sufficient for both down-modulation of Ubc-9 and a successful infection. Thus, we demonstrate a novel strategy of pathogen-mediated perturbation of host SUMOylation, an integral mechanism underlying S. Typhimurium infection and intracellular survival. PMID:26100020

  11. De Novo Amino Acid Biosynthesis Contributes to Salmonella enterica Growth in Alfalfa Seedling Exudates

    PubMed Central

    Kwan, Grace; Pisithkul, Tippapha; Amador-Noguez, Daniel

    2014-01-01

    Salmonella enterica is a member of the plant microbiome. Growth of S. enterica in sprouting-seed exudates is rapid; however, the active metabolic networks essential in this environment are unknown. To examine the metabolic requirements of S. enterica during growth in sprouting-seed exudates, we inoculated alfalfa seeds and identified 305 S. enterica proteins extracted 24 h postinoculation from planktonic cells. Over half the proteins had known metabolic functions, and they are involved in over one-quarter of the known metabolic reactions. Ion and metabolite transport accounted for the majority of detected reactions. Proteins involved in amino acid transport and metabolism were highly represented, suggesting that amino acid metabolic networks may be important for S. enterica growth in association with roots. Amino acid auxotroph growth phenotypes agreed with the proteomic data; auxotrophs in amino acid-biosynthetic pathways that were detected in our screen developed growth defects by 48 h. When the perceived sufficiency of each amino acid was expressed as a ratio of the calculated biomass requirement to the available concentration and compared to growth of each amino acid auxotroph, a correlation between nutrient availability and bacterial growth was found. Furthermore, glutamate transport acted as a fitness factor during S. enterica growth in association with roots. Collectively, these data suggest that S. enterica metabolism is robust in the germinating-alfalfa environment; that single-amino-acid metabolic pathways are important but not essential; and that targeting central metabolic networks, rather than dedicated pathways, may be necessary to achieve dramatic impacts on bacterial growth. PMID:25416761

  12. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium.

    PubMed

    Buckner, Michelle M C; Antunes, L Caetano M; Gill, Navkiran; Russell, Shannon L; Shames, Stephanie R; Finlay, B Brett

    2013-01-01

    15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified role for this

  13. Predicting Salmonella enterica subsp. enterica Serotypes by Repetitive Extragenic Palindromic Sequence-Based PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The DiversiLabTM System, which employs repetitive extragenic palindromic sequence-based PCR (rep-PCR) to genotype microorganisms, was evaluated as a method to predict the serotype of Salmonella isolates. Two hundred and thirty-three Salmonella isolates belonging to 14 frequently isolated serotypes f...

  14. TaqMan Salmonella enterica Detection Kit. Performance Tested Method 020803.

    PubMed

    Tebbs, Robert S; Cao, Yan Y; Balachandran, Priva; Petrauskene, Olga

    2009-01-01

    Peanut butter spiked with Salmonella enterica ser. Typhimurium was prepared by an independent laboratory and sent to Applied Biosystems to determine the sensitivity and specificity of the TaqMan Salmonella enterica Detection Kit for detecting Salmonella in peanut butter. The samples were spiked at three levels: five no-spike (0 CFU/25 g); 20 low-spike (0.2 CFU/25 g); and 20 high-spike (2 CFU/25 g). They were coded to create a blind set of 45 samples. The samples were processed based on an unpaired test design that included enrichment in buffered peptone water for the candidate method and lactose broth for the reference method. In the candidate method, a 1 mL aliquot of enriched sample was extracted using PrepMan Ultra Sample Preparation Reagent; the sample was amplified on the Applied Biosystems 7500 real-time PCR system, and analyzed for detection of Salmonella using RapidFinder Version 1.0 software. All samples processed by the candidate method were confirmed by culture according to the U.S. Food and Drug Administration's Bacteriological Analytical Manual procedures. Sensitivity, specificity, and Chi-square analysis were calculated by combining candidate method results with those of the reference method that were collected by the independent laboratory. The TaqMan Salmonella enterica Detection Kit showed 40% sensitivity, 100% specificity, and a Chi-square value equal to 1.52. Chi-square analysis indicated the candidate method and the reference method were comparable. Although the candidate method sensitivity was only 40% when compared with the reference method (unpaired samples), the sensitivity was > 100% when the candidate method results were compared with those of the confirmation method (same sample enrichment). PMID:20166614

  15. Molecular Characterization of Salmonella enterica Serovar Aberdeen Negative for H2S Production in China.

    PubMed

    Wu, Fuli; Xu, Xuebin; Xie, Jing; Yi, Shengjie; Wang, Jian; Yang, Xiaoxia; Yang, Chaojie; Liang, Beibei; Ma, Qiuxia; Li, Hao; Song, Hongbin; Qiu, Shaofu

    2016-01-01

    Salmonella enterica infections continue to be a significant burden on public health worldwide. The ability of S. enterica to produce hydrogen sulfide (H2S) is an important phenotypic characteristic used to screen and identify Salmonella with selective medium; however, H2S-negative Salmonella have recently emerged. In this study, the H2S phenotype of Salmonella isolates was confirmed, and the selected isolates were subjected to antimicrobial susceptibility testing and molecular identification by multilocus sequence typing, pulsed-field gel electrophoresis, and clustered regularly interspaced short palindromic repeat (CRISPR) analysis. The phs genetic operon was also analyzed. A total of 160 S. enterica serovar Aberdeen isolates were detected between 2005 and 2013 in China. Of them, seven non-H2S-producing isolates were detected. Notably, four samples yielded four pairs of isolates with different H2S phenotypes, simultaneously. The data demonstrated that H2S-negative isolates were genetically closely related to H2S-positive isolates. Three new spacers (Abe1, Abe2, and Abe3) were identified in CRISPR locus 1 in four pairs of isolates with different H2S phenotypes from the same samples. Sequence analysis revealed a new nonsense mutation at position 208 in the phsA gene of all non-H2S-producing isolates. Additionally, we describe a new screening procedure to avoid H2S-negative Salmonella, which would normally be overlooked during laboratory and hospital screening. The prevalence of this pathogen may be underestimated; therefore, it is important to focus on improving surveillance of this organism to control its spread. PMID:27552230

  16. Molecular Characterization of Salmonella enterica Serovar Aberdeen Negative for H2S Production in China

    PubMed Central

    Yi, Shengjie; Wang, Jian; Yang, Xiaoxia; Yang, Chaojie; Liang, Beibei; Ma, Qiuxia; Li, Hao; Song, Hongbin; Qiu, Shaofu

    2016-01-01

    Salmonella enterica infections continue to be a significant burden on public health worldwide. The ability of S. enterica to produce hydrogen sulfide (H2S) is an important phenotypic characteristic used to screen and identify Salmonella with selective medium; however, H2S-negative Salmonella have recently emerged. In this study, the H2S phenotype of Salmonella isolates was confirmed, and the selected isolates were subjected to antimicrobial susceptibility testing and molecular identification by multilocus sequence typing, pulsed-field gel electrophoresis, and clustered regularly interspaced short palindromic repeat (CRISPR) analysis. The phs genetic operon was also analyzed. A total of 160 S. enterica serovar Aberdeen isolates were detected between 2005 and 2013 in China. Of them, seven non-H2S-producing isolates were detected. Notably, four samples yielded four pairs of isolates with different H2S phenotypes, simultaneously. The data demonstrated that H2S-negative isolates were genetically closely related to H2S-positive isolates. Three new spacers (Abe1, Abe2, and Abe3) were identified in CRISPR locus 1 in four pairs of isolates with different H2S phenotypes from the same samples. Sequence analysis revealed a new nonsense mutation at position 208 in the phsA gene of all non-H2S-producing isolates. Additionally, we describe a new screening procedure to avoid H2S-negative Salmonella, which would normally be overlooked during laboratory and hospital screening. The prevalence of this pathogen may be underestimated; therefore, it is important to focus on improving surveillance of this organism to control its spread. PMID:27552230

  17. Complete Genome Sequences of Salmonella enterica Serovars Anatum and Anatum var. 15+, Isolated from Retail Ground Turkey

    PubMed Central

    Marasini, Daya; Abo-Shama, Usama H.

    2016-01-01

    The complete genome sequences of two isolates of Salmonella enterica serovars Anatum and Anatum var. 15+ revealed the presence of two plasmids of 112 kb and 3 kb in size in each. The chromosome of Salmonella Anatum (4.83 Mb) was slightly smaller than that of Salmonella Anatum var. 15+ (4.88 Mb). PMID:26798111

  18. Salmonella enterica Serovar Pullorum Persists in Splenic Macrophages and in the Reproductive Tract during Persistent, Disease-Free Carriage in Chickens

    PubMed Central

    Wigley, P.; Berchieri, A.; Page, K. L.; Smith, A. L.; Barrow, P. A.

    2001-01-01

    Salmonella enterica serovar Pullorum is worldwide a poultry pathogen of considerable economic importance, particularly in those countries with a developing poultry industry. In addition to the characteristic high mortality rates among young chicks, one of the features of Salmonella serovar Pullorum infection is that it persists for long periods in convalescent chicks in the absence of clinical disease. This can lead to colonization of the reproductive tract of chickens and at sexual maturity can result in infected progeny through transovarian transmission to eggs. The sites of Salmonella serovar Pullorum persistence in convalescent birds are not known, and the mechanisms of persistence are not understood. Here we show that Salmonella serovar Pullorum can persist in both the spleen and the reproductive tract for over 40 weeks following experimental infection in chickens. During the period of sexual maturity, Salmonella serovar Pullorum colonized both the ovary and the oviduct of hens and led to 6% of laid eggs being infected by Salmonella serovar Pullorum. The colonization of several different sites of the reproductive tract suggests that Salmonella serovar Pullorum may employ more than one mechanism of egg infection. Persistence occurred despite a strong humoral response, suggesting an intracellular site of infection. By use of a Salmonella serovar Pullorum strain containing a plasmid stably expressing green fluorescent protein, we demonstrated that the main site of carriage in the spleen is within macrophages. This raises interesting questions about the biology of Salmonella serovar Pullorum, including why there is an increase in bacterial numbers when birds become sexually mature and in particular how Salmonella serovar Pullorum avoids clearance by macrophages and whether it modulates the immune system in other ways. PMID:11705970

  19. Sub-Inhibitory Fosmidomycin Exposures Elicits Oxidative Stress in Salmonella enterica Serovar typhimurium LT2

    PubMed Central

    Fox, David T.; Schmidt, Emily N.; Tian, Hongzhao; Dhungana, Suraj; Valentine, Michael C.; Warrington, Nicole V.; Phillips, Paul D.; Finney, Kellan B.; Cope, Emily K.; Leid, Jeff G.; Testa, Charles A.; Koppisch, Andrew T.

    2014-01-01

    Fosmidomycin is a time-dependent nanomolar inhibitor of methylerythritol phosphate (MEP) synthase, which is the enzyme that catalyzes the first committed step in the MEP pathway to isoprenoids. Importantly, fosmidomycin is one of only a few MEP pathway-specific inhibitors that exhibits antimicrobial activity. Most inhibitors identified to date only exhibit activity against isolated pathway enzymes. The MEP pathway is the sole route to isoprenoids in many bacteria, yet has no human homologs. The development of inhibitors of this pathway holds promise as novel antimicrobial agents. Similarly, analyses of the bacterial response toward MEP pathway inhibitors provides valuable information toward the understanding of how emergent resistance may ultimately develop to this class of antibiotics. We have examined the transcriptional response of Salmonella enterica serovar typhimurium LT2 to sub-inhibitory concentrations of fosmidomycin via cDNA microarray and RT-PCR. Within the regulated genes identified by microarray were a number of genes encoding enzymes associated with the mediation of reactive oxygen species (ROS). Regulation of a panel of genes implicated in the response of cells to oxidative stress (including genes for catalases, superoxide dismutases, and alkylhydrogen peroxide reductases) was investigated and mild upregulation in some members was observed as a function of fosmidomycin exposure over time. The extent of regulation of these genes was similar to that observed for comparable exposures to kanamycin, but differed significantly from tetracycline. Furthermore, S. typhimurium exposed to sub-inhibitory concentrations of fosmidomycin displayed an increased sensitivity to exogenous H2O2 relative to either untreated controls or kanamycin-treated cells. Our results suggest that endogenous oxidative stress is one consequence of exposures to fosmidomycin, likely through the temporal depletion of intracellular isoprenoids themselves, rather than other mechanisms that

  20. Variable abattoir conditions affect Salmonella enterica prevalence and meat quality in swine and pork.

    PubMed

    Hurd, H S; Gailey, J K; McKean, J D; Griffith, R W

    2005-01-01

    Research suggests that abattoir holding pens pose significant Salmonella enterica risk to swine immediately preharvest. The goal of this study was to evaluate those factors related to holding that increased the prevalence of S. enterica in swine at slaughter. To accomplish this goal, we focused on holding time and flooring. Our objectives were to (1) compare Salmonella enterica prevalence among pigs held for short (15-45 min) versus long (up to 4 h) periods before slaughter; and (2) determine the impact of flooring (slatted vs. concrete) as it relates to the prevalence of S. enterica. The study consisted of seven repetitions at a large volume (11,000 head/day) Midwest abattoir. Each repetition consisted of one truck load of pigs (n = 170) sorted into one of three groups: (1) animals held for a short time (15-45 min) on solid floors (short-hold); (2) animals held for 4 +/- 0.5 h on slatted floors; and (3) animals held for 4 +/- 0.5 h on solid concrete floors. At slaughter, samples were collected from 30 pigs in each group. Cecal contents (20 mL), feces (20 g), and the ileocecal lymph node were cultured for S. enterica. Additionally, the effect of holding time on meat quality parameters (loin pH at 35 min and 6 h, color, drip loss) was evaluated for the first four replicates. The proportion of S. enterica-positive samples was highest (p < 0.05) in the cecum of pigs held on solid concrete floors (72.4%), and slightly less for pigs held on slatted floors (63.3%). Animals held for less than 45 min before slaughter demonstrated the lowest proportion of S. enterica-positive samples (52.9%). The pig prevalence, as measured by any one of the three samples being positive, was significantly different (p < 0.05) between animals held on solid floors (81%) and those animals held for 45 min or less before slaughter (69%). Meat quality, as measured by multiple parameters, was adversely affected by lack of a rest period. The mean 24-h pH was significantly lower for the short

  1. Live Cell Imaging Reveals Novel Functions of Salmonella enterica SPI2-T3SS Effector Proteins in Remodeling of the Host Cell Endosomal System

    PubMed Central

    Rajashekar, Roopa; Liebl, David; Chikkaballi, Deepak; Liss, Viktoria; Hensel, Michael

    2014-01-01

    Intracellular Salmonella enterica induce a massive remodeling of the endosomal system in infected host cells. One dramatic consequence of this interference is the induction of various extensive tubular aggregations of membrane vesicles, and tubules positive for late endosomal/lysosomal markers are referred to as Salmonella-induced filaments or SIF. SIF are highly dynamic in nature with extension and collapse velocities of 0.4–0.5 µm x sec−1. The induction of SIF depends on the function of the Salmonella Pathogenicity Island 2 (SPI2) encoded type III secretion system (T3SS) and a subset of effector proteins. In this study, we applied live cell imaging and electron microscopy to analyze the role of individual effector proteins in SIF morphology and dynamic properties of SIF. SIF in cells infected with sifB, sseJ, sseK1, sseK2, sseI, sseL, sspH1, sspH2, slrP, steC, gogB or pipB mutant strains showed a morphology and dynamics comparable to SIF induced by WT Salmonella. SIF were absent in cells infected with the sifA-deficient strain and live cell analyses allowed tracking of the loss of the SCV membrane of intracellular sifA Salmonella. In contrast to analyses in fixed cells, in living host cells SIF induced by sseF- or sseG-deficient strains were not discontinuous, but rather continuous and thinner in diameter. A very dramatic phenotype was observed for the pipB2-deficient strain that induced very bulky, non-dynamic aggregations of membrane vesicles. Our study underlines the requirement of the study of Salmonella-host interaction in living systems and reveals new phenotypes due to the intracellular activities of Salmonella. PMID:25522146

  2. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium.

    PubMed

    Ehrbar, Kristin; Hardt, Wolf-Dietrich

    2005-01-01

    Salmonella spp. are Gram-negative bacteria which cause infections ranging from mild, self-limiting enterocolitis to systemic (typhoid) disease. Recent work has established that the genetic makeup varies considerably between different Salmonella strains. Phages play an important role in this diversity. In fact, Salmonella has emerged as a prime example for the involvement of virulence factor encoding phages in the emergence of new epidemic strains. Among other virulence factors, Salmonella enterica utilizes two specialized protein secretion systems termed type III secretion systems (TTSS) to deliver effector proteins into host cells which manipulate host cell signaling cascades. These two TTSS and several effectors are encoded within Salmonella pathogenicity islands 1 and 2. Some effectors including SopE, SspH1, SseI and SopE2 are encoded by phages or phage remnants. These phage-encoded effectors seem to be transferred between different Salmonella strains. They have attracted much interest because they might contribute to the evolution of Salmonella spp. Here we will focus on SopEPhi which encodes the SPI-1 effector SopE. It provides an excellent example to illustrate how horizontally transferred effector proteins are integrated into the complex regulatory network of a TTSS in a recipient bacterium. Additional data supporting the hypothesis are presented. This is a prerequisite to allow optimization of the bacterium host cell interaction by reassortment of the phage-encoded effector protein repertoire. PMID:15567133

  3. Host Transmission of Salmonella enterica Serovar Typhimurium Is Controlled by Virulence Factors and Indigenous Intestinal Microbiota▿

    PubMed Central

    Lawley, Trevor D.; Bouley, Donna M.; Hoy, Yana E.; Gerke, Christine; Relman, David A.; Monack, Denise M.

    2008-01-01

    Transmission is an essential stage of a pathogen's life cycle and remains poorly understood. We describe here a model in which persistently infected 129X1/SvJ mice provide a natural model of Salmonella enterica serovar Typhimurium transmission. In this model only a subset of the infected mice, termed supershedders, shed high levels (>108 CFU/g) of Salmonella serovar Typhimurium in their feces and, as a result, rapidly transmit infection. While most Salmonella serovar Typhimurium-infected mice show signs of intestinal inflammation, only supershedder mice develop colitis. Development of the supershedder phenotype depends on the virulence determinants Salmonella pathogenicity islands 1 and 2, and it is characterized by mucosal invasion and, importantly, high luminal abundance of Salmonella serovar Typhimurium within the colon. Immunosuppression of infected mice does not induce the supershedder phenotype, demonstrating that the immune response is not the main determinant of Salmonella serovar Typhimurium levels within the colon. In contrast, treatment of mice with antibiotics that alter the health-associated indigenous intestinal microbiota rapidly induces the supershedder phenotype in infected mice and predisposes uninfected mice to the supershedder phenotype for several days. These results demonstrate that the intestinal microbiota plays a critical role in controlling Salmonella serovar Typhimurium infection, disease, and transmissibility. This novel model should facilitate the study of host, pathogen, and intestinal microbiota factors that contribute to infectious disease transmission. PMID:17967858

  4. Organically managed soils reduce internal colonization of tomato plants by Salmonella enterica serovar Typhimurium.

    PubMed

    Gu, Ganyu; Cevallos-Cevallos, Juan M; Vallad, Gary E; van Bruggen, Ariena H C

    2013-04-01

    A two-phase experiment was conducted twice to investigate the effects of soil management on movement of Salmonella enterica Typhimurium in tomato plants. In the first phase, individual leaflets of 84 tomato plants grown in conventional or organic soils were dip inoculated two to four times before fruiting with either of two Salmonella Typhimurium strains (10(9) CFU/ml; 0.025% [vol/vol] Silwet L-77). Inoculated and adjacent leaflets were tested for Salmonella spp. densities for 30 days after each inoculation. Endophytic bacterial communities were characterized by polymerase chain reaction denaturing gradient gel electrophoresis before and after inoculation. Fruit and seed were examined for Salmonella spp. incidence. In phase 2, extracted seed were planted in conventional soil, and contamination of leaves and fruit of the second generation was checked. More Salmonella spp. survived in inoculated leaves on plants grown in conventional than in organic soil. The soil management effect on Salmonella spp. survival was confirmed for tomato plants grown in two additional pairs of soils. Endophytic bacterial diversities of tomato plants grown in conventional soils were significantly lower than those in organic soils. All contaminated fruit (1%) were from tomato plants grown in conventional soil. Approximately 5% of the seed from infested fruit were internally contaminated. No Salmonella sp. was detected in plants grown from contaminated seed. PMID:23506364

  5. Characterization of Small ColE1-Like Plasmids Conferring Kanamycin Resistance in Salmonella enterica subsp. enterica serovars Typhimurium and Newport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multi-antibiotic resistant (MR) Salmonella enterica serovars Typhimurium and Newport are an increasing concern in human and animal health. Many strains are known to carry antibiotic resistance determinants on multiple plasmids, yet detailed information is scarce. Three plasmids conferring kanamycin...

  6. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 5'-nuclease real-time PCR assay using a minor groove binding probe was developed for the detection of Salmonella enterica from food. Salmonella enterica-specific target sequences were identified by a comparative genomic approach. Several species-specific target sequences were evaluated for speci...

  7. Emergence of Ciprofloxacin-Resistant Salmonella enterica Serovar Typhi in Italy

    PubMed Central

    García-Fernández, Aurora; Gallina, Silvia; Owczarek, Slawomir; Dionisi, Anna Maria; Benedetti, Ildo; Decastelli, Lucia; Luzzi, Ida

    2015-01-01

    In developed countries, typhoid fever is often associated with persons who travel to endemic areas or immigrate from them. Typhoid fever is a systemic infection caused by Salmonella enterica serovar Typhi. Because of the emergence of antimicrobial resistance to standard first-line drugs, fluoroquinolones are the drugs of choice. Resistance to ciprofloxacin by this Salmonella serovar represents an emerging public health issue. Two S. enterica ser. Typhi strains resistant to ciprofloxacin (CIP) were reported to the Italian surveillance system for foodborne and waterborne diseases (EnterNet-Italia) in 2013. The strains were isolated from two Italian tourists upon their arrival from India. A retrospective analysis of 17 other S. enterica ser. Typhi strains isolated in Italy during 2011–2013 was performed to determine their resistance to CIP. For this purpose, we assayed for susceptibility to antimicrobial agents and conducted PCR and nucleotide sequence analyses. Moreover, all strains were typed using pulsed-field gel electrophoresis to evaluate possible clonal relationships. Sixty-eight percent of the S. enterica ser. Typhi strains were resistant to CIP (MICs, 0.125–16 mg/L), and all isolates were negative for determinants of plasmid-mediated quinolone resistance. Analysis of sequences encoding DNA gyrase and topoisomerase IV subunits revealed mutations in gyrA, gyrB, and parC. Thirteen different clonal groups were detected, and the two CIP-resistant strains isolated from the individuals who visited India exhibited the same PFGE pattern. Because of these findings, the emergence of CIP-resistant S. enterica ser. Typhi isolates in Italy deserves attention, and monitoring antibiotic susceptibility is important for efficiently managing cases of typhoid fever. PMID:26121266

  8. Emergence of Ciprofloxacin-Resistant Salmonella enterica Serovar Typhi in Italy.

    PubMed

    García-Fernández, Aurora; Gallina, Silvia; Owczarek, Slawomir; Dionisi, Anna Maria; Benedetti, Ildo; Decastelli, Lucia; Luzzi, Ida

    2015-01-01

    In developed countries, typhoid fever is often associated with persons who travel to endemic areas or immigrate from them. Typhoid fever is a systemic infection caused by Salmonella enterica serovar Typhi. Because of the emergence of antimicrobial resistance to standard first-line drugs, fluoroquinolones are the drugs of choice. Resistance to ciprofloxacin by this Salmonella serovar represents an emerging public health issue. Two S. enterica ser. Typhi strains resistant to ciprofloxacin (CIP) were reported to the Italian surveillance system for foodborne and waterborne diseases (EnterNet-Italia) in 2013. The strains were isolated from two Italian tourists upon their arrival from India. A retrospective analysis of 17 other S. enterica ser. Typhi strains isolated in Italy during 2011-2013 was performed to determine their resistance to CIP. For this purpose, we assayed for susceptibility to antimicrobial agents and conducted PCR and nucleotide sequence analyses. Moreover, all strains were typed using pulsed-field gel electrophoresis to evaluate possible clonal relationships. Sixty-eight percent of the S. enterica ser. Typhi strains were resistant to CIP (MICs, 0.125-16 mg/L), and all isolates were negative for determinants of plasmid-mediated quinolone resistance. Analysis of sequences encoding DNA gyrase and topoisomerase IV subunits revealed mutations in gyrA, gyrB, and parC. Thirteen different clonal groups were detected, and the two CIP-resistant strains isolated from the individuals who visited India exhibited the same PFGE pattern. Because of these findings, the emergence of CIP-resistant S. enterica ser. Typhi isolates in Italy deserves attention, and monitoring antibiotic susceptibility is important for efficiently managing cases of typhoid fever. PMID:26121266

  9. Evaluation of Salmonella enterica Type III Secretion System Effector Proteins as Carriers for Heterologous Vaccine Antigens

    PubMed Central

    Hegazy, Wael Abdel Halim; Xu, Xin; Metelitsa, Leonid

    2012-01-01

    Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines. PMID:22252866

  10. Diagnostic Accuracy of Rectoanal Mucosal Swab of Feedlot Cattle for Detection and Enumeration of Salmonella enterica.

    PubMed

    Agga, Getahun E; Arthur, Terrance M; Schmidt, John W; Wang, Rong; Brichta-Harhay, Dayna M

    2016-04-01

    Cattle are noted carriers of the foodborne pathogen Salmonella enterica. The perceived need to decrease the potential human health risk posed by excretion of this pathogen has resulted in numerous studies examining the factors that influence Salmonella shedding in cattle. Fecal grab (FG) samples have been the predominant method used to identify cattle colonized or infected with Salmonella; however, FG sampling can be impractical in certain situations, and rectoanal mucosal swabs (RAMS) are a more convenient sample type to collect. Despite a lack of studies comparing FG and RAMS for the detection and enumeration of Salmonella fecal shedding, RAMS is perceived as less sensitive because a smaller amount of feces is cultured. In a cross-sectional study to address these concerns, paired RAMS and FG samples were collected from 403 adult feedlot cattle approximately 90 days prior to harvest. Samples were processed for Salmonella enumeration (direct plating) and detection (enrichment and immunomagnetic separation). In all, 89.6% of RAMS and 98.8% of FG samples were positive for Salmonella, and concordant prevalence outcomes were observed for 90.8% of samples. Mean enumeration values were 3.01 and 3.12 log CFU/ml for RAMS and FG, respectively. The sensitivity and specificity of RAMS were 91% (95% confidence interval [CI]: 87.5 to 93%) and 100% (95% CI: 48 to 100%), respectively, for Salmonella detection. Furthermore, RAMS Salmonella enumeration was substantially concordant (ρc = 0.89; 95% CI: 0.86 to 0.91) with FG values. We conclude that RAMS are a reliable alternative to FG for assessing cattle Salmonella fecal shedding status, especially for cattle shedding high levels of Salmonella. PMID:27052855

  11. Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters

    PubMed Central

    Timme, Ruth E.; Pettengill, James B.; Allard, Marc W.; Strain, Errol; Barrangou, Rodolphe; Wehnes, Chris; Van Kessel, JoAnn S.; Karns, Jeffrey S.; Musser, Steven M.; Brown, Eric W.

    2013-01-01

    The enteric pathogen Salmonella enterica is one of the leading causes of foodborne illness in the world. The species is extremely diverse, containing more than 2,500 named serovars that are designated for their unique antigen characters and pathogenicity profiles—some are known to be virulent pathogens, while others are not. Questions regarding the evolution of pathogenicity, significance of antigen characters, diversity of clustered regularly interspaced short palindromic repeat (CRISPR) loci, among others, will remain elusive until a strong evolutionary framework is established. We present the first large-scale S. enterica subsp. enterica phylogeny inferred from a new reference-free k-mer approach of gathering single nucleotide polymorphisms (SNPs) from whole genomes. The phylogeny of 156 isolates representing 78 serovars (102 were newly sequenced) reveals two major lineages, each with many strongly supported sublineages. One of these lineages is the S. Typhi group; well nested within the phylogeny. Lineage-through-time analyses suggest there have been two instances of accelerated rates of diversification within the subspecies. We also found that antigen characters and CRISPR loci reveal different evolutionary patterns than that of the phylogeny, suggesting that a horizontal gene transfer or possibly a shared environmental acquisition might have influenced the present character distribution. Our study also shows the ability to extract reference-free SNPs from a large set of genomes and then to use these SNPs for phylogenetic reconstruction. This automated, annotation-free approach is an important step forward for bacterial disease tracking and in efficiently elucidating the evolutionary history of highly clonal organisms. PMID:24158624

  12. Evaluation of aroA deletion mutant of Salmonella enterica subspecies enterica serovar Abortusequi for its vaccine candidate potential.

    PubMed

    Alam, Javad; Singh, B R; Hansda, D; Singh, V P; Verma, J C

    2009-11-01

    The present study on a defined deletion aroA mutant (B-26) of Salmonella enterica subspecies enterica serovar Abortusequi (S. Abortusequi) for residual virulence and safety in experimental model revealed that the virulence of the strain was at no difference in any of the cell assays (caprine alveolar macrophages, bovine alveolar macrophages, guinea pig blood mononuclear cells and horse blood mononuclear cells) than that of its parent virulence plasmid cured (S-787) and wild type (E-156) strains. The mutant did not cause any apparent illness in baby guinea pigs (15 days old), adult male and female guinea pigs and also not in pregnant (54-55 days of gestation) guinea pigs through oral (4.2 x 10(9) cfu/ animal) and intramuscular (im) routes (4.2 x 10(7) cfu/ animal). In pregnant females the mutant also induced abortion as its parent (E-156) though to lesser extent (33%) than the parent strain (100%) on inoculation through intravaginal (4.2 x 10(9) cfu/ animal) and intraperitoneal (4.2 x 10(7) cfu/ animal) routes. The babies born from mutant inoculated mothers survived better and were also resistant to intraperitoneal lethal challenge (7.82 x 10(9) cfu/ animal) with 100% protection. Female guinea pigs challenged after 135-165 days of inoculation with the mutant afforded 100% protection from abortion and mortality caused by lethal infection (7.82 x 10(9) cfu/ animal) of wild type S. enterica Abortusequi (E-156). The study revealed that aroA mutant (B-26) was safe through oral and im routes for immunization and afforded 100% protection against salmonellosis for more than 5.5 months in guinea pigs. Although immunization with aroA mutant in experimental model afforded good protection against abortion and mortality induced by S. Abortusequi, further studies are needed in horses to exploit the strain's vaccine potential in the natural host. PMID:20099460

  13. Salmonella enterica serovar Typhimurium-induced placental inflammation and not bacterial burden correlates with pathology and fatal maternal disease.

