Science.gov

Sample records for intramembrane particle aggregation

  1. Deterministic aggregation kinetics of superparamagnetic colloidal particles

    NASA Astrophysics Data System (ADS)

    Reynolds, Colin P.; Klop, Kira E.; Lavergne, François A.; Morrow, Sarah M.; Aarts, Dirk G. A. L.; Dullens, Roel P. A.

    2015-12-01

    We study the irreversible aggregation kinetics of superparamagnetic colloidal particles in two dimensions in the presence of an in-plane magnetic field at low packing fractions. Optical microscopy and image analysis techniques are used to follow the aggregation process and in particular study the packing fraction and field dependence of the mean cluster size. We compare these to the theoretically predicted scalings for diffusion limited and deterministic aggregation. It is shown that the aggregation kinetics for our experimental system is consistent with a deterministic mechanism, which thus shows that the contribution of diffusion is negligible.

  2. Impact of Particle Aggregation on Nanoparticle Reactivity

    NASA Astrophysics Data System (ADS)

    Jassby, David

    2011-12-01

    The prevalence of nanoparticles in the environment is expected to grow in the coming years due to their increasing pervasiveness in consumer and industrial applications. Once released into the environment, nanoparticles encounter conditions of pH, salinity, UV light, and other solution conditions that may alter their surface characteristics and lead to aggregation. The unique properties that make nanoparticles desirable are a direct consequence of their size and increased surface area. Therefore, it is critical to recognize how aggregation alters the reactive properties of nanomaterials, if we wish to understand how these properties are going to behave once released into the environment. The size and structure of nanoparticle aggregates depend on surrounding conditions, including hydrodynamic ones. Depending on these conditions, aggregates can be large or small, tightly packed or loosely bound. Characterizing and measuring these changes to aggregate morphology is important to understanding the impact of aggregation on nanoparticle reactive properties. Examples of decreased reactivity due to aggregation include the case where tightly packed aggregates have fewer available surface sites compared to loosely packed ones; also, photocatalytic particles embedded in the center of large aggregates will experience less light when compared to particles embedded in small aggregates. However, aggregation also results in an increase in solid-solid interfaces between nanoparticles. This can result in increased energy transfer between neighboring particles, surface passivation, and altered surface tension. These phenomena can lead to an increase in reactivity. The goal of this thesis is to examine the impacts of aggregation on the reactivity of a select group of nanomaterials. Additionally, we examined how aggregation impacts the removal efficiency of fullerene nanoparticles using membrane filtration. The materials we selected to study include ZnS---a metal chalcogenide

  3. Plastid intramembrane proteolysis.

    PubMed

    Adam, Zach

    2015-09-01

    Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has not surpassed plant biology. Nevertheless, reports on RIP in plants, and especially in chloroplasts, are still scarce. Of the four different families of intramembrane proteases, only two have been linked to chloroplasts so far, rhomboids and site-2 proteases (S2Ps). The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology, probably due to perturbations in jasmonic acid biosynthesis, which occurs in chloroplasts. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development, through a yet unknown mechanism. To date, the only known substrate of RIP in chloroplasts is a PHD transcription factor, located in the envelope. Upon proteolytic cleavage by an unknown protease, the soluble N-terminal domain of this protein is released from the membrane and relocates to the nucleus, where it activates the transcription of the ABA response gene ABI4. Continuing studies on these proteases and substrates, as well as identification of the genes responsible for different chloroplast mutant phenotypes, are expected to shed more light on the roles of intramembrane proteases in chloroplast biology. PMID:25528366

  4. Diffusion-Limited Aggregation with Polygon Particles

    NASA Astrophysics Data System (ADS)

    Deng, Li; Wang, Yan-Ting; Ou-Yang, Zhong-Can

    2012-12-01

    Diffusion-limited aggregation (DLA) assumes that particles perform pure random walk at a finite temperature and aggregate when they come close enough and stick together. Although it is well known that DLA in two dimensions results in a ramified fractal structure, how the particle shape influences the formed morphology is still unclear. In this work, we perform the off-lattice two-dimensional DLA simulations with different particle shapes of triangle, quadrangle, pentagon, hexagon, and octagon, respectively, and compare with the results for circular particles. Our results indicate that different particle shapes only change the local structure, but have no effects on the global structure of the formed fractal cluster. The local compactness decreases as the number of polygon edges increases.

  5. Particle aggregation mechanisms in ionic liquids.

    PubMed

    Szilagyi, Istvan; Szabo, Tamas; Desert, Anthony; Trefalt, Gregor; Oncsik, Tamas; Borkovec, Michal

    2014-05-28

    Aggregation of sub-micron and nano-sized polystyrene latex particles was studied in room temperature ionic liquids (ILs) and in their water mixtures by time-resolved light scattering. The aggregation rates were found to vary with the IL-to-water molar ratio in a systematic way. At the water side, the aggregation rate is initially small, but increases rapidly with increasing IL content, and reaches a plateau value. This behaviour resembles simple salts, and can be rationalized by the competition of double-layer and van der Waals forces as surmised by the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). At the IL side, aggregation slows down again. Two generic mechanisms could be identified to be responsible for the stabilization in ILs, namely viscous stabilization and solvation stabilization. Viscous stabilization is important in highly viscous ILs, as it originates from the slowdown of the diffusion controlled aggregation due to the hindrance of the diffusion in a viscous liquid. The solvation stabilization mechanism is system specific, but can lead to a dramatic slowdown of the aggregation rate in ILs. This mechanism is related to repulsive solvation forces that are operational in ILs due to the layering of the ILs close to the surfaces. These two stabilization mechanisms are suspected to be generic, as they both occur in different ILs, and for particles differing in surface functionalities and size. PMID:24727976

  6. Ion-specific aggregation of hydrophobic particles.

    PubMed

    López-León, Teresa; Ortega-Vinuesa, Juan Luis; Bastos-González, Delfina

    2012-06-18

    This work shows that colloidal stability and aggregation kinetics of hydrophobic polystyrene (PS) nanospheres are extremely sensitive to the nature of the salt used to coagulate them. Three PS latices and four aggregating electrolytes, which all share the same cation (Na(+)) but have various anions located at different positions in the classical Hofmeister series depending on their kosmotropic or chaotropic character, are used. The present study focuses on analyzing different aggregating parameters, such as critical coagulation concentrations (CCC), cluster size distributions (CSD), initial kinetic constants K(11), and fractal dimensions of the aggregates d(f). While aggregation induced by SO(4)(2-) and Cl(-) behaved according to the predictions of the classical Derjaguin-Landau-Verwey-Overbeek theory, important discrepancies are found with NO(3)(-), which become dramatic when using SCN(-). These discrepancies among the anions were far more significant when they acted as counterions rather than as co-ions. While SO(4)(2-) and Cl(-) trigger fast diffusion-limited aggregation, SCN(-) gives rise to a stationary cluster size distribution in a few aggregation times when working with cationic PS particles. Clear differences are found among all analyzed parameters (CCC, CSD, K(11), and d(f)), and the experimental findings show that particles aggregate in potential wells whose depth is controlled by the chaotropic character of the anion. This paper presents new experimental evidence that may help to understand the microscopic origin of Hofmeister effects, as the observations are consistent with appealing theoretical models developed in the last few years. PMID:22556130

  7. Aggregate particles in the plumes of Enceladus

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Kopparla, Pushkar; Zhang, Xi; Ingersoll, Andrew P.

    2016-01-01

    Estimates of the total particulate mass of the plumes of Enceladus are important to constrain theories of particle formation and transport at the surface and interior of the satellite. We revisit the calculations of Ingersoll and Ewald (Ingersoll, A.P., Ewald, S.P. [2011]. Icarus 216(2), 492-506), who estimated the particulate mass of the Enceladus plumes from strongly forward scattered light in Cassini ISS images. We model the plume as a combination of spherical particles and irregular aggregates resulting from the coagulation of spherical monomers, the latter of which allows for plumes of lower particulate mass. Though a continuum of solutions are permitted by the model, the best fits to the ISS data consist either of low mass plumes composed entirely of small aggregates or high mass plumes composed of mostly spheres. The high particulate mass plumes have total particulate masses of (166 ± 42) × 103 kg, consistent with the results of Ingersoll and Ewald (Ingersoll, A.P., Ewald, S.P. [2011]. Icarus 216(2), 492-506). The low particulate mass plumes have masses of (25 ± 4) × 103 kg, leading to a solid to vapor mass ratio of 0.07 ± 0.01 for the plume. If indeed the plumes are made of such aggregates, then a vapor-based origin for the plume particles cannot be ruled out. Finally, we show that the residence time of the monomers inside the plume vents is sufficiently long for Brownian coagulation to form the aggregates before they are ejected to space.

  8. Fractal dimension and mechanism of aggregation of apple juice particles.

    PubMed

    Benítez, E I; Lozano, J E; Genovese, D B

    2010-04-01

    Turbidity of freshly squeezed apple juice is produced by a polydisperse suspension of particles coming from the cellular tissue. After precipitation of coarse particles by gravity, only fine-colloidal particles remain in suspension. Aggregation of colloidal particles leads to the formation of fractal structures. The fractal dimension is a measure of the internal density of these aggregates and depends on their mechanism of aggregation. Digitized images of primary particles and aggregates of depectinized, diafiltered cloudy apple juice were obtained by scanning electron microscopy (SEM). Average radius of the primary particles was found to be a = 40 ± 11 nm. Maximum radius of the aggregates, R(L), ranged between 250 and 7750 nm. Fractal dimension of the aggregates was determined by analyzing SEM images with the variogram method, obtaining an average value of D(f) = 2.3 ± 0.1. This value is typical of aggregates formed by rapid flocculation or diffusion limited aggregation. Diafiltration process was found to reduce the average size and polydispersity of the aggregates, determined by photon correlation spectroscopy. Average gyration radius of the aggregates before juice diafiltration was found to be R(g) = 629 ± 87 nm. Average number of primary particles per aggregate was calculated to be N = 1174. PMID:21339133

  9. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2000-01-01

    The objectives of this research were (i) to perform experiments for observing and quantifying electrophoretic aggregation, (ii) to develop a theoretical description to appropriately analyze and compare with the experimental results, (iii) to study the combined effects of electrophoretic and gravitational aggregation of large particles, and the combined effects of electrophoretic and Brownian aggregation of small particles, and (iv) to perform a preliminary design of a potential future flight experiment involving electrophoretic aggregation. Electrophoresis refers to the motion of charged particles, droplets or molecules in response to an applied electric field. Electrophoresis is commonly used for analysis and separation of biological particles or molecules. When particles have different surface charge densities or potentials, they will migrate at different velocities in an electric field. This differential migration leads to the possibility that they will collide and aggregate, thereby preventing separation.

  10. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Wang, Hua; Zeng, Shulin; Loewenberg, Michael; Todd, Paul; Davis, Robert H.

    1996-01-01

    The stability and pairwise aggregation rates of small spherical particles under the collective effects of buoyancy-driven motion and electrophoretic migration are analyzed. The particles are assumed to be non-Brownian, with thin double-layers and different zeta potentials. The particle aggregation rates may be enhanced or reduced, respectively, by parallel and antiparallel alignments of the buoyancy-driven and electrophoretic velocities. For antiparallel alignments, with the buoyancy-driven relative velocity exceeding the electrophoretic relative velocity between two widely-separated particles, there is a 'collision-forbidden region' in parameter space due to hydrodynamic interactions; thus, the suspension becomes stable against aggregation.

  11. Electrophoretic interactions and aggregation of colloidal biological particles

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.; Nichols, Scott C.; Loewenberg, Michael; Todd, Paul

    1994-01-01

    The separation of cells or particles from solution has traditionally been accomplished with centrifuges or by sedimentation; however, many particles have specific densities close to unity, making buoyancy-driven motion slow or negligible, but most cells and particles carry surface charges, making them ideal for electrophoretic separation. Both buoyancy-driven and electrophoretic separation may be influenced by hydrodynamic interactions and aggregation of neighboring particles. Aggregation by electrophoresis was analyzed for two non-Brownian particles with different zeta potentials and thin double layers migrating through a viscous fluid. The results indicate that the initial rate of electrophoretically-driven aggregation may exceed that of buoyancy-driven aggregation, even under conditions in which buoyancy-driven relative motion of noninteracting particles is dominant.

  12. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles

    PubMed Central

    Eggersdorfer, Max L.; Kadau, Dirk; Herrmann, Hans J.; Pratsinis, Sotiris E.

    2013-01-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df) and mass-mobility exponent (Dfm) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace. PMID:23658467

  13. Aggregate dust particles at comet 67P/Churyumov–Gerasimenko

    NASA Astrophysics Data System (ADS)

    Bentley, Mark S.; Schmied, Roland; Mannel, Thurid; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Levasseur-Regourd, Anny-Chantal; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Koeberl, Christian; Havnes, Ove

    2016-09-01

    Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov–Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release.

  14. Aggregate dust particles at comet 67P/Churyumov-Gerasimenko.

    PubMed

    Bentley, Mark S; Schmied, Roland; Mannel, Thurid; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Levasseur-Regourd, Anny-Chantal; Weber, Iris; Jessberger, Elmar K; Ehrenfreund, Pascale; Koeberl, Christian; Havnes, Ove

    2016-01-01

    Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov-Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release. PMID:27582221

  15. Colloidal Recycling: Reconfiguration of Random Aggregates into Patchy Particles.

    PubMed

    Meester, Vera; Verweij, Ruben W; van der Wel, Casper; Kraft, Daniela J

    2016-04-26

    The key ingredients to the successful bottom-up construction of complex materials are believed to be colloids with anisotropic shapes and directional, or patchy, interactions. We present an approach for creating such anisotropic patchy particles based on reconfiguring randomly shaped aggregates of colloidal spheres. While colloidal aggregates are often undesirable in colloidal dispersions due to their random shapes, we exploit them as a starting point to synthesize patchy particles. By a deliberate destabilization of the colloidal particles, diffusion-limited aggregation is induced which partitions the particles into randomly shaped aggregates with controlled size distribution. We achieve a reconfiguration of the aggregates into uniform structures by swelling the polymer spheres with an apolar solvent. The swelling lowers the attractive van der Waals forces, lubricates the contact area between the spheres, and drives the reorganization through minimization of the interfacial energy of the swollen polymer network. This reorganization process yields patchy particles whose patch arrangement is uniform for up to five patches. For particles with more patches, we find that the patch orientation depends on the degree of phase separation between the spheres and the monomer. This enables the synthesis of patchy particles with unprecedented patch arrangements. We demonstrate the broad applicability of this recycling strategy for making patchy particles as well as clusters of spheres by varying the swelling ratio, swelling solvent, surfactant concentration, and swelling time. PMID:27014995

  16. From static micrographs to particle aggregation dynamics in three dimensions.

    PubMed

    Häbel, H; Särkkä, A; Rudemo, M; Hamngren Blomqvist, C; Olsson, E; Abrahamsson, C; Nordin, M

    2016-04-01

    Studies on colloidal aggregation have brought forth theories on stability of colloidal gels and models for aggregation dynamics. Still, a complete link between developed frameworks and obtained laboratory observations has to be found. In this work, aggregates of silica nanoparticles (20 nm) are studied using diffusion limited cluster aggregation (DLCA) and reaction limited cluster aggregation (RLCA) models. These processes are driven by the probability of particles to aggregate upon collision. This probability of aggregation is one in the DLCA and close to zero in the RLCA process. We show how to study the probability of aggregation from static micrographs on the example of a silica nanoparticle gel at 9 wt%. The analysis includes common summary functions from spatial statistics, namely the empty space function and Ripley's K-function, as well as two newly developed summary functions for cluster analysis based on graph theory. One of the new cluster analysis functions is related to the clustering coefficient in communication networks and the other to the size of a cluster. All four topological summary statistics are used to quantitatively compare in plots and in a least-square approach experimental data to cluster aggregation simulations with decreasing probabilities of aggregation. We study scanning transmission electron micrographs and utilize the intensity - mass thickness relation present in such images to create comparable micrographs from three-dimensional simulations. Finally, a characterization of colloidal silica aggregates and simulated structures is obtained, which allows for an evaluation of the cluster aggregation process for different aggregation scenarios. As a result, we find that the RLCA process fits the experimental data better than the DLCA process. PMID:26584453

  17. Control of binder viscosity and hygroscopicity on particle aggregation efficiency

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Delmelle, Pierre; Dingwell, Donald B.

    2016-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  18. Particle Aggregation During Fe(III) Bioreduction in Nontronite

    NASA Astrophysics Data System (ADS)

    Jaisi, D. P.; Dong, H.; Hi, Z.; Kim, J.

    2005-12-01

    This study was performed to evaluate the rate and mechanism of particle aggregation during bacterial Fe (III) reduction in different size fractions of nontronite and to investigate the role of different factors contributing to particle aggregation. To achieve this goal, microbial Fe(III) reduction experiments were performed with lactate as an electron donor, Fe(III) in nontronite as an electron acceptor, and AQDS as an electron shuttle in bicarbonate buffer using Shewanella putrefaceins CN32. These experiments were performed with and without Na- pyrophosphate as a dispersant in four size fractions of nontronite (0.12-0.22, 0.41-0.69, 0.73-0.96 and 1.42-1.8 mm). The rate of nontronite aggregation during the Fe(III) bioreduction was measured by analyzing particle size distribution using photon correlation spectroscopy (PCS) and SEM images analysis. Similarly, the changes in particle morphology during particle aggregation were determined by analyses of SEM images. Changes in particle surface charge were measured with electrophoretic mobility analyzer. The protein and carbohydrate fraction of EPS produced by cells during Fe(III) bioreduction was measured using Bradford and phenol-sulfuric acid extraction method, respectively. In the presence of the dispersant, the extent of Fe(III) bioreduction was 11.5-12.2% within the first 56 hours of the experiment. There was no measurable particle aggregation in control experiments. The PCS measurements showed that the increase in the effective diameter (95% percentile) was by a factor of 3.1 and 1.9 for particle size of 0.12-0.22 mm and 1.42-1.80 mm, respectively. The SEM image analyses also gave the similar magnitude of increase in particle size. In the absence of the dispersant, the extent of Fe(III) bioreduction was 13.4-14.5% in 56 hours of the experiment. The rate of aggregation was higher than that in the presence of the dispersant. The increase in the effective diameter (95% percentile) was by a factor of 13.6 and 4.1 for

  19. Unequilibrated, equilibrated, and reduced aggregates in anhydrous interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    1993-03-01

    Track-rich anhydrous IDP's are probably the most primitive IDP's because they have escaped significant post-accretional alteration; they exhibit evidence of (nebular) gas phase reactions; their mineralogy is similar to comet Halley's dust; and some of them exhibit comet-like IR spectral characteristics. However, basic questions about the mineralogy and petrography of anhydrous IDP's remain unanswered, because they contain aggregated components that can be heterogeneous on a scale of nanometers. In some IDP's, aggregates account for greater than 75 percent of the volume of the particle. The aggregates have been systematically examined using an analytical electron microscope (AEM), which provides probe-forming optics and (x-ray and electron) spectrometers necessary to analyze individual nanometer-sized grains. The AEM results reveal at least three mineralogically distinct classes of aggregates in an hydrous IDP's, with mineralogies reflecting significantly different formation/aggregation environments.

  20. Absorption and elastic scattering of light by particle aggregates.

    PubMed

    Quinten, M; Kreibig, U

    1993-10-20

    Light scattering and absorption by spherical particles is extended to aggregates of spheres with arbitrary shape and size. We applied the theory of G6rardy and Ausloos [Phys. Rev. B 25, 4204-4229 (1082)] to compute the total extinction loss spectra of several aggregates of nanometer-sized silver spheres from the near IR to the near UV. Silver was best suited to provide quantitative comparison with experiments concerning the scattering and absorption in the visible spectral region. Additional resonant extinction was obtained besides the resonant extinction of the single silver sphere. The spectra were discussed in detail to give general results that are independent of the particle material. PMID:20856447

  1. Aggregation of Thermal Particles in Simulation

    NASA Astrophysics Data System (ADS)

    Chan, Iat Neng

    2011-03-01

    Based on the Schrodinger Equation, energy levels are evaluated for charged particle or atom surrounded by few atoms imitated to atomic cavity situations under multipole or Lennard-Jones interactions. To examine the states of corresponding eigenvalues, the associated wave functions from simulation are plotted in three-dimension to elucidate the space distribution of particles. In cases for testing on effect of different adjacent atomic structures, concentration region of distribution is revealed from a series of results. The range of localization shown also is affected by the type and strength of interactions between particles and atoms, besides the number and position of surrounding atoms. The thermal effect considered in the computation is modeled by average over results from random fluctuation of atom positions for a given heating grade. Moreover, analysis with fuzzy conditions is applied to reduce the complicated and time-consumption approach, also for the training in science education. Even the investigation is limited and tentative, qualitative studies on different parameters and structures can provide the influence of factors and approximate information to compare with the experience evidences. Supported by UM grant No. RG062/09-10S/CIN/FST.

  2. Sticky Particles: Modeling Rigid Aggregates in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Perrine, Randall P.; Richardson, D. C.; Scheeres, D. J.

    2008-09-01

    We present progress on our study of planetary ring dynamics. We use local N-body simulations to examine small patches of dense rings in which self-gravity and mutual collisions dominate the dynamics of the ring material. We use the numerical code pkdgrav to model the motions of 105-7 ring particles, using a sliding patch model with modified periodic boundary conditions. The exact nature of planetary ring particles is not well understood. If covered in a frost-like layer, such irregular surfaces may allow for weak cohesion between colliding particles. Thus we have recently added new functionality to our model, allowing "sticky particles” to lock into rigid aggregates while in a rotating reference frame. This capability allows particles to adhere to one another, forming irregularly shaped aggregates that move as rigid bodies. (The bonds between particles can subsequently break, given sufficient stress.) These aggregates have greater strength than gravitationally bound "rubble piles,” and are thus able to grow larger and survive longer under similar stresses. This new functionality allows us to explore planetary ring properties and dynamics in a new way, by self-consistently forming (and destroying) non-spherical aggregates and moonlets via cohesive forces, while in a rotating frame, subjected to planetary tides. (We are not aware of any similar implementations in other existing models.) These improvements allow us to study the many effects that particle aggregation may have on the rings, such as overall ring structure; wake formation; equilibrium properties of non-spherical particles, like pitch angle, orientation, shape, size distribution, and spin; and the surface properties of the ring material. We present test cases and the latest results from this new model. This work is supported by a NASA Earth and Space Science Fellowship.

  3. Intramembrane proteolysis in regulated protein trafficking.

    PubMed

    Lemberg, Marius K

    2011-09-01

    Regulated intramembrane proteolysis is an evolutionarily conserved mechanism by which membrane-anchored bioactive molecules are released from cellular membranes. In eukaryotic cells, intramembrane proteases are found in different cellular organelles ranging from the endosomal system to mitochondria and chloroplasts. These proteases function in diverse processes such as transcription control, regulated growth factor secretion and recently even a role in the control of mitophagy has been suggested. Genomic annotation has predicted 13 different intramembrane proteases in humans. Apart from few studied examples, very little is known about their function. This review describes emerging principles of how intramembrane proteases contribute to the regulation of cellular protein trafficking in eukaryotic cells and raises the important question of how their activity is controlled. PMID:21585636

  4. Modelling of strongly coupled particle growth and aggregation

    NASA Astrophysics Data System (ADS)

    Gruy, F.; Touboul, E.

    2013-02-01

    The mathematical modelling of the dynamics of particle suspension is based on the population balance equation (PBE). PBE is an integro-differential equation for the population density that is a function of time t, space coordinates and internal parameters. Usually, the particle is characterized by a unique parameter, e.g. the matter volume v. PBE consists of several terms: for instance, the growth rate and the aggregation rate. So, the growth rate is a function of v and t. In classical modelling, the growth and the aggregation are independently considered, i.e. they are not coupled. However, current applications occur where the growth and the aggregation are coupled, i.e. the change of the particle volume with time is depending on its initial value v0, that in turn is related to an aggregation event. As a consequence, the dynamics of the suspension does not obey the classical Von Smoluchowski equation. This paper revisits this problem by proposing a new modelling by using a bivariate PBE (with two internal variables: v and v0) and by solving the PBE by means of a numerical method and Monte Carlo simulations. This is applied to a physicochemical system with a simple growth law and a constant aggregation kernel.

  5. Influence of particle size on diffusion-limited aggregation.

    PubMed

    Tan, Z J; Zou, X W; Zhang, W B; Jin, Z Z

    1999-11-01

    The influence of particle size on diffusion-limited aggregation (DLA) has been investigated by computer simulations. For DLA clusters consisting of two kinds of particles with different sizes, when large particles are in the minority, the patterns of clusters appear asymmetrical and nonuniform, and their fractal dimensions D(f) increase compared with one-component DLA. With increasing size of large particles, D(f) increases. This increase can be attributed to two reasons: one is that large particles become new growth centers; the other is the big masses of large particles. As the concentration ratio x(n) of large particles increases, D(f) will reach a maximum value D(f(m)) and then decrease. When x(n) exceeds a certain value, the morphology and D(f) of the two-component DLA clusters are similar to those of one-component DLA clusters. PMID:11970534

  6. Complex Kepler Orbits and Particle Aggregation in Charged Microscopic Grains

    NASA Astrophysics Data System (ADS)

    Lee, Victor; Waitukaitis, Scott; Miskin, Marc; Jaeger, Heinrich

    2015-03-01

    Kepler orbits are usually associated with the motion of astronomical objects such as planets or comets. Here we observe such orbits at the microscale in a system of charged, insulating grains. By letting the grains fall freely under vacuum, we eliminate the effects of air drag and gravity, and by imaging them with a co-falling high-speed camera we track the relative positions of individual particles with high spatial and temporal precision. This makes it possible to investigate the behaviors caused by the combination of long-range electrostatic interactions and short-range, dissipative, contact interactions in unprecedented detail. We make the first direct observations of microscopic elliptical and hyperbolic Kepler orbits, collide-and-capture events between pairs of charged grains, and particle-by-particle aggregation into larger clusters. Our findings provide experimental evidence for electrostatic mechanisms that have been suspected, but not previously observed at the single-event level, as driving the early stages of particle aggregation in systems ranging from fluidized particle bed reactors to interstellar protoplanetary disks. Furthermore, since particles of different net charge and size are seen to aggregate into characteristic spatial configurations, our results suggest new possibilities for the formation of charge-stabilized ``granular molecules''. We can reproduce the observed molecule configurations by taking many-body, dielectric polarization effects into account.

  7. Multiscale modelling of nucleosome core particle aggregation

    NASA Astrophysics Data System (ADS)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  8. Monolayers of charged particles in a Langmuir trough: Could particle aggregation increase the surface pressure?

    PubMed

    Petkov, Plamen V; Danov, Krassimir D; Kralchevsky, Peter A

    2016-01-15

    The effect of aggregation on the surface pressure, Π, of monolayers from charged micrometer-sized colloidal particles on the air/water interface is investigated. Π is completely due to the long-range electrostatic repulsion between the particles mediated by their electrostatic field in the air. The most probable origin of particle aggregation is the attraction between capillary quadrupoles due to undulated contact lines on particle surfaces. Aggregates have higher charge and repel each other stronger than single particles. The data analysis by means of a theoretical model implies that Π linearly increases with n(1/2); n is the mean aggregation number, which can be determined from the experimental Π vs. area curves. The presence of electrolyte promotes aggregation, which tends to increase Π, but simultaneously reduces the surface charge that leads to lower Π. For our system, the first effect prevails and apparently paradoxical behavior is observed: the addition of salt in water enhances the electrostatic surface pressure. The data indicate limited aggregation: the rise of the electrostatic barrier prevents the further coalescence of aggregates if they have become sufficiently large. The results contribute for a better understanding of the factors that control the interactions in monolayers of charged particles at liquid interfaces. PMID:26454382

  9. Additivity of light-scattering patterns of aggregated biological particles

    NASA Astrophysics Data System (ADS)

    Moskalensky, Alexander E.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.

    2014-08-01

    The paper is focused on light scattering by aggregates of optically soft particles with a size larger than the wavelength, in particular, blood platelets. We conducted a systematic simulation of light scattering by dimers and larger aggregates of blood platelets, each modeled as oblate spheroids, using the discrete dipole approximation. Two-dimensional (2-D) light scattering patterns (LSPs) and internal fields showed that the multiple scattering between constituent particles can be neglected. Additionally, we derived conditions of the scattering angle and orientation of the dimer, under which the averaging of the 2-D LSPs over the azimuthal scattering angle washes out interference in the far field, resulting in averaged LSPs of the aggregate being equal to the sum of that for its constituents. We verified theoretical conclusions using the averaged LSPs of blood platelets measured with the scanning flow cytometer (SFC). Moreover, we obtained similar results for a model system of aggregates of polystyrene beads, studied both experimentally and theoretically. Finally, we discussed the potential of discriminating platelet aggregates from monomers using the SFC.

  10. Formation mechanisms and aggregation behavior of borohydride reduced silver particles

    SciTech Connect

    Hyning, D.L. van; Zukoski, C.F.

    1998-11-24

    In this work, the authors examine the formation mechanisms of nanoscale silver particles produced by the reduction of silver perchlorate with sodium borohydride. Evidence is presented that the reaction pathway does not follow classical nucleation and growth theory, but is dominated by colloidal interactions. Upon injection of silver into a sodium borohydride solution, a molecular species absorbing at 220 nm is produced in less than 1 s. The authors suggest that this species contains borohydride nd small particles of reduced silver. The reaction mixture is initially dark as the result of the aggregation of the small silver particles into larger particles which have broad absorption spectra. During an intermediate stage, transmission electron microscopy and absorbance data show that even larger ({approximately}6--10 nm) particles grow at the expense of the monomeric silver particles. Later in the reaction, electrochemical potential measurements show that the borohydride concentration suddenly decreases. Direct measurement of interparticle forces demonstrate that this change in the solution conditions drives the particle surface potential toward zero and results in increased adhesive forces. The resulting aggregation manifests itself in a darkening of the solution temperatures, the increase is minimal. This effect can be linked to the number of monomeric silver particles remaining during the final transition.

  11. Fractality à la carte: a general particle aggregation model

    PubMed Central

    Nicolás-Carlock, J. R.; Carrillo-Estrada, J. L.; Dossetti, V.

    2016-01-01

    In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters’ fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension. PMID:26781204

  12. Fractality à la carte: a general particle aggregation model

    NASA Astrophysics Data System (ADS)

    Nicolás-Carlock, J. R.; Carrillo-Estrada, J. L.; Dossetti, V.

    2016-01-01

    In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters’ fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.

  13. Fractality à la carte: a general particle aggregation model.

    PubMed

    Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V

    2016-01-01

    In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension. PMID:26781204

  14. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  15. Membrane particle aggregates in innervated and noninnervated cultures of Xenopus embryonic muscle cells.

    PubMed Central

    Peng, H B; Nakajima, Y

    1978-01-01

    Clusters of membrane particle aggregates were found in the cultures of Xenopus embryonic muscle cells. In innervated cultures, the aggregates were usually found in the vicinity of the nerve. In terms of particle density and morphology, they resembled the postsynaptic particle aggregates of adult skeletal muscle fibers, suggesting that they may be related to acetylcholine receptors. Similar particle aggregates were also found in noninnervated cultures. They may correspond to extrajunctional clusters of acetylcholine receptors or "hot spots." Images PMID:272667

  16. Study of colloidal particle Brownian aggregation by low-coherence fiber optic dynamic light scattering.

    PubMed

    Xia, Hui; Pang, Ru Yi; Zhang, Rui; Miao, Cai Xia; Wu, Xiao Yun; Hou, Xue Shun; Zhong, Cheng

    2012-06-15

    The aggregation kinetics of particles in dense polystyrene latex suspensions is studied by low-coherence fiber optic dynamic light scattering. Low-coherence fiber optic dynamic light scattering is used to measure the hydrodynamic radius of the aggregates. The aggregation kinetics data obtained can be fitted into a single exponential function, which is the characteristic of slow aggregation. It is found that the aggregation rate of particles increased with higher electrolyte levels and with larger particle concentrations. The experimental results can be explained by use of the Derjaruin-Landau-Verwey-Overbeer (DLVO) theory. PMID:22446146

  17. Particle aggregation in microgravity: Informal experiments on the International Space Station

    NASA Astrophysics Data System (ADS)

    Love, Stanley G.; Pettit, Donald R.; Messenger, Scott R.

    2014-05-01

    We conducted experiments in space to investigate the aggregation of millimeter- and submillimeter-sized particles in microgravity, an important early step in planet formation. Particulate materials included salt (NaCl), sugar (sucrose), coffee, mica, ice, Bjurböle chondrules, ordinary and carbonaceous chondrite meteorite fragments, and acrylic and glass beads, all triply confined in clear plastic containers. Angular submillimeter particles rapidly and spontaneously formed clusters strong enough to survive turbulence in a protoplanetary nebula. Smaller particles generally aggregated more strongly and quickly than larger ones. We observed only a weak dependence of aggregation time on particle number density. We observed no strong dependence on composition. Round, smooth particles aggregated weakly or not at all. In a mixture of particle types, some phases aggregated more readily than others, creating selection effects that controlled the composition of the growing clumps. The physical process of aggregation appears to be electrostatic in nature.

  18. Aggregation and Disaggregation of Flocculated Particles with Different Mineralogy

    NASA Astrophysics Data System (ADS)

    Reed, A. H.; Smith, J. P.

    2015-12-01

    The fate, transport and depositional rate of fine grained sediments are known to depend on floc size, hydrodynamic stress, cohesive sediment types and organic matter. In recent laboratory studies, it was determined that flocculated sediments will readily disaggregate at moderate Reynolds numbers and degrade further as the hydrodynamic stresses increase. This was the case for pure clays of montmorillonite, kaolinite and illite with biopolymers that had varied net charges of net neutral, anionic and cationic. In these initial studies, flocculated sediments were found to rapidly disaggregate under high shear stresses from large aggregates of 500 to 2000 microns to approximately three to four times the median grain size of the primary particles or 30 to 40 microns. More recently, laboratory and natural flocs were analyzed to determine if particle disaggregation was reversible and if particles would increase in size as the stress state was reduced. The montmorillonite rich samples were found to begin to reaggregate within 20 minutes of a reduction in shear stress and these flocs approached that of the original floc sizes. On the other hand, kaolinite rich samples displayed a slower rate of reaggregation and a significant delay in reaggregation after the reduction of shear stress. results indicate that clay mineralogy plays a large role in flocculation, and specifically dissaggregation and reaggregation rates at varied hydrodynamic conditions that regularly occur within estuarine and nearshore environments.

  19. Single particle detection and characterization of synuclein co-aggregation

    SciTech Connect

    Giese, Armin . E-mail: Armin.Giese@med.uni-muenchen.de; Bader, Benedikt; Bieschke, Jan; Schaffar, Gregor; Odoy, Sabine; Kahle, Philipp J.; Haass, Christian; Kretzschmar, Hans

    2005-08-12

    Protein aggregation is the key event in a number of human diseases such as Alzheimer's and Parkinson's disease. We present a general method to quantify and characterize protein aggregates by dual-colour scanning for intensely fluorescent targets (SIFT). In addition to high sensitivity, this approach offers a unique opportunity to study co-aggregation processes. As the ratio of two fluorescently labelled components can be analysed for each aggregate separately in a homogeneous assay, the molecular composition of aggregates can be studied even in samples containing a mixture of different types of aggregates. Using this method, we could show that wild-type {alpha}-synuclein forms co-aggregates with a mutant variant found in familial Parkinson's disease. Moreover, we found a striking increase in aggregate formation at non-equimolar mixing ratios, which may have important therapeutic implications, as lowering the relative amount of aberrant protein may cause an increase of protein aggregation leading to adverse effects.

  20. Effects of Particle Size and Shape, and Soil Structure on Thermal Properties of Non-aggregated and Aggregated Soils

    NASA Astrophysics Data System (ADS)

    Kamoshida, T.; Hamamoto, S.; Kawamoto, K.; Sakaki, T.; Komatsu, T.; Hu, Q.

    2012-12-01

    Thermal properties including thermal conductivity and heat capacity are very important for understanding heat transport processes in landfill site cover soil to control the microbial processes in the cover soil. Previous studies have shown effects of soil conditions such as moisture content and degree of compaction on the thermal properties for differently-textured soils. However, there are few studies on the relations between the thermal properties and micro-scale soil information such as particle size and shape although the size and shape of soil particles highly affect soil packing configuration. In addition, it is not fully understood that soil structure (i.e., aggregate structure) affects behaviors of thermal properties. In this study, non-aggregated (sandy) and aggregated soils with different size fractions at variably-saturated conditions were used for measuring thermal properties. Micro-scale characterizations of soil-pore structure and soil particle configuration using a X-ray CT device were also performed for sandy soils. For sandy soils, the relation between measured thermal properties and mineral composition (i.e., quartz content), roundness/sphericity of soil particles, and particle size, and solid-phase tortuosity based on X-ray CT images, were investigated. For aggregated soils, the measured thermal conductivities at variably-saturated conditions were discussed based on the water retention characteristics and pore-size distribution in inter- and intra-aggregate pore regions.

  1. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8~14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0~40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend

  2. Simulation on the aggregation process of spherical particle confined in a spherical shell

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, J. J.; Zhang, L.

    2016-04-01

    The aggregation process of spherical particles confined in a spherical shell was studied by using a diffusion-limited cluster-cluster aggregation (DLCA) model. The influence of geometrical confinement and wetting-like properties of the spherical shell walls on the particle concentration profile, aggregate structure and aggregation kinetics had been explored. The results show that there will be either depletion or absorption particles near the shell walls depending on the wall properties. It is observed that there are four different types of density distribution which can be realized by modifying the property of the inner or outer spherical shell wall. In addition, the aggregate structure will become more compact in the confined spherical shell comparing to bulk system with the same particle volume fraction. The analysis on the aggregation kinetics indicates that geometrical confinement will promote the aggregation process by reducing the invalid movement of the small aggregates and by constraining the movement of those large aggregates. Due to the concave geometrical characteristic of the outer wall of the spherical shell, its effects on the aggregating kinetics and the structure of the formed aggregates are more evident than those of the inner wall. This study will provide some instructive information of controlling the density distribution of low-density porous polymer hollow spherical shells and helps to predict gel structures developed in confined geometries.

  3. Molecular insights into mechanisms of intramembrane proteolysis through signal peptide peptidase (SPP).

    PubMed

    Schröder, Bernd; Saftig, Paul

    2010-05-01

    The processing of membrane-anchored signalling molecules and transcription factors by RIP (regulated intramembrane proteolysis) is a major signalling paradigm in eukaryotic cells. Intramembrane cleaving proteases liberate fragments from membrane-bound precursor proteins which typically fulfil functions such as cell signalling and regulation, immunosurveillance and intercellular communication. Furthermore, they are thought to be involved in the development and propagation of several diseases, such as Alzheimer's disease and hepatitis C virus infection. In this issue of the Biochemical Journal, Schrul and colleagues investigate the interaction of the endoplasmic reticulum-resident intramembrane cleaving SPP (signal peptide peptidase) with different type II oriented transmembrane proteins. A combination of co-immunoprecipitation experiments using wild-type and a dominant-negative SPP with electrophoretic protein separations under native conditions revealed selectivity of the interaction. Depending on the interacting protein, SPP formed complexes of different sizes. SPP could build tight interactions not only with signal peptides, but also with pre- and mis-folded proteins. Whereas signal peptides are direct substrates for SPP proteolysis, the study suggests that SPP may be involved in the controlled sequestration of possibly toxic membrane protein species in a proteolysis-independent manner. These large oligomeric membrane protein aggregates may then be degraded by the proteasome or autophagy. PMID:20388122

  4. Allosteric regulation of rhomboid intramembrane proteolysis

    PubMed Central

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-01-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. PMID:25009246

  5. Probing catalytic rate enhancement during intramembrane proteolysis.

    PubMed

    Arutyunova, Elena; Smithers, Cameron C; Corradi, Valentina; Espiritu, Adam C; Young, Howard S; Tieleman, D Peter; Lemieux, M Joanne

    2016-09-01

    Rhomboids are ubiquitous intramembrane serine proteases involved in various signaling pathways. While the high-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed an active site comprised of a serine-histidine dyad and an extensive oxyanion hole, the molecular details of rhomboid catalysis were unclear because substrates are unknown for most of the family members. Here we used the only known physiological pair of AarA rhomboid with its psTatA substrate to decipher the contribution of catalytically important residues to the reaction rate enhancement. An MD-refined homology model of AarA was used to identify residues important for catalysis. We demonstrated that the AarA active site geometry is strict and intolerant to alterations. We probed the roles of H83 and N87 oxyanion hole residues and determined that substitution of H83 either abolished AarA activity or reduced the transition state stabilization energy (ΔΔG‡) by 3.1 kcal/mol; substitution of N87 decreased ΔΔG‡ by 1.6-3.9 kcal/mol. Substitution M154, a residue conserved in most rhomboids that stabilizes the catalytic general base, to tyrosine, provided insight into the mechanism of nucleophile generation for the catalytic dyad. This study provides a quantitative evaluation of the role of several residues important for hydrolytic efficiency and oxyanion stabilization during intramembrane proteolysis. PMID:27071148

  6. Aggregation process of paramagnetic particles in fluid in the magnetic field.

    PubMed

    Pei, Ning; Cheng, Xiaoye; Huang, Zheyong; Wang, Xiang; Yang, Kai; Wang, Ye; Gong, Yongyong

    2016-07-01

    Magnetic targeting is a promising therapeutic strategy for localizing systemically delivered magnetic responsive drugs or cells to target tissue, but excessive aggregation of magnetic particles could result in vascular embolization. To analyze the reason for embolization, the attractive process of magnetic particles in magnetic field (MF) was studied in this paper by analyzing the form of the aggregated paramagnetic particles while the particle suspension flowed through a tube, which served as a model of blood vessels. The effects of magnetic flux density and fluid velocity on the formation of aggregated paramagnetic particles were investigated. The number of large aggregated clusters dramatically increased with increment in the magnetic flux density and decreased with increment in the fluid velocity. The analysis of accumulative process demonstrates the MF around initially attracted particles was focused, which induced the formation of clusters and increased the possibility of embolism. Bioelectromagnetics. 37:323-330, 2016. © 2016 Wiley Periodicals, Inc. PMID:27126920

  7. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    NASA Astrophysics Data System (ADS)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  8. Model simulations of particle aggregation effect on colloid exchange between streams and streambeds.

    PubMed

    Areepitak, Trachu; Ren, Jianhong

    2011-07-01

    Colloids found in natural streams have large reactive surface areas, which makes them significant absorbents and carriers for pollutants. Stream-subsurface exchange plays a critical role in regulating the transport of colloids and contaminants in natural streams. Previous process-based multiphase exchange models were developed without consideration of colloid-colloid interaction. However, many studies have indicated that aggregation is a significant process and needs to be considered in stream process analysis. Herein, a new colloid exchange model was developed by including particle aggregation in addition to colloid settling and filtration. Self-preserving size distribution concepts and classical aggregation theory were employed to model the aggregation process. Model simulations indicate that under conditions of low filtration and high degree of particle-particle interaction, aggregation could either decrease or increase the amount of colloids retained in streambeds, depending on the initial particle size. Thus, two possible cases may occur including enhanced colloid deposition and facilitated colloid transport. Also, when the aggregation rate is high and filtration increases, more particles are retained by bed sediments due to filtration, and fewer are aggregated, which reduces the extent of aggregation effect on colloid deposition. The work presented here will contribute to a better understanding and prediction of colloid transport phenomena in natural streams. PMID:21627165

  9. Kinetics of aggregation in non-Brownian magnetic particle dispersions in the presence of perturbations

    NASA Astrophysics Data System (ADS)

    Donado, F.; Sandoval, U.; Carrillo, J. L.

    2009-01-01

    An experimental and theoretical study on the kinetics of the aggregation process of magnetic particles dispersed in mineral oils is presented. A static magnetic field and an oscillating magnetic perturbation are applied on the dispersion. In the low-particle concentrations, the effects on the aggregation of the frequency, the concentration of particles and the viscosity of the liquid are analyzed. It was found that the behavior of the cluster length as a function of the main control parameters can be accurately characterized by scaling relations. The physical characteristics of the aggregates are discussed in relation to measurements of viscosity as a function of time.

  10. Shaped beam scattering by an aggregate of particles using generalized Lorenz-Mie theory

    NASA Astrophysics Data System (ADS)

    Briard, Paul; Wang, Jia jie; Han, Yi Ping

    2016-04-01

    In this paper, the light scattering by an aggregate of particles illuminated by an arbitrary shaped beam is analyzed within the framework of generalized Lorenz-Mie theory (GLMT). The theoretical derivations of aggregated particles illuminated by an arbitrary shaped beam are revisited, with special attention paid to the computation of beam shape coefficients of a shaped beam for aggregated particles. The theoretical treatments as well as a home-made code are then verified by making comparisons between our numerical results and those calculated using a public available T-Matrix code MSTM. Good agreements are achieved which partially indicate the correctness of both codes. Additionally, more numerical results are presented to study the scattered fields of aggregated particles illuminated by a focused Gaussian beam. Several large enhancements in the scattered intensity distributions are found which are believed to be due to the Bragg's scattering by a linear chain of spheres.

  11. Soft electrostatic repulsion in particle monolayers at liquid interfaces: surface pressure and effect of aggregation.

    PubMed

    Kralchevsky, Peter A; Danov, Krassimir D; Petkov, Plamen V

    2016-07-28

    Non-densely packed interfacial monolayers from charged micrometre-sized colloid particles find applications for producing micropatterned surfaces. The soft electrostatic repulsion between the particles in a monolayer on an air/water (or oil/water) interface is mediated by the non-polar fluid, where Debye screening is absent and the distances between the particles are considerably greater than their diameters. Surface pressure versus area isotherms were measured at the air/water interface. The experiments show that asymptotically the surface pressure is inversely proportional to the third power of the interparticle distance. A theoretical model is developed that predicts not only the aforementioned asymptotic law but also the whole surface pressure versus area dependence. An increase in the surface pressure upon aggregation of charged particles in the interfacial monolayers is experimentally established. This effect is explained by the developed theoretical model, which predicts that the surface pressure should linearly increase with the square root of the particle mean aggregation number. The effect of added electrolyte on the aggregation is also investigated. The data lead to the conclusion that 'limited aggregation' exists in the monolayers of charged particles. In brief, the stronger electrostatic repulsion between the bigger aggregates leads to a higher barrier to their coalescence that, in turn, prevents any further aggregation, i.e. negative feedback is present.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298437

  12. Interaction and Aggregation of Colloidal Biological Particles and Droplets in Electrically-Driven Flows

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.; Loewenberg, Michael

    1997-01-01

    The primary objective of this research was to develop a fundamental understanding of aggregation and coalescence processes during electrically-driven migration of cells, particles and droplets. The process by which charged cells, particles, molecules, or drops migrate in a weak electric field is known as electrophoresis. If the migrating species have different charges or surface potentials, they will migrate at different speeds and thus may collide and aggregate or coalesce. Aggregation and coalescence are undesirable, if the goal is to separate the different species on the basis of their different electrophoretic mobilities.

  13. Influence of Electrolyte Concentration on the Aggregation of Colloidal Particles near Electrodes in Oscillatory Fields.

    PubMed

    Saini, Sukhleen; Bukosky, Scott C; Ristenpart, William D

    2016-05-01

    Micron-scale particles suspended in various aqueous electrolytes have been widely observed to aggregate near electrodes in response to oscillatory electric fields, a phenomenon believed to result from electrically induced flows around the particles. Previous work has focused on elucidating the effects of the applied field strength, frequency, and electrolyte type on the aggregation rate of particles, with less attention paid to the ionic strength. Here we demonstrate that an applied field causes micron-scale particles in aqueous NaCl to rapidly aggregate over a wide range of ionic strengths, but with significant differences in aggregation morphology. Optical microscopy observations reveal that at higher ionic strengths (∼1 mM) particles arrange as hexagonally closed-packed (HCP) crystals, but at lower ionic strengths (∼0.05 mM) the particles arrange in randomly closed-packed (RCP) structures. We interpret this behavior in terms of two complementary effects: an increased particle diffusivity at lower ionic strengths due to increased particle height over the electrode and the existence of a deep secondary minimum in the particle pair interaction potential at higher ionic strength that traps particles in close proximity to one another. The results suggest that electrically induced crystallization will readily occur only over a narrow range of ionic strengths. PMID:27054682

  14. Hydrophobic aggregation of fine particles in high muddied coal slurry water.

    PubMed

    Chen, Jun; Min, Fanfei; Liu, Lingyun; Peng, Chenliang; Lu, Fangqin

    2016-01-01

    The hydrophobic aggregation of fine particles in high muddied coal slurry water in the presence of four quaternary ammonium salts of 1231(dodecyl trimethyl ammonium chloride), 1431(tetradecyl trimethyl ammonium chloride), 1631(cetyl trimethyl ammonium chloride) and 1831(octadecyl trimethyl ammonium chloride) was investigated through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that quaternary ammonium salts can enhance the hydrophobicity and reduce the electronegativity of particle surface, and thus induce a strong hydrophobic aggregation of slurry fine particles which promotes the settlement of coal slurry water. The adsorption of quaternary ammonium salts on slurry particles increases with the increase of alkyl chain length and reagent dosage, and will reach equilibrium when the dosage reaches a certain value. Weak alkaline conditions also can promote quaternary ammonium salts to be adsorbed on the coal slurry fine particles. In addition, reasonable energy input and a chemical environment of weak alkaline solution are conducive to hydrophobic aggregation settlement of high muddied coal slurry water with quaternary ammonium salts. The main mechanism of hydrophobic aggregation of coal slurry particles with quaternary ammonium salts is 'adsorption charge neutralization' and hydrophobic interaction. PMID:26877031

  15. Specificity of Intramembrane Protein–Lipid Interactions

    PubMed Central

    Contreras, Francesc-Xabier; Ernst, Andreas Max; Wieland, Felix; Brügger, Britta

    2011-01-01

    Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein–lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein–lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein–lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein–lipid interactions as well as roles of lipids as chaperones in protein folding and transport. PMID:21536707

  16. Organic aggregate formation in aerosols and its impact on the physicochemical properties of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Tabazadeh, Azadeh

    Fatty acid salts and "humic" materials, found in abundance in atmospheric particles, are both anionic surfactants. Such materials are known to form organic aggregates or colloids in solution at very low aqueous concentrations. In a marine aerosol, micelle aggregates can form at a low fatty acid salt molality of ˜10 -3 m. In other types of atmospheric particles, such as biomass burning, biogenic, soil dust, and urban aerosols, "humic-like" materials exist in sufficient quantities to form micelle-like aggregates in solution. I show micelle formation limits the ability of surface-active organics in aerosols to reduce the surface tension of an atmospheric particle beyond about 10 dyne cm -1. A general phase diagram is presented for anionic surfactants to explain how surface-active organics can change the water uptake properties of atmospheric aerosols. Briefly such molecules can enhance and reduce water uptake by atmospheric aerosols at dry and humid conditions, respectively. This finding is consistent with a number of unexplained field and laboratory observations. Dry electron microscope images of atmospheric particles often indicate that organics may coat the surface of particles in the atmosphere. The surfactant phase diagram is used to trace the particle path back to ambient conditions in order to determine whether such coatings can exist on wet ambient aerosols. Finally, I qualitatively highlight how organic aggregate formation in aerosols may change the optical properties and chemical reactivity of atmospheric particles.

  17. Frozen Fractals All Around: Aggregate Particles in the Plumes of Enceladus

    NASA Astrophysics Data System (ADS)

    Gao, P.; Kopparla, P.; Zhang, X.; Ingersoll, A. P.

    2015-12-01

    Estimates of the total particulate mass of the plumes of Enceladus are important to constrain theories of particle formation and transport at the surface and interior of the satellite. We revisit the calculations of Ingersoll & Ewald (2011), who estimated the particulate mass of the Enceladus plumes from strongly forward scattered light in Cassini ISS images. We model the plume as a combination of spherical particles and irregular aggregates resulting from the coagulation of spherical monomers, the latter of which allows for plumes of lower particulate mass. Though a continuum of solutions are permitted by the model, the best fits to the ISS data consist either of low mass plumes composed entirely of small aggregates or high mass plumes composed of large aggregates and spheres. The high mass plumes can be divided into a population of large aggregates with total particulate mass of 116 ± 12 × 103 kg, and a mixed population of spheres and aggregates consisting of a few large monomers that has a total plume particulate mass of 166 ± 42 × 103 kg, consistent with the results of Ingersoll & Ewald (2011). Meanwhile, the low particulate mass aggregate plumes have masses of 25 ± 4 × 103 kg, leading to a solid to vapor mass ratio of 0.07 ± 0.01 for the plume. If indeed the plumes are made of such aggregates, then a vapor-based origin for the plume particles is possible. The process of aggregate formation by the coagulation of monomers, which depends on the bulk monomer number density inside the plume vents, requires a total plume vent cross sectional area of at most 1800 m2 to allow for the aggregates to form before the monomers are ejected into space. Differentiation between the high mass and low mass solutions may be possible if forward scattering observations are taken at scattering angles <2°, or else an independent plume particulate mass measurement becomes available.

  18. Simulation of aggregating particles in complex flows by the lattice kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Flamm, Matthew H.; Sinno, Talid; Diamond, Scott L.

    2011-01-01

    We develop and validate an efficient lattice kinetic Monte Carlo (LKMC) method for simulating particle aggregation in laminar flows with spatially varying shear rate, such as parabolic flow or flows with standing vortices. A contact time model was developed to describe the particle-particle collision efficiency as a function of the local shear rate, G, and approach angle, θ. This model effectively accounts for the hydrodynamic interactions between approaching particles, which is not explicitly considered in the LKMC framework. For imperfect collisions, the derived collision efficiency [\\varepsilon = 1 - int_0^{{π {π /2} {sin θ exp ( { - 2\\cot θ {{Γ _{agg} }/ { Γ _{agg} } G} )} dθ] was found to depend only on Γagg/G, where Γagg is the specified aggregation rate. For aggregating platelets in tube flow, Γ _{agg} = 0.683 s-1 predicts the experimentally measured ɛ across a physiological range (G = 40-1000 s-1) and is consistent with α2bβ3-fibrinogen bond dynamics. Aggregation in parabolic flow resulted in the largest aggregates forming near the wall where shear rate and residence time were maximal, however intermediate regions between the wall and the center exhibited the highest aggregation rate due to depletion of reactants nearest the wall. Then, motivated by stenotic or valvular flows, we employed the LKMC simulation developed here for baffled geometries that exhibit regions of squeezing flow and standing recirculation zones. In these calculations, the largest aggregates were formed within the vortices (maximal residence time), while squeezing flow regions corresponded to zones of highest aggregation rate.

  19. The effect of particle aggregate shape on ultrasonic anisotropy in concentrated magnetic fluids

    NASA Astrophysics Data System (ADS)

    Hornowski, T.; Józefczak, A.; Kołodziejczyk, B.; Timko, M.; Skumiel, A.; Rajnak, M.

    2015-05-01

    The effect of aggregate shape on the ultrasonic anisotropy in magnetic fluid was studied. Experimental results were compared with the theory of Ahuja and Hendee. Analysis of experimental results in terms of the theoretical model show the formation of ellipsoidal aggregates composed of several particles. The chain-like aggregates (h = b/a >> 1 a and b being minor and major axis lengths, respectively) are most conspicuous in diluted ferrofluids while dense ferrofluids are characterized by a more homogeneous drop-like (h = b/a > 1) structure. This finding is supported by some theoretical simulations.

  20. Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Cai, Jianchao; Hu, Xiangyun; Han, Qi; Liu, Shuang; Zhou, Yingfang

    2016-08-01

    A theoretical effective thermal conductivity model for nanofluids is derived based on fractal distribution characteristics of nanoparticle aggregation. Considering two different mechanisms of heat conduction including particle aggregation and convention, the model is expressed as a function of the fractal dimension and concentration. In the model, the change of fractal dimension is related to the variation of aggregation shape. The theoretical computations of the developed model provide a good agreement with the experimental results, which may serve as an effective approach for quantitatively estimating the effective thermal conductivity of nanofluids.

  1. Polyions act as an electrostatic glue for mesoscopic particle aggregates

    NASA Astrophysics Data System (ADS)

    Bordi, F.; Cametti, C.; Sennato, S.

    2005-06-01

    Although complexation of charged particles induced by polyions of opposite charge is a well-known phenomenon, the possibility of obtaining equilibrium clusters stuck together by flexible polyions, which act as an electrostatic glue, is not completely recognized. In this Letter, we call attention towards the behavior of polyions in attaching together charged particles, by means of controlled electrostatic interactions. As an example, we present some features of equilibrium clusters composed of cationic liposomes built up by DOTAP and glued up by an anionic polyion, polyacrylate sodium salt. We discuss briefly some applications in nanostructure science and biotechnology.

  2. Diffusion limited aggregation of particles with different sizes: Fractal dimension change by anisotropic growth

    NASA Astrophysics Data System (ADS)

    Braga, F. L.; Mattos, O. A.; Amorin, V. S.; Souza, A. B.

    2015-07-01

    Clusters formation models have been extensively studied in literature, and one of the main task of this research area is the analysis of the particle aggregation processes. Some work support that the main characteristics of this processes are strictly correlated to the cluster morphology, for example in DLA. It is expected that in the DLA clusters formation with particles containing different sizes the modification of the aggregation processes can be responsible for changes in the DLA morphology. The present article is going to analyze the formation of DLA clusters of particles with different sizes and show that the aggregates obtained by this approach generate an angle selection mechanism on dendritic growth that influences the shielding effect of the DLA edge and affect the fractal dimension of the clusters.

  3. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices. PMID:24308778

  4. Heat stability of aggregated particles of casein micelles and kappa-carrageenan.

    PubMed

    Flett, Kelly L; Corredig, Milena; Goff, H Douglas

    2010-06-01

    Aggregated particles of casein micelles and kappa-carrageenan were produced as a dried milk ingredient, then reconstituted and subjected to a heat treatment of 70 degrees C for 10 min. The reconstituted aggregates were found to be unstable when heated. Light scattering results showed that the aggregates dissociated partially into casein micelles. It was hypothesized that the removal of ions during ultrafiltration before spray-drying to produce the powdered ingredient significantly decreased stability upon reconstitution and heat treatment. When ions, either from whey permeate or calcium addition, were added to reconstituted aggregates, stability was greatly enhanced and the aggregates remained intact when subjected to heat. The effect of heat treatment on aggregates freshly produced with skim milk powder and kappa-carrageenan was also studied. These aggregates were found to be stable during heating due to the unchanged ionic environment. Therefore, incorporation of powdered aggregates of casein micelles and kappa-carrageenan into products would require the addition of whey permeate or calcium after reconstitution for stability during subsequent heating. PMID:20629864

  5. Lateral aggregation induced by magnetic perturbations in a magnetorheological fluid based on non-Brownian particles.

    PubMed

    Moctezuma, R E; Donado, F; Arauz-Lara, J L

    2013-09-01

    A study of lateral aggregation, induced by an oscillatory field, in a magnetorheological fluid based on non-Brownian magnetic particles is presented. We investigate the behavior of chains formed by the particles, due to the simultaneous application of a static magnetic field and a sinusoidal magnetic field transverse to each other. We show that the effective oscillating field enhances the aggregation process. We discuss this result in terms of an effective particle concentration induced by the oscillating field when chains oscillate angularly and sweep the area around them. The oscillating field produces a lateral aggregation similar to that observed in systems composed of Brownian particles which is induced by thermal fluctuations. We study the effect of the oscillating field on the angular amplitude described by single chains. It is observed that the angular amplitude decreases as the frequency of the oscillating field increases; we discuss this behavior numerically in terms of a simple model for this system. Lateral aggregation is studied in detail in isolated pairs of chains of equal length at several conditions of separation and displacement. From the results, a phase diagram is obtained showing the conditions under which aggregation is possible. PMID:24125266

  6. Cation effects during aggregation and agglomeration of gibbsite particles under synthetic Bayer crystallisation conditions

    NASA Astrophysics Data System (ADS)

    Prestidge, Clive A.; Ametov, Igor

    2000-02-01

    Rheological methods have been used to study the influence of the liquor cation (sodium versus potassium) on the time-dependent gibbsite particle interactions that occur during Bayer process crystallisation. The temperature, supersaturation and seeding levels investigated simulate those experienced in industrial crystallisers. Gibbsite agglomeration was shown to occur by reversible aggregation followed by irreversible cementation. These two sub-steps were individually characterised by careful choice of seed surface area and liquor supersaturation during batch crystallisation. At seed loading levels less than 10% w/w aggregates are rapidly cemented into agglomerates, this is more pronounced in sodium- than potassium-based liquors. These suspensions were Newtonian and the extent of agglomeration correlated with their viscosity. At seed loading levels greater than 20% w/w particle aggregation resulted in extensively time-dependent and non-Newtonian rheology. However, the aggregates did not undergo cementation into agglomerates and no irreversible size enlargement was evident. Yield stress development with time was used to probe the kinetics of aggregation and quantify the particle interaction behaviour. The rate and extent of the particle network formation is more pronounced in sodium rather than potassium-based liquors, supersaturation dependent, alkali concentration dependent, but only weakly temperature dependent. These findings are discussed with respect to the chemical and physical mechanisms of agglomeration in Bayer crystallisation and the role of cation.

  7. Reversible Unfolding of Rhomboid Intramembrane Proteases.

    PubMed

    Panigrahi, Rashmi; Arutyunova, Elena; Panwar, Pankaj; Gimpl, Katharina; Keller, Sandro; Lemieux, M Joanne

    2016-03-29

    Denaturant-induced unfolding of helical membrane proteins provides insights into their mechanism of folding and domain organization, which take place in the chemically heterogeneous, anisotropic environment of a lipid membrane. Rhomboid proteases are intramembrane proteases that play key roles in various diseases. Crystal structures have revealed a compact helical bundle with a buried active site, which requires conformational changes for the cleavage of transmembrane substrates. A dimeric form of the rhomboid protease has been shown to be important for activity. In this study, we examine the mechanism of refolding for two distinct rhomboids to gain insight into their secondary structure-activity relationships. Although helicity is largely abolished in the unfolded states of both proteins, unfolding is completely reversible for HiGlpG but only partially reversible for PsAarA. Refolding of both proteins results in reassociation of the dimer, with a 90% regain of catalytic activity for HiGlpG but only a 70% regain for PsAarA. For both proteins, a broad, gradual transition from the native, folded state to the denatured, partly unfolded state was revealed with the aid of circular dichroism spectroscopy as a function of denaturant concentration, thus arguing against a classical two-state model as found for many globular soluble proteins. Thermal denaturation has irreversible destabilizing effects on both proteins, yet reveals important functional details regarding substrate accessibility to the buried active site. This concerted biophysical and functional analysis demonstrates that HiGlpG, with a simple six-transmembrane-segment organization, is more robust than PsAarA, which has seven predicted transmembrane segments, thus rendering HiGlpG amenable to in vitro studies of membrane-protein folding. PMID:27028647

  8. Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Stimatze, Justin T.

    We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.

  9. Towards an operational implementation of particle aggregation in ash dispersion models (Invited)

    NASA Astrophysics Data System (ADS)

    Mastin, L. G.; Van Eaton, A. R.; Durant, A. J.; Schwaiger, H. F.; Denlinger, R. P.

    2013-12-01

    During volcanic unrest, ash transport models are used by volcano observatories and civil protection authorities to forecast areas at risk from tephra deposition. These models can effectively forecast areas affected due to their reliance on modern numerical wind fields. But they cannot yet accurately forecast the mass distribution in deposits, due largely to one process--particle aggregation--that is not considered in most models. Aggregation rates vary with particle concentration, size distribution, and the amount and phases of water present. Relationships between these variables are not yet well quantified. Although modeling studies have reproduced the observed distribution of tephra deposits from several key eruptions, most have done so only a posteriori, through ad-hoc adjustments in grain-size distribution or settling velocity. Here, we report early attempts to incorporate aggregation into the transport and deposition model Ash3d in a simplified form that can be implemented operationally. This project includes three steps: (1) characterizing aggregate size and abundance starting from deposit measurements at Mount St. Helens, Redoubt, and Spurr volcanoes; (2) developing a scheme to characterize aggregation using 2 or 3 parameters whose values can be ascertained for atmospheric and source conditions; and (3) incorporating the scheme into the model so that parameter values can be assigned prior to each simulation. For example, the May 18, 1980 Mount St. Helens deposit can be simulated using two aggregation parameters A (=2.8) and B (=1.9), both in phi units, where A represents the largest size class incorporated into aggregates and B represents the dominant size of aggregates (with assumed density 600 kg m-3). The mass fraction Fφ of each size class φ incorporated into aggregates is assumed to follow Fφ=1-exp(-max(0,φ-A)). We will report the success of this scheme to model several other well-characterized deposits.

  10. Adsorption, aggregation, and desorption of proteins on smectite particles.

    PubMed

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-01

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes. PMID:25216210

  11. Effect of the slope and initial moisture content on soil loss, aggregate and particle size distribution

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka

    2015-04-01

    Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be

  12. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs).

    PubMed

    Zhao, Lin; Boufadel, Michel C; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith

    2016-05-15

    Oil-particle interactions play a major role in removal of free oil from the water column. We present a new conceptual-numerical model, A-DROP, to predict oil amount trapped in oil-particle aggregates. A new conceptual formulation of oil-particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil-particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil-particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil-particle aggregation. PMID:26992749

  13. Estimation of the Oblongness of Aggregates of Magnetic Particles Formed in Static Magnetic Field Using ESR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sorokina, Olga N.; Kovarski, Alexander L.; Dzheparov, Fridrikh S.

    2010-12-01

    Aggregation process in magnetic fluid has been investigated by electron spin resonance method. A low molecular paramagnet (paramagnetic sensor) has been added to magnetite hydrosol and its ESR spectra have been analyzed. Fraction of aggregated particles and aggregate oblongness have been calculated using new theoretical model for the ESR spectra of paramagnetic sensor in diluted magnetic media containing elongated structures.

  14. Primary particle size distribution of eroded material affected by degree of aggregate slaking and seal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Primary particle size distribution (PSD) of eroded sediments can be used to estimate potential nutrient losses from soil and pollution hazards to the environment. We studied eroded sediment PSDs from three saturated soils, packed in trays (20 x 40 x 4 cm), that had undergone either minimal aggregate...

  15. Chemical and Biological Composition of Suspended Particles and Aggregates in the Baltic Sea in Summer (1999)

    NASA Astrophysics Data System (ADS)

    Engel, A.; Meyerhöfer, M.; von Bröckel, K.

    2002-11-01

    Suspended particles and particle aggregates, which formed from concentrated field samples on the roller table, were characterized biologically and chemically along a transect through the Baltic Sea in summer 1999. Phytoplankton composition in field samples was dominated by cyanobacteria, including the filamentous diazotrophic cyanobacteria Aphanizomenon ' baltica', Nodularia spumigena and Anabaena spp. These species formed aggregates together with diatoms, mainly Skeletonema costatum and Chaetoceros spp. and with dinoflagellates, mainly withDinophysis norvegica . Compared to the Redfield ratio, concentration ratios of particulate organic carbon, nitrogen and phosphorus, [POC]:[PON]:[POP], indicated an enrichment of carbon, especially in aggregates. However, regression analysis indicated a higher production rate of PON relative to POP and POC and significant background concentrations of POC. In field samples the concentration of transparent exopolymer particles (TEP) varied around 200 μg Xanthan Equiv. l-1 and comprised a volume fraction of 2-7 ppm and an abundance of about 105 TEP ml-1. TEP were enriched in aggregates as inferred from volume ratios of TEP to conventional particles. It is suggested, that TEP contribute substantially to the background concentration of POC, while the high production rate of PON is attributed to nitrogen fixation of diazotrophic cyanobacteria.

  16. Effect of the particle shape on the optical properties of black carbon aggregates

    NASA Astrophysics Data System (ADS)

    Skorupski, Krzysztof

    2016-04-01

    Small particles tend to connect to each other and create large geometries, namely aggregates. To simplify the light scattering simulation process, they are usually modelled as assemblies of spheres positioned in point contact. This is a rough approximation because connections between them always exist. In this work we present answers to the three following questions: which optical properties of fractal-like aggregates are strongly dependent on the particle shape, what is the magnitude of the relative extinction error σCext when non-spherical particles are modelled as spheres and whether the relative extinction error σCext is dependent on the aggregate size Np. The paper was aimed at tropospheric black carbon particles and their complex refractive index m was based on the work by Chang and Charalampopoulos. The incident wavelength λ varied from λ = 300nm to λ = 900nm. For the light scattering simulations the ADDA algorithm was used. The polarizability expression was IGT_SO (approximate Integration of Greens Tensor over the dipole) and each particle, regardless of its shape, was composed of ca. Nd ≍ 1000 volume elements (dipoles). In the study, fractal-like aggregates consisted of up to Np = 300 primary particles with the volume equivalent to the volume of a sphere with the radius rp = 15nm. The fractal dimension was Df = 1:8 and the fractal prefactor was kf = 1:3. Geometries were generated with the tunable CC (Cluster-Cluster) algorithm proposed by Filippov et al. The results show that when the extinction cross section σCext is considered, the changes caused by the particle shape, which are especially visible for longer wavelengths λ cannot be neglected. The most significant difference can be observed for the regular tetrahedron. The relative extinction error σCext diminishes slightly along with the number of primary particles Np. However, even when large fractal-like aggregates are studied, it should not be considered as non-existent. On the contrary

  17. Levitation, aggregation and separation of micro-sized particles in a Hydrodynamic Acoustic Sorter, HAS

    NASA Astrophysics Data System (ADS)

    Hoyos, Mauricio; Castro, Angelica; Bazou, Despina; Separation Collaboration

    2011-11-01

    Levitation, aggregation and separation of micron-sized particulate materials can be generated in a fluidic resonator by an ultrasonic standing wave field force. A piezoelectric transducer generates standing waves between the two walls of a parallel plate channel composing the resonator. The number of pressure nodes n is given by the relationship: w = nλ / 2 with λ the wavelength. The primary radiation force generated by the standing wave generates levitation of micron-sized particles driving them toward the nodal planes. An equilibrium position is reached in the channel thickness where the acoustic force balances the gravity force. The equilibrium position is independent on particle size but it depends on the acoustic properties. Once particles reach the equilibrium position, transversal secondary forces generate aggregation. We shall present the levitation and aggregation process of latex particles and cancer cells in a 2MHz resonator. We demonstrate the possibility of separating particles under flow in a Hydrodynamic Acoustic Sorter HAS, in function of their acoustic impedance and in function of their size using a programming field force.

  18. Aggregation on a membrane of particles undergoing active exchange with a reservoir.

    PubMed

    Foret, L

    2012-02-01

    We investigate the dynamics of clusters made of aggregating particles on a membrane which exchanges particles with a reservoir. Exchanges are driven by chemical reactions which supply energy to the system, leading to the establishment of a non-equilibrium steady state. We predict the distribution of cluster size at steady state. We show in particular that in a regime, that cannot exist at equilibrium, the distribution is bimodal: the membrane is mainly populated of single particles and finite-size clusters. This work is motivated by the observations that have revealed the existence of submicrometric clusters of proteins in biological membranes. PMID:22354679

  19. Probing surface characteristics of diffusion-limited-aggregation clusters with particles of variable size

    NASA Astrophysics Data System (ADS)

    Menshutin, A. Yu.; Shchur, L. N.; Vinokur, V. M.

    2007-01-01

    We develop a technique for probing the harmonic measure of a diffusion-limited-aggregation (DLA) cluster surface with variable-size particles and generate 1000 clusters with 50×106 particles using an original off-lattice killing-free algorithm. Taking, in sequence, the limit of the vanishing size of the probing particles and then sending the growing cluster size to infinity, we achieve unprecedented accuracy in determining the fractal dimension D=1.7100(2) crucial to the characterization of the geometric properties of DLA clusters.

  20. Genetic analysis of Runx2 function during intramembranous ossification.

    PubMed

    Takarada, Takeshi; Nakazato, Ryota; Tsuchikane, Azusa; Fujikawa, Koichi; Iezaki, Takashi; Yoneda, Yukio; Hinoi, Eiichi

    2016-01-15

    Runt-related transcription factor 2 (Runx2) is an essential transcriptional regulator of osteoblast differentiation and its haploinsufficiency leads to cleidocranial dysplasia because of a defect in osteoblast differentiation during bone formation through intramembranous ossification. The cellular origin and essential period for Runx2 function during osteoblast differentiation in intramembranous ossification remain poorly understood. Paired related homeobox 1 (Prx1) is expressed in craniofacial mesenchyme, and Runx2 deficiency in cells of the Prx1 lineage (in mice referred to here as Runx2prx1 (-/-)) resulted in defective intramembranous ossification. Runx2 was heterogeneously expressed in Prx1-GFP(+) cells located at the intrasutural mesenchyme in the calvaria of transgenic mice expressing GFP under the control of the Prx1 promoter. Double-positive cells for Prx1-GFP and stem cell antigen-1 (Sca1) (Prx1(+)Sca1(+) cells) in the calvaria expressed Runx2 at lower levels and were more homogeneous and primitive than Prx1(+)Sca1(-) cells. Osterix (Osx) is another transcriptional determinant of osteoblast lineages expressed by osteoblast precursors; Osx is highly expressed by Prx1(-)Runx2(+) cells at the osteogenic front and on the surface of mineralized bone in the calvaria. Runx2 deficiency in cells of the Osx lineage (in mice referred to here as Runx2osx (-/-)) resulted in severe defects in intramembranous ossification. These findings indicate that the essential period of Runx2 function in intramembranous ossification begins at the Prx1(+)Sca1(+) mesenchymal stem cell stage and ends at the Osx(+)Prx1(-)Sca1(-) osteoblast precursor stage. PMID:26657773

  1. Aggregate breakdown and surface seal development influenced by rain intensity, slope gradient and soil particle size

    NASA Astrophysics Data System (ADS)

    Arjmand Sajjadi, S.; Mahmoodabadi, M.

    2014-12-01

    Aggregate breakdown is an important process which controls infiltration rate (IR) and the availability of fine materials necessary for structural sealing under rainfall. The purpose of this study was to investigate the effects of different slope gradients, rain intensities and particle size distributions on aggregate breakdown and IR to describe the formation of surface sealing. To address this issue, 60 experiments were carried out in a 35 cm x 30 cm x 10 cm detachment tray using a rainfall simulator. By sieving a sandy loam soil, two sub-samples with different maximum aggregate sizes of 2 mm (Dmax 2 mm) and 4.75 mm (Dmax 4.75 mm) were prepared. The soils were exposed to two different rain intensities (57 and 80 mm h-1) on several slopes (0.5, 2.5, 5, 10, and 20%) each at three replications. The result showed that the most fraction percentages in soils Dmax 2 mm and Dmax 4.75 mm were in the finest size classes of 0.02 and 0.043 mm, respectively for all slope gradients and rain intensities. The soil containing finer aggregates exhibited higher transportability of pre-detached material than the soil containing larger aggregates. Also, IR increased with increasing slope gradient, rain intensity and aggregate size under unsteady state conditions because of less development of surface seal. But under steady state conditions, no significant relationship was found between slope and IR. The finding of this study revealed the importance of rain intensity, slope steepness and soil aggregate size on aggregate breakdown and seal formation, which can control infiltration rate and the consequent runoff and erosion rates.

  2. Aggregation and antigenicity of virus like particle in salt solution--A case study with hepatitis B surface antigen.

    PubMed

    Chen, Yi; Zhang, Yan; Quan, Can; Luo, Jian; Yang, Yanli; Yu, Mengran; Kong, Yingjun; Ma, Guanghui; Su, Zhiguo

    2015-08-20

    The phenomenon of aggregation of virus-like particles (VLPs) in salt solution and the corresponding effect upon antigenicity was reported. Asymmetrical flow field-flow fractionation (AF4) combined with multi-angle laser light scattering (MALLS) was used to characterize the size and the aggregation behavior of hepatitis B surface antigen (HBsAg). The average diameter of HBsAg VLP was 22.8±0.4 nm and it tended to aggregate in salt solution to form large particles and the antigenicity changed accordingly. In 0-4 M NaCl solution, part of HBsAg molecules aggregated rapidly into oligomeric particles (OP), whose diameter distributed from 25 to 40 nm, and the antigenicity slightly decreased about 10%. The aggregation reaction is reversible. After removing NaCl, both size and antigenicity could recover to normal level (92-96%). By contrast, the aggregation process is more complicated in (NH4)2SO4 solution. Most of HBsAg particles aggregated into OP and further aggregated into polymeric particles (PP). The diameter of the PP could reach 40 to 140 nm. The concentration of (NH4)2SO4 had remarkable influence upon the rate of aggregation. When concentration of (NH4)2SO4 was below 1 M, most of HBsAg aggregated only into OP in 1 h. While with concentration of (NH4)2SO4 above 1 M, most of particles formed PP within 1 h. The aggregation process to PP was irreversible. After removing (NH4)2SO4, the large aggregates could not recover to normal particles and the remaining antigenicity was below 30%. PMID:25862298

  3. Accretion of Fine Particles: Sticking Probability Estimated by Optical Sizing of Fractal Aggregates

    NASA Astrophysics Data System (ADS)

    Sugiura, N.; Higuchi, Y.

    1993-07-01

    Sticking probability of fine particles is an important parameter that determines (1) the settling of fine particles to the equatorial plane of the solar nebula and hence the formation of planetesimals, and (2) the thermal structure of the nebula, which is dependent on the particle size through opacity. It is generally agreed that the sticking probability is 1 for submicrometer particles, but at sizes larger than 1 micrometer, there exist almost no data on the sticking probability. A recent study [1] showed that aggregates (with radius from 0.2 to 2 mm) did not stick when collided at a speed of 0.15 to 4 m/s. Therefore, somewhere between 1 micrometer and 200 micrometers, sticking probabilities of fine particles change from nearly 1 to nearly 0. We have been studying [2,3] sticking probabilities of dust aggregates in this size range using an optical sizing method. The optical sizing method has been well established for spherical particles. This method utilizes the fact that the smaller the size, the larger the angle of the scattered light. For spheres with various sizes, the size distribution is determined by solving Y(i) = M(i,j)X(j), where Y(i) is the scattered light intensity at angle i, X(j) is the number density of spheres with size j, and M(i,j) is the scattering matrix, which is determined by Mie theory. Dust aggregates, which we expect to be present in the early solar nebula, are not solid spheres, but probably have a porous fractal structure. For such aggregates the scattering matrix M(i,j) must be determined by taking account of all the interaction among constituent particles (discrete dipole approximation). Such calculation is possible only for very small aggregates, and for larger aggregates we estimate the scattering matrix by extrapolation, assuming that the fractal nature of the aggregates allows such extrapolation. In the experiments using magnesium oxide fine particles floating in a chamber at ambient pressure, the size distribution (determined by

  4. Enhanced fuzzy-connective-based hierarchical aggregation network using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Fang; Su, Chao-Ton

    2014-11-01

    The fuzzy-connective-based aggregation network is similar to the human decision-making process. It is capable of aggregating and propagating degrees of satisfaction of a set of criteria in a hierarchical manner. Its interpreting ability and transparency make it especially desirable. To enhance its effectiveness and further applicability, a learning approach is successfully developed based on particle swarm optimization to determine the weights and parameters of the connectives in the network. By experimenting on eight datasets with different characteristics and conducting further statistical tests, it has been found to outperform the gradient- and genetic algorithm-based learning approaches proposed in the literature; furthermore, it is capable of generating more accurate estimates. The present approach retains the original benefits of fuzzy-connective-based aggregation networks and is widely applicable. The characteristics of the learning approaches are also discussed and summarized, providing better understanding of the similarities and differences among these three approaches.

  5. Self-organized anomalous aggregation of particles performing nonlinear and non-Markovian random walks

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Korabel, Nickolay

    2015-12-01

    We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial aggregation of living organisms that have the ability to sense population density. We take into account social crowding effects for which the dispersal rate is a decreasing function of the population density and residence time. We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly (SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.

  6. Activation energies of colloidal particle aggregation: towards a quantitative characterization of specific ion effects.

    PubMed

    Tian, Rui; Yang, Gang; Li, Hang; Gao, Xiaodan; Liu, Xinmin; Zhu, Hualing; Tang, Ying

    2014-05-21

    A quantitative description of specific ion effects is an essential and focused topic in colloidal and biological science. In this work, the dynamic light scattering technique was employed to study the aggregation kinetics of colloidal particles in the various alkali ion solutions with a wide range of concentrations. It indicated that the activation energies could be used to quantitatively characterize specific ion effects, which was supported by the results of effective hydrodynamic diameters, aggregation rates and critical coagulation concentrations. At a given concentration of 25 mmol L(-1), the activation energies for Li(+) are 1.2, 5.7, 28, and 126 times as much for Na(+), K(+), Rb(+), and Cs(+), respectively. Most importantly, the activation energy differences between two alkali cation species increase sharply with decrease of electrolyte concentrations, implying the more pronounced specific ion effects at lower concentrations. The dominant role of electrolyte cations during the aggregation of negatively charged colloidal particles was confirmed by alternative anions. Among the various theories, only the polarization effect can give a rational interpretation of the above specific ion effects, and this is substantially supported by the presence of strong electric fields from montmorillonite surfaces and its association mainly with electrolyte cations and montmorillonite particles. The classical induction theory, although with inclusion of electric field, requires significant corrections because it predicts an opposite trend to the experimentally observed specific ion effects. PMID:24603654

  7. Platinum group metal particles aggregation in nuclear glass melts under the effect of temperature

    NASA Astrophysics Data System (ADS)

    Hanotin, Caroline; Puig, Jean; Neyret, Muriel; Marchal, Philippe

    2016-08-01

    The viscosity of simulated high level radioactive waste glasses containing platinum group metal particles is studied over a wide range of shear stress, as a function of the particles content and the temperature, thanks to a stress imposed rheometer, coupled to a high-temperature furnace. The system shows a very shear thinning behavior. At high shear rate, the system behaves as a suspension of small clusters and individual particles and is entirely controlled by the viscosity of the glass matrix as classical suspensions. At low shear rate, above a certain fraction in platinum group metal particles, the apparition of macroscopic aggregates made up of chains of RuO2 particles separated by thin layers of glass matrix strongly influences the viscosity of the nuclear glass and leads, in particular, to the apparition of yield stress and thixotropic effects. The maximum size of these clusters as well as their effective volume fraction have been estimated by a balance between Van der Waals attractive forces and hydrodynamic forces due to shear flow. We showed experimentally and theoretically that this aggregation phenomenon is favored by an increase of the temperature, owing to the viscosity decrease of the glass matrix, leading to an unusual increase of the suspension viscosity.

  8. Size distribution of particles in Saturn’s rings from aggregation and fragmentation

    PubMed Central

    Brilliantov, Nikolai; Krapivsky, P. L.; Bodrova, Anna; Spahn, Frank; Hayakawa, Hisao; Stadnichuk, Vladimir; Schmidt, Jürgen

    2015-01-01

    Saturn’s rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ∼r−q with q≈3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75≤q≤3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn’s rings. PMID:26183228

  9. Size distribution of particles in Saturn's rings from aggregation and fragmentation.

    PubMed

    Brilliantov, Nikolai; Krapivsky, P L; Bodrova, Anna; Spahn, Frank; Hayakawa, Hisao; Stadnichuk, Vladimir; Schmidt, Jürgen

    2015-08-01

    Saturn's rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ~r(-q) with q ≈ 3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75 ≤ q ≤ 3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn's rings. PMID:26183228

  10. Sintering of highly porous silica-particle samples: analogues of early Solar-System aggregates

    NASA Astrophysics Data System (ADS)

    Poppe, T.

    2003-07-01

    I describe a new method to make particle layers which consist of SiO 2 spheres with 0.78 μm radius. The layers were produced by sedimentation of aggregates which had grown in ballistic particle collisions, and the layers had a porosity of 0.95. They were used for experiments on sintering, i.e., the samples were heated in an oven at varying temperatures and heating durations, and the samples were analyzed by scanning electron microscopy. Based on the change of particle diameter, surface diffusion sintering and viscous flow are identified as important transformation mechanisms. The first effect dominated at the start of restructuring and the latter at higher temperatures. The neck growth of adjacent particles was fitted to a surface diffusion sintering model and predicts neck radii as a heating temperature and duration function. Between the temperature range of neck formation and of melting, further restructuring occurred which lead to dissolution of particulate structure and to densification and which resulted in a porous object consisting of straight elongated substructures which connected kinks of higher material density. The thermal transformation is important for the change of strength, collisional behavior, light-scattering properties, and thermal conductivity with relevance to dust aggregates, planetesimals, comets, interplanetary dust particles, and regolith-covered celestial bodies.

  11. Thermal changes in texture of aggregates of ultra-fine crystallites in hydrolysed zirconia particles

    NASA Astrophysics Data System (ADS)

    Murase, Yoshio; Kato, Etsuro

    1980-10-01

    Zirconia particles of about 1000 × 1000 × 300 Å in size, which were aggregates of rectangular shaped and regularly oriented ultra-fine crystallites of about 30 × 100 Å, were prepared by hydrolysis from 0.1 moll -1 ZrOCl 2 solution. Changes in the texture of the particles on heating were studied by electron microscopy. The growth of the crystallites occurred predominantly at peripheries of the particles at 500°C and in the whole particles at 600°C, resulting in crystallites of 160-360 Å in diameter at 800°C. The voids which were present initially among the crystallites, coalesced and increased in size at temperatures up to 600°C, but diminished above 800°C. Single crystals and (100) twins were formed at 1000°C.

  12. Particle-based simulation of ellipse-shaped particle aggregation as a model for vascular network formation

    NASA Astrophysics Data System (ADS)

    Palachanis, Dimitrios; Szabó, András; Merks, Roeland M. H.

    2015-12-01

    Computational modeling is helpful for elucidating the cellular mechanisms driving biological morphogenesis. Previous simulation studies of blood vessel growth based on the cellular Potts model proposed that elongated, adhesive or mutually attractive endothelial cells suffice for the formation of blood vessel sprouts and vascular networks. Because each mathematical representation of a model introduces potential artifacts, it is important that model results are reproduced using alternative modeling paradigms. Here, we present a lattice-free, particle-based simulation of the cell elongation model of vasculogenesis. The new, particle-based simulations confirm the results obtained from the previous cellular Potts simulations. Furthermore, our current findings suggest that the emergence of order is possible with the application of a high enough attractive force or, alternatively, a longer attraction radius. The methodology will be applicable to a range of problems in morphogenesis and noisy particle aggregation in which cell shape is a key determining factor.

  13. Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics.

    PubMed

    Langosch, D; Scharnagl, C; Steiner, H; Lemberg, M K

    2015-06-01

    Intramembrane proteolysis - cleavage of proteins within the plane of a membrane - is a widespread phenomenon that can contribute to the functional activation of substrates and is involved in several diseases. Although different families of intramembrane proteases have been discovered and characterized, we currently do not know how these enzymes discriminate between substrates and non-substrates, how site-specific cleavage is achieved, or which factors determine the rate of proteolysis. Focusing on γ-secretase and rhomboid proteases, we argue that answers to these questions may emerge from connecting experimental readouts, such as reaction kinetics and the determination of cleavage sites, to the structures and the conformational dynamics of substrates and enzymes. PMID:25941170

  14. Yap/Taz transcriptional activity in endothelial cells promotes intramembranous ossification via the BMP pathway

    PubMed Central

    Uemura, Mami; Nagasawa, Ayumi; Terai, Kenta

    2016-01-01

    Osteogenesis is categorized into two groups based on developmental histology, intramembranous and endochondral ossification. The role of blood vessels during endochondral ossification is well known, while their role in intramembranous ossification, especially the intertissue pathway, is poorly understood. Here, we demonstrate endothelial Yap/Taz is a novel regulator of intramembranous ossification in zebrafish. Appropriate blood flow is required for Yap/Taz transcriptional activation in endothelial cells and intramembranous ossification. Additionally, Yap/Taz transcriptional activity in endothelial cells specifically promotes intramembranous ossification. BMP expression by Yap/Taz transactivation in endothelial cells is also identified as a bridging factor between blood vessels and intramembranous ossification. Furthermore, the expression of Runx2 in pre-osteoblast cells is a downstream target of Yap/Taz transcriptional activity in endothelial cells. Our results provide novel insight into the relationship between blood flow and ossification by demonstrating intertissue regulation. PMID:27273480

  15. The single scattering properties of the aerosol particles as aggregated spheres

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-08-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  16. Cluster-Cluster Aggregation Calculations of Fractal Haze Particles: Titan and the Early Earth

    NASA Astrophysics Data System (ADS)

    Terrell-Martinez, Bernice; Boness, David

    2010-10-01

    The atmosphere of the Archean Earth (3.8 to 2.5 billion years ago) is thought to have been dominated by a thick hydrocarbon haze similar to that of Titan's current atmosphere. To understand radiative transport in the atmospheres of the early Earth and of Titan, it is necessary to compute light scattering in UV, visible, and IR wavelength ranges for realistic fractal aggregate hydrocarbon aerosol particles. We report preliminary work on MATLAB, True BASIC, and Fortran programs to simulate the growth of fractal aggregate aerosols through diffusion limited aggregation (DLA) and cluster-cluster aggregation (CCA) physical processes. The results of these computations are being used with a T-Matrix light scattering program to test recently published, widely-reported conclusions about the early Earth and the faint young Sun paradox [E. T. Wolf and O. B. Toon, Science 328, 1266 (2010)]. This modeling is also relevant to understanding atmospheric carbonaceous soot aerosol anthropogenic and natural effects on climate change of Earth today.

  17. Membrane lipid heterogeneity associated with acetylcholine receptor particle aggregates in Xenopus embryonic muscle cells.

    PubMed Central

    Bridgman, P C; Nakajima, Y

    1981-01-01

    Filipin, digitonin, and saponin react with membrane cholesterol to produce unique membrane alterations (sterol-specific complexes) that are easily discernible in freeze-fracture replicas. We have treated both noninnervated and innervated Xenopus embryonic muscle cells in culture with these agents. Freeze-fracture of these treated muscle cells showed that most areas of the muscle plasma membrane contain sterol-specific complexes (19- to 40-nm protuberances and dimples with filipin, a scalloped appearance with digitonin, or an irregular, rough appearance with saponin). However, these complexes were virtually absent from membrane areas of junctional and nonjunctional aggregates of acetylcholine receptor particles. This result suggests that the membrane matrix of these aggregates is low in cholesterol and that this membrane lipid heterogeneity may be linked to the mechanisms involved in their formation and stabilization on muscle cells in culture. Images PMID:6940140

  18. Electric-field-induced dielectrophoresis and heterogeneous aggregation in dilute suspensions of positively polarizable particles

    NASA Astrophysics Data System (ADS)

    Acrivos, Andreas; Qiu, Zhiyong; Markarian, Nikolai; Khusid, Boris

    2002-11-01

    We specified the conditions under which a dilute suspension of positively polarizable particles would undergo a heterogeneous aggregation in high-gradient strong AC fields and then examined experimentally and theoretically its kinetics [1]. Experiments were conducted on flowing dilute suspensions of heavy aluminum oxide spheres subjected to a high-gradient AC field (several kV/mm) such that the dielectrophoretic force acting on the particles was arranged in the plane perpendicular to the streamlines of the main flow. To reduce the gravitational settling of the particles, the electric chamber was kept slowly rotating around a horizontal axis. Following the application of a field, the particles were found to move towards both the high-voltage and grounded electrodes and to form arrays of "bristles" along their edges. The process was modeled by computing the motion of a single particle under the action of dielectrophoretic, viscous, and gravitational forces for negligibly small particle Reynolds numbers. The particle polarization required for the calculation of the dielectrophoretic force was measured in low-strength fields (several V/mm). The theoretical predictions for the kinetics of the particle accumulation on the electrodes were found to be in a reasonable agreement with experiment, although the interparticle interactions governed the formation of arrays of bristles. These bristles were formed in a two-step mechanism, which arose from the interplay of the dielectrophoretic force that confined the particles near the electrode edge and the dipolar interactions of nearby particles. The results of our studies provide the basic characteristics needed for the design and optimization of electro-hydrodynamic apparatuses. The work was supported by a NASA grant. The suspension characterization was conducted at the NJIT W.M. Keck Laboratory. 1. Z. Qiu, N. Markarian, B. Khusid, A. Acrivos, J. Apple. Phys., 92(5), 2002.

  19. Aggregated Particle-size distributions for tephra-deposit model forecasts

    NASA Astrophysics Data System (ADS)

    Mastin, L. G.; Durant, A. J.; Van Eaton, A. R.

    2015-12-01

    The accuracy of models that forecast atmospheric transport and deposition of tephra to anticipate hazards during volcanic eruptions is limited by the fact that fine ash tends to aggregate and fall out more rapidly than the individual constituent particles. Aggregation is generally accounted for by representing fine ash as aggregates with density ρagg and a log-normal size range with median μagg and standard deviation σagg. Values of these parameters likely vary with eruption type, grain size, and atmospheric conditions. To date, no studies have examined how the values vary from one eruption or deposit to another. In this study, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens, 16-17 September 1992 Crater Peak (Mount Spurr), Alaska, 17 June 1996 Ruapehu, and 23 March 2009 Mount Redoubt volcano. In 158 simulations, we systematically varied μagg (1-2.3Φ) and σagg (0.1-0.3Φ), using ellipsoidal aggregates with =600 kg m-3 and a shape factor F≡((b+c)/2a)=0.44 . We evaluated the goodness of fit using three statistical comparisons: modeled versus measured (1) mass load at individual sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, the best-fit μagg ranged narrowly between ~1.6-2.0Φ (0.33-0.25mm), despite large variations in erupted mass (0.25-50 Tg), plume height (8.5-25 km), mass fraction of fine (<0.063mm) ash (3-59%), atmospheric temperature, aggregation mechanism, and water content between these eruptions. This close agreement suggests that the aggregation process may be modeled as a discrete process that is agnostic to the eruptive style or magnitude of eruption. This result paves the way to a simple, computationally-efficient parameterization of aggregation that is suitable for use in operational deposit forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.

  20. Do not drop: mechanical shock in vials causes cavitation, protein aggregation, and particle formation.

    PubMed

    Randolph, Theodore W; Schiltz, Elise; Sederstrom, Donn; Steinmann, Daniel; Mozziconacci, Olivier; Schöneich, Christian; Freund, Erwin; Ricci, Margaret S; Carpenter, John F; Lengsfeld, Corrine S

    2015-02-01

    Industry experience suggests that g-forces sustained when vials containing protein formulations are accidentally dropped can cause aggregation and particle formation. To study this phenomenon, a shock tower was used to apply controlled g-forces to glass vials containing formulations of two monoclonal antibodies and recombinant human growth hormone (rhGH). High-speed video analysis showed cavitation bubbles forming within 30 μs and subsequently collapsing in the formulations. As a result of echoing shock waves, bubbles collapsed and reappeared periodically over a millisecond time course. Fluid mechanics simulations showed low-pressure regions within the fluid where cavitation would be favored. A hydroxyphenylfluorescein assay determined that cavitation produced hydroxyl radicals. When mechanical shock was applied to vials containing protein formulations, gelatinous particles appeared on the vial walls. Size-exclusion chromatographic analysis of the formulations after shock did not detect changes in monomer or soluble aggregate concentrations. However, subvisible particle counts determined by microflow image analysis increased. The mass of protein attached to the vial walls increased with increasing drop height. Both protein in bulk solution and protein that became attached to the vial walls after shock were analyzed by mass spectrometry. rhGH recovered from the vial walls in some samples revealed oxidation of Met and/or Trp residues. PMID:25418950

  1. DO NOT DROP: MECHANICAL SHOCK IN VIALS CAUSES CAVITATION, PROTEIN AGGREGATION AND PARTICLE FORMATION

    PubMed Central

    Randolph, Theodore W.; Schiltz, Elise; Sederstrom, Donn; Steinmann, Daniel; Mozziconacci, Olivier; Schöneich, Christian; Freund, Erwin; Ricci, Margaret S.; Carpenter, John F.; Lengsfeld, Corrine S.