    PubMed

    Chattopadhyay, Anindita; Robinson, Nirmal; Sandhu, Jagdeep K; Finlay, B Brett; Sad, Subash; Krishnan, Lakshmi

    2010-05-01

    Food-borne infections caused by Salmonella enterica species are increasing globally, and pregnancy poses a high risk. Pregnant mice rapidly succumb to S. enterica serovar Typhimurium infection. To determine the mechanisms involved, we addressed the role of inflammation and bacterial burden in causing placental and systemic disease. In vitro, choriocarcinoma cells were a highly conducive niche for intracellular S. Typhimurium proliferation. While infection of mice with S. Typhimurium wild-type (WT) and mutant (Delta aroA and Delta invA) strains led to profound pathogen proliferation and massive burden within placental cells, only the virulent WT S. Typhimurium infection evoked total fetal loss and adverse host outcome. This correlated with substantial placental expression of granulocyte colony-stimulating factor (G-CSF), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) and increased serum inflammatory cytokines/chemokines, such as G-CSF, IL-6, CCL1, and KC, evoked by WT S. Typhimurium infection. In contrast, infection with high doses of S. Typhimurium Delta aroA, despite causing massive placental infection, resulted in reduced inflammatory cellular and cytokine response. While S. Typhimurium WT bacteria were dispersed in large numbers across all regions of the placenta, including the deeper labyrinth trophoblast, S. Typhimurium Delta aroA bacteria localized primarily to the decidua. This correlated with the widespread placental necrosis accompanied by neutrophil infiltration evoked by the S. Typhimurium WT bacteria. Thus, the ability of Salmonella to localize to deeper layers of the placenta and the nature of inflammation triggered by the pathogen, rather than bacterial burden, profoundly influenced placental integrity and host survival. PMID:20194592

  14. The Small RNA DsrA Influences the Acid Tolerance Response and Virulence of Salmonella enterica Serovar Typhimurium

    PubMed Central

    Ryan, Daniel; Ojha, Urmesh K.; Jaiswal, Sangeeta; Padhi, Chandrashekhar; Suar, Mrutyunjay

    2016-01-01

    The Gram-negative, enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) is exposed to various stress conditions during pathogenesis, of which acid stress serves as a major defense mechanism in the host. Such environments are encountered in the stomach and Salmonella containing vacuole of phagocytic and non-phagocytic cells. It is only recently that small RNAs (sRNAs) have come to the forefront as major regulators of stress response networks. Consequently, the sRNA DsrA which regulates acid resistance in Escherichia coli, has not been characterized in the acid tolerance response (ATR) of Salmonella. In this study, we show dsrA to be induced two and threefold under adaptation and challenge phases of the ATR, respectively. Additionally, an isogenic mutant lacking dsrA (ΔDsrA) displayed lower viability under the ATR along with reduced motility, feeble adhesion and defective invasion efficacy in vitro. Expression analysis revealed down regulation of several Salmonella pathogenicity island-1 (SPI-1) effectors in ΔDsrA compared to the wild-type, under SPI-1 inducing conditions. Additionally, our in vivo data revealed ΔDsrA to be unable to cause gut inflammation in C57BL/6 mice at 72 h post infection, although intracellular survival and systemic dissemination remained unaffected. A possible explanation may be the significantly reduced expression of flagellin structural genes fliC and fljB in ΔDsrA, which have been implicated as major proinflammatory determinants. This study serves to highlight the role of sRNAs such as DsrA in both acid tolerance and virulence of S. Typhimurium. Additionally the robust phenotype of non-invasiveness could be exploited in developing SPI-I attenuated S. Typhimurium strains without disrupting SPI-I genes. PMID:27199929

  15. Prevalence, Distribution, and Diversity of Salmonella enterica in a Major Produce Region of California▿†

    PubMed Central

    Gorski, Lisa; Parker, Craig T.; Liang, Anita; Cooley, Michael B.; Jay-Russell, Michele T.; Gordus, Andrew G.; Atwill, E. Robert; Mandrell, Robert E.

    2011-01-01

    A survey was initiated to determine the prevalence of Salmonella enterica in the environment in and around Monterey County, CA, a major agriculture region of the United States. Trypticase soy broth enrichment cultures of samples of soil/sediment (n = 617), water (n = 252), wildlife (n = 476), cattle feces (n = 795), and preharvest lettuce and spinach (n = 261) tested originally for the presence of pathogenic Escherichia coli were kept in frozen storage and later used to test for the presence of S. enterica. A multipathogen oligonucleotide microarray was employed to identify a subset of samples that might contain Salmonella in order to test various culture methods to survey a larger number of samples. Fifty-five of 2,401 (2.3%) samples yielded Salmonella, representing samples obtained from 20 different locations in Monterey and San Benito Counties. Water had the highest percentage of positives (7.1%) among sample types. Wildlife yielded 20 positive samples, the highest number among sample types, with positive samples from birds (n = 105), coyotes (n = 40), deer (n = 104), elk (n = 39), wild pig (n = 41), and skunk (n = 13). Only 16 (2.6%) of the soil/sediment samples tested positive, and none of the produce samples had detectable Salmonella. Sixteen different serotypes were identified among the isolates, including S. enterica serotypes Give, Typhimurium, Montevideo, and Infantis. Fifty-four strains were sensitive to 12 tested antibiotics; one S. Montevideo strain was resistant to streptomycin and gentamicin. Pulsed-field gel electrophoresis (PFGE) analysis of the isolates revealed over 40 different pulsotypes. Several strains were isolated from water, wildlife, or soil over a period of several months, suggesting that they were persistent in this environment. PMID:21378057

  16. Multilocus Sequence Typing Lacks the Discriminatory Ability of Pulsed-Field Gel Electrophoresis for Typing Salmonella enterica Serovar Typhimurium

    PubMed Central

    Fakhr, Mohamed K.; Nolan, Lisa K.; Logue, Catherine M.

    2005-01-01

    Nontyphoidal salmonellae are among the leading causes of food-borne disease in the United States. Because of the importance of Salmonella enterica in food-borne disease, numerous typing methodologies have been developed. Among the several molecular typing methods, pulsed-field gel electrophoresis (PFGE) is currently considered the “gold standard” technique in typing Salmonella. The aim of this study was to compare the discriminatory power of PFGE to multilocus sequence typing (MLST) in typing Salmonella enterica serovar Typhimurium clinical isolates. A total of 85 Salmonella Typhimurium clinical isolates from cattle were used in this study. PFGE using XbaI was performed on the 85 isolates by the Centers for Disease Control and Prevention method, and data were analyzed using the BioNumerics software package. Fifty PFGE profiles were observed among the isolates, and these grouped into three major clusters. For the MLST analysis, the manB, pduF, glnA, and spaM genes were amplified by PCR from the same 85 isolates. DNA sequencing of these four genes, manB, pduF, glnA, and spaM, showed no genetic diversity among the isolates tested, with a 100% identity in nucleotide sequence. Moreover, the DNA sequences of the aforementioned genes showed 100% identity to the sequence reported in GenBank for the S. enterica serovar Typhimurium LT2 strain. Therefore, MLST, using these genes, lacks the discriminatory power of PFGE for typing Salmonella enterica serovar Typhimurium. PMID:15872244

  17. Multilocus sequence typing lacks the discriminatory ability of pulsed-field gel electrophoresis for typing Salmonella enterica serovar Typhimurium.

    PubMed

    Fakhr, Mohamed K; Nolan, Lisa K; Logue, Catherine M

    2005-05-01

    Nontyphoidal salmonellae are among the leading causes of food-borne disease in the United States. Because of the importance of Salmonella enterica in food-borne disease, numerous typing methodologies have been developed. Among the several molecular typing methods, pulsed-field gel electrophoresis (PFGE) is currently considered the "gold standard" technique in typing Salmonella. The aim of this study was to compare the discriminatory power of PFGE to multilocus sequence typing (MLST) in typing Salmonella enterica serovar Typhimurium clinical isolates. A total of 85 Salmonella Typhimurium clinical isolates from cattle were used in this study. PFGE using XbaI was performed on the 85 isolates by the Centers for Disease Control and Prevention method, and data were analyzed using the BioNumerics software package. Fifty PFGE profiles were observed among the isolates, and these grouped into three major clusters. For the MLST analysis, the manB, pduF, glnA, and spaM genes were amplified by PCR from the same 85 isolates. DNA sequencing of these four genes, manB, pduF, glnA, and spaM, showed no genetic diversity among the isolates tested, with a 100% identity in nucleotide sequence. Moreover, the DNA sequences of the aforementioned genes showed 100% identity to the sequence reported in GenBank for the S. enterica serovar Typhimurium LT2 strain. Therefore, MLST, using these genes, lacks the discriminatory power of PFGE for typing Salmonella enterica serovar Typhimurium. PMID:15872244

  18. Survival of Salmonella enterica in Dried Turkey Manure and Persistence on Spinach Leaves.

    PubMed

    Oni, Ruth A; Sharma, Manan; Buchanan, Robert L

    2015-10-01

    Concerns about the microbiological safety of fresh produce have attracted attention in the past three decades due to multiple foodborne outbreaks. Animal manure contaminated with enteric pathogens has been identified as an important preharvest pathogen source. This study investigated the survival of Salmonella enterica in dust particles of dehydrated turkey manure and how association with manure dust may enhance the survival of salmonellae on leafy greens in the field. The survival of a cocktail of multiple Salmonella serotypes in the dried fecal material of various particle sizes (125 to 500 μm) was examined at varying moisture contents (5, 10, and 15%). Survival times of the pathogen were inversely related to moisture content and particle size of manure dust, with viable Salmonella still detectable for up to 291 days in the smallest particle size (125 μm) with 5% moisture. Association with manure dust particles increased the survival of Salmonella when subjected to UV light both under laboratory conditions and on the surface of spinach leaves in a greenhouse setting. The results of this study suggest that aerosolized manure particles could be a potential vehicle for Salmonella dispersal to leafy greens if the microorganism is present in the dry manure. PMID:26408127

  19. Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana.

    PubMed

    Garcia, Ana Victoria; Charrier, Amélie; Schikora, Adam; Bigeard, Jean; Pateyron, Stephanie; de Tauzia-Moreau, Marie-Ludivine; Evrard, Alexandre; Mithöfer, Axel; Martin-Magniette, Marie Laure; Virlogeux-Payant, Isabelle; Hirt, Heribert

    2014-04-01

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Recent evidence indicates that plants recognize S. enterica and raise defense responses. Nonetheless, the molecular mechanisms controlling the interaction of S. enterica with plants are still largely unclear. Here, we show that flagellin from S. enterica represents a prominent pathogen-associated molecular pattern (PAMP) in Arabidopsis thaliana, which induces PAMP-triggered immunity (PTI) via the recognition of the flg22 domain by the receptor kinase FLS2. The Arabidopsis fls2 mutant shows reduced though not abolished PTI activation, indicating that plants rely also on recognition of other S. enterica PAMPs. Interestingly, the S. enterica type III secretion system (T3SS) mutant prgH- induced stronger defense gene expression than wild-type bacteria in Arabidopsis, suggesting that T3SS effectors are involved in defense suppression. Furthermore, we observe that S. enterica strains show variation in the flg22 epitope, which results in proteins with reduced PTI-inducing activity. Altogether, these results show that S. enterica activates PTI in Arabidopsis and suggest that, in order to accomplish plant colonization, S. enterica evolved strategies to avoid or suppress PTI. PMID:24198231

  20. L-2,3-diaminopropionate generates diverse metabolic stresses in Salmonella enterica.

    PubMed

    Ernst, Dustin C; Anderson, Mary E; Downs, Diana M

    2016-07-01

    Unchecked amino acid accumulation in living cells has the potential to cause stress by disrupting normal metabolic processes. Thus, many organisms have evolved degradation strategies that prevent endogenous accumulation of amino acids. L-2,3-diaminopropionate (Dap) is a non-protein amino acid produced in nature where it serves as a precursor to siderophores, neurotoxins and antibiotics. Dap accumulation in Salmonella enterica was previously shown to inhibit growth by unknown mechanisms. The production of diaminopropionate ammonia-lyase (DpaL) alleviated Dap toxicity in S. enterica by catalyzing the degradation of Dap to pyruvate and ammonia. Here, we demonstrate that Dap accumulation in S. enterica elicits a proline requirement for growth and specifically inhibits coenzyme A and isoleucine biosynthesis. Additionally, we establish that the DpaL-dependent degradation of Dap to pyruvate proceeds through an unbound 2-aminoacrylate (2AA) intermediate, thus contributing to 2AA stress inside the cell. The reactive intermediate deaminase, RidA, is shown to prevent 2AA damage caused by DpaL-dependent Dap degradation by enhancing the rate of 2AA hydrolysis. The results presented herein inform our understanding of the effects Dap has on metabolism in S. enterica, and likely other organisms, and highlight the critical role played by RidA in preventing 2AA stress stemming from Dap detoxification. PMID:27010356

  1. Prevalence and characterization of multi-drug resistant Salmonella Enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken

    PubMed Central

    Parvej, Md. Shafiullah; Nazir, K. H. M. Nazmul Hussain; Rahman, M. Bahanur; Jahan, Mueena; Khan, Mohammad Ferdousur Rahman; Rahman, Marzia

    2016-01-01

    Aim: Salmonella is an important zoonotic pathogen responsible for animal and human diseases. The aim of the present study was to determine the prevalence and stereotyping of Salmonella isolates isolated from apparently healthy poultry. Furthermore, the clonal relatedness among the isolated Salmonella serovars was assessed. Materials and Methods: A total of 150 cloacal swab samples from apparently healthy chickens were collected, and were subjected for the isolation and identification of associated Salmonella organisms. The isolated colonies were identified and characterized on the basis of morphology, cultural characters, biochemical tests, slide agglutination test, polymerase chain reaction, and pulsed-field gel electrophoresis (PFGE). Antibiotic sensitivity patterns were also investigated using commonly used antibiotics. Results: Of the 150 samples, 11 (7.33%) produced characteristics pink colony with black center on XLD agar medium, and all were culturally and biochemically confirmed to be Salmonella. All possessed serovar-specific gene SpeF and reacted uniformly with group D antisera, suggesting that all of the isolates were Salmonella Enterica serovar Gallinarum, biovar Pullorum and/or Gallinarum. Antimicrobial susceptibility testing revealed that 54.54% of the isolated Salmonella Enterica serovars were highly sensitive to ciprofloxacin, whereas the 81.81% isolates were resistant to amoxycillin, doxycycline, kanamycin, gentamycin, and tetracycline. Pulsed-field gel electrophoresis of the XbaI-digested genomic DNA exhibited identical banding patterns, suggesting that the multidrug resistant Salmonella Enterica serovars occurring in commercial layers are highly clonal in Bangladesh. Conclusion: The present study was conducted to find out the prevalence of poultry Salmonella in layer chicken and to find out the clonal relationship among them. The data in this study suggest the prevalence of Salmonella Enterica, which is multidrug resistant and highly clonal for

  2. Serotypes and Antimicrobial Resistance of Human Nontyphoidal Isolates of Salmonella enterica from Crete, Greece

    PubMed Central

    Maraki, Sofia; Papadakis, Ioannis S.

    2014-01-01

    We report on the serotype distribution and the antimicrobial resistance patterns to 20 different antimicrobials of 150 Salmonella enterica strains isolated from stools of diarrhoeal patients on the island of Crete over the period January 2011-December 2012. Among the S. enterica serotypes recovered, Enteritidis was the most prevalent (37.3%), followed by Typhimurium (28.7%) and Newport (8.7%). No resistance was detected to extended-spectrum cephalosporins and carbapenems. Rates of resistance to ampicillin, amoxicillin/clavulanic acid, chloramphenicol, tetracycline, and cotrimoxazole were 9.3%, 4%, 2%, 15.3%, and 8.7%, respectively. Resistance to ≥4 antibiotics was primarily observed for serotypes Typhimurium and Hadar. Enteritidis remains the predominant serotype in Crete. Although low resistance to most antimicrobials was detected, continued surveillance of susceptibility is needed due to the risk of resistance. PMID:24860606

  3. High-Throughput CRISPR Typing of Mycobacterium tuberculosis Complex and Salmonella enterica Serotype Typhimurium.

    PubMed

    Sola, Christophe; Abadia, Edgar; Le Hello, Simon; Weill, François-Xavier

    2015-01-01

    Spoligotyping was developed almost 18 years ago and still remains a popular first-lane genotyping technique to identify and subtype Mycobacterium tuberculosis complex (MTC) clinical isolates at a phylogeographic level. For other pathogens, such as Salmonella enterica, recent studies suggest that specifically designed spoligotyping techniques could be interesting for public health purposes. Spoligotyping was in its original format a reverse line-blot hybridization method using capture probes designed on "spacers" and attached to a membrane's surface and a PCR product obtained from clustered regularly interspaced short palindromic repeats (CRISPRs). Cowan et al. and Fabre et al. were the first to propose a high-throughput Spoligotyping method based on microbeads for MTC and S. enterica serotype Typhimurium, respectively. The main advantages of the high-throughput Spoligotyping techniques we describe here are their low cost, their robustness, and the existence (at least for MTC) of very large databases that allow comparisons between spoligotypes from anywhere. PMID:25981468

  4. The Vi Capsular Polysaccharide Enables Salmonella enterica Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis

    PubMed Central

    Wangdi, Tamding; Lee, Cheng-Yuk; Spees, Alanna M.; Yu, Chenzhou; Kingsbury, Dawn D.; Winter, Sebastian E.; Hastey, Christine J.; Wilson, R. Paul

    2014-01-01

    Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis. PMID:25101794

  5. Chromosomal Rearrangements in Salmonella enterica Serovar Typhi Strains Isolated from Asymptomatic Human Carriers

    PubMed Central

    Matthews, T. David; Rabsch, Wolfgang; Maloy, Stanley

    2011-01-01

    ABSTRACT Host-specific serovars of Salmonella enterica often have large-scale chromosomal rearrangements that occur by recombination between rrn operons. Two hypotheses have been proposed to explain these rearrangements: (i) replichore imbalance from horizontal gene transfer drives the rearrangements to restore balance, or (ii) the rearrangements are a consequence of the host-specific lifestyle. Although recent evidence has refuted the replichore balance hypothesis, there has been no direct evidence for the lifestyle hypothesis. To test this hypothesis, we determined the rrn arrangement type for 20 Salmonella enterica serovar Typhi strains obtained from human carriers at periodic intervals over multiple years. These strains were also phage typed and analyzed for rearrangements that occurred over long-term storage versus routine culturing. Strains isolated from the same carrier at different time points often exhibited different arrangement types. Furthermore, colonies isolated directly from the Dorset egg slants used to store the strains also had different arrangement types. In contrast, colonies that were repeatedly cultured always had the same arrangement type. Estimated replichore balance of isolated strains did not improve over time, and some of the rearrangements resulted in decreased replicore balance. Our results support the hypothesis that the restricted lifestyle of host-specific Salmonella is responsible for the frequent chromosomal rearrangements in these serovars. PMID:21652779

  6. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase.

    PubMed

    Guard, Jean; Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J

    2016-07-01

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  7. Characterization of a pore-forming cytotoxin expressed by Salmonella enterica serovars typhi and paratyphi A.

    PubMed

    Oscarsson, Jan; Westermark, Marie; Löfdahl, Sven; Olsen, Björn; Palmgren, Helena; Mizunoe, Yoshimitsu; Wai, Sun Nyunt; Uhlin, Bernt Eric

    2002-10-01

    Cytolysin A (ClyA) is a pore-forming cytotoxic protein encoded by the clyA gene that has been characterized so far only in Escherichia coli. Using DNA sequence analysis and PCR, we established that clyA is conserved in the human-specific typhoid Salmonella enterica serovars Typhi and Paratyphi A and that the entire clyA gene locus is absent in many other S. enterica serovars, including Typhimurium. The gene products, designated ClyA(STy) and ClyA(SPa), show >/=90% amino acid identity to E. coli cytolysin A, ClyA(EC), and they are immunogenically related. The Salmonella proteins showed a pore-forming activity and are hence functional homologues to ClyA(EC). The chromosomal clyA(STy) gene locus was expressed at detectable levels in the serovar Typhi strains S2369/96 and S1112/97. Furthermore, in the serovar Typhi vaccine strain Ty21a, expression of clyA(STy) reached phenotypic levels, as detected on blood agar plates. The hemolytic phenotype was abolished by the introduction of an in-frame deletion in the clyA(STy) chromosomal locus of Ty21a. Transcomplementation of the mutant with a cloned clyA(STy) gene restored the hemolytic phenotype. To our knowledge, Ty21a is the first reported phenotypically hemolytic Salmonella strain in which the genetic determinant has been identified. PMID:12228306

  8. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  9. Comparative genetics of the inv-spa invasion gene complex of Salmonella enterica.

    PubMed

    Boyd, E F; Li, J; Ochman, H; Selander, R K

    1997-03-01

    The chromosomal region containing the Salmonella enterica pathogenic island inv-spa was present in the last common ancestor of all the contemporary lineages of salmonellae. For multiple strains of S. enterica, representing all eight subspecies, nucleotide sequences were obtained for five genes of the inv-spa invasion complex, invH, invE, invA, spaM, and spaN, al of which encode proteins that are required for entry of the bacteria into cultured epithelial cells. The invE, invA, spaM, and spaN genes were present in all eight subspecies of S. enterica, and for invE and invA and their products, levels of sequence variation among strains were within the ranges reported for housekeeping genes. In contrast, the InvH, SpaM, and SpaN proteins were unusually variable in amino acid sequence. Furthermore, invH was absent from the subspecies V isolates examined. The SpaM and SpaN proteins provide further evidence of a relationship (first detected by Li et al. [J. Li, H. Ochman, E. A. Groisman, E. F. Boyd, F. Solomon, K. Nelson, and R. K. Selander, Proc. Natl. Acad. Sci. USA 92:7252-7256, 1995]) between the cellular location of the products of the inv-spa genes and evolutionary rate, as reflected in the level of polymorphism within S. enterica. Invasion proteins that are membrane bound or membrane associated are relatively conserved in amino acid sequence, whereas those that are exported to the extracellular environment are hypervariable, possibly reflecting the action of diversifying selection. PMID:9068645

  10. Isolation and Characterization of Antimicrobial-Resistant Nontyphoidal Salmonella enterica Serovars from Imported Food Products.

    PubMed

    Bae, Dongryeoul; Kweon, Ohgew; Khan, Ashraf A

    2016-08-01

    The objective of this study was to determine antimicrobial resistance and elucidate the resistance mechanism in nontyphoidal Salmonella enterica serovars isolated from food products imported into the United States from 2011 to 2013. Food products contaminated with antimicrobial-resistant nontyphoidal S. enterica were mainly imported from Taiwan, Indonesia, Vietnam, and China. PCR, DNA sequencing, and plasmid analyses were used to characterize antimicrobial resistance determinants. Twentythree of 110 S. enterica isolates were resistant to various antimicrobial classes, including β-lactam, aminoglycoside, phenicol, glycopeptide, sulfonamide, trimethoprim, and/or fluoroquinolone antimicrobial agents. Twelve of the isolates were multidrug resistant strains. Antimicrobial resistance determinants blaTEM-1, blaCTX-M-9, blaOXA-1, tetA, tetB, tetD, dfrA1, dfrV, dhfrI, dhfrXII, drf17, aadA1, aadA2, aadA5, orfC, qnrS, and mutations of gyrA and parC were detected in one or more antimicrobial-resistant nontyphoidal S. enterica strains. Plasmid profiles revealed that 12 of the 23 antimicrobial-resistant strains harbored plasmids with incompatibility groups IncFIB, IncHI1, IncI1, IncN, IncW, and IncX. Epidemiologic and antimicrobial resistance monitoring data combined with molecular characterization of antimicrobial resistance determinants in Salmonella strains isolated from imported food products may provide information that can be used to establish or implement food safety programs to improve public health. PMID:27497122

  11. The structural elucidation of the Salmonella enterica subsp. enterica, reveals that it contains both O-factors 4 and 5 on the LPS antigen.

    PubMed

    De Castro, Cristina; Lanzetta, Rosa; Leone, Serena; Parrilli, Michelangelo; Molinaro, Antonio

    2013-04-01

    Spectroscopic investigation of the O-antigen from Salmonella enterica subsp. enterica revealed fine details on the acetylation pattern, the biological repeating unit and the polymerization degree. Acetylation at O-2 of the abequose residue, defined both O-factors 4 and 5 in the O-antigen chain of the lipopolysaccharide. NMR observation of the terminal non-reducing end of the polymer confirmed previous data regarding the biological repeating unit and showed an average polymerization degree of 5. The information about these structural elements might contribute to the understanding of key features of the biology of this pathogen, as phase variation and/or adaptation to the external environment. PMID:23419941

  12. Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers.

    PubMed

    Alali, W Q; Hofacre, C L; Mathis, G F; Faltys, G

    2013-03-01

    The objectives of this study were to determine the effect of an essential oil blend (EO; carvacrol, thymol, eucalyptol, lemon) administered in drinking water on the performance, mortality, water consumption, pH of crop and ceca, and Salmonella enterica serovar Heidelberg fecal shedding and colonization in broiler birds following Salmonella Heidelberg challenge and feed withdrawal. Chicks were randomly assigned to water treatments containing 0.05, 0.025, or 0.0125% EO or untreated controls. Treatments were administered in drinking water on 0 to 7 and 35 to 42 d. One-half of the chicks were challenged with Salmonella Heidelberg and placed in pens with unchallenged chicks on d 1. Performance, mortality, water consumption, and pH were determined during the 42-d study. Prevalence of Salmonella Heidelberg was determined on drag swabs (0, 14, and 42 d) and in the ceca and crops (42 d). The 0.05% EO administered in drinking water significantly (P < 0.05) reduced Salmonella Heidelberg colonization in crops of challenged birds, significantly lowered the feed conversion ratio, and increased weight gain compared with controls. The 0.025% and 0.015% EO in drinking water significantly lowered the feed conversion ratio and increased weight gain compared with controls, but did not significantly reduce Salmonella Heidelberg colonization in the crops. The EO in drinking water did not significantly reduce Salmonella Heidelberg colonization in ceca or fecal shedding in broilers. The EO used in the study may control Salmonella Heidelberg contamination in crops of broilers when administered in drinking water and therefore may reduce the potential for cross-contamination of the carcass when the birds are processed. PMID:23436536

  13. Distribution and Characterization of Salmonella enterica Isolates from Irrigation Ponds in the Southeastern United States.

    PubMed

    Luo, Zhiyao; Gu, Ganyu; Ginn, Amber; Giurcanu, Mihai C; Adams, Paige; Vellidis, George; van Bruggen, Ariena H C; Danyluk, Michelle D; Wright, Anita C

    2015-07-01

    Irrigation water has been implicated as a likely source of produce contamination by Salmonella enterica. Therefore, the distribution of S. enterica was surveyed monthly in irrigation ponds (n = 10) located within a prime agricultural region in southern Georgia and northern Florida. All ponds and 28.2% of all samples (n = 635) were positive for Salmonella, with an overall geometric mean concentration (0.26 most probable number [MPN]/liter) that was relatively low compared to prior reports for rivers in this region. Salmonella peaks were seasonal; the levels correlated with increased temperature and rainfall (P < 0.05). The numbers and occurrence were significantly higher in water (0.32 MPN/liter and 37% of samples) than in sediment (0.22 MPN/liter and 17% of samples) but did not vary with depth. Representative isolates (n = 185) from different ponds, sample types, and seasons were examined for resistance to 15 different antibiotics; most strains were resistant to streptomycin (98.9%), while 20% were multidrug resistant (MDR) for 2 to 6 antibiotics. DiversiLab repetitive extragenic palindromic-element sequence-based PCR (rep-PCR) revealed genetic diversity and showed 43 genotypes among 191 isolates, as defined by >95% similarity. The genotypes did not partition by pond, season, or sample type. Genetic similarity to known serotypes indicated Hadar, Montevideo, and Newport as the most prevalent. All ponds achieved the current safety standards for generic Escherichia coli in agricultural water, and regression modeling showed that the E. coli level was a significant predictor for the probability of Salmonella occurrence. However, persistent populations of Salmonella were widely distributed in irrigation ponds, and the associated risks for produce contamination and subsequent human exposure are unknown, supporting continued surveillance of this pathogen in agricultural settings. PMID:25911476

  14. Distribution and Characterization of Salmonella enterica Isolates from Irrigation Ponds in the Southeastern United States

    PubMed Central

    Luo, Zhiyao; Gu, Ganyu; Ginn, Amber; Giurcanu, Mihai C.; Adams, Paige; Vellidis, George; van Bruggen, Ariena H. C.; Danyluk, Michelle D.

    2015-01-01

    Irrigation water has been implicated as a likely source of produce contamination by Salmonella enterica. Therefore, the distribution of S. enterica was surveyed monthly in irrigation ponds (n = 10) located within a prime agricultural region in southern Georgia and northern Florida. All ponds and 28.2% of all samples (n = 635) were positive for Salmonella, with an overall geometric mean concentration (0.26 most probable number [MPN]/liter) that was relatively low compared to prior reports for rivers in this region. Salmonella peaks were seasonal; the levels correlated with increased temperature and rainfall (P < 0.05). The numbers and occurrence were significantly higher in water (0.32 MPN/liter and 37% of samples) than in sediment (0.22 MPN/liter and 17% of samples) but did not vary with depth. Representative isolates (n = 185) from different ponds, sample types, and seasons were examined for resistance to 15 different antibiotics; most strains were resistant to streptomycin (98.9%), while 20% were multidrug resistant (MDR) for 2 to 6 antibiotics. DiversiLab repetitive extragenic palindromic-element sequence-based PCR (rep-PCR) revealed genetic diversity and showed 43 genotypes among 191 isolates, as defined by >95% similarity. The genotypes did not partition by pond, season, or sample type. Genetic similarity to known serotypes indicated Hadar, Montevideo, and Newport as the most prevalent. All ponds achieved the current safety standards for generic Escherichia coli in agricultural water, and regression modeling showed that the E. coli level was a significant predictor for the probability of Salmonella occurrence. However, persistent populations of Salmonella were widely distributed in irrigation ponds, and the associated risks for produce contamination and subsequent human exposure are unknown, supporting continued surveillance of this pathogen in agricultural settings. PMID:25911476

  15. Protein Acetylation Is Involved in Salmonella enterica Serovar Typhimurium Virulence.

    PubMed

    Sang, Yu; Ren, Jie; Ni, Jinjing; Tao, Jing; Lu, Jie; Yao, Yu-Feng

    2016-06-01

    Salmonella causes a range of diseases in different hosts, including enterocolitis and systemic infection. Lysine acetylation regulates many eukaryotic cellular processes, but its function in bacteria is largely unexplored. The acetyltransferase Pat and NAD(+)-dependent deacetylase CobB are involved in the reversible protein acetylation in Salmonella Typhimurium. Here, we used cell and animal models to evaluate the virulence of pat and cobB deletion mutants in S. Typhimurium and found that pat is critical for bacterial intestinal colonization and systemic infection. Next, to understand the underlying mechanism, genome-wide transcriptome was analyzed. RNA sequencing data showed that the expression of Salmonella pathogenicity island 1 (SPI-1) is partially dependent on pat In addition, we found that HilD, a key transcriptional regulator of SPI-1, is a substrate of Pat. The acetylation of HilD by Pat maintained HilD stability and was essential for the transcriptional activation of HilA. Taken together, these results suggest that a protein acetylation system regulates SPI-1 expression by controlling HilD in a posttranslational manner to mediate S. Typhimurium virulence. PMID:26810370

  16. Characterization of DalS, an ATP-binding cassette transporter for D-alanine, and its role in pathogenesis in Salmonella enterica.

    PubMed

    Osborne, Suzanne E; Tuinema, Brian R; Mok, Mac C Y; Lau, Pui Sai; Bui, Nhat Khai; Tomljenovic-Berube, Ana M; Vollmer, Waldemar; Zhang, Kun; Junop, Murray; Coombes, Brian K

    2012-05-01

    Expansion into new host niches requires bacterial pathogens to adapt to changes in nutrient availability and to evade an arsenal of host defenses. Horizontal acquisition of Salmonella Pathogenicity Island (SPI)-2 permitted the expansion of Salmonella enterica serovar Typhimurium into the intracellular environment of host cells by allowing it to deliver bacterial effector proteins across the phagosome membrane. This is facilitated by the SsrA-SsrB two-component regulatory system and a type III secretion system encoded within SPI-2. SPI-2 acquisition was followed by evolution of existing regulatory DNA, creating an expanded SsrB regulon involved in intracellular fitness and host infection. Here, we identified an SsrB-regulated operon comprising an ABC transporter in Salmonella. Biochemical and structural studies determined that the periplasmic solute-binding component, STM1633/DalS, transports D-alanine and that DalS is required for intracellular survival of the bacteria and for fitness in an animal host. This work exemplifies the role of nutrient exchange at the host-pathogen interface as a critical determinant of disease outcome. PMID:22418438

  17. Regulatory and Structural Differences in the Cu,Zn-Superoxide Dismutases of Salmonella enterica and Their Significance for Virulence*S⃞

    PubMed Central

    Ammendola, Serena; Pasquali, Paolo; Pacello, Francesca; Rotilio, Giuseppe; Castor, Margaret; Libby, Stephen J.; Figueroa-Bossi, Nara; Bossi, Lionello; Fang, Ferric C.; Battistoni, Andrea

    2008-01-01

    Many of the most virulent strains of Salmonella enterica produce two distinct Cu,Zn-superoxide dismutases (SodCI and SodCII). The bacteriophage-encoded SodCI enzyme makes the greater contribution to Salmonella virulence. We have performed a detailed comparison of the functional, structural, and regulatory properties of the Salmonella SodC enzymes. Here we demonstrate that SodCI and SodCII differ with regard to specific activity, protease resistance, metal affinity, and peroxidative activity, with dimeric SodCI exhibiting superior stability and activity. In particular, monomeric SodCII is unable to retain its catalytic copper ion in the absence of zinc. We have also found that SodCI and SodCII are differentially affected by oxygen, zinc availability, and the transcriptional regulator FNR. SodCII is strongly down-regulated under anaerobic conditions and dependent on the high affinity ZnuABC zinc transport system, whereas SodCI accumulation in vitro and within macrophages is FNR-dependent. We have confirmed earlier findings that SodCII accumulation in intracellular Salmonella is negligible, whereas SodCI is strongly up-regulated in macrophages. Our observations demonstrate that differences in expression, activity, and stability help to account for the unique contribution of the bacteriophage-encoded SodCI enzyme to Salmonella virulence. PMID:18362154

  18. Preslaughter Holding Environment in Pork Plants Is Highly Contaminated with Salmonella enterica

    PubMed Central

    Rostagno, M. H.; Hurd, H. S.; McKean, J. D.; Ziemer, C. J.; Gailey, J. K.; Leite, R. C.

    2003-01-01

    The objective of this study was to determine whether abattoir pens can provide a Salmonella enterica infection source during the 2 to 4 h of preharvest holding. Previous work has suggested that pigs may be getting infected, but little has been reported on the environmental contamination of abattoir holding pens. For 24 groups of pigs studied (∼150 animals/group) at two high-capacity abattoirs, six pooled fecal samples (n, 10 per pool) were collected from each transport trailer immediately after pigs were unloaded. Holding pens were sampled (one drinking water sample and six pooled floor samples consisting of swabs, residual liquid, and feces) prior to entry of study pigs for the routine holding period (∼2.5 h). After slaughter, cecal contents and ileocecal lymph nodes were collected, on the processing line, from 30 pigs in each studied group. All samples were cultured for the isolation and identification of S. enterica by primary enrichment in GN-Hajna and tetrathionate broths, secondary enrichment in Rappaport-Vassiliadis broth, and plating on brilliant green sulfa and xylose-lysine-tergitol-4 agars, followed by biochemical and serological identification. The study pens were highly contaminated with S. enterica; all holding pens sampled had at least one positive sample. Additionally, 33% (8 of 24) of drinking water samples were positive for S. enterica. All 24 groups of pigs had S. enterica-positive cecal contents and ileocecal lymph nodes, including those groups from transport trailers with no positive samples. From pigs, trailers, and pens, 586 isolates representing 36 different Salmonella serovars were isolated. Of the 353 isolates from pigs (109 from ileocecal lymph nodes plus 244 from cecal contents), 19% were identified as belonging to the same serovars as those isolated from the respective pens; 27% were identified as belonging to the same serovars as those isolated from the trailers. Sixteen percent of the unique serovars were isolated from both pigs

  19. Streptomycin Induced Stress Response in Salmonella enterica Serovar Typhimurium Shows Distinct Colony Scatter Signature

    PubMed Central

    Singh, Atul K.; Drolia, Rishi; Bai, Xingjian; Bhunia, Arun K.

    2015-01-01

    We investigated the streptomycin-induced stress response in Salmonella enterica serovars with a laser optical sensor, BARDOT (bacterial rapid detection using optical scattering technology). Initially, the top 20 S. enterica serovars were screened for their response to streptomycin at 100 μg/mL. All, but four S. enterica serovars were resistant to streptomycin. The MIC of streptomycin-sensitive serovars (Enteritidis, Muenchen, Mississippi, and Schwarzengrund) varied from 12.5 to 50 μg/mL, while streptomycin-resistant serovar (Typhimurium) from 125–250 μg/mL. Two streptomycin-sensitive serovars (Enteritidis and Mississippi) were grown on brain heart infusion (BHI) agar plates containing sub-inhibitory concentration of streptomycin (1.25–5 μg/mL) and a streptomycin-resistant serovar (Typhimurium) was grown on BHI containing 25–50 μg/mL of streptomycin and the colonies (1.2 ± 0.1 mm diameter) were scanned using BARDOT. Data show substantial qualitative and quantitative differences in the colony scatter patterns of Salmonella grown in the presence of streptomycin than the colonies grown in absence of antibiotic. Mass-spectrometry identified overexpression of chaperonin GroEL, which possibly contributed to the observed differences in the colony scatter patterns. Quantitative RT-PCR and immunoassay confirmed streptomycin-induced GroEL expression while, aminoglycoside adenylyltransferase (aadA), aminoglycoside efflux pump (aep), multidrug resistance subunit acrA, and ribosomal protein S12 (rpsL), involved in streptomycin resistance, were unaltered. The study highlights suitability of the BARDOT as a non-invasive, label-free tool for investigating stress response in Salmonella in conjunction with the molecular and immunoassay methods. PMID:26252374

  20. Effect of desiccation on tolerance of salmonella enterica to multiple stresses.

    PubMed

    Gruzdev, Nadia; Pinto, Riky; Sela, Shlomo

    2011-03-01

    Reducing the available water in food is a long-established method for controlling bacterial growth in the food industry. Nevertheless, food-borne outbreaks of salmonellosis due to consumption of dry foods have been continuously reported. Previous studies showed that dried Salmonella cells acquire high tolerance to heat and ethanol. In order to examine if dehydration also induces tolerance to other stressors, dried Salmonella enterica serotype Typhimurium cells were exposed to multiple stresses, and their viability was assessed. Indeed, desiccated S. Typhimurium acquired higher tolerance to multiple stressors than nondesiccated cells. The dried cells were significantly more resistant to most stressors, including ethanol (10 to 30%, 5 min), sodium hypochlorite (10 to 100 ppm, 10 min), didecyl dimethyl ammonium chloride (0.05 to 0.25%, 5 min), hydrogen peroxide (0.5 to 2.0%, 30 min), NaCl (0.1 to 1 M, 2 h), bile salts (1 to 10%, 2 h), dry heat (100°C, 1 h), and UV irradiation (125 μW/cm(2), 25 min). In contrast, exposure of Salmonella to acetic and citric acids reduced the survival of the dried cells (1.5 log) compared to that of nondesiccated cells (0.5 log). Three other S. enterica serotypes, S. Enteritidis, S. Newport, and S. Infantis, had similar stress responses as S. Typhimurium, while S. Hadar was much more susceptible and gained tolerance to only a few stressors. Our findings indicate that dehydration induces cross-tolerance to multiple stresses in S. enterica, demonstrating the limitations of current chemical and physical treatments utilized by the food industry to inactivate food-borne pathogens. PMID:21216905

  1. Streptomycin Induced Stress Response in Salmonella enterica Serovar Typhimurium Shows Distinct Colony Scatter Signature.

    PubMed

    Singh, Atul K; Drolia, Rishi; Bai, Xingjian; Bhunia, Arun K

    2015-01-01

    We investigated the streptomycin-induced stress response in Salmonella enterica serovars with a laser optical sensor, BARDOT (bacterial rapid detection using optical scattering technology). Initially, the top 20 S. enterica serovars were screened for their response to streptomycin at 100 μg/mL. All, but four S. enterica serovars were resistant to streptomycin. The MIC of streptomycin-sensitive serovars (Enteritidis, Muenchen, Mississippi, and Schwarzengrund) varied from 12.5 to 50 μg/mL, while streptomycin-resistant serovar (Typhimurium) from 125-250 μg/mL. Two streptomycin-sensitive serovars (Enteritidis and Mississippi) were grown on brain heart infusion (BHI) agar plates containing sub-inhibitory concentration of streptomycin (1.25-5 μg/mL) and a streptomycin-resistant serovar (Typhimurium) was grown on BHI containing 25-50 μg/mL of streptomycin and the colonies (1.2 ± 0.1 mm diameter) were scanned using BARDOT. Data show substantial qualitative and quantitative differences in the colony scatter patterns of Salmonella grown in the presence of streptomycin than the colonies grown in absence of antibiotic. Mass-spectrometry identified overexpression of chaperonin GroEL, which possibly contributed to the observed differences in the colony scatter patterns. Quantitative RT-PCR and immunoassay confirmed streptomycin-induced GroEL expression while, aminoglycoside adenylyltransferase (aadA), aminoglycoside efflux pump (aep), multidrug resistance subunit acrA, and ribosomal protein S12 (rpsL), involved in streptomycin resistance, were unaltered. The study highlights suitability of the BARDOT as a non-invasive, label-free tool for investigating stress response in Salmonella in conjunction with the molecular and immunoassay methods. PMID:26252374

  2. Refined Live Attenuated Salmonella enterica Serovar Typhimurium and Enteritidis Vaccines Mediate Homologous and Heterologous Serogroup Protection in Mice

    PubMed Central

    Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F.; Galen, James E.; Levine, Myron M.

    2015-01-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. PMID:26351285

  3. Refined live attenuated Salmonella enterica serovar Typhimurium and Enteritidis vaccines mediate homologous and heterologous serogroup protection in mice.

    PubMed

    Tennant, Sharon M; Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F; Galen, James E; Levine, Myron M

    2015-12-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. PMID:26351285

  4. Requirement for cobalamin by Salmonella enterica serovars Typhimurium, Pullorum, Gallinarum and Enteritidis during infection in chickens

    PubMed Central

    Vaz, Jacqueline Boldrin; Penha Filho, Rafael Antonio Casarin; Junior, Angelo Berchieri; Lemos, Manoel Victor Franco

    2011-01-01

    Salmonella enterica serovar Typhimurium synthesizes cobalamin (vitamin B12) only during anaerobiosis. Two percent of the S. Typhimurium genome is devoted to the synthesis and uptake of vitamin B12 and to B12-dependent reactions. To understand the requirement for cobalamin synthesis better, we constructed mutants of Salmonella serovars Enteritidis and Pullorum that are double-defective in cobalamin biosynthesis (ΔcobSΔcbiA). We compared the virulence of these mutants to that of their respective wild type strains and found no impairment in their ability to cause disease in chickens. We then assessed B12 production in these mutants and their respective wild type strains, as well as in S. Typhimurium ΔcobSΔcbiA, Salmonella Gallinarum ΔcobSΔcbiA, and their respective wild type strains. None of the mutants was able to produce detectable B12. B12 was detectable in S. Enteritidis, S. Pullorum and S. Typhimurium wild type strains but not in S. Gallinarum. In conclusion, the production of vitamin B12in vitro differed across the tested Salmonella serotypes and the deletion of the cbiA and cobS genes resulted in different levels of alteration in the host parasite interaction according to Salmonella serotype tested. PMID:24031771

  5. Changes in the Salmonella enterica Enteritidis phenotypes in presence of acyl homoserine lactone quorum sensing signals.

    PubMed

    Campos-Galvão, Maria Emilene Martino; Ribon, Andrea Oliveira Barros; Araújo, Elza Fernandes; Vanetti, Maria Cristina Dantas

    2016-05-01

    Quorum sensing is used by bacteria to coordinate gene expression in response to population density and involves the production, detection and response to extracellular signaling molecules known as autoinducers (AIs). Salmonella does not synthesize the AI-1, acyl homoserine lactone (AHL) common to gram-negative bacteria; however, it has a receptor for AI-1, the SdiA protein. The effect of SdiA in modulating phenotypes of Salmonella has not been elucidated. In this report, we provide evidence that the AIs-1 affect Salmonella enterica serovar Enteritidis behavior by enhancing the biofilm formation and expression of virulence genes under anaerobic conditions. Biofilm formation by Salmonella was detected by the crystal violet method and by scanning electron microscopy. The presence of AHLs, particularly C12-HSL, increased biofilm formation and promoted expression of biofilm formation genes (lpfA, fimF, fliF, glgC) and virulence genes (hilA, invA, invF). Our results demonstrated that AHLs produced by other organisms played an important role in virulence phenotypes of Salmonella Enteritidis. PMID:26662614

  6. Extended-Spectrum Cephalosporin-Resistant Salmonella enterica serovar Heidelberg Strains, the Netherlands(1).

    PubMed

    Liakopoulos, Apostolos; Geurts, Yvon; Dierikx, Cindy M; Brouwer, Michael S M; Kant, Arie; Wit, Ben; Heymans, Raymond; van Pelt, Wilfrid; Mevius, Dik J

    2016-07-01

    Extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg strains (JF6X01.0022/XbaI.0251, JF6X01.0326/XbaI.1966, JF6X01.0258/XbaI.1968, and JF6X01.0045/XbaI.1970) have been identified in the United States with pulsed-field gel electrophoresis. Our examination of isolates showed introduction of these strains in the Netherlands and highlight the need for active surveillance and intervention strategies by public health organizations. PMID:27314180

  7. High-Efficiency, Two-Step Scarless-Markerless Genome Genetic Modification in Salmonella enterica.

    PubMed

    Geng, Shizhong; Tian, Qin; An, Shuming; Pan, Zhiming; Chen, Xiang; Jiao, Xinan

    2016-06-01

    We present a two-step method for scarless-markerless genome genetic modification in Salmonella enterica based on the improved suicide plasmid pGMB152. The whole LacZYA gene can provide a lacZ-based blue/white screening strategy for fast selection of double-crossover mutants by allelic exchange. The high efficiency of this genetic engineering strategy permits the study of gene function by gene knockin, site-directed mutagenesis, and gene knockout to construct live attenuated vaccines. PMID:26883127

  8. Extended-Spectrum Cephalosporin-Resistant Salmonella enterica serovar Heidelberg Strains, the Netherlands1

    PubMed Central

    Geurts, Yvon; Dierikx, Cindy M.; Brouwer, Michael S.M.; Kant, Arie; Wit, Ben; Heymans, Raymond; van Pelt, Wilfrid; Mevius, Dik J.

    2016-01-01

    Extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg strains (JF6X01.0022/XbaI.0251, JF6X01.0326/XbaI.1966, JF6X01.0258/XbaI.1968, and JF6X01.0045/XbaI.1970) have been identified in the United States with pulsed-field gel electrophoresis. Our examination of isolates showed introduction of these strains in the Netherlands and highlight the need for active surveillance and intervention strategies by public health organizations. PMID:27314180

  9. Proteomic Investigation of the Time Course Responses of RAW 264.7 Macrophages to Infection with Salmonella enterica

    SciTech Connect

    Shi, Liang; Chowdhury, Saiful M.; Smallwood, Heather S.; Yoon, Hyunjin; Mottaz-Brewer, Heather M.; Norbeck, Angela D.; McDermott, Jason E.; Clauss, Therese RW; Heffron, Fred; Smith, Richard D.; Adkins, Joshua N.

    2009-08-01

    Macrophages plan important roles in controlling Salmonella-mediated systemic infection. To investigate the responses of macrophages to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serovar Typhimurium (STM) and then performed a comparative liquid chromatography-tandem mass spectrometry [LC-MS(/MS)]-based proteomics analysis of the infected macrophages. A total of 1006 macrophage and 115 STM proteins were indentified from this study. Most of STM proteins were found at late stage of the time course of infection, consistent with the fact that STM proliferates inside RAW 264.7 macrophages. Majority of the identified macrophage proteins were house keeping-related, including cytoplasmic superoxide dismutase 1 (SOD1), whose peptide abundances were relatively constant during the time course of infection. Compared to those in no infection control, the peptide abundances of 244 macrophage proteins (or 24% of total indentified macrophage proteins) changed considerably after STM infection. The functions of these STM infection-affected macrophage proteins were diverse and ranged from production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase or iNOS) or production of prostaglandin H2 (i.e., prostaglandin-endoperoxide synthase 2, also know as cyclooxygenase-2 or COX-2) to regulation of intracellular traffic (e.g., sorting nexin or SNX 5, 6 and 9), demonstrating a global impact of STM infection on macrophage proteome. Western-blot analysis not only confirmed the LC-MS(/MS) results of SOD1, COX-2 and iNOS, but also revealed that the protein abundances of mitochondrial SOD2 increased after STM infection, indicating an infection-induced oxidative stress in mitochondria.

  10. Characterization of pathogenic and resistant genome repertoire reveals two clonal lines in Salmonella enterica subsp. enterica serovar Paratyphi B (+)-tartrate positive.

    PubMed

    Huehn, Stephan; Helmuth, Reiner; Bunge, Cornelia; Guerra, Beatriz; Junker, Ernst; Davies, Rob H; Wattiau, Pierre; van Pelt, Wilfrid; Malorny, Burkhard

    2009-05-01

    A total of 36 contemporary human, animal, and environmental (+)-tartrate-fermenting (dT+) Salmonella enterica serovar Paratyphi B isolates, formerly called Salmonella serovar Java, and five related monophasic S. enterica serovar 4,5,12:b:- isolates from Belgium, Germany, the Netherlands, and the United Kingdom were investigated for clonality and antimicrobial resistance profiles, as well as their virulence and resistance gene repertoire. Two major clonal lines, which could be phenotypically differentiated by the expression of the O:5 antigen, were identified. All O:5 antigen negative strains were multidrug resistant and originated (with two exceptions) from Belgian, Dutch, or German poultry. Strains exhibiting the O:5 antigen encoded by the oafA gene revealed a more heterogeneous group including multidrug-resistant and susceptible strains. Compared to O:5 antigen negative isolates, Salmonella Paratyphi B dT+ O:5 positive strains possessed additional virulence determinants. The Salmonella genomic island 1 was only found in O:5 positive strains. Five monophasic Salmonella 4,5,12:b:- lacking the phase-2 flagellar antigen were assigned to Salmonella Paratyphi B dT+ isolates of the O:5 positive group. The conclusion of the analysis is that Salmonella Paratyphi B dT+ O:5 negative and O:5 positive isolates evolved from a different lineage. Salmonella Paratyphi B dT+ O:5 positive strains possess additional fimbrial and virulence genes that probably enable this clone to interact with a broader range of hosts and the environment. Salmonella Paratyphi B dT+ O:5 negative continuously persists in poultry across Western Europe, especially Belgium, the Netherlands, and Germany. PMID:19292689

  11. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104.

    PubMed

    Leekitcharoenphon, Pimlapas; Hendriksen, Rene S; Le Hello, Simon; Weill, François-Xavier; Baggesen, Dorte Lau; Jun, Se-Ran; Ussery, David W; Lund, Ole; Crook, Derrick W; Wilson, Daniel J; Aarestrup, Frank M

    2016-04-01

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella entericaserovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315S Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonellafrom pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections. PMID:26944846

  12. Immunogenicity of Salmonella enterica serovar Enteritidis virulence protein, InvH, and cross-reactivity of its antisera with Salmonella strains.

    PubMed

    Dehghani, Behzad; Rasooli, Iraj; Gargari, Seyed Latif Mousavi; Nadooshan, Mohammad Reza Jalali; Owlia, Parviz; Nazarian, Shahram

    2013-02-22

    Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 10(4) LD(50). The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections. PMID:23141708

  13. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid.

    PubMed

    Allam, Uday Shankar; Krishna, M Gopala; Lahiri, Amit; Joy, Omana; Chakravortty, Dipshikha

    2011-01-01

    Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+) T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate. PMID:21347426

  14. Isolation of Salmonella enterica serovar Enteritidis in blue-fronted Amazon parrot (Amazona aestiva).

    PubMed

    Marietto-Gonçalves, Guilherme Augusto; de Almeida, Sílvia Maria; de Lima, Edna Tereza; Okamoto, Adriano Sakai; Pinczowski, Pedro; Andreatti Filho, Raphael Lucio

    2010-03-01

    Avian salmonellosis is a disease caused by bacteria of the genus Salmonella that can cause three distinct diseases in birds: pullorum diseases, fowl typhoid, and paratyphoid infection. Various wildlife species are susceptible to infections by Salmonella, regardless of whether they live in captivity or freely in the wild. The present study verified the presence of Salmonella enterica serovar Enteritidis in three captive specimens of Amazona aestiva. The study involved a total of 103 birds undergoing rehabilitation to prepare for living in the wild, after having been captured from animal traffickers and delivered to the Centrofauna Project of the Floravida Institute in Sao Paulo, Brazil. This is the first report of Salmonella Enteritidis isolation in A. aestiva that originated from capture associated with animal trafficking; Salmonella was detected during the study by the serologic method of rapid serum agglutination on a plate with bacterial isolate. The antimicrobial profile exam of the isolated samples demonstrated sensitivity to ampicillin, cefaclor, ciprofloxacin, and cloranfenicol. The three samples also presented resistance to more than four antibiotics. The presence of the genes invA and spvC was verified by PCR technique and was associated with virulence and absence of class 1 integron, a gene related to antimicrobial resistance. The commercial antigen for pullorum disease was shown to be a useful tool for rapid detection in the screening of Salmonella of serogroup D1 in Psittaciformes. New studies on Salmonella carriage in birds involved in trafficking must be performed to better understand their participation in the epidemiologic cycle of salmonellosis in humans and other animals. PMID:20408416

  15. Rapid Emergence and Clonal Dissemination of CTX-M-15-Producing Salmonella enterica Serotype Virchow, South Korea.

    PubMed

    Kim, Jin Seok; Yun, Young-Sun; Kim, Soo Jin; Jeon, Se-Eun; Lee, Deog-yong; Chung, Gyung Tae; Yoo, Cheon-Kwon; Kim, Junyoung

    2016-01-01

    The prevalence of cefotaxime-resistant Salmonella enterica serotype Virchow has dramatically increased in South Korea since the first isolation in 2011. Of 68 isolates collected over 10 years, 28 cefotaxime-resistant isolates harbored the bla(CTX-M-15) extended-spectrum β-lactamase gene and were closely related genetically, demonstrating the clonal dissemination of CTX-M-15-producing Salmonella Virchow in South Korea. PMID:26674083

  16. An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium.

    PubMed

    Kröger, Carsten; Colgan, Aoife; Srikumar, Shabarinath; Händler, Kristian; Sivasankaran, Sathesh K; Hammarlöf, Disa L; Canals, Rocío; Grissom, Joe E; Conway, Tyrrell; Hokamp, Karsten; Hinton, Jay C D

    2013-12-11

    Bacterial transcriptional networks consist of hundreds of transcription factors and thousands of promoters. However, the true complexity of transcription in a bacterial pathogen and the effect of the environments encountered during infection remain to be established. We present a simplified approach for global promoter identification in bacteria using RNA-seq-based transcriptomic analyses of 22 distinct infection-relevant environmental conditions. Individual RNA samples were combined to identify most of the 3,838 Salmonella enterica serovar Typhimurium promoters in just two RNA-seq runs. Individual in vitro conditions stimulated characteristic transcriptional signatures, and the suite of 22 conditions induced transcription of 86% of all S. Typhimurium genes. We highlight the environmental conditions that induce the Salmonella pathogenicity islands and present a small RNA expression landscape of 280 sRNAs. This publicly available compendium of environmentally controlled expression of every transcriptional feature of S. Typhimurium constitutes a useful resource for the bacterial research community. PMID:24331466

  17. Diversity of multidrug-resistant salmonella enterica strains associated with cattle at harvest in the United States.

    PubMed

    Brichta-Harhay, Dayna M; Arthur, Terrance M; Bosilevac, Joseph M; Kalchayanand, Norasak; Shackelford, Steven D; Wheeler, Tommy L; Koohmaraie, Mohammad

    2011-03-01

    The prevalence and diversity of multidrug-resistant (MDR) Salmonella enterica strains associated with cattle at harvest in the United States were examined. Hides and carcasses of cattle were sampled at processing plants (n = 6) located in four geographically distant regions from July 2005 to April 2006. The mean prevalences of Salmonella on hides, preevisceration carcasses (immediately after hide removal), and postintervention carcasses (in the chiller and after the full complement of interventions) were 89.6%, 50.2%, and 0.8%, respectively. The values for MDR Salmonella enterica strains (defined as those resistant to two or more antimicrobials) as percentages of Salmonella prevalence were 16.7% (95% confidence interval [CI], 8.3 to 25.1%; median percent prevalence, 6.9%), 11.7% (95% CI, 4.4 to 19.0%; median, 4.8%), and 0.33% (95% CI, -0.3 to 0.70%; median, 0%), respectively. In this study, 16,218 Salmonella hide and carcass isolates were screened for antimicrobial resistance. Of these, 978 (6.0%) unique MDR S. enterica isolates were identified and serotyped and their XbaI pulsed-field gel electrophoresis (PFGE) profiles determined. The predominant MDR S. enterica serotypes observed were Newport (53.1%), Typhimurium (16.6%), and Uganda (10.9%). Differences in MDR S. enterica prevalence were detected, and PFGE analysis revealed both epidemic clusters (profiles found in plants in multiple regions/seasons) and endemic clusters (profiles observed in plants in limited regions/seasons) within several of the MDR serotypes examined. Despite these differences, multiple-hurdle processing interventions employed at all plants were found to be quite effective and decreased Salmonella carcass contamination by 98.4% (95% CI, 97.6 to 99.7%). PMID:21239549

  18. Diversity of Multidrug-Resistant Salmonella enterica Strains Associated with Cattle at Harvest in the United States ▿

    PubMed Central

    Brichta-Harhay, Dayna M.; Arthur, Terrance M.; Bosilevac, Joseph M.; Kalchayanand, Norasak; Shackelford, Steven D.; Wheeler, Tommy L.; Koohmaraie , Mohammad

    2011-01-01

    The prevalence and diversity of multidrug-resistant (MDR) Salmonella enterica strains associated with cattle at harvest in the United States were examined. Hides and carcasses of cattle were sampled at processing plants (n = 6) located in four geographically distant regions from July 2005 to April 2006. The mean prevalences of Salmonella on hides, preevisceration carcasses (immediately after hide removal), and postintervention carcasses (in the chiller and after the full complement of interventions) were 89.6%, 50.2%, and 0.8%, respectively. The values for MDR Salmonella enterica strains (defined as those resistant to two or more antimicrobials) as percentages of Salmonella prevalence were 16.7% (95% confidence interval [CI], 8.3 to 25.1%; median percent prevalence, 6.9%), 11.7% (95% CI, 4.4 to 19.0%; median, 4.8%), and 0.33% (95% CI, −0.3 to 0.70%; median, 0%), respectively. In this study, 16,218 Salmonella hide and carcass isolates were screened for antimicrobial resistance. Of these, 978 (6.0%) unique MDR S. enterica isolates were identified and serotyped and their XbaI pulsed-field gel electrophoresis (PFGE) profiles determined. The predominant MDR S. enterica serotypes observed were Newport (53.1%), Typhimurium (16.6%), and Uganda (10.9%). Differences in MDR S. enterica prevalence were detected, and PFGE analysis revealed both epidemic clusters (profiles found in plants in multiple regions/seasons) and endemic clusters (profiles observed in plants in limited regions/seasons) within several of the MDR serotypes examined. Despite these differences, multiple-hurdle processing interventions employed at all plants were found to be quite effective and decreased Salmonella carcass contamination by 98.4% (95% CI, 97.6 to 99.7%). PMID:21239549

  19. Effect of Protein SV-IV on Experimental Salmonella enterica Serovar Typhimurium Infection in Mice

    PubMed Central

    Romano-Carratelli, Caterina; Bentivoglio, Concetta; Nuzzo, Immacolata; Benedetto, Nunzia; Buommino, Elisabetta; Cozzolino, Anna; Cartenì, Maria; Morelli, Francesco; Costanza, Maria Rosaria; Metafora, Biancamaria; Metafora, Vittoria; Metafora, Salvatore

    2002-01-01

    Seminal vesicle protein IV (SV-IV) is a secretory anti-inflammatory, procoagulant, and immunomodulatory protein produced in large amounts by the seminal vesicle epithelium of the rat under the strict transcriptional control of androgen. In particular, this protein was shown to possess the ability to markedly inhibit in vivo the humoral and cell-mediated immune responses of mice to nonbacterial cellular antigens (sheep erythrocytes and spermatozoa). We report data that demonstrate that in mice treated with SV-IV and infected with Salmonella enterica serovar Typhimurium, SV-IV is able to downregulate some important immunological and biochemical parameters that serovar Typhimurium normally upregulates in these animals. This event did not correlate with a lower bacterial burden but was associated with a markedly increased one (300%). Furthermore, the treatment of mice with SV-IV alone also produced a significant increase in the rate of mortality among serovar Typhimurium-infected animals. The mechanism underlying these phenomena was investigated, and the strong immunosuppression produced by SV-IV in serovar Typhimurium-infected mice was suggested to be the basis for the increased rate of mortality. The SV-IV-mediated immunosuppression was characterized by a decrease in the humoral and cell-mediated immune responses, altered lymphocyte-macrophage interaction, downregulation of cytokine and inducible nitric oxide synthase gene expression, inhibition of macrophage phagocytosis and intracellular killing activities, and absence of apoptosis in the splenocyte population of SV-IV- and serovar Typhimurium-treated mice. The immunosuppressive activity of SV-IV was specific and was not due to aspecific cytotoxic effects. SV-IV-specific receptors (Kd = 10−8 M) occurring on the macrophage and lymphocyte plasma membranes may be involved in the molecular mechanism underlying the SV-IV-mediated immunosuppression. Some results obtained by the 3-(4,5-dimethylthiazol-2-yl)-2

  20. Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses

    PubMed Central

    2012-01-01

    Background Many Gram-positive and Gram-negative bacteria produce large quantities of indole as an intercellular signal in microbial communities. Indole demonstrated to affect gene expression in Escherichia coli as an intra-species signaling molecule. In contrast to E. coli, Salmonella does not produce indole because it does not harbor tnaA, which encodes the enzyme responsible for tryptophan metabolism. Our previous study demonstrated that E. coli-conditioned medium and indole induce expression of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium for inter-species communication; however, the global effect of indole on genes in Salmonella remains unknown. Results To understand the complete picture of genes regulated by indole, we performed DNA microarray analysis of genes in the S. enterica serovar Typhimurium strain ATCC 14028s affected by indole. Predicted Salmonella phenotypes affected by indole based on the microarray data were also examined in this study. Indole induced expression of genes related to efflux-mediated multidrug resistance, including ramA and acrAB, and repressed those related to host cell invasion encoded in the Salmonella pathogenicity island 1, and flagella production. Reduction of invasive activity and motility of Salmonella by indole was also observed phenotypically. Conclusion Our results suggest that indole is an important signaling molecule for inter-species communication to control drug resistance and virulence of S. enterica. PMID:22632036

  1. Isolation of Salmonella enterica serovar Enteritidis from House Flies (Musca domestica) Found in Rooms Containing Salmonella serovar Enteritidis-challenged hens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    House flies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (S. enteritidis) rapidly became contaminated with S. enteritidis. Forty to 50% of the flies were contaminated at 48 hours which increased to 50-70% at 4 and 7 days post exposur...