    2014-01-01

    Industry experience suggests that g-forces sustained when vials containing protein formulations are accidentally dropped can cause aggregation and particle formation. To study this phenomenon, a shock tower was used to apply controlled g-forces to glass vials containing formulations of two monoclonal antibodies and recombinant human growth hormone (rhGH). High-speed video analysis showed cavitation bubbles forming within 30 μs and subsequently collapsing in the formulations. As a result of echoing shock waves, bubbles collapsed and reappeared periodically over a millisecond timecourse. Fluid mechanics simulations showed low-pressure regions within the fluid where cavitation would be favored. A hydroxyphenylfluorescein assay determined that cavitation produced hydroxyl radicals. When mechanical shock was applied to vials containing protein formulations, gelatinous particles appeared on the vial walls. Size exclusion chromatographic analysis of the formulations after shock did not detect changes in monomer or soluble aggregate concentrations. However, subvisible particle counts determined by microflow image analysis increased. The mass of protein attached to the vial walls increased with increasing drop height. Both protein in bulk solution and protein that became attached to the vial walls after shock were analyzed by mass spectrometry. rhGH recovered from the vial walls in some samples revealed oxidation of Met and/or Trp residues. PMID:25418950

  2. Rate laws of the self-induced aggregation kinetics of Brownian particles

    NASA Astrophysics Data System (ADS)

    Mondal, Shrabani; Sen, Monoj Kumar; Baura, Alendu; Bag, Bidhan Chandra

    2016-03-01

    In this paper we have studied the self induced aggregation kinetics of Brownian particles in the presence of both multiplicative and additive noises. In addition to the drift due to the self aggregation process, the environment may induce a drift term in the presence of a multiplicative noise. Then there would be an interplay between the two drift terms. It may account qualitatively the appearance of the different laws of aggregation process. At low strength of white multiplicative noise, the cluster number decreases as a Gaussian function of time. If the noise strength becomes appreciably large then the variation of cluster number with time is fitted well by the mono exponentially decaying function of time. For additive noise driven case, the decrease of cluster number can be described by the power law. But in case of multiplicative colored driven process, cluster number decays multi exponentially. However, we have explored how the rate constant (in the mono exponentially cluster number decaying case) depends on strength of interference of the noises and their intensity. We have also explored how the structure factor at long time depends on the strength of the cross correlation (CC) between the additive and the multiplicative noises.

  3. Mineralogy of Stardust Track 112 Particle: Relation to Amoeboid Olivine Aggregates

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fagan, T.; Mikouchi, T.; Miyamoto, M.; Zolensky, M.; Ohsumi, K.

    2012-01-01

    The successful analysis of comet 81P/Wild 2 particles returned by the Stardust mission has revealed that the Wild 2 dust contains abundant silicate grains that are much larger than interstellar grains and appear to have formed in the inner regions of the solar nebula [1]. Wild 2 particles include minerals which are isotopically and mineralogically similar to CAIs [e.g., 2, 3] and chondrules [e.g., 4] in chondrites. In addition, particles similar to amoeboid olivine aggregates (AOAs) also have been discovered [5, 6,7]. C2067,2,112,1 is a terminal particle recovered from track #112 (T112). Nakamura-Messenger et al. [7] showed that the forsterite grain in T112 has O-16 enrichment of approximately 40 0/00 (vs. SMOW) and possibly formed together with AOAs. In this study, we have examined the mineralogy of the T112 particle and compared the possible relationships between T112 and AOAs in primitive meteorites.

  4. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  5. Phase transition in diffusion limited aggregation with patchy particles in two dimensions

    NASA Astrophysics Data System (ADS)

    Kartha, Moses J.; Sayeed, Ahmed

    2016-08-01

    The influence of patchy interactions on diffusion-limited aggregation (DLA) has been investigated by computer simulations. In this model, the adsorption of the particle is irreversible, but the adsorption occurs only when the 'sticky patch' makes contact with the sticky patch of a previously adsorbed particle. As we vary the patch size, growth rate of the cluster decreases, and below a well-defined critical patch size, pc the steady state growth rate goes to zero. The system reaches an absorbing phase producing a non-equilibrium continuous phase transition. The order parameter close to the critical value of the patch size shows a power law behavior ρ (∞) ∼(p -pc) β, where β = 0.2840. We have found that the value of the critical exponent convincingly shows that this transition in patchy DLA belongs to the directed percolation universality class.

  6. Identification and characterization of five intramembrane metalloproteases in Anabaena variabilis.

    PubMed

    Chen, Kangming; Gu, Liping; Xiang, Xianling; Lynch, Michael; Zhou, Ruanbao

    2012-11-01

    Regulated intramembrane proteolysis (RIP) involves cleavage of a transmembrane segment of a protein, releasing the active form of a membrane-anchored transcription factor (MTF) or a membrane-tethered signaling protein in response to an extracellular or intracellular signal. RIP is conserved from bacteria to humans and governs many important signaling pathways in both prokaryotes and eukaryotes. Proteases that carry out these cleavages are named intramembrane cleaving proteases (I-CLips). To date, little is known about I-CLips in cyanobacteria. In this study, five putative site-2 type I-Clips (Ava_1070, Ava_1730, Ava_1797, Ava_3438, and Ava_4785) were identified through a genome-wide survey in Anabaena variabilis. Biochemical analysis demonstrated that these five putative A. variabilis site-2 proteases (S2Ps(Av)) have authentic protease activities toward an artificial substrate pro-σ(K), a Bacillus subtilis MTF, in our reconstituted Escherichia coli system. The enzymatic activities of processing pro-σ(K) differ among these five S2Ps(Av). Substitution of glutamic acid (E) by glutamine (Q) in the conserved HEXXH zinc-coordinated motif caused the loss of protease activities in these five S2Ps(Av), suggesting that they belonged to the metalloprotease family. Further mapping of the cleaved peptides of pro-σ(K) by Ava_4785 and Ava_1797 revealed that Ava_4785 and Ava_1797 recognized the same cleavage site in pro-σ(K) as SpoIVFB, a cognate S2P of pro-σ(K) from B. subtilis. Taking these results together, we report here for the first time the identification of five metallo-intramembrane cleaving proteases in Anabaena variabilis. The experimental system described herein should be applicable to studies of other RIP events and amenable to developing in vitro assays for I-CLips. PMID:22961855

  7. Regulation of amniotic fluid volume: mathematical model based on intramembranous transport mechanisms

    PubMed Central

    Anderson, Debra F.; Cheung, Cecilia Y.

    2014-01-01

    Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. PMID:25186112

  8. Regulation of amniotic fluid volume: mathematical model based on intramembranous transport mechanisms.

    PubMed

    Brace, Robert A; Anderson, Debra F; Cheung, Cecilia Y

    2014-11-15

    Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. PMID:25186112

  9. Effects of Ultrasound on Behavior of Fine Solid Particles in Solid-Liquid Mixture (Classification of Particle Aggregation and Sound Pressure Profiles under Horizontal Irradiation)

    NASA Astrophysics Data System (ADS)

    Ohta, Junichi; Nakano, Hiroyuki

    Particles in a liquid under standing ultrasonic waves have been known to aggregate. However, particle aggregation behavior remains unclear. Thus, ultrasonic waves horizontally irradiated particles in tap water or degassed water with a relatively large disk-type acoustic transducer. We observed the particle behavior and measured the sound pressure profiles. The following results were obtained. The behavior of particles in water under ultrasonic waves was classified as “band”, “point”, “particle clump”, and “non-aggregation”. Experimental conditions producing “band”, “point”, “particle clump”, and “non-aggregation” in tap water were found to be different from those in degassed water. Moreover, the point aggregations at a frequency f of 96.3 kHz were observed at many more locations (higher spatial density) than those at a frequency f of 23 kHz. The sound pressure profile for f = 96.3 kHz had many more peaks than that for f = 23 kHz in the vertical direction, which corresponds to the spatial densities of the point aggregation.

  10. Validity of Particle-Counting Method Using Laser-Light Scattering for Detecting Platelet Aggregation in Diabetic Patients

    NASA Astrophysics Data System (ADS)

    Nakadate, Hiromichi; Sekizuka, Eiichi; Minamitani, Haruyuki

    We aimed to study the validity of a new analytical approach that reflected the phase from platelet activation to the formation of small platelet aggregates. We hoped that this new approach would enable us to use the particle-counting method with laser-light scattering to measure platelet aggregation in healthy controls and in diabetic patients without complications. We measured agonist-induced platelet aggregation for 10 min. Agonist was added to the platelet-rich plasma 1 min after measurement started. We compared the total scattered light intensity from small aggregates over a 10-min period (established analytical approach) and that over a 2-min period from 1 to 3 min after measurement started (new analytical approach). Consequently platelet aggregation in diabetics with HbA1c ≥ 6.5% was significantly greater than in healthy controls by both analytical approaches. However, platelet aggregation in diabetics with HbA1c < 6.5%, i.e. patients in the early stages of diabetes, was significantly greater than in healthy controls only by the new analytical approach, not by the established analytical approach. These results suggest that platelet aggregation as detected by the particle-counting method using laser-light scattering could be applied in clinical examinations by our new analytical approach.

  11. Characterizing Single-Scattering Properties of Snow Aggregate Particles Integrated over Size Distributions in the Microwave Spectrum

    NASA Astrophysics Data System (ADS)

    Kuo, K.; Van Aartsen, B.; Haddad, Z. S.; Tanelli, S.; Skofronick Jackson, G.; Olson, W. S.

    2012-12-01

    Approximately 7000 snow aggregate particles have been synthesized, using a heuristic aggregation algorithm, from 9 realistic snowflake habits simulated using the now famous Snowfake ice crystal growth model. These particles exhibit mass-dimension relations consistent with those derived from observations. In addition, ranging from 0.1 to 3.5 mm in liquid-equivalent diameter, the sizes of these particle cover ranges wide enough for assemblies of realistic particle size distributions. The single-scattering properties, such as scattering/absorption/extinction/backscatter cross sections, single-scattering albedo, asymmetry factor, as well as the scattering matrix, are obtained for each aggregate particle using the discrete-dipole approximation (DDA) code DDSCAT at 13 microwave frequencies, ranging from 10 to 190 GHz. Preliminary radiative transfer calculations show that the single-scattering properties so obtained yield much more reasonable brightness temperatures than those derived from "fluffy sphere" Mie approximations. However, in order to achieve better retrievals involving these complex particles, we need to be able to characterize their single-scattering with only a few parameters. In this study, we present such an attempt using a pair of generalized effective radii, expressed as ratios of particle volume to particle surface area and to orientation-averaged particle cross section, in addition to mass content. It is shown that these effective radii are indeed effective in characterizing the PSD-integrated single-scattering properties of these complex particles. Pristine ice crystals simulated using the "Snowfake" ice crystal growth mode (3rd row from top) and example aggregates generated using the corresponding pristine particles (bottom 3 rows, i.e. 4th to 6th rows from top).

  12. The aggregation and diffusion of asphaltenes studied by GPU-accelerated dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Sibo; Xu, Junbo; Wen, Hao

    2014-12-01

    The heavy crude oil consists of thousands of compounds and much of them have large molecular weights and complex structures. Studying the aggregation and diffusion behavior of asphaltenes can facilitate the understanding of the heavy crude oil. In previous studies, the fused aromatic rings were treated as rigid bodies so that dissipative particle dynamics (DPD) integrated with the quaternion method can be used to study asphaltene systems. In this work, DPD integrated with the quaternion method is implemented on graphics processing units (GPUs). Compared with the serial program, tens of times speedup can be achieved when simulations performed on a single GPU. Using multiple GPUs can provide faster computation speed and more storage space for simulations of significant large systems. By using large systems, simulations of the asphaltene-toluene system at extremely dilute concentrations can be performed. The determined diffusion coefficients of asphaltenes are similar to that in experimental studies. At last, the aggregation behavior of asphaltenes in heptane was investigated, and the simulation results agreed with the modified Yen model. Monomers, nanoaggregates and clusters were observed from the simulations at different concentrations.

  13. Optical properties of the semi-external mixture composed of sulfate particle and different quantities of soot aggregates

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-08-01

    The effects of soot aggregate quantities on the optical properties of their semi-external mixture with sulfate host particle were investigated. In this study, the individual soot-containing mixtures were simulated as sulfate host point-contact attached to a specified amount of soot aggregates with the same monomer numbers and fractal parameters. The total numbers and volumes of soot monomers were also constant. Optical properties of this type of aerosol mixture were calculated using the numerically exact superposition T-matrix method (STM). The random-orientation averaging results indicated that the optical properties of the soot-containing mixtures may be influenced by the soot aggregate quantities. In these simulations, the absorption Ångström exponent (AÅE) values ranged from 0.9 to 1.1, which agree with the observations. The relative deviations of scattering Ångström exponent (SÅE) values between different numbers of soot aggregates attached to the surface of a sulfate host were upwards of ~11%. The results showed that the greater number of attached soot aggregates may lead to smaller SÅE values in the soot-containing mixtures. For most cases of simulated mixtures, a more compact morphology of soot aggregates, larger soot monomer radii and smaller soot volume fractions (Fsoot) may also generate smaller SÅE values. Moreover, in the visible range, the simulated scattering cross sections of soot-containing mixtures with two, three, four, and six soot aggregates (Df=1.8) were ~5%, ~10%, ~15%, and ~30% larger than those with only one soot aggregate, respectively, on the condition that volumes of soot and sulfate are comparable. However, these relative deviations between different numbers of attached soot aggregates on the scattering cross sections of mixtures may be weakened for larger volume of non-absorbing sulfate particle (<5% for the cases of Fsoot=1/10, sulfate volume is 9 times of soot).

  14. Structural Characterization of IgG1 mAb Aggregates and Particles Generated under Various Stress Conditions

    PubMed Central

    Telikepalli, Srivalli N.; Kumru, Ozan S.; Kalonia, Cavan; Esfandiary, Reza; Joshi, Sangeeta B.; Middaugh, C. Russell; Volkin, David B.

    2014-01-01

    IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size exclusion chromatography (SEC), Nanosight Tracking Analysis (NTA), Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles. In general, the presence of NaCl enhanced this effect. The morphology of the particles formed from mAb samples exposed to different stresses was analyzed from TEM and MFI images. Shaking samples without NaCl generated the most fibrillar particles, while stirring created largely spherical particles. The composition of the particles was evaluated for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles containing protein with native-like secondary structure. Heating and stirring produced IgG1 containing aggregates and particles with some non-native disulfide crosslinks, varying levels of intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight the importance of evaluating protein particle morphology and composition, in addition to particle number and size distributions, to better understand the effect of solution conditions and environmental stresses on the formation of protein particles in mAb solutions. PMID:24452866

  15. Transport and Aggregation of Nanoparticles in Packed Beds: Effects of Pore Velocity and Initially-Fed Particle Size on Transient Particle Size Distributions

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2015-11-01

    Aggregation of colloidal particles in flow through porous media has received careful consideration, as it reduces particle breakthrough due to pore clogging and sedimentation. Additionally, in unstable colloidal systems, deposition of colloidal aggregates on the pore surfaces can create sub-surfaces for further colloidal attachment. This phenomenon is known as ripening effect. In this study, transient particle size distributions of nano-particle systems, propagating in a bed packed with spheres are numerically investigated. In our simulation, only pair interactions are considered, and the aggregation rate is varied with the relative position of two particles in a pair. The packed bed consists of spheres of known size, randomly packed in a simulation box. To generate the velocity field of water inside the porous medium, the lattice Boltzmann method (LBM) is used. In conjunction with that, the trajectories of thousands of massless particles moving with the flow under convection and diffusion are recorded employing a Lagrangian framework. While pore clogging is neglected, we draw attention to the change of the distribution of particle size under different pore velocities and different initially-fed particle sizes.

  16. Aggregate morphology of nano-TiO2: role of primary particle size, solution chemistry, and organic matter.

    PubMed

    Chowdhury, Indranil; Walker, Sharon L; Mylon, Steven E

    2013-01-01

    A systematic investigation was conducted to understand the role of aquatic conditions on the aggregate morphology of nano-TiO2, and the subsequent impact on their fate in the environment. In this study, three distinctly sized TiO2 nanoparticles (6, 13, and 23 nm) that had been synthesized with flame spray pyrolysis were employed. Nanoparticle aggregate morphology was measured using static light scattering (SLS) over a wide range of solution chemistry, and in the presence of natural organic matter (NOM). Results showed that primary nanoparticle size can significantly affect the fractal dimension of stable aggregates. A linear relationship was observed between surface areas of primary nanoparticles and fractal dimension indicating that smaller primary nanoparticles can form more compact aggregate in the aquatic environment. The pH, ionic strength, and ion valence also influenced the aggregate morphology of TNPs. Increased pH resulted a decrease in fractal dimension, whereas higher ionic strength resulted increased fractal dimension particularly for monovalent ions. When NOM was present, aggregate fractal dimension was also affected, which was also notably dependent on solution chemistry. Fractal dimension of aggregate increase for 6 nm system in the presence of NOM, whereas a drop in fractal dimension was observed for 13 nm and 23 nm aggregates. This effect was most profound for aggregates comprised of the smallest primary particles suggesting that interactions of NOM with smaller primary nanoparticles are more significant than those with larger ones. The findings from this study will be helpful for the prediction of nanoparticle aggregate fate in the aquatic environment. PMID:24592445

  17. The thermal aggregation of ovalbumin as large particles decreases its allergenicity for egg allergic patients and in a murine model.

    PubMed

    Claude, M; Lupi, R; Bouchaud, G; Bodinier, M; Brossard, C; Denery-Papini, S

    2016-07-15

    Most egg-allergic children can tolerate extensively cooked eggs. Ovalbumin, a major allergen in egg whites, is prone to aggregate upon heating. This study compares ovalbumin's allergenicity when it is aggregated as large particles to ovalbumin in its native form. Immunoglobulins (Ig)-binding and the degranulation capacities of native and aggregated ovalbumin were measured with sera from egg-allergic children and from mice sensitized to native or aggregated ovalbumin. The influence of ovalbumin structure on Ig production upon sensitization and elicitation potency by challenge was also studied. We showed that heat aggregation of ovalbumin as large particles enhances IgG production and promotes IgG2a production (a shift toward the T helper 1 profile). Aggregated ovalbumin displayed lower Ig-binding and basophil-activation capacities for sera from both allergic patients and mice. This work illustrates the links between ovalbumin structure after heating and allergenicity potential using parameters from both the sensitization and elicitation phases of the allergic reaction. PMID:26948598

  18. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    NASA Astrophysics Data System (ADS)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  19. Approach to theoretical estimation of the activation energy of particle aggregation taking ionic nonclassic polarization into account

    NASA Astrophysics Data System (ADS)

    Li, Qinyi; Tang, Ying; He, Xinhua; Li, Hang

    2015-10-01

    The activation energy of particle aggregation in suspensions is a very important kinetic parameter in a wide range of science and engineering applications. At present, however, there is no theory that can theoretically predict the activation energy. Because the activation energy is often less than 10 kT (where k is the Boltzmann constant and T is the temperature), it is difficult to experimentally measure. In this study, a theory for calculating the activation energy is established. Experimental measurements of the activation energy of montmorillonite aggregation were performed with different electrolyte and particle concentrations using the dynamic light scattering (DLS) technique. The validity of the theory was verified by the experiments. This study confirmed that both the method for activation energy measurements by DLS and the theory for its calculation can be applied to suspensions of polydisperse nonspherical particles. The average kinetic energy at the moment of particle collision in the aggregation process was found to be 0.2 kT, which is less than the instantaneous kinetic energy of a Brownian particle (0.5 kT) because of the viscous resistance of the water medium. This study also shows that adsorbed Na+ is strongly polarized in the electric field near the particle surface, and the polarization increases the effective charge of Na+ from +1 to +1.18.

  20. Particle Restabilization in Silica/PEG/Ethanol Suspensions: How Strongly do Polymers Need To Adsorb To Stabilize Against Aggregation?

    SciTech Connect

    Kim, So Youn; Zukoski, Charles F.

    2014-09-24

    We study the effects of increasing the concentration of a low molecular weight polyethylene glycol on the stability of 44 nm diameter silica nanoparticles suspended in ethanol. Polymer concentration, c{sub p}, is increased from zero to that characterizing the polymer melt. Particle stability is accessed through measurement of the particle second-virial coefficient, B{sub -2}, performed by light scattering and ultrasmall angle X-ray scattering (USAXS). The results show that at low polymer concentration, c{sub p} < 3 wt %, B{sub -2} values are positive, indicating repulsive interactions between particles. B{sub -2} decreases at intermediate concentrations (3 wt % < c{sub p} < 50 wt %), and particles aggregates are formed. At high concentrations (50 wt % < c{sub p}) B{sub -2} increases and stabilizes at a value expected for hard spheres with a diameter near 44 nm, indicating the particles are thermodynamically stable. At intermediate polymer concentrations, rates of aggregation are determined by measuring time-dependent changes in the suspension turbidity, revealing that aggregation is slowed by the necessity of the particles diffusing over a repulsive barrier in the pair potential. The magnitude of the barrier passes through a minimum at c{sub p} {approx} 12 wt % where it has a value of {approx}12kT. These results are understood in terms of a reduction of electrostatic repulsion and van der Waals attractions with increasing c{sub p}. Depletion attractions are found to play a minor role in particle stability. A model is presented suggesting displacement of weakly adsorbed polymer leads to slow aggregation at intermediate concentration, and we conclude that a general model of depletion restabilization may involve increased strength of polymer adsorption with increasing polymer concentration.

  1. Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of Redoubt Volcano, Alaska: highlighting the significance of particle aggregation

    USGS Publications Warehouse

    Wallace, Kristi; Coombs, Michelle L; Schaefer, Janet R.

    2013-01-01

    Particle size data showing a preponderance of fine ash, even in the most proximal locations, along with the abundance of aggregate lapilli documented in most samples, confirms that particle aggregation played a significant role in the 2009 eruption and induced premature fallout of fine ash.

  2. Dispersion/Aggregation of polymer grafted nanorods in a polymer matrix studied by Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Maia, Joao; Khani, Shaghayegh

    2015-03-01

    Nanorods are incorporated into polymer matrices for fabricating composite materials with enhanced physical and mechanical properties.The final macroscopic properties of the composites are directly related to the dispersion and organization of the nanoparticles in the matrix. For instance, a significant improvement in the mechanical properties of the nanorod-polymer composites is observed upon formation of a percolating network. One way of controlling the assembly of nanorods in the polymer medium is adjusting the chemical interactions which is done through grafting polymer chains on the surface of the rods. The recent developments in the computational techniques have paved the road for further understanding of the controlled dispersion and aggregation of nanorods in polymer matrices. In this study, Dissipative Particle Dynamics (DPD) is employed in order to investigate the effect of enthalpic and entopic variables on the phase behavior of the abovementioned nanocomposites. In DPD, the interaction parameter between the components of the systems can be mapped onto the Flory-Huggins χ-parameter via well-known Groot-Warren expression. This works studies the effect of the enthalpic and entropic variables on phase transitions. The main goal is to provide a phase diagram than can be used to guide the experiments in designing new materials.

  3. Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations.

    PubMed

    Mao, Runfang; Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2015-09-01

    Using dissipative particle dynamics (DPD) simulations, we explore the specifics of micellization in the solutions of anionic and cationic surfactants and their mixtures. Anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimethylammonium bromide (CTAB) are chosen as characteristic examples. Coarse-grained models of the surfactants are constructed and parameterized using a combination of atomistic molecular simulation and infinite dilution activity coefficient calibration. Electrostatic interactions of charged beads are treated using a smeared charge approximation: the surfactant heads and dissociated counterions are modeled as beads with charges distributed around the bead center in an implicit dielectric medium. The proposed models semiquantitatively describe self-assembly in solutions of SDS and CTAB at various surfactant concentrations and molarities of added electrolyte. In particular, the model predicts a decline in the free surfactant concentration with the increase of the total surfactant loading, as well as characteristic aggregation transitions in single-component surfactant solutions caused by the addition of salt. The calculated values of the critical micelle concentration reasonably agree with experimental observations. Modeling of catanionic SDS-CTAB mixtures show consecutive transitions to worm-like micelles and then to vesicles caused by the addition of CTAB to micellar solution of SDS. PMID:26241704

  4. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.

    PubMed

    Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang

    2016-01-12

    Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude. PMID:26646289

  5. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles.

    PubMed

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-02-01

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50-150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. PMID:25504139

  6. Transparent exopolymer particle production and aggregation by a marine planktonic diatom (Thalassiosira weissflogii) at different growth rates.

    PubMed

    Chen, Jie; Thornton, Daniel C O

    2015-04-01

    Transparent exopolymer particles (TEP) play an important role in the ocean carbon cycle as they are sticky and affect particle aggregation and the biological carbon pump. We investigated the effect of growth rate on TEP production in nitrogen limited semi-continuous cultures of the diatom Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle. Steady-state diatom concentrations and other indicators of biomass (chl a, and total carbohydrate) were inversely related to growth rate, while individual cell volume increased with growth rate. There was no change in total TEP area with growth rate; however, individual TEP were larger at high growth rates and the number of individual TEP particles was lower. TEP concentration per cell was higher at higher growth rates. SYTOX Green staining showed that <5% of the diatom population had permeable cell membranes, with the proportion increasing at low growth rates. However, TEP production rates were greater at high growth rates, refuting our hypothesis that TEP formation is dependent on dying cells with compromised cell membranes in a diatom population. Measurements of particle size distribution in the cultures using laser scattering showed that they were most aggregated at high growth rates. These results indicate a coupling between TEP production and growth rate in diatoms under N limitation, with fast growing T. weissflogii producing more TEP and aggregates. PMID:26986532

  7. Evaluation of Incremental Siliconization Levels on Soluble Aggregates, Submicron and Subvisible Particles in a Prefilled Syringe Product.

    PubMed

    Bai, Shujun; Landsman, Pavel; Spencer, Andrea; DeCollibus, Daniel; Vega, Fabian; Temel, Deniz B; Houde, Damian; Henderson, Olivia; Brader, Mark L

    2016-01-01

    The evaluation of stability with respect to particles in prefilled syringes is complicated by the presence of silicone oil. The mobility, colloidal characteristics, and kinetic instability of silicone oil in contact with a protein formulation may be influenced in unpredictable ways by pharmaceutical variables, storage, and handling conditions. To provide insight into the impact of these variables on silicone oil originating specifically from the siliconized prefillable syringe (PFS), a series of studies were conducted at incremental syringe barrel siliconization levels. Size-exclusion chromatography and particle counting methods were used to quantitate soluble aggregates and submicron and subvisible particles in peginterferon beta-1a in a PFS siliconized with a fixed nozzle spray-on siliconization process. The effect of silicone oil on the peginterferon beta-1a molecule was examined under pharmaceutically relevant conditions, accelerated degradation, and under denaturing conditions. Resonant mass measurement was used to discriminate silicone oil from protein particles establishing that silicone oil does not mask adverse trends in non-silicone oil particles. The peginterferon beta-1a molecule was shown to be stable in the presence of silicone oil and robust with respect to the formation of soluble aggregates and submicron and subvisible particles in its PFS siliconized over the range of 0-1.2 mg silicone oil per syringe barrel. PMID:26852839

  8. A MD Simulation and Analysis for Aggregation Behaviors of Nanoscale Zero-Valent Iron Particles in Water via MS

    PubMed Central

    Liu, Dongmei; Tang, Huan; Lu, Jing; Cui, Fuyi

    2014-01-01

    With the development of nanotechnology, more nanomaterials will enter into water environment system. Studying the existing form of nanomaterials in water environment will help people benefit from the correct use of them and to reduce the harm to human caused by them for some nanomaterials can bring polluting effect. Aggregation is a main behavior for nanoparticle in water environment. NZVI are used widely in many fields resulting in more NZVI in water environment. Molecular dynamics simulations and Materials Studio software are used to investigate the microaggregation behaviors of NZVI particles. Two scenes are involved: (1) particle size of NZVI in each simulation system is the same, but initial distance of two NZVI particles is different; (2) initial distance of two NZVI particles in each simulation system is the same, but particle size of NZVI is different. Atomistic trajectory, NP activity, total energy, and adsorption of H2O are analyzed with MS. The method provides new quantitative insight into the structure, energy, and dynamics of the aggregation behaviors of NZVI particles in water. It is necessary to understand microchange of NPs in water because it can provide theoretical research that is used to reduce polluting effect of NPs on water environment. PMID:25250388

  9. Crystal Structure of a Rhomboid Family Intramembrane Protease.

    SciTech Connect

    Wang,Y.; Zhang, Y.; Ha, Y.

    2006-01-01

    Escherichia coli GlpG is an integral membrane protein that belongs to the widespread rhomboid protease family. Rhomboid proteases, like site-2 protease (S2P) and {gamma}-secretase, are unique in that they cleave the transmembrane domain of other membrane proteins. Here we describe the 2.1 {angstrom} resolution crystal structure of the GlpG core domain. This structure contains six transmembrane segments. Residues previously shown to be involved in catalysis, including a Ser-His dyad, and several water molecules are found at the protein interior at a depth below the membrane surface. This putative active site is accessible by substrate through a large 'V-shaped' opening that faces laterally towards the lipid, but is blocked by a half-submerged loop structure. These observations indicate that, in intramembrane proteolysis, the scission of peptide bonds takes place within the hydrophobic environment of the membrane bilayer. The crystal structure also suggests a gating mechanism for GlpG that controls substrate access to its hydrophilic active site.

  10. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates.

    PubMed

    Tan, Jiaojie; Liu, Jingyu; Li, Mingdong; El Hadri, Hind; Hackley, Vincent A; Zachariah, Michael R

    2016-09-01

    The novel hyphenation of electrospray-differential mobility analysis with single particle inductively coupled plasma mass spectrometry (ES-DMA-spICPMS) was demonstrated with the capacity for real-time size, mass, and concentration measurement of nanoparticles (NPs) on a particle-to-particle basis. In this proof-of-concept study, the feasibility of this technique was validated through both concentration and mass calibration using NIST gold NP reference materials. A detection limit of 10(5) NPs mL(-1) was determined under current experimental conditions, which is about 4 orders of magnitude lower in comparison to that of a traditional ES-DMA setup using a condensation particle counter as detector. Furthermore, independent and simultaneous quantification of both size and mass of NPs provides information regarding NP aggregation states. Two demonstrative applications include gold NP mixtures with a broad size range (30-100 nm), and aggregated gold NPs with a primary size of 40 nm. Finally, this technique was shown to be potentially useful for real-world samples with high ionic background due to its ability to remove dissolved ions yielding a cleaner background. Overall, we demonstrate the capacity of this new hyphenated technique for (1) clearly resolving NP populations from a mixture containing a broad size range; (2) accurately measuring a linear relationship, which should inherently exist between mobility size and one-third power of ICPMS mass for spherical NPs; (3) quantifying the early stage propagation of NP aggregation with well-characterized oligomers; and (4) differentiating aggregated NPs and nonaggregated states based on the "apparent density" derived from both DMA size and spICPMS mass. PMID:27479448

  11. Platelet-adenovirus vs. inert particles interaction: effect on aggregation and the role of platelet membrane receptors.

    PubMed

    Gupalo, Elena; Kuk, Cynthia; Qadura, Mohammad; Buriachkovskaia, Liudmila; Othman, Maha

    2013-01-01

    Platelets are involved in host defense via clearance of bacteria from the circulation, interaction with virus particles, and uptake of various size particulates. There is a growing interest in micro- and nanoparticles for drug delivery and there is evidence that the properties of these particles critically influence their interaction and uptake by various tissues and cells including platelets. Virus mediated gene therapy applications are still challenged by the resultant thrombocytopenia and the mechanism(s) of platelet-foreign particles interaction remains unclear. We studied the specifics of platelet interaction with an active biological agent (adenovirus) and inert latex microspheres (MS) and investigated the role of platelet proteins in this interaction. We show that activated and not resting platelets internalize MS, without influencing platelet aggregation. In contrast, adenovirus induces and potentiates ADP-induced platelet aggregation and results in rapid expression of P-selectin. Platelets then internalize adenovirus and viral particles appear inside the open canalicular system. Inhibition of platelet αIIbβ3, GPIbα, and P-selectin decreases both platelet aggregation and internalization of MS. Inhibition of αIIbβ3 and αVβ3 does not abolish adenovirus platelet internalization and adenovirus-induced platelet activation is maintained. Our study demonstrates that platelets react differentially with foreign particles and that αIIbβ3 is a key player in platelet engulfing of foreign particles but not in mediating adenovirus internalization. Other platelet candidate molecules remain to be investigated as potential targets for management of adenovirus-induced thrombocytopenia. PMID:22812520

  12. Effect of aggregation, morphology and mixing state on optical properties of bare and internally mixed Black Carbon particles

    NASA Astrophysics Data System (ADS)

    Scarnato, Barbara; China, Swarup; Mazzoleni, Claudio

    2014-05-01

    Black carbon (BC) is a small, dark particle that warms Earth's climate. BC is a distinct type of carbonaceous aerosol particle, product of combustion of fossil and biomass fuels. Upon emission into the atmosphere, BC internally mixes with other aerosol compounds. According to recent studies, internal mixing of BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. Laboratory and field studies have identified a strong variability in the observed absorption efficiencies of internally mixed BC. Additionally, there is a discrepancy between modeled and measured values using traditional modeling approaches. This talk will investigate the central role of parameterization of light interaction by BC particles in the assessment of its radiative forcing and present a sensitivity study of the effect of aggregation, morphology and mixing state on optical properties of bare and internally mixed BC with mineral dust, ammonium sulfate, sodium chloride and others. Optical properties of the different mixtures, sampled both in field campaigns and laboratory environment, are computed using Discrete Dipole Approximation model in accordance with BC aggregation, morphology and mixing observed at microscopes. The results of this work are relevant for several applications in atmospheric science, including but not limited to radiative transfer calculations, regional and global climate modeling and, the interpretation of remote sensing measurements.

  13. Importance of aggregation and small ice crystals in cirrus clouds, based on observations and an ice particle growth model

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John

    1993-01-01

    The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.

  14. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.

    PubMed

    Eggersdorfer, M L; Gröhn, A J; Sorensen, C M; McMurry, P H; Pratsinis, S E

    2012-12-01

    Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area, and density. Here, zirconia (ZrO(2)) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO(2) and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number, and surface area mean diameter of primary particles, d(va)). The d(va) determined by DMA-APM measurements and this power law is in good agreement with the d(va) obtained by ex situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g., precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively. PMID:22959835

  15. Mass-Mobility Characterization of Flame-made ZrO2 Aerosols: Primary Particle Diameter & Extent of Aggregation

    PubMed Central

    Eggersdorfer, M.L.; Gröhn, A.J.; Sorensen, C.M.; McMurry, P.H.; Pratsinis, S.E.

    2013-01-01

    Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area and density. Here, zirconia (ZrO2) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in-situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO2 and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number and surface area mean diameter of primary particles, dva). The dva determined by DMA-APM measurements and this power law is in good agreement with the dva obtained by ex-situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g. precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively. PMID:22959835

  16. The effect of insulin-loaded chitosan particle-aggregated scaffolds in chondrogenic differentiation.

    PubMed

    Malafaya, Patrícia B; Oliveira, João T; Reis, Rui L

    2010-02-01

    Osteochondral defect repair requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using a scaffold-cell construct. One ideal approach would be to engineer in vitro a hybrid material using a single-cell source. For that purpose, the scaffold should be able to provide the adequate biochemical cues to promote the selective but simultaneous differentiation of both tissues. In this work, attention was paid primarily to the chondrogenic differentiation by focusing on the development of polymeric systems that provide biomolecules release to induce chondrogenic differentiation. For that, different formulations of insulin-loaded chitosan particle-aggregated scaffolds were developed as a potential model system for cartilage and osteochondral tissue engineering applications using insulin as a potent bioactive substance known to induce chondrogenic differentiation. The insulin encapsulation efficiency was shown to be high with values of 70.37 +/- 0.8%, 84.26 +/- 1.76%, and 87.23 +/- 1.58% for loadings of 0.05%, 0.5%, and 5%, respectively. The in vitro release profiles were assessed in physiological conditions mimicking the cell culture procedures and quantified by Micro-BCA protein assay. Different release profiles were obtained that showed to be dependent on the initial insulin-loading percentage. Further, the effect on prechondrogenic ATDC5 cells was investigated for periods up to 4 weeks by studying the influence of these release systems on cell morphology, DNA and glycosaminoglycan content, histology, and gene expression of collagen types I and II, Sox-9, and aggrecan assessed by real-time polymerase chain reaction. When compared with control conditions (unloaded scaffolds cultured with the standard chondrogenic-inducing medium), insulin-loaded scaffolds upregulated the Sox-9 and aggrecan expression after 4 weeks of culture. From the overall results, it is reasonable to

  17. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles

    PubMed Central

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-01-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals. PMID:26177695

  18. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles.

    PubMed

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-01-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals. PMID:26177695

  19. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles

    NASA Astrophysics Data System (ADS)

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-07-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals.

  20. X-ray mapping technique: a preliminary study in discriminating gunshot residue particles from aggregates of environmental occupational origin.

    PubMed

    Cardinetti, Bruno; Ciampini, Claudio; D'Onofrio, Carlo; Orlando, Giovanni; Gravina, Luciano; Ferrari, Francesco; Di Tullio, Donatello; Torresi, Luca

    2004-06-30

    The possibility of detection of lead-antimony-barium aggregates from non-firearm sources is confirmed according to the tests performed on brake pads, and firework and automobile workers. Moreover, information on particles taken from cartridge cases shows the relative feeble importance of the morphology in distinguishing gunshot residues (GSRs). Furthermore, also the presence in the spectrum of other elements (e.g., iron) is not so conclusive. In this panorama, the possibility of discriminating gunshot residue particles from other non-firearm lead-antimony-barium aggregates is investigated: the proposed method is based on X-ray mapping technique--currently applied used in Reparto Carabinieri Investigazioni Scientifiche in Rome, the forensic service of Italian Carabinieri--according to which the spatial distribution of the emission energy of each element of the sample is pictured. Gunshot residues present the same lead-antimony-barium distribution (or at least the same antimony-barium distribution with lead nodules), as some other environmental occupational aggregates do not (different plaques of lead, antimony, and barium). So, X-ray mapping technique can offer a new fundamental evaluation parameter in analysis of gunshot residues with scanning electron microscopy/energy-dispersive (SEM/EDS) spectrometry, and new standards could be considered. PMID:15177626

  1. Mathematical modeling of electro-rotation spectra of small particles in liquid solutions: application to human erythrocyte aggregates.

    PubMed

    Zehe, A; Ramírez, A; Starostenko, O

    2004-02-01

    Electro-rotation can be used to determine the dielectric properties of cells, as well as to observe dynamic changes in both dielectric and morphological properties. Suspended biological cells and particles respond to alternating-field polarization by moving, deforming or rotating. While in linearly polarized alternating fields the particles are oriented along their axis of highest polarizability, in circularly polarized fields the axis of lowest polarizability aligns perpendicular to the plane of field rotation. Ellipsoidal models for cells are frequently applied, which include, beside sphere-shaped cells, also the limiting cases of rods and disks. Human erythrocyte cells, due to their particular shape, hardly resemble an ellipsoid. The additional effect of rouleaux formation with different numbers of aggregations suggests a model of circular cylinders of variable length. In the present study, the induced dipole moment of short cylinders was calculated and applied to rouleaux of human erythrocytes, which move freely in a suspending conductive medium under the effect of a rotating external field. Electro-rotation torque spectra are calculated for such aggregations of different length. Both the maximum rotation speeds and the peak frequencies of the torque are found to depend clearly on the size of the rouleaux. While the rotation speed grows with rouleaux length, the field frequency nu(p) is lowest for the largest cell aggregations where the torque shows a maximum. PMID:14762571

  2. Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms

    PubMed Central

    Urban, Sinisa

    2009-01-01

    PREFACE Proteolysis in cellular membranes to liberate effector domains from their transmembrane anchors is a well-studied regulatory mechanism in animal biology and disease. By contrast, the function of intramembrane proteases in unicellular organisms has received little attention. Recent progress has now established that intramembrane proteases execute pivotal roles in a range of pathogens, from regulating Mycobacterium tuberculosis envelope composition, cholera toxin production, bacterial adherence and conjugation, to malaria parasite invasion, fungal virulence, immune evasion by parasitic amoebae and hepatitis C virus assembly. These advances raise the exciting possibility that intramembrane proteases may serve as targets for combating a wide range of infectious diseases. I focus on summarizing the advances, evaluating the limitations and highlighting the promise of this newly emerging field. PMID:19421188

  3. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    SciTech Connect

    Rajnak, Michal; Kopcansky, Peter; Timko, Milan; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj

    2015-08-17

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  4. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj; Kopcansky, Peter; Timko, Milan

    2015-08-01

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  5. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2010-05-01

    Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a

  6. Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.

    SciTech Connect

    Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

    2007-02-20

    We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

  7. Zn(II) and Cu(II) adsorption and retention onto iron oxyhydroxide nanoparticles: effects of particle aggregation and salinity

    PubMed Central

    2014-01-01

    Background Iron oxyhydroxides are commonly found in natural aqueous systems as nanoscale particles, where they can act as effective sorbents for dissolved metals due to their natural surface reactivity, small size and high surface area. These properties make nanoscale iron oxyhydroxides a relevant option for the remediation of water supplies contaminated with dissolved metals. However, natural geochemical processes, such as changes in ionic strength, pH, and temperature, can cause these particles to aggregate, thus affecting their sorption capabilities and remediation potential. Other environmental parameters such as increasing salinity may also impact metal retention, e.g. when particles are transported from freshwater to seawater. Results After using synthetic iron oxyhydroxide nanoparticles and nanoparticle aggregates in batch Zn(II) adsorption experiments, the addition of increasing concentrations of chloride (from 0.1 M to 0.6 M) appears to initially reduce Zn(II) retention, likely due to the desorption of outer-sphere zinc surface complexes and subsequent formation of aqueous Zn-Cl complexes, before then promoting Zn(II) retention, possibly through the formation of ternary surface complexes (supported by EXAFS spectroscopy) which stabilize zinc on the surface of the nanoparticles/aggregates. In batch Cu(II) adsorption experiments, Cu(II) retention reaches a maximum at 0.4 M chloride. Copper-chloride surface complexes are not indicated by EXAFS spectroscopy, but there is an increase in the formation of stable aqueous copper-chloride complexes as chloride concentration rises (with CuCl+ becoming dominant in solution at ~0.5 M chloride) that would potentially inhibit further sorption or encourage desorption. Instead, the presence of bidentate edge-sharing and monodentate corner-sharing complexes is supported by EXAFS spectroscopy. Increasing chloride concentration has more of an impact on zinc retention than the mechanism of nanoparticle aggregation, whereas

  8. Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano

    SciTech Connect

    Carey, S.N.; Sigurdsson, H.

    1982-08-10

    The May 18, 1980, eruption of Mount St. Helens (MSH) produced an extensive ashfall deposit in Washington, Idaho, and Montana with a minimum volume of 0.55 km/sup 3/ (tephra). An unusual feature of the deposit is the occurrence of a second thickness maximum 325 km ENE of MSH near Ritzville, Washington. Grain size and component abundance analysis of samples along the main is very fine grained (mean size, 2 ..mu..m), poorly sorted, polymodal, and rich in glass shards and pumice fragments. A computer simulation of ash fallout from an atmospherically dispersed eruption plume was developed to evaluate various hypotheses for the origin of the distal ash characteristics, particularly the thickness versus distance relationship. The model was constrained by observations of the eruption column height, elevation of major ash transport, lateral spreading of the eruption plume, and atmospheric wind structure in the vicinity of MSH. Results of different simulations indicate that the second thickness maximum cannot be attributed to either decreased wind velocities over central Washington or injection of fine ash above the horizontal wind velocity maximum near the tropopause. For the model to fit the observed characteristics of the deposit, significant particle aggregation of ash finer than 63 ..mu..m must be invoked. The best fit occurs when ash less than 63 ..mu..m is aggregated into particles several hundred microns in diameter with a settling velocity of 0.35 m/s. Support for this process comes from the observation and collection of fragile ash clusters of similar size which fell at Pullman, Washington, during the May 18 eruption (Sorem, 1982). The premature fallout of fine ash as particle aggregates is a fundamental process in the origin of the grain size characteristics, variations in component abundances, and thickness versus distance relationship of the May 18 MSH ash fall deposit.

  9. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates

    NASA Astrophysics Data System (ADS)

    Van Liedekerke, P.; Ghysels, P.; Tijskens, E.; Samaey, G.; Smeedts, B.; Roose, D.; Ramon, H.

    2010-06-01

    This paper is concerned with addressing how plant tissue mechanics is related to the micromechanics of cells. To this end, we propose a mesh-free particle method to simulate the mechanics of both individual plant cells (parenchyma) and cell aggregates in response to external stresses. The model considers two important features in the plant cell: (1) the cell protoplasm, the interior liquid phase inducing hydrodynamic phenomena, and (2) the cell wall material, a viscoelastic solid material that contains the protoplasm. In this particle framework, the cell fluid is modeled by smoothed particle hydrodynamics (SPH), a mesh-free method typically used to address problems with gas and fluid dynamics. In the solid phase (cell wall) on the other hand, the particles are connected by pairwise interactions holding them together and preventing the fluid to penetrate the cell wall. The cell wall hydraulic conductivity (permeability) is built in as well through the SPH formulation. Although this model is also meant to be able to deal with dynamic and even violent situations (leading to cell wall rupture or cell-cell debonding), we have concentrated on quasi-static conditions. The results of single-cell compression simulations show that the conclusions found by analytical models and experiments can be reproduced at least qualitatively. Relaxation tests revealed that plant cells have short relaxation times (1 µs-10 µs) compared to mammalian cells. Simulations performed on cell aggregates indicated an influence of the cellular organization to the tissue response, as was also observed in experiments done on tissues with a similar structure.

  10. Submillimetre-sized dust aggregate collision and growth properties. Experimental study of a multi-particle system on a suborbital rocket

    NASA Astrophysics Data System (ADS)

    Brisset, J.; Heißelmann, D.; Kothe, S.; Weidling, R.; Blum, J.

    2016-08-01

    Context. In the very first steps of the formation of a new planetary system, dust agglomerates grow inside the protoplanetary disk that rotates around the newly formed star. In this disk, collisions between the dust particles, induced by interactions with the surrounding gas, lead to sticking. Aggregates start growing until their sizes and relative velocities are high enough for collisions to result in bouncing or fragmentation. With the aim of investigating the transitions between sticking and bouncing regimes for colliding dust aggregates and the formation of clusters from multiple aggregates, the Suborbital Particle and Aggregation Experiment (SPACE) was flown on the REXUS 12 suborbital rocket. Aims: The collisional and sticking properties of sub-mm-sized aggregates composed of protoplanetary dust analogue material are measured, including the statistical threshold velocity between sticking and bouncing, their surface energy and tensile strength within aggregate clusters. Methods: We performed an experiment on the REXUS 12 suborbital rocket. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2 particles prepared into aggregates with sizes around 120 μm and 330 μm, respectively and volume filling factors around 0.37. During the experimental run of 150 s under reduced gravity conditions, the sticking of aggregates and the formation and fragmentation of clusters of up to a few millimetres in size was observed. Results: The sticking probability of the sub-mm-sized dust aggregates could be derived for velocities decreasing from ~22 to 3 cm s-1. The transition from bouncing to sticking collisions happened at 12.7+2.1-1.4 cm s-1 for the smaller aggregates composed of monodisperse particles and at 11.5+1.9-1.3 and 11.7+1.9-1.3 cm s-1 for the larger aggregates composed of mono- and polydisperse dust particles, respectively. Using the pull-off force of sub-mm-sized dust aggregates from the clusters, the surface energy of the

  11. Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts

    NASA Astrophysics Data System (ADS)

    Mastin, Larry G.; Van Eaton, Alexa R.; Durant, Adam J.

    2016-07-01

    Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16-17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m-3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between ˜ 2.3 and 2.7φ (0.20-0.15 mm), despite large variations in erupted mass (0.25-50 Tg), plume height (8.5-25 km), mass fraction of fine ( < 0.063 mm) ash (3-59 %), atmospheric temperature, and water content between these eruptions. This close agreement suggests that aggregation may be treated as a discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.

  12. Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River Delta plain, Louisiana, USA

    USGS Publications Warehouse

    Jaisi, D.P.; Ji, S.; Dong, H.; Blake, R.E.; Eberl, D.D.; Kim, J.

    2008-01-01

    River-dominated delta areas are primary sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients. Particle aggregation in these areas primarily controls the deposition of suspended particles, yet factors that control particle aggregation and resulting sedimentation in these environments are poorly understood. This study was designed to investigate the role of microbial Fe(III) reduction and solution chemistry in aggregation of suspended particles in the Mississippi Delta. Three representative sites along the salinity gradient were selected and sediments were collected from the sediment-water interface. Based on quantitative mineralogical analyses 88-89 wt.% of all minerals in the sediments are clays, mainly smectite and illite. Consumption of SO421 and the formation of H2S and pyrite during microbial Fe(III) reduction of the non-sterile sediments by Shewanella putrefaciens CN32 in artificial pore water (APW) media suggest simultaneous sulfate and Fe(III) reduction activity. The pHPZNPC of the sediments was ??? 3.5 and their zeta potentials at the sediment-water interface pH (6.9-7.3) varied from -35 to -45 mV, suggesting that both edges and faces of clay particles have negative surface charge. Therefore, high concentrations of cations in pore water are expected to be a predominant factor in particle aggregation consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Experiments on aggregation of different types of sediments in the same APW composition revealed that the sediment with low zeta potential had a high rate of aggregation. Similarly, addition of external Fe(II) (i.e. not derived from sediments) was normally found to enhance particle aggregation and deposition in all sediments, probably resulting from a decrease in surface potential of particles due to specific Fe(II) sorption. Scanning and transmission electron microscopy (SEM, TEM) images showed predominant face-to-face clay aggregation in native

  13. Injectability of calcium phosphate pastes: Effects of particle size and state of aggregation of β-tricalcium phosphate powders.