  2. DISSEMINATION OF SALMONELLA ENTERICA SEQUENCE TYPES AMONG ASEAN ECONOMIC COMMUNITY COUNTRIES.

    PubMed

    Patchanee, Prapas; Boonkhot, Phacharaporn; Kittiwan, Nattinee; Tadee, Pakpoom; Chotinun, Suwit

    2015-07-01

    Food-borne illness caused by Salmonella enterica remains a public health problem and results in economic loss worldwide. With the up-coming establish- ment of the ASEAN Economic Community (AEC) allowing unrestricted move- ment of labor and goods, there is a higher risk of pathogen transmission among the AEC countries. This study characterized and investigated the spatial and temporal associations of S. enterica strains isolated in AEC countries during 1940- 2012 compared with those isolated in northern-Thailand during 2011-2013. Of the 173 S. enterica strains examined, 68 sequence types (STs) and 32 clonal complexes (CCs) were identified by multi loci sequence typing. Twenty-one strains belonged to four sequence types new to AEC countries, and they constituted only two CCs. A number of strains originated from various countries with multiple hosts, were highlighted. There was evidence of strains circulating in the AEC region well over a decade. Such information will be important in formulating biosecurity measures, as well as in educating regarding the risk of disease transmission in AEC. PMID:26867391

  3. Antibiotic Resistance in Salmonella enterica Serovar Typhimurium Associates with CRISPR Sequence Type

    PubMed Central

    DiMarzio, Michael; Shariat, Nikki; Kariyawasam, Subhashinie; Barrangou, Rodolphe

    2013-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of food-borne salmonellosis in the United States. The number of antibiotic-resistant isolates identified in humans is steadily increasing, suggesting that the spread of antibiotic-resistant strains is a major threat to public health. S. Typhimurium is commonly identified in a wide range of animal hosts, food sources, and environments, but little is known about the factors mediating the spread of antibiotic resistance in this ecologically complex serovar. Previously, we developed a subtyping method, CRISPR–multi-virulence-locus sequence typing (MVLST), which discriminates among strains of several common S. enterica serovars. Here, CRISPR-MVLST identified 22 sequence types within a collection of 76 S. Typhimurium isolates from a variety of animal sources throughout central Pennsylvania. Six of the sequence types were identified in more than one isolate, and we observed statistically significant differences in resistance among these sequence types to 7 antibiotics commonly used in veterinary and human medicine, such as ceftiofur and ampicillin (P < 0.05). Importantly, five of these sequence types were subsequently identified in human clinical isolates, and a subset of these isolates had identical antibiotic resistance patterns, suggesting that these subpopulations are being transmitted through the food system. Therefore, CRISPR-MVLST is a promising subtyping method for monitoring the farm-to-fork spread of antibiotic resistance in S. Typhimurium. PMID:23796925

  4. Crop Isolated Lymphoid Follicles and Ileal Peyer’s patches in Egg-Layer Hens Challenged with Salmonella enterica Enteritidis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enteric pathogen Salmonella enterica Enteritidis (SE) can be harbored within the upper and lower gastrointestinal (GI) tract of chickens. Induction of immune response by SE at various alimentary tract regions may perhaps be attributable to local gut-associated lymphoid tissue (GALT). The study...

  5. Survival of Salmonella enterica on soybean sprouts following treatments with gaseous chlorine dioxide and biocontrol Pseudomonas bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of Salmonella enterica on sprouts and minimally processed, ready-to-eat fruits and vegetables is important for food and consumer safety. The aim of this research was to assess the effects of gaseous chlorine dioxide(ClO2)and biocontrol microorganisms (Pseudomonas chlororaphis and P. fluoresc...

  6. Evolutionary trends in two strains of Salmonella enterica subsp. I serovar Enteritidis PT13a that vary in virulence potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis) is the world's leading cause of salmonellosis. Eggs contaminated by apparently healthy hens and that have been improperly cooked can result in illness in humans who consume them. Although the incidence of this pathogen within the Uni...

  7. Identification of SNPs in two Salmonella enterica serovar Enteritidis PT13a pathotypes that point to epidemiological trends.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis) is the most frequent cause of salmonellosis in the world. Epidemiological data from the Centers for Disease Control indicates that the incidence of illness from S. Enteritidis in the United States increased during 2005 despi...

  8. Intergenic Sequence Ribotyping using a region neighboring dkgB links genovar to Kauffman-White serotype of Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research identified that the 5S ribosomal (rrn) gene and associated flanking sequences that are closely linked to the dkgB gene of Salmonella enterica were highly variable between serotypes, but not between subpopulations within the same serotype (PMID: 17005008). The degree of variability ...

  9. Evolutionary trends in two strains of Salmonella enterica subsp. I serovar Enteritidis PT13a that vary in virulence potential.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis) is the world's leading cause of salmonellosis. Eggs contaminated by apparently healthy hens and that have been improperly cooked can result in illness in humans who consume them. Although the incidence of this pathogen within the Unit...

  10. Evolutionary relationships between known serotypes and unique variants of Salmonella enterica as determined by ISR secondary structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intergenic Sequence Ribotyping (ISR) near the dkgB gene of Salmonella enterica subspecies I genome is now used to assign serotype in a manner that is largely concordant with the historical Kauffman-White-LeMinor (KWL) antibody-based scheme. ISR has a number of advantages over the KWL scheme, and it ...

  11. Critical role of glycogen synthase kinase-3ß in regulating the avian heterophil response to Salmonella enterica serovar Enteritidis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microarray-assisted gene expression screen of chicken heterophils revealed glycogen synthase kinase-3ß (GSK-3ß), a multifunctional Ser/Thr kinase, to be consistently up-regulated 30-180 min following stimulation with Salmonella enterica serovar Enteritidis (S. Enteritidis). The present study was ...

  12. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the combined antimicrobial effects of plant essential oils and olive extract against antibiotic resistant Salmonella enterica serovar Newport on organic leafy greens. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with S. Newport and dip-t...

  13. Evolutionary trends in two strains of Salmonella enterica subsp. I serovar Enteritidis PT13a that vary in virulence potential.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis) is the world's leading cause of salmonellosis. Eggs contaminated by apparently healthy hens can result in illness in humans who consume them. Although the incidence of this pathogen within the United States has not been as high as it ...

  14. Inactivation of Salmonella enterica serovar Typhimurium and quality maintenance of cherry tomatoes treated with gaseous essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antimicrobial activity of the essential oils (EOs) from cinnamon bark, oregano, mustard and of their major components cinnamaldehyde, carvacrol, and allyl isothiocyanate (AIT) were evaluated as a gaseous treatment to reduce Salmonella enterica serovar Typhimurium in vitro and on tomatoes. In dif...

  15. Immersion in antimicrobial solutions reduces Salmonella enterica and Shiga toxin-producing Escherichia coli on beef cheek meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effect of immersing beef cheek meat in antimicrobial solutions on the reduction of O157:H7 Shiga toxin–producing Escherichia coli (STEC), non-O157:H7 STEC, and Salmonella enterica. Beef cheek meat was inoculated with O157:H7 STEC, non-O157:H7 STEC, an...

  16. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to evaluate and develop a method for inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree (CP) by high hydrostatic pressure (HHP). Cantaloupe being the most netted varieties of melons presents a greater risk of pathogen transmission. ...

  17. COLONIZATION OF ARABIDOPSIS THALIANA WITH SALMONELLA ENTERICA AND ENTEROHEMORRHAGIC ESCHERICHIA COLI 157:H7 AND COMPETITIAN BY ENTEROBACTOR ASBURIAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enteric pathogens, such as Salmonella enterica and Escherichia coli O157:H7, have been shown to contaminate fresh produce. Under appropriate conditions these bacteria will grow on and invade the plant tissue. We have developed Arabidopsis thaliana (thale cress) as a model system with the intention o...

  18. Molecular profiling: Catecholamine modulation of gene expression in Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigations of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium have demonstrated that these bacterial pathogens can respond to the presence of catecholamines including norepinephrine and/or epinephrine in their environment by modulating gene expression and exhibiting various ...

  19. A mutation in the pnp gene encoding polynucleotide phosphorylase attenuates virulence of Salmonella enterica serovar typhimurium in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The pnp gene encodes polynucleotide phosphorylase, an exoribonuclease involved in RNA degradation. A mutation in the pnp gene was previously identified by our group in a signature-tagged mutagenesis screen designed to search for Salmonella enterica serovar Typhimurium genes required for ...

  20. Mobilization properties of small ColE1-like plasmids carrying kanamycin resistance gene isolated from Salmonella enterica serotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Previously we isolated and characterized various groups of small kanamycin resistance (KanR) ColE1-like plasmids from different serotypes of Salmonella enterica isolates. These plasmids all carried the aph(3)-I gene encoding the aminoglycoside phosphotransferase responsible for the kanam...

  1. Salmonella enterica Typhimurium infection causes metabolic changes in chicken muscle involving AMPK, fatty acid and insulin/mTOR signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Typhimurium (ST) infection of chickens more than a few days old results in asymptomatic cecal colonization with persistent shedding of bacteria. We hypothesized that while the bacteria colonize and persist locally in the cecum, it has systemic effects influencing the phy...

  2. Motility revertants of opgGH mutants of Salmonella enterica serovar Typhimurium remain defective in mice virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently demonstrated that osmoregulated periplasmic glucans (OPGs) of Salmonella enterica serovar Typhimurium are required for optimal mouse virulence (Bhagwat et al., 2009. Microbiology 155:229-237). However, lack of OPGs also generated pleiotropic phenotypes such as reduced motility and slower...

  3. Analysis of antimicrobial resistance mechanisms in multi-drug resistant (MDR) Salmonella enterica by high-throughput DNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Multi drug resistant (MDR) Salmonella enterica is found in food animals and may consequently pose a risk to humans through food borne transmission. To understand the mechanisms that drive this problem, the genetic elements associated with MDR need to be determined. These MDR elements in ...

  4. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorate is a bactericide that has potential as a pre-slaughter feed additive to improve food safety of meat products. The aims of the present study were to examine the effects of chlorate (5mM), molybdate (1 mM), and shikimate (0.34 mM) on the growth and chlorate-resistance of Salmonella enterica ...

  5. Comparison of dkgB-linked Intergenic Sequence Ribotyping to DNA Microarray Hydridization for Assigning Serotype to Salmonella Enterica.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Kauffman-White scheme has been used for decades to serotype Salmonella enterica, which is a pervasive and persistent cause of food-borne illness. Analysis of whole genomes of the bacterium has revealed that it is unlikely that the Kauffman-White scheme provides the level of discrimination requir...

  6. Antimicrobial activity of apple, hibiscus, olive, and hydrogen peroxide formulations against Salmonella enterica on organic leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is one of the most common bacterial pathogens involved in foodborne outbreaks with fresh produce in the last decade. In an effort to discover safe antimicrobials for use on fresh produce, the objective of the present study was to evaluate the effectiveness of different antimicro...

  7. Beta-glucan plus ascorbic acid in neonatal calves modulates immune functions with and without Salmonella enterica serovar Dublin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calves often succumb to Salmonella enterica, Dublin after maternal antibody protection has abated. Enhancement of innate immunity or earlier maturation of adaptive immunity to support vaccinations with dietary immune modulators may be the best option for protection during this vulnerable period. I...

  8. Population genetics of multi-drug resistant (MDR) IncA/C plasmid in Salmonella enterica isolated from animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food animals harboring Multi-Drug Resistant (MDR) Salmonella enterica are a potential source for acquisition of zoonotic pathogens. Plasmids (small, self-replicating, extra-chromosomal DNA) are often associated with antimicrobial resistance and plasmids carrying MDR genes have been found to be a maj...

  9. First Report of Human Infection with Salmonella enterica Serovar Apapa Resulting from Exposure to a Pet Lizard▿

    PubMed Central

    Cooke, Fiona J.; De Pinna, Elizabeth; Maguire, Clare; Guha, Simantee; Pickard, Derek J.; Farrington, Mark; Threlfall, E. John

    2009-01-01

    We present the first documented human case of Salmonella enterica serovar Apapa infection, isolated concurrently from a hospital inpatient and a pet lizard. The isolates were identical by biochemical profiling and pulsed-field gel electrophoresis. This rare serotype is known to be associated with reptiles. The current practice for avoiding reptile-associated infections is reviewed. PMID:19535527

  10. Intergenic Sequence Ribotyping using a region neighboring dkgB links genovar to Kauffman-White serotype of Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty six (36) unique sequences which varied in length from 258bp to 530bp were found for Salmonella enterica strains and isolates that are not present in public databases following BLAST analysis searches for similarity. The sequences were found by application of Intergenic Sequence Ribotyping (IS...

  11. Evolutionary trends in two strains of Salmonella enterica subsp. I serovar Enteritidis PT13a that vary in virulence potential.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis) is the world's leading cause of salmonellosis. Eggs that are contaminated by apparently healthy hens and that have been improperly cooked can result in illness in humans who consume them. Although the incidence of this pathogen within...

  12. ANTIMICROBIAL ACTIVITIES OF PHENOLIC BENZALDEHYDES AND BENZOIC ACIDS AGAINST CAMPYLOBACTER JEJUNI, ESCHERICHIA COLI, LISTERIA MONOCYTOGENES, AND SALMONELLA ENTERICA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the bactericidal activities of 70 benzaldehydes and benzoic acids substituted in the benzene ring with zero, one, two, or three hydroxy (OH) and/or methoxy (OCH3) groups in a pH 7 buffer against Escherichia coli O157:H7, Salmonella enterica, Campylobacter jejuni, and Listeria monocytog...

  13. Characterization of Salmonella enterica isolates from turkeys in commercial processing plants for resistance to antibiotics, disinfectants, and a growth promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovars isolated from turkeys in commercial processing plants were characterized for susceptibility to antibiotics, disinfectants, disinfectant components, and the organoarsenical growth promotant 4-hydroxy-3-nitrophenylarsonic acid (3-NHPAA) and its metabolites NaAsO2 (As[III])...

  14. Recipes for Antimicrobial Wine Marinades against Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated bactericidal activities of several antimicrobial wine recipes consisting of red and white wine extracts of oregano leaves with added garlic juice and oregano oil against Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica. Dose-response plots were...

  15. Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum

    PubMed Central

    Matthews, T. David; Schmieder, Robert; Silva, Genivaldo G. Z.; Busch, Julia; Cassman, Noriko; Dutilh, Bas E.; Green, Dawn; Matlock, Brian; Heffernan, Brian; Olsen, Gary J.; Farris Hanna, Leigh; Schifferli, Dieter M.; Maloy, Stanley; Dinsdale, Elizabeth A.; Edwards, Robert A.

    2015-01-01

    The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content between strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars. PMID:26039056

  16. Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum.

    PubMed

    Matthews, T David; Schmieder, Robert; Silva, Genivaldo G Z; Busch, Julia; Cassman, Noriko; Dutilh, Bas E; Green, Dawn; Matlock, Brian; Heffernan, Brian; Olsen, Gary J; Farris Hanna, Leigh; Schifferli, Dieter M; Maloy, Stanley; Dinsdale, Elizabeth A; Edwards, Robert A

    2015-01-01

    The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content between strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars. PMID:26039056

  17. Single passage in mouse organs enhances the survival and spread of Salmonella enterica.

    PubMed

    Dybowski, Richard; Restif, Olivier; Goupy, Alexandre; Maskell, Duncan J; Mastroeni, Piero; Grant, Andrew J

    2015-12-01

    Intravenous inoculation of Salmonella enterica serovar Typhimurium into mice is a prime experimental model of invasive salmonellosis. The use of wild-type isogenic tagged strains (WITS) in this system has revealed that bacteria undergo independent bottlenecks in the liver and spleen before establishing a systemic infection. We recently showed that those bacteria that survived the bottleneck exhibited enhanced growth when transferred to naive mice. In this study, we set out to disentangle the components of this in vivo adaptation by inoculating mice with WITS grown either in vitro or in vivo. We developed an original method to estimate the replication and killing rates of bacteria from experimental data, which involved solving the probability-generating function of a non-homogeneous birth-death-immigration process. This revealed a low initial mortality in bacteria obtained from a donor animal. Next, an analysis of WITS distributions in the livers and spleens of recipient animals indicated that in vivo-passaged bacteria started spreading between organs earlier than in vitro-grown bacteria. These results further our understanding of the influence of passage in a host on the fitness and virulence of Salmonella enterica and represent an advance in the power of investigation on the patterns and mechanisms of host-pathogen interactions. PMID:26701880

  18. Genomic comparison of the closely-related Salmonella enterica serovars enteritidis, dublin and gallinarum

    DOE PAGESBeta

    Matthews, T. David; Schmieder, Robert; Silva, Genivaldo G. Z.; Busch, Julia; Cassman, Noriko; Dutilh, Bas E.; Green, Dawn; Matlock, Brian; Heffernan, Brian; Olsen, Gary J.; et al

    2015-06-03

    The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content betweenmore » strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars.« less

  19. Physiological and Immunological Regulations in Caenorhabditis elegans Infected with Salmonella enterica serovar Typhi.

    PubMed

    Sivamaruthi, Bhagavathi Sundaram; Balamurugan, Krishnaswamy

    2014-03-01

    Studies pertaining to Salmonella enterica serovar Typhimurium infection by utilizing model systems failed to mimic the essential aspects of immunity induced by Salmonella enterica serovar Typhi, as the determinants of innate immunity are distinct. The present study investigated the physiological and innate immune responses of S. Typhi infected Caenorhabditis elegans and also explored the Ty21a mediated immune enhancement in C. elegans. Ty21a is a known live vaccine for typhoidal infection in human beings. Physiological responses of C. elegans infected with S. Typhi assessed by survival and behavioral assays revealed that S. Typhi caused host mortality by persistent infection. However, Ty21a exposure to C. elegans was not harmful. Ty21a pre-exposed C. elegans, exhibited significant resistance against S. Typhi infection. Elevated accumulation of S. Typhi inside the infected host was observed when compared to Ty21a exposures. Transcript analysis of candidate innate immune gene (clec-60, clec-87, lys-7, ilys-3, scl-2, cpr-2, F08G5.6, atf-7, age-1, bec-1 and daf-16) regulations in the host during S. Typhi infection have been assessed through qPCR analysis to understand the activation of immune signaling pathways during S. Typhi infections. Gene silencing approaches confirmed that clec-60 and clec-87 has a major role in the defense system of C. elegans during S. Typhi infection. In conclusion, the study revealed that preconditioning of host with Ty21a protects against subsequent S. Typhi infection. PMID:24426167

  20. Assessment of antibiotic resistance phenotype and integrons in Salmonella enterica serovar Typhimurium isolated from swine.

    PubMed

    Rayamajhi, Nabin; Kang, Sang Gyun; Kang, Mi Lan; Lee, Hee Soo; Park, Kyung Yoon; Yoo, Han Sang

    2008-10-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) isolated and identified from swine were subjected for the analysis of antibiotic resistance pattern and clinically important class 1 and 2 integrons. In addition, S. Typhimurium isolates exhibiting ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline and florfenicol (ACSSuTF) resistance pattern as described in most Salmonella enterica serotype Typhimurium definitive type 104 (DT104) were characterized by polymerase chain reaction. All the isolates were resistant to more than four antibiotics and showed the highest resistance to streptomycin (94.1%), followed by tetracycline (90.1%), ampicillin (64.7%), chloramphenicol (56.8%) and gentamicin (54.9%). MIC value for the ten isolates ranged between 0.125-2 mug/ml for ciprofloxacin. Among the beta-lactams used, only one of the isolate exhibited resistance to ceftiofur (MIC 8 microg/ml). Sixty eight percent of these multi drug resistance (MDR) S. Typhimurium isolates carried clinically important class 1 integron with 1kb (aadA) and/or 2kb (dhfrXII-orfF-aadA2) resistance gene cassettes. This study reports the increasing trend of multi drug resistance (MDR) S. Typhimurium with clinically important class 1 integron in pigs. In addition, emergence of the ACSSuTF-type resistance in S. Typhimurium PT other than DT104 may limit the use of resistance gene markers in its detection methods by PCR. PMID:18981675

  1. Models of intestinal infection by Salmonella enterica: introduction of a new neonate mouse model

    PubMed Central

    Schulte, Marc; Hensel, Michael

    2016-01-01

    Salmonella enterica serovar Typhimurium is a foodborne pathogen causing inflammatory disease in the intestine following diarrhea and is responsible for thousands of deaths worldwide. Many in vitro investigations using cell culture models are available, but these do not represent the real natural environment present in the intestine of infected hosts. Several in vivo animal models have been used to study the host-pathogen interaction and to unravel the immune responses and cellular processes occurring during infection. An animal model for Salmonella-induced intestinal inflammation relies on the pretreatment of mice with streptomycin. This model is of great importance but still shows limitations to investigate the host-pathogen interaction in the small intestine in vivo. Here, we review the use of mouse models for Salmonella infections and focus on a new small animal model using 1-day-old neonate mice. The neonate model enables researchers to observe infection of both the small and large intestine, thereby offering perspectives for new experimental approaches, as well as to analyze the Salmonella-enterocyte interaction in the small intestine in vivo. PMID:27408697

  2. Multiple antibiotic resistance (mar) locus in Salmonella enterica serovar typhimurium DT104.

    PubMed

    Randall, L P; Woodward, M J

    2001-03-01

    In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive Salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfectants, and various growth conditions did not. Increased antibiotic resistance was observed upon salicylate induction, although this was shown to be by both mar-dependent and mar-independent pathways. Cyclohexane resistance, however, was induced by salicylate by a mar-dependent pathway. Complementation studies with a plasmid that constitutively expressed marA confirmed the involvement of mar in Salmonella with low-level antibiotic resistance and cyclohexane resistance, although the involvement of mar in down regulation of OmpF was unclear. However, marA overexpression did increase the expression of a ca. 50-kDa protein, but its identity remains to be elucidated. Passage of the marA::gfp reporter mutant with increasing levels of tetracycline, a method reported to select for mar mutants in Escherichia coli, led to both multiple-antibiotic and cyclohexane resistance. Collectively, these data indicate that low-level antibiotic resistance, cyclohexane resistance, and modulation of OMPs in Salmonella, as in E. coli, can occur in both a mar-dependent and mar-independent manner. PMID:11229910

  3. Heat-labile enterotoxin of Escherichia coli promotes intestinal colonization of Salmonella enterica.

    PubMed

    Verbrugghe, Elin; Van Parys, Alexander; Leyman, Bregje; Boyen, Filip; Arnouts, Sven; Lundberg, Urban; Ducatelle, Richard; Van den Broeck, Wim; Yekta, Maryam Atef; Cox, Eric; Haesebrouck, Freddy; Pasmans, Frank

    2015-12-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of infantile and travellers' diarrhoea, which poses a serious health burden, especially in developing countries. In addition, ETEC bacteria are a major cause of illness and death in neonatal and recently weaned pigs. The production of a heat-labile enterotoxin (LT) promotes the colonization and pathogenicity of ETEC and may exacerbate co-infections with other enteric pathogens such as Salmonella enterica. We showed that the intraintestinal presence of LT dramatically increased the intestinal Salmonella Typhimurium load in experimentally inoculated pigs. This could not be explained by direct alteration of the invasion or survival capacity of Salmonella in enterocytes, in vitro. However, we demonstrated that LT affects the enteric mucus layer composition in a mucus-secreting goblet cell line by significantly decreasing the expression of mucin 4. The current results show that LT alters the intestinal mucus composition and aggravates a Salmonella Typhimurium infection, which may result in the exacerbation of the diarrhoeal illness. PMID:26616654

  4. Experimental identification and characterization of 97 novel npcRNA candidates in Salmonella enterica serovar Typhi

    PubMed Central

    Chinni, Suresh V.; Raabe, Carsten A.; Zakaria, Robaiza; Randau, Gerrit; Hoe, Chee Hock; Zemann, Anja; Brosius, Juergen; Tang, Thean-Hock; Rozhdestvensky, Timofey S.

    2010-01-01

    We experimentally identified and characterized 97 novel, non-protein-coding RNA candidates (npcRNAs) from the human pathogen Salmonella enterica serovar Typhi (hereafter referred to as S. typhi). Three were specific to S. typhi, 22 were restricted to Salmonella species and 33 were differentially expressed during S. typhi growth. We also identified Salmonella Pathogenicity Island-derived npcRNAs that might be involved in regulatory mechanisms of virulence, antibiotic resistance and pathogenic specificity of S. typhi. An in-depth characterization of S. typhi StyR-3 npcRNA showed that it specifically interacts with RamR, the transcriptional repressor of the ramA gene, which is involved in the multidrug resistance (MDR) of Salmonella. StyR-3 interfered with RamR–DNA binding activity and thus potentially plays a role in regulating ramA gene expression, resulting in the MDR phenotype. Our study also revealed a large number of cis-encoded antisense npcRNA candidates, supporting previous observations of global sense–antisense regulatory networks in bacteria. Finally, at least six of the npcRNA candidates interacted with the S. typhi Hfq protein, supporting an important role of Hfq in npcRNA networks. This study points to novel functional npcRNA candidates potentially involved in various regulatory roles including the pathogenicity of S. typhi. PMID:20460466

  5. Models of intestinal infection by Salmonella enterica: introduction of a new neonate mouse model.

    PubMed

    Schulte, Marc; Hensel, Michael

    2016-01-01

    Salmonella enterica serovar Typhimurium is a foodborne pathogen causing inflammatory disease in the intestine following diarrhea and is responsible for thousands of deaths worldwide. Many in vitro investigations using cell culture models are available, but these do not represent the real natural environment present in the intestine of infected hosts. Several in vivo animal models have been used to study the host-pathogen interaction and to unravel the immune responses and cellular processes occurring during infection. An animal model for Salmonella-induced intestinal inflammation relies on the pretreatment of mice with streptomycin. This model is of great importance but still shows limitations to investigate the host-pathogen interaction in the small intestine in vivo. Here, we review the use of mouse models for Salmonella infections and focus on a new small animal model using 1-day-old neonate mice. The neonate model enables researchers to observe infection of both the small and large intestine, thereby offering perspectives for new experimental approaches, as well as to analyze the Salmonella-enterocyte interaction in the small intestine in vivo. PMID:27408697

  6. Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation

    PubMed Central

    Fàbrega, Anna

    2013-01-01

    SUMMARY Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success. PMID:23554419

  7. Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin.

    PubMed

    Wong, Marcus Ho Yin; Yan, Meiying; Chan, Edward Wai Chi; Biao, Kan; Chen, Sheng

    2014-07-01

    Salmonella infection is an important public health issue for which the needs of antimicrobial treatment are increasing. A total of 546 human clinical S. enterica serovar Typhimurium isolates were recovered from patients in hospitals in China during the period of 2005 to ∼ 2011. Twenty percent of the isolates exhibited resistance to ciprofloxacin, and 4% were resistant to ceftriaxone. Importantly, for the first time, 12 (2%) S. Typhimurium isolates resistant to both ciprofloxacin and ceftriaxone were recovered; among these 12 isolates, two were also resistant to azithromycin, and one was resistant to all other drugs tested. The combined effects of various transferrable extended-spectrum β-lactamase determinants and a novel efflux-based ciprofloxacin resistance mechanism encoded by the mobile efflux gene oqxAB were responsible for the emergence of these extremely (highly) drug-resistant (XDR) S. Typhimurium isolates. The dissemination of resistance genes, such as those encoding ESBLs and the OqxAB pump, among Salmonella organisms will speed up the selection of XDR Salmonella, posing a huge threat to public health and Salmonella infection control. PMID:24752251

  8. Efficacy of European starling control to reduce Salmonella enterica contamination in a concentrated animal feeding operation in the Texas panhandle

    PubMed Central

    2011-01-01

    Background European starlings (Sturnus vulgaris) are an invasive bird species known to cause damage to plant and animal agriculture. New evidence suggests starlings may also contribute to the maintenance and spread of diseases within livestock facilities. Identifying and mitigating the risk pathways that contribute to disease in livestock is necessary to reduce production losses and contamination of human food products. To better understand the impact starlings have on disease transmission to cattle we assessed the efficacy of starling control as a tool to reduce Salmonella enterica within a concentrated animal feeding operation. We matched a large facility, slated for operational control using DRC-1339 (3-chloro-4-methylaniline hydrochloride, also 3-chloro p-toluidine hydrochloride, 3-chloro-4-methylaniline), with a comparable reference facility that was not controlling birds. In both facilities, we sampled cattle feed, cattle water and cattle feces for S. enterica before and after starling control operations. Results Within the starling-controlled CAFO, detections of S. enterica contamination disappeared from feed bunks and substantially declined within water troughs following starling control operations. Within the reference facility, detections of S. enterica contamination increased substantially within feed bunks and water troughs. Starling control was not observed to reduce prevalence of S. enterica in the cattle herd. Following starling control operations, herd prevalence of S. enterica increased on the reference facility but herd prevalence of S. enterica on the starling-controlled CAFO stayed at pretreatment levels. Conclusions Within the starling-controlled facility detections of S. enterica disappeared from feed bunks and substantially declined within water troughs following control operations. Since cattle feed and water are obvious routes for the ingestion of S. enterica, starling control shows promise as a tool to help livestock producers manage

  9. Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica

    PubMed Central

    Zhou, Zhemin; Sangal, Vartul; Krauland, Mary G.; Hale, James L.; Harbottle, Heather; Uesbeck, Alexandra; Dougan, Gordon; Harrison, Lee H.; Brisse, Sylvain

    2012-01-01

    Salmonella enterica subspecies enterica is traditionally subdivided into serovars by serological and nutritional characteristics. We used Multilocus Sequence Typing (MLST) to assign 4,257 isolates from 554 serovars to 1092 sequence types (STs). The majority of the isolates and many STs were grouped into 138 genetically closely related clusters called eBurstGroups (eBGs). Many eBGs correspond to a serovar, for example most Typhimurium are in eBG1 and most Enteritidis are in eBG4, but many eBGs contained more than one serovar. Furthermore, most serovars were polyphyletic and are distributed across multiple unrelated eBGs. Thus, serovar designations confounded genetically unrelated isolates and failed to recognize natural evolutionary groupings. An inability of serotyping to correctly group isolates was most apparent for Paratyphi B and its variant Java. Most Paratyphi B were included within a sub-cluster of STs belonging to eBG5, which also encompasses a separate sub-cluster of Java STs. However, diphasic Java variants were also found in two other eBGs and monophasic Java variants were in four other eBGs or STs, one of which is in subspecies salamae and a second of which includes isolates assigned to Enteritidis, Dublin and monophasic Paratyphi B. Similarly, Choleraesuis was found in eBG6 and is closely related to Paratyphi C, which is in eBG20. However, Choleraesuis var. Decatur consists of isolates from seven other, unrelated eBGs or STs. The serological assignment of these Decatur isolates to Choleraesuis likely reflects lateral gene transfer of flagellar genes between unrelated bacteria plus purifying selection. By confounding multiple evolutionary groups, serotyping can be misleading about the disease potential of S. enterica. Unlike serotyping, MLST recognizes evolutionary groupings and we recommend that Salmonella classification by serotyping should be replaced by MLST or its equivalents. PMID:22737074

  10. Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    PubMed Central

    Kisiela, Dagmara I.; Chattopadhyay, Sujay; Libby, Stephen J.; Karlinsey, Joyce E.; Fang, Ferric C.; Tchesnokova, Veronika; Kramer, Jeremy J.; Beskhlebnaya, Viktoriya; Samadpour, Mansour; Grzymajlo, Krzysztof; Ugorski, Maciej; Lankau, Emily W.; Mackie, Roderick I.; Clegg, Steven; Sokurenko, Evgeni V.

    2012-01-01

    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella. PMID:22685400

  11. Laser Optical Sensor, a Label-Free On-Plate Salmonella enterica Colony Detection Tool

    PubMed Central

    Singh, Atul K.; Bettasso, Amanda M.; Bae, Euiwon; Rajwa, Bartek; Dundar, Murat M.; Forster, Mark D.; Liu, Lixia; Barrett, Brent; Lovchik, Judith; Robinson, J. Paul; Hirleman, E. Daniel; Bhunia, Arun K.

    2014-01-01

    ABSTRACT We investigated the application capabilities of a laser optical sensor, BARDOT (bacterial rapid detection using optical scatter technology) to generate differentiating scatter patterns for the 20 most frequently reported serovars of Salmonella enterica. Initially, the study tested the classification ability of BARDOT by using six Salmonella serovars grown on brain heart infusion, brilliant green, xylose lysine deoxycholate, and xylose lysine tergitol 4 (XLT4) agar plates. Highly accurate discrimination (95.9%) was obtained by using scatter signatures collected from colonies grown on XLT4. Further verification used a total of 36 serovars (the top 20 plus 16) comprising 123 strains with classification precision levels of 88 to 100%. The similarities between the optical phenotypes of strains analyzed by BARDOT were in general agreement with the genotypes analyzed by pulsed-field gel electrophoresis (PFGE). BARDOT was evaluated for the real-time detection and identification of Salmonella colonies grown from inoculated (1.2 × 102 CFU/30 g) peanut butter, chicken breast, and spinach or from naturally contaminated meat. After a sequential enrichment in buffered peptone water and modified Rappaport Vassiliadis broth for 4 h each, followed by growth on XLT4 (~16 h), BARDOT detected S. Typhimurium with 84% accuracy in 24 h, returning results comparable to those of the USDA Food Safety and Inspection Service method, which requires ~72 h. BARDOT also detected Salmonella (90 to 100% accuracy) in the presence of background microbiota from naturally contaminated meat, verified by 16S rRNA sequencing and PFGE. Prolonged residence (28 days) of Salmonella in peanut butter did not affect the bacterial ability to form colonies with consistent optical phenotypes. This study shows BARDOT’s potential for nondestructive and high-throughput detection of Salmonella in food samples. PMID:24496794

  12. Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by ozone and UV radiation.

    PubMed

    Rodriguez-Romo, Luis A; Yousef, Ahmed E

    2005-04-01

    The presence of Salmonella enterica serovar Enteritidis in shell eggs has serious public health implications. Several treatments have been developed to control Salmonella on eggs with mixed results. Currently, there is a need for time-saving, economical, and effective egg sanitization treatments. In this study, shell eggs externally contaminated with Salmonella (8.0 x 10(5) to 4.0 x 10(6) CFU/g of eggshell) were treated with gaseous ozone (O3) at 0 to 15 lb/in2 gauge for 0 to 20 min. In other experiments, contaminated shell eggs were exposed to UV radiation at 100 to 2,500 microW/cm2 for 0 to 5 min. Treatment combination included exposing contaminated eggs to UV (1,500 to 2,500 microW/cm2) for 1 min, followed by ozone at 5 lb/in2 gauge for 1 min. Eggs that were (i) noncontaminated and untreated, (ii) contaminated and untreated, and (iii) contaminated and treated with air were used as controls. Results indicated that treating shell eggs with ozone or UV, separately or in combination, significantly (P < 0.05) reduced Salmonella on shell eggs. For example, contaminated eggs treated with ozone at 4 to 8 degrees C and 15 lb/in2 gauge for 10 min or with UV (1,500 to 2,500 microW/cm2) at 22 to 25 degrees C for 5 min produced 5.9- or 4.3-log microbial reductions or more, respectively, when compared with contaminated untreated controls. Combinations including UV followed by ozone treatment resulted in synergistic inactivation of Salmonella by 4.6 log units or more in about 2 min of total treatment time. Salmonella was effectively inactivated on shell eggs in a short time and at low temperature with the use of a combination of UV radiation and ozone. PMID:15830660

  13. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Goodwin, T. J.; Terlonge, J.; Ott, C. M.; Buchanan, K. L.; Uicker, W. C.; Emami, K.; LeBlanc, C. L.; Ramamurthy, R.; Clarke, M. S.; Vanderburg, C. R.; Hammond, T.; Pierson, D. L.

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor beta1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction.

  14. Diversity and Persistence of Salmonella enterica Strains in Rural Landscapes in the Southeastern United States.

    PubMed

    Maurer, John J; Martin, Gordon; Hernandez, Sonia; Cheng, Ying; Gerner-Smidt, Peter; Hise, Kelley B; Tobin D'Angelo, Melissa; Cole, Dana; Sanchez, Susan; Madden, Marguerite; Valeika, Steven; Presotto, Andrea; Lipp, Erin K

    2015-01-01

    Salmonellosis cases in the in the United States show distinct geographical trends, with the southeast reporting among the highest rates of illness. In the state of Georgia, USA, non-outbreak associated salmonellosis is especially high in the southern low-lying coastal plain. Here we examined the distribution of Salmonella enterica in environmental waters and associated wildlife in two distinct watersheds, one in the Atlantic Coastal Plain (a high case rate rural area) physiographic province and one in the Piedmont (a lower case rate rural area). Salmonella were isolated from the two regions and compared for serovar and strain diversity, as well as distribution, between the two study areas, using both a retrospective and prospective design. Thirty-seven unique serovars and 204 unique strain types were identified by pulsed-field gel electrophoresis (PFGE). Salmonella serovars Braenderup, Give, Hartford, and Muenchen were dominant in both watersheds. Two serovars, specifically S. Muenchen and S. Rubislaw, were consistently isolated from both systems, including water and small mammals. Conversely, 24 serovars tended to be site-specific (64.8%, n = 37). Compared to the other Salmonella serovars isolated from these sites, S. Muenchen and S. Rubislaw exhibited significant genetic diversity. Among a subset of PFGE patterns, approximately half of the environmental strain types matched entries in the USA PulseNet database of human cases. Ninety percent of S. Muenchen strains from the Little River basin (the high case rate area) matched PFGE entries in PulseNet compared to 33.33% of S. Muenchen strains from the North Oconee River region (the lower case rate area). Underlying the diversity and turnover of Salmonella strains observed for these two watersheds is the persistence of specific Salmonella serovars and strain types that may be adapted to these watersheds and landscapes. PMID:26131552

  15. Diversity and Persistence of Salmonella enterica Strains in Rural Landscapes in the Southeastern United States

    PubMed Central

    Maurer, John J.; Martin, Gordon; Hernandez, Sonia; Cheng, Ying; Gerner-Smidt, Peter; Hise, Kelley B.; Tobin D’Angelo, Melissa; Cole, Dana; Sanchez, Susan; Madden, Marguerite; Valeika, Steven; Presotto, Andrea; Lipp, Erin K.

    2015-01-01

    Salmonellosis cases in the in the United States show distinct geographical trends, with the southeast reporting among the highest rates of illness. In the state of Georgia, USA, non-outbreak associated salmonellosis is especially high in the southern low-lying coastal plain. Here we examined the distribution of Salmonella enterica in environmental waters and associated wildlife in two distinct watersheds, one in the Atlantic Coastal Plain (a high case rate rural area) physiographic province and one in the Piedmont (a lower case rate rural area). Salmonella were isolated from the two regions and compared for serovar and strain diversity, as well as distribution, between the two study areas, using both a retrospective and prospective design. Thirty-seven unique serovars and 204 unique strain types were identified by pulsed-field gel electrophoresis (PFGE). Salmonella serovars Braenderup, Give, Hartford, and Muenchen were dominant in both watersheds. Two serovars, specifically S. Muenchen and S. Rubislaw, were consistently isolated from both systems, including water and small mammals. Conversely, 24 serovars tended to be site-specific (64.8%, n = 37). Compared to the other Salmonella serovars isolated from these sites, S. Muenchen and S. Rubislaw exhibited significant genetic diversity. Among a subset of PFGE patterns, approximately half of the environmental strain types matched entries in the USA PulseNet database of human cases. Ninety percent of S. Muenchen strains from the Little River basin (the high case rate area) matched PFGE entries in PulseNet compared to 33.33% of S. Muenchen strains from the North Oconee River region (the lower case rate area). Underlying the diversity and turnover of Salmonella strains observed for these two watersheds is the persistence of specific Salmonella serovars and strain types that may be adapted to these watersheds and landscapes. PMID:26131552

  16. Circulating γδ T Cells in Response to Salmonella enterica Serovar Enteritidis Exposure in Chickens

    PubMed Central

    Berndt, Angela; Pieper, Jana; Methner, Ulrich

    2006-01-01

    γδ T cells are considered crucial to the outcome of various infectious diseases. The present study was undertaken to characterize γδ (T-cell receptor 1+ [TCR1+]) T cells phenotypically and functionally in avian immune response. Day-old chicks were orally immunized with Salmonella enterica serovar Enteritidis live vaccine or S. enterica serovar Enteritidis wild-type strain and infected using the S. enterica serovar Enteritidis wild-type strain on day 44 of life. Between days 3 and 71, peripheral blood was examined flow cytometrically for the occurrence of γδ T-cell subpopulations differentiated by the expression of T-cell antigens. Three different TCR1+ cell populations were found to display considerable variation regarding CD8α antigen expression: (i) CD8α+high TCR1+ cells, (ii) CD8α+dim TCR1+ cells, and (iii) CD8α− TCR1+ cells. While most of the CD8α+high TCR1+ cells expressed the CD8αβ heterodimeric antigen, the majority of the CD8α+dim TCR1+ cells were found to express the CD8αα homodimeric form. After immunization, a significant increase of CD8αα+high γδ T cells was observed within the CD8α+high TCR1+ cell population. Quantitative reverse transcription-PCR revealed reduced interleukin-7 receptor α (IL-7Rα) and Bcl-x expression and elevated IL-2Rα mRNA expression of the CD8αα+high γδ T cells. Immunohistochemical analysis demonstrated a significant increase of CD8α+ and TCR1+ cells in the cecum and spleen and a decreased percentage of CD8β+ T cells in the spleen after Salmonella immunization. After infection of immunized animals, immune reactions were restricted to intestinal tissue. The study showed that Salmonella immunization of very young chicks is accompanied by an increase of CD8αα+high γδ T cells in peripheral blood, which are probably activated, and thus represent an important factor for the development of a protective immune response to Salmonella organisms in chickens. PMID:16790770

  17. Salmonella enterica Serovar Typhimurium Requires the Lpf, Pef, and Tafi Fimbriae for Biofilm Formation on HEp-2 Tissue Culture Cells and Chicken Intestinal Epithelium

    PubMed Central

    Ledeboer, Nathan A.; Frye, Jonathan G.; McClelland, Michael; Jones, Bradley D.

    2006-01-01

    Recent work has demonstrated that Salmonella enterica serovar Typhimurium forms biofilms on HEp-2 tissue culture cells in a type 1 fimbria-dependent manner. To investigate how biofilm growth of HEp-2 tissue culture cells affects gene expression in Salmonella, we compared global gene expression during planktonic growth and biofilm growth. Microarray results indicated that the transcription of ∼100 genes was substantially altered by growth in a biofilm. These genes encode proteins with a wide range of functions, including antibiotic resistance, central metabolism, conjugation, intracellular survival, membrane transport, regulation, and fimbrial biosynthesis. The identification of five fimbrial gene clusters was of particular interest, as we have demonstrated that type 1 fimbriae are required for biofilm formation on HEp-2 cells and murine intestinal epithelium. Mutations in each of these fimbriae were constructed in S. enterica serovar Typhimurium strain BJ2710, and the mutants were found to have various biofilm phenotypes on plastic, HEp-2 cells, and chicken intestinal tissue. The pef and csg mutants were defective for biofilm formation on each of the three surfaces tested, while the lpf mutant exhibited a complete loss of the ability to form a biofilm on chicken intestinal tissue but only an intermediate loss of the ability to form a biofilm on tissue culture cells and plastic surfaces. The bcf mutant displayed increased biofilm formation on both HEp-2 cells and chicken intestinal epithelium, while the sth mutant had no detectable biofilm defects. In all instances, the mutants could be restored to a wild-type phenotype by a plasmid carrying the functional genes. This is the first work to identify the genomic responses of Salmonella to biofilm formation on host cells, and this work highlights the importance of fimbriae in adhering to and adapting to a eukaryotic cell surface. An understanding of these interactions is likely to provide new insights for intervention

  18. The Stringent Response Regulator DksA Is Required for Salmonella enterica Serovar Typhimurium Growth in Minimal Medium, Motility, Biofilm Formation, and Intestinal Colonization

    PubMed Central

    Azriel, Shalhevet; Goren, Alina; Rahav, Galia

    2015-01-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular human and animal bacterial pathogen posing a major threat to public health worldwide. Salmonella pathogenicity requires complex coordination of multiple physiological and virulence pathways. DksA is a conserved Gram-negative regulator that belongs to a distinct group of transcription factors that bind directly to the RNA polymerase secondary channel, potentiating the effect of the signaling molecule ppGpp during a stringent response. Here, we established that in S. Typhimurium, dksA is induced during the logarithmic phase and DksA is essential for growth in minimal defined medium and plays an important role in motility and biofilm formation. Furthermore, we determined that DksA positively regulates the Salmonella pathogenicity island 1 and motility-chemotaxis genes and is necessary for S. Typhimurium invasion of human epithelial cells and uptake by macrophages. In contrast, DksA was found to be dispensable for S. Typhimurium host cell adhesion. Finally, using the colitis mouse model, we found that dksA is spatially induced at the midcecum during the early stage of the infection and required for gastrointestinal colonization and systemic infection in vivo. Taken together, these data indicate that the ancestral stringent response regulator DksA coordinates various physiological and virulence S. Typhimurium programs and therefore is a key virulence regulator of Salmonella. PMID:26553464

  19. The Stringent Response Regulator DksA Is Required for Salmonella enterica Serovar Typhimurium Growth in Minimal Medium, Motility, Biofilm Formation, and Intestinal Colonization.

    PubMed

    Azriel, Shalhevet; Goren, Alina; Rahav, Galia; Gal-Mor, Ohad

    2016-01-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular human and animal bacterial pathogen posing a major threat to public health worldwide. Salmonella pathogenicity requires complex coordination of multiple physiological and virulence pathways. DksA is a conserved Gram-negative regulator that belongs to a distinct group of transcription factors that bind directly to the RNA polymerase secondary channel, potentiating the effect of the signaling molecule ppGpp during a stringent response. Here, we established that in S. Typhimurium, dksA is induced during the logarithmic phase and DksA is essential for growth in minimal defined medium and plays an important role in motility and biofilm formation. Furthermore, we determined that DksA positively regulates the Salmonella pathogenicity island 1 and motility-chemotaxis genes and is necessary for S. Typhimurium invasion of human epithelial cells and uptake by macrophages. In contrast, DksA was found to be dispensable for S. Typhimurium host cell adhesion. Finally, using the colitis mouse model, we found that dksA is spatially induced at the midcecum during the early stage of the infection and required for gastrointestinal colonization and systemic infection in vivo. Taken together, these data indicate that the ancestral stringent response regulator DksA coordinates various physiological and virulence S. Typhimurium programs and therefore is a key virulence regulator of Salmonella. PMID:26553464

  20. Profile of Salmonella enterica subsp. enterica (Subspecies I) Serotype 4,5,12:i:− Strains Causing Food-Borne Infections in New York City

    PubMed Central

    Agasan, Alice; Kornblum, John; Williams, George; Pratt, Chi-Chi; Fleckenstein, Phylis; Wong, Marie; Ramon, Alex

    2002-01-01

    Strains of newly emerging Salmonella enterica subsp. enterica (subspecies I) serotype 4,5,12:i:− causing food-borne infections, including a large food poisoning outbreak (n = 86) characterized by persistent diarrhea (14% bloody), abdominal pain, fever, and headache, were examined. The organisms were found in the stool samples from the patients. The biochemical profile of the organisms is consistent with that of S. enterica subsp. I serotypes, except for decreased dulcitol (13%) and increased inositol (96%) utilization. Twenty-eight percent of the strains showed resistance to streptomycin, sulfonamides, or tetracycline only; all three antimicrobial agents; or these agents either alone or in combination with ampicillin, trimethoprim, and trimethoprim-sulfamethoxazole. None of the serotype 4,5,12:i:− strains showed resistance or decreased susceptibility to chloramphenicol or ciprofloxacin. On pulsed-field gel electrophoresis (PFGE), the strains showed 11 or 12 resolvable genomic fragments with 18 banding patterns and three PFGE profile (PFP) clusters (i.e., PFP/A, PFP/B, and PFP/C). Seventy-five percent of the isolates fingerprinted were closely related (zero to three band differences; similarity [Dice] coefficient, 86 to 100%); 63% of these were indistinguishable from each other (PFP/A1). PFP/A1 was common to all strains from the outbreak and 11 hospital sources. Strains from six other hospitals shared clusters PFP/B and PFP/C. PFP/C4, of the environmental isolate, was unrelated to PFP/A and PFP/B. Nine band differences (similarity coefficient, 61%) were noted between PFP/A1 and PFP/E of the multidrug-resistant S. enterica subsp. enterica serotype Typhimurium definitive type 104 strains. Whether these emerging Salmonella strains represent a monophasic, Dul− variant of serotype Typhimurium or S. enterica subsp. enterica serotype Lagos or a distinct serotype of S. enterica subsp. I is not yet known. Some of the phenotypic and genotypic properties of the serotype

  1. Integrative Analysis of Salmonellosis in Israel Reveals Association of Salmonella enterica Serovar 9,12:l,v:− with Extraintestinal Infections, Dissemination of Endemic S. enterica Serovar Typhimurium DT104 Biotypes, and Severe Underreporting of Outbreaks

    PubMed Central

    Marzel, Alex; Desai, Prerak T.; Nissan, Israel; Schorr, Yosef Ilan; Suez, Jotham; Valinsky, Lea; Reisfeld, Abraham; Agmon, Vered; Guard, Jean; McClelland, Michael

    2014-01-01

    Salmonella enterica is the leading etiologic agent of bacterial food-borne outbreaks worldwide. This ubiquitous species contains more than 2,600 serovars that may differ in their host specificity, clinical manifestations, and epidemiology. To characterize salmonellosis epidemiology in Israel and to study the association of nontyphoidal Salmonella (NTS) serovars with invasive infections, 48,345 Salmonella cases reported and serotyped at the National Salmonella Reference Center between 1995 and 2012 were analyzed. A quasi-Poisson regression was used to identify irregular clusters of illness, and pulsed-field gel electrophoresis in conjunction with whole-genome sequencing was applied to molecularly characterize strains of interest. Three hundred twenty-nine human salmonellosis clusters were identified, representing an annual average of 23 (95% confidence interval [CI], 20 to 26) potential outbreaks. We show that the previously unsequenced S. enterica serovar 9,12:l,v:− belongs to the B clade of Salmonella enterica subspecies enterica, and we show its frequent association with extraintestinal infections, compared to other NTS serovars. Furthermore, we identified the dissemination of two prevalent Salmonella enterica serovar Typhimurium DT104 clones in Israel, which are genetically distinct from other global DT104 isolates. Accumulatively, these findings indicate a severe underreporting of Salmonella outbreaks in Israel and provide insights into the epidemiology and genomics of prevalent serovars, responsible for recurring illness. PMID:24719441

  2. Multidrug resistance in Salmonella enterica serotype Typhimurium from humans in France (1993 to 2003).

    PubMed

    Weill, François-Xavier; Guesnier, Françoise; Guibert, Véronique; Timinouni, Mohammed; Demartin, Marie; Polomack, Lucette; Grimont, Patrick A D

    2006-03-01

    The aim of this study was to determine the distribution of the antimicrobial resistance phenotypes (R types), the phage types and XbaI-pulsed-field gel electrophoresis (PFGE) types, the genes coding for resistance to beta-lactams and to quinolones, and the class 1 integrons among a representative sample of Salmonella enterica serotype Typhimurium isolates collected from humans in 2002 through the French National Reference Center for Salmonella (NRC-Salm) network. The trends in the evolution of antimicrobial resistance of serotype Typhimurium were reviewed by using NRC-Salm data from 1993, 1997, 2000, and 2003. In 2002, 3,998 isolates of serotype Typhimurium were registered at the NRC-Salm among 11,775 serotyped S. enterica isolates (34%). The most common multiple antibiotic resistance pattern was resistance to amoxicillin, chloramphenicol, streptomycin and spectinomycin, sulfonamides, and tetracycline (ACSSpSuTe R type), with 156 isolates (48.8%). One isolate resistant to extended-spectrum cephalosporins due to the production of TEM-52 extended-spectrum beta-lactamase was detected (0.3%), and one multidrug-resistant isolate was highly resistant to ciprofloxacin (MIC > 32 mg/liter). We found that 57.2% of the isolates tested belonged to the DT104 clone. The main resistance pattern of DT104 isolates was R type ACSSpSuTe (83.2%). However, evolutionary changes have occurred within DT104, involving both loss (variants of Salmonella genomic island 1) and acquisition of genes for drug resistance to trimethoprim or to quinolones. PFGE profile X1 was the most prevalent (74.5%) among DT104 isolates, indicating the need to use a more discriminatory subtyping method for such isolates. Global data from the NRC-Salm suggested that DT104 was the main cause of multidrug resistance in serotype Typhimurium from humans from at least 1997 to 2003, with a roughly stable prevalence during this period. PMID:16517842

  3. Ethanolamine Utilization Contributes to Proliferation of Salmonella enterica Serovar Typhimurium in Food and in Nematodes▿

    PubMed Central

    Srikumar, Shabarinath; Fuchs, Thilo M.

    2011-01-01

    Only three pathogenic bacterial species, Salmonella enterica, Clostridium perfringens, and Listeria monocytogenes, are able to utilize both ethanolamine and 1,2-propanediol as a sole carbon source. Degradation of these substrates, abundant in food and the gut, depends on cobalamin, which is synthesized de novo only under anaerobic conditions. Although the eut, pdu, and cob-cbi gene clusters comprise 40 kb, the conditions under which they confer a selection advantage on these food-borne pathogens remain largely unknown. Here we used the luciferase reporter system to determine the response of the Salmonella enterica serovar Typhimurium promoters PeutS, PpocR, PpduF, and PpduA to a set of carbon sources, to egg yolk, to whole milk, and to milk protein or fat fractions. Depending on the supplements, specific inductions up to 3 orders of magnitude were observed for PeutS and PpduA, which drive the expression of most eut and pdu genes. To correlate these significant expression data with growth properties, nonpolar deletions of pocR, regulating the pdu and cob-cbi genes, and of eutR, involved in eut gene activation, were constructed in S. Typhimurium strain 14028. During exponential growth of the mutants 14028ΔpocR and 14028ΔeutR, 2- to 3-fold-reduced proliferation in milk and egg yolk was observed. Using the Caenorhabditis elegans infection model, we could also demonstrate that the proliferation of S. Typhimurium in the nematode is supported by an active ethanolamine degradation pathway. Taking these findings together, this study quantifies the differential expression of eut and pdu genes under distinct conditions and provides experimental evidence that the ethanolamine utilization pathway allows salmonellae to occupy specific metabolic niches within food environments and within their host organisms. PMID:21037291

  4. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    PubMed Central

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  5. PCR Detection of Salmonella enterica Serotype Montevideo in and on Raw Tomatoes Using Primers Derived from hilA

    PubMed Central

    Guo, Xuan; Chen, Jinru; Beuchat, Larry R.; Brackett, Robert E.

    2000-01-01

    Salmonellae have been some of the most frequently reported etiological agents in fresh-produce-associated outbreaks of human infections in recent years. PCR assays using four innovative pairs of primers derived from hilA and sirA, positive regulators of Salmonella invasive genes, were developed to identify Salmonella enterica serotype Montevideo on and in tomatoes. Based on examination of 83 Salmonella strains and 22 non-Salmonella strains, we concluded that a pair of hilA primers detects Salmonella specifically. The detection limits of the PCR assay were 101 and 100 CFU/ml after enrichment at 37°C for 6 and 9 h, respectively. When the assay was validated by detecting S. enterica serotype Montevideo in and on artificially inoculated tomatoes, 102 and 101 CFU/g were detected, respectively, after enrichment for 6 h at 37°C. Our results suggest that the hilA-based PCR assay is sensitive and specific, and can be used for rapid detection of Salmonellae in or on fresh produce. PMID:11097898

  6. Antimicrobial Resistance and Molecular Investigation of H2S-Negative Salmonella enterica subsp. enterica serovar Choleraesuis Isolates in China

    PubMed Central

    Li, Peng; Liang, Beibei; Li, Hao; Yang, Xiaoxia; Wang, Ligui; Hao, Rongzhang; Jia, Leili; Wu, Zhihao; Qiu, Shaofu; Song, Hongbin

    2015-01-01

    Salmonella enterica subsp. enterica serovar Choleraesuis is a highly invasive pathogen of swine that frequently causes serious outbreaks, in particular in Asia, and can also cause severe invasive disease in humans. In this study, 21 S. Choleraesuis isolates, detected from 21 patients with diarrhea in China between 2010 and 2011, were found to include 19 H2S-negative S. Choleraesuis isolates and two H2S-positive isolates. This is the first report of H2S-negative S. Choleraesuis isolated from humans. The majority of H2S-negative isolates exhibited high resistance to ampicillin, chloramphenicol, gentamicin, tetracycline, ticarcillin, and trimethoprim-sulfamethoxazole, but only six isolates were resistant to norfloxacin. In contrast, all of the isolates were sensitive to cephalosporins. Fifteen isolates were found to be multidrug resistant. In norfloxacin-resistant isolates, we detected mutations in the gyrA and parC genes and identified two new mutations in the parC gene. Pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and clustered regularly interspaced short palindromic repeat (CRISPR) analysis were employed to investigate the genetic relatedness of H2S-negative and H2S-positive S. Choleraesuis isolates. PFGE revealed two groups, with all 19 H2S-negative S. Choleraesuis isolates belonging to Group I and H2S-positive isolates belonging to Group II. By MLST analysis, the H2S-negative isolates were all found to belong to ST68 and H2S-positive isolates belong to ST145. By CRISPR analysis, no significant differences in CRISPR 1 were detected; however, one H2S-negative isolate was found to contain three new spacers in CRISPR 2. All 19 H2S-negative isolates also possessed a frame-shift mutation at position 760 of phsA gene compared with H2S-positive isolates, which may be responsible for the H2S-negative phenotype. Moreover, the 19 H2S-negative isolates have similar PFGE patterns and same mutation site in the phsA gene, these results indicated

  7. Evaluation of Two Enzyme-Linked Immunosorbent Assays for Detecting Salmonella enterica subsp. enterica Serovar Dublin Antibodies in Bulk Milk

    PubMed Central

    Veling, J.; van Zijderveld, F. G.; van Zijderveld-van Bemmel, A. M.; Schukken, Y. H.; Barkema, H. W.