    PubMed

    Torres, P M C; Gouveia, S; Olhero, S; Kaushal, A; Ferreira, J M F

    2015-07-01

    The present study discloses a systematic study about the influence of some relevant experimental variables on injectability of calcium phosphate cements. Non-reactive and reactive pastes were prepared, based on tricalcium phosphate doped with 5 mol% (Sr-TCP) that was synthesised by co-precipitation. The varied experimental parameters included: (i) the heat treatment temperature within the range of 800-1100°C; (ii) different milling extents of calcined powders; (iii) the liquid-to-powder ratio (LPR); (iv) the use of powder blends with different particle sizes (PS) and particle size distributions (PSD); (v) the partial replacement of fine powders by large spherical dense granules prepared via freeze granulation method to simulate coarse individual particles. The aim was contributing to better understanding of the effects of PS, PSD, morphology and state of aggregation of the starting powders on injectability of pastes produced thereof. Powders heat treated at 800 and 1000°C with different morphologies but with similar apparent PSD curves obtained by milling/blending originated completely injectable reactive cement pastes at low LPR. This contrasted with non-reactive systems prepared thereof under the same conditions. Hypotheses were put forward to explain why the injectability results collected upon extruding non-reactive pastes cannot be directly transposed to reactive systems. The results obtained underline the interdependent roles of the different powder features and ionic strength in the liquid media on determining the flow and injectability behaviours. PMID:25870171

  14. The partitioning of water in aggregates of undigested and digested dietary particles.

    PubMed

    Hardacre, Allan K; Yap, Sia-Yen; Lentle, Roger G; Janssen, Patrick W M; Monro, John A

    2014-01-01

    The hydration of fibre particles derived from wheat and wood was quantified, before and after in vitro digestion, and compared with fibre particles from the colonic digesta of pigs and from human faeces. Total water and the extra- and intra-particulate water components were determined using a combination of centrifugation, drying, gas pycnometry and image analysis. The water of saturation (WS) of wood particles and AllBran® measured after in vitro digestion was up to double that of wheat fibres after in vitro digestion, and increased with particle size and loss of soluble material, but was not associated with the chemical composition of the fibres. Fibre that had undergone in vitro gastric digestion and that had been recovered from the colon or faeces, sequestered about 3% of the Ws into intra-particulate spaces, the remainder occupying extra-particulate spaces. The authors speculate that large quantities of fibre must be eaten to sequester toxins that locate into the intra-particulate space. PMID:24001864

  15. Dielectrophoretic trapping in microwells for manipulation of single cells and small aggregates of particles.

    PubMed

    Bocchi, M; Lombardini, M; Faenza, A; Rambelli, L; Giulianelli, L; Pecorari, N; Guerrieri, R

    2009-01-01

    In this work we present a novel concept of active microwells based on cylindrical wells able to vertically trap and control single particles by means of negative dielectrophoresis. The device is fabricated by drilling through holes on a polyimide substrate with copper-gold or aluminum metals, forming three annular electrodes within the well. A channel under the device provides a fluid flow filling the microwell by capillarity. Particles are delivered from the top by a microdispenser and applying sinusoidal signals to the electrodes at frequencies ranging from 100kHz to 1.5MHz and amplitudes between 2V and 7V they are successfully trapped and levitated at the level of the central electrode in the middle of microwells with a diameter of 125mum. By changing signal phases, other configurations are also enabled to load particles in the well or eject them from the bottom. The extension to an array of microwells is presented and design rules are described for routing electrode connections and setting signal parameters. K562 cells cultured with Ara-C 1000nM were successfully trapped and controlled in physiological media. Polystyrene beads were also levitated in water and were used for experimental measurements on minimum amplitudes and phase differences in the signals required to levitate beads, confirming the results obtained by simulation. PMID:18755580

  16. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance.

    PubMed

    Avci, Dönem; Fuchs, Shai; Schrul, Bianca; Fukumori, Akio; Breker, Michal; Frumkin, Idan; Chen, Chia-Yi; Biniossek, Martin L; Kremmer, Elisabeth; Schilling, Oliver; Steiner, Harald; Schuldiner, Maya; Lemberg, Marius K

    2014-12-01

    Proteolysis by aspartyl intramembrane proteases such as presenilin and signal peptide peptidase (SPP) underlies many cellular processes in health and disease. Saccharomyces cerevisiae encodes a homolog that we named yeast presenilin fold 1 (Ypf1), which we verify to be an SPP-type protease that localizes to the endoplasmic reticulum (ER). Our work shows that Ypf1 functionally interacts with the ER-associated degradation (ERAD) factors Dfm1 and Doa10 to regulate the abundance of nutrient transporters by degradation. We demonstrate how this noncanonical branch of the ERAD pathway, which we termed "ERAD regulatory" (ERAD-R), responds to ligand-mediated sensing as a trigger. More generally, we show that Ypf1-mediated posttranslational regulation of plasma membrane transporters is indispensible for early sensing and adaptation to nutrient depletion. The combination of systematic analysis alongside mechanistic details uncovers a broad role of intramembrane proteolysis in regulating secretome dynamics. PMID:25454947

  17. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins.

    PubMed

    Fleig, Lina; Bergbold, Nina; Sahasrabudhe, Priyanka; Geiger, Beate; Kaltak, Lejla; Lemberg, Marius K

    2012-08-24

    The ER-associated degradation (ERAD) pathway serves as an important cellular safeguard by directing incorrectly folded and unassembled proteins from the ER to the proteasome. Still, however, little is known about the components mediating ERAD of membrane proteins. Here we show that the evolutionary conserved rhomboid family protein RHBDL4 is a ubiquitin-dependent ER-resident intramembrane protease that is upregulated upon ER stress. RHBDL4 cleaves single-spanning and polytopic membrane proteins with unstable transmembrane helices, leading to their degradation by the canonical ERAD machinery. RHBDL4 specifically binds the AAA+-ATPase p97, suggesting that proteolytic processing and dislocation into the cytosol are functionally linked. The phylogenetic relationship between rhomboids and the ERAD factor derlin suggests that substrates for intramembrane proteolysis and protein dislocation are recruited by a shared mechanism. PMID:22795130

  18. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates.

    PubMed

    Strisovsky, Kvido; Sharpe, Hayley J; Freeman, Matthew

    2009-12-25

    Members of the widespread rhomboid family of intramembrane proteases cleave transmembrane domain (TMD) proteins to regulate processes as diverse as EGF receptor signaling, mitochondrial dynamics, and invasion by apicomplexan parasites. However, lack of information about their substrates means that the biological role of most rhomboids remains obscure. Knowledge of how rhomboids recognize their substrates would illuminate their mechanism and might also allow substrate prediction. Previous work has suggested that rhomboid substrates are specified by helical instability in their TMD. Here we demonstrate that rhomboids instead primarily recognize a specific sequence surrounding the cleavage site. This recognition motif is necessary for substrate cleavage, it determines the cleavage site, and it is more strictly required than TM helix-destabilizing residues. Our work demonstrates that intramembrane proteases can be sequence specific and that genome-wide substrate prediction based on their recognition motifs is feasible. PMID:20064469

  19. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Plaksin, Michael; Shoham, Shy; Kimmel, Eitan

    2014-01-01

    Low-intensity ultrasonic waves can remotely and nondestructively excite central nervous system (CNS) neurons. While diverse applications for this effect are already emerging, the biophysical transduction mechanism underlying this excitation remains unclear. Recently, we suggested that ultrasound-induced intramembrane cavitation within the bilayer membrane could underlie the biomechanics of a range of observed acoustic bioeffects. In this paper, we show that, in CNS neurons, ultrasound-induced cavitation of these nanometric bilayer sonophores can induce a complex mechanoelectrical interplay leading to excitation, primarily through the effect of currents induced by membrane capacitance changes. Our model explains the basic features of CNS acoustostimulation and predicts how the experimentally observed efficacy of mouse motor cortical ultrasonic stimulation depends on stimulation parameters. These results support the hypothesis that neuronal intramembrane piezoelectricity underlies ultrasound-induced neurostimulation, and suggest that other interactions between the nervous system and pressure waves or perturbations could be explained by this new mode of biological piezoelectric transduction.

  20. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets.

    PubMed

    McLauchlan, John; Lemberg, Marius K; Hope, Graham; Martoglio, Bruno

    2002-08-01

    Hepatitis C virus (HCV) is the major causative pathogen associated with liver cirrhosis and hepatocellular carcinoma. The virus has a positive-sense RNA genome encoding a single polyprotein with the virion components located in the N-terminal portion. During biosynthesis of the polyprotein, an internal signal sequence between the core protein and the envelope protein E1 targets the nascent polypeptide to the endoplasmic reticulum (ER) membrane for translocation of E1 into the ER. Following membrane insertion, the signal sequence is cleaved from E1 by signal peptidase. Here we provide evidence that after cleavage by signal peptidase, the signal peptide is further processed by the intramembrane-cleaving protease SPP that promotes the release of core protein from the ER membrane. Core protein is then free for subsequent trafficking to lipid droplets. This study represents an example of a potential role for intramembrane proteolysis in the maturation of a viral protein. PMID:12145199

  1. T-Matrix: Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particles

    NASA Astrophysics Data System (ADS)

    Waterman, Peter; Mishchenko, Michael I.; Travis, Larry D.; Mackowski, Daniel W.

    2015-11-01

    The T-Matrix package includes codes to compute electromagnetic scattering by homogeneous, rotationally symmetric nonspherical particles in fixed and random orientations, randomly oriented two-sphere clusters with touching or separated components, and multi-sphere clusters in fixed and random orientations. All codes are written in Fortran-77. LAPACK-based, extended-precision, Gauss-elimination- and NAG-based, and superposition codes are available, as are double-precision superposition, parallelized double-precision, double-precision Lorenz-Mie codes, and codes for the computation of the coefficients for the generalized Chebyshev shape.

  2. BCL11B expression in intramembranous osteogenesis during murine craniofacial suture development

    PubMed Central

    Holmes, Greg; van Bakel, Harm; Zhou, Xueyan; Losic, Bojan; Jabs, Ethylin Wang

    2014-01-01

    Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. Here we describe the novel expression pattern of the BCL11B transcription factor protein during murine embryonic craniofacial bone formation. We examined BCL11B protein expression at E14.5, E16.5, and E18.5 in 14 major craniofacial sutures of C57BL/6J mice. We found BCL11B expression to be associated with all intramembranous craniofacial bones examined. The most striking aspects of BCL11B expression were its high levels in suture mesenchyme and increasingly complementary expression with RUNX2 in differentiating osteoblasts during development. BCL11B was also expressed in mesenchyme at the non-sutural edges of intramembranous bones. No expression was seen in osteoblasts involved in endochondral ossification of the cartilaginous cranial base. BCL11B is expressed to potentially regulate the transition of mesenchymal differentiation and suture formation within craniofacial intramembranous bone. PMID:25511173

  3. Catalytic Properties of Intramembrane Aspartyl Protease Substrate Hydrolysis Evaluated Using a FRET Peptide Cleavage Assay.

    PubMed

    Naing, Swe-Htet; Vukoti, Krishna M; Drury, Jason E; Johnson, Jennifer L; Kalyoncu, Sibel; Hill, Shannon E; Torres, Matthew P; Lieberman, Raquel L

    2015-09-18

    Chemical details of intramembrane proteolysis remain elusive despite its prevalence throughout biology. We developed a FRET peptide assay for the intramembrane aspartyl protease (IAP) from Methanoculleus marisnigri JR1 in combination with quantitative mass spectrometry cleavage site analysis. IAP can hydrolyze the angiotensinogen sequence, a substrate for the soluble aspartyl protease renin, at a predominant cut site, His-Thr. Turnover is slow (min(-1) × 10(-3)), affinity and Michaelis constant (Km) values are in the low micromolar range, and both catalytic rates and cleavage sites are the same in detergent as reconstituted into bicelles. Three well-established, IAP-directed inhibitors were directly confirmed as competitive, albeit with modest inhibitor constant (Ki) values. Partial deletion of the first transmembrane helix results in a biophysically similar but less active enzyme than full-length IAP, indicating a catalytic role. Our study demonstrates previously unappreciated similarities with soluble aspartyl proteases, provides new biochemical features of IAP and inhibitors, and offers tools to study other intramembrane protease family members in molecular detail. PMID:26118406

  4. An investigation of cellular dynamics during the development of intramembranous bones: the scleral ossicles

    PubMed Central

    Jabalee, J; Hillier, S; Franz-Odendaal, T A

    2013-01-01

    The development of intramembranous bone is a dynamic and complex process requiring highly coordinated cellular activities. Although the literature describes the detailed cellular dynamics of early mesoderm-derived endochondral bone, studies regarding neural crest-derived intramembranous bone have failed to keep pace. We analyzed the development of chick scleral ossicles from the onset of osteoid deposition to mineralization at morphological, histological, and ultrastructural levels. We find that the mesenchymal condensations from which ossicles develop change their shape from ellipsoidal to trapezoidal concurrent with an increase in size. Furthermore, the size of an ossicle is dependent upon its time of induction. Our histological analyses of condensation growth reveal cell migration and osteoid secretion as key cellular processes determining condensation size; these processes occur concomitantly to increase both the area and thickness of condensations. We also describe the formation of the zone of overlap between ossicles and conclude that the process is similar to that of cranial suture formation. Finally, transmission electron microscopy of early condensations demonstrates that early osteoblasts secrete collagen parallel to the long axis of the condensation. This study elucidates fundamental mechanisms of intramembranous bone development at the cellular level, furthering our knowledge of this important process among vertebrates. PMID:23930967

  5. An investigation of cellular dynamics during the development of intramembranous bones: the scleral ossicles.

    PubMed

    Jabalee, J; Hillier, S; Franz-Odendaal, T A

    2013-10-01

    The development of intramembranous bone is a dynamic and complex process requiring highly coordinated cellular activities. Although the literature describes the detailed cellular dynamics of early mesoderm-derived endochondral bone, studies regarding neural crest-derived intramembranous bone have failed to keep pace. We analyzed the development of chick scleral ossicles from the onset of osteoid deposition to mineralization at morphological, histological, and ultrastructural levels. We find that the mesenchymal condensations from which ossicles develop change their shape from ellipsoidal to trapezoidal concurrent with an increase in size. Furthermore, the size of an ossicle is dependent upon its time of induction. Our histological analyses of condensation growth reveal cell migration and osteoid secretion as key cellular processes determining condensation size; these processes occur concomitantly to increase both the area and thickness of condensations. We also describe the formation of the zone of overlap between ossicles and conclude that the process is similar to that of cranial suture formation. Finally, transmission electron microscopy of early condensations demonstrates that early osteoblasts secrete collagen parallel to the long axis of the condensation. This study elucidates fundamental mechanisms of intramembranous bone development at the cellular level, furthering our knowledge of this important process among vertebrates. PMID:23930967

  6. M. tuberculosis intramembrane protease Rip1 controls transcription through three anti-sigma factor substrates.

    PubMed

    Sklar, Joseph G; Makinoshima, Hideki; Schneider, Jessica S; Glickman, Michael S

    2010-08-01

    Regulated intramembrane proteolysis (RIP) is a mechanism of transmembrane signal transduction that functions through intramembrane proteolysis of substrates. We previously reported that the RIP metalloprotease Rv2869c (Rip1) is a determinant of Mycobacterium tuberculosis (Mtb) cell envelope composition and virulence, but the substrates of Rip1 were undefined. Here we show that Rip1 cleaves three transmembrane anti-sigma factors: anti-SigK, anti-SigL and anti-SigM, negative regulators of Sigma K, L and M. We show that transcriptional activation of katG in response to phenanthroline requires activation of SigK and SigL by Rip1 cleavage of anti-SigK and anti-SigL. We also demonstrate a Rip1-dependent pathway that activates the genes for the mycolic acid biosynthetic enzyme KasA and the resuscitation promoting factor RpfC, but represses the bacterioferritin encoding gene bfrB. Regulation of these three genes by Rip1 is not reproduced by deletion of Sigma K, L or M, either indicating a requirement for multiple Rip1 substrates or additional arms of the Rip1 pathway. These results identify a branched proteolytic signal transduction system in which a single intramembrane protease cleaves three anti-sigma factor substrates to control multiple downstream pathways involved in lipid biosynthesis and defence against oxidative stress. PMID:20545848

  7. Aggregation of amphiphilic polymers in the presence of adhesive small colloidal particles

    NASA Astrophysics Data System (ADS)

    Baulin, Vladimir A.; Johner, Albert; Avalos, Josep Bonet

    2010-11-01

    The interaction of amphiphilic polymers with small colloids, capable to reversibly stick onto the chains, is studied. Adhesive small colloids in solution are able to dynamically bind two polymer segments. This association leads to topological changes in the polymer network configurations, such as looping and cross-linking, although the reversible adhesion permits the colloid to slide along the chain backbone. Previous analyses only consider static topologies in the chain network. We show that the sliding degree of freedom ensures the dominance of small loops, over other structures, giving rise to a new perspective in the analysis of the problem. The results are applied to the analysis of the equilibrium between colloidal particles and star polymers, as well as to block copolymer micelles. The results are relevant for the reversible adsorption of silica particles onto hydrophilic polymers, used in the process of formation of mesoporous materials of the type SBA or MCM, cross-linked cyclodextrin molecules threading on the polymers and forming the structures known as polyrotaxanes. Adhesion of colloids on the corona of the latter induce micellization and growth of larger micelles as the number of colloids increase, in agreement with experimental data.

  8. Charging and aggregation of latex particles in aqueous solutions of ionic liquids: towards an extended Hofmeister series.

    PubMed

    Oncsik, Tamas; Desert, Anthony; Trefalt, Gregor; Borkovec, Michal; Szilagyi, Istvan

    2016-03-01

    The effect of ionic liquid (IL) constituents and other monovalent salts on the stability of polystyrene latex particles was studied by electrophoresis and light scattering in dilute aqueous suspensions. The surface charge and the aggregation rate were both sensitive to the type of ion leading to different critical coagulation concentration (CCC) values. Systematic variation of the type of IL cation and anion allows us to place these ions within the Hofmeister series. We find that the dicyanoamide anion should be placed between iodide and thiocyanate, while all 1-alkyl-3-methylimidazolium cations can be positioned to the left of the tetramethylammonium and ammonium ions. The hydrophobicity of the 1-butyl-1-methylpyrrolidinium (BMPL(+)) ion is intermediate between 1-ethyl-3-methylimidazolium (EMIM(+)) and 1-butyl-3-methylimidazolium (BMIM(+)). With increasing alkyl chain length, the 1-alkyl-3-methylimidazolium cations adsorb on the latex particles very strongly, and 1-hexyl-3-methylimidazolium (HMIM(+)) and 1-octyl-3-methylimidazolium (OMIM(+)) lead to pronounced charge reversal and to an intermediate restabilization region. PMID:26902948

  9. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    SciTech Connect

    Ye, Ting; Phan-Thien, Nhan Khoo, Boo Cheong; Lim, Chwee Teck

    2014-11-15

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.

  10. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  11. The role of colloid particles in the albumin-lanthanides interaction: The study of aggregation mechanisms.

    PubMed

    Tikhonova, Tatiana N; Shirshin, Evgeny A; Romanchuk, Anna Yu; Fadeev, Victor V

    2016-10-01

    We studied the interaction between bovine serum albumin (BSA) and lanthanide ions in aqueous solution in the 4.0÷9.5pH range. A strong increase of the solution turbidity was observed at pH values exceeding 6, which corresponds to the formation of Ln(OH)3 nanoparticles, while no changes were observed near the isoelectric point of BSA (pH 4.7). The results of the dynamic light scattering and protein adsorption measurements clearly demonstrated that the observed turbidity enhancement was caused by albumin sorption on the surface of Ln(OH)3 and colloid particles bridging via adsorbed protein molecules. Upon pH increase from 4.5 to 6.5, albumin adsorption on lanthanide colloids was observed, while the following increase of pH from 6.5 to 9.5 led to protein desorption. The predominant role of the electrostatic interactions in the adsorption and desorption processes were revealed in the zeta-potential measurements. No reversibility was observed upon decreasing pH from 9.5 to 4.5 that was suggested to be due to the other interaction mechanisms present in the system. It was shown that while for all lanthanide ions the interaction mechanism with BSA was similar, its manifestation in the optical properties of the system was significantly different. This was interpreted as a consequence of the differences in lanthanides hydrolysis constants. PMID:27419645

  12. Impact of Internal RNA on Aggregation and Electrokinetics of Viruses: Comparison between MS2 Phage and Corresponding Virus-Like Particles

    PubMed Central

    Dika, C.; Duval, J. F. L.; Ly-Chatain, H. M.; Merlin, C.; Gantzer, C.

    2011-01-01

    We compare for the first time the electrokinetic and aggregation properties of MS2 phage (pH 2.5 to 7, 1 to 100 mM NaNO3 electrolyte concentration) with those of the corresponding virus-like particles (VLPs), which lack entirely the inner viral RNA component. In line with our previous work (J. Langlet, F. Gaboriaud, C. Gantzer, and J. F. L. Duval, Biophys. J. 94:3293-3312, 2008), it is found that modifying the content of RNA within the virus leads to very distinct electrohydrodynamic and aggregation profiles for MS2 and MS2 VLPs. Under the given pH and concentration conditions, MS2 VLPs exhibit electrophoretic mobility larger in magnitude than that of MS2, and both have similar isoelectric point (IEP) values (∼4). The electrokinetic results reflect a greater permeability of MS2 VLPs to electroosmotic flow, developed within/around these soft particles during their migration under the action of the applied electrical field. Results also support the presence of some remaining negatively charged component within the VLPs. In addition, MS2 phage systematically forms aggregates at pH values below the IEP, regardless of the magnitude of the solution ionic strength, whereas MS2 VLPs aggregate under the strict condition where the pH is relatively equal to the IEP at sufficiently low salt concentrations (<10 mM). It is argued that the stability of VLPs against aggregation and the differences between electrokinetics of MS2 and corresponding VLPs conform to recently developed formalisms for the stability and electrohydrodynamics of soft multilayered particles. The differences between the surface properties of these two kinds of particles reported here suggest that VLPs may not be appropriate for predicting the behavior of pathogenic viruses in aqueous media. PMID:21622784

  13. Features of Pro-σK Important for Cleavage by SpoIVFB, an Intramembrane Metalloprotease

    PubMed Central

    Chen, Kangming; Xiang, Xianling; Gu, Liping

    2013-01-01

    Intramembrane proteases regulate diverse processes by cleaving substrates within a transmembrane segment or near the membrane surface. Bacillus subtilis SpoIVFB is an intramembrane metalloprotease that cleaves Pro-σK during sporulation. To elucidate features of Pro-σK important for cleavage by SpoIVFB, coexpression of the two proteins in Escherichia coli was used along with cell fractionation. In the absence of SpoIVFB, a portion of the Pro-σK was peripherally membrane associated. This portion was not observed in the presence of SpoIVFB, suggesting that it serves as the substrate. Deletion of Pro-σK residues 2 to 8, addition of residues at its N terminus, or certain single-residue substitutions near the cleavage site impaired cleavage. Certain multiresidue substitutions near the cleavage site changed the position of cleavage, revealing preferences for a small residue preceding the cleavage site N-terminally (i.e., at the P1 position) and a hydrophobic residue at the second position following the cleavage site C-terminally (i.e., P2′). These features appear to be conserved among Pro-σK orthologs. SpoIVFB did not tolerate an aromatic residue at P1 or P2′ of Pro-σK. A Lys residue at P3′ of Pro-σK could not be replaced with Ala unless a Lys was provided farther C-terminally (e.g., at P9′). α-Helix-destabilizing residues near the cleavage site were not crucial for SpoIVFB to cleave Pro-σK. The preferences and tolerances of SpoIVFB are somewhat different from those of other intramembrane metalloproteases, perhaps reflecting differences in the interaction of the substrate with the membrane and the enzyme. PMID:23585539

  14. Induction of fully stabilized cortical bone defects to study intramembranous bone regeneration

    PubMed Central

    McGee-Lawrence, Meghan E.; Razidlo, David F.

    2015-01-01

    Summary Bone is a regenerative tissue with an innate ability to self-remodel in response to environmental stimuli and the need to repair damage. Rodent models of fracture healing, and in particular genetic mouse models, can be used to study the contributions of specific molecular switches to skeletal repair, as well as to recreate and exacerbate biological development and repair mechanisms in postnatal skeletons. Here, we describe methodology for producing fully stabilized, single-cortex defects in mouse femurs to study mechanisms of intramembranous bone regeneration. PMID:25331051

  15. Particle formation and aggregation-collapse behavior of poly(N-isopropylacrylamide) and poly(ethylene glycol) block copolymers in the presence of cross-linking agent.

    PubMed

    Zhu, Peng-Wei

    2004-05-01

    The effect of feed molar ratio of N-isopropylacrylamide (NIPAM) to poly(ethylene oxide) (PEO) on the particle formation of poly(N-isopropylacrylamide) (PNIPAM) and PEO block copolymers (PNIPAM-b-PEO) and their aggregation-collapse behavior have been studied in aqueous solutions. It is found that in the presence of cross-linking agent N,N'-methylenebisacryla-mide (BIS), different morphologies of PNIPAM-b-PEO copolymers can be obtained, including a grafting-like structure, a hemispherical core-shell structure and a well-defined core-shell nanoparticle, as the feed molar amount of NIPAM in the copolymerization is increased. The increase in temperature causes the self-aggregation of grafting-like copolymers and hemispherical particles due to the hydrophobic interaction between locally unshielded PNIPAM blocks prior to the conformational transition of PNIPAM. When the feed molar ratio of NIPAM to PEO exceeds a certain value, a well-defined core-shell nanoparticle can be produced during the copolymerization. At low concentrations, PNIPAM cores of single core-shell nanoparticles can undergo the conformational transition without aggregation. The increase in the concentration of the well-defined core-shell nanoparticles, however, results in a week aggregation at temperatures lower than the theta-temperature of pure PNIPAM due to the association of methyl groups at the periphery of PEO shells. PMID:15386964

  16. Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation.

    PubMed

    Plaksin, Michael; Kimmel, Eitan; Shoham, Shy

    2016-01-01

    Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control. PMID:27390775

  17. Aggregation and Particle Formation of Therapeutic Proteins in Contact With a Novel Fluoropolymer Surface Versus Siliconized Surfaces: Effects of Agitation in Vials and in Prefilled Syringes.

    PubMed

    Teska, Brandon M; Brake, Jeffrey M; Tronto, Gregory S; Carpenter, John F

    2016-07-01

    We examined the effects of an accelerated agitation protocol on 2 protein therapeutics, intravenous immunoglobulin (IVIG) and Avastin (bevacizumab), in contact with a novel fluoropolymer surface and more typical siliconized surfaces. The fluoropolymer surface provides "solid-phase" lubrication for the syringe plunger-obviating the need for silicone oil lubrication in prefilled syringes. We tested the 2 surfaces in a vial system and in prefilled glass syringes. We also examined the effects of 2 buffers, phosphate-buffered saline (PBS) and 0.2-M glycine, with and without the addition of polysorbate 20, on agitation-induced aggregation of IVIG. Aggregation was monitored by measuring subvisible particle formation and soluble protein loss. In both vials and syringes, protein particle formation was much lower during agitation with the fluoropolymer surface than with the siliconized surface. Also, particle formation was greater in PBS than in glycine buffer, an effect attributed to lower colloidal stability of IVIG in PBS. Polysorbate 20 in the formulation greatly inhibited protein particle formation. Overall, the fluoropolymer plunger surface in an unsiliconized glass barrel was demonstrated to be a viable solution for eliminating silicone oil droplets from prefilled syringe formulations and providing a consistent system for rationale formulation development and simplified particle analysis. PMID:27233685

  18. Quality assessment for recycling aggregates from construction and demolition waste: An image-based approach for particle size estimation.

    PubMed

    Di Maria, Francesco; Bianconi, Francesco; Micale, Caterina; Baglioni, Stefano; Marionni, Moreno

    2016-02-01

    The size distribution of aggregates has direct and important effects on fundamental properties of construction materials such as workability, strength and durability. The size distribution of aggregates from construction and demolition waste (C&D) is one of the parameters which determine the degree of recyclability and therefore the quality of such materials. Unfortunately, standard methods like sieving or laser diffraction can be either very time consuming (sieving) or possible only in laboratory conditions (laser diffraction). As an alternative we propose and evaluate the use of image analysis to estimate the size distribution of aggregates from C&D in a fast yet accurate manner. The effectiveness of the procedure was tested on aggregates generated by an existing C&D mechanical treatment plant. Experimental comparison with manual sieving showed agreement in the range 81-85%. The proposed technique demonstrated potential for being used on on-line systems within mechanical treatment plants of C&D. PMID:26706749

  19. Reaction Mechanism for Direct Propylene Epoxidation by Alumina-Supported Silver Aggregates. The Role of the Particle / Support Interface

    SciTech Connect

    Cheng, Lei; Yin, Chunrong; Mehmood, Faisal; Liu, Bin; Greeley, Jeffrey P.; Lee, Sungsik; Lee, Byeongdu; Seifert, Soenke; Winans, R. E.; Teschner, D.; Schlogl, Robert; Vajda, S.; Curtiss, Larry A.

    2013-11-21

    Sub-nanometer Ag aggregates on alumina supports have been found to be active toward direct propylene epoxidation to propylene oxide by molecular oxygen at low temperatures, with a negligible amount of carbon dioxide formation (Science 328, p. 224, 2010). In this work, we computationally and experimentally investigate the origin of the high reactivity of the sub-nanometer Ag aggregates. Computationally, we study O2 dissociation and propylene epoxidation on unsupported Ag19 and Ag20 clusters, as well as alumina-supported Ag19. The O2 dissociation and propylene epoxidation apparent barriers at the interface between the Ag aggregate and the alumina support are calculated to be 0.2 and 0.2~0.4 eV, respectively. These barriers are somewhat lower than those on sites away from the interface. The mechanism at the interface is similar to what was previously found for the silver trimer on alumina and can account for the high activity observed for the direct oxidation of propylene on the Ag aggregates. The barriers for oxygen dissociation on these model systems both at the interface and on the surfaces are small compared to crystalline surfaces, indicating that availability of oxygen will not be a rate limiting step for the aggregates, as in the case of the crystalline surfaces. Experimentally, we investigate Ultrananocrystalline Diamond (UNCD)-supported silver aggregates under reactive conditions of propylene partial oxidation. The UNCD-supported Ag clusters are found to be not measurably active toward propylene oxidation, in contrast to the alumina supported Ag clusters. This suggests that the lack of metal-oxide interfacial sites of the Ag-UNCD catalyst, limits the epoxidation catalytic activity. This combined computational and experimental study shows the importance of the metal-oxide interface as well as the non-crystalline nature of the alumina-supported sub-nanometer Ag aggregate catalysts for propylene epoxidation.

  20. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    PubMed

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens. PMID:27056086

  1. Free collisions in a microgravity many-particle experiment. III. The collision behavior of sub-millimeter-sized dust aggregates

    NASA Astrophysics Data System (ADS)

    Kothe, Stefan; Blum, Jürgen; Weidling, René; Güttler, Carsten

    2013-07-01

    We conducted micro-gravity experiments to study the outcome of collisions between sub-mm-sized dust agglomerates consisting of μm-sized SiO2 monomer grains at velocities of several cm s-1. Prior to the experiments, we used X-ray computer tomography (nano-CT) imaging to study the internal structure of these dust agglomerates and found no rim compaction so that their collision behavior is not governed by preparation-caused artefacts. We found that collisions between these dust aggregates can lead either to sticking or to bouncing, depending mostly on the impact velocity. While previous collision models derived the transition between both regimes from contact physics, we used the available empirical data from these and earlier experiments to derive a power law relation between dust-aggregate mass and impact velocity for the threshold between the two collision outcomes. In agreement with earlier experiments, we show that the transition between both regimes is not sharp, but follows a shallower power law than predicted by previous models (Güttler, C., Blum, J., Zsom, A., Ormel, C.W., Dullemond, C.P. [2010]. Astron. Astrophys. 513, A56). Furthermore, we find that sticking between dust aggregates can lead to the formation of larger structures. Collisions between aggregates-of-aggregates can lead to growth at higher velocities than homogeneous dust agglomerates.

  2. Bioaccessibility of environmentally aged 14C-atrazine residues in an agriculturally used soil and its particle-size aggregates.

    PubMed

    Jablonowski, Nicolai D; Modler, Janette; Schaeffer, Andreas; Burauel, Peter

    2008-08-15

    After 22 years of aging under natural conditions in an outdoor lysimeter the bioaccessibility of 14C-labeled atrazine soil residues to bacteria was tested. Entire soil samples as well as sand-sized, silt-sized, and clay-sized aggregates (>20, 20-2, and <2microm aggregate size, respectively) were investigated under slurried conditions. The mineralization of residual radioactivity in the outdoor lysimeter soil reached up to 4.5% of the total 14C-activity after 16 days, inoculated with Pseudomonas sp. strain ADP. The control samples without inoculated bacteria showed a mineralization maximum of only about 1% after 44 days of incubation. Mineralization increased in the clay-sized aggregates up to 6.2% of the total residual 14C-activity within 23 days. With decreasing soil aggregate sizes, residual 14C-activity increased per unit of weight, but only minor differences of the mineralization in the soil and soil size aggregates using mineral-media for incubation was observed. Using additional Na-citrate in the incubation, the extent of mineralization increased to 6.7% in soil after 23 days following incubation with Pseudomonas sp. strain ADP. These results show that long-term aged 14C-atrazine residues are still partly accessible to the atrazine degrading microorganism Pseudomonas sp. strain ADP. PMID:18767643

  3. Proteolytic Processing of Neuregulin 1 Type III by Three Intramembrane-cleaving Proteases.

    PubMed

    Fleck, Daniel; Voss, Matthias; Brankatschk, Ben; Giudici, Camilla; Hampel, Heike; Schwenk, Benjamin; Edbauer, Dieter; Fukumori, Akio; Steiner, Harald; Kremmer, Elisabeth; Haug-Kröper, Martina; Rossner, Moritz J; Fluhrer, Regina; Willem, Michael; Haass, Christian

    2016-01-01

    Numerous membrane-bound proteins undergo regulated intramembrane proteolysis. Regulated intramembrane proteolysis is initiated by shedding, and the remaining stubs are further processed by intramembrane-cleaving proteases (I-CLiPs). Neuregulin 1 type III (NRG1 type III) is a major physiological substrate of β-secretase (β-site amyloid precursor protein-cleaving enzyme 1 (BACE1)). BACE1-mediated cleavage is required to allow signaling of NRG1 type III. Because of the hairpin nature of NRG1 type III, two membrane-bound stubs with a type 1 and a type 2 orientation are generated by proteolytic processing. We demonstrate that these stubs are substrates for three I-CLiPs. The type 1-oriented stub is further cleaved by γ-secretase at an ϵ-like site five amino acids N-terminal to the C-terminal membrane anchor and at a γ-like site in the middle of the transmembrane domain. The ϵ-cleavage site is only one amino acid N-terminal to a Val/Leu substitution associated with schizophrenia. The mutation reduces generation of the NRG1 type III β-peptide as well as reverses signaling. Moreover, it affects the cleavage precision of γ-secretase at the γ-site similar to certain Alzheimer disease-associated mutations within the amyloid precursor protein. The type 2-oriented membrane-retained stub of NRG1 type III is further processed by signal peptide peptidase-like proteases SPPL2a and SPPL2b. Expression of catalytically inactive aspartate mutations as well as treatment with 2,2'-(2-oxo-1,3-propanediyl)bis[(phenylmethoxy)carbonyl]-l-leucyl-l-leucinamide ketone inhibits formation of N-terminal intracellular domains and the corresponding secreted C-peptide. Thus, NRG1 type III is the first protein substrate that is not only cleaved by multiple sheddases but is also processed by three different I-CLiPs. PMID:26574544

  4. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination.

    PubMed

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au(3+) reduction to metallic Au(0) is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au(0) exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  5. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination

    PubMed Central

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au3+ reduction to metallic Au0 is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au0 exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  6. Bringing Bioactive Compounds into Membranes: The UbiA Superfamily of Intramembrane Aromatic Prenyltransferases.

    PubMed

    Li, Weikai

    2016-04-01

    The UbiA superfamily of intramembrane prenyltransferases catalyzes a key biosynthetic step in the production of ubiquinones, menaquinones, plastoquinones, hemes, chlorophylls, vitamin E, and structural lipids. These lipophilic compounds serve as electron and proton carriers for cellular respiration and photosynthesis, as antioxidants to reduce cell damage, and as structural components of microbial cell walls and membranes. This article reviews the biological functions and enzymatic activities of representative members of the superfamily, focusing on the remarkable recent research progress revealing that the UbiA superfamily is centrally implicated in several important physiological processes and human diseases. Because prenyltransferases in this superfamily have distinctive substrate preferences, two recent crystal structures are compared to illuminate the general mechanism for substrate recognition. PMID:26922674

  7. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta.

    PubMed

    Lindert, Uschi; Cabral, Wayne A; Ausavarat, Surasawadee; Tongkobpetch, Siraprapa; Ludin, Katja; Barnes, Aileen M; Yeetong, Patra; Weis, Maryann; Krabichler, Birgit; Srichomthong, Chalurmpon; Makareeva, Elena N; Janecke, Andreas R; Leikin, Sergey; Röthlisberger, Benno; Rohrbach, Marianne; Kennerknecht, Ingo; Eyre, David R; Suphapeetiporn, Kanya; Giunta, Cecilia; Marini, Joan C; Shotelersuk, Vorasuk

    2016-01-01

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. PMID:27380894

  8. Steric trapping reveals a cooperativity network in the intramembrane protease GlpG.

    PubMed

    Guo, Ruiqiong; Gaffney, Kristen; Yang, Zhongyu; Kim, Miyeon; Sungsuwan, Suttipun; Huang, Xuefei; Hubbell, Wayne L; Hong, Heedeok

    2016-05-01

    Membrane proteins are assembled through balanced interactions among proteins, lipids and water. Studying their folding while maintaining the native lipid environment is necessary but challenging. Here we present methods for analyzing key elements of membrane protein folding including thermodynamic stability, compactness of the unfolded state and folding cooperativity under native conditions. The methods are based on steric trapping, which couples the unfolding of a doubly biotinylated protein to the binding of monovalent streptavidin (mSA). We further advanced this technology for general application by developing versatile biotin probes possessing spectroscopic reporters that are sensitized by mSA binding or protein unfolding. By applying these methods to the Escherichia coli intramembrane protease GlpG, we elucidated a widely unraveled unfolded state, subglobal unfolding of the region encompassing the active site, and a network of cooperative and localized interactions to maintain stability. These findings provide crucial insights into the folding energy landscape of membrane proteins. PMID:26999782

  9. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta

    PubMed Central

    Lindert, Uschi; Cabral, Wayne A.; Ausavarat, Surasawadee; Tongkobpetch, Siraprapa; Ludin, Katja; Barnes, Aileen M.; Yeetong, Patra; Weis, Maryann; Krabichler, Birgit; Srichomthong, Chalurmpon; Makareeva, Elena N.; Janecke, Andreas R.; Leikin, Sergey; Röthlisberger, Benno; Rohrbach, Marianne; Kennerknecht, Ingo; Eyre, David R.; Suphapeetiporn, Kanya; Giunta, Cecilia; Marini, Joan C.; Shotelersuk, Vorasuk

    2016-01-01

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. PMID:27380894

  10. Regulated Intramembrane Proteolysis and Degradation of Murine Epithelial Cell Adhesion Molecule mEpCAM

    PubMed Central

    Hachmeister, Matthias; Bobowski, Karolina D.; Hogl, Sebastian; Dislich, Bastian; Fukumori, Akio; Eggert, Carola; Mack, Brigitte; Kremling, Heidi; Sarrach, Sannia; Coscia, Fabian; Zimmermann, Wolfgang; Steiner, Harald; Lichtenthaler, Stefan F.; Gires, Olivier

    2013-01-01

    Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is highly and frequently expressed in carcinomas and (cancer-)stem cells, and which plays an important role in the regulation of stem cell pluripotency. We show here that murine EpCAM (mEpCAM) is subject to regulated intramembrane proteolysis in various cells including embryonic stem cells and teratocarcinomas. As shown with ectopically expressed EpCAM variants, cleavages occur at α-, β-, γ-, and ε-sites to generate soluble ectodomains, soluble Aβ-like-, and intracellular fragments termed mEpEX, mEp-β, and mEpICD, respectively. Proteolytic sites in the extracellular part of mEpCAM were mapped using mass spectrometry and represent cleavages at the α- and β-sites by metalloproteases and the b-secretase BACE1, respectively. Resulting C-terminal fragments (CTF) are further processed to soluble Aβ-like fragments mEp-β and cytoplasmic mEpICD variants by the g-secretase complex. Noteworthy, cytoplasmic mEpICD fragments were subject to efficient degradation in a proteasome-dependent manner. In addition the γ-secretase complex dependent cleavage of EpCAM CTF liberates different EpICDs with different stabilities towards proteasomal degradation. Generation of CTF and EpICD fragments and the degradation of hEpICD via the proteasome were similarly demonstrated for the human EpCAM ortholog. Additional EpCAM orthologs have been unequivocally identified in silico in 52 species. Sequence comparisons across species disclosed highest homology of BACE1 cleavage sites and in presenilin-dependent γ-cleavage sites, whereas strongest heterogeneity was observed in metalloprotease cleavage sites. In summary, EpCAM is a highly conserved protein present in fishes, amphibians, reptiles, birds, marsupials, and placental mammals, and is subject to shedding, γ-secretase-dependent regulated intramembrane proteolysis, and proteasome-mediated degradation. PMID:24009667

  11. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VI. EROSION OF LARGE AGGREGATES AS A SOURCE OF MICROMETER-SIZED PARTICLES

    SciTech Connect

    Schraepler, Rainer; Blum, Juergen

    2011-06-20

    Observed protoplanetary disks consist of a large amount of micrometer-sized particles. Dullemond and Dominik pointed out for the first time the difficulty in explaining the strong mid-infrared excess of classical T Tauri stars without any dust-retention mechanisms. Because high relative velocities in between micrometer-sized and macroscopic particles exist in protoplanetary disks, we present experimental results on the erosion of macroscopic agglomerates consisting of micrometer-sized spherical particles via the impact of micrometer-sized particles. We find that after an initial phase, in which an impacting particle erodes up to 10 particles of an agglomerate, the impacting particles compress the agglomerate's surface, which partly passivates the agglomerates against erosion. Due to this effect, the erosion halts for impact velocities up to {approx}30 m s{sup -1} within our error bars. For higher velocities, the erosion is reduced by an order of magnitude. This outcome is explained and confirmed by a numerical model. In a next step, we build an analytical disk model and implement the experimentally found erosive effect. The model shows that erosion is a strong source of micrometer-sized particles in a protoplanetary disk. Finally, we use the stationary solution of this model to explain the amount of micrometer-sized particles in the observational infrared data of Furlan et al.

  12. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain.

    PubMed

    Urban, Sinisa; Freeman, Matthew

    2003-06-01

    Rhomboid intramembrane proteases initiate cell signaling during Drosophila development and Providencia bacterial growth by cleaving transmembrane ligand precursors. We have determined how specificity is achieved: Drosophila Rhomboid-1 is a site-specific protease that recognizes its substrate Spitz by a small region of the Spitz transmembrane domain (TMD). This substrate motif is necessary and sufficient for cleavage and is composed of residues known to disrupt helices. Rhomboids from diverse organisms including bacteria and vertebrates recognize the same substrate motif, suggesting that they use a universal targeting strategy. We used this information to search for other rhomboid substrates and identified a family of adhesion proteins from the human parasite Toxoplasma gondii, the TMDs of which were efficient substrates for rhomboid proteases. Intramembrane cleavage of these proteins is required for host cell invasion. These results provide an explanation of how rhomboid proteases achieve specificity, and allow some rhomboid substrates to be predicted from sequence information. PMID:12820957

  13. Effects of viewing geometry, aggregation state, and particle size on reflectance spectra of the Murchison CM2 chondrite deconvolved to Dawn FC band passes

    NASA Astrophysics Data System (ADS)

    Izawa, Matthew R. M.; Schäfer, Tanja; Pietrasz, Valerie B.; Cloutis, Edward A.; Mann, Paul; Nathues, Andreas; Mengel, Kurt; Schäfer, Michael; Thangjam, Guneshwar; Hoffmann, Martin; Tait, Kimberly T.; Applin, Daniel M.

    2016-03-01

    Several current and soon-to-launch missions will investigate 'dark' asteroids, whose spectra have few weak or no distinct spectral features. Some carbonaceous chondrites, particularly the CI and CM groups, are reasonable material analogues for many dark asteroid surfaces. In addition to compositional variations, many non-compositional effects, including viewing geometry, surface particle size and particle sorting, can influence reflectance spectra, potentially complicating mineralogical interpretation of such data from remote surfaces. We have carried out an investigation of the effects of phase angle, particle size, aggregation state, and intra-sample heterogeneity on the reflectance spectra (0.4-1.0 μm) of the Murchison CM2 carbonaceous chondrite, deconvolved to Dawn Framing Camera (FC) band passes. This study was motivated by the desire to derive information about the surface of Ceres from Dawn FC data. Key spectral parameters derived from the FC multispectral data include various two-band reflectance ratios as well as three-band ratios that have been derived for mineralogical analysis. Phase angle effects include increased visible slope with increasing phase angle, a trend that may reverse at very high phase angles. Fine-grained particles exert a strong influence on spectral properties relative to their volumetric proportion. Grain size variation effects include a decrease in spectral contrast and increased visible spectral slope with decreasing grain size. Intra-sample heterogeneity, while spectrally detectable, is of relatively limited magnitude.

  14. A Ca-alginate particle co-immobilized with Phanerochaete chrysosporium cells and the combined cross-linked enzyme aggregates from Trametes versicolor.

    PubMed

    Li, Yanchun; Wang, Zhi; Xu, Xudong; Jin, Liqiang

    2015-12-01

    For improving stability of immobilized white-rot fungus to treat various effluents, Phanerochaete chrysosporium cells and the combined cross-link enzyme aggregates (combi-CLEAs) prepared from Trametes versicolor were co-immobilized into the Ca-alginate gel particles in this paper. The activity yields of obtained combi-CLEAs were 42.7% for lignin peroxidases (LiPs), 31.4% for manganese peroxidases (MnPs) and 40.4% for laccase (Lac), respectively. And their specific activities were 30.2U/g as combi-CLEAs-LiPs, 9.5 U/g as combi-CLEAs-MnPs and 28.4 U/g as combi-CLEAs-Lac. Further, the present of the combi-CLEAs in the particles extremely improved their ability to degrade the dyes. Compared to the immobilized Ph. chrysosporium without the combi-CLEAs, the co-immobilized particles enhanced the decolorized rate of Acid Violet 7 (from 45.2% to 93.4%) and Basic Fuchsin (from 12.1% to 67.9%). In addition, the addition of the combi-CLEAs improved the adaptability of the white-rot fungal particles to adverse environmental conditions. PMID:26413897

  15. Structural characterization of the intra-membrane histidine kinase YbdK from Bacillus subtilis in DPC micelles

    SciTech Connect

    Kim, Young Pil; Yeo, Kwon Joo; Kim, Myung Hee; Kim, Young-Chang; Jeon, Young Ho

    2010-01-15

    Bacterial histidine kinases (HKs) play a critical role in signal transduction for cellular adaptation to environmental conditions and stresses. YbdK from Bacillus subtilis is a 320-residue intra-membrane sensing HK characterized by a short input domain consisting of two transmembrane helices without an extracytoplasmic domain. While the cytoplasmic domains of HKs have been studied in detail, the intra-membrane sensing domain systems are still uncharacterized due to difficulties in handling the transmembrane domain. Here, we successfully obtained pure recombinant transmembrane domain of YbdK (YbdK-TM) from E. coli and analyzed the characteristics of YbdK-TM using nuclear magnetic resonance (NMR) and other biophysical methods. YbdK-TM was found to form homo-dimers in DPC micelles based on cross-linking assays and analytical ultracentrifugation analyses. We estimated the size of the YbdK-TM DPC complex to be 46 kDa using solution state NMR T{sub 1}/T{sub 2} relaxation analyses in DPC micelles. These results provide information that will allow functional and structural studies of intra-membrane sensing HKs to begin.