    2001-01-01

    Two enzyme-linked immunosorbent assays (ELISAs) for the detecting Salmonella enterica subsp. enterica serovar Dublin antibodies in bulk milk were developed and evaluated for potential use in control programs. The ELISAs were based on either lipopolysacharide (LPS ELISA) or flagellar antigen (GP ELISA). Sensitivity was determined with 79 case herds with a wide range of clinical signs. Specificity was determined with 125 Dutch and 200 Swedish control herds. The relation between antibodies in bulk milk, antibodies in serum, and the level of milk production of individual cows was studied with 61 case herds. The optimal optical density (OD) values of the LPS ELISA and the GP ELISA were determined to be 0.2 and 0.5, respectively. The sensitivities of the LPS ELISA and the GP ELISA were 54 and 63%, respectively, with a specificity of 98% for both ELISAs with samples from the Dutch control herds. The specificities for samples from the Swedish herds were 100% for the LPS ELISA and 95% for the GP ELISA. The sensitivity of the combination of tests was 65% when samples were run in parallel, and the specificity was 100% when samples were run in series, irrespective of whether the samples came from Dutch or Swedish control herds. The variance (R2) in the OD value for bulk milk samples could be explained by the percentage of seropositive lactating cows in a herd with the LPS ELISA for 51% of the samples and with the GP ELISA for 72%. The variance in the OD value was best explained by the combination of the percentage of seropositive lactating cows in the herd and the mean log10 serum antibody titer for that herd (R2 = 62% for the LPS ELISA and R2 = 75% for the GP ELISA). Case herds more often tested negative by the ELISA with bulk milk when the percentage of seropositive lactating cows was less than 5%. It is concluded that both ELISAs with bulk milk can be used in control programs to distinguish between infected and noninfected herds. Specificity can be increased by using the

  8. Proteome of Salmonella Enterica SerotypeTyphimurium Grown in a Low Mg2+/pH Medium

    SciTech Connect

    Shi, Liang; Ansong, Charles; Smallwood, Heather S.; Rommereim, Leah M.; McDermott, Jason E.; Brewer, Heather M.; Norbeck, Angela D.; Taylor, Ronald C.; Gustin, Jean K.; Heffron, Fred; Smith, Richard D.; Adkins, Joshua N.

    2009-09-01

    The facultative intracellular pathogen Salmonella enterica serovar Typhimurium (STM) must replicate within host macrophages in order to establish systemic infection in susceptible mice. In an effort to identify new STM proteins that help the bacterium colonize macrophages, we have cultured STM cells with a low pH/low magnesium medium (MgM) under two different conditions termed MgM-Shock and MgM-Dilution and investigated the impacts of these culturing conditions on the STM proteome by using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics. LC-MS/MS results showed that alteration of culturing conditions affected a group of STM proteins differently. Compared to MgM-Shock, MgM-Dilution induced more proteins of the Salmonella-pathogenecity island 2-type III secretion system (SPI2-T3SS). The abundances of the proteins used for cobalamin biosynthesis increased under MgM-Shock condition but decreased under MgM-Dilution condition, while those proteins used for thiamine or biotin biosynthesis were not affected under the former condition but increased under the latter condition. Western-blot (WB) analysis confirmed the LC-MS/MS results. Because cobalamin, thiamine and biotin play different roles in STM metabolism, differential induction of the proteins involved in their biosyntheses suggests that the metabolic states of STM cells under these conditions differ considerably. WB analysis also showed that the abundances of SPI2-T3SS proteins SsaQ and SseE and biotin biosynthesis proteins BioB and BioD increased after STM infection of RAW 264.7 macrophages. Deletion of the gene encoding BioB reduced the ability of STM to replicate inside the macrophages, demonstrating for the first time the involvement of a biotin synthesis protein in STM colonization of macrophages.

  9. The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen

    PubMed Central

    Chiu, Cheng-Hsun; Tang, Petrus; Chu, Chishih; Hu, Songnian; Bao, Qiyu; Yu, Jun; Chou, Yun-Ying; Wang, Hsin-Shih; Lee, Ying-Shiung

    2005-01-01

    Salmonella enterica serovar Choleraesuis (S.Choleraesuis), a highly invasive serovar among non-typhoidal Salmonella, usually causes sepsis or extra-intestinal focal infections in humans. S.Choleraesuis infections have now become particularly difficult to treat because of the emergence of resistance to multiple antimicrobial agents. The 4.7 Mb genome sequence of a multidrug-resistant S.Choleraesuis strain SC-B67 was determined. Genome wide comparison of three sequenced Salmonella genomes revealed that more deletion events occurred in S.Choleraesuis SC-B67 and S.Typhi CT18 relative to S.Typhimurium LT2. S.Choleraesuis has 151 pseudogenes, which, among the three Salmonella genomes, include the highest percentage of pseudogenes arising from the genes involved in bacterial chemotaxis signal-transduction pathways. Mutations in these genes may increase smooth swimming of the bacteria, potentially allowing more effective interactions with and invasion of host cells to occur. A key regulatory gene of TetR/AcrR family, acrR, was inactivated through the introduction of an internal stop codon resulting in overexpression of AcrAB that appears to be associated with ciprofloxacin resistance. While lateral gene transfer providing basic functions to allow niche expansion in the host and environment is maintained during the evolution of different serovars of Salmonella, genes providing little overall selective benefit may be lost rapidly. Our findings suggest that the formation of pseudogenes may provide a simple evolutionary pathway that complements gene acquisition to enhance virulence and antimicrobial resistance in S.Choleraesuis. PMID:15781495

  10. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen

    PubMed Central

    Hart, Peter J.; O’Shaughnessy, Colette M.; Siggins, Matthew K.; Bobat, Saeeda; Kingsley, Robert A.; Goulding, David A.; Crump, John A.; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F.; MacLennan, Calman A.

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies. PMID:26741681

  11. Identification of Salmonella enterica Serovar Typhimurium Genes Regulated during Biofilm Formation on Cholesterol Gallstone Surfaces

    PubMed Central

    Gonzalez-Escobedo, Geoffrey

    2013-01-01

    Salmonella spp. are able to form biofilms on abiotic and biotic surfaces. In vivo studies in our laboratory have shown that Salmonella can form biofilms on the surfaces of cholesterol gallstones in the gallbladders of mice and human carriers. Biofilm formation on gallstones has been demonstrated to be a mechanism of persistence. The purpose of this work was to identify and evaluate Salmonella sp. cholesterol-dependent biofilm factors. Differential gene expression analysis between biofilms on glass or cholesterol-coated surfaces and subsequent quantitative real-time PCR (qRT-PCR) revealed that type 1 fimbria structural genes and a gene encoding a putative outer membrane protein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown on cholesterol-coated surfaces. Spatiotemporal expression of ycfR and FimA verified their regulation during biofilm development on cholesterol-coated surfaces. Surprisingly, confocal and scanning electron microscopy demonstrated that a mutant of type 1 fimbria structural genes (ΔfimAICDHF) and a ycfR mutant showed increased biofilm formation on cholesterol-coated surfaces. In vivo experiments using Nramp1+/+ mice harboring gallstones showed that only the ΔycfR mutant formed extensive biofilms on mouse gallstones at 7 and 21 days postinfection; ΔfimAICDHF was not observed on gallstone surfaces after the 7-day-postinfection time point. These data suggest that in Salmonella spp., wild-type type 1 fimbriae are important for attachment to and/or persistence on gallstones at later points of chronic infection, whereas YcfR may represent a specific potential natural inhibitor of initial biofilm formation on gallstones. PMID:23897604

  12. Complete Genome Sequence of Salmonella enterica Serovar Agona Pulsed-Field Type SAGOXB.0066, Cause of a 2008 Pan-European Outbreak.

    PubMed

    McCusker, Matthew P; Hokamp, Karsten; Buckley, James F; Wall, Patrick G; Martins, Marta; Fanning, Séamus

    2014-01-01

    Salmonella enterica serovar Agona is in the top 10 most common nontyphoidal serovars reported in humans in the European Union. Here we report the complete genome sequence of an S. enterica serovar Agona isolate, designated 24249, that was the cause of a pan-European outbreak in 2008 with 163 confirmed cases reported. PMID:24459278

  13. Complete genome sequencing of a multidrug-resistant and human-invasive Salmonella enterica serovar Typhimurium strain of the emerging sequence type 213 genotype

    DOE PAGESBeta

    Calva, Edmundo; Silva, Claudia; Zaidi, Mussaret B.; Sanchez-Flores, Alejandro; Estrada, Karel; Silva, Genivaldo G. Z.; Soto-Jiménez, Luz M.; Wiesner, Magdalena; Fernández-Mora, Marcos; Edwards, Robert A.; et al

    2015-06-18

    Salmonella enterica subsp. enterica serovar Typhimurium strain YU39 was isolated in 2005 in the state of Yucatán, Mexico, from a human systemic infection. The YU39 strain is representative of the multidrug-resistant emergent sequence type 213 (ST213) genotype. The YU39 complete genome is composed of a chromosome and seven plasmids.

  14. Complete Genome Sequencing of a Multidrug-Resistant and Human-Invasive Salmonella enterica Serovar Typhimurium Strain of the Emerging Sequence Type 213 Genotype

    PubMed Central

    Calva, Edmundo; Zaidi, Mussaret B.; Sanchez-Flores, Alejandro; Estrada, Karel; Silva, Genivaldo G. Z.; Soto-Jiménez, Luz M.; Wiesner, Magdalena; Fernández-Mora, Marcos; Edwards, Robert A.

    2015-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium strain YU39 was isolated in 2005 in the state of Yucatán, Mexico, from a human systemic infection. The YU39 strain is representative of the multidrug-resistant emergent sequence type 213 (ST213) genotype. The YU39 complete genome is composed of a chromosome and seven plasmids. PMID:26089426

  15. Rapid multiplex PCR and Real-Time TaqMan PCR assays for detection of Salmonella enterica and the highly virulent serovars Choleraesuis and Paratyphi C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is a human pathogen with over 2,500 serovars characterized. S. enterica serovars Choleraesuis (Cs) and Paratyphi C (Pc) are two globally distributed serovars. We have developed a rapid molecular typing method to detect Cs and Pc in food samples by using a comparative genomics ap...

  16. A hotel-based outbreak of Salmonella enterica subsp. Enterica serovar Enteritidis (Salmonella Enteritidis) in the United Kingdom, 2006.

    PubMed

    Calvert, N; Murphy, L; Smith, A; Copeland, D

    2007-03-01

    An outbreak of food-borne Salmonella Enteritidis PT4 occurred in Cumbria, in north-west England, in the summer of 2006. Fifteen people, all with positive stool samples, met the case definition; three of these were admitted to hospital, including one patient who died. Preliminary investigations suggested a link to a meal served at a local hotel. A case control study was implemented, together with microbiological and environmental investigations. Fifteen microbiologically confirmed cases and 27 unmatched controls were included in the study, controls being randomly selected from people who had eaten at the hotel on the same day. The epidemiological evidence indicated a very strong association between infection and consumption of tiramisu made with raw shell eggs, although none were available for microbiological investigation. These results are in line with other salmonellosis outbreaks that have been associated with the use of raw shell eggs in food manufacturing and production. This paper highlights the continuing need for a greater awareness by those who work in the food industry of the health risks associated with the consumption of raw shell eggs. PMID:17439807

  17. Antimicrobial Drug Resistance and Molecular Typing of Salmonella enterica Serovar Rissen from Different Sources.

    PubMed

    García-Fierro, Raquel; Montero, Ignacio; Bances, Margarita; González-Hevia, Maria Ángeles; Rodicio, María Rosario

    2016-04-01

    Salmonella enterica serovar Rissen is one of the most common serovars found in pigs and pork products in different countries, including Spain. However, information on the molecular bases of antimicrobial drug resistance and the population structure of Salmonella Rissen from different sources in Spain is limited. The present study focused on 84 isolates collected in Spain from pig and beef carcasses, foods and clinical samples associated with sporadic cases of gastroenteritis, and one outbreak. The majority of the isolates were resistant to tetracycline (73.8%), mainly conferred by tet(A). Resistances to streptomycin (aadA1-like, aadA2, and strAB), sulfonamides (sul1, sul2, and sul3), trimethoprim (dfrA1-like and dfrA12), ampicillin (blaTEM-1-like), and chloramphenicol (cmlA1-like) were also detected, with frequencies ranging from 12% to 20.2%. Most of the identified genes were carried by integrons, including three class 1 integrons of the sul1 type, a class 1 integron of the sul3 type, and the class 2 integron of Tn7. Two sul1 integrons, the sul3 integron, and the class 2 integron are first reported in Salmonella Rissen. Typing of the isolates with XbaI pulsed-field gel electrophoresis detected a major clone, which was circulating in humans and animals during the past decade, and was responsible for the outbreak. The obtained results are relevant for food safety and public health. PMID:26295933

  18. Deletion of Invasion Protein B in Salmonella enterica Serovar Typhimurium Influences Bacterial Invasion and Virulence.

    PubMed

    Chen, Songbiao; Zhang, Chunjie; Liao, Chengshui; Li, Jing; Yu, Chuan; Cheng, Xiangchao; Yu, Zuhua; Zhang, Mingliang; Wang, Yang

    2015-12-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) has a wide host range and causes infections ranging from severe gastroenteritis to systemic infections in human, as well as causing typhoid-like disease in murine models of infection. S. Typhimurium translocates its effector proteins through the Salmonella pathogenicity island-I (SPI-I)-encoded T3SS-I needle complex. This study focuses on invasion protein B (SipB) of S. Typhimurium, which plays an active role in SPI-I invasion efficiency. To test our hypothesis, a sipB deletion mutant was constructed through double-crossover allelic using the suicide vector pRE112ΔsipB, and its biological characteristics were analyzed. The results showed that the SipB does not affect the growth of Salmonella, but the adherence, invasion, and virulence of the mutant were significantly decreased compared with wild-type S. Typhimurium (SL1344). This research indicates that SipB is an important virulence factor in the pathogenicity of S. Typhimurium. PMID:26341924

  19. Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces.

    PubMed

    Pande, Vivek V; McWhorter, Andrea R; Chousalkar, Kapil K

    2016-08-01

    This study examined the eggshell biofilm forming ability of Salmonella enterica isolates recovered from egg farms. Multicellular behaviour and biofilm production were examined at 22 and 37°C by Congo red morphology and the crystal violet staining assay. The results indicated that the biofilm forming behaviour of Salmonella isolates was dependent on temperature and associated with serovars. Significantly greater biofilm production was observed at 22°C compared with 37°C. The number of viable biofilm cells attached to eggshells after incubation for 48 h at 22°C was significantly influenced by serovar. Scanning electron microscopic examination revealed firm attachment of bacterial cells to the eggshell surface. The relative expression of csgD and adrA gene was significantly higher in eggshell biofilm cells of S. Mbandaka and S. Oranienburg. These findings demonstrate that Salmonella isolates are capable of forming biofilm on the eggshell surface and that this behaviour is influenced by temperature and serovar. PMID:27268931

  20. Salmonella enterica Invasion of Polarized Epithelial Cells Is a Highly Cooperative Effort

    PubMed Central

    Lorkowski, Martin; Felipe-López, Alfonso; Danzer, Claudia A.; Hansmeier, Nicole

    2014-01-01

    The invasion of polarized epithelial cells by Salmonella enterica requires the cooperative activity of the Salmonella pathogenicity island 1 (SPI1)-encoded type III secretion system (T3SS) and the SPI4-encoded adhesin SiiE. The invasion of polarized cells is more efficient than that of nonpolarized cells, and we observed the formation of clusters of bacteria on infected cells. Here we demonstrate that the invasion of polarized cells is a highly cooperative activity. Using a novel live-cell imaging approach, we visualized the cooperative entry of multiple bacteria into ruffles induced on the apical surfaces of polarized cells. The induction of membrane ruffles by activity of Salmonella enables otherwise noninvasive mutant strains to enter polarized host cells. Bacterial motility and chemotaxis were of lower importance for cooperativity in polarized-cell invasion. We propose that cooperative invasion is a key factor for the very efficient entry into polarized cells and a factor contributing to epithelial damage and intestinal inflammation. PMID:24711567

  1. Evaluation of nisin-β-lactam antibiotics against clinical strains of Salmonella enterica serovar Typhi.

    PubMed

    Rishi, Praveen; Preet Singh, Aman; Garg, Neha; Rishi, Madhuri

    2014-12-01

    There is an imperative need to discover novel antimicrobials and anti-infective agents and build up innovative strategies to combat multidrug-resistant Salmonella. In this context, we had earlier confirmed that nisin has the potential to act in conjunction with β-lactams against murine salmonellosis using standard strain. However, evaluation of efficacy of these combinations against clinical isolates of Salmonella could be the next key step to confirm the value added potential of this peptide. The present study was therefore planned to validate the synergistic effects of nisin-β-lactams combinations against clinical isolates of Salmonella enterica serovar Typhi. MICs of the selected β-lactams, EDTA and nisin were determined by micro and macro broth dilution assays. In-vitro synergism between the agents was evaluated by fractional inhibitory concentration (FIC) index (checkerboard test) and time-kill assay. All the tested combinations showed synergy against the tested clinical strains except three, as evident by FIC index (checkerboard test) and time-kill assay. Especially, nisin-ceftriaxone and nisin-cefotaxime combinations demonstrated excellent synergistic activity. In view of the encouraging results obtained from the previous and present study, further studies need to be carried out using large number of strains from different regions to take into account the clinical variability of the strains. Though it is a simple study but highlights an important point about the possibility of using the said combination while making strategies to develop newer formulations. PMID:24961707

  2. Licoflavonol is an inhibitor of the type three secretion system of Salmonella enterica serovar Typhimurium.

    PubMed

    Guo, Zhixing; Li, Xiaoli; Li, Jianfang; Yang, Xuefei; Zhou, Yuan; Lu, Chunhua; Shen, Yuemao

    2016-09-01

    As an important food-borne human pathogen, Salmonella enterica serovar Typhimurium depends on its type III secretion system (T3SS) as a major virulence factor to cause disease all over the world. The T3SS secretes effector proteins to facilitate invasion into host cells. In this study, twenty prenylated flavonoids (1-20) were screened for their anti-T3SS activity, revealing that several analogs exhibited strong inhibitory effects on the secretion of Salmonella pathogenicity island 1 (SPI-1)-associated effector proteins without affecting the growth of bacteria and the secretion of the flagellar protein FliC. Among the flavonoids 1-20, licoflavonol (20) exhibited a strong inhibitory effect on the secretion of the SPI-1 effector proteins via regulating the transcription of the SicA/InvF genes, and the transportation of the effector protein SipC. In summary, licoflavonol, a novel natural inhibitor of Salmonella T3SS, could be a promising candidate for novel type of anti-virulence drugs. PMID:27387231

  3. Characterization of the ELPhiS prophage from Salmonella enterica serovar Enteritidis strain LK5.

    PubMed

    Hanna, L Farris; Matthews, T David; Dinsdale, Elizabeth A; Hasty, David; Edwards, Robert A

    2012-03-01

    Phages are a primary driving force behind the evolution of bacterial pathogens by transferring a variety of virulence genes into their hosts. Similar to other bacterial genomes, the Salmonella enterica serovar Enteritidis LK5 genome contains several regions that are homologous to phages. Although genomic analysis demonstrated the presence of prophages, it was unable to confirm which phage elements within the genome were viable. Genetic markers were used to tag one of the prophages in the genome to allow monitoring of phage induction. Commonly used laboratory strains of Salmonella were resistant to phage infection, and therefore a rapid screen was developed to identify susceptible hosts. This approach showed that a genetically tagged prophage, ELPhiS (Enteritidis lysogenic phage S), was capable of infecting Salmonella serovars that are diverse in host range and virulence and has the potential to laterally transfer genes between these serovars via lysogenic conversion. The rapid screen approach is adaptable to any system with a large collection of isolates and may be used to test the viability of prophages found by sequencing the genomes of various bacterial pathogens. PMID:22247173

  4. Influence of prgH on the Persistence of Ingested Salmonella enterica in the Leafhopper Macrosteles quadrilineatus

    PubMed Central

    Dundore-Arias, José Pablo; Groves, Russell L.

    2015-01-01

    Phytophagous insects can encounter Salmonella enterica on contaminated plant surfaces and transmit externally adhered and internalized bacteria on and among leaves. Excretion of ingested S. enterica by the leafhopper Macrosteles quadrilineatus has been previously reported; however, the sites of persistence of ingested bacteria remain undetermined. Fluorescence microscopy revealed the presence and persistence of S. enterica in various organs of M. quadrilineatus fed an inoculated diet for 12 h and then moved to two consecutive noninoculated diets for a total of 48 h. Ingested S. enterica was predominantly observed in the filter chamber, midgut, and Malpighian tubules of M. quadrilineatus dissected immediately after acquisition and at 24- and 48-h post-acquisition access periods (post-AAPs). Additionally, we examined the potential roles of the Salmonella pathogenicity island 1 (SPI-1) and SPI-2 type III secretion systems (T3SSs) in the persistence and excretion of ingested S. enterica. In competition assays, a prgH mutant lacking a functional SPI-1 T3SS was recovered at significantly lower levels than the WT in insect homogenates at 24 h post-AAP, and complementation with prgH restored S. enterica persistence in M. quadrilineatus. Moreover, expression of prgH inside M. quadrilineatus was observed up to 48 post-AAP. No differences were observed between the WT and an ssaK mutant lacking a functional SPI-2 T3SS in insect homogenates or between the WT and either mutant in insect excretions. This study provides novel insight into the presence and persistence of S. enterica inside M. quadrilineatus and demonstrates that the SPI-1 T3SS influences the persistence of the pathogen in the gut of a potential vector. PMID:26150468

  5. Influence of prgH on the Persistence of Ingested Salmonella enterica in the Leafhopper Macrosteles quadrilineatus.

    PubMed

    Dundore-Arias, José Pablo; Groves, Russell L; Barak, Jeri D

    2015-09-01

    Phytophagous insects can encounter Salmonella enterica on contaminated plant surfaces and transmit externally adhered and internalized bacteria on and among leaves. Excretion of ingested S. enterica by the leafhopper Macrosteles quadrilineatus has been previously reported; however, the sites of persistence of ingested bacteria remain undetermined. Fluorescence microscopy revealed the presence and persistence of S. enterica in various organs of M. quadrilineatus fed an inoculated diet for 12 h and then moved to two consecutive noninoculated diets for a total of 48 h. Ingested S. enterica was predominantly observed in the filter chamber, midgut, and Malpighian tubules of M. quadrilineatus dissected immediately after acquisition and at 24- and 48-h post-acquisition access periods (post-AAPs). Additionally, we examined the potential roles of the Salmonella pathogenicity island 1 (SPI-1) and SPI-2 type III secretion systems (T3SSs) in the persistence and excretion of ingested S. enterica. In competition assays, a prgH mutant lacking a functional SPI-1 T3SS was recovered at significantly lower levels than the WT in insect homogenates at 24 h post-AAP, and complementation with prgH restored S. enterica persistence in M. quadrilineatus. Moreover, expression of prgH inside M. quadrilineatus was observed up to 48 post-AAP. No differences were observed between the WT and an ssaK mutant lacking a functional SPI-2 T3SS in insect homogenates or between the WT and either mutant in insect excretions. This study provides novel insight into the presence and persistence of S. enterica inside M. quadrilineatus and demonstrates that the SPI-1 T3SS influences the persistence of the pathogen in the gut of a potential vector. PMID:26150468

  6. Phenotypic and Genotypic Characterization of Salmonella enterica in Captive Wildlife and Exotic Animal Species in Ohio, USA.

    PubMed

    Farias, L F P; Oliveira, C J B; Medardus, J J; Molla, B Z; Wolfe, B A; Gebreyes, W A

    2015-09-01

    The purpose of this study was to investigate the occurrence, antimicrobial resistance patterns, phenotypic and genotypic relatedness of Salmonella enterica recovered from captive wildlife host species and in the environment in Ohio, USA. A total of 319 samples including faecal (n = 225), feed (n = 38) and environmental (n = 56) were collected from 32 different wild and exotic animal species in captivity and their environment in Ohio. Salmonellae were isolated using conventional culture methods and tested for antimicrobial susceptibility with the Kirby-Bauer disc diffusion method. Salmonella isolates were serotyped, and genotyping was performed using the pulsed-field gel electrophoresis (PFGE). Salmonella was detected in 56 of 225 (24.9%) faecal samples; six of 56 (10.7%) environmental samples and six of 38 (15.8%) feed samples. Salmonella was more commonly isolated in faecal samples from giraffes (78.2%; 36/46), cranes (75%; 3/4) and raccoons (75%; 3/4). Salmonella enterica serotypes of known public health significance including S. Typhimurium (64.3%), S. Newport (32.1%) and S. Heidelberg (5.3%) were identified. While the majority of the Salmonella isolates were pan-susceptible (88.2%; 60 of 68), multidrug-resistant strains including penta-resistant type, AmStTeKmGm (8.8%; six of 68) were detected. Genotypic diversity was found among S. Typhimurium isolates. The identification of clonally related Salmonella isolates from environment and faeces suggests that indirect transmission of Salmonella among hosts via environmental contamination is an important concern to workers, visitors and other wildlife. Results of this study show the diversity of Salmonella serovars and public health implications of human exposure from wildlife reservoirs. PMID:25388917

  7. Comparison of a PCR serotyping assay, Check&Trace assay for Salmonella, and Luminex Salmonella serotyping assay for the characterization of Salmonella enterica identified from fresh and naturally contaminated cilantro.

    PubMed

    Jean-Gilles Beaubrun, J; Ewing, L; Jarvis, K; Dudley, K; Grim, C; Gopinath, G; Flamer, M-L; Auguste, W; Jayaram, A; Elmore, J; Lamont, M; McGrath, T; Hanes, D E

    2014-09-01

    Salmonella enterica isolated from fresh cilantro samples collected through the USDA/AMS Microbiological Data Program (MDP) were used to compare a PCR serotyping assay against the Check&Trace assay and the Luminex (BioPlex) Salmonella serotyping assay. The study was conducted to evaluate the effectiveness of the three methods for serotyping Salmonella from both enrichment broth cultures and pure Salmonella cultures. In this investigation, Salmonella spp. serotyping was conducted using 24 h enrichment broth cultures and pure Salmonella cultures from cilantro samples, with the PCR serotyping assay. Conversely, the Check&Trace and Luminex for Salmonella assays required pure cultures for Salmonella serotyping. The cilantro samples contained S. enterica serovar Montevideo, Newport, Saintpaul, and Tennessee, identified by the PCR serotyping assay and Check&Trace for Salmonella, but the Luminex assay only identified two of the four serotypes of the cilantro samples. The anticipated impact from this study is that the PCR serotyping assay provides a time- and cost-effective means for screening, identifying and serotyping Salmonella using DNA extracted from 24 h enrichment cilantro samples. PMID:24929735

  8. Evaluation of Surrogate Disk Tests for Detection of Ciprofloxacin and Levofloxacin Resistance in Clinical Isolates of Salmonella enterica

    PubMed Central

    Deak, Eszter; Skov, Robert; Hindler, Janet A.

    2015-01-01

    Detection of fluoroquinolone resistance in Salmonella enterica has become increasingly difficult due to evolving resistance mechanisms to this antimicrobial class in this organism. We evaluated two quinolone disks and five fluoroquinolone disks for their ability to act as a surrogate agent for the detection of fluoroquinolone resistance in a collection of 136 S. enterica isolates, including 111 with intermediate or resistant ciprofloxacin MICs mediated by a variety of resistance mechanisms. Ciprofloxacin, ofloxacin, and pefloxacin disks detected all isolates resistant to ciprofloxacin (0% very major error) and yielded false resistance (major error) in 8, 4, and 12% of susceptible isolates, respectively. Ciprofloxacin and pefloxacin provided clearer differentiation of susceptible and resistant isolates. PMID:26292293

  9. Serovar distribution, antimicrobial resistance profiles, and PFGE typing of Salmonella enterica strains isolated from 2007–2012 in Guangdong, China

    PubMed Central

    2014-01-01

    Background Salmonella enterica includes the major serovars associated with human salmonellosis. In this study, 1764 clinical Salmonella enterica isolates from diarrhea outpatients were collected from fifteen cities in Guangdong province, China, between 2007 and 2012. These isolates represent all of the Salmonella isolates collected from the province during that period. Methods The isolates were characterized by serovar determination, antimicrobial susceptibility tests and PFGE fingerprint typing. Results The serovar distribution results demonstrated that Salmonella Typhimurium (n = 523, 29.65%) and Salmonella 4,5,12:i:- (n = 244, 13.83%) are the most common serovars causing infant salmonellosis, whereas Salmonella Enteritidis (n = 257, 14.57%) mainly causes human salmonellosis in adults. The serovar shift from Salmonella Enteritidis to Salmonella Typhimurium occurred in 2008. Antimicrobial susceptibility data showed a high burden of multidrug resistance (MDR) (n = 1128, 56.58%), and a 20%-30% increase in the number of isolates resistant to ciprofloxacin (n = 142, 8.05%) and third-generation cephalosporins (n = 88, 4.99%) from 2007–2012. Only 9.97% of isolates (n = 176) were fully susceptible to all agents tested. A high burden of MDR was observed in Salmonella Typhimurium and Salmonella 4,5,12:i:- for all age groups, and a reduced susceptibility to third-generation cephalosporins and quinolones occurred particularly in infants (≤6 years). The dominant PFGE patterns were JPXX01.GD0004, JEGX01.GD0006-7 and JNGX01.GD0006-7. ACSSuT was the predominant MDR profile in the Salmonella Typhimurium & 4,5,12:i:- complexes, while ASSuT-Nal and ASSu-Nal were the major MDR profiles in Salmonella Enteritidis. The predominant PFGE patterns of the Salmonella Typhimurium & 4,5,12:i:- complexes and Salmonella Stanley were most prevalent in infants (≤6 years). However, no obvious relationship was observed between these PFGE profiles and geographic

  10. Effects of norspermidine and spermidine on biofilm formation by potentially pathogenic Escherichia coli and Salmonella enterica wild-type strains.