  16. Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of Redoubt Volcano, Alaska—Highlighting the significance of particle aggregation

    NASA Astrophysics Data System (ADS)

    Wallace, Kristi L.; Schaefer, Janet R.; Coombs, Michelle L.

    2013-06-01

    The 2009 eruption of Redoubt Volcano included 20 tephra-producing explosions between March 15, 2009 and April 4, 2009 (UTC). Next-Generation radar (NEXRAD) data show that plumes reached heights between 4.6 km and 19 km asl and were distributed downwind along nearly all azimuths of the volcano. Explosions lasted between < 1 and 31 min based on the signal duration at a distal seismic station (86 km). From Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and field data, we estimate that over 80,000 km2 received at least minor ash fall (> 0.8 mm thick), including communities along the Kenai Peninsula (80-100 km) and the city of Anchorage (170 km). Trace ash (< 0.8 mm) was reported as far as Fairbanks, 550 km NNE of the volcano. We estimate the total mass of tephra-fall deposits at 54.6 × 109 kg with a total DRE volume of 20.6 × 106 m3. On March 15, a small (4.6 km asl) phreatic explosion containing minor, non-juvenile ash, erupted through the summit ice cap. The first five magmatic explosions (events 1-5) occurred within a 6-hour period on March 23. Plumes rose to heights between 5.5 km and 14.9 km asl during 2- to 20-minute-duration explosions, and were dispersed mainly along a NNE trajectory. Trace ash fall was reported as far as Fairbanks. Owing to a shift in wind direction and heavy snowfall during these events, field discrimination among many of these layers was possible. All deposits comprise a volumetrically significant amount of particle aggregates, yet only event 5 deposits contain coarse clasts including glacier ice. The most voluminous tephra fall was deposited on March 24 (event 6) from a 15 minute explosion that sent a plume to 18.3 km asl, and dispersed tephra to the WNW. Within 10 km of the vent, this deposit contains 1-11 cm pumice clasts in a matrix of 1-2 mm aggregate lapilli. A small dome was presumably emplaced between March 23 and March 26 and was subsequently destroyed during 1-14 minute magmatic explosions of events 7-8 (March 26

  17. Role of Matrix Metalloproteinase 13 in Both Endochondral and Intramembranous Ossification during Skeletal Regeneration

    PubMed Central

    Behonick, Danielle J.; Xing, Zhiqing; Lieu, Shirley; Buckley, Jenni M.; Lotz, Jeffrey C.; Marcucio, Ralph S.; Werb, Zena; Miclau, Theodore; Colnot, Céline

    2007-01-01

    Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13−/− mice is intrinsic to cartilage and bone. Mmp13−/− mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts. PMID:17987127

  18. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking.

    PubMed

    Meissner, Cathrin; Lorenz, Holger; Weihofen, Andreas; Selkoe, Dennis J; Lemberg, Marius K

    2011-06-01

    Intramembrane proteolysis is a conserved mechanism that regulates a variety of cellular processes ranging from transcription control to signaling. In mitochondria, the inner membrane rhomboid protease PARL has been implicated in the control of life span and apoptosis by a so far uncharacterized mechanism. Here, we show that PARL cleaves human Pink1, which is implicated in Parkinson's disease, within its conserved membrane anchor. Mature Pink1 is then free to be released into the cytosol or the mitochondrial intermembrane space. Upon depolarization of the mitochondrial membrane potential, the canonical import of Pink1 and PARL-catalyzed processing is blocked, leading to accumulation of the Pink1 precursor. As targeting of this precursor to the outer mitochondrial membrane has been shown to trigger mitophagy, we suggest that the PARL-catalyzed removal of the Pink1 signal sequence in the canonical import pathway acts as a cellular checkpoint for mitochondrial integrity. Furthermore, we show that two Parkinson's disease-causing mutations decrease the processing of Pink1 by PARL, with attendant implications for pathogenesis. PMID:21426348

  19. Mice Lacking Pten in Osteoblasts Have Improved Intramembranous and Late Endochondral Fracture Healing

    PubMed Central

    Burgers, Travis A.; Hoffmann, Martin F.; Collins, Caitlyn J.; Zahatnansky, Juraj; Alvarado, Martin A.; Morris, Michael R.; Sietsema, Debra L.; Mason, James J.; Jones, Clifford B.; Ploeg, Heidi L.; Williams, Bart O.

    2013-01-01

    The failure of an osseous fracture to heal (development of a non-union) is a common and debilitating clinical problem. Mice lacking the tumor suppressor Pten in osteoblasts have dramatic and progressive increases in bone volume and density throughout life. Since fracture healing is a recapitulation of bone development, we investigated the process of fracture healing in mice lacking Pten in osteoblasts (Ocn-cretg/+;Ptenflox/flox). Mid-diaphyseal femoral fractures induced in wild-type and Ocn-cretg/+;Ptenflox/flox mice were studied via micro-computed tomography (µCT) scans, biomechanical testing, histological and histomorphometric analysis, and protein expression analysis. Ocn-cretg/+;Ptenflox/flox mice had significantly stiffer and stronger intact bones relative to controls in all cohorts. They also had significantly stiffer healing bones at day 28 post-fracture (PF) and significantly stronger healing bones at days 14, 21, and 28 PF. At day 7 PF, the proximal and distal ends of the Pten mutant calluses were more ossified. By day 28 PF, Pten mutants had larger and more mineralized calluses. Pten mutants had improved intramembranous bone formation during healing originating from the periosteum. They also had improved endochondral bone formation later in the healing process, after mature osteoblasts are present in the callus. Our results indicate that the inhibition of Pten can improve fracture healing and that the local or short-term use of commercially available Pten-inhibiting agents may have clinical application for enhancing fracture healing. PMID:23675511

  20. The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron

    PubMed Central

    Habeck, Gregor; Ebner, Felix A.; Shimada-Kreft, Hiroko

    2015-01-01

    Aberrant endoplasmic reticulum (ER) proteins are eliminated by ER-associated degradation (ERAD). This process involves protein retrotranslocation into the cytosol, ubiquitylation, and proteasomal degradation. ERAD substrates are classified into three categories based on the location of their degradation signal/degron: ERAD-L (lumen), ERAD-M (membrane), and ERAD-C (cytosol) substrates. In Saccharomyces cerevisiae, the membrane proteins Hrd1 and Doa10 are the predominant ERAD ubiquitin-protein ligases (E3s). The current notion is that ERAD-L and ERAD-M substrates are exclusively handled by Hrd1, whereas ERAD-C substrates are recognized by Doa10. In this paper, we identify the transmembrane (TM) protein Sec61 β-subunit homologue 2 (Sbh2) as a Doa10 substrate. Sbh2 is part of the trimeric Ssh1 complex involved in protein translocation. Unassembled Sbh2 is rapidly degraded in a Doa10-dependent manner. Intriguingly, the degron maps to the Sbh2 TM region. Thus, in contrast to the prevailing view, Doa10 (and presumably its human orthologue) has the capacity for recognizing intramembrane degrons, expanding its spectrum of substrates. PMID:25918226

  1. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures

    PubMed Central

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Škerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-01-01

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the ‘water retention site’, suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG. PMID:25216680

  2. A novel UGGT1 and p97-dependent checkpoint for native ectodomains with ionizable intramembrane residue

    PubMed Central

    Merulla, Jessica; Soldà, Tatiana; Molinari, Maurizio

    2015-01-01

    Only native polypeptides are released from the endoplasmic reticulum (ER) to be transported at the site of activity. Persistently misfolded proteins are retained and eventually selected for ER-associated degradation (ERAD). The paradox of a structure-based protein quality control is that functional polypeptides may be destroyed if they are architecturally unfit. This has health-threatening implications, as shown by the numerous “loss-of-function” proteopathies, but also offers chances to intervene pharmacologically to promote bypassing of the quality control inspection and export of the mutant, yet functional protein. Here we challenged the ER of human cells with four modular glycopolypeptides designed to alert luminal and membrane protein quality checkpoints. Our analysis reveals the unexpected collaboration of the cytosolic AAA-ATPase p97 and the luminal quality control factor UDP-glucose:glycoprotein glucosyltransferase (UGGT1) in a novel, BiP- and CNX-independent checkpoint. This prevents Golgi transport of a chimera with a native ectodomain that passes the luminal quality control scrutiny but displays an intramembrane defect. Given that human proteopathies may result from impaired transport of functional polypeptides with minor structural defects, identification of quality checkpoints and treatments to bypass them as shown here upon silencing or pharmacologic inhibition of UGGT1 or p97 may have important clinical implications. PMID:25694454

  3. A Method of Lyophilizing Vaccines Containing Aluminum Salts into a Dry Powder Without Causing Particle Aggregation or Decreasing the Immunogenicity Following Reconstitution

    PubMed Central

    Li, Xinran; Thakkar, Sachin G.; Ruwona, Tinashe B.; Williams, Robert O.; Cui, Zhengrong

    2015-01-01

    Many currently licensed and commercially available human vaccines contain aluminum salts as vaccine adjuvants. A major limitation with these vaccines is that they must not be exposed to freezing temperatures during transport or storage such that the liquid vaccine freezes, because freezing causes irreversible coagulation that damages the vaccines (e.g., loss of efficacy). Therefore, vaccines that contain aluminum salts as adjuvants are formulated as liquid suspensions and are required to be kept in cold chain (2–8°C) during transport and storage. Formulating vaccines adjuvanted with aluminum salts into dry powder that can be readily reconstituted before injection may address the limitation. Spray freeze-drying of vaccines with low concentrations of aluminum salts and high concentrations of trehalose alone, or a mixture of sugars and amino acids, as excipients can convert vaccines containing aluminum salts into dry powder, but fails to preserve the particle size and/or immunogenicity of the vaccines. In the present study, using ovalbumin as a model antigen adsorbed onto aluminum hydroxide or aluminum phosphate, a commercially available tetanus toxoid vaccine adjuvanted with potassium alum, a human hepatitis B vaccine adjuvanted with aluminum hydroxide, and a human papillomavirus vaccine adjuvanted with aluminum hydroxyphosphate sulfate, it was shown that vaccines containing a relatively high concentration of aluminum salts (i.e., up to ~1%, w/v, of aluminum hydroxide) can be converted into a dry powder by thin-film freezing followed by removal of the frozen solvent by lyophilization while using low levels of trehalose (i.e., as low as 2% w/v) as an excipient. Importantly, the thin-film freeze-drying process did not cause particle aggregation, nor decreased the immunogenicity of the vaccines. Moreover, repeated freezing-and-thawing of the dry vaccine powder did not cause aggregation. Thin-film freeze-drying is a viable platform technology to produce dry powders of

  4. Photophoretic force on aggregate grains

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin S.; Kimery, Jesse B.; Wurm, Gerhard; de Beule, Caroline; Kuepper, Markus; Hyde, Truell W.

    2016-01-01

    The photophoretic force may impact planetary formation by selectively moving solid particles based on their composition and structure. This generates collision velocities between grains of different sizes and sorts the dust in protoplanetary discs by composition. This numerical simulation studied the photophoretic force acting on fractal dust aggregates of μm-scale radii. Results show that aggregates tend to have greater photophoretic drift velocities than spheres of similar mass or radii, though with a greater spread in the velocity. While the drift velocities of compact aggregates continue to increase as the aggregates grow larger in size, fluffy aggregates have drift velocities which are relatively constant with size. Aggregates formed from an initially polydisperse size distribution of dust grains behave differently from aggregates formed from a monodisperse population, having smaller drift velocities with directions which deviate substantially from the direction of illumination. Results agree with microgravity experiments which show the difference of photophoretic forces with aggregation state.

  5. The Role of L1 Loop in the Mechanism of Rhomboid Intramembrane Protease GlpG

    SciTech Connect

    Wang,Y.; Maegawa, S.; Akiyama, Y.; Ha, Y.

    2007-01-01

    Intramembrane proteases are important enzymes in biology. The recently solved crystal structures of rhomboid protease GlpG have provided useful insights into the mechanism of these membrane proteins. Besides revealing an internal water-filled cavity that harbored the Ser-His catalytic dyad, the crystal structure identified a novel structural domain (L1 loop) that lies on the side of the transmembrane helices. Here, using site-directed mutagenesis, we confirmed that the L1 loop is partially embedded in the membrane, and showed that alanine substitution of a highly preferred tryptophan (Trp136) at the distal tip of the L1 loop near the lipid:water interface reduced GlpG proteolytic activity. Crystallographic analysis showed that W136A mutation did not modify the structure of the protease. Instead, the polarity for a small and lipid-exposed protein surface at the site of the mutation has changed. The crystal structure, now refined at 1.7 Angstroms resolution, also clearly defined a 20-Angstroms-wide hydrophobic belt around the protease, which likely corresponded to the thickness of the compressed membrane bilayer around the protein. This improved structural model predicts that all critical elements of the catalysis, including the catalytic serine and the L5 cap, need to be positioned within a few angstroms of the membrane surface, and may explain why the protease activity is sensitive to changes in the protein:lipid interaction. Based on these findings, we propose a model where the end of the substrate transmembrane helix first partitions out of the hydrophobic core region of the membrane before it bends into the protease active site for cleavage.

  6. Aquaporins in ovine amnion: responses to altered amniotic fluid volumes and intramembranous absorption rates.

    PubMed

    Cheung, Cecilia Y; Anderson, Debra F; Brace, Robert A

    2016-07-01

    Aquaporins (AQPs) are transmembrane channel proteins that facilitate rapid water movement across cell membranes. In amniotic membrane, the AQP-facilitated transfer of water across amnion cells has been proposed as a mechanism for amniotic fluid volume (AFV) regulation. To investigate whether AQPs modulate AFV by altering intramembranous absorption (IMA) rate, we tested the hypothesis that AQP gene expression in the amnion is positively correlated with IMA rate during experimental conditions when IMA rate and AFV are modified over a wide range. The relative abundances of AQP1, AQP3, AQP8, AQP9, and AQP11 mRNA and protein were determined in the amnion of 16 late-gestation ovine fetuses subjected to 2 days of control conditions, urine drainage, urine replacement, or intraamniotic fluid infusion. AQP mRNA levels were determined by RT-qPCR and proteins by western immunoblot. Under control conditions, mRNA levels among the five AQPs differed more than 20-fold. During experimental treatments, mean IMA rate in the experimental groups ranged from 100 ± 120 mL/day to 1370 ± 270 mL/day. The mRNA levels of the five AQPs did not change from control and were not correlated with IMA rates. The protein levels of AQP1 were positively correlated with IMA rates (r(2) = 38%, P = 0.01) while the remaining four AQPs were not. These findings demonstrate that five AQPs are differentially expressed in ovine amnion. Our study supports the hypothesis that AQP1 may play a positive role in regulating the rate of fluid transfer across the amnion, thereby participating in the dynamic regulation of AFV. PMID:27440743

  7. Complex Formed between Intramembrane Metalloprotease SpoIVFB and Its Substrate, Pro-σK.

    PubMed

    Zhang, Yang; Halder, Sabyasachi; Kerr, Richard A; Parrell, Daniel; Ruotolo, Brandon; Kroos, Lee

    2016-05-01

    Intramembrane metalloproteases (IMMPs) are conserved from bacteria to humans and control many important signaling pathways, but little is known about how IMMPs interact with their substrates. SpoIVFB is an IMMP that cleaves Pro-σ(K) during Bacillus subtilis endospore formation. When catalytically inactive SpoIVFB was coexpressed with C-terminally truncated Pro-σ(K)(1-126) (which can be cleaved by active SpoIVFB) in Escherichia coli, the substrate dramatically improved solubilization of the enzyme from membranes with mild detergents. Both the Pro(1-20) and σ(K)(21-126) parts contributed to improving SpoIVFB solubilization from membranes, but only the σ(K) part was needed to form a stable complex with SpoIVFB in a pulldown assay. The last 10 residues of SpoIVFB were required for improved solubilization from membranes by Pro-σ(K)(1-126) and for normal interaction with the substrate. The inactive SpoIVFB·Pro-σ(K)(1-126)-His6 complex was stable during affinity purification and gel filtration chromatography. Disulfide cross-linking of the purified complex indicated that it resembled the complex formed in vivo Ion mobility-mass spectrometry analysis resulted in an observed mass consistent with a 4:2 SpoIVFB·Pro-σ(K)(1-126)-His6 complex. Stepwise photobleaching of SpoIVFB fused to a fluorescent protein supported the notion that the enzyme is tetrameric during B. subtilis sporulation. The results provide the first evidence that an IMMP acts as a tetramer, give new insights into how SpoIVFB interacts with its substrate, and lay the foundation for further biochemical analysis of the enzyme·substrate complex and future structural studies. PMID:26953342

  8. Kinetic effects of TiO2 fine particles and nanoparticles aggregates on the nanomechanical properties of human neutrophils assessed by force spectroscopy

    PubMed Central

    2013-01-01

    Background Increasing applications of titanium dioxide (TiO2) fine particles (FPs) and nanoparticles (NPs) require coupled knowledge improvement concerning their biokinetic effects. Neutrophils are quickly recruited to titanium implantation areas. Neutrophils mechanical properties display a crucial role on cell physiology and immune responsive functions. Then, micro and nanomechanical characterization assessed by force spectroscopy (FS) technique has been largely applied in this field. Results Scanning electron microscopy (SEM) images highlighted neutrophils morphological changes along TiO2 FPs and NPs aggregates exposure time (1, 5, and 30 min) compared to controls. FS approaches showed an increasing on attraction forces to TiO2 FPs and NPs treated neutrophils. This group depicted stronger stiffness features than controls just at 1 min of exposure. Treated neutrophils showed a tendency to increase adhesive properties after 1 and 5 min of exposure. These cells maintained comparatively higher elasticity behavior for a longer time possibly due to intense phagocytosis and cell stiffness opposing to the tip indentation. Neutrophils activation caused by FPs and NPs uptake could be related to increasing dissipated energy results. Conclusions Mechanical modifications resulted from TiO2 FPs and NPs aggregates interaction with neutrophils showed increasing stiffness and also cell morphology alteration. Cells treatment by this metal FPs and NPs caused an increase in attractive forces. This event was mainly observed on the initial exposure times probably regarding to the interaction of neutrophils membrane and phagocytosis. Similar results were found to adhesion forces and dissipated energy outcomes. Treated cells presented comparatively higher elasticity behavior for a longer time. SEM images clearly suggested cell morphology alteration along time course probably related to activation, cytoskeleton rearrangement and phagocytosis. This scenario with increase in stiffness

  9. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  10. Charged Dust Aggregate Interactions

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  11. The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain

    PubMed Central

    Schneppenheim, Janna; Dressel, Ralf; Hüttl, Susann; Lüllmann-Rauch, Renate; Engelke, Michael; Dittmann, Kai; Wienands, Jürgen; Eskelinen, Eeva-Liisa; Hermans-Borgmeyer, Irm; Fluhrer, Regina; Saftig, Paul

    2013-01-01

    Regulated intramembrane proteolysis is a central cellular process involved in signal transduction and membrane protein turnover. The presenilin homologue signal-peptide-peptidase-like 2a (SPPL2a) has been implicated in the cleavage of type 2 transmembrane proteins. We show that the invariant chain (li, CD74) of the major histocompatability class II complex (MHCII) undergoes intramembrane proteolysis mediated by SPPL2a. B lymphocytes of SPPL2a−/− mice accumulate an N-terminal fragment (NTF) of CD74, which severely impairs membrane traffic within the endocytic system and leads to an altered response to B cell receptor stimulation, reduced BAFF-R surface expression, and accumulation of MHCII in transitional developmental stage T1 B cells. This results in significant loss of B cell subsets beyond the T1 stage and disrupted humoral immune responses, which can be recovered by additional ablation of CD74. Hence, we provide evidence that regulation of CD74-NTF levels by SPPL2a is indispensable for B cell development and function by maintaining trafficking and integrity of MHCII-containing endosomes, highlighting SPPL2a as a promising pharmacological target for depleting and/or modulating B cells. PMID:23267015

  12. Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation123

    PubMed Central

    2016-01-01

    Abstract Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control. PMID:27390775

  13. The effect of phenylglyoxal on contraction and intramembrane charge movement in frog skeletal muscle.

    PubMed Central

    Etter, E F

    1990-01-01

    1. The effects of the arginine-specific protein-modifying reagent, phenylglyoxal, on contraction and intramembrane charge movement were studied in cut single fibres from frog skeletal muscle, using the double-Vaseline-gap voltage clamp technique. 2. The strength-duration curve for pulses which produced microscopically just-detectable contractions was shifted to more positive potentials and longer durations following treatment of fibres with phenylglyoxal. Caffeine-induced contractures were not blocked. 3. The amount of charge moved by large depolarizing pulses from -100 mV holding potential (charge 1) declined during the phenylglyoxal treatment with a single-exponential time course (tau = 7 min). Linear capacitance did not change significantly over the entire experiment. Inhibition of charge movement was predominantly irreversible. 4. Slow bumps (Q gamma) observed in charge movement current transients recorded before phenylglyoxal treatment, using either large test pulses or small steps superimposed on test pulses, were absent from currents recorded after treatment. The current removed by phenylglyoxal contained the bump (Q gamma) and a small fast transient (Q beta). 5. The amount of charge moved by large depolarizing pulses from -100 mV was reduced 20-50% following phenylglyoxal treatment. Charge moved by pulses to potentials more negative than -40 mV was relatively unaffected. The magnitude and voltage range of this inhibitory effect were the same whether the reagent was applied at -100 mV or at 0 mV holding potential. 6. A phenylglyoxal-sensitive component of charge was isolated which had a much steeper voltage dependence than the total charge movement or the charge remaining after treatment. 7. Charge recorded during hyperpolarizing pulses from 0 mV holding potential (charge 2) was reduced very little (less than 5%) at any potential by phenylglyoxal treatments at either 0 or -100 mV. 8. The phenylglyoxal reaction with charge 2 was kinetically different from the

  14. Weighted aggregation

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H. (Principal Investigator)

    1979-01-01

    The use of a weighted aggregation technique to improve the precision of the overall LACIE estimate is considered. The manner in which a weighted aggregation technique is implemented given a set of weights is described. The problem of variance estimation is discussed and the question of how to obtain the weights in an operational environment is addressed.

  15. A review of volcanic ash aggregation

    NASA Astrophysics Data System (ADS)

    Brown, R. J.; Bonadonna, C.; Durant, A. J.

    2012-01-01

    Most volcanic ash particles with diameters <63 μm settle from eruption clouds as particle aggregates that cumulatively have larger sizes, lower densities, and higher terminal fall velocities than individual constituent particles. Particle aggregation reduces the atmospheric residence time of fine ash, which results in a proportional increase in fine ash fallout within 10-100 s km from the volcano and a reduction in airborne fine ash mass concentrations 1000 s km from the volcano. Aggregate characteristics vary with distance from the volcano: proximal aggregates are typically larger (up to cm size) with concentric structures, while distal aggregates are typically smaller (sub-millimetre size). Particles comprising ash aggregates are bound through hydro-bonds (liquid and ice water) and electrostatic forces, and the rate of particle aggregation correlates with cloud liquid water availability. Eruption source parameters (including initial particle size distribution, erupted mass, eruption column height, cloud water content and temperature) and the eruption plume temperature lapse rate, coupled with the environmental parameters, determines the type and spatiotemporal distribution of aggregates. Field studies, lab experiments and modelling investigations have already provided important insights on the process of particle aggregation. However, new integrated observations that combine remote sensing studies of ash clouds with field measurement and sampling, and lab experiments are required to fill current gaps in knowledge surrounding the theory of ash aggregate formation.

  16. STOCK AND DISTRIBUTION OF TOTAL AND CORN-DERIVED SOIL ORGANIC CARBON IN AGGREGATE AND PRIMARY PARTICLE FRACTIONS FOR DIFFERENT LAND USE AND SOIL MANAGEMENT PRACTICES

    SciTech Connect

    Puget, P; Lal, Rattan; Izaurralde, R Cesar C.; Post, M; Owens, Lloyd

    2005-04-01

    Land use, soil management, and cropping systems affect stock, distribution, and residence time of soil organic carbon (SOC). Therefore, SOC stock and its depth distribution and association with primary and secondary particles were assessed in long-term experiments at the North Appalachian Experimental Watersheds near Coshocton, Ohio, through *13C techniques. These measurements were made for five land use and soil management treatments: (1) secondary forest, (2) meadow converted from no-till (NT) corn since 1988, (3) continuous NT corn since 1970, (4) continuous NT corn-soybean in rotation with ryegrass since 1984, and (5) conventional plow till (PT) corn since 1984. Soil samples to 70-cm depth were obtained in 2002 in all treatments. Significant differences in soil properties were observed among land use treatments for 0 to 5-cm depth. The SOC concentration (g C kg*1 of soil) in the 0 to 5-cm layer was 44.0 in forest, 24.0 in meadow, 26.1 in NT corn, 19.5 in NT corn-soybean, and 11.1 i n PT corn. The fraction of total C in corn residue converted to SOC was 11.9% for NT corn, 10.6% for NT corn-soybean, and 8.3% for PT corn. The proportion of SOC derived from corn residue was 96% for NT corn in the 0 to 5-cm layer, and it decreased gradually with depth and was 50% in PT corn. The mean SOC sequestration rate on conversion from PT to NT was 280 kg C ha*1 y*1. The SOC concentration decreased with reduction in aggregate size, and macro-aggregates contained 15 to 35% more SOC concentration than microaggregates. In comparison with forest, the magnitude of SOC depletion in the 0 to 30-cm layer was 15.5 Mg C/ha (24.0%) in meadow, 12.7 Mg C/ha (19.8%) in NT corn, 17.3 Mg C/ha (26.8%) in NT corn-soybean, and 23.3 Mg C/ha (35.1%) in PT corn. The SOC had a long turnover time when located deeper in the subsoil.

  17. Monosized aggregates -- A new model

    SciTech Connect

    Gopal, M.

    1997-08-01

    For applications requiring colloidal particles, it is desirable that they be monosized to better control the structure and the properties. In a number of systems, the monosized particles come together to form aggregates that are also monosized. A model is presented here to explain the formation of these monosized aggregates. This is of particular importance in the fields of ceramics, catalysis, pigments, pharmacy, photographic emulsions, etc.

  18. Intramembranous Bone Healing Process Subsequent to Tooth Extraction in Mice: Micro-Computed Tomography, Histomorphometric and Molecular Characterization

    PubMed Central

    Vieira, Andreia Espindola; Repeke, Carlos Eduardo; Ferreira Junior, Samuel de Barros; Colavite, Priscila Maria; Biguetti, Claudia Cristina; Oliveira, Rodrigo Cardoso; Assis, Gerson Francisco; Taga, Rumio; Trombone, Ana Paula Favaro; Garlet, Gustavo Pompermaier

    2015-01-01

    Bone tissue has a significant potential for healing, which involves a significant the interplay between bone and immune cells. While fracture healing represents a useful model to investigate endochondral bone healing, intramembranous bone healing models are yet to be developed and characterized. In this study, a micro-computed tomography, histomorphometric and molecular (RealTimePCRarray) characterization of post tooth-extraction alveolar bone healing was performed on C57Bl/6 WT mice. After the initial clot dominance (0h), the development of a provisional immature granulation tissue is evident (7d), characterized by marked cell proliferation, angiogenesis and inflammatory cells infiltration; associated with peaks of growth factors (BMP-2-4-7,TGFβ1,VEGFa), cytokines (TNFα, IL-10), chemokines & receptors (CXCL12, CCL25, CCR5, CXCR4), matrix (Col1a1-2, ITGA4, VTN, MMP1a) and MSCs (CD105, CD106, OCT4, NANOG, CD34, CD146) markers expression. Granulation tissue is sequentially replaced by more mature connective tissue (14d), characterized by inflammatory infiltrate reduction along the increased bone formation, marked expression of matrix remodeling enzymes (MMP-2-9), bone formation/maturation (RUNX2, ALP, DMP1, PHEX, SOST) markers, and chemokines & receptors associated with healing (CCL2, CCL17, CCR2). No evidences of cartilage cells or tissue were observed, strengthening the intramembranous nature of bone healing. Bone microarchitecture analysis supports the evolving healing, with total tissue and bone volumes as trabecular number and thickness showing a progressive increase over time. The extraction socket healing process is considered complete (21d) when the dental socket is filled by trabeculae bone with well-defined medullary canals; it being the expression of mature bone markers prevalent at this period. Our data confirms the intramembranous bone healing nature of the model used, revealing parallels between the gene expression profile and the histomorphometric

  19. Construction aggregates

    USGS Publications Warehouse

    Langer, W.H.; Tepordei, V.V.; Bolen, W.P.

    2000-01-01

    Construction aggregates consist primarily of crushed stone and construction sand and gravel. Total estimated production of construction aggregates increased in 1999 by about 2% to 2.39 Gt (2.64 billion st) compared with 1998. This record production level continued an expansion that began in 1992. By commodities, crushed stone production increased 3.3%, while sand and gravel production increased by about 0.5%.

  20. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  1. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  2. Expression and characterization of Drosophila signal peptide peptidase-like (sppL), a gene that encodes an intramembrane protease.

    PubMed

    Casso, David J; Liu, Songmei; Biehs, Brian; Kornberg, Thomas B

    2012-01-01

    Intramembrane proteases of the Signal Peptide Peptidase (SPP) family play important roles in developmental, metabolic and signaling pathways. Although vertebrates have one SPP and four SPP-like (SPPL) genes, we found that insect genomes encode one Spp and one SppL. Characterization of the Drosophila sppL gene revealed that the predicted SppL protein is a highly conserved structural homolog of the vertebrate SPPL3 proteases, with a predicted nine-transmembrane topology, an active site containing aspartyl residues within a transmembrane region, and a carboxy-terminal PAL domain. SppL protein localized to both the Golgi and ER. Whereas spp is an essential gene that is required during early larval stages and whereas spp loss-of-function reduced the unfolded protein response (UPR), sppL loss of function had no apparent phenotype. This was unexpected given that genetic knockdown phenotypes in other organisms suggested significant roles for Spp-related proteases. PMID:22439002

  3. Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα

    PubMed Central

    Wunderle, Lina; Knopf, Julia D.; Kühnle, Nathalie; Morlé, Aymeric; Hehn, Beate; Adrain, Colin; Strisovsky, Kvido; Freeman, Matthew; Lemberg, Marius K.

    2016-01-01

    Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes. PMID:27264103

  4. Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα.

    PubMed

    Wunderle, Lina; Knopf, Julia D; Kühnle, Nathalie; Morlé, Aymeric; Hehn, Beate; Adrain, Colin; Strisovsky, Kvido; Freeman, Matthew; Lemberg, Marius K

    2016-01-01

    Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes. PMID:27264103

  5. The dyslexia-associated KIAA0319 protein undergoes proteolytic processing with {gamma}-secretase-independent intramembrane cleavage.

    PubMed

    Velayos-Baeza, Antonio; Levecque, Clotilde; Kobayashi, Kazuhiro; Holloway, Zoe G; Monaco, Anthony P

    2010-12-17

    The KIAA0319 gene has been associated with reading disability in several studies. It encodes a plasma membrane protein with a large, highly glycosylated, extracellular domain. This protein is proposed to function in adhesion and attachment and thought to play an important role during neuronal migration in the developing brain. We have previously proposed that endocytosis of this protein could constitute an important mechanism to regulate its function. Here we show that KIAA0319 undergoes ectodomain shedding and intramembrane cleavage. At least five different cleavage events occur, four in the extracellular domain and one within the transmembrane domain. The ectodomain shedding processing cleaves the extracellular domain, generating several small fragments, including the N-terminal region with the Cys-rich MANEC domain. It is possible that these fragments are released to the extracellular medium and trigger cellular responses. The intramembrane cleavage releases the intracellular domain from its membrane attachment. Our results suggest that this cleavage event is not carried out by γ-secretase, the enzyme complex involved in similar processing in many other type I proteins. The soluble cytoplasmic domain of KIAA0319 is able to translocate to the nucleus, accumulating in nucleoli after overexpression. This fragment has an unknown role, although it could be involved in regulation of gene expression. The absence of DNA-interacting motifs indicates that such a function would most probably be mediated through interaction with other proteins, not by direct DNA binding. These results suggest that KIAA0319 not only has a direct role in neuronal migration but may also have additional signaling functions. PMID:20943657

  6. The Dyslexia-associated KIAA0319 Protein Undergoes Proteolytic Processing with γ-Secretase-independent Intramembrane Cleavage*

    PubMed Central

    Velayos-Baeza, Antonio; Levecque, Clotilde; Kobayashi, Kazuhiro; Holloway, Zoe G.; Monaco, Anthony P.

    2010-01-01

    The KIAA0319 gene has been associated with reading disability in several studies. It encodes a plasma membrane protein with a large, highly glycosylated, extracellular domain. This protein is proposed to function in adhesion and attachment and thought to play an important role during neuronal migration in the developing brain. We have previously proposed that endocytosis of this protein could constitute an important mechanism to regulate its function. Here we show that KIAA0319 undergoes ectodomain shedding and intramembrane cleavage. At least five different cleavage events occur, four in the extracellular domain and one within the transmembrane domain. The ectodomain shedding processing cleaves the extracellular domain, generating several small fragments, including the N-terminal region with the Cys-rich MANEC domain. It is possible that these fragments are released to the extracellular medium and trigger cellular responses. The intramembrane cleavage releases the intracellular domain from its membrane attachment. Our results suggest that this cleavage event is not carried out by γ-secretase, the enzyme complex involved in similar processing in many other type I proteins. The soluble cytoplasmic domain of KIAA0319 is able to translocate to the nucleus, accumulating in nucleoli after overexpression. This fragment has an unknown role, although it could be involved in regulation of gene expression. The absence of DNA-interacting motifs indicates that such a function would most probably be mediated through interaction with other proteins, not by direct DNA binding. These results suggest that KIAA0319 not only has a direct role in neuronal migration but may also have additional signaling functions. PMID:20943657

  7. Structure of Viral Aggregates

    NASA Astrophysics Data System (ADS)

    Barr, Stephen; Luijten, Erik

    2010-03-01

    The aggregation of virus particles is a particular form of colloidal self-assembly, since viruses of a give type are monodisperse and have identical, anisotropic surface charge distributions. In small-angle X-ray scattering experiments, the Qbeta virus was found to organize in different crystal structures in the presence of divalent salt and non-adsorbing polymer. Since a simple isotropic potential cannot explain the occurrence of all observed phases, we employ computer simulations to investigate how the surface charge distribution affects the virus interactions. Using a detailed model of the virus particle, we find an asymmetric ion distribution around the virus which gives rise to the different phases observed.

  8. Imbibition kinetics of spherical aggregates

    NASA Astrophysics Data System (ADS)

    Hébraud, Pascal; Lootens, Didier; Debacker, Alban

    The imbibition kinetics of a millimeter-sized aggregate of 300 nm diameter colloidal particles by a wetting pure solvent is studied. Three successive regimes are observed : in the first one, the imbibition proceeds by compressing the air inside the aggregate. Then, the solvent stops when the pressure of the compressed air is equal to the Laplace pressure at the meniscus of the wetting solvent in the porous aggregate. The interface is pinned and the aggregate slowly degases, up to a point where the pressure of the entrapped air stops decreasing and is controlled by the Laplace pressure of small bubbles. Depending on the curvature of the bubble, the system may then be in an unstable state. The imbibition then starts again, but with an inner pressure in equilibrium with these bubbles. This last stage leads to the complete infiltration of the aggregate.

  9. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1993-01-01

    Part of a special section on the market performance of industrial minerals in 1992. Production of construction aggregates increased by 4.6 percent in 1992. This increase was due, in part, to the increased funding for transportation and infrastructure projects. The U.S. produced about 1.05 Gt of crushed stone and an estimated 734 Mt of construction sand and gravel in 1992. Demand is expected to increase by about 5 percent in 1993.

  10. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  11. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  12. Silt-clay aggregates on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles

  13. An intramembranous ossification model for the in silico analysis of bone tissue formation in tooth extraction sites.

    PubMed

    Corredor-Gómez, Jennifer Paola; Rueda-Ramírez, Andrés Mauricio; Gamboa-Márquez, Miguel Alejandro; Torres-Rodríguez, Carolina; Cortés-Rodríguez, Carlos Julio

    2016-07-21

    The accurate modeling of biological processes allows us to predict the spatiotemporal behavior of living tissues by computer-aided (in silico) testing, a useful tool for the development of medical strategies, avoiding the expenses and potential ethical implications of in vivo experimentation. A model for bone healing in mouth would be useful for selecting proper surgical techniques in dental procedures. In this paper, the formulation and implementation of a model for Intramembranous Ossification is presented aiming to describe the complex process of bone tissue formation in tooth extraction sites. The model consists in a mathematical description of the mechanisms in which different types of cells interact, synthesize and degrade extracellular matrices under the influence of biochemical factors. Special attention is given to angiogenesis, oxygen-dependent effects and growth factor-induced apoptosis of fibroblasts. Furthermore, considering the depth-dependent vascularization of mandibular bone and its influence on bone healing, a functional description of the cell distribution on the severed periodontal ligament (PDL) is proposed. The developed model was implemented using the finite element method (FEM) and successfully validated by simulating an animal in vivo experiment on dogs reported in the literature. A good fit between model outcome and experimental data was obtained with a mean absolute error of 3.04%. The mathematical framework presented here may represent an important tool for the design of future in vitro and in vivo tests, as well as a precedent for future in silico studies on osseointegration and mechanobiology. PMID:27113783

  14. Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis

    PubMed Central

    Chen, Allen C.; Kim, Sumin; Shepardson, Nina; Patel, Sarvagna; Hong, Soyon

    2015-01-01

    Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = −0.86) and decreased β-secretase processing of β-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ→α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that β- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism. PMID:26694839

  15. Signal-peptide-peptidase-like 2a is required for CD74 intramembrane proteolysis in human B cells

    PubMed Central

    Schneppenheim, Janna; Hüttl, Susann; Kruchen, Anne; Fluhrer, Regina; Müller, Ingo; Saftig, Paul; Schneppenheim, Reinhard; Martin, Christa L; Schröder, Bernd

    2015-01-01

    The invariant chain (CD74) mediates targeting of the MHCII complex to endosomal compartments, where CD74 undergoes degradation allowing MHCII to acquire peptides. We demonstrated recently that intramembrane proteolysis of the final membrane-bound N-terminal fragment (NTF) of CD74 is catalysed by Signal-peptide-peptidase-like 2a (SPPL2a) and that this process is indispensable for development and function of B lymphocytes in mice. In SPPL2a−/− mice, homeostasis of these cells is disturbed by the accumulation of the unprocessed CD74 NTF. So far, evidence for this essential role of SPPL2a is restricted to mice. Nevertheless, inhibition of SPPL2a has been suggested as novel approach to target B cells for treating autoimmunity. Here, we characterize human B cell lines with a homozygous microdeletion on chromosome 15. We demonstrate that this deletion disrupts the SPPL2a genomic locus and leads to loss of SPPL2a transcript. Lymphoblastoid cell lines from patients with this deletion exhibit absence of SPPL2a at the protein level and show an accumulation of the CD74 NTF comparable to B cells from SPPL2a−/− mice. By this means, we present evidence that the role of SPPL2a in CD74 proteolysis is conserved in human B cells and provide support for modulation of SPPL2a activity as a therapeutic concept. PMID:25035924

  16. Neural crest-specific loss of Prkar1a causes perinatal lethality resulting from defects in intramembranous ossification.

    PubMed

    Jones, Georgette N; Pringle, Daphne R; Yin, Zhirong; Carlton, Michelle M; Powell, Kimerly A; Weinstein, Michael B; Toribio, Ramiro E; La Perle, Krista M D; Kirschner, Lawrence S

    2010-08-01

    The cranial neural crest (CNC) undergoes complex molecular and morphological changes during embryogenesis in order to form the vertebrate skull, and nearly three quarters of all birth defects result from defects in craniofacial development. The molecular events leading to CNC differentiation have been extensively studied; however, the role of the cAMP-dependent protein kinase [protein kinase A (PKA)] during craniofacial development has only been described in palate formation. Here, we provide evidence that strict PKA regulation in postmigratory CNC cells is essential during craniofacial bone development. Selective inactivation of Prkar1a, a regulatory subunit of the PKA holoenzyme, in the CNC results in perinatal lethality caused by dysmorphic craniofacial development and subsequent asphyxiation. Additionally, aberrant differentiation of CNC mesenchymal cells results in anomalous intramembranous ossification characterized by formation of cartilaginous islands in some areas and osteolysis of bony trabeculae with fibrous connective tissue stabilization in others. Genetic interaction studies revealed that genetic reduction of the PKA catalytic subunit C(alpha) was able to rescue the phenotype, whereas reduction in Cbeta had no effect. Overall, these observations provide evidence of the essential role of proper regulation of PKA during the ossification of the bones of the skull. This knowledge may have implications for the understanding and treatment of craniofacial birth defects. PMID:20534695

  17. Construction aggregates

    USGS Publications Warehouse

    Bolen, W.P.; Tepordei, V.V.

    2001-01-01

    The estimated production during 2000 of construction aggregates, crushed stone, and construction sand and gravel increased by about 2.6% to 2.7 Gt (3 billion st), compared with 1999. The expansion that started in 1992 continued with record production levels for the ninth consecutive year. By commodity, construction sand and gravel production increased by 4.5% to 1.16 Gt (1.28 billion st), while crushed stone production increased by 1.3% to 1.56 Gt (1.72 billion st).

  18. Ethrel-stimulated prolongation of latex flow in the rubber tree (Hevea brasiliensis Muell. Arg.): an Hev b 7-like protein acts as a universal antagonist of rubber particle aggregating factors from lutoids and C-serum.

    PubMed

    Shi, Min-Jing; Cai, Fu-Ge; Tian, Wei-Min

    2016-02-01

    Ethrel is the most effective stimuli in prolonging the latex flow that consequently increases yield per tapping. This effect is largely ascribed to the enhanced lutoid stability, which is associated with the decreased release of initiators of rubber particle (RP) aggregation from lutoid bursting. However, the increase in both the bursting index of lutoids and the duration of latex flow after applying ethrel or ethylene gas in high concentrations suggests that a new mechanism needs to be introduced. In this study, a latex allergen Hev b 7-like protein in C-serum was identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS). In vitro analysis showed that the protein acted as a universal antagonist of RP aggregating factors from lutoids and C-serum. Ethrel treatment obviously weakened the effect of C-serum on RP aggregation, which was closely associated with the increase in the level of the Hev b 7-like protein and the decrease in the level of the 37 kDa protein, as revealed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting analysis and antibody neutralization. Thus, the increase of the Hev b 7-like protein level or the ratio of the Hev b 7-like protein to the 37 kDa protein in C-serum should be primarily ascribed to the ethrel-stimulated prolongation of latex flow duration. PMID:26381537

  19. Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes.

    PubMed

    Sigurdsson, Jon Karl; Atzberger, Paul J

    2016-08-10

    We develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For general investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers. PMID:27373277

  20. Folding and Intramembraneous BRICHOS Binding of the Prosurfactant Protein C Transmembrane Segment*

    PubMed Central

    Sáenz, Alejandra; Presto, Jenny; Lara, Patricia; Akinyi-Oloo, Laura; García-Fojeda, Belén; Nilsson, IngMarie; Johansson, Jan; Casals, Cristina

    2015-01-01

    Surfactant protein C (SP-C) is a novel amyloid protein found in the lung tissue of patients suffering from interstitial lung disease (ILD) due to mutations in the gene of the precursor protein pro-SP-C. SP-C is a small α-helical hydrophobic protein with an unusually high content of valine residues. SP-C is prone to convert into β-sheet aggregates, forming amyloid fibrils. Nature's way of solving this folding problem is to include a BRICHOS domain in pro-SP-C, which functions as a chaperone for SP-C during biosynthesis. Mutations in the pro-SP-C BRICHOS domain or linker region lead to amyloid formation of the SP-C protein and ILD. In this study, we used an in vitro transcription/translation system to study translocon-mediated folding of the WT pro-SP-C poly-Val and a designed poly-Leu transmembrane (TM) segment in the endoplasmic reticulum (ER) membrane. Furthermore, to understand how the pro-SP-C BRICHOS domain present in the ER lumen can interact with the TM segment of pro-SP-C, we studied the membrane insertion properties of the recombinant form of the pro-SP-C BRICHOS domain and two ILD-associated mutants. The results show that the co-translational folding of the WT pro-SP-C TM segment is inefficient, that the BRICHOS domain inserts into superficial parts of fluid membranes, and that BRICHOS membrane insertion is promoted by poly-Val peptides present in the membrane. In contrast, one BRICHOS and one non-BRICHOS ILD-associated mutant could not insert into membranes. These findings support a chaperone function of the BRICHOS domain, possibly together with the linker region, during pro-SP-C biosynthesis in the ER. PMID:26041777

  1. Microwave extinction characteristics of nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Cheng, J. X.; Liu, X. X.; Wang, H. X.; Zhao, F. T.; Wen, W. W.

    2016-07-01

    Structure of nanoparticle aggregates plays an important role in microwave extinction capacity. The diffusion-limited aggregation model (DLA) for fractal growth is utilized to explore the possible structures of nanoparticle aggregates by computer simulation. Based on the discrete dipole approximation (DDA) method, the microwave extinction performance by different nano-carborundum aggregates is numerically analyzed. The effects of the particle quantity, original diameter, fractal structure, as well as orientation on microwave extinction are investigated, and also the extinction characteristics of aggregates are compared with the spherical nanoparticle in the same volume. Numerical results give out that proper aggregation of nanoparticle is beneficial to microwave extinction capacity, and the microwave extinction cross section by aggregated granules is better than that of the spherical solid one in the same volume.

  2. Beyond diffusion-limited aggregation kinetics in microparticle suspensions.

    PubMed

    Erb, Randall M; Krebs, Melissa D; Alsberg, Eben; Samanta, Bappaditya; Rotello, Vincent M; Yellen, Benjamin B

    2009-11-01

    Aggregation in nondiffusion limited colloidal particle suspensions follows a temporal power-law dependence that is consistent with classical diffusion limited cluster aggregation models; however, the dynamic scaling exponents observed in these systems are not adequately described by diffusion limited cluster aggregation models, which expect these scaling exponents to be constant over all experimental conditions. We show here that the dynamic scaling exponents for 10 microm particles increase with the particle concentration and the particle-particle free energy of interaction. We provide a semiquantitative explanation for the scaling behavior in terms of the long-ranged particle-particle interaction potential. PMID:20364980

  3. A competitive aggregation model for flash nanoprecipitation.

    PubMed

    Cheng, Janine Chungyin; Vigil, R D; Fox, R O

    2010-11-15

    Flash NanoPrecipitation (FNP) is a novel approach for producing functional nanoparticles stabilized by amphiphilic block copolymers. FNP involves the rapid mixing of a hydrophobic active (organic) and an amphiphilic di-block copolymer with a non-solvent (water) and subsequent co-precipitation of nanoparticles composed of both the organic and copolymer. During this process, the particle size distribution (PSD) is frozen and stabilized by the hydrophilic portion of the amphiphilic di-block copolymer residing on the particle surface. That is, the particle growth is kinetically arrested and thus a narrow PSD can be attained. To model the co-precipitation process, a bivariate population balance equation (PBE) has been formulated to account for the competitive aggregation of the organic and copolymer versus pure organic-organic or copolymer-copolymer aggregation. Aggregation rate kernels have been derived to account for the major aggregation events: free coupling, unimer insertion, and aggregate fusion. The resulting PBE is solved both by direct integration and by using the conditional quadrature method of moments (CQMOM). By solving the competitive aggregation model under well-mixed conditions, it is demonstrated that the PSD is controlled primarily by the copolymer-copolymer aggregation process and that the energy barrier to aggregate fusion plays a key role in determining the PSD. It is also shown that the characteristic aggregation times are smaller than the turbulent mixing time so that the FNP process is always mixing limited. PMID:20800847

  4. Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74.