    PubMed

    Nesse, Live L; Berg, Kristin; Vestby, Lene K

    2015-03-01

    Polyamines are present in all living cells. In bacteria, polyamines are involved in a variety of functions, including biofilm formation, thus indicating that polyamines may have potential in the control of unwanted biofilm. In the present study, the effects of the polyamines norspermidine and spermidine on biofilms of 10 potentially pathogenic wild-type strains of Escherichia coli serotype O103:H2, Salmonella enterica subsp. enterica serovar Typhimurium, and S. enterica serovar Agona were investigated. We found that exogenously supplied norspermidine and spermidine did not mediate disassembly of preformed biofilm of any of the E. coli and S. enterica strains. However, the polyamines did affect biofilm production. Interestingly, the two species reacted differently to the polyamines. Both polyamines reduced the amount of biofilm formed by E. coli but tended to increase biofilm formation by S. enterica. Whether the effects observed were due to the polyamines specifically targeting biofilm formation, being toxic for the cells, or maybe a combination of the two, is not known. However, there were no indications that the effect was mediated through binding to exopolysaccharides, as earlier suggested for E. coli. Our results indicate that norspermidine and spermidine do not have potential as inhibitors of S. enterica biofilm. Furthermore, we found that the commercial polyamines used contributed to the higher pH of the test medium. Failure to acknowledge and control this important phenomenon may lead to misinterpretation of the results. PMID:25595767

  11. Higher Storage Temperature Causes Greater Salmonella enterica Serovar Typhimurium Internal Penetration of Artificially Contaminated, Commercially Available, Washed Free Range Eggs.

    PubMed

    Whiley, Alice; Fallowfield, Howard; Ross, Kirstin; McEvoy, Vanessa; Whiley, Harriet

    2016-07-01

    Foodborne salmonellosis is a major public health concern, with contaminated eggs identified as a significant source of infection. In Australia, the most prevalent cause of salmonellosis from eggs is Salmonella enterica subsp. enterica serovar Typhimurium. This study explored the effect of temperature after 1, 7, 14, 21, and 28 days of storage on commercially available washed free range eggs, artificially contaminated with Salmonella Typhimurium on the external surface. At each time point, the external surface of the egg, the crushed eggshell, and the internal egg yolk and albumen were analyzed for Salmonella. After 28 days of storage, 25% of eggs stored at 4°C, 50% of eggs stored at 14°C, and 100% of eggs stored at 23 and 35°C were internally contaminated with Salmonella. After 1 day of storage, more than 50% of all eggs had Salmonella present in the crushed shell after the external surface had been disinfected with ethanol. This is the first study to demonstrate that refrigeration reduced the potential for Salmonella Typhimurium to penetrate the eggshell membrane and internally contaminate table eggs commercially available in Australia. It also suggests that the processes of cracking eggs may be a source of cross-contamination within the kitchen. PMID:27357046

  12. Molecular Properties of Salmonella enterica Serotype Paratyphi B Distinguish between Its Systemic and Its Enteric Pathovars

    PubMed Central

    Prager, Rita; Rabsch, Wolfgang; Streckel, Wiebke; Voigt, Wolfgang; Tietze, Erhardt; Tschäpe, Helmut

    2003-01-01

    Salmonella enterica serotype O1,4,5,12:Hb:1,2, designated according to the current Kauffmann-White scheme as S. enterica serotype Paratyphi B, is a very diverse serotype with respect to its clinical and microbiological properties. PCR and blot techniques, which identify the presence, polymorphism, and expression of various effector protein genes, help to distinguish between strains with systemic and enteric outcomes of disease. All serotype Paratyphi B strains from systemic infections have been found to be somewhat genetically related with respect to the pattern of their virulence genes sopB, sopD, sopE1, avrA, and sptP as well as other molecular properties (multilocus enzyme electrophoresis type, pulsed-field gel electrophoresis [PFGE] type, ribotype, and IS200 type). They have been classified as members of the systemic pathovar (SPV). All these SPV strains possess a new sopE1-carrying bacteriophage (designated ΦSopE309) with high SopE1 protein expression but lack the commonly occurring avrA determinant. They exhibit normal SopB protein expression but lack SopD protein production. In contrast, strains from enteric infections classified as belonging to the enteric pathovar possess various combinations of the respective virulence genes, PFGE pattern, and ribotypes. We propose that the PCR technique for testing for the presence of the virulence genes sopE1 and avrA be used as a diagnostic tool for identifying both pathovars of S. enterica serotype Paratyphi B. This will be of great public health importance, since strains of serotype Paratyphi B have recently reemerged worldwide. PMID:12958256

  13. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium.

    PubMed

    Amin, Shivam V; Roberts, Justin T; Patterson, Dillon G; Coley, Alexander B; Allred, Jonathan A; Denner, Jason M; Johnson, Justin P; Mullen, Genevieve E; O'Neal, Trenton K; Smith, Jason T; Cardin, Sara E; Carr, Hank T; Carr, Stacie L; Cowart, Holly E; DaCosta, David H; Herring, Brendon R; King, Valeria M; Polska, Caroline J; Ward, Erin E; Wise, Alice A; McAllister, Kathleen N; Chevalier, David; Spector, Michael P; Borchert, Glen M

    2016-03-01

    Small RNAs (sRNAs) are short (∼50-200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from "gene-empty" regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands. PMID:26853797

  14. Outbreaks of monophasic Salmonella enterica serovar 4,[5],12:i:- in Luxembourg, 2006.

    PubMed

    Mossong, J; Marques, P; Ragimbeau, C; Huberty-Krau, P; Losch, S; Meyer, G; Moris, G; Strottner, C; Rabsch, W; Schneider, F

    2007-06-01

    A monophasic Salmonella enterica serovar 4,[5],12:i:- phage type DT193 emerged as the dominant serovar in Luxembourg in 2006, when it caused two major outbreaks involving 133 laboratory-confirmed human cases, 24 hospitalisations, and one death. The outbreak strain had an uncommon pulsed-field gel electrophoresis pattern STYMXB.0031 and antibiotic resistance profile ASSuT. A high proportion of cases were clustered in institutions for the elderly and in day-care centers. Strains identical to the outbreak strain were recovered from two control meals, a nappy changing table, retail sausages and caecal porcine samples at an abattoir. Locally produced pork meat is strongly suspected to have been the vehicle for the outbreaks, although the precise mechanisms remain unclear. PMID:17991400

  15. Neutrophils Are a Source of Gamma Interferon during Acute Salmonella enterica Serovar Typhimurium Colitis

    PubMed Central

    Spees, Alanna M.; Kingsbury, Dawn D.; Wangdi, Tamding; Xavier, Mariana N.; Tsolis, Renée M.

    2014-01-01

    Gamma interferon (IFN-γ) is an important driver of intestinal inflammation during colitis caused by Salmonella enterica serovar Typhimurium. Here we used the mouse colitis model to investigate the cellular sources of IFN-γ in the cecal mucosa during the acute phase of an S. Typhimurium infection. While IFN-γ staining was detected in T cells, NK cells, and inflammatory monocytes at 2 days after infection, the majority of IFN-γ-positive cells in the cecal mucosa were neutrophils. Furthermore, neutrophil depletion blunted mucosal Ifng expression and reduced the severity of intestinal lesions during S. Typhimurium infection. We conclude that neutrophils are a prominent cellular source of IFN-γ during the innate phase of S. Typhimurium-induced colitis. PMID:24421037

  16. YjgF is required for isoleucine biosynthesis when Salmonella enterica is grown on pyruvate medium.

    PubMed

    Christopherson, Melissa R; Schmitz, G E; Downs, Diana M

    2008-04-01

    The YjgF/YER057c/UK114 family of proteins is conserved across the three domains of life, yet no biochemical function has been clearly defined for any member of this family. In Salmonella enterica, a deletion of yjgF results in a requirement for isoleucine when the mutant strain is grown in glucose-serine or pyruvate medium. Feedback inhibition of IlvA is required for the curative effect of isoleucine on glucose-serine medium. On pyruvate medium, yjgF mutants are unable to synthesize enough isoleucine for growth. From this study, we conclude that the isoleucine requirement of a yjgF mutant on pyruvate is a consequence of the decreased transaminase B (IlvE) activity that has previously been characterized in these mutants. PMID:18296521

  17. Experimental infection of chickens by a flagellated motile strain of Salmonella enterica serovar Gallinarum biovar Gallinarum.

    PubMed

    Lopes, P D; Freitas Neto, O C; Batista, D F A; Denadai, J; Alarcon, M F F; Almeida, A M; Vasconcelos, R O; Setta, A; Barrow, P A; Berchieri, A

    2016-08-01

    Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid (FT), a septicaemic disease which can result in high mortality in poultry flocks. The absence of flagella in SG is thought to favour systemic invasion, since bacterial recognition via Toll-like receptor (TLR)-5 does not take place during the early stages of FT. In the present study, chicks susceptible to FT were inoculated with a wild type SG (SG) or its flagellated motile derivative (SG Fla(+)). In experiment 1, mortality and clinical signs were assessed, whereas in experiment 2, gross pathology, histopathology, systemic invasion and immune responses were evaluated. SG Fla(+) infection resulted in later development of clinical signs, lower mortality, lower bacterial numbers in the liver and spleen, and less severe pathological changes compared to SG. The CD8(+) T lymphocyte population was higher in the livers of chicks infected with SG at 4 days post-inoculation (dpi). Chicks infected with SG had increased expression of interleukin (IL)-6 mRNA in the caecal tonsil at 1 dpi and increased expression of IL-18 mRNA in the spleen at 4 dpi. In contrast, the CD4(+) T lymphocyte population was higher at 6 dpi in the livers of birds infected with SG Fla(+). Therefore, flagella appeared to modulate the chicken immune response towards a CD4(+) T profile, resulting in more efficient bacterial clearance from systemic sites and milder infection. PMID:27387725

  18. Regulation of DNA phosphorothioate modification in Salmonella enterica by DndB

    PubMed Central

    He, Wei; Huang, Teng; Tang, You; Liu, Yanhua; Wu, Xiaolin; Chen, Si; Chan, Wan; Wang, Yajie; Liu, Xiaoyun; Chen, Shi; Wang, Lianrong

    2015-01-01

    DNA phosphorothioate (PT) modification, in which the non-bridging oxygen of the sugar-phosphate backbone is substituted by sulfur, occurs naturally in diverse bacteria and archaea and is regulated by the DndABCDE proteins. DndABCDE and the restriction cognate DndFGHI constitute a new type of defense system that prevents the invasion of foreign DNA in Salmonella enterica serovar Cerro 87. GAAC/GTTC consensus contexts across genomes were found to possess partial PT modifications even in the presence of restriction activity, indicating the regulation of PT. The abundance of PT in cells must be controlled to suit cellular activities. However, the regulatory mechanism of PT modification has not been characterized. The result here indicated that genomic PT modification in S. enterica is controlled by the transcriptional regulator DndB, which binds to two regions in the promoter, each possessing a 5′-TACGN10CGTA-3′ palindromic motif, to regulate the transcription of dndCDE and its own gene. Site-directed mutagenesis showed that the Cys29 residue of DndB plays a key role in its DNA-binding activity or conformation. Proteomic analysis identified changes to a number of cellular proteins upon up-regulation and loss of PT. Considering the genetic conservation of dnd operons, regulation of PT by DndB might be widespread in diverse organisms. PMID:26190504

  19. Temperature-Sensitive Salmonella enterica Serovar Enteritidis PT13a Expressing Essential Proteins of Psychrophilic Bacteria

    PubMed Central

    Duplantis, Barry N.; Puckett, Stephanie M.; Rosey, Everett L.; Ameiss, Keith A.; Hartman, Angela D.; Pearce, Stephanie C.

    2015-01-01

    Synthetic genes based on deduced amino acid sequences of the NAD-dependent DNA ligase (ligA) and CTP synthetase (pyrG) of psychrophilic bacteria were substituted for their native homologues in the genome of Salmonella enterica serovar Enteritidis phage type 13a (PT13a). The resulting strains were rendered temperature sensitive (TS) and did not revert to temperature resistance at a detectable level. At permissive temperatures, TS strains grew like the parental strain in broth medium and in macrophage-like cells, but their growth was slowed or stopped when they were shifted to a restrictive temperature. When injected into BALB/c mice at the base of the tail, representing a cool site of the body, the strains with restrictive temperatures of 37, 38.5, and 39°C persisted for less than 1 day, 4 to 7 days, and 20 to 28 days, respectively. The wild-type strain persisted at the site of inoculation for at least 28 days. The wild-type strain, but not the TS strains, was also found in spleen-plus-liver homogenates within 1 day of inoculation of the tail and was detectable in these organs for at least 28 days. Intramuscular vaccination of White Leghorn chickens with the PT13a strain carrying the psychrophilic pyrG gene provided some protection against colonization of the reproductive tract and induced an anti-S. enterica antibody response. PMID:26187965

  20. Endogenous Synthesis of 2-Aminoacrylate Contributes to Cysteine Sensitivity in Salmonella enterica

    PubMed Central

    Ernst, Dustin C.; Lambrecht, Jennifer A.; Schomer, Rebecca A.

    2014-01-01

    RidA, the archetype member of the widely conserved RidA/YER057c/UK114 family of proteins, prevents reactive enamine/imine intermediates from accumulating in Salmonella enterica by catalyzing their hydrolysis to stable keto acid products. In the absence of RidA, endogenous 2-aminoacrylate persists in the cellular environment long enough to damage a growing list of essential metabolic enzymes. Prior studies have focused on the dehydration of serine by the pyridoxal 5′-phosphate (PLP)-dependent serine/threonine dehydratases, IlvA and TdcB, as sources of endogenous 2-aminoacrylate. The current study describes an additional source of endogenous 2-aminoacrylate derived from cysteine. The results of in vivo analysis show that the cysteine sensitivity of a ridA strain is contingent upon CdsH, the predominant cysteine desulfhydrase in S. enterica. The impact of cysteine on 2-aminoacrylate accumulation is shown to be unaffected by the presence of serine/threonine dehydratases, revealing another mechanism of endogenous 2-aminoacrylate production. Experiments in vitro suggest that 2-aminoacrylate is released from CdsH following cysteine desulfhydration, resulting in an unbound aminoacrylate substrate for RidA. This work expands our understanding of the role played by RidA in preventing enamine stress resulting from multiple normal metabolic processes. PMID:25002544

  1. Salmonella Enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes

    SciTech Connect

    deLivron, M.; Robinson, V

    2008-01-01

    BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.

  2. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium

    PubMed Central

    Staib, Lena; Fuchs, Thilo M.

    2015-01-01

    After ingestion, Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters a densely populated, competitive environment in the gastrointestinal tract. To escape nutrient limitation caused by the intestinal microbiota, this pathogen has acquired specific metabolic traits to use compounds that are not metabolized by the commensal bacteria. For example, the utilization of 1,2-propanediol (1,2-PD), a product of the fermentation of L-fucose, which is present in foods of herbal origin and is also a terminal sugar of gut mucins. Under anaerobic conditions and in the presence of tetrathionate, 1,2-PD can serve as an energy source for S. Typhimurium. Comprehensive database analysis revealed that the 1,2-PD and fucose utilization operons are present in all S. enterica serovars sequenced thus far. The operon, consisting of 21 genes, is expressed as a single polycistronic mRNA. As demonstrated here, 1,2-PD was formed and further used when S. Typhimurium strain 14028 was grown with L-fucose, and the gene fucA encoding L-fuculose-1-phosphate aldolase was required for this growth. Using promoter fusions, we monitored the expression of the propanediol utilization operon that was induced at very low concentrations of 1,2-PD and was inhibited by the presence of D-glucose. PMID:26528264

  3. Safety and immunogenicity of an attenuated Salmonella enterica serovar Paratyphi A vaccine candidate.

    PubMed

    Xiong, Kun; Chen, Zhijin; Zhu, Chunyue; Li, Jianhua; Hu, Xiaomei; Rao, Xiancai; Cong, Yanguang

    2015-09-01

    Enteric fever caused by Salmonella enterica serovar Paratyphi A has progressively increased in recent years and became a global health issue. Currently licensed typhoid vaccines do not confer adequate cross-immunoprotection against S. Paratyphi A infection. Therefore, vaccines specifically against enteric fever caused by S. Paratyphi A are urgently needed. In the present study, an attenuated vaccine strain was constructed from S. Paratyphi A CMCC50093 by the deletions of aroC and yncD. The obtained strain SPADD01 showed reduced survival within THP-1 cells and less bacterial burden in spleens and livers of infected mice compared with the wild-type strain. The 50% lethal doses of SPADD01 and the wild-type strain were assessed using a murine infection model. The virulence of SPADD01 is approximately 40,000-fold less than that of the wild-type strain. In addition, SPADD01 showed an excellent immunogenicity in mouse model. Single intranasal inoculation elicited striking humoral and mucosal immune responses in mice and yielded effective protection against lethal challenge of the wild-type strain. A high level of cross-reactive humoral immune response against LPS of Salmonella enterica serovar Typhi was also detected in immunized mice. However, SPADD01 vaccination only conferred a low level of cross-protection against S. Typhi. Our data suggest that SPADD01 is a promising vaccine candidate against S. Paratyphi A infection and deserves further evaluation in clinical trial. To date, no study has demonstrated a good cross-protection between serovars of S. Typhi and S. Paratyphi A, suggesting that the dominant protective antigens of both serovars are likely different and need to be defined in future study. PMID:26239100

  4. Survival and fate of Salmonella enterica serovar Montevideo in adult horn flies (Diptera: Muscidae).

    PubMed

    Olafson, Pia Untalan; Lohmeyer, Kimberly H; Edrington, Thomas S; Loneragan, Guy H

    2014-09-01

    Contamination of cattle peripheral lymph nodes with Salmonella enterica is proposed to occur via a transdermal route of entry. If so, bacteria may be introduced to cattle by biting arthropods. Biting flies, such as horn flies (Haematobia irritans irritans (L.)) (Diptera: Muscidae), are intriguing candidates for transmitting Salmonella to cattle because they provide a route of entry when they breach the skin barrier during blood feeding. Using a green fluorescent protein-expressing strain of Salmonella Montevideo (S. Montevideo-GFP), the current study demonstrated that horn fly grooming subsequent to tactile exposure to the bacteria resulted in acquisition of the bacteria on mouthparts as well as microbial ingestion. Consumption of a bloodmeal containing approximately 10(2), approximately 10(4), or 10(6) S. Montevideo-GFP resulted in horn fly colonization for up to 72 h postingestion (PI). Epifluorescent microscopy indicated that the bacteria were not localized to the crop but were observed within the endoperitrophic space, suggesting that regurgitation is not a primary route of transmission. S. Montevideo-GFP were cultured from excreta of 100% of flies beginning 6-7 h PI of a medium or high dose meal and > 12 h PI in excreta from 60% of flies fed the low-dose meal. Animal hides and manure pats are sources for horn flies to acquire the Salmonella and mechanically transmit them to an animal while feeding. Mean quantities of 5.65-67.5 x 10(2) CFU per fly were cultured from fly excreta passed within 1 d after feeding, suggesting the excreta can provide an additional microbial source on the animal's hide. PMID:25276929

  5. Antibiotic resistance determinants and genetic analysis of Salmonella enterica isolated from food in Morocco.

    PubMed

    Murgia, Manuela; Bouchrif, Brahim; Timinouni, Mohammed; Al-Qahtani, Ahmed; Al-Ahdal, Mohammed N; Cappuccinelli, Pietro; Rubino, Salvatore; Paglietti, Bianca

    2015-12-23

    Antimicrobial-resistant non-typhoidal Salmonella (NTS) are an important cause of infection in Africa, but there is a lack of information on their molecular mechanisms of resistance and epidemiology. This study contributes to fill this gap through the characterization by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), plasmid profiling and analysis of antibiotic-resistance determinants of 94 Salmonella enterica strains isolated from food in Morocco. PFGE revealed considerable heterogeneity among the strains, showing 32 pulsotypes. MLST of strains representative of the different serovars evidenced 13 sequence types (STs), three of which were newly identified (ST1694, ST1768 and ST1818) and nine not previously reported in Morocco. Thirty-four strains harbored from one to four plasmids, of IncI1 group in S. Mbandaka, IncFIIA in S. Typhimurium, IncL/M in S. Hadar and S. Blockley. For the first time in Morocco an intact Salmonella Genomic Island 1 (SGI1) carrying the resistance genes aadA2, floR, tetG, blaPSE-1 and sul1 was detected in S. Typhimurium DT104. In serovar Hadar resistance to ampicillin, tetracycline and streptomycin was associated to blaTEM-1, tetA and strA genes respectively, whereas one mutation in gyrA (Asp87Asn) and one in parC (Thr54Ser) genes conferred resistance to nalidixic acid. These findings improve the information on foodborne Salmonella in Morocco, evidencing the presence of MDR strains potentially dangerous to humans, and provide useful data for future studies. PMID:26325598

  6. Genomic Evidence Reveals Numerous Salmonella enterica Serovar Newport Reintroduction Events in Suwannee Watershed Irrigation Ponds

    PubMed Central

    Jackson, Scott A.; Gangiredla, Jayanthi; Wang, Weimin; Liu, Huanli; Tall, Ben D.; Beaubrun, Junia Jean-Gilles; Jay-Russell, Michele; Vellidis, George; Elkins, Christopher A.

    2015-01-01

    Our previous work indicated a predominance (56.8%) of Salmonella enterica serovar Newport among isolates recovered from irrigation ponds used in produce farms over a 2-year period (B. Li et al., Appl Environ Microbiol 80:6355–6365, http://dx.doi.org/10.1128/AEM.02063-14). This observation provided a valuable set of metrics to explore an underaddressed issue of environmental survival of Salmonella by DNA microarray. Microarray analysis correctly identified all the isolates (n = 53) and differentiated the S. Newport isolates into two phylogenetic lineages (S. Newport II and S. Newport III). Serovar distribution analysis showed no instances where the same serovar was recovered from a pond for more than a month. Furthermore, during the study, numerous isolates with an indistinguishable genotype were recovered from different ponds as far as 180 km apart for time intervals as long as 2 years. Although isolates within either lineage were phylogenetically related as determined by microarray analysis, subtle genotypic differences were detected within the lineages, suggesting that isolates in either lineage could have come from several unique hosts. For example, strains in four different subgroups (A, B, C, and D) possessed an indistinguishable genotype within their subgroups as measured by gene differences, suggesting that strains in each subgroup shared a common host. Based on this comparative genomic evidence and the spatial and temporal factors, we speculated that the presence of Salmonella in the ponds was likely due to numerous punctuated reintroduction events associated with several different but common hosts in the environment. These findings may have implications for the development of strategies for efficient and safe irrigation to minimize the risk of Salmonella outbreaks associated with fresh produce. PMID:26386063

  7. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages.

    PubMed

    Lathrop, Stephanie K; Binder, Kelsey A; Starr, Tregei; Cooper, Kendal G; Chong, Audrey; Carmody, Aaron B; Steele-Mortimer, Olivia

    2015-07-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. PMID:25895967

  8. Multistate outbreak of Salmonella enterica serotype enteritidis infection associated with pet guinea pigs.

    PubMed

    Bartholomew, Michael L; Heffernan, Richard T; Wright, Jennifer G; Klos, Rachel F; Monson, Timothy; Khan, Sofiya; Trees, Eija; Sabol, Ashley; Willems, Robert A; Flynn, Raymond; Deasy, Marshall P; Jones, Benjamen; Davis, Jeffrey P

    2014-06-01

    Salmonella causes about one million illnesses annually in the United States. Although most infections result from foodborne exposures, animal contact is an important mode of transmission. We investigated a case of Salmonella enterica serotype Enteritidis (SE) sternal osteomyelitis in a previously healthy child who cared for two recently deceased guinea pigs (GPs). A case was defined as SE pulsed-field gel electrophoresis (PFGE) XbaI pattern JEGX01.0021, BlnI pattern JEGA26.0002 (outbreak strain) infection occurring during 2010 in a patient who reported GP exposure. To locate outbreak strain isolates, PulseNet and the US Department of Agriculture National Veterinary Service Laboratories (NVSL) databases were queried. Outbreak strain isolates underwent multilocus variable-number tandem repeat analysis (MLVA). Traceback and environmental investigations were conducted at homes, stores, and breeder or broker facilities. We detected 10 cases among residents of eight states and four NVSL GP outbreak strain isolates. One patient was hospitalized; none died. The median patient age was 9.5 (range, 1-61) years. Among 10 patients, two purchased GPs at independent stores, and three purchased GPs at different national retail chain (chain A) store locations; three were chain A employees and two reported GP exposures of unknown characterization. MLVA revealed four related patterns. Tracebacks identified four distributors and 92 sources supplying GPs to chain A, including one breeder potentially supplying GPs to all case-associated chain A stores. All environmental samples were Salmonella culture-negative. A definitive SE-contaminated environmental source was not identified. Because GPs can harbor Salmonella, consumers and pet industry personnel should be educated regarding risks. PMID:24866204

  9. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages

    PubMed Central

    Lathrop, Stephanie K.; Binder, Kelsey A.; Starr, Tregei; Cooper, Kendal G.; Chong, Audrey; Carmody, Aaron B.

    2015-01-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. PMID:25895967

  10. Use of marination for controlling Salmonella enterica and Listeria monocytogenes in raw beef.

    PubMed

    Rhoades, J; Kargiotou, C; Katsanidis, E; Koutsoumanis, K P

    2013-12-01

    The effect of marination on the survival and growth of the pathogens Salmonella enterica and Listeria monocytogenes on beef pieces was investigated. Five marinades were used: soy sauce base marinade without (SB) or with lactic acid (SBLA), red wine base marinade without (WB) or with 0.5% v/v oregano essential oil (WBO), and sterile saline used as control (C). Inoculated fresh beef pieces were marinated for 18 h at 5 °C, removed from the marinade and subjected to storage trials at 5 °C and 15 °C. Heat inactivation studies were also performed on the isolates after exposure to the marinades to determine if marination affects heat resistance of the pathogens. The marinades with antimicrobials caused a significant decrease in viable count of the pathogens during marinations at 5 °C for 18 h of up to 2.1 and 3.4 log cfu cm(-2) for Salmonella and L. monocytogenes, respectively. Marinades without antimicrobials were less bactericidal resulting to reductions ranging from 0.3 to 0.4 and 1.3 to 2.0 log cfu cm(-2) for Salmonella and L. monocytogenes, respectively. Growth of L. monocytogenes was observed in the controls at both tested temperatures, while growth of Salmonella was observed in the controls stored at 15 °C. No growth of the pathogens was observed in any of the marinated samples at both temperature tested. No significant changes of heat resistance of the tested pathogens after exposure to the marinades were observed demonstrating the enhanced safety of the marinated beef product. PMID:24010604

  11. Intracellular replication is essential for the virulence of Salmonella typhimurium.

    PubMed

    Leung, K Y; Finlay, B B

    1991-12-15

    Salmonella typhimurium is a facultative intracellular parasite, capable of penetrating, surviving, and multiplying within diverse eukaryotic cell types, including epithelial and phagocytic cells. We have been studying intracellular replication of S. typhimurium and found that it is essential in the pathogenesis of this bacterium. A total of 45,000 independent mini-Mu MudJ transposon mutants in S. typhimurium SL1344 were screened in Madin-Darby canine kidney (MDCK) epithelial cells with a beta-lactam, cefotaxime, to enrich for mutants defective for intracellular replication. Ten different auxotrophic (purine, pyrimidine, purine/methionine, and valine/isoleucine) and three prototrophic replication-defective mutants (Rep-) were identified. All Rep- mutants showed no differences in aerobic and anaerobic growth patterns, motility, serum sensitivity, mouse macrophage survival, iron uptake, and phosphate requirements. All Rep- mutants were unable to multiply inside MDCK, HeLa, and Caco-2 epithelial cells. When required nutrients for various auxotrophs were supplemented, auxotrophs then replicated inside MDCK cells. Although the parental strain multiplies in large vacuoles inside MDCK cells that distort the host cells, MDCK cells infected with the Rep- mutants appeared relatively normal and few bacteria were seen inside vacuoles. The purine auxotrophs and the three prototrophic Rep- mutants were highly attenuated in mice, and oral and intraperitoneal LD50 levels were 3 to 4 orders of magnitude higher than the wild type level. The three prototrophs were invasive and persisted in the murine organs such as livers and spleens for at least 3 weeks. Therefore, these prototrophic genes are needed for intracellular replication and are essential to the virulence of S. typhimurium. PMID:1763061

  12. Spatial Variation and Survival of Salmonella enterica Subspecies in a Population of Australian Sleepy Lizards (Tiliqua rugosa).