    PubMed

    Hüttl, Susann; Helfrich, Felix; Mentrup, Torben; Held, Sebastian; Fukumori, Akio; Steiner, Harald; Saftig, Paul; Fluhrer, Regina; Schröder, Bernd

    2016-05-15

    The presenilin homologue signal peptide peptidase-like 2a (SPPL2a) is an intramembrane protease of lysosomes/late endosomes which cleaves type II transmembrane proteins. We recently identified CD74, the invariant chain of the MHCII complex, as the first in vivo validated substrate of this protease. In endosomal compartments, CD74 undergoes sequential proteolysis leading to the generation of a membrane-bound N-terminal fragment (NTF) that requires cleavage by SPPL2a for its turnover. In SPPL2a(-/-) mice, this fragment accumulates in B-cells and significantly disturbs their maturation and functionality. To date, the substrate requirements of the protease SPPL2a have not been investigated. In the present study, we systematically analysed the molecular determinants of CD74 with regard to the intramembrane cleavage by SPPL2a. Using domain-exchange experiments, we demonstrate that the intracellular domain (ICD) of CD74 can be substituted without affecting cleavability by SPPL2a. Based on IP-MS analysis of the cleavage product, we report identification of the primary SPPL2a cleavage site between Y52 and F53 within the CD74 transmembrane segment. Furthermore, systematic alanine-scanning mutagenesis of the transmembrane and membrane-proximal parts of the CD74 NTF has been performed. We show that none of the analysed determinants within the CD74 NTF including the residues flanking the primary cleavage site are absolutely essential for SPPL2a cleavage. Importantly, we found that alanine substitution of helix-destabilizing glycines within the transmembrane segment and distinct residues within the luminal membrane-proximal segment led to a reduced efficiency of SPPL2a-mediated processing. Therefore we propose that elements within the transmembrane segment and the luminal juxtamembrane domain facilitate intramembrane proteolysis of CD74 by SPPL2a. PMID:26987812

  5. EFFECT OF AGGREGATION ON VIBRIO CHOLERA INACTIVATION

    EPA Science Inventory

    Extensive research has shown that microorganisms exhibit increased resistance due to clumping, aggregation, particle association or modification of antecedent growth conditions. uring the course of investigating a major waterborne V. Cholerae outbreak in Peru, U.S. EPA investigat...

  6. Slightly modifying pseudoproline dipeptides incorporation strategy enables solid phase synthesis of a 54 AA fragment of caveolin-1 encompassing the intramembrane domain.

    PubMed

    Coïc, Yves-Marie; Lan, Charlotte Le; Neumann, Jean-Michel; Jamin, Nadège; Baleux, Françoise

    2010-02-01

    This work contributes to highlight the benefits of pseudoproline dipeptides introduction in difficult SPPS. We show how a slight modification in the positioning choice conditioned the synthesis achievement of a 54 amino acid long caveolin-1 peptide encompassing the intramembrane domain. Furthermore, we report a side reaction correlated with the coupling steps and generating truncated fragments with a mass deviation of + 42 Da. Considering the need of structural data for membrane proteins, most of which are considered as prevalent therapeutic targets, chemical synthesis provides an interesting alternative pathway to obtain hydrophobic domains by pushing back the frontiers of conventional RP methods of purification. PMID:20014324

  7. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  8. Titan's aerosols. I - Laboratory investigations of shapes, size distributions, and aggregation of particles produced by UV photolysis of model Titan atmospheres

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.; Lau, Edmond Y.; Stone, Bradley M.

    1992-01-01

    Experiments in which C2H2, C2H4, and HCN were photolyzed separately and as a mixture in UV light have been conducted in order to ascertain the physical properties of model Titan atmosphere aerosols. Aerosols formed from photolysis of C2H4 were physically similar to those formed from C2H2; protolysis of HCN rapidly generated particles that did not grow to sizes greater than 0.09 microns. While the formation of particles from C4H2 was observed within minutes, formation was slowed by a factor of 4 when C2H2 and HCN were added.

  9. Biological framework for soil aggregation: Implications for ecological functions.

    NASA Astrophysics Data System (ADS)

    Ghezzehei, Teamrat; Or, Dani

    2016-04-01

    Soil aggregation is heuristically understood as agglomeration of primary particles bound together by biotic and abiotic cementing agents. The organization of aggregates is believed to be hierarchical in nature; whereby primary particles bond together to form secondary particles and subsequently merge to form larger aggregates. Soil aggregates are not permanent structures, they continuously change in response to internal and external forces and other drivers, including moisture, capillary pressure, temperature, biological activity, and human disturbances. Soil aggregation processes and the resulting functionality span multiple spatial and temporal scales. The intertwined biological and physical nature of soil aggregation, and the time scales involved precluded a universally applicable and quantifiable framework for characterizing the nature and function of soil aggregation. We introduce a biophysical framework of soil aggregation that considers the various modes and factors of the genesis, maturation and degradation of soil aggregates including wetting/drying cycles, soil mechanical processes, biological activity and the nature of primary soil particles. The framework attempts to disentangle mechanical (compaction and soil fragmentation) from in-situ biophysical aggregation and provides a consistent description of aggregate size, hierarchical organization, and life time. It also enables quantitative description of biotic and abiotic functions of soil aggregates including diffusion and storage of mass and energy as well as role of aggregates as hot spots of nutrient accumulation, biodiversity, and biogeochemical cycles.

  10. Classification and Characterization of Therapeutic Antibody Aggregates

    PubMed Central

    Joubert, Marisa K.; Luo, Quanzhou; Nashed-Samuel, Yasser; Wypych, Jette; Narhi, Linda O.

    2011-01-01

    A host of diverse stress techniques was applied to a monoclonal antibody (IgG2) to yield protein particles with varying attributes and morphologies. Aggregated solutions were evaluated for percent aggregation, particle counts, size distribution, morphology, changes in secondary and tertiary structure, surface hydrophobicity, metal content, and reversibility. Chemical modifications were also identified in a separate report (Luo, Q., Joubert, M. K., Stevenson, R., Narhi, L. O., and Wypych, J. (2011) J. Biol. Chem. 286, 25134–25144). Aggregates were categorized into seven discrete classes, based on the traits described. Several additional molecules (from the IgG1 and IgG2 subtypes as well as intravenous IgG) were stressed and found to be defined with the same classification system. The mechanism of protein aggregation and the type of aggregate formed depends on the nature of the stress applied. Different IgG molecules appear to aggregate by a similar mechanism under the same applied stress. Aggregates created by harsh mechanical stress showed the largest number of subvisible particles, and the class generated by thermal stress displayed the largest number of visible particles. Most classes showed a disruption of the higher order structure, with the degree of disorder depending on the stress process. Particles in all classes (except thermal stress) were at least partially reversible upon dilution in pH 5 buffer. High copper content was detected in isolated metal-catalyzed aggregates, a stress previously shown to produce immunogenic aggregates. In conclusion, protein aggregates can be a very heterogeneous population, whose qualities are the result of the type of stress that was experienced. PMID:21454532

  11. Kinetic model for erythrocyte aggregation.

    PubMed

    Bertoluzzo, S M; Bollini, A; Rasia, M; Raynal, A

    1999-01-01

    It is well known that light transmission through blood is the most widely utilized method for the study of erythrocyte aggregation. The curves obtained had been considered empirically as exponential functions. In consequence, the process becomes characterized by an only parameter that varies with all the process factors without discrimination. In the present paper a mathematical model for RBC aggregation process is deduced in accordance with von Smoluchowski's theory about the kinetics of colloidal particles agglomeration. The equation fitted the experimental pattern of the RBC suspension optical transmittance closely and contained two parameters that estimate the most important characteristics of the aggregation process separately, i.e., (1) average size of rouleaux at equilibrium and (2) aggregation rate. The evaluation of the method was assessed by some factors affecting erythrocyte aggregation, such as temperature, plasma dilutions, Dextran 500, Dextran 70 and PVP 360, at different media concentrations, cellular membrane alteration by the alkylating agent TCEA, and decrease of medium osmolarity. Results were interpreted considering the process characteristics estimated by the parameters, and there were also compared with similar studies carried out by other authors with other methods. This analysis allowed us to conclude that the equation proposed is reliable and useful to study erythrocyte aggregation. PMID:10660481

  12. Thermal Aggregation of Recombinant Protective Antigen: Aggregate Morphology and Growth Rate

    PubMed Central

    Belton, Daniel J.; Miller, Aline F.

    2013-01-01

    The thermal aggregation of the biopharmaceutical protein recombinant protective antigen (rPA) has been explored, and the associated kinetics and thermodynamic parameters have been extracted using optical and environmental scanning electron microscopies (ESEMs) and ultraviolet light scattering spectroscopy (UV-LSS). Visual observations and turbidity measurements provided an overall picture of the aggregation process, suggesting a two-step mechanism. Microscopy was used to examine the structure of aggregates, revealing an open morphology formed by the clustering of the microscopic aggregate particles. UV-LSS was used and developed to elucidate the growth rate of these particles, which formed in the first stage of the aggregation process. Their growth rate is observed to be high initially, before falling to converge on a final size that correlates with the ESEM data. The results suggest that the particle growth rate is limited by rPA monomer concentration, and by obtaining data over a range of incubation temperatures, an approach was developed to model the aggregation kinetics and extract the rate constants and the temperature dependence of aggregation. In doing so, we quantified the susceptibility of rPA aggregation under different temperature and environmental conditions and moreover demonstrated a novel use of UV spectrometry to monitor the particle aggregation quantitatively, in situ, in a nondestructive and time-resolved manner. PMID:23476645

  13. Molecular mechanism of the intramembrane cleavage of the β-carboxyl terminal fragment of amyloid precursor protein by γ-secretase

    PubMed Central

    Morishima-Kawashima, Maho

    2014-01-01

    Amyloid β-protein (Aβ) plays a central role in the pathogenesis of Alzheimer's disease, the most common age-associated neurodegenerative disorder. Aβ is generated through intramembrane proteolysis of the β-carboxyl terminal fragment (βCTF) of β-amyloid precursor protein (APP) by γ-secretase. The initial cleavage by γ-secretase occurs in the membrane/cytoplasm boundary of the βCTF, liberating the APP intracellular domain (AICD). The remaining βCTFs, which are truncated at the C-terminus (longer Aβs), are then cropped sequentially in a stepwise manner, predominantly at three residue intervals, to generate Aβ. There are two major Aβ product lines which generate Aβ40 and Aβ42 with concomitant release of three and two tripeptides, respectively. Additionally, many alternative cleavages occur, releasing peptides with three to six residues. These modulate the Aβ product lines and define the species and quantity of Aβ generated. Here, we review our current understanding of the intramembrane cleavage of the βCTF by γ-secretase, which may contribute to the future goal of developing an efficient therapeutic strategy for Alzheimer's disease. PMID:25505888

  14. Aggregation dynamics and magnetic properties of magnetic micrometer-sized particles dispersed in a fluid under the action of rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Llera, María; Codnia, Jorge; Jorge, Guillermo A.

    2015-06-01

    We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid-solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator.

  15. Aggregate breakdown of nanoparticulate titania

    NASA Astrophysics Data System (ADS)

    Venugopal, Navin

    Six nanosized titanium dioxide powders synthesized from a sulfate process were investigated. The targeted end-use of this powder was for a de-NOx catalyst honeycomb monolith. Alteration of synthesis parameters had resulted principally in differences in soluble ion level and specific surface area of the powders. The goal of this investigation was to understand the role of synthesis parameters in the aggregation behavior of these powders. Investigation via scanning electron microscopy of the powders revealed three different aggregation iterations at specific length scales. Secondary and higher order aggregate strength was investigated via oscillatory stress rheometry as a means of simulating shear conditions encountered during extrusion. G' and G'' were measured as a function of the applied oscillatory stress. Oscillatory rheometry indicated a strong variation as a function of the sulfate level of the particles in the viscoelastic yield strengths. Powder yield stresses ranged from 3.0 Pa to 24.0 Pa of oscillatory stress. Compaction curves to 750 MPa found strong similarities in extrapolated yield point of stage I and II compaction for each of the powders (at approximately 500 MPa) suggesting that the variation in sulfate was greatest above the primary aggregate level. Scanning electron microscopy of samples at different states of shear in oscillatory rheometry confirmed the variation in the linear elastic region and the viscous flow regime. A technique of this investigation was to approach aggregation via a novel perspective: aggregates are distinguished as being loose open structures that are highly disordered and stochastic in nature. The methodology used was to investigate the shear stresses required to rupture the various aggregation stages encountered and investigate the attempt to realign the now free-flowing constituents comprising the aggregate into a denser configuration. Mercury porosimetry was utilized to measure the pore size of the compact resulting from

  16. The role of short-ranged and long-ranged hydrodynamic interactions on aggregation of colloidal particle in colloid-polymer mixtures

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2014-11-01

    Colloidal Gels i.e. disordered arrested systems has been studied extensively during the past decades both experimentally and computationally. Despite their widespread applications in various industries e.g. cosmetic, food, their physical principals are still far beyond being understood. The interplay between different types of interactions e.g. quantum scale, short-ranged, and long-ranged turned dynamics and thermodynamics of the colloidal systems to one the most intriguing areas in Physics. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation in colloidal system with short-ranged attractive force e.g. colloid-polymer mixtures. However, BD neglects multi-body hydrodynamic interactions (HI) and MD is limited considering the time and length scale of gel formation and long-time dynamics. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal systems. Due to the possibility to study short- and long-ranged HI separately in this method we studied the effect of each of those interactions on the final morphology and report on one of the controversial question in this field. In the second part of the presentation, we include colloidal-polymer interactions to extend/modify the Asakura-Oosawa potential model to semi-dilute region of polymer solution.

  17. Bouncing behavior of microscopic dust aggregates

    NASA Astrophysics Data System (ADS)

    Seizinger, A.; Kley, W.

    2013-03-01

    Context. Bouncing collisions of dust aggregates within the protoplanetary disk may have a significant impact on the growth process of planetesimals. Yet, the conditions that result in bouncing are not very well understood. Existing simulations studying the bouncing behavior used aggregates with an artificial, very regular internal structure. Aims: Here, we study the bouncing behavior of sub-mm dust aggregates that are constructed applying different sample preparation methods. We analyze how the internal structure of the aggregate alters the collisional outcome and we determine the influence of aggregate size, porosity, collision velocity, and impact parameter. Methods: We use molecular dynamics simulations where the individual aggregates are treated as spheres that are made up of several hundred thousand individual monomers. The simulations are run on graphic cards (GPUs). Results: Statistical bulk properties and thus bouncing behavior of sub-mm dust aggregates depend heavily on the preparation method. In particular, there is no unique relation between the average volume filling factor and the coordination number of the aggregate. Realistic aggregates bounce only if their volume filling factor exceeds 0.5 and collision velocities are below 0.1 ms-1. Conclusions: For dust particles in the protoplanetary nebula we suggest that the bouncing barrier may not be such a strong handicap in the growth phase of dust agglomerates, at least in the size range of ≈100 μm.

  18. Prediction of the intramembranous tissue formation during perisprosthetic healing with uncertainties. Part 1. Effect of the variability of each biochemical factor.

    PubMed

    Yang, J; Faverjon, B; Dureisseix, D; Swider, P; Kessissoglou, N

    2016-10-01

    A stochastic model is proposed to predict the intramembranous process in periprosthetic healing in the early post-operative period. The methodology was validated by a canine experimental model. In this first part, the effects of each individual uncertain biochemical factor on the bone-implant healing are examined, including the coefficient of osteoid synthesis, the coefficients of haptotactic and chemotactic migration of osteoblastic population and the radius of the drill hole. A multi-phase reactive model solved by an explicit finite difference scheme is combined with the polynomial chaos expansion to solve the stochastic system. In the second part, combined biochemical factors are considered to study a real configuration of clinical acts. PMID:26881777

  19. Imbibition kinetics of spherical colloidal aggregates.

    PubMed

    Debacker, A; Makarchuk, S; Lootens, D; Hébraud, P

    2014-07-11

    The imbibition kinetics of a millimeter-sized aggregate of 300 nm diameter colloidal particles by a wetting pure solvent is studied. Three successive regimes are observed. First, the imbibition proceeds by compressing the air inside the aggregate. Next, the solvent stops when the pressure of the compressed air is equal to the excess of capillary pressure at the meniscus of the wetting solvent in the porous aggregate. The interface is pinned and the aggregate slowly degases up to the point where the pressure of the entrapped air stops decreasing and is controlled by the capillary pressure. Finally, the imbibition starts again at a constant excess of pressure, smaller than the capillary pressure but larger than the one of the atmosphere. This last stage leads to the complete infiltration of the aggregate. PMID:25062241

  20. The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor.

    PubMed

    Miller-Gallacher, Jennifer L; Nehmé, Rony; Warne, Tony; Edwards, Patricia C; Schertler, Gebhard F X; Leslie, Andrew G W; Tate, Christopher G

    2014-01-01

    The β1-adrenoceptor (β1AR) is a G protein-coupled receptor (GPCR) that is activated by the endogenous agonists adrenaline and noradrenaline. We have determined the structure of an ultra-thermostable β1AR mutant bound to the weak partial agonist cyanopindolol to 2.1 Å resolution. High-quality crystals (100 μm plates) were grown in lipidic cubic phase without the assistance of a T4 lysozyme or BRIL fusion in cytoplasmic loop 3, which is commonly employed for GPCR crystallisation. An intramembrane Na+ ion was identified co-ordinated to Asp872.50, Ser1283.39 and 3 water molecules, which is part of a more extensive network of water molecules in a cavity formed between transmembrane helices 1, 2, 3, 6 and 7. Remarkably, this water network and Na+ ion is highly conserved between β1AR and the adenosine A2A receptor (rmsd of 0.3 Å), despite an overall rmsd of 2.4 Å for all Cα atoms and only 23% amino acid identity in the transmembrane regions. The affinity of agonist binding and nanobody Nb80 binding to β1AR is unaffected by Na+ ions, but the stability of the receptor is decreased by 7.5°C in the absence of Na+. Mutation of amino acid side chains that are involved in the co-ordination of either Na+ or water molecules in the network decreases the stability of β1AR by 5-10°C. The data suggest that the intramembrane Na+ and associated water network stabilise the ligand-free state of β1AR, but still permits the receptor to form the activated state which involves the collapse of the Na+ binding pocket on agonist binding. PMID:24663151

  1. Platelet aggregation test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003669.htm Platelet aggregation test To use the sharing features on this page, please enable JavaScript. The platelet aggregation blood test checks how well platelets , a ...

  2. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  3. Platelet aggregation test

    MedlinePlus

    The platelet aggregation blood test checks how well platelets , a part of blood, clump together and cause blood to clot. ... Decreased platelet aggregation may be due to: Autoimmune ... Fibrin degradation products Inherited platelet function defects ...

  4. Interplay of model ingredients affecting aggregate shape plasticity in diffusion-limited aggregation

    NASA Astrophysics Data System (ADS)

    Duarte-Neto, P.; Stošić, T.; Stošić, B.; Lessa, R.; Milošević, M. V.

    2014-07-01

    We analyze the combined effect of three ingredients of an aggregation model—surface tension, particle flow and particle source—representing typical characteristics of many aggregation growth processes in nature. Through extensive numerical experiments and for different underlying lattice structures we demonstrate that the location of incoming particles and their preferential direction of flow can significantly affect the resulting general shape of the aggregate, while the surface tension controls the surface roughness. Combining all three ingredients increases the aggregate shape plasticity, yielding a wider spectrum of shapes as compared to earlier works that analyzed these ingredients separately. Our results indicate that the considered combination of effects is fundamental for modeling the polymorphic growth of a wide variety of structures in confined geometries and/or in the presence of external fields, such as rocks, crystals, corals, and biominerals.

  5. Interplay of model ingredients affecting aggregate shape plasticity in diffusion-limited aggregation.

    PubMed

    Duarte-Neto, P; Stošić, T; Stošić, B; Lessa, R; Milošević, M V

    2014-07-01

    We analyze the combined effect of three ingredients of an aggregation model--surface tension, particle flow and particle source--representing typical characteristics of many aggregation growth processes in nature. Through extensive numerical experiments and for different underlying lattice structures we demonstrate that the location of incoming particles and their preferential direction of flow can significantly affect the resulting general shape of the aggregate, while the surface tension controls the surface roughness. Combining all three ingredients increases the aggregate shape plasticity, yielding a wider spectrum of shapes as compared to earlier works that analyzed these ingredients separately. Our results indicate that the considered combination of effects is fundamental for modeling the polymorphic growth of a wide variety of structures in confined geometries and/or in the presence of external fields, such as rocks, crystals, corals, and biominerals. PMID:25122308

  6. Aggregation kinetics and dissolution of coated silver nanoparticles.

    PubMed

    Li, Xuan; Lenhart, John J; Walker, Harold W

    2012-01-17

    Determining the fate of manufactured nanomaterials in the environment is contingent upon understanding how stabilizing agents influence the stability of nanoparticles in aqueous systems. In this study, the aggregation and dissolution tendencies of uncoated silver nanoparticles and the same particles coated with three common coating agents, trisodium citrate, sodium dodecyl sulfate (SDS), and Tween 80 (Tween), were evaluated. Early stage aggregation kinetics of the uncoated and coated silver nanoparticles were assessed by dynamic light scattering over a range of electrolyte types (NaCl, NaNO(3), and CaCl(2)) and concentrations that span those observed in natural waters. Although particle dissolution was observed, aggregation of all particle types was still consistent with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation of citrate-coated particles and SDS-coated particles were very similar to that for the uncoated particles, as the critical coagulation concentrations (CCC) of the particles in different electrolytes were all approximately the same (40 mM NaCl, 30 mM NaNO(3), and 2 mM CaCl(2)). The Tween-stabilized particles were significantly more stable than the other particles, however, and in NaNO(3) aggregation was not observed up to an electrolyte concentration of 1 M. Differences in the rate of aggregation under diffusion-limited aggregation conditions at high electrolyte concentrations for the SDS and Tween-coated particles, in combination with the moderation of their electrophoretic mobilities, suggest SDS and Tween imparted steric interactions to the particles. The dissolution of the silver nanoparticles was inhibited by the SDS and Tween coatings, but not by the citrate coating, and in chloride-containing electrolytes a secondary precipitate of AgCl was observed bridging the individual particles. These results indicate that coating agents could significant influence the fate of silver nanoparticles in aquatic systems, and in some

  7. Aggregate size distribution of the soil loss

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka; Józsa, Sándor; Szalai, Zoltán; Centeri, Csaba

    2016-04-01

    In agricultural areas the soil erosion and soil loss estimation is vital information in long-term planning. During the initial period of the erosion a part of the soil particles and aggregates get transportable and nutrients and organic matter could be transported due to the effect of water or wind. This preliminary phase was studied with laboratory-scale rainfall simulator. Developed surface crust and aggregate size composition of the runoff was examined in six different slope-roughness-moisture content combination of a Cambisol and a Regosol. The ratio of micro- and macro aggregates in the runoff indicate the stability of the aggregates and determine the transport capacity of the runoff. Both soil samples were taken from field where the water erosion is a potential hazard. During the experiment the whole amount of runoff and sediment was collected through sieve series to a bucket to separate the micro- and macro aggregates. In case of both samples the micro aggregates dominate in the runoff and the runoff rates are similar. Although the runoff of the Regosol - with dominant >1000μm macro aggregate content - contained almost nothing but <50μm sized micro aggregates. Meanwhile the runoff of the Cambisol - with more balanced micro and macro aggregate content - contained dominantly 50-250μm sized micro aggregates and in some case remarkable ratio 250-1000μm sized macro aggregates. This difference occurred because the samples are resistant against drop erosion differently. In case of both sample the selectivity of the erosion and substance matrix redistribution manifested in mineral crusts in the surface where the quartz deposited in place while the lighter organic matter transported with the sediment. The detachment of the aggregates and the redistribution of the particles highly effect on the aggregate composition of the runoff which is connected with the quality of the soil loss. So while the estimation of soil loss quantity is more or less is easy, measuring

  8. Aggregation of Calcium Silicate Hydrate Nanoplatelets.

    PubMed

    Delhorme, Maxime; Labbez, Christophe; Turesson, Martin; Lesniewska, Eric; Woodward, Cliff E; Jönsson, Bo

    2016-03-01

    We study the aggregation of calcium silicate hydrate nanoplatelets on a surface by means of Monte Carlo and molecular dynamics simulations at thermodynamic equilibrium. Calcium silicate hydrate (C-S-H) is the main component formed in cement and is responsible for the strength of the material. The hydrate is formed in early cement paste and grows to form platelets on the nanoscale, which aggregate either on dissolving cement particles or on auxiliary particles. The general result is that the experimentally observed variations in these dynamic processes generically called growth can be rationalized from interaction free energies, that is, from pure thermodynamic arguments. We further show that the surface charge density of the particles determines the aggregate structures formed by C-S-H and thus their growth modes. PMID:26859614

  9. Implications of Aggregation and Mass Fractal Nature of Aggregates on the Properties of Organic Pigments and Polymer Composites

    NASA Astrophysics Data System (ADS)

    Agashe, Nikhil; Beaucage, Gregory; Skillas, George; Jemian, Peter; Long, Gabrielle; Ilavsky, Jan; Clapp, Lisa; Schwartz, Russell

    2002-03-01

    Aggregation of organic pigments was studied by small and ultra-small angle x-ray scattering. The aggregation of organic pigments and the implications for optical properties has not been previously reported in the literature, although extensive literature of this type exists for inorganic pigments such as titanium oxide. The pigments were also inspected for primary particle-size by electron microscopy and aggregate size by light scattering. All the pigments exhibited mass-fractal behavior when mixed into various polymers. Some pigments exhibited mass-fractal behavior even in powder form. The scattering patterns reflected differences in mass fractal dimension and particle size. The mass fractal dimension and the size of the aggregates in the polymer depend on the chemical nature of the pigment, the size and strength of the primary particle, the surface characteristics of the pigment, the interaction between the pigment and the polymer and the type of polymer used. A relation between the aggregate size and optimal optical properties is proposed. Aggregates having size around 0.5 microns show best optical properties and hence the pigment aggregate growth needs to be controlled during processing. The processes of aggregation were examined for these pigments. Some of the pigments formed aggregates by a reaction limited aggregation process while others exhibited diffusion limited aggregation.

  10. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    SciTech Connect

    Gharagozloo, Patricia E.; Goodson, Kenneth E.

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  11. Active matter model of Myxococcus xanthus aggregation

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Bahar, Fatmagul; Liu, Guannan; Thutupalli, Shashi; Welch, Roy; Yllanes, David; Shaevitz, Joshua; Marchetti, M. Cristina

    Myxococcus xanthus is a soil-dwelling bacterium that exhibits several fascinating collective behaviors including streaming, swarming, and generation of fruiting bodies. A striking feature of M. xanthus is that it periodically reverses its motility direction. The first stage of fruiting body formation is characterized by the aggregation of cells on a surface into round mesoscopic structures. Experiments have shown that this aggregation relies heavily on regulation of the reversal rate and local mechanical interactions, suggesting motility-induced phase separation may play an important role. We have adapted self-propelled particle models to include cell reversal and motility suppression resulting from sporulation observed in aggregates. Using 2D molecular dynamics simulations, we map the phase behavior in the space of Péclet number and local density and examine the kinetics of aggregation for comparison to experiments.

  12. Diffusion-limited aggregation on curved surfaces

    NASA Astrophysics Data System (ADS)

    Choi, J.; Crowdy, D.; Bazant, M. Z.

    2010-08-01

    We develop a general theory of transport-limited aggregation phenomena occurring on curved surfaces, based on stochastic iterated conformal maps and conformal projections to the complex plane. To illustrate the theory, we use stereographic projections to simulate diffusion-limited aggregation (DLA) on surfaces of constant Gaussian curvature, including the sphere (K>0) and the pseudo-sphere (K<0), which approximate "bumps" and "saddles" in smooth surfaces, respectively. Although the curvature affects the global morphology of the aggregates, the fractal dimension (in the curved metric) is remarkably insensitive to curvature, as long as the particle size is much smaller than the radius of curvature. We conjecture that all aggregates grown by conformally invariant transport on curved surfaces have the same fractal dimension as DLA in the plane. Our simulations suggest, however, that the multifractal dimensions increase from hyperbolic (K<0) to elliptic (K>0) geometry, which we attribute to curvature-dependent screening of tip branching.

  13. Aggregation behavior of illite using light scattering

    SciTech Connect

    Derrendinger, L.; Sposito, G.

    1995-12-01

    Stable environmental particles can be at the origin of facilitated transport of metals and organic compounds, especially contaminants. We investigated the destabilization (aggregation) kinetics of both a reference and a soil clay mineral: Imt-1 (Silver Hill) illite and Hanford soil illite, respectively. Dynamic and static light scattering was used to follow the aggregation kinetics and infer the structure of the resulting clusters. Kinetics curves showed exponential and power-law shapes, corresponding respectively to reaction-limited and diffusion-limited regimes. The fractal dimension of the clusters showed no observable change with the change of aggregation regime, its value always being between 2.10 and 2.25 ({plus_minus}0.12). The change in aggregation regime for Na-illite (or ccc) was measured to be 45 mol.m{sup -3}.

  14. Integral equation study of particle confinement effects in a polymer/particle mixture

    SciTech Connect

    Henderson, D; Trokhymchuk, A; Kalyuzhnyi, Y; Gee, R; Lacevic, N

    2007-05-09

    Integral equation theory techniques are applied to evaluate the structuring of the polymer when large solid particles are embedded into a bulk polymer melt. The formalism presented here is applied to obtain an insight into the filler particle aggregation tendency. We find that with the employed polymer-particle interaction model it is very unlikely that the particles will aggregate. We believe that in such a system aggregation and clustering can occur when the filler particles are dressed by tightly bound polymer layers.

  15. Enhancing Therapeutic Efficacy through Designed Aggregation of Nanoparticles

    PubMed Central

    Sadhukha, Tanmoy; Wiedmann, Timothy Scott; Panyama, Jayanth

    2015-01-01

    Particle size is a key determinant of biological performance of sub-micron size delivery systems. Previous studies investigating the effect of particle size have primarily focused on well-dispersed nanoparticles. However, inorganic nanoparticles are prone to aggregation in biological environments. In our studies, we examined the consequence of aggregation on superparamagnetic iron oxide (SPIO) nanoparticle-induced magnetic hyperthermia. Here we show that the extent and mechanism of hyperthermia-induced cell kill is highly dependent on the aggregation state of SPIO nanoparticles. Well-dispersed nanoparticles induced apoptosis, similar to that observed with conventional hyperthermia. Sub-micron size aggregates, on the other hand, induced temperature-dependent autophagy through generation of oxidative stress. Micron size aggregates caused rapid membrane damage, resulting in acute cell kill. Overall, this work highlights the potential for developing highly effective anticancer therapeutics through designed aggregation of nano delivery systems. PMID:24947232

  16. Expression of osteoblastic and osteoclastic genes during spontaneous regeneration and autotransplantation of goldfish scale: a new tool to study intramembranous bone regeneration.

    PubMed

    Thamamongood, Thiparpa Aime; Furuya, Ryo; Fukuba, Shunsuke; Nakamura, Masahisa; Suzuki, Nobuo; Hattori, Atsuhiko

    2012-06-01

    and grew at the trimmed/perforated part of each transplant, while scale resorption occurred apparently only around the trimmed/perforated area. In contrast, no scale resorption or regeneration was detected in sham transplantations. Our finding suggests that loss of correct cell-to-cell contact between the scale-pocket lining cells and the scale cortex cells is the key to switch on the onset of scale resorption and regeneration. Overall, the present study shows that goldfish scale regeneration shares similarities in gene expression with intramembranous bone regeneration. Improved understanding of goldfish scale regeneration will help elucidate the process of intramembranous bone regeneration and make goldfish scale a possible new tool to study bone regeneration. PMID:22484181

  17. Cytotoxic effects of aggregated nanomaterials.

    PubMed

    Soto, Karla; Garza, K M; Murr, L E

    2007-05-01

    This study deals with cytotoxicity assays performed on an array of commercially manufactured inorganic nanoparticulate materials, including Ag, TiO(2), Fe(2)O(3), Al(2)O(3), ZrO(2), Si(3)N(4), naturally occurring mineral chrysotile asbestos and carbonaceous nanoparticulate materials such as multiwall carbon nanotube aggregates and black carbon aggregates. The nanomaterials were characterized by TEM, as the primary particles, aggregates or long fiber dimensions ranged from 2nm to 20microm. Cytotoxicological assays of these nanomaterials were performed utilizing a murine alveolar macrophage cell line and human macrophage and epithelial lung cell lines as comparators. The nanoparticulate materials exhibited varying degrees of cytoxicity for all cell lines and the general trends were similar for both the murine and human macrophage cell lines. These findings suggest that representative cytotoxic responses for humans might be obtained by nanoparticulate exposures to simple murine macrophage cell line assays. Moreover, these results illustrate the utility in performing rapid in vitro assays for cytotoxicity assessments of nanoparticulate materials as a general inquiry of potential respiratory health risks in humans. PMID:17275430

  18. Restructuring of Dust Aggregates in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A. G. G. M.

    1996-01-01

    We discuss the results of a recent effort to analyze the mechanical stability of dust aggregates with a detailed model of the physical properties of a contact between grains. This model contains both elastic repulsion forces and attractive van der Waals/dipole/metallic forces along with a description of the energy dissipation due to rolling, sliding, and breaking of contacts. We find that (1) aggregates formed from single sized grains via Particle-Cluster-Aggregation remain fluffy, (2) collisions with other aggregates and with large grains may lead to compaction (3) the velocities of small grains and aggregates in the early solar nebula are too small to produce marked compaction as long as the aggregates are small, and (4) internal restructuring of aggregates is a potentially large sink of energy which could enable the sticking of large bodies even at collision velocities of the order of several hundred cm/s.

  19. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine

    PubMed Central

    Cromeans, Theresa L.; Metcalfe, Maureen G.; Humphrey, Charles D.; Hill, Vincent R.

    2016-01-01

    It is generally accepted that viral particles in source water are likely to be found as aggregates attached to other particles. For this reason, it is important to investigate the disinfection efficacy of chlorine on aggregated viruses. A method to produce adenovirus particle aggregation was developed for this study. Negative stain electron microscopy was used to measure aggregation before and after addition of virus particles to surface water at different pH and specific conductance levels. The impact of aggregation on the efficacy of chlorine disinfection was also examined. Disinfection experiments with human adenovirus 2 (HAdV2) in source water were conducted using 0.2 mg/L free chlorine at 5 °C. Aggregation of HAdV2 in source water (≥3 aggregated particles) remained higher at higher specific conductance and pH levels. However, aggregation was highly variable, with the percentage of particles present in aggregates ranging from 43 to 71 %. Upon addition into source water, the aggregation percentage dropped dramatically. On average, chlorination CT values (chlorine concentration in mg/L × time in min) for 3-log10 inactivation of aggregated HAdV2 were up to three times higher than those for dispersed HAdV2, indicating that aggregation reduced the disinfection rate. This information can be used by water utilities and regulators to guide decision making regarding disinfection of viruses in water. PMID:26910058

  20. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine.

    PubMed

    Kahler, Amy M; Cromeans, Theresa L; Metcalfe, Maureen G; Humphrey, Charles D; Hill, Vincent R

    2016-06-01

    It is generally accepted that viral particles in source water are likely to be found as aggregates attached to other particles. For this reason, it is important to investigate the disinfection efficacy of chlorine on aggregated viruses. A method to produce adenovirus particle aggregation was developed for this study. Negative stain electron microscopy was used to measure aggregation before and after addition of virus particles to surface water at different pH and specific conductance levels. The impact of aggregation on the efficacy of chlorine disinfection was also examined. Disinfection experiments with human adenovirus 2 (HAdV2) in source water were conducted using 0.2 mg/L free chlorine at 5 °C. Aggregation of HAdV2 in source water (≥3 aggregated particles) remained higher at higher specific conductance and pH levels. However, aggregation was highly variable, with the percentage of particles present in aggregates ranging from 43 to 71 %. Upon addition into source water, the aggregation percentage dropped dramatically. On average, chlorination CT values (chlorine concentration in mg/L × time in min) for 3-log10 inactivation of aggregated HAdV2 were up to three times higher than those for dispersed HAdV2, indicating that aggregation reduced the disinfection rate. This information can be used by water utilities and regulators to guide decision making regarding disinfection of viruses in water. PMID:26910058

  1. Colloidal aggregation and dynamics in anisotropic fluids

    PubMed Central

    Mondiot, Frédéric; Botet, Robert; Snabre, Patrick; Mondain-Monval, Olivier; Loudet, Jean-Christophe

    2014-01-01

    We present experiments and numerical simulations to investigate the collective behavior of submicrometer-sized particles immersed in a nematic micellar solution. We use latex spheres with diameters ranging from 190 to 780 nm and study their aggregation properties due to the interplay of the various colloidal forces at work in the system. We found that the morphology of aggregates strongly depends on the particle size, with evidence for two distinct regimes: the biggest inclusions clump together within minutes into either compact clusters or V-like structures that are completely consistent with attractive elastic interactions. On the contrary, the smallest particles form chains elongated along the nematic axis, within comparable timescales. In this regime, Monte Carlo simulations, based on a modified diffusion-limited cluster aggregation model, strongly suggest that the anisotropic rotational Brownian motion of the clusters combined with short-range depletion interactions dominate the system coarsening; elastic interactions no longer prevail. The simulations reproduce the sharp transition between the two regimes on increasing the particle size. We provide reasonable estimates to interpret our data and propose a likely scenario for colloidal aggregation. These results emphasize the growing importance of the diffusion of species at suboptical-wavelength scales and raise a number of fundamental issues. PMID:24715727

  2. EFFECT OF AGGREGATION ON VIBRIO CHOLERAE INACTIVATION

    EPA Science Inventory

    Extensive research has shown that microorganisms exhibit increased resistance due to clumping, aggregation, particle association, or modification of antecedent growth conditions. During the course of investigating a major water-borne Vibrio cholerae outbreak in Peru, U.S. EPA inv...

  3. Aggregations in Flatworms.

    ERIC Educational Resources Information Center

    Liffen, C. L.; Hunter, M.

    1980-01-01

    Described is a school project to investigate aggregations in flatworms which may be influenced by light intensity, temperature, and some form of chemical stimulus released by already aggregating flatworms. Such investigations could be adopted to suit many educational levels of science laboratory activities. (DS)

  4. Aggregation and sinking behaviour of resuspended fluffy layer material

    NASA Astrophysics Data System (ADS)

    Ziervogel, Kai; Forster, Stefan

    2005-09-01

    The influence of pelagic diatom addition ( Skeletonema costatum) on aggregation dynamics of resuspended fluffy layer material containing natural microorganism assemblages (bacteria and pennate diatoms) was studied during two roller table experiments. Sediment samples were taken at a fine sand site (16 m water depth) located in Mecklenburg Bight, south-western Baltic Sea. Fluff was experimentally resuspended from sediment cores and aggregation processes with and without S. costatum were studied in rotating tanks. Total particulate matter was incorporated into artificial aggregates in equal shares after both roller table experiments. However, biogenic parameters (particulate organic carbon, particulate organic nitrogen, and carbohydrate equivalents), as well as cell numbers of bacteria and pennate diatoms were found in higher percentages in S. costatum aggregates compared to aggregates without S. costatum. Transparent exopolymer particles were apparently irrelevant in the aggregation process during both experiments. Settling velocities of S. costatum aggregates exceeding 1000 μm in diameter showed a significantly higher mean settling velocity compared to aggregates without S. costatum of the same size. The pronounced effect of pelagic diatoms on aggregation processes of fluff in terms of particle attributes, size, and therewith sinking velocities could be demonstrated and may lead to further insight into near bed particle transport in coastal waters.

  5. Collisional Aggregation Due to Turbulence

    NASA Astrophysics Data System (ADS)

    Pumir, Alain; Wilkinson, Michael

    2016-03-01

    Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars and to play a role in the dynamics of sand storms. In these processes, collisions are favored by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modeling such processes. These advances lead to a semiquantitative understanding on the influence of turbulence on collision rates and point to deficiencies in the current understanding of rainfall and planet formation.

  6. Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Liu, Dongmei; Yang, Xiaonan; Zhao, Ying; Liu, Haixing; Tang, Huan; Cui, Fuyi

    2015-12-01

    Due to the limitations of experimental methods at the atomic level, research on the aggregation of small nanoparticles (D < 5 nm) in aqueous solutions is quite rare. The aggregation of small nanoparticles in aqueous solutions is very different than that of normal sized nanoparticles. The interfacial interactions play a dominant role in the aggregation of small nanoparticles. In this paper, molecular dynamics simulations, which can explore the microscopic behavior of nanoparticles during the diffusion-limited aggregation at an atomic level, were employed to reveal the aggregation mechanism of small nanoparticles in aqueous solutions. First, the aggregation processes and aggregate structure were depicted. Second, the particle-particle interaction and surface diffusion of nanoparticles during aggregation were investigated. Third, the water-mediated interactions during aggregation were ascertained. The results indicate that the aggregation of nanoparticle in aqueous solutions is affected by particle size. The strong particle-particle interaction and high surface diffusion result in the formation of particle-particle bonds of 2 nm TiO2 nanoparticles, and the water-mediated interaction plays an important role in the aggregation process of 3 and 4 nm TiO2 nanoparticles.

  7. Phosphorus recovery from wastewater by struvite crystallization: property of aggregates.

    PubMed

    Ye, Zhilong; Shen, Yin; Ye, Xin; Zhang, Zhaoji; Chen, Shaohua; Shi, Jianwen

    2014-05-01

    Struvite crystallization is a promising method to remove and recover phosphorus from wastewater to ease both the scarcity of phosphorus rock resources and water eutrophication worldwide. To date, although various kinds of reactor systems have been developed, supporting methods are required to control the struvite fines flushing out of the reactors. As an intrinsic property, aggregation is normally disregarded in the struvite crystallization process, although it is the key factor in final particle size and therefore guarantees phosphorus recovery efficiency. The present study developed a method to analyze the characteristics of struvite aggregates using fractal geometry, and the influence of operational parameters on struvite aggregation was evaluated. Due to its typical orthorhombic molecular structure, struvite particles are prone to crystallize into needle or rod shapes, and aggregate at the corners or edges of crystals. The determined fractal dimension (Dpf) of struvite aggregates was 1.52-1.31, with the corresponding range of equivalent diameter (d0.5) at 295.9-85.4 μm. Aggregates formed in relatively low phosphorus concentrations (3.0-5.0 mmol/L) and mildly alkaline conditions (pH 9.0-9.5) displayed relatively compact structures, large aggregate sizes and high aggregation strength. Increasing pH values led to continuous decrease of aggregate sizes, while the variation of Dpf was insignificant. As to the aggregate evolution, fast growth in a short time followed by a long steady stage was observed. PMID:25079629

  8. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    SciTech Connect

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  9. Intra-membrane Signaling Between the Voltage-Gated Ca2+-Channel and Cysteine Residues of Syntaxin 1A Coordinates Synchronous Release

    PubMed Central

    Bachnoff, Niv; Cohen-Kutner, Moshe; Trus, Michael; Atlas, Daphne

    2013-01-01

    The interaction of syntaxin 1A (Sx1A) with voltage-gated calcium channels (VGCC) is required for depolarization-evoked release. However, it is unclear how the signal is transferred from the channel to the exocytotic machinery and whether assembly of Sx1A and the calcium channel is conformationally linked to triggering synchronous release. Here we demonstrate that depolarization-evoked catecholamine release was decreased in chromaffin cells infected with semliki forest viral vectors encoding Sx1A mutants, Sx1AC271V, or Sx1AC272V, or by direct oxidation of these Sx1A transmembrane (TM) cysteine residues. Mutating or oxidizing these highly conserved Sx1A Cys271 and Cys272 equally disrupted the Sx1A interaction with the channel. The results highlight the functional link between the VGCC and the exocytotic machinery, and attribute the redox sensitivity of the release process to the Sx1A TM C271 and C272. This unique intra-membrane signal-transduction pathway enables fast signaling, and triggers synchronous release by conformational-coupling of the channel with Sx1A. PMID:23567899

  10. Yeast membrane proteomics using leucine metabolic labelling: Bioinformatic data processing and exemplary application to the ER-intramembrane protease Ypf1.

    PubMed

    Nilse, Lars; Avci, Dönem; Heisterkamp, Patrick; Serang, Oliver; Lemberg, Marius K; Schilling, Oliver

    2016-10-01

    We describe in detail the usage of leucine metabolic labelling in yeast in order to monitor quantitative proteome alterations, e.g. upon removal of a protease. Since laboratory yeast strains are typically leucine auxotroph, metabolic labelling with trideuterated leucine (d3-leucine) is a straightforward, cost-effective, and ubiquitously applicable strategy for quantitative proteomic studies, similar to the widely used arginine/lysine metabolic labelling method for mammalian cells. We showcase the usage of advanced peptide quantification using the FeatureFinderMultiplex algorithm (part of the OpenMS software package) for robust and reliable quantification. Furthermore, we present an OpenMS bioinformatics data analysis workflow that combines accurate quantification with high proteome coverage. In order to enable visualization, peptide-mapping, and sharing of quantitative proteomic data, especially for membrane-spanning and cell-surface proteins, we further developed the web-application Proteator (http://proteator.appspot.com). Due to its simplicity and robustness, we expect metabolic leucine labelling in yeast to be of great interest to the research community. As an exemplary application, we show the identification of the copper transporter Ctr1 as a putative substrate of the ER-intramembrane protease Ypf1 by yeast membrane proteomics using d3-leucine isotopic labelling. PMID:27426920

  11. Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation[S

    PubMed Central

    Nguyen, Su Duy; Javanainen, Matti; Rissanen, Sami; Zhao, Hongxia; Huusko, Jenni; Kivelä, Annukka M.; Ylä-Herttuala, Seppo; Navab, Mohamad; Fogelman, Alan M.; Vattulainen, Ilpo; Kovanen, Petri T.; Öörni, Katariina

    2015-01-01

    Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention. PMID:25861792

  12. Cluster-cluster aggregation simulation in a concentrated suspension.

    PubMed

    Kusaka, Yasuyuki; Fukasawa, Tomonori; Adachi, Yasuhisa

    2011-11-01

    The collision radius of a floc is an indispensable parameter for the precise description of the rate of aggregation during the development of particle flocs with a wide size distribution. Herein, we report on the characteristics of the collision radius of fractal aggregates formed by off-lattice diffusion-limited cluster-cluster aggregation (DLCCA) simulations, and discuss aggregation kinetics based on the value of the estimated collision radius. The collision radius has a fractal relationship with the number of primary particles that compose the floc. Further, the obtained fractal dimensions of flocs increase from the normally accepted value of 1.6-1.8 to a value of ~2.5 when the initial volume fraction is above 8%. From an assessment of the partial radial distribution function of the particles, the increase of the fractal dimensions determined by the collision radius can be attributed to a change in the spatial distribution of neighboring particles. The DLCCA simulation also reveals an apparent increase in the rate of aggregation upon an increase in the initial volume fraction. For a relatively low initial volume fraction, the enhancement of the aggregation rate is expressed by a population balance equation taking into account additional factors, i.e., transient collision flux among particles/flocs, excluded volumes, and polydispersed features of flocs. However, for cases with high initial volume fractions, the population balance model that accounts for these three factors overestimates the aggregation rate, which supports the concept of a caging effect. PMID:21840531

  13. Aggregate and the environment

    USGS Publications Warehouse

    Langer, William H.; Drew, Lawrence J.; Sachs, J.S.

    2004-01-01

    This book is designed to help you understand our aggregate resources-their importance, where they come from, how they are processed for our use, the environmental concerns related to their mining and processing, how those concerns are addressed, and the policies and regulations designed to safeguard workers, neighbors, and the environment from the negative impacts of aggregate mining. We hope this understanding will help prepare you to be involved in decisions that need to be made-individually and as a society-to be good stewards of our aggregate resources and our living planet.

  14. Air agglomeration of hydrophobic particles

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1995-12-31

    The agglomeration of hydrophobic particles in an aqueous suspension was accomplished by introducing small amounts of air into the suspension while it was agitated vigorously. The extent of aggregation was proportional both to the air to solids ratio and to the hydrophobicity of the solids. For a given air/solids ratio, the extent of aggregation of different materials increased in the following order: graphite, gilsonite, coal coated with heptane, and Teflon. The structure of agglomerates produced from coarse Teflon particles differed noticeably from the structure of bubble-particle aggregates produced from smaller, less hydrophobic particles.

  15. Monodisperse magnetite nanofluids: Synthesis, aggregation, and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Wang, Liqiu

    2010-12-01

    Magnetic nanofluids possess some unique properties that can significantly affect their thermal conductivity. We synthesize monodispersed magnetite (Fe3O4) nanofluids in toluene with the particle size from 4 to 12 nm and obtain aqueous nanofluids by a simple "one-step" phase transfer. Even without the effect of external field, the magnetic-interaction-induced self-assembled aggregation can still be significant in magnetite nanofluids. Investigation of the microstructures of self-assembled aggregation is carried out by the dynamic light scattering, which unveils the variation of aggregated configurations with particle concentration and time. Based on the calculation from the existing models, the aggregates decrease the thermal conductivity of both themselves and the entire system, mainly due to the less solid contents and weaker mobility compared with the single particles as well as the increase in interfacial thermal resistance. As the manifestation of the aggregation-structure variation, the measured thermal conductivity is of a wavelike shape as a function of particle concentration. The particle coating layers are also of importance in cluster formation so that nanofluid thermal conductivity can be manipulated for some nanofluids by changing the stabilizer used and thus controlling the particle aggregated structures. Due to the effects of temperature, viscosity and coating layers, the thermal conductivity for aqueous system varies in a different way as that for the toluene system.

  16. Utilization of sewage sludge in the manufacture of lightweight aggregate.

    PubMed

    Franus, Małgorzata; Barnat-Hunek, Danuta; Wdowin, Magdalena

    2016-01-01

    This paper presents a comprehensive study on the possibility of sewage sludge management in a sintered ceramic material such as a lightweight aggregate. Made from clay and sludge lightweight aggregates were sintered at two temperatures: 1100 °C (name of sample LWA1) and 1150 °C (name of sample LWA2). Physical and mechanical properties indicate that the resulting expanded clay aggregate containing sludge meets the basic requirements for lightweight aggregates. The presence of sludge supports the swelling of the raw material, thereby causing an increase in the porosity of aggregates. The LWA2 has a lower value of bulk particle density (0.414 g/cm(3)), apparent particle density (0.87 g/cm(3)), and dry particle density (2.59 g/cm(3)) than it is in the case of LWA1 where these parameters were as follows: bulk particle density 0.685 g/cm(3), apparent particle density 1.05 g/cm(3), and dry particle density 2.69 g/cm(3). Water absorption and porosity of LWA1 (WA = 14.4 %, P = 60 %) are lower than the LWA2 (WA = 16.2 % and P = 66 %). This is due to the higher heating temperature of granules which make the waste gases, liberating them from the decomposition of organic sewage sludge. The compressive strength of LWA2 aggregate is 4.64 MPa and for LWA1 is 0.79 MPa. Results of leaching tests of heavy metals from examined aggregates have shown that insoluble metal compounds are placed in silicate and aluminosilicate structure of the starting materials (clays and sludges), whereas soluble substances formed crystalline skeleton of the aggregates. The thermal synthesis of lightweight aggregates from clay and sludge mixture is a waste-free method of their development. PMID:26635022

  17. Colloidal Aggregate Structure under Shear by USANS

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.

    2015-03-01

    Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.

  18. Optical Properties and Aggregation of Graphene Nanoplatelets.

    PubMed

    Melezhyk, A V; Kotov, V A; Tkachev, A G

    2016-01-01

    In the present paper, the optical density of dispersions of randomly oriented multilayer graphene nanoplatelets (GNPs) was estimated. Calculated and experimental data were compared for aqueous GNP dispersions stabilized with various surfactants. It was shown that the sonication of an expanded graphite compound (EGC) in aqueous surfactant solutions leads to the transformation of EGC worm-like particles into weak GNP aggregates which are able to pass into solution upon dilution and agitation of the system. They may be filtered and washed out of surfactants. The concentrated GNP dispersions containing these weak aggregates can be used to synthesize different graphene-based nanostructures and obtain novel composite materials. PMID:27398570

  19. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  20. Colloidal aggregation in polymer blends.

    PubMed

    Benhamou, M; Ridouane, H; Hachem, E-K; Derouiche, A; Rahmoune, M

    2005-06-22

    We consider here a low-density assembly of colloidal particles immersed in a critical polymer mixture of two chemically incompatible polymers. We assume that, close to the critical point of the free mixture, the colloids prefer to be surrounded by one polymer (critical adsorption). As result, one is assisted to a reversible colloidal aggregation in the nonpreferred phase, due the existence of a long-range attractive Casimir force between particles. This aggregation is a phase transition driving the colloidal system from dilute to dense phases, as the usual gas-liquid transition. We are interested in a quantitative investigation of the phase diagram of the immersed colloids. We suppose that the positions of particles are disordered, and the disorder is quenched and follows a Gaussian distribution. To apprehend the problem, use is made of the standard phi(4) theory, where the field phi represents the composition fluctuation (order parameter), combined with the standard cumulant method. First, we derive the expression of the effective free energy of colloids and show that this is of Flory-Huggins type. Second, we find that the interaction parameter u between colloids is simply a linear combination of the isotherm compressibility and specific heat of the free mixture. Third, with the help of the derived effective free energy, we determine the complete shape of the phase diagram (binodal and spinodal) in the (Psi,u) plane, with Psi as the volume fraction of immersed colloids. The continuous "gas-liquid" transition occurs at some critical point K of coordinates (Psi(c) = 0.5,u(c) = 2). Finally, we emphasize that the present work is a natural extension of that, relative to simple liquid mixtures incorporating colloids. PMID:16035822

  1. Does Shining Light on Gold Colloids Influence Aggregation?

    PubMed Central

    Bhattacharya, Susmita; Narasimha, Suda; Roy, Anushree; Banerjee, Soumitro

    2014-01-01

    In this article we revisit the much-studied behavior of self-assembled aggregates of gold colloidal particles. In the literature, the electrostatic interactions, van der Waals interactions, and the change in free energy due to ligand-ligand or ligand-solvent interactions are mainly considered to be the dominating factors in determining the characteristics of the gold aggregates. However, our light scattering and imaging experiments clearly indicate a distinct effect of light in the growth structure of the gold colloidal particles. We attribute this to the effect of a non-uniform distribution of the electric field in aggregated gold colloids under the influence of light. PMID:24909824

  2. Hail formation triggers rapid ash aggregation in volcanic plumes

    NASA Astrophysics Data System (ADS)

    van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.

    2015-08-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized `wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ~95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  3. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    Water repellency (WR) is a property of some soils that inhibits or delays water infiltration between a few seconds and days or weeks. Inhibited or delayed infiltration contributes to ponding and increases runoff flow generation, often increasing soil erosion risk. In water-repellent soils, water infiltrates preferentially through cracks or macropores, causing irregular soil wetting patterns, the development of preferential flow paths and accelerated leaching of nutrients. Although low inputs of hydrophobic organic substances and high mineralization rates lead to low degrees of WR in cropped soils, it has been reported that conservative agricultural practices may induce soil WR. Although there are many studies at catchment, slope or plot scales very few studies have been carried out at particle or aggregate scale. Intra-aggregate heterogeneity of physical, biological and chemical properties conditions the transport of substances, microbial activity and biochemical processes, including changes in the amount, distribution and chemical properties of organic matter. Some authors have reported positive relationships between soil WR and aggregate stability, since it may delay the entry of water into aggregates, increase structural stability and contribute to reduce soil erosion risk. Organic C (OC) content, aggregate stability and WR are therefore strongly related parameters. In the case of agricultural soils, where both the type of management as crops can influence all these parameters, it is important to evaluate the interactions among them and their consequences. Studies focused on the intra-aggregate distribution of OC and WR are necessary to shed light on the soil processes at a detailed scale. It is extremely important to understand how the spatial distribution of OC in soil aggregates can protect against rapid water entry and help stabilize larger structural units or lead to preferential flow. The objectives of this research are to study [i] the OC content and the

  4. Cytoplasmic fragment of Alcadein α generated by regulated intramembrane proteolysis enhances amyloid β-protein precursor (APP) transport into the late secretory pathway and facilitates APP cleavage.

    PubMed

    Takei, Norio; Sobu, Yuriko; Kimura, Ayano; Urano, Satomi; Piao, Yi; Araki, Yoichi; Taru, Hidenori; Yamamoto, Tohru; Hata, Saori; Nakaya, Tadashi; Suzuki, Toshiharu

    2015-01-01

    The neural type I membrane protein Alcadein α (Alcα), is primarily cleaved by amyloid β-protein precursor (APP) α-secretase to generate a membrane-associated carboxyl-terminal fragment (Alcα CTF), which is further cleaved by γ-secretase to secrete p3-Alcα peptides and generate an intracellular cytoplasmic domain fragment (Alcα ICD) in the late secretory pathway. By association with the neural adaptor protein X11L (X11-like), Alcα and APP form a ternary complex that suppresses the cleavage of both Alcα and APP by regulating the transport of these membrane proteins into the late secretory pathway where secretases are active. However, it has not been revealed how Alcα and APP are directed from the ternary complex formed largely in the Golgi into the late secretory pathway to reach a nerve terminus. Using a novel transgenic mouse line expressing excess amounts of human Alcα CTF (hAlcα CTF) in neurons, we found that expression of hAlcα CTF induced excess production of hAlcα ICD, which facilitated APP transport into the nerve terminus and enhanced APP metabolism, including Aβ generation. In vitro cell studies also demonstrated that excess expression of Alcα ICD released both APP and Alcα from the ternary complex. These results indicate that regulated intramembrane proteolysis of Alcα by γ-secretase regulates APP trafficking and the production of Aβ in vivo. PMID:25406318

  5. Cytoplasmic Fragment of Alcadein α Generated by Regulated Intramembrane Proteolysis Enhances Amyloid β-Protein Precursor (APP) Transport into the Late Secretory Pathway and Facilitates APP Cleavage*

    PubMed Central

    Takei, Norio; Sobu, Yuriko; Kimura, Ayano; Urano, Satomi; Piao, Yi; Araki, Yoichi; Taru, Hidenori; Yamamoto, Tohru; Hata, Saori; Nakaya, Tadashi; Suzuki, Toshiharu

    2015-01-01

    The neural type I membrane protein Alcadein α (Alcα), is primarily cleaved by amyloid β-protein precursor (APP) α-secretase to generate a membrane-associated carboxyl-terminal fragment (Alcα CTF), which is further cleaved by γ-secretase to secrete p3-Alcα peptides and generate an intracellular cytoplasmic domain fragment (Alcα ICD) in the late secretory pathway. By association with the neural adaptor protein X11L (X11-like), Alcα and APP form a ternary complex that suppresses the cleavage of both Alcα and APP by regulating the transport of these membrane proteins into the late secretory pathway where secretases are active. However, it has not been revealed how Alcα and APP are directed from the ternary complex formed largely in the Golgi into the late secretory pathway to reach a nerve terminus. Using a novel transgenic mouse line expressing excess amounts of human Alcα CTF (hAlcα CTF) in neurons, we found that expression of hAlcα CTF induced excess production of hAlcα ICD, which facilitated APP transport into the nerve terminus and enhanced APP metabolism, including Aβ generation. In vitro cell studies also demonstrated that excess expression of Alcα ICD released both APP and Alcα from the ternary complex. These results indicate that regulated intramembrane proteolysis of Alcα by γ-secretase regulates APP trafficking and the production of Aβ in vivo. PMID:25406318

  6. Simultaneous recording of intramembrane charge movement components and calcium release in wild-type and S100A1-/- muscle fibres.

    PubMed

    Prosser, Benjamin L; Hernández-Ochoa, Erick O; Zimmer, Danna B; Schneider, Martin F

    2009-09-15

    In the preceding paper, we reported that flexor digitorum brevis (FDB) muscle fibres from S100A1 knock-out (KO) mice exhibit a selective suppression of the delayed, steeply voltage-dependent component of intra-membrane charge movement current termed Q(gamma). Here, we use 50 microm of the Ca(2+) indicator fluo-4 in the whole cell patch clamp pipette, in addition to 20 mM EGTA and other constituents included for the charge movement studies, and calculate the SR Ca(2+) release flux from the fluo-4 signals during voltage clamp depolarizations. Ca(2+) release flux is decreased in amplitude by the same fraction at all voltages in fibres from S100A1 KO mice compared to fibres from wild-type (WT) littermates, but unchanged in time course at each pulse membrane potential. There is a strong correlation between the time course and magnitude of release flux and the development of Q(gamma). The decreased Ca(2+) release in KO fibres is likely to account for the suppression of Q(gamma) in these fibres. Consistent with this interpretation, 4-chloro-m-cresol (4-CMC; 100 microm) increases the rate of Ca(2+) release and restores Q(gamma) at intermediate depolarizations in fibres from KO mice, but does not increase Ca(2+) release or restore Q(gamma) at large depolarizations. Our findings are consistent with similar activation kinetics for SR Ca(2+) channels in both WT and KO fibres, but decreased Ca(2+) release in the KO fibres possibly due to shorter SR channel open times. The decreased Ca(2+) release at each voltage is insufficient to activate Q(gamma) in fibres lacking S100A1. PMID:19651766

  7. Soil aggregate stability as affected by clay mineralogy and polyacrylamide addition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of polyacrylamide (PAM) to soil leads to stabilization of existing aggregates and improved bonding between, and aggregation of adjacent soil particles However, the dependence of PAM efficacy as an aggregate stabilizing agent on soil-clay mineralogy has not been studied. Sixteen soil sam...

  8. Polyacrylamide effects on aggregate and structure stability of soils with different clay mineralogy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adding anionic polyacrylamide (PAM) to soils stabilizes existing aggregates and improves bonding between and aggregation of soil particles. However, the dependence of PAM efficacy as an aggregate stabilizing agent with soils having different clay mineralogy has not been studied. Sixteen soil samples...

  9. Fractal dimensions of soy protein nanoparticle aggregates determined by dynamic mechanical method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fractal dimension of the protein aggregates can be estimated by dynamic mechanical methods when the particle aggregates are imbedded in a polymer matrix. Nanocomposites were formed by mixing hydrolyzed soy protein isolate (HSPI) nanoparticle aggregates with styrene-butadiene (SB) latex, followe...

  10. Aggregation of organic matter by pelagic tunicates

    SciTech Connect

    Pomeroy, L.R.; Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  11. Thermodynamically reversible generalization of diffusion limited aggregation.

    PubMed

    D'Souza, R M; Margolus, N H

    1999-07-01

    We introduce a lattice gas model of cluster growth via the diffusive aggregation of particles in a closed system obeying a local, deterministic, microscopically reversible dynamics. This model roughly corresponds to placing the irreversible diffusion limited aggregation model (DLA) in contact with a heat bath. Particles release latent heat when aggregating, while singly connected cluster members can absorb heat and evaporate. The heat bath is initially empty, hence we observe the flow of entropy from the aggregating gas of particles into the heat bath, which is being populated by diffusing heat tokens. Before the population of the heat bath stabilizes, the cluster morphology (quantified by the fractal dimension) is similar to a standard DLA cluster. The cluster then gradually anneals, becoming more tenuous, until reaching configurational equilibrium when the cluster morphology resembles a quenched branched random polymer. As the microscopic dynamics is invertible, we can reverse the evolution, observe the inverse flow of heat and entropy, and recover the initial condition. This simple system provides an explicit example of how macroscopic dissipation and self-organization can result from an underlying microscopically reversible dynamics. We present a detailed description of the dynamics for the model, discuss the macroscopic limit, and give predictions for the equilibrium particle densities obtained in the mean field limit. Empirical results for the growth are then presented, including the observed equilibrium particle densities, the temperature of the system, the fractal dimension of the growth clusters, scaling behavior, finite size effects, and the approach to equilibrium. We pay particular attention to the temporal behavior of the growth process and show that the relaxation to the maximum entropy state is initially a rapid nonequilibrium process, then subsequently it is a quasistatic process with a well defined temperature. PMID:11969759

  12. Mechanisms and Rates of Bacterial Colonization of Sinking Aggregates

    PubMed Central

    Kiørboe, Thomas; Grossart, Hans-Peter; Ploug, Helle; Tang, Kam

    2002-01-01

    Quantifying the rate at which bacteria colonize aggregates is a key to understanding microbial turnover of aggregates. We used encounter models based on random walk and advection-diffusion considerations to predict colonization rates from the bacteria's motility patterns (swimming speed, tumbling frequency, and turn angles) and the hydrodynamic environment (stationary versus sinking aggregates). We then experimentally tested the models with 10 strains of bacteria isolated from marine particles: two strains were nonmotile; the rest were swimming at 20 to 60 μm s−1 with different tumbling frequency (0 to 2 s−1). The rates at which these bacteria colonized artificial aggregates (stationary and sinking) largely agreed with model predictions. We report several findings. (i) Motile bacteria rapidly colonize aggregates, whereas nonmotile bacteria do not. (ii) Flow enhances colonization rates. (iii) Tumbling strains colonize aggregates enriched with organic substrates faster than unenriched aggregates, while a nontumbling strain did not. (iv) Once on the aggregates, the bacteria may detach and typical residence time is about 3 h. Thus, there is a rapid exchange between attached and free bacteria. (v) With the motility patterns observed, freely swimming bacteria will encounter an aggregate in <1 day at typical upper-ocean aggregate concentrations. This is faster than even starving bacteria burn up their reserves, and bacteria may therefore rely solely on aggregates for food. (vi) The net result of colonization and detachment leads to a predicted equilibrium abundance of attached bacteria as a function of aggregate size, which is markedly different from field observations. This discrepancy suggests that inter- and intraspecific interactions among bacteria and between bacteria and their predators may be more important than colonization in governing the population dynamics of bacteria on natural aggregates. PMID:12147501

  13. Scaling laws in the diffusion limited aggregation of persistent random walkers

    NASA Astrophysics Data System (ADS)

    Nogueira, Isadora R.; Alves, Sidiney G.; Ferreira, Silvio C.

    2011-11-01

    We investigate the diffusion limited aggregation of particles executing persistent random walks. The scaling properties of both random walks and large aggregates are presented. The aggregates exhibit a crossover between ballistic and diffusion limited aggregation models. A non-trivial scaling relation ξ∼ℓ1.25 between the characteristic size ξ, in which the cluster undergoes a morphological transition, and the persistence length ℓ, between ballistic and diffusive regimes of the random walk, is observed.

  14. Technology meets aggregate

    SciTech Connect

    Wilson, C.; Swan, C.

    2007-07-01

    New technology carried out at Tufts University and the University of Massachusetts on synthetic lightweight aggregate has created material from various qualities of fly ash from coal-fired power plants for use in different engineered applications. In pilot scale manufacturing tests an 'SLA' containing 80% fly ash and 20% mixed plastic waste from packaging was produced by 'dry blending' mixed plastic with high carbon fly ash. A trial run was completed to produce concrete masonry unit (CMU) blocks at a full-scale facility. It has been shown that SLA can be used as a partial substitution of a traditional stone aggregate in hot asphalt mix. 1 fig., 2 photos.

  15. Influence of porosity on collisions between dust aggregates

    NASA Astrophysics Data System (ADS)

    Gunkelmann, Nina; Ringl, Christian; Urbassek, Herbert M.

    2016-04-01

    Context. Collisions between dust particles may lead to agglomerate growth or fragmentation, depending on the porosity of the dust and the collision velocity. Aims: We study the effect of agglomerate porosity and collision velocity on aggregate fragmentation and agglomeration. Methods: Granular-mechanics simulations are used to study the outcome of head-on dust aggregate collisions. The aggregates are composed of silica grains of 0.76 μm radius and have filling factors of between 0.08 and 0.21. The simulations incorporate repulsive and viscoelastic, dissipative normal forces, and intergrain adhesion. The tangential forces are composed of gliding, rolling, and torsional friction. To study the effect of aggregate porosity, we prepared spherical aggregates with identical radius but differing particle numbers. Results: The threshold velocity for agglomerate fragmentation decreases with the porosity of the aggregates. Porous aggregates tend to fragment more easily, and the fragments are irregularly shaped. In the agglomeration regime, the merged aggregate is more compact than the initial collision partners. The collision velocity at which compaction is highest is independent of the initial porosity.

  16. STUDY ON THE EVALUATION FOR DRYING SHRINKAGE PROPERTIES OF COARSE AGGREGATE

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Katahira, Hiroshi; Watanabe, Hiroshi

    Drying shrinkage of coarse aggregate is one of principal indexes to evaluate drying shrinkage of concrete. However, testing of drying shrinkage of a coarse aggregate particle has not been commonly conducted. We carried out measurement of drying shrinkage of a coarse aggregate particle using wire strain gauges and discussed the variation in the measurement. We found that variation among particles in drying shrinkage strain of coarse aggregate is intrinsic and much bigger than test result due to the simplified unidirectional strain measurement under the assumption of ignoring multi-axial strain field. Strong relationship between the mean value of drying shrinkage strain of coarse aggregate and drying shrinkage strain of concrete prism specimens was observed, which indicates that measured drying shrinkage strain of aggregate particles intrinsically contains large variation, however the mean value is an effective index to estimate drying shrinkage of concrete.

  17. Binodal Colloidal Aggregation Test - 4: Polydispersion

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.

    2008-01-01

    Binodal Colloidal Aggregation Test - 4: Polydispersion (BCAT-4-Poly) will use model hard-spheres to explore seeded colloidal crystal nucleation and the effects of polydispersity, providing insight into how nature brings order out of disorder. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  18. Dynamics across the morphological transition in two-dimensional aggregates

    NASA Astrophysics Data System (ADS)

    Bandi, Mahesh; Das, Tamoghna

    2015-03-01

    Microscopic dynamics of two-dimensional aggregates have been studied by analysing simulated particle trajectories generated by molecular dynamics. Tuning the competition between the short-range attraction and long-range repulsion in a particulate system at fixed temperature and density results in a continuous non-compact to compact morphological transition. The finite-size aggregates, obtained by very slow cooling, show long-time sub-diffusive behaviour irrespective of their morphologies. By analysing the relative displacement fluctuations of particles with respect to their nearest neighbours, non-compact aggregates can be attributed to bonding between particles while caging is found to be responsible for compact clusters. These dynamical mechanisms are further illustrated by the self-displacement fluctuation of particles which show a continuous change from power-law to exponential behaviour across the non-compact to compact transition. This work was supported by the OIST Graduate University with subsidy funding from the Cabinet Office, Government of Japan.

  19. Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds.

    PubMed

    Xie, Yu; Yang, Ping; Kattawar, George W; Baum, Bryan A; Hu, Yongxiang

    2011-03-10

    In regions of deep tropical convection, ice particles often undergo aggregation and form complex chains. To investigate the effect of the representation of aggregates on electromagnetic scattering calculations, we developed an algorithm to efficiently specify the geometries of aggregates and to compute some of their geometric parameters, such as the projected area. Based on in situ observations, ice aggregates are defined as clusters of hexagonal plates with a chainlike overall shape, which may have smooth or roughened surfaces. An aggregate representation is developed with 10 ensemble members, each consisting of between 4-12 hexagonal plates. The scattering properties of an individual aggregate ice particle are computed using either the discrete dipole approximation or an improved geometric optics method, depending upon the size parameters. Subsequently, the aggregate properties are averaged over all geometries. The scattering properties of the aggregate representation closely agree with those computed from 1000 different aggregate geometries. As a result, the aggregate representation provides an accurate and computationally efficient way to represent all aggregates occurring within ice clouds. Furthermore, the aggregate representation can be used to study the influence of these complex ice particles on the satellite-based remote sensing of ice clouds. The computed cloud reflectances for aggregates are different from those associated with randomly oriented individual hexagonal plates. When aggregates are neglected, simulated cloud reflectances are generally lower at visible and shortwave-infrared wavelengths, resulting in smaller effective particle sizes but larger optical thicknesses. PMID:21394178

  20. Impact experiments. III - Catastrophic fragmentation of aggregate targets and relation to asteroids

    NASA Technical Reports Server (NTRS)

    Ryan, Eileen V.; Hartmann, William K.; Davis, Donald R.

    1991-01-01

    An experimental study is conducted of collisions employing artificial aggregates as targets, in order to ascertain the fragmentation characteristics of weakly bonded bodies that consist of stronger constituent particles, such as loosely aggregated planetesimals. It is established that weakly bonded aggregate bodies may exhibit unexpectedly high impact strengths due to constituent particles' energy dissipation. The cumulative size distributions of fragments that are larger than the constituent grains form power-law segments resembling those formed by the fragmentation of homogeneous targets.

  1. On the radiative properties of soot aggregates part 1: Necking and overlapping

    NASA Astrophysics Data System (ADS)

    Yon, J.; Bescond, A.; Liu, F.

    2015-09-01

    There is a strong interest in accurately modelling the radiative properties of soot aggregates (also known as black carbon particles) emitted from combustion systems and fires to gain improved understanding of the role of black carbon to global warming. This study conducted a systematic investigation of the effects of overlapping and necking between neighbouring primary particles on the radiative properties of soot aggregates using the discrete dipole approximation. The degrees of overlapping and necking are quantified by the overlapping and necking parameters. Realistic soot aggregates were generated numerically by constructing overlapping and necking to fractal aggregates formed by point-touch primary particles simulated using a diffusion-limited cluster aggregation algorithm. Radiative properties (differential scattering, absorption, total scattering, specific extinction, asymmetry factor and single scattering albedo) were calculated using the experimentally measured soot refractive index over the spectral range of 266-1064 nm for 9 combinations of the overlapping and necking parameters. Overlapping and necking affect significantly the absorption and scattering properties of soot aggregates, especially in the near UV spectrum due to the enhanced multiple scattering effects within an aggregate. By using correctly modified aggregate properties (fractal dimension, prefactor, primary particle radius, and the number of primary particle) and by accounting for the effects of multiple scattering, the simple Rayleigh-Debye-Gans theory for fractal aggregates can reproduce reasonably accurate radiative properties of realistic soot aggregates.

  2. Aggregates, broccoli and cauliflower

    NASA Astrophysics Data System (ADS)

    Grey, Francois; Kjems, Jørgen K.

    1989-09-01

    Naturally grown structures with fractal characters like broccoli and cauliflower are discussed and compared with DLA-type aggregates. It is suggested that the branching density can be used to characterize the growth process and an experimental method to determine this parameter is proposed.

  3. Packing density of rigid aggregates is independent of scale

    PubMed Central

    Zangmeister, Christopher D.; Radney, James G.; Dockery, Lance T.; Young, Jessica T.; Ma, Xiaofei; You, Rian; Zachariah, Michael R.

    2014-01-01

    Large planetary seedlings, comets, microscale pharmaceuticals, and nanoscale soot particles are made from rigid, aggregated subunits that are compacted under low compression into larger structures spanning over 10 orders of magnitude in dimensional space. Here, we demonstrate that the packing density (θf) of compacted rigid aggregates is independent of spatial scale for systems under weak compaction. The θf of rigid aggregated structures across six orders of magnitude were measured using nanoscale spherical soot aerosol composed of aggregates with ∼17-nm monomeric subunits and aggregates made from uniform monomeric 6-mm spherical subunits at the macroscale. We find θf = 0.36 ± 0.02 at both dimensions. These values are remarkably similar to θf observed for comet nuclei and measured values of other rigid aggregated systems across a wide variety of spatial and formative conditions. We present a packing model that incorporates the aggregate morphology and show that θf is independent of both monomer and aggregate size. These observations suggest that the θf of rigid aggregates subject to weak compaction forces is independent of spatial dimension across varied formative conditions. PMID:24927577

  4. Dynamics and mechanisms of asbestos-fiber aggregate growth in water

    NASA Astrophysics Data System (ADS)

    Wu, L.; Ortiz, C. P.; Jerolmack, D. J.

    2015-12-01

    Most colloidal particles including asbestos fibers form aggregates in water, when solution chemistry provides favorable conditions. To date, the growth of colloidal aggregates has been observed in many model systems under optical and scanning electron microscopy; however, all of these studies have used near-spherical particles. The highly elongated nature of asbestos fibers may cause anomalous aggregate growth and morphology, but this has never been examined. Although the exposure pathway of concern for asbestos is through the air, asbestos particles typically reside in soil that is at least partially saturated, and aggregates formed in the aqueous phase may influence the mobility of particles in the environment. Here we study solution-phase aggregation kinetics of asbestos fibers using a liquid-cell by in situ microscopy, over micron to centimeter length scales and from a tenth of a second to hours. We employ an elliptical particle tracking technique to determine particle trajectories and to quantify diffusivity. Experiments reveal that diffusing fibers join by cross linking, but that such linking is sometimes reversible. The resulting aggregates are very sparse and non-compact, with a fractal dimension that is lower than any previously reported value. Their morphology, growth rate and particle size distribution exhibit non-classical behavior that deviates significantly from observations of aggregates composed of near-spherical particles. We also perform experiments using synthetic colloidal particles, and compare these to asbestos in order to separate the controls of particle shape vs. material properties. This direct method for quantitatively observing aggregate growth is a first step toward predicting asbestos fiber aggregate size distributions in the environment. Moreover, many emerging environmental contaminants - such as carbon nanotubes - are elongated colloids, and our work suggests that theories for aggregate growth may need to be modified in order to

  5. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    NASA Astrophysics Data System (ADS)

    Rosická, Dana; Šembera, Jan

    2011-09-01

    Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed.

  6. Structure and aggregation in model tetramethylurea solutions

    SciTech Connect

    Gupta, Rini; Patey, G. N.

    2014-08-14

    The structure of model aqueous tetramethylurea (TMU) solutions is investigated employing large-scale (32 000, 64 000 particles) molecular dynamics simulations. Results are reported for TMU mole fractions, X{sub t}, ranging from infinite dilution up to 0.07, and for two temperatures, 300 and 330 K. Two existing force fields for TMU-water solutions are considered. These are the GROMOS 53A6 united-atom TMU model combined with SPC/E water [TMU(GROMOS-UA)/W(SPC/E)], and the more frequently employed AMBER03 all-atom force field for TMU combined with the TIP3P water model [TMU(AMBER-AA)/W(TIP3P)]. It is shown that TMU has a tendency towards aggregation for both models considered, but the tendency is significantly stronger for the [TMU(AMBER-AA)/W(TIP3P)] force field. For this model signs of aggregation are detected at X{sub t} = 0.005, aggregation is a well established feature of the solution at X{sub t} = 0.02, and the aggregates increase further in size with increasing concentration. This is in agreement with at least some experimental studies, which report signals of aggregation in the low concentration regime. The TMU aggregates exhibit little structure and are simply loosely ordered, TMU-rich regions of solution. The [TMU(GROMOS-UA)/W(SPC/E)] model shows strong signs of aggregation only at higher concentrations (X{sub t} ≳ 0.04), and the aggregates appear more loosely ordered, and less well-defined than those occurring in the [TMU(AMBER-AA)/W(TIP3P)] system. For both models, TMU aggregation increases when the temperature is increased from 300 to 330 K, consistent with an underlying entropy driven, hydrophobic interaction mechanism. At X{sub t} = 0.07, the extra-molecular correlation length expected for microheterogeneous solutions has become comparable with the size of the simulation cell for both models considered, indicating that even the systems simulated here are sufficiently large only at low concentrations.

  7. Stable Colloidal Drug Aggregates Catch and Release Active Enzymes.

    PubMed

    McLaughlin, Christopher K; Duan, Da; Ganesh, Ahil N; Torosyan, Hayarpi; Shoichet, Brian K; Shoichet, Molly S

    2016-04-15

    Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the coaggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, coformulating them with bis-azo dyes. The coformulation reduced colloid sizes to <100 nm and improved uniformity of the particle size distribution. The new colloid formulations are more stable than previous aggregator particles. Specifically, coaggregation of Congo Red with sorafenib, tetraiodophenolphthalein (TIPT), or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like β-lactamase, malate dehydrogenase, and trypsin. Unlike traditional aggregates, the coformulated colloid-protein particles could be centrifuged and resuspended multiple times, and from resuspended particles, active trypsin could be released up to 72 h after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin-down, resuspension, and release. PMID:26741163

  8. Cluster Growth Mechanism in Sputtering Gas-Aggregation Nanocluster Source

    NASA Astrophysics Data System (ADS)

    Tarsem Singh, M.; Han, H.; Sundararajan, J. A.; Qiang, Y.

    2010-03-01

    We have studied the influence of some parameters for cluster growth of core shell iron- iron oxide magnetic nanoparticles (MNPs). The nanocluster source which combines a magnetron sputtering gun with a gas aggregation chamber is used to produce MNPs. Nanoclusters of various mean sizes ranging from 1-100 nm can be synthesized by varying the aggregation distance, Ar to He gas ratio, pressure in the aggregation tube, sputter power, and temperature of the aggregation tube. Physical properties -- magnetic measurements by VSM and SQUID and size distribution by SEM and TEM were studied for different MNPs. The significance of this research is to understand the growth mechanism and physical properties as the size of particles grow from few nanometer to hundred of nanometer. Growth of the particles is theoretically explained by the homogenous and heterogeneous growth process. Based on this study, different size of MNPs fits into different category of applications from data storage to biomedical field.

  9. Diatom aggregation and dimethylsulfide production in phytoplankton blooms

    SciTech Connect

    Crocker, K.M.

    1994-01-01

    Phytoplankton blooms are crucial links in many of the earth's biogeochemical cycles. Blooms take up atmospheric carbon through photosynthesis, and sequester it on the ocean floor by sinking. Aggregation of single cells into [open quote]marine snow[close quote] particles speeds up the sinking of algal cells. Laboratory studies investigating the process of aggregation show that some species have a higher probability of aggregating than others, and that there exist several mechanisms for causing aggregation. Field studies confirm that some species are more likely to be found in aggregates than in the surrounding seawater. High latitude Premnesiophyte blooms are found to produce large amounts of dimethylsulflde (DMS), believed to be an important chemical in global thermoregulation. DMS is found to vary diurnally, possibly due to photooxidation by ultraviolet light. This possibility links the effects of DMS on cloud formation with the effects of increased ultraviolet light penetrating the earths ozone layer.

  10. On the radiative properties of soot aggregates - Part 2: Effects of coating

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Yon, Jérôme; Bescond, Alexandre

    2016-03-01

    The effects of weakly absorbing material coating on soot have attracted considerable research attention in recent years due to the significant influence of such coating on soot radiative properties and the large differences predicted by different numerical models. Soot aggregates were first numerically generated using the diffusion limited cluster aggregation algorithm to produce fractal aggregates formed by log-normally distributed polydisperse spherical primary particles in point-touch. These aggregates were then processed by adding a certain amount of primary particle overlapping and necking to simulate the soot morphology observed from transmission electron microscopy images. After this process, a layer of WAM coating of different thicknesses was added to these more realistic soot aggregates. The radiative properties of these coated soot aggregates over the spectral range of 266-1064 nm were calculated by the discrete dipole approximation (DDA) using the spectrally dependent refractive index of soot for four aggregates containing Np=1, 20, 51 and 96 primary particles. The considered coating thicknesses range from 0% (no coating) up to 100% coating in terms of the primary particle diameter. Coating enhances both the particle absorption and scattering cross sections, with much stronger enhancement to the scattering one, as well as the asymmetry factor and the single scattering albedo. The absorption enhancement is stronger in the UV than in the visible and the near infrared. The simple corrections to the Rayleigh-Debye-Gans fractal aggregates theory for uncoated soot aggregates are found not working for coated soot aggregates. The core-shell model significantly overestimates the absorption enhancement by coating in the visible and the near infrared compared to the DDA results of the coated soot particle. Treating an externally coated soot aggregate as an aggregate formed by individually coated primary particles significantly underestimates the absorption

  11. Insights into particle cycling from thorium and particle data.

    PubMed

    Lam, Phoebe J; Marchal, Olivier

    2015-01-01

    Marine particles are a main vector by which the biological carbon pump in the ocean transfers carbon from the atmosphere to the deep ocean. Marine particles exist in a continuous spectrum of sizes, but they can be functionally grouped into a small, suspended class (which constitutes most of the total particle mass) and a large, sinking class (which contributes most of the particle flux). These two classes are connected by aggregation and disaggregation processes. The interplay of processes that create, aggregate, and destroy marine particles determines the strength and transfer efficiency of the biological pump. Measurements of radiocarbon, barium, and organic biomarkers on suspended and sinking particles have provided qualitative insights into particle dynamics, and measurements of thorium isotopes have provided quantitative estimates of rates. Here, we review what has been learned so far about particle dynamics in the ocean from chemical measurements on suspended and sinking particles. We then discuss future directions for this approach. PMID:25251275

  12. Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles.

    PubMed

    Jassby, David; Farner Budarz, Jeffrey; Wiesner, Mark

    2012-07-01

    Aggregation of photocatalytic semiconductors was determined to reduce the generation of free hydroxyl radicals in aqueous suspensions in a fashion dependent on aggregate size and structure. Static light scattering measurements were used to follow temporal changes in the fractal dimension of aggregating TiO(2) and ZnO nanoparticles. At length scales comparable to nanoparticle size, the structure of aggregated TiO(2) nanoparticles was independent of particle stability and the associated aggregation rate, consistent with the fused nature of TiO(2) primary particles in the initial suspension. In contrast, ZnO aggregates were characterized by smaller fractal dimensions when ionic strength, and the resulting aggregation rate, were increased. The photocatalytic activity of ZnO and TiO(2) in generating free hydroxyl radicals varied with aggregate structure and size, consistent with theory that predicts reduced reactivity as aggregates become larger and more dense. PMID:22225505

  13. Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Taghavy, Amir; Pennell, Kurt D.; Abriola, Linda M.

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media.

  14. Flocculation characteristics of freshly eroded aggregates

    NASA Astrophysics Data System (ADS)

    Manning, Andrew; Wendling, Valentin; Gratiot, Nicolas; Legout, Cedric; Michallet, Herve

    2014-05-01

    In Europe, 260,000 square kms of soils already suffer erosion by water. This worrying level of land degradation is expected to increase in the context of climate change, with situations particularly critical in mountainous environments. This study aims at improving sediment transport parameterisation, by examining the kinetics of fine soil aggregates (size D, settling velocity Ws, density), once immersed in a turbulent flow. Thus observing the changing state, as soil aggregates become suspended sediment floc/aggregates. Particle properties of two Mediterranean materials (black marl and molasse, both sampled in badlands) were tested in grid stirred experiments. Hydrodynamic properties were monitored with ADV and turbidity sensors. For each soil, three suspended sediment concentration (SSC) loads (1.5; 5; 10 g/l) representative of flood conditions were tested. Aggregate properties were obtained at four depths above the grid, using the video LabSFLOC technique and laser techniques. These acquisition heights are associated with the corresponding turbulence dissipation rates G of 1.5, 3, 7 and 19 s^-1. Once particles were injected in the tank, a quasi-equilibrium state was rapidly reached, after one to two minutes. The floc/aggregate properties did not vary with sediment load. The median diameter D_50 was measured to be around 60 microns for the clay loam soil and around 15 microns for the two badlands materials. Examining the molasse samples, we see that the SSC at 1, 5, 10, 20 and 40 minute intervals were all +12 g/l at distances 10 cm and 15 cm above the nominal vertical mid-stroke grid position for the experimental SSC ranges. At the less turbulent zone, a 2 g/l base SSC reduced by 80% and at a nominal 10 g/l the SSC dipped by two orders of magnitude from the base concentration. If we consider the population distribution for molasse at a base SSC of 10 g/l sampled 15cm above the grid after 40 minutes, D ranged from 39 - 273 microns. A small microfloc cluster only

  15. Origin of Aggregate Formation in Antibody Crystal Suspensions Containing PEG.

    PubMed

    Hildebrandt, Christian; Mathaes, Roman; Saedler, Rainer; Winter, Gerhard

    2016-03-01

    The crystalline state of proteins is deemed as a promising formulation platform for biopharmaceuticals. However, a stabilizing effect of protein crystal suspensions is controversially discussed. In fact, antibodies can display an increased aggregation and particle formation profile after the crystallization process compared with liquid or solid amorphous formulations. Nevertheless, studies regarding aggregate formation and its origin remain meager in literature. It was the aim of this study to investigate these aspects for a model IgG antibody (mAb1), which shows an increased aggregate formation after crystallization with polyethylene glycol. The presence of a dynamic equilibrium, a steady exchange of protein between the crystals and the supernatant, was demonstrated by replacing the supernatant with an identical but fluorescence-labeled protein solution and followed by confocal laser scanning microscopy. Aggregate formation was monitored by size exclusion high-pressure chromatography and flow cytometry. Constantly increasing aggregate levels were found for the crystal fraction and for the supernatant. For the later, markedly higher particle counts were detected. The labeled supernatant and the unlabeled protein crystals allowed a precise identification of the origin of the aggregates. The rising aggregate fractions of the crystals displayed high mean fluorescence intensities that elucidated their origin in the supernatant. PMID:26886344

  16. Tensile strength and fracture of cemented granular aggregates.

    PubMed

    Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V

    2012-11-01

    Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles. PMID:23160765

  17. In Situ Observation of Hematite Nanoparticle Aggregates Using Liquid Cell Transmission Electron Microscopy.

    PubMed

    Liu, Juan; Wang, Zhiwei; Sheng, Anxu; Liu, Feng; Qin, Fuyu; Wang, Zhong Lin

    2016-06-01

    Aggregation of nanoparticles impacts their reactivity, stability, transport, and fate in aqueous environments, but limited methods are available to characterize structural features and movement of aggregates in liquid. Here, liquid cell transmission electron microscopy (LCTEM) was utilized to directly observe the size, morphology, and motion of aggregates that were composed of 9 and 36 nm hematite nanoparticles, respectively, in water or NaCl solution. When mass concentrations were same, the aggregates of 9 nm nanoparticles were statistically more compact and slightly larger than those of 36 nm nanoparticles. Aggregates in both samples were typically nonspherical. Increasing ionic strength resulted in larger aggregates, and also enhanced the stability of aggregates under electron-beam irradiation. In water, small aggregates moved randomly and approached repeatedly to large aggregates before final attachment. In NaCl solution, small aggregates moved directly toward large aggregates and attached to the latter quickly. This observation provided a direct confirmation of the DLVO theory that the energy barrier to aggregation is higher in water than in salt solutions. This study not only presented the influences of particle size and ionic strength on aggregation state, but also demonstrated that LCTEM is a promising method to link aggregation state to dynamic processes of nanoparticles. PMID:27127831

  18. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  19. The optical properties of hygroscopic soot aggregates with water coating

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan

    2014-05-01

    Anthropogenic aerosols, such as soot, have modified the Earth's radiation balance by scattering and absorbing solar and long-wave radiative transmission, which have largely influenced the global climate change since the industrial era. Based on transmission electron microscope images (TEM), soot particles are shown as the complex, fractal-like aggregate structures. In humid atmospheric environments, these soot aggregates tend to acquire a water coating, which introduces further complexity to the problem of determining the optical properties of the aggregates. The hygroscopic growth of soot aggregates is important for the aging of these absorbing aerosols, which can significantly influence the optical properties of these kinds of soot particles. In this paper, according to the specific volume fractions of soot core in the water coated soot particle, the monomers of fractal soot aggregates are modeled as semi-external mixtures (physical contact) with constant radius of soot core and variable size of water coating. The single scattering properties of these hygroscopic soot particles, such as scattering matrices, the cross sections of extinction, absorption and scattering, single scattering albedo (SSA), and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The morphological effects are compared with different monomer numbers and fractal dimensions of the soot aggregates, as well as different size of water coating for these concentric spherical monomers. The results have shown that SSA, cross sections of extinction and absorption are increased for soot aggregates with thicker weakly absorbing coating on the monomers. It is found that the SSA of aged soot aggregates with hygroscopic grown are remarkably (~50% for volume fraction of soot aggregates is 0.5, at 0.670μm) larger than fresh soot particles without the consideration of water coating, due to the size of water coating and the morphological features, such as the

  20. Characterization of iron- and manganese-cemented redoximorphic aggregates in wetland soils contaminated with mine wastes.

    PubMed

    Hickey, Patrick J; McDaniel, Paul A; Strawn, Daniel G

    2008-01-01

    In wetlands, translocation of Fe and Mn from reducing to oxidizing zones creates localized enrichments and depletions of oxide minerals. In zones of enrichment, oxides cement matrix particles together into aggregates. In this paper, we describe the various Fe- and Mn-cemented features present in the 1 to 2-mm size fraction of mine-waste contaminated wetland soils of the Coeur d'Alene (CDA) River Basin in northern Idaho. These aggregates are categorized based on color and morphology. Total Fe and Mn concentrations are also reported. Distribution of the aggregates in soil profiles along an elevation transect with varying water table heights was investigated. Six distinct categories of aggregates were characterized in the 1 to 2-mm size fraction. The two most predominant categories were aggregates cemented by only Fe oxides and aggregates cemented by a mixture of Fe and Mn oxides. Iron-depleted aggregates, Fe and Mn-cemented sand aggregates, and root channel linings were also identified. The remaining aggregates were categorized into a catch-all category that consisted of primarily charcoal particles. The highest Fe content was in the root channel linings, and the highest Mn content was in the Fe/Mn cemented particles. Iron-cemented aggregates were most common in surface horizons at all sites, and root channels were most common in the 30 to 45-cm core at the lowland point, reflecting the presence of deep rooting vegetation at this site. Spatial distributions of other aggregates at the site were not significant. PMID:18948492

  1. Fluorescence spectroscopy in probing spontaneous and induced aggregation amongst size-selective gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Rahman, Dewan S.; Ghosh, Sujit Kumar

    2014-06-01

    Gold nanoparticles have been synthesized by borohydride reduction using poly(N-vinyl 2-pyrrolidone) as the stabilizing agent in aqueous medium in the size regime of 1-5 nm. Aggregation amongst these polymer-stabilized gold nanoparticles has been accomplished by the controlled addition of hydrazine or aggregation may occur spontaneously (devoid of any chemicals) that is ubiquitous to nanoparticulate systems. Now, fluorescencein isothiocyanate (FITC), a prototype molecular probe has been employed in understanding the physical principles of aggregation phenomenon of the size-selective gold nanoparticles undergoing spontaneous and induced-aggregation under stipulated conditions. It is seen that there is enhancement of fluorescence intensity of FITC in the presence of both spontaneously and induced-aggregated gold nanoclusters as compared to free FITC. Interestingly, it is observed that the fluorescence sensitivity is able to distinguish seven different sizes of the gold nanoparticles in the aggregates and maximum enhancement of intensity arises at higher concentration with increase in size of gold particles within the aggregates. With increase in concentration of gold nanoparticle aggregates, the intensity increases, initially, reaches a maximum at a threshold concentration and then, gradually decreases in the presence of both spontaneously and induced-aggregated gold particles. However, the salient feature of physical significance is that the maximum enhancement of intensity with time has remained almost same for induced-aggregated gold while decreases exponentially with spontaneously aggregated gold particles.

  2. An online detection system for aggregate sizes and shapes based on digital image processing

    NASA Astrophysics Data System (ADS)

    Yang, Jianhong; Chen, Sijia

    2016-07-01

    Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.

  3. Analysis of topsoil aggregation with linkage to dust emission potential

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2015-04-01

    Dust emission by soil erosion has environmental and socioeconomic significances due to loss of a natural resource and air pollution. Topsoil resistance to erosion depends on its physicochemical properties, especially on the soil aggregation. Aggregate size distribution of soil samples is commonly used for the assessment of soil stability and fertility. It is suggested that aggregates larger than 840 µm in their effective diameter are stable to aeolian (wind) soil erosion. However the physicochemical properties of aggregates should be considered in determining the dust emission potential from soils. This study focuses on quantitative analyses of physical and chemical properties of aggregates in order to develop a soil stability index for dust emission. The study integrates laboratory analyses of soil samples and aeolian experiments of dust emission. Soil samples were taken from different land uses in a semi-arid loess soil that is subjected to aeolian erosion and dust emission. Laboratory tests include particle size distribution (PSD), soil organic carbon (SOC), inorganic carbon (CaCO3), water content (WC), and elemental composition by XRF technique. The size analysis shows significant differences in aggregation between natural-soil plots (N) and grazing-soil plots (G). The MWD index was higher in N (1204 µm) than that of G (400 µm). Basic aeolain experiments with a boundary layer wind tunnel showed dust emission of particulate matter (PM10) from both soils, although the concentrations were significantly lower in N plots. Aggregates at specific size fractions are characterized by different content of cementing agents. The content of fine particles (< 20 µm) and SOM were higher in macro-aggregates (500-2000 µm), while the CaCO3 content was higher in aggregate fraction of 63-250 µm. WC values were highest in micro-aggregates (< 63 µm). However the lowest content of these cementing agents were mostly found in the aggregate size fraction of 1000 µm. Differences

  4. The Rebound Condition of Dust Aggregates Revealed by Numerical Simulation of Their Collisions

    NASA Astrophysics Data System (ADS)

    Wada, Koji; Tanaka, Hidekazu; Suyama, Toru; Kimura, Hiroshi; Yamamoto, Tetsuo

    2011-08-01

    Collisional growth of dust aggregates is a plausible root of planetesimals forming in protoplanetary disks. However, a rebound of colliding dust aggregates prevents dust from growing into planetesimals. In fact, rebounding aggregates are observed in laboratory experiments but not in previous numerical simulations. Therefore, the condition of rebound between dust aggregates should be clarified to better understand the processes of dust growth and planetesimal formation. We have carried out numerical simulations of aggregate collisions for various types of aggregates and succeeded in reproducing a rebound of colliding aggregates under specific conditions. Our finding is that in the rebound process, the key factor of the aggregate structure is the coordination number, namely, the number of particles in contact with a particle. A rebound is governed by the energy dissipation along with restructuring of the aggregates and a large coordination number inhibits the restructuring at collisions. Results of our numerical simulation for various aggregates indicate that they stick to each other when the mean coordination number is less than 6, regardless of their materials and structures, as long as their collision velocity is less than the critical velocity for fragmentation. This criterion of the coordination number would correspond to a filling factor of ~0.3, which is somewhat larger than that reported in laboratory experiments. In protoplanetary disks, dust aggregates are expected to have low bulk densities (<0.1 g cm-3) during their growth, which would prevent dust aggregates from rebounding. This result supports the formation of planetesimals with direct dust growth in protoplanetary disks.