    PubMed

    Parsons, Sandra K; Bull, C Michael; Gordon, David M

    2015-09-01

    The life cycles of many enteric bacterial species require a transition between two very distinct environments. Their primary habitat is the gastrointestinal tract of the host, while their secondary habitat, during transmission from one host to another, consists of environments external to the host, such as soil, water, and sediments. Consequently, both host and environmental factors shape the genetic structure of enteric bacterial populations. This study examined the distribution of four Salmonella enterica subspecies in a population of sleepy lizards, Tiliqua rugosa, in a semiarid region of South Australia. The lizards living within the 1,920-m by 720-m study site were radio tracked, and their enteric bacteria were sampled at regular intervals throughout their active seasons in the years 2001, 2002, and 2006. Four of the six subspecies of S. enterica were present in this population and were nonrandomly distributed among the lizards. In particular, S. enterica subsp. diarizonae was restricted to lizards living in the most shaded parts of the study site with an overstorey of Casuarina trees. Experiments undertaken to investigate the survival of S. enterica cells under seminatural conditions revealed that cell survival decreased with increased exposure to elevated temperatures and UV light. Among the three S. enterica subspecies tested, S. enterica subsp. diarizonae consistently had an average expected life span that was shorter than that observed for the other two subspecies. There was no indication in the data that there was any competitive dominance hierarchy among the S. enterica subspecies within individual hosts. Thus, the nonrandom distribution of S. enterica subspecies in this population of lizards appears to be driven by their different survival characteristics in the external environment. PMID:26092451

  13. Analysis of Molecular Epidemiology of Chilean Salmonella enterica Serotype Enteritidis Isolates by Pulsed-Field Gel Electrophoresis and Bacteriophage Typing

    PubMed Central

    Fernandez, Jorge; Fica, Alberto; Ebensperger, German; Calfullan, Hector; Prat, Soledad; Fernandez, Alda; Alexandre, Marcela; Heitmann, Ingrid

    2003-01-01

    Human Salmonella enterica serotype Enteritidis infections emerged in Chile in 1994. S. enterica serotype Enteritidis phage type 1 isolates predominated in the north, and phage type 4 isolates predominated in the central and southern regions. A study was planned to characterize this epidemic using the best discriminatory typing technique. Research involved 441 S. enterica serotype Enteritidis isolates, including clinical preepidemic samples (n = 74; 1975 to 1993) and epidemic (n = 199), food (n = 72), poultry (n = 57), and some Latin American (n = 39) isolates. The best method was selected based on a sample of preepidemic isolates, analyzing the discriminatory power (DP) obtained by phage typing and randomly amplified polymorphic DNA and pulsed-field gel electophoresis (PFGE) analysis. The highest DP was associated with BlnI PFGE-bacteriophage typing analysis (0.993). A total of 38 BlnI patterns (B patterns) were identified before the epidemic period, 19 since 1994, and only 4 in both periods. Two major clusters were identified by phylogenetic analysis, and the predominant B patterns clustered in the same branch. Combined analysis revealed that specific B pattern-phage type combinations (subtypes) disappeared before 1994, that different genotypes associated with S. enterica serotype Enteritidis phage type 4 had been observed since 1988, and that strain diversity increased before the expansion of S. enterica serotype Enteritidis in 1994. Predominant subtype B3-phage type 4 was associated with the central and southern regions, and subtype B38-phage type 1 was associated with the north (P < 0.0001). Food and poultry isolates matched the predominant S. enterica serotype Enteritidis subtypes, but isolates identified in neighboring countries (Peru and Bolivia) did not match S. enterica serotype Enteritidis subtypes identified in the north of Chile. The results of this work demonstrate that genetic diversity, replacement, and expansion of specific S. enterica serotype

  14. Salmonella enterica Suppresses Pectobacterium carotovorum subsp. carotovorum Population and Soft Rot Progression by Acidifying the Microaerophilic Environment

    PubMed Central

    Kwan, Grace; Charkowski, Amy O.; Barak, Jeri D.

    2013-01-01

    ABSTRACT Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. PMID:23404399

  15. Analysis of molecular epidemiology of Chilean Salmonella enterica serotype enteritidis isolates by pulsed-field gel electrophoresis and bacteriophage typing.

    PubMed

    Fernandez, Jorge; Fica, Alberto; Ebensperger, German; Calfullan, Hector; Prat, Soledad; Fernandez, Alda; Alexandre, Marcela; Heitmann, Ingrid

    2003-04-01

    Human Salmonella enterica serotype Enteritidis infections emerged in Chile in 1994. S. enterica serotype Enteritidis phage type 1 isolates predominated in the north, and phage type 4 isolates predominated in the central and southern regions. A study was planned to characterize this epidemic using the best discriminatory typing technique. Research involved 441 S. enterica serotype Enteritidis isolates, including clinical preepidemic samples (n = 74; 1975 to 1993) and epidemic (n = 199), food (n = 72), poultry (n = 57), and some Latin American (n = 39) isolates. The best method was selected based on a sample of preepidemic isolates, analyzing the discriminatory power (DP) obtained by phage typing and randomly amplified polymorphic DNA and pulsed-field gel electophoresis (PFGE) analysis. The highest DP was associated with BlnI PFGE-bacteriophage typing analysis (0.993). A total of 38 BlnI patterns (B patterns) were identified before the epidemic period, 19 since 1994, and only 4 in both periods. Two major clusters were identified by phylogenetic analysis, and the predominant B patterns clustered in the same branch. Combined analysis revealed that specific B pattern-phage type combinations (subtypes) disappeared before 1994, that different genotypes associated with S. enterica serotype Enteritidis phage type 4 had been observed since 1988, and that strain diversity increased before the expansion of S. enterica serotype Enteritidis in 1994. Predominant subtype B3-phage type 4 was associated with the central and southern regions, and subtype B38-phage type 1 was associated with the north (P < 0.0001). Food and poultry isolates matched the predominant S. enterica serotype Enteritidis subtypes, but isolates identified in neighboring countries (Peru and Bolivia) did not match S. enterica serotype Enteritidis subtypes identified in the north of Chile. The results of this work demonstrate that genetic diversity, replacement, and expansion of specific S. enterica serotype

  16. Effects of Leachate from Crumb Rubber and Zinc in Green Roofs on the Survival, Growth, and Resistance Characteristics of Salmonella enterica subsp. enterica Serovar Typhimurium

    PubMed Central

    Crampton, Mollee; Ryan, Allayna; Eckert, Cori; Baker, Katherine H.

    2014-01-01

    The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain. PMID:24584242

  17. Identification of bapA in Strains of Salmonella enterica subsp. enterica Isolated from Wild Animals Kept in Captivity in Sinaloa, Mexico

    PubMed Central

    López-Valenzuela, Martin; Cárcamo-Aréchiga, Nora; Cota-Guajardo, Silvia; López-Salazar, Mayra; Montiel-Vázquez, Edith

    2016-01-01

    bapA, previously named stm2689, encodes the BapA protein, which, along with cellulose and fimbriae, constitutes biofilms. Biofilms are communities of microorganisms that grow in a matrix of exopolysaccharides and may adhere to living tissues or inert surfaces. Biofilm formation is associated with the ability to persist in different environments, which contributes to the pathogenicity of several species. We analyzed the presence of bapA in 83 strains belonging to 17 serovars of Salmonella enterica subsp. enterica from wildlife in captivity at Culiacan's Zoo and Mazatlán's Aquarium. Each isolate amplified a product of 667 bp, which corresponds to the expected size of the bapA initiator, with no observed variation between different serovars analyzed. bapA gene was found to be highly conserved in Salmonella and can be targeted for the genus-specific detection of this organism from different sources. Since bapA expression improves bacterial proliferation outside of the host and facilitates resistance to disinfectants and desiccation, the survival of Salmonella in natural habitats may be favored. Thus, the risk of bacterial contamination from these animals is increased. PMID:27379195

  18. Identification of bapA in Strains of Salmonella enterica subsp. enterica Isolated from Wild Animals Kept in Captivity in Sinaloa, Mexico.

    PubMed

    Silva-Hidalgo, Gabriela; López-Valenzuela, Martin; Cárcamo-Aréchiga, Nora; Cota-Guajardo, Silvia; López-Salazar, Mayra; Montiel-Vázquez, Edith

    2016-01-01

    bapA, previously named stm2689, encodes the BapA protein, which, along with cellulose and fimbriae, constitutes biofilms. Biofilms are communities of microorganisms that grow in a matrix of exopolysaccharides and may adhere to living tissues or inert surfaces. Biofilm formation is associated with the ability to persist in different environments, which contributes to the pathogenicity of several species. We analyzed the presence of bapA in 83 strains belonging to 17 serovars of Salmonella enterica subsp. enterica from wildlife in captivity at Culiacan's Zoo and Mazatlán's Aquarium. Each isolate amplified a product of 667 bp, which corresponds to the expected size of the bapA initiator, with no observed variation between different serovars analyzed. bapA gene was found to be highly conserved in Salmonella and can be targeted for the genus-specific detection of this organism from different sources. Since bapA expression improves bacterial proliferation outside of the host and facilitates resistance to disinfectants and desiccation, the survival of Salmonella in natural habitats may be favored. Thus, the risk of bacterial contamination from these animals is increased. PMID:27379195

  19. Effects of leachate from crumb rubber and zinc in green roofs on the survival, growth, and resistance characteristics of Salmonella enterica subsp. enterica serovar Typhimurium.

    PubMed

    Crampton, Mollee; Ryan, Allayna; Eckert, Cori; Baker, Katherine H; Herson, Diane S

    2014-05-01

    The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain. PMID:24584242

  20. Incidence and growth of Salmonella enterica on the peel and pulp of avocado (Persea americana) and custard apple (Annona squamosa).

    PubMed

    Rezende, Ana Carolina B; Crucello, Juliana; Moreira, Rafael C; Silva, Beatriz S; Sant'Ana, Anderson S

    2016-10-17

    The aim of this study was to assess the incidence and to estimate the growth kinetic parameters (maximum growth rate, μ; lag time, λ; and maximum population, κ) of Salmonella on the peel and pulp of avocado (Perseaamericana var. americana) and custard apple (Annona squamosa L.) as affected by temperature (10-30°C). The incidence of Salmonella was assessed on the peel and pulp of the fruits (n=200 of each fruit), separately, totalizing 800 analyses. Only three samples of custard apple pulp were positive for Salmonella enterica and the three isolates recovered belonged to serotype S. Typhimurium. Salmonella was not recovered from avocado and custard apple peels and from avocado pulp. Generally, the substrate (pulp or peel) of growth did not affect μ values of S. enterica (p>0.05). Very similar μ values were found for S. enterica inoculated in custard apple and avocado. S. enterica presented the highest λ in the peel of the fruits. The growth of S. enterica resulted in larger λ in custard apple in comparison to avocado. For example, the λ of S. enterica in the pulp of custard apple and avocado were 47.0±0.78h and 10.0±3.78h, respectively. The lowest values of κ were obtained at the lower storage temperature conditions (10°C). For instance, κ values of 3.7±0.06log CFU/g and 2.9±0.03log CFU/g were obtained from the growth of S. enterica in avocado and custard apple pulps at 10°C (p<0.05), respectively. On the other hand, at 30°C, κ values were 6.5±0.25log CFU/g and 6.5±0.05log CFU/g, respectively. Significantly higher κ were obtained from the growth of S. enterica in the pulp than in the peel of the fruits (p<0.05). For instance, the growth of S. enterica in the pulp of avocado led to a κ value of 6.5±0.25log CFU/g, while in the peel led to a κ value of 4.6±0.23log CFU/g (p<0.05). In general, growth kinetic parameters indicated that avocado comprises a better substrate than custard apple for the growth of S. enterica. The square root model

  1. RpoE may promote flagellar gene expression in Salmonella enterica serovar typhi under hyperosmotic stress.

    PubMed

    Du, Hong; Sheng, Xiumei; Zhang, Haifang; Zou, Xin; Ni, Bin; Xu, Shungao; Zhu, Xueming; Xu, Huaxi; Huang, Xinxiang

    2011-02-01

    Salmonella enterica serovar Typhi z66 positive strain contains a fljBA-like operon on a linear plasmid. The operon contains the gene fljB:z66 which encodes the z66 antigen. RpoE is a sigma factor σ(E) that initiates transcription of a series of genes in Escherichia and Salmonella under environmental stresses. To investigate whether the gene fljB:z66 is regulated by RpoE (σ(E)), a rpoE deletion mutant of S. enterica serovar Typhi (ΔrpoE) was prepared in this study. The defective motility of the ΔrpoE was confirmed firstly. Transcriptional expression of flagellar genes was screened using a genomic DNA microarray. Some class-2 and most class-3 flagellar genes were downregulated in the ΔrpoE after 30 min of hyperosmotic stress. The expression of fliA and fljB:z66, a class-2 flagellar gene and a class-3 flagellar gene, obviously decreased; however, expression of the class-1 flagellar genes flhDC did not change obviously in the ΔrpoE compared to the wild-type strain in the same conditions. Results of quantitative real-time PCR (qRT-PCR) showed that the expression levels of fliA and fljB:z66 in the ΔrpoE after 30 min of hyperosmotic stress decreased about five and eightfold, respectively, compared to the wild-type strain. Similar results were observed at 120 min of hyperosmotic stress. Western blotting and qRT-PCR analysis showed that expression of fliA and fljB:z66 was significantly increased after supplemental expression of rpoE with a recombinant plasmid pBADrpoE in the ΔrpoE strain. These results demonstrated that RpoE promoted the expression of class-3 flagellar genes and it might be performed by initiating the expression of fliA in S. enterica serovar Typhi under hyperosmotic stress. PMID:20717675

  2. The STM4195 Gene Product (PanS) Transports Coenzyme A Precursors in Salmonella enterica

    PubMed Central

    Ernst, Dustin C.

    2015-01-01

    ABSTRACT Coenzyme A (CoA) is a ubiquitous coenzyme involved in fundamental metabolic processes. CoA is synthesized from pantothenic acid by a pathway that is largely conserved among bacteria and eukaryotes and consists of five enzymatic steps. While higher organisms, including humans, must scavenge pantothenate from the environment, most bacteria and plants are capable of de novo pantothenate biosynthesis. In Salmonella enterica, precursors to pantothenate can be salvaged, but subsequent intermediates are not transported due to their phosphorylated state, and thus the pathway from pantothenate to CoA is considered essential. Genetic analyses identified the STM4195 gene product of Salmonella enterica serovar Typhimurium as a transporter of pantothenate precursors, ketopantoate and pantoate and, to a lesser extent, pantothenate. Further results indicated that STM4195 transports a product of CoA degradation that serves as a precursor to CoA and enters the biosynthetic pathway between PanC and CoaBC (dfp). The relevant CoA derivative is distinguishable from pantothenate, pantetheine, and pantethine and has spectral properties indicating the adenine moiety of CoA is intact. Taken together, the results presented here provide evidence of a transport mechanism for the uptake of ketopantoate, pantoate, and pantothenate and demonstrate a role for STM4195 in the salvage of a CoA derivative of unknown structure. The STM4195 gene is renamed panS to reflect participation in pantothenate salvage that was uncovered herein. IMPORTANCE This manuscript describes a transporter for two pantothenate precursors in addition to the existence and transport of a salvageable coenzyme A (CoA) derivative. Specifically, these studies defined a function for an STM protein in S. enterica that was distinct from the annotated role and led to its designation as PanS (pantothenate salvage). The presence of a salvageable CoA derivative and a transporter for it suggests the possibility that this

  3. Isolation of Salmonella enterica and serologic reactivity to Leptospira interrogans in opossums (Didelphis virginiana) from Yucatán, México.

    PubMed

    Ruiz-Pina, Hugo Antonio; Puc-Franco, Miguel Angel; Flores-Abuxapqui, Javier; Vado-Solis, Ignacio; Cardenas-Marrufo, María Fidelia

    2002-01-01

    The presence of Salmonella enterica and serologic evidence of infection by Leptospira interrogans, were detected in the opossum Didelphis virginiana in a semi-urban locality of the Yucatán State, México. Ninety-one opossums were captured during the period April 1996 and May 1998. From a total of 17 feces samples, four Salmonella enterica subsp. enterica serotypes (Sandiego, Newport, Anatum, and Minnesota), and one Salmonella enterica subsp. arizonae serovar O44:Z4,Z23:- were isolated. Some opossums presented mixed infections. From 81 sera samples, four (4.9%) were positive to antibodies to Leptospira serovars pomona and wolfii. Both animals infected with Salmonella enterica and those serologically positive to Leptospira interrogans were captured in peridomestic habitat. Opossums infected with Salmonella enterica, were captured in dry season, and those seropositive to Leptospira interrogans during the rainy season. The implications of infection and reactivity of these zoonotic pathogens in D. virginiana in the Yucatan state are briefly discussed. PMID:12219118

  4. Response of Medicago truncatula Seedlings to Colonization by Salmonella enterica and Escherichia coli O157:H7

    PubMed Central

    Jayaraman, Dhileepkumar; Valdés-López, Oswaldo; Kaspar, Charles W.; Ané, Jean-Michel

    2014-01-01

    Disease outbreaks due to the consumption of legume seedlings contaminated with human enteric bacterial pathogens like Escherichia coli O157:H7 and Salmonella enterica are reported every year. Besides contaminations occurring during food processing, pathogens present on the surface or interior of plant tissues are also responsible for such outbreaks. In the present study, surface and internal colonization of Medicago truncatula, a close relative of alfalfa, by Salmonella enterica and Escherichia coli O157:H7 were observed even with inoculum levels as low as two bacteria per plant. Furthermore, expression analyses revealed that approximately 30% of Medicago truncatula genes were commonly regulated in response to both of these enteric pathogens. This study highlights that very low inoculum doses trigger responses from the host plant and that both of these human enteric pathogens may in part use similar mechanisms to colonize legume seedlings. PMID:24551073

  5. Differences in Pathogenesis for Salmonella enterica serovar Typhimurium in the Mouse Versus the Swine Model Identify Bacterial Gene Products Required for Systemic but not Gastrointestinal Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last several decades, the mouse model of Typhoid fever has been an extremely productive model to investigate Salmonella enterica serovar Typhimurium pathogenesis. The mouse is the paradigm for investigating systemic disease due to infection by Salmonella; however, the swine model of gastro...

  6. Conjugative transferability of the A/C plasmids from Salmonella enterica isolates that possess or lack blaCMY in the A/C plasmid backbone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to gain a better understanding of the conjugative transfer of antimicrobial resistance plasmids from 205 Salmonella enterica strains, isolated from cattle to E. coli or Salmonella recipients. PCR-based replicon typing (PBRT) was used to type incompatibility plasmid r...

  7. Chloramphenicol and tetracycline decrease motility and increase invasion and attachment gene expression in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most common serovars isolated from humans and livestock, and over 35 percent of these isolates are resistant to three or more antibiotics. Multidrug-resistant (MDR) Salmonella is a public health concern as it is associated with i...

  8. Iron regulated genes of Salmonella enterica serovar Typhimurium in response to norepinephrine and the requirement of fepCDG for norepinephrine-enhanced growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of catecholamines in vivo may stimulate enteric bacteria including the foodborne pathogen Salmonella enterica serovar Typhimurium by two mechanisms, acting as a quorum sensing signal and providing iron in the presence of serum. To identify genes of Salmonella Typhimurium that participa...

  9. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain SO3 (Sequence Type 302) Isolated from a Baby with Meningitis in Mexico

    PubMed Central

    Puente, José L.; Calva, Edmundo; Zaidi, Mussaret B.

    2016-01-01

    The complete genome of Salmonella enterica serovar Typhimurium strain SO3 (sequence type 302), isolated from a fatal meningitis infection in Mexico, was determined using PacBio technology. The chromosome hosts six complete prophages and is predicted to harbor 51 genomic islands, including 13 pathogenicity islands (SPIs). It carries the Salmonella virulence plasmid (pSTV). PMID:27103717

  10. Antimicrobial resistance genes in multidrug-resistant Salmonella enterica isolated from animals, retail meats, and humans in the United States and Canada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is a prevalent foodborne pathogen which can carry multi-drug resistance (MDR) and pose a threat to human health. Identifying the genetic elements associated with MDR in Salmonella isolated from animals, foods, and humans can help determine the sources of MDR in food animals and t...

  11. Early Onset Neonatal Sepsis Due to Salmonella enterica Serovar 4,5,12:i:-: A Case Report with Literature Review.

    PubMed

    Vongbhavit, Kannikar; Itdhi, Salocha; Panburana, Jantana; Prommalikit, Olarn

    2015-11-01

    The authors report a case of a 36-week male infant born via spontaneous vaginal delivery who developed Salmonella sepsis at HRH Princess Maha Chakri Sirindhorn Medical Center Srinakharinwirot University, Nakhon Nayok, Thailand. He was born to a mother without identifiable risk factors. On day 3, he developed fever tachycardia, lethargy, poor feeding and diarrhea prompting a sepsis evaluation. Blood and stool cultures were positive for S. enterica serovar 4,5,12:i:-. Therefore, Salmonella infection should be considered in the differential diagnosis of early onset neonatal sepsis (EOS) particularly in endemic areas. PMID:27276847

  12. Efficiency of Conditionally Attenuated Salmonella enterica Serovar Typhimurium in Bacterium-Mediated Tumor Therapy

    PubMed Central

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Hensel, Michael; Curtiss, Roy; Erhardt, Marc; Weiss, Siegfried

    2015-01-01

    ABSTRACT Increasing numbers of cancer cases generate a great urge for new treatment options. Applying bacteria like Salmonella enterica serovar Typhimurium for cancer therapy represents an intensively explored option. These bacteria have been shown not only to colonize solid tumors but also to exhibit an intrinsic antitumor effect. In addition, they could serve as tumor-targeting vectors for therapeutic molecules. However, the pathogenic S. Typhimurium strains used for tumor therapy need to be attenuated for safe application. Here, lipopolysaccharide (LPS) deletion mutants (ΔrfaL, ΔrfaG, ΔrfaH, ΔrfaD, ΔrfaP, and ΔmsbB mutants) of Salmonella were investigated for efficiency in tumor therapy. Of such variants, the ΔrfaD and ΔrfaG deep rough mutants exhibited the best tumor specificity and lowest pathogenicity. However, the intrinsic antitumor effect was found to be weak. To overcome this limitation, conditional attenuation was tested by complementing the mutants with an inducible arabinose promoter. The chromosomal integration of the respective LPS biosynthesis genes into the araBAD locus exhibited the best balance of attenuation and therapeutic benefit. Thus, the present study establishes a basis for the development of an applicably cancer therapeutic bacterium. PMID:25873375

  13. Proteome of Salmonella enterica serotype Tyhimurium Grown in Low Mg2+/pH Medium

    SciTech Connect

    Shi, Liang; Ansong, Charles; Smallwood, Heather S.; Rommereim, Leah M.; McDermott, Jason E.; Brewer, Heather M.; Norbeck, Angela D.; Taylor, Ronald C.; Gustin, Jean K.; Heffron, Fred; Smith, Richard D.; Adkins, Joshua N.

    2009-09-04

    To determine the impact of a low Mg2+/pH defined growth medium (MgM) on the proteome of Salmonella enterica serotype Typhimurium, we cultured S. Typhimurium cells in the medium under two different conditions termed MgM Shock and MgM Dilution and then comparatively analyzed the bacterial cells harvested from these conditions by a global proteomic approach. Proteomic results showed that MgM Shock and MgM Dilution differentially affected the S. Typhimurium proteome. MgM Shock induced a group of proteins whose induction usually occurred at low O2 level, while MgM Dilution induced those related to the type III secretion system (T3SS) of Salmonella Pathogenicity Island 2 (SPI2) and those involved in thiamine or biotin biosynthesis. The metabolic state of the S. Typhimurium cells grown under MgM Shock condition also differed significantly from that under MgM Dilution condition. Western blot analysis not only confirmed the proteomic results, but also showed that the abundances of SPI2-T3SS proteins SsaQ and SseE and biotin biosynthesis proteins BioB and BioD increased after S. Typhimurium infection of RAW 264.7 macrophages. Deletion of the gene encoding BioB reduced the bacterial ability to replicate inside the macrophages, suggesting a biotin-limited environment encountered by S. Typhimurium within RAW 264.7 macrophages.

  14. Physiology, pathogenicity and immunogenicity of live, attenuated Salmonella enterica serovar Enteritidis mutants in chicks.

    PubMed

    Si, Wei; Wang, Xiumei; Liu, Huifang; Yu, Shenye; Li, Zhaoli; Chen, Liping; Zhang, Wanjiang; Liu, Siguo

    2015-01-01

    To construct a novel live, attenuated Salmonella vaccine, the lon, cpxR and cpdB genes were deleted from a wild-type Salmonella enterica serovar Enteritidis-6 (SM-6) strain using the phage λ Red homologous recombination system, resulting in SM-△CpxR, SM-△C/Lon and SM-△C/L/CpdB. The growth curves of strain SM-△C/Lon grew more rapidly than the other strains and had OD 600 values higher than the other strains starting at the 4 h time point. The growth curves of strain SM-△C/L/CpdB were relatively flat. The colonization time of SM-△C/L/CpdB is about 8-10 days. Deleting the lon/cpxR/cpdB (SM-6) genes resulted in an approximate 10(3)-fold attenuation in virulence assessed by the analysis of the LD50 of specific pathogen-free (SPF) chicks. This result indicated that the deletion of the lon, cpxR and cpdB genes induced significant virulence attenuation. The protective effects of SM-△C/L/CpdB vaccination in SPF chicks against 5 × 10(9) colony forming units (CFU) of S. Enteritidis were resulted from the induction of an effective immune response. These findings demonstrate the potential of mutant SM-△C/L/CpdB to be used as an effective vaccine. PMID:25819881

  15. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota

    PubMed Central

    Drumo, Rosanna; Pesciaroli, Michele; Ruggeri, Jessica; Tarantino, Michela; Chirullo, Barbara; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Moscati, Livia; Manuali, Elisabetta; Pavone, Silvia; Picciolini, Matteo; Ammendola, Serena; Gabai, Gianfranco; Battistoni, Andrea; Pezzotti, Giovanni; Alborali, Giovanni L.; Napolioni, Valerio; Pasquali, Paolo; Magistrali, Chiara F.

    2016-01-01

    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota. PMID:26835435

  16. Genomic and Phenotypic Analyses Reveal the Emergence of an Atypical Salmonella enterica Serovar Senftenberg Variant in China.

    PubMed

    Abd El Ghany, Moataz; Shi, Xiaolu; Li, Yinghui; Ansari, Hifzur R; Hill-Cawthorne, Grant A; Ho, Y S; Naeem, Raeece; Pickard, Derek; Klena, John D; Xu, Xuebing; Pain, Arnab; Hu, Qinghua

    2016-08-01

    Human infections with Salmonella enterica subspecies enterica serovar Senftenberg are often associated with exposure to poultry flocks, farm environments, or contaminated food. The recent emergence of multidrug-resistant isolates has raised public health concerns. In this study, comparative genomics and phenotypic analysis were used to characterize 14 Salmonella Senftenberg clinical isolates recovered from multiple outbreaks in Shenzhen and Shanghai, China, between 2002 and 2011. Single-nucleotide polymorphism analyses identified two phylogenetically distinct clades of S Senftenberg, designated SC1 and SC2, harboring variations in Salmonella pathogenicity island 1 (SPI-1) and SPI-2 and exhibiting distinct biochemical and phenotypic signatures. Although the two variants shared the same serotype, the SC2 isolates of sequence type 14 (ST14) harbored intact SPI-1 and -2 and hence were characterized by possessing efficient invasion capabilities. In contrast, the SC1 isolates had structural deletion patterns in both SPI-1 and -2 that correlated with an impaired capacity to invade cultured human cells and also the year of their isolation. These atypical SC1 isolates also lacked the capacity to produce hydrogen sulfide. These findings highlight the emergence of atypical Salmonella Senftenberg variants in China and provide genetic validation that variants lacking SPI-1 and regions of SPI-2, which leads to impaired invasion capacity, can still cause clinical disease. These data have identified an emerging public health concern and highlight the need to strengthen surveillance to detect the prevalence and transmission of nontyphoidal Salmonella species. PMID:27225410

  17. Adhesion and splash dispersal of Salmonella enterica Typhimurium on tomato leaflets: effects of rdar morphotype and trichome density.

    PubMed

    Cevallos-Cevallos, Juan M; Gu, Ganyu; Danyluk, Michelle D; van Bruggen, Ariena H C

    2012-11-01

    Salmonella enterica strains with rdar (red dry and rough) and saw (smooth and white) morphotypes have previously been associated with tomato outbreaks but the dispersal mechanisms of these morphotypes are still poorly understood. In this study, Salmonella adhesion was distinguished from attachment by comparing different contact periods. Initial adhesion of rdar and saw morphotypes of Salmonella was compared in relation to tomato plants with different leaf trichome densities. Trichome densities were increased or reduced by treatment with jasmonic or salicylic acid, respectively. The overall effect of Salmonella morphotype and trichome density on splash dispersal was assessed in a rain simulator and correlated to cell hydrophobicity and initial adhesion. The presence of the rdar morphotype increased initial adhesion at high trichome densities but not at low trichome densities. Attachment of the rdar strain occurred after 30s contact time regardless of trichome density. Splash dispersal was slightly further for the saw morphotype than the rdar morphotype of S. enterica at all trichome densities. Salmonella cells of both morphotypes survived significantly better on the surface of high trichome density leaflets. PMID:23141646

  18. Salmonella enterica Serovar Typhimurium ompS1 and ompS2 Mutants Are Attenuated for Virulence in Mice

    PubMed Central

    Rodríguez-Morales, Olivia; Fernández-Mora, Marcos; Hernández-Lucas, Ismael; Vázquez, Alejandra; Puente, José Luis; Calva, Edmundo

    2006-01-01

    Salmonella enterica serovar Typhimurium mutants with mutations in the ompS1 and ompS2 genes, which code for quiescent porins, were nevertheless highly attenuated for virulence in a mouse model, indicating a role in pathogenesis. Similarly, a strain with a mutation in the gene coding for LeuO, a positive regulator of ompS2, was also attenuated. PMID:16428792

  19. Whole-Genome Sequence of Salmonella enterica Serovar Enteritidis Phage Type 4, Isolated from a Brazilian Poultry Farm

    PubMed Central

    Nascimento, Leandro Costa; Tirabassi, Adriane Holtz; Rodrigues, Dália Prazeres; Pereira, Gonçalo Amarante Guimarães; Brocchi, Marcelo

    2016-01-01

    The draft genome of Salmonella enterica serovar Enteritidis phage type 4 (PT4) strain IOC4647/2004, isolated from a poultry farm in São Paulo state, was obtained with high-throughput Illumina sequencing platform, generating 4,173,826 paired-end reads with 251 bp. The assembly of 4,804,382 bp in 27 scaffolds shows strong similarity to other S. Enteritidis strains. PMID:27174265

  20. Salmonella enterica Serovar Szentes, a Rare Serotype Causing a 9-Month Outbreak in 2013 and 2014 in Switzerland.

    PubMed

    Nüesch-Inderbinen, Magdalena; Cernela, Nicole; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2015-11-01

    During the summer of 2013, an increase of Salmonella enterica ssp. enterica serovar Szentes isolates from human clinical cases was registered by the Swiss National Centre for Enteropathogenic Bacteria and Listeria. In the course of the ensuing 9 months, 18 isolates originating from 13 patients and from one food sample were collected. Of the 13 human cases, 10 (77%) were female. The patients' ages ranged from 27 to 83 years (median age 49 years). Pulsed-field gel electrophoresis (PFGE) performed with XbaI, and multilocus sequence typing (MLST) were used to type the strains. PFGE as well as MLST showed the strains as indistinguishable. The PFGE pattern and MLST sequence type (ST427) were identical to those of Salmonella enterica serovar Szentes isolated in previous years (2002-2013) from sporadic cases in Switzerland and Germany. The increased isolation frequency continued for 6 months after the detection of Salmonella Szentes in sprouts. No common food exposure could be established. Due to lack of information on the potential food source, further investigations were not possible. The outbreak of this unusual serotype was detected because of its temporal clustering. PMID:26287690