  5. Interplay between the hydrophobic effect and dipole interactions in peptide aggregation at interfaces.

    PubMed

    Ganesan, Sai J; Matysiak, Silvina

    2016-01-28

    Protein misfolding is an intrinsic property of polypeptides, and misfolded conformations have a propensity to aggregate. In the past decade, the development of various coarse-grained models for proteins has provided key insights into the driving forces in folding and aggregation. We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model (WEPPROM) by adding oppositely charged dummy particles inside protein backbone beads. With this model, we were able to achieve significant α/β secondary structure content, without any added bias. We now extend the model to study peptide aggregation at hydrophobic-hydrophilic interfaces and draw comparisons to aggregation in explicit water solvent. Elastin-like octapeptides (GV)4 are used as a model system for this study. A condensation-ordering mechanism of aggregation is observed in water. Our results suggest that backbone interpeptide dipolar interactions, not hydrophobicity, plays a more significant role in fibril-like peptide aggregation. We observe a cooperative effect in hydrogen bonding or dipolar interactions, with an increase in aggregate size in water and at interfaces. Based on this cooperative effect, we provide a potential explanation for the observed nucleus size in peptide aggregation pathways. The presence of a hydrophobic-hydrophilic interface increases both (a) order of aggregates formed, and (b) rate of the aggregation process. Without dipolar particles, peptide aggregation is not observed at the hydrophilic-hydrophobic interface. Thus, the presence of dipoles, not hydrophobicity, plays a key role in aggregation observed at hydrophobic interfaces. PMID:26698374

  6. Reduction in soil aggregation in response to dust emission processes

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2016-09-01

    Dust emission by aeolian (wind) soil erosion depends on the topsoil properties of the source area, especially on the nature of the aggregates where most dust particles are held. Although the key role of soil aggregates in dust emission, the response of soil aggregation to aeolian processes and its implications for dust emission remain unknown. This study focuses on aggregate size distribution (ASD) analyses before and after in-situ aeolian experiments in semiarid loess soils that are associated with dust emission. Wind tunnel simulations show that particulate matter (PM) emission and saltation rates depend on the initial ASD and shear velocity. Under all initial ASD conditions, the content of saltator-sized aggregates (63-250 μm) increased by 10-34% due to erosion of macro-aggregates (> 500 μm), resulting in a higher size ratio (SR) between the saltators and macro-aggregates following the aeolian erosion. The results revealed that the saltator production increases significantly for soils that are subjected to short-term (anthropogenic) disturbance of the topsoil. The findings highlight a decrease in soil aggregation for all initial ASD's in response to aeolian erosion, and consequently its influence on the dust emission potential. Changes in ASD should be considered as a key parameter in dust emission models of complex surfaces.

  7. Dynamics of fire ant aggregations

    NASA Astrophysics Data System (ADS)

    Tennenbaum, Michael; Hu, David; Fernandez-Nieves, Alberto

    Fire ant aggregations are an inherently active system. Each ant harvests its own energy and can convert it into motion. The motion of individual ants contributes non-trivially to the bulk material properties of the aggregation. We have measured some of these properties using plate-plate rheology, where the response to an applied external force or deformation is measured. In this talk, we will present data pertaining to the aggregation behavior in the absence of any external force. We quantify the aggregation dynamics by monitoring the rotation of the top plate and by measuring the normal force. We then compare the results with visualizations of 2D aggregations.

  8. Modeling the influence of aggregation on nanoparticle transport and retention in porous media

    NASA Astrophysics Data System (ADS)

    Taghavy, A.; Pennell, K. D.; Abriola, L. M.

    2012-12-01

    A number of experimental studies relating to nanoparticle transport have observed the influence of particle-particle interactions (i.e., aggregation) on particle-soil grain interactions (i.e., deposition) in porous media. To date, however, nanoparticle transport models have neglected such particle-particle interactions. Here, a one-dimensional Lagrangian particle transport simulator is presented which couples particle transport and retention in porous media with particle-particle interactions. A random-walk particle-tracking approach is employed to simulate the transport of nanoparticles, with Smoluchowski's second-order expression for perikinetic aggregation incorporated to represent particle-particle interactions. Aggregates are treated as fractal objects to relate cluster mass to size, and a correlation developed by Tufenkji and Elimelech (2004) for single collector contact efficiency is implemented to describe time-dependent transport behavior of growing aggregates. A maximum collector capacity-based extension of colloid filtration theory was coupled with the particle straining of Bradford et al. (2003) to describe the retention of particles in the porous medium. The developed simulator is implemented in a sensitivity study to identify the most important physicochemical factors that influence aggregation and deposition of silver nanoparticles under steady flow conditions in uniform sands. Under reaction-limited conditions (i.e. an aggregation attachment efficiency of less than 1), for aggregation of particles with a primary diameter of 12nm, particle mobility (i.e. the percent elution of particles) increased with aggregation in a ca. 15 cm sand column due to a reduction in the magnitude of Brownian forces. For a substantially longer travel distance (i.e. field scale problems) or at a slower flow velocity (i.e. typical groundwater velocities), however, aggregates may become large enough for the interception, sedimentation, and/or straining processes to dominate

  9. Study of Optical Properties on Fractal Aggregation Using the GMM Method by Different Cluster Parameters

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-En; Lin, Tang-Huang; Lien, Wei-Hung

    2015-04-01

    Anthropogenic pollutants or smoke from biomass burning contribute significantly to global particle aggregation emissions, yet their aggregate formation and resulting ensemble optical properties are poorly understood and parameterized in climate models. Particle aggregation refers to formation of clusters in a colloidal suspension. In clustering algorithms, many parameters, such as fractal dimension, number of monomers, radius of monomer, and refractive index real part and image part, will alter the geometries and characteristics of the fractal aggregation and change ensemble optical properties further. The cluster-cluster aggregation algorithm (CCA) is used to specify the geometries of soot and haze particles. In addition, the Generalized Multi-particle Mie (GMM) method is utilized to compute the Mie solution from a single particle to the multi particle case. This computer code for the calculation of the scattering by an aggregate of spheres in a fixed orientation and the experimental data have been made publicly available. This study for the model inputs of optical determination of the monomer radius, the number of monomers per cluster, and the fractal dimension is presented. The main aim in this study is to analyze and contrast several parameters of cluster aggregation aforementioned which demonstrate significant differences of optical properties using the GMM method finally. Keywords: optical properties, fractal aggregation, GMM, CCA

  10. Automation of aggregate characterization using laser profiling and digital image analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungkwan

    2002-08-01

    Particle morphological properties such as size, shape, angularity, and texture are key properties that are frequently used to characterize aggregates. The characteristics of aggregates are crucial to the strength, durability, and serviceability of the structure in which they are used. Thus, it is important to select aggregates that have proper characteristics for each specific application. Use of improper aggregate can cause rapid deterioration or even failure of the structure. The current standard aggregate test methods are generally labor-intensive, time-consuming, and subject to human errors. Moreover, important properties of aggregates may not be captured by the standard methods due to a lack of an objective way of quantifying critical aggregate properties. Increased quality expectations of products along with recent technological advances in information technology are motivating new developments to provide fast and accurate aggregate characterization. The resulting information can enable a real time quality control of aggregate production as well as lead to better design and construction methods of portland cement concrete and hot mix asphalt. This dissertation presents a system to measure various morphological characteristics of construction aggregates effectively. Automatic measurement of various particle properties is of great interest because it has the potential to solve such problems in manual measurements as subjectivity, labor intensity, and slow speed. The main efforts of this research are placed on three-dimensional (3D) laser profiling, particle segmentation algorithms, particle measurement algorithms, and generalized particle descriptors. First, true 3D data of aggregate particles obtained by laser profiling are transformed into digital images. Second, a segmentation algorithm and a particle measurement algorithm are developed to separate particles and process each particle data individually with the aid of various kinds of digital image

  11. Scaling in the Diffusion Limited Aggregation Model

    NASA Astrophysics Data System (ADS)

    Menshutin, Anton

    2012-01-01

    We present a self-consistent picture of diffusion limited aggregation (DLA) growth based on the assumption that the probability density P(r,N) for the next particle to be attached within the distance r to the center of the cluster is expressible in the scale-invariant form P[r/Rdep(N)]. It follows from this assumption that there is no multiscaling issue in DLA and there is only a single fractal dimension D for all length scales. We check our assumption self-consistently by calculating the particle-density distribution with a measured P(r/Rdep) function on an ensemble with 1000 clusters of 5×107 particles each. We also show that a nontrivial multiscaling function D(x) can be obtained only when small clusters (N<10000) are used to calculate D(x). Hence, multiscaling is a finite-size effect and is not intrinsic to DLA.

  12. Scattering Computations of Snow Aggregates from Simple Geometry Models

    NASA Astrophysics Data System (ADS)

    Liao, L.; Meneghini, R.; Nowell, H.; Liu, G.

    2012-12-01

    Accurately characterizing electromagnetic scattering from snow aggregates is one of the essential components in the development of algorithms for the GPM DPR and GMI. Recently several realistic aggregate models have been developed by using randomized procedures. Using pristine ice crystal habits found in nature as the basic elements of which the aggregates are made, more complex randomly aggregated structures can be formed to replicate snowflakes. For these particles, a numerical scheme is needed to compute the scattered fields. These computations, however, are usually time consuming, and are often limited to a certain range of particle sizes and to a few frequencies. The scattering results at other frequencies and sizes are then obtained by either interpolation or extrapolation from nearby computed points (anchor points). Because of the nonlinear nature of the scattering, particularly in the particle resonance region, this sometimes leads to severe errors if the number of anchor points is not sufficiently large to cover the spectral domain and particle size range. As an alternative to these complex models, the simple geometric models, such as sphere and spheroid, are useful for radar and radiometer applications if their scattering results can be shown to closely approximate those from complex aggregate structures. A great advantage of the simple models is their computational efficiency because of existence of analytical solutions, so that the computations can be easily extended to as many frequencies and particle sizes as desired. In this study, two simple models are tested. One approach is to use a snow mass density that is defined as the ratio of the mass of the snow aggregate to the volume, where the volume is taken to be that of a sphere with a diameter equal to the maximum measured dimension of the aggregate; i.e., the diameter of the circumscribing sphere. Because of the way in which the aggregates are generated, where a size-density relation is used, the

  13. Dynamics and elasticity of fire ant aggregations

    NASA Astrophysics Data System (ADS)

    Fernandez-Nieves, Alberto; Tennenbaum, Michael; Liu, Zhongyang; Hu, David

    2015-03-01

    Fire ants, Solenopsis invicta, form aggregations that are able to drip and spread like simple liquids, but that can also store energy and maintain a shape like elastic solids. They are an active material where the constituent particles constantly transform chemical energy into work. We find that fire ant aggregations shear thin and exhibit a stress cutoff below which they are able to oppose the applied stress. In the linear regime, the dynamics is fractal-like with both storage and shear moduli that overlap for over three orders of magnitude and that are power law with frequency. This dynamic behavior, characteristic of polymer gels and the gelation point, gives way to a predominantly elastic regime at higher ant densities. In comparison, dead ants are always solid-like.

  14. Diffusion, aggregation, and the thermal conductivity of nanofluids

    NASA Astrophysics Data System (ADS)

    Gharagozloo, Patricia E.; Eaton, John K.; Goodson, Kenneth E.

    2008-09-01

    The effects of nanoparticle aggregation and diffusion are difficult to separate using most nanofluid thermal conductivity data, for which the temperature dependence is collected sequentially. The present work captures the instantaneous temperature-dependent thermal conductivity using cross-sectional infrared microscopy and tracks the effects of aggregation and diffusion over time. The resulting data are strongly influenced by spatial and temperature variations in particle size and concentration and are interpreted using a Monte Carlo simulation and rate equations for particle and heat transport. These experiments improve our understanding of nanofluid behavior in practical systems including microscale heat exchangers.

  15. Floc strength characterization technique. An insight into silica aggregation.

    PubMed

    Hermawan, Mandalena; Bushell, Graeme C; Craig, Vincent S J; Teoh, Wey Yang; Amal, Rose

    2004-07-20

    This paper tests an approach to the estimation of relative particle bond strength based on the nondimensional floc and aggregation factors. The strength of flocs formed by aggregating nanosized silica particles with the addition of potassium chloride (KCl) or cationic surfactants, alkyltrimethylammonium bromide (mixture of CTAB, DTAB, and MTAB) was analyzed. The bonding force of the flocs formed in surfactant compared to that formed in the KCl system was estimated using the new dimensional analysis approach. This force ratio was then compared to that obtained by atomic force microscopy. PMID:15248736

  16. Making Graphene Resist Aggregation

    NASA Astrophysics Data System (ADS)

    Luo, Jiayan

    Graphene-based sheets have stimulated great interest in many scientific disciplines and shown promise for wide potential applications. Among various ways of creating single atomic layer carbon sheets, a promising route for bulk production is to first chemically exfoliate graphite powders to graphene oxide (GO) sheets, followed by reduction to form chemically modified graphene (CMG). Due to the strong van der Waals attraction between graphene sheets, CMG tends to aggregate. The restacking of sheets is largely uncontrollable and irreversible, thus it reduces their processability and compromises properties such as accessible surface area. Strategies based on colloidal chemistry have been applied to keep CMG dispersed in solvents by introducing electrostatic repulsion to overcome the van der Waals attraction or adding spacers to increase the inter-sheet spacing. In this dissertation, two very different ideas that can prevent CMG aggregation without extensively modifying the material or introducing foreign spacer materials are introduced. The van der Waals potential decreases with reduced overlapping area between sheets. For CMG, reducing the lateral dimension from micrometer to nanometer scale should greatly enhance their colloidal stability with additional advantages of increased charge density and decreased probability to interact. The enhanced colloidal stability of GO and CMG nanocolloids makes them especially promising for spectroscopy based bio-sensing applications. For potential applications in a compact bulk solid form, the sheets were converted into paper-ball like structure using capillary compression in evaporating aerosol droplets. The crumpled graphene balls are stabilized by locally folded pi-pi stacked ridges, and do not unfold or collapse during common processing steps. They can tightly pack without greatly reducing the surface area. This form of graphene leads to scalable performance in energy storage. For example, planer sheets tend to aggregate and

  17. Inhalation deposition and retention patterns of a U-Pu chain aggregate aerosol.

    PubMed

    Briant, J K; Sanders, C L

    1987-10-01

    Chain aggregate aerosol particles are normally formed during many high-temperature combustion and vaporization processes. The shape of chain aggregate aerosol particles could have an effect on the pattern of inhalation deposition and retention of the particles in the respiratory tract. A chain aggregate aerosol of nuclear reactor fuel could be present as an inhalation hazard if it were released to the atmosphere after a meltdown, core-disruptive accident. Rats were exposed to a chain aggregate U-Pu aerosol made by laser vaporization of mixed-oxide, breeder reactor fuel (20% plutonium dioxide and 80% uranium dioxide), then sacrificed to measure the clearance and retention of the fuel aerosol particles. Deposition of the 0.7-micron (activity median aerodynamic equivalent diameter) aerosol particles resulted in an average initial lung burden of 4140 Bq alpha activity. The chain aggregate particle shape was not a major factor in the total deposition; however, it may have influenced the regional distribution of the activity deposited. Retention of the particles in the upper airways of the tracheobronchial tree was on the order of 1% of the concurrent lung burden, which is consistent with recent data of other investigations. This study indicates that insoluble chain aggregate particles are retained in the tracheobronchial airways to a degree similar to simple spherically shaped particles of equivalent volume diameter. PMID:3654224

  18. Taurine and platelet aggregation

    SciTech Connect

    Nauss-Karol, C.; VanderWende, C.; Gaut, Z.N.

    1986-03-01

    Taurine is a putative neurotransmitter or neuromodulator. The endogenous taurine concentration in human platelets, determined by amino acid analysis, is 15 ..mu..M/g. In spite of this high level, taurine is actively accumulated. Uptake is saturable, Na/sup +/ and temperature dependent, and suppressed by metabolic inhibitors, structural analogues, and several classes of centrally active substances. High, medium and low affinity transport processes have been characterized, and the platelet may represent a model system for taurine transport in the CNS. When platelets were incubated with /sup 14/C-taurine for 30 minutes, then resuspended in fresh medium and reincubated for one hour, essentially all of the taurine was retained within the cells. Taurine, at concentrations ranging from 10-1000 ..mu..M, had no effect on platelet aggregation induced by ADP or epinephrine. However, taurine may have a role in platelet aggregation since 35-39% of the taurine taken up by human platelets appears to be secreted during the release reaction induced by low concentrations of either epinephrine or ADP, respectively. This release phenomenon would imply that part of the taurine taken up is stored directly in the dense bodies of the platelet.

  19. An experimental study of dense aerosol aggregations

    NASA Astrophysics Data System (ADS)

    Dhaubhadel, Rajan

    We demonstrated that an aerosol can gel. This gelation was then used for a one-step method to produce an ultralow density porous carbon or silica material. This material was named an aerosol gel because it was made via gelation of particles in the aerosol phase. The carbon and silica aerosol gels had high specific surface area (200--350 sq m2/g for carbon and 300--500 sq m2/g for silica) and an extremely low density (2.5--6.0 mg/cm3), properties similar to conventional aerogels. Key aspects to form a gel from an aerosol are large volume fraction, ca. 10-4 or greater, and small primary particle size, 50 nm or smaller, so that the gel time is fast compared to other characteristic times. Next we report the results of a study of the cluster morphology and kinetics of a dense aggregating aerosol system using the small angle light scattering technique. The soot particles started as individual monomers, ca. 38 nm radius, grew to bigger clusters with time and finally stopped evolving after spanning a network across the whole system volume. This spanning is aerosol gelation. The gelled system showed a hybrid morphology with a lower fractal dimension at length scales of a micron or smaller and a higher fractal dimension at length scales greater than a micron. The study of the kinetics of the aggregating system showed that when the system gelled, the aggregation kernel homogeneity lambda attained a value 0.4 or higher. The magnitude of the aggregation kernel showed an increase with increasing volume fraction. We also used image analysis technique to study the cluster morphology. From the digitized pictures of soot clusters the cluster morphology was determined by two different methods: structure factor and perimeter analysis. We find a hybrid, superaggregate morphology characterized by a fractal dimension of Df ≈ to 1.8 between the monomer size, ca. 50 nm, and 1 mum micron and Df ≈ to 2.6 at larger length scales up to ˜ 10 mum. The superaggregate morphology is a

  20. Light Scattering From Fractal Titania Aggregates

    NASA Astrophysics Data System (ADS)

    Pande, Rajiv; Sorensen, Christopher M.

    1996-03-01

    We studied the fractal morphology of titania aggregates by light scattering. Titanium dioxide particles were generated by the thermal decomposition of titanium tetra-isopropoxide(TTIP) in a glass furnace at various temperatures in the range of 100 - 500^o C. We scattered vertically polarized He-Ne laser (λ = 6328Ålight from a laminar aerosol stream of particles and measured the optical structure factor. This structure factor shows Rayleigh, Guinier, fractal and Porod regimes. The radius of gyration Rg was determined from the Guinier analysis. The data were then fit to the Fisher-Burford form to determine the fractal dimension of about 2.0. This fit also delineated the crossover from the fractal to Porod regime, which can be used to determine the monomer particle size of about 0.1 μm. These optical measurements will be compared to electron microscope analysis of aggregates collected from the aerosol. This work was supported by NSF grant CTS-9908153.

  1. Paradoxical Acceleration of Dithiothreitol-Induced Aggregation of Insulin in the Presence of a Chaperone

    PubMed Central

    Bumagina, Zoya; Gurvits, Bella; Artemova, Natalya; Muranov, Konstantin; Kurganov, Boris

    2010-01-01

    The kinetics of dithiothreitol (DTT)-induced aggregation of human recombinant insulin and the effect of α-crystallin, a representative of the family of small heat shock proteins, on the aggregation process have been studied using dynamic light scattering technique. Analysis of the distribution of the particles by size measured in the course of aggregation showed that the initial stage of the aggregation process was the stage of formation of the start aggregates with a hydrodynamic radius (Rh) of about 90 nm. When studying the effect of α-crystallin on the rate of DTT-induced aggregation of insulin, it was demonstrated that low concentrations of α-crystallin dramatically accelerated the aggregation process, whereas high concentrations of α-crystallin suppressed insulin aggregation. In the present study, at the molar stoichiometric ratio (insulin:α-crystallin) less than 1:0.5, a pronounced accelerating effect of α-crystallin was observed; whereas a ratio exceeding the value of 1:0.6 caused suppression of insulin aggregation. The mechanisms underlying the dual effect of α-crystallin have been proposed. It is assumed that heterogeneous nucleation occurring on the surface of the α-crystallin particle plays the key role in the paradoxical acceleration of insulin aggregation by α-crystallin that may provide an alternative biologically significant pathway of the aggregation process. PMID:21151456

  2. The aggregation efficiency of very fine volcanic ash

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size < 0.090 mm, by taking into account the effect of grain size distribution on aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (<0.090 mm, <0.063 mm, <0.032 mm). Bimodal grain size distributions were also obtained by mixing the three classes in different proportions. During each experiments, particles were sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution

  3. Characterization of Nanoparticle Aggregation in Biologically Relevant Fluids

    NASA Astrophysics Data System (ADS)

    McEnnis, Kathleen; Lahann, Joerg

    Nanoparticles (NPs) are often studied as drug delivery vehicles, but little is known about their behavior in blood once injected into animal models. If the NPs aggregate in blood, they will be shunted to the liver or spleen instead of reaching the intended target. The use of animals for these experiments is costly and raises ethical questions. Typically dynamic light scattering (DLS) is used to analyze aggregation behavior, but DLS cannot be used because the components of blood also scatter light. As an alternative, a method of analyzing NPs in biologically relevant fluids such as blood plasma has been developed using nanoparticle tracking analysis (NTA) with fluorescent filters. In this work, NTA was used to analyze the aggregation behavior of fluorescent polystyrene NPs with different surface modifications in blood plasma. It was expected that different surface chemistries on the particles will change the aggregation behavior. The effect of the surface modifications was investigated by quantifying the percentage of NPs in aggregates after addition to blood plasma. The use of this characterization method will allow for better understanding of particle behavior in the body, and potential problems, specifically aggregation, can be addressed before investing in in vivo studies.

  4. Coexisting aggregates in mixed aerosol OT and cholesterol microemulsions.

    PubMed

    Sedgwick, Myles A; Trujillo, Alejandro M; Hendricks, Noah; Levinger, Nancy E; Crans, Debbie C

    2011-02-01

    Dynamic light scattering and NMR spectroscopic experimental evidence suggest the coexistence of two compositionally different self-assembled particles in solution. The self-assembled particles form in solutions containing water, Aerosol OT (AOT, sodium bis(2-ethylhexyl) sulfosuccinate) surfactant, and cholesterol in cyclohexane. In a similar series of studies carried out in 1-octanol only one aggregate type, that is, reverse micelles, is observed. Dynamic light scattering measurements reveal the presence of two different types of aggregates in the microemulsions formed in cyclohexane, demonstrating the coexistence of two compositionally distinct structures with very similar Gibbs energies. One particle type consists of standard AOT reverse micelles while the second type of particle consists of submicellar aggregates including cholesterol as well as small amounts of AOT and water. In microemulsions employing 1-octanol as the continuous medium, AOT reverse micelles form in a dispersed solution of cholesterol in 1-octanol. Although the size distribution of self-assembled particles is well-known for many different systems, evidence for simultaneous formation of two distinctly sized particles in solution that are chemically different is unprecedented. The ability to form microemulsion solutions that contain coexisting particles may have important applications in drug formulation and administration, particularly as applied to drug delivery using cholesterol as a targeting agent. PMID:21188993

  5. Effects of chemical mechanical planarization slurry additives on the agglomeration of alumina nanoparticles II: aggregation rate analysis.

    PubMed

    Brahma, Neil; Talbot, Jan B

    2014-04-01

    The aggregation rate and mechanism of 150 nm alumina particles in 1mM KNO3 with various additives used in chemical mechanical planarization of copper were investigated. The pH of each suspension was ∼8 such that the aggregation rate was slow enough to be measured and analyzed over ∼120 min. In general, an initial exponential growth was observed for most suspensions indicating reaction-limited aggregation. After aggregate sizes increase to >500 nm, the rate followed a power law suggesting diffusion-limited aggregation. Stability ratios and fractal dimension numbers were also calculated to further elucidate the aggregation mechanism. PMID:24491325

  6. Production of lightweight aggregates from washing aggregate sludge and fly ash

    NASA Astrophysics Data System (ADS)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena

    2010-05-01

    Increasing generation of wastes is one of the main environmental problems in industrialised countries. Heat treatment at high temperatures can convert some types of wastes into ceramic products with a wide range of microstructural features and properties (Bethanis et al., 2004). A lightweight aggregate (LWA) is a granular material with a bulk density (bd) not exceeding 1.20 g/cm3 or with a particle density not exceeding 2.00 g/cm3 (UNE-EN-13055-1, 2003). They have become a focus of interest because the low particle density and the low bulk density entail a decrease in the load transmitted to the ground, and less work and effort are required to transport them (De' Gennaro et al., 2004). The benefits associated with these low densities, which are due to the formation of voids and pores, are very good thermal and acoustic insulation and materials with a good resistance to fire (Benbow, 1987; Fakhfakh et al., 2007). The objective was to recycle fly ash, used motor oil from cars and mineral wastes from washing aggregate sludge, in order to obtain a usable material such as lightweight aggregates, and also to ensure that they are of good quality for different applications. Raw materials have been physically, chemically and mineralogically characterized. On the basis of the results obtained, they were mixed, milled to a grain size of less than 200 μm (Yasuda, 1991), formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150°C, 1175°C, 1200°C and 1225°C for 10 and 15 min at each temperature (Theating). Effects of raw material characteristics, heating temperature and dwell time on the following LWAs properties were determined: loss on ignition (LOI), bloating index (BI), loose bulk density (bd), apparent and dry particle density (ad, dd), voids (H), water absorption (WA24h) and compressive strength (S). The products obtained were lightweight aggregates in accordance with norm UNE-EN-13055-1 (bd ≤1.20 g/cm3 or particle density ≤2.00 g/cm3). LWAs

  7. Aggregation kinetics in a model colloidal suspension

    SciTech Connect

    Bastea, S

    2005-08-08

    The authors present molecular dynamics simulations of aggregation kinetics in a colloidal suspension modeled as a highly asymmetric binary mixture. Starting from a configuration with largely uncorrelated colloidal particles the system relaxes by coagulation-fragmentation dynamics to a structured state of low-dimensionality clusters with an exponential size distribution. The results show that short range repulsive interactions alone can give rise to so-called cluster phases. For the present model and probably other, more common colloids, the observed clusters appear to be equilibrium phase fluctuations induced by the entropic inter-colloidal attractions.

  8. Aggregation dynamics of rigid polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Tom, Anvy Moly; Rajesh, R.; Vemparala, Satyavani

    2016-01-01

    Similarly charged polyelectrolytes are known to attract each other and aggregate into bundles when the charge density of the polymers exceeds a critical value that depends on the valency of the counterions. The dynamics of aggregation of such rigid polyelectrolytes are studied using large scale molecular dynamics simulations. We find that the morphology of the aggregates depends on the value of the charge density of the polymers. For values close to the critical value, the shape of the aggregates is cylindrical with height equal to the length of a single polyelectrolyte chain. However, for larger values of charge, the linear extent of the aggregates increases as more and more polymers aggregate. In both the cases, we show that the number of aggregates decrease with time as power laws with exponents that are not numerically distinguishable from each other and are independent of charge density of the polymers, valency of the counterions, density, and length of the polyelectrolyte chain. We model the aggregation dynamics using the Smoluchowski coagulation equation with kernels determined from the molecular dynamics simulations and justify the numerically obtained value of the exponent. Our results suggest that once counterions condense, effective interactions between polyelectrolyte chains short-ranged and the aggregation of polyelectrolytes are diffusion-limited.

  9. Capillary hydrodynamic chromatography reveals temporal profiles of cell aggregates.

    PubMed

    Tang, Ya-Ru; Huang, Hsin-Yi; Hu, Jie-Bi; Rattinam, Rajesh; Li, Chun-Hsien; Chen, Yu-Chie; Urban, Pawel L

    2016-03-01

    Microbial cells are known to form aggregates. Such aggregates can be found in various matrices; for example, functional drinks. Capillary hydrodynamic chromatography (HDC) enables separation of particles by size using nanoliter-scale volumes of samples. Here we propose an approach based on HDC for characterisation of real samples containing aggregated and non-aggregated bacterial and fungal cells. Separation of cells and cell aggregates in HDC arises from the parabolic flow profile under laminar flow conditions. In the presented protocol, hydrodynamic separation is coupled with different on-line and off-line detectors (light absorption/scattering and microscopy). The method has successfully been applied in the monitoring of dynamic changes in the microbiome of probiotic drinks. Chromatographic profiles of yogurt and kefir samples obtained at different times during fermentation are in a good agreement with microscopic images. Moreover, thanks to the implementation of an area imaging detector, capillary HDC could be multiplexed and used to profile spatial gradients in cell suspensions, which arise in the course of sedimentation of cells and cell aggregates. This result shows compatibility of sedimentation analysis and capillary HDC. We believe that the approach may find applications in the profiling of functional foods and other matrices containing aggregated bioparticles. PMID:26873471

  10. Mechanism of flow-induced biomolecular and colloidal aggregate breakup

    NASA Astrophysics Data System (ADS)

    Conchúir, Breanndán Ó.; Zaccone, Alessio

    2013-03-01

    The drift-diffusion equation is first solved analytically for the dissociation rate and lifetime of a biomolecular or colloidal dimer bonded by realistic intermolecular potentials, under shear flow. Then we show using rigidity percolation concepts that the lifetime of a generic cluster formed under shear is controlled by the typical lifetime of a single bond in its interior. The latter, however, is also affected by collective stress transmission from other bonds in the aggregate, which we account for by introducing a semiempirical, analytical stress transmission efficiency 0⩽Γ⩽1 calibrated on several simulation data sets. We show that aggregate breakup is a thermally activated process in which the activation energy is controlled by the interplay between intermolecular forces and the shear drift. The collective contribution to the overall shear drift term is dominant for large enough fractal aggregates, while surface erosion prevails for small and compact aggregates. The crossover between the two regimes occurs when ΓN≃2, where both the number of particles in the cluster N and the stress transmission efficiency Γ depend on the aggregate structure through the fractal dimension df. The analytical framework for the aggregate breakup rate is in quantitative agreement with experiments and can be used in future studies in the population balance modeling of colloidal and protein aggregation.

  11. Recycling of PET bottles as fine aggregate in concrete

    SciTech Connect

    Frigione, Mariaenrica

    2010-06-15

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365 days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility.

  12. Light-Scattering Study of Petroleum Asphaltene Aggregation

    NASA Astrophysics Data System (ADS)

    Burya, Yevgeniy G.; Yudin, Igor K.; Dechabo, Victor A.; Kosov, Victor I.; Anisimov, Mikhail A.

    2001-08-01

    Dynamic light scattering with an original optical scheme has been used for the investigation of opaque (strongly light-absorbing) asphaltene colloids in crude oils and hydrocarbon mixtures. Diffusion-limited aggregation and reaction-limited aggregation as well as a crossover between these two regimes have been observed. A simple interpolation for the crossover kinetics is proposed. Asphaltene colloidal structures, originally persisting in crude oils, have been detected. Addition of a precipitant above a threshold induces asphaltene aggregation. Depending on the nature of the precipitant, different crude oils respond differently on its addition: (a) exponential-in-time growth of aggregates to huge flocks or (b) fast formation of stable-in-size particles.

  13. Recycling of PET bottles as fine aggregate in concrete.

    PubMed

    Frigione, Mariaenrica

    2010-06-01

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility. PMID:20176466

  14. Diffusion-limited aggregates grown on nonuniform substrates

    NASA Astrophysics Data System (ADS)

    Cornette, V.; Centres, P. M.; Ramirez-Pastor, A. J.; Nieto, F.

    2013-12-01

    In the present paper, patterns of diffusion-limited aggregation (DLA) grown on nonuniform substrates are investigated by means of Monte Carlo simulations. We consider a nonuniform substrate as the largest percolation cluster of dropped particles with different structures and forms that occupy more than a single site on the lattice. The aggregates are grown on such clusters, in the range the concentration, p, from the percolation threshold, pc up to the jamming coverage, pj. At the percolation threshold, the aggregates are asymmetrical and the branches are relatively few. However, for larger values of p, the patterns change gradually to a pure DLA. Tiny qualitative differences in this behavior are observed for different k sizes. Correspondingly, the fractal dimension of the aggregates increases as p raises in the same range pc≤p≤pj. This behavior is analyzed and discussed in the framework of the existing theoretical approaches.

  15. Patterning microparticles on a template of aggregated cationic dye.

    PubMed

    Wexler, Allan; Switalski, Steven; Bennett, Grace; Lindner, Kimberly; Baptiste, Kenny; Slater, Gary

    2015-02-01

    Patternwise aggregation of charged molecules on a surface is potentially a facile approach to generate a template on which to pattern oppositely charged microparticles. We report on the patterning of silica microparticles by a system comprising a photopatternable copolymer and an aggregate forming penta-cationic cyanine dye. A thin film of the copolymer, composed of a molar excess of styrenesulfonic acid oxime ester to cross-linkable glycidyl methacrylate monomomers, was exposed through a mask and neutralized, resulting in a pattern of hydrophobic areas, and where exposed, a hydrophilic cross-linked film with sodium poly(styrenesulfonate) domains. The occurrence and locus of aggregation of an aqueous solution of the dye, applied to the patterned surface was established by absorbance and fluorescence spectroscopy and atomic force microscopy. In exposed areas, dye is imbibed and aggregation induced in sodium styrenesulfonate domains internal to the layer, whereas in the unexposed areas the dye aggregates on the hydrophobic surface. Aqueous anionic silica microparticles applied to the dye treated patterned surface and then rinsed, are retained in the unexposed areas having cationic surface aggregates, but rejected from the exposed areas with internal dye aggregates as these areas retain net negative charge. Mask exposure, absent dye treatment, did not result in patterning as negatively charged microparticles were nowhere retained, and positively charged particles were everywhere retained. The extent of surface coverage by the dye in unexposed areas was deposition time dependent, and ranged from isolated patches covering about 20 percent of the polymer surface to a surface saturated layer, with silica particle patterning robust over the range of dye surface coverages studied. The force requirements to pattern the denser than water silica microparticles are identified, and particle and polymer film surface potentials that meet the critical repulsion force requirement

  16. A novel approach to a fine particle coating using porous spherical silica as core particles.

    PubMed

    Ishida, Makoto; Uchiyama, Jumpei; Isaji, Keiko; Suzuki, Yuta; Ikematsu, Yasuyuki; Aoki, Shigeru

    2014-08-01

    Abstract The applicability of porous spherical silica (PSS) was evaluated as core particles for pharmaceutical products by comparing it with commercial core particles such as mannitol (NP-108), sucrose and microcrystalline cellulose spheres. We investigated the physical properties of core particles, such as particle size distribution, flow properties, crushing strength, plastic limit, drying rate, hygroscopic property and aggregation degree. It was found that PSS was a core particle of small particle size, low friability, high water adsorption capacity, rapid drying rate and lower occurrence of particle aggregation, although wettability is a factor to be carefully considered. The aggregation and taste-masking ability using PSS and NP-108 as core particles were evaluated at a fluidized-bed coating process. The functional coating under the excess spray rate shows different aggregation trends and dissolution profiles between PSS and NP-108; thereby, exhibiting the formation of uniform coating under the excess spray rate in the case of PSS. This expands the range of the acceptable spray feed rates to coat fine particles, and indicates the possibility of decreasing the coating time. The results obtained in this study suggested that the core particle, which has a property like that of PSS, was useful in overcoming such disadvantages as large particle size, which feels gritty in oral cavity; particle aggregation; and the long coating time of the particle coating process. These results will enable the practical fine particle coating method by increasing the range of optimum coating conditions and decreasing the coating time in fluidized bed technology. PMID:23781858

  17. Thermally induced aggregation of rigid spheres on a liquid surface

    NASA Astrophysics Data System (ADS)

    Forgoston, Eric; Hentschker, Leo; Soltau, Siobhan; Truitt, Patrick; Vaidya, Ashwin

    2016-01-01

    Fluids provide the optimal setting to explore natural patterns far from thermodynamic equilibrium. Experiments suggest that randomly dispersed particles on a liquid surface tend to aggregate on the surface of liquid over time, and the process is enhanced by an increase in the temperature of the liquid. We show that the agglomeration radii increases monotonically with temperature up until the point where all particles in the system form a single, large aggregate. The aggregation dynamics is related to changes in the material properties of the liquid including its viscosity and surface tension as well as the convection driven flow generated on the fluid surface. In this article we compare our experimental observations with analytical asymptotic results. The analytical arguments are seen to agree well with the experimental observations.

  18. Dynamics of colloidal aggregation in microgravity by critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Potenza, M. A. C.; Manca, A.; Veen, S. J.; Weber, B.; Mazzoni, S.; Schall, P.; Wegdam, G. H.

    2014-06-01

    By combining static and dynamic structure factor measurements under microgravity conditions, we obtain for the first time direct insight into the internal structure of colloidal aggregates formed over a wide range of particle attractions under ideal diffusion-limited conditions. By means of near-field scattering we measure the time-dependent density-density correlation function as the aggregation process evolves, and we determine the ratio of the hydrodynamic and gyration radius to elucidate the aggregate's internal structure as a function of its fractal dimension. Surprisingly, we find that despite the large variation of particle interactions, the mass is always evenly distributed in all objects with fractal dimension ranging from 2.55 for shallow potentials to 1.78 for deep ones.

  19. Electrostatic aggregation of finely-comminuted geological materials

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald

    1987-01-01

    Electrostatic forces are known to have a significant effect on the behavior of finely comminuted particulate material: perhaps the most prevalent expression of this being electrostatic aggregation of particles into relatively coherent clumps. However, the precise role of electrostatic attraction and repulsion in determining the behavior of geological materials (such as volcanic ash and aeolian dust) is poorly understood. Electrostatic aggregation of fine particles is difficult to study on earth either in the geological or laboratory environment principally because the material in an aggregated state remains airborne for such a short period of time. Experiments conducted in the NASA/JSC - KC135 aircraft are discussed. The aircraft experiments are seen as precursors to more elaborate and scientifically more comprehensive Shuttle or Space Station activities.

  20. Electrostatic aggregation of finely-comminuted geological materials

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, R.

    1986-01-01

    Electrostatic forces are known to have a significant effect on the behavior of finely comminuted particulate material: perhaps the most prevalent expression of this being electrostatic aggregation of particles into relatively coherent clumps. However, the precise role of electrostatic attraction and repulsion in determining the behavior of geological materials (such as volcanic ash and aeolian dust) is poorly understood. Electrostatic aggregation of fine particles is difficult to study on Earth either in the geological or laboratory environment principally because the material in an aggregated state remains airborne for such a short period of time. Experiments conducted in the NASA/JCS - KC135 aircraft are discussed. The aircraft experiments are seen as precursors to more elaborate and scientifically more comprehensive Shuttle or Space Station activities.

  1. Transmission X-ray microscopy reveals the clay aggregate discrete structure in aqueous environment.

    PubMed

    Zbik, Marek S; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2008-03-15

    The utilization of new transmission X-ray microscopy (TXM) using the synchrotron photon source enable for the first time the study in three dimensions microsize clay particles in aggregates in their natural aqueous environment. This technique makes possible remarkable accurate images of nanosize mineral interparticle structure which forms a new nanocomposite. The Birdwood kaolinite/LDH aggregates observed in the TXM are much more compact than observed before in pure Birdwood kaolinite suspension and similar to aggregates formed after treatment by positively charged surfactant. Kaolinite/LDH aggregates in water reveal complex structure of larger kaolinite platelets connected together by gelled nanoparticles which are most probably LDH colloidal plates. Comparisons of the transmission electron microscope (TEM) and TXM techniques show similarities in particle morphology. The ability to study particles and aggregates in their natural aqueous environment and in 3-dimensions make this technique superior to the TEM technique. PMID:18187142

  2. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    DOEpatents

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  3. Scattering and propagation of terahertz pulses in random soot aggregate systems

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ying; Wu, Zhen-Sen; Bai, Lu; Li, Zheng-Jun

    2014-05-01

    Scattering and propagation of terahertz pulses in random soot aggregate systems are studied by using the generalized multi-particle Mie-solution (GMM) and the pulse propagation theory. Soot aggregates are obtained by the diffusion-limited aggregation (DLA) model. For a soot aggregate in soot aggregate systems, scattering characteristics are analyzed by using the GMM. Scattering intensities versus scattering angles are given. The effects of different positions of the aggregate on the scattering intensities, scattering cross sections, extinction cross sections, and absorption cross sections are computed and compared. Based on pulse propagation in random media, the transmission of terahertz pulses in random soot aggregate systems is determined by the two-frequency mutual coherence function. Numerical simulations and analysis are given for terahertz pulses (0.7956 THz).

  4. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    Water repellency (WR) is a property of some soils that inhibits or delays water infiltration between a few seconds and days or weeks. Inhibited or delayed infiltration contributes to ponding and increases runoff flow generation, often increasing soil erosion risk. In water-repellent soils, water infiltrates preferentially through cracks or macropores, causing irregular soil wetting patterns, the development of preferential flow paths and accelerated leaching of nutrients. Although low inputs of hydrophobic organic substances and high mineralization rates lead to low degrees of WR in cropped soils, it has been reported that conservative agricultural practices may induce soil WR. Although there are many studies at catchment, slope or plot scales very few studies have been carried out at particle or aggregate scale. Intra-aggregate heterogeneity of physical, biological and chemical properties conditions the transport of substances, microbial activity and biochemical processes, including changes in the amount, distribution and chemical properties of organic matter. Some authors have reported positive relationships between soil WR and aggregate stability, since it may delay the entry of water into aggregates, increase structural stability and contribute to reduce soil erosion risk. Organic C (OC) content, aggregate stability and WR are therefore strongly related parameters. In the case of agricultural soils, where both the type of management as crops can influence all these parameters, it is important to evaluate the interactions among them and their consequences. Studies focused on the intra-aggregate distribution of OC and WR are necessary to shed light on the soil processes at a detailed scale. It is extremely important to understand how the spatial distribution of OC in soil aggregates can protect against rapid water entry and help stabilize larger structural units or lead to preferential flow. The objectives of this research are to study [i] the OC content and the

  5. Multiwavelength optical properties of compact dust aggregates in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Min, M.; Rab, Ch.; Woitke, P.; Dominik, C.; Ménard, F.

    2016-01-01

    Context. In protoplanetary disks micron-size dust grains coagulate to form larger structures with complex shapes and compositions. The coagulation process changes the absorption and scattering properties of particles in the disk in significant ways. To properly interpret observations of protoplanetary disks and to place these observations in the context of the first steps of planet formation, it is crucial to understand the optical properties of these complex structures. Aims: We derive the optical properties of dust aggregates using detailed computations of aggregate structures and compare these computationally demanding results with approximate methods that are cheaper to compute in practice. In this way we wish to understand the merits and problems of approximate methods and define the context in which they can or cannot be used to analyze observations of objects where significant grain growth is taking place. Methods: For the detailed computations we used the discrete dipole approximation (DDA), a method able to compute the interaction of light with a complexly shaped, inhomogeneous particle. We compared the results to those obtained using spherical and irregular, homogeneous and inhomogeneous particles. Results: While no approximate method properly reproduces all characteristics of large dust aggregates, the thermal properties of dust can be analyzed using irregularly shaped, porous, inhomogeneous grains. The asymmetry of the scattering phase function is a good indicator of aggregate size, while the degree of polarization is probably determined by the size of the constituent particles. Optical properties derived from aggregates significantly differ from the most frequently used standard ("astronomical silicate" in spherical grains). We outline a computationally fast and relatively accurate method that can be used for a multiwavelength analysis of aggregate dust in protoplanetary disks.

  6. Peptide aggregation in neurodegenerative disease.

    PubMed

    Murphy, Regina M

    2002-01-01

    In the not-so-distant past, insoluble aggregated protein was considered as uninteresting and bothersome as yesterday's trash. More recently, protein aggregates have enjoyed considerable scientific interest, as it has become clear that these aggregates play key roles in many diseases. In this review, we focus attention on three polypeptides: beta-amyloid, prion, and huntingtin, which are linked to three feared neurodegenerative diseases: Alzheimer's, "mad cow," and Huntington's disease, respectively. These proteins lack any significant primary sequence homology, yet their aggregates possess very similar features, specifically, high beta-sheet content, fibrillar morphology, relative insolubility, and protease resistance. Because the aggregates are noncrystalline, secrets of their structure at nanometer resolution are only slowly yielding to X-ray diffraction, solid-state NMR, and other techniques. Besides structure, the aggregates may possess similar pathways of assembly. Two alternative assembly pathways have been proposed: the nucleation-elongation and the template-assisted mode. These two modes may be complementary, not mutually exclusive. Strategies for interfering with aggregation, which may provide novel therapeutic approaches, are under development. The structural similarities between protein aggregates of dissimilar origin suggest that therapeutic strategies successful against one disease may have broad utility in others. PMID:12117755

  7. Topics in Probabilistic Judgment Aggregation

    ERIC Educational Resources Information Center

    Wang, Guanchun

    2011-01-01

    This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…

  8. Mineral of the month: aggregates

    USGS Publications Warehouse

    Tepordei, Valentin V.

    2005-01-01

    Natural aggregates, consisting of crushed stone, and sand and gravel, are a major contributor to economic health, and have an amazing variety of uses. Aggregates are among the most abundant mineral resources and are major basic raw materials used by construction, agriculture and other industries that employ complex chemical and metallurgical processes.

  9. A numerical study of soot aggregate formation in a laminar coflow diffusion flame

    SciTech Connect

    Zhang, Q.; Thomson, M.J.; Guo, H.; Liu, F.; Smallwood, G.J.

    2009-03-15

    Soot aggregate formation in a two-dimensional laminar coflow ethylene/air diffusion flame is studied with a pyrene-based soot model, a detailed sectional aerosol dynamics model, and a detailed radiation model. The chemical kinetic mechanism describes polycyclic aromatic hydrocarbon formation up to pyrene, the dimerization of which is assumed to lead to soot nucleation. The growth and oxidation of soot particles are characterized by the HACA surface mechanism and pyrene-soot surface condensation. The mass range of the solid soot phase is divided into thirty-five discrete sections and two equations are solved in each section to model the formation of the fractal-like soot aggregates. The coagulation model is improved by implementing the aggregate coagulation efficiency. Several physical processes that may cause sub-unitary aggregate coagulation efficiency are discussed. Their effects on aggregate structure are numerically investigated. The average number of primary soot particles per soot aggregate n{sub p} is found to be a strong function of the aggregate coagulation efficiency. Compared to the available experimental data, n{sub p} is well reproduced with a constant 20% aggregate coagulation efficiency. The predicted axial velocity, OH mole fraction, and C{sub 2}H{sub 2} mole fraction are validated against experimental data in the literature. Reasonable agreements are obtained. Finally, a sensitivity study of the effects of particle coalescence on soot volume fraction and soot aggregate nanostructure is conducted using a coalescence cutoff diameter method. (author)

  10. Experimental investigation and population balance equation modeling of solid lipid nanoparticle aggregation dynamics.

    PubMed

    Yang, Yihui; Corona, Alessandro; Henson, Michael A

    2012-05-15

    Solid lipid nanoparticles (SLNs) have applications in drug delivery and the encapsulation of bioactive, lipophilic compounds. However, SLNs tend to aggregate when stored due to the lipid crystals undergoing a polymorphic transformation from the unstable α form to the stable β form. We developed a population balance equation (PBE) model for prediction of average polymorph content and aggregate size distribution to better understand this undesirable behavior. Experiments with SLNs stored at room temperature showed that polymorphic transformation was the rate determining step for our system, SLNs with smaller initial size distributions aggregated more rapidly, and aggregates contained particles with both α and β crystals. Using parameter values estimated from our data, the PBE model was able to capture the bimodal nature of aggregate size distributions, the α-to-β polymorph ratio, and the faster aggregation dynamics of SLNs with smaller initial size distributions. However, the model was unable to adequately capture the fast disappearance rate of primary particles, the broad size distributions of formed aggregates, and the significant α content of aggregating particles. These discrepancies suggest that a PBE model which accounts for polymorph content as an internal variable along with aggregate size may be required to better reproduce experimental observations. PMID:22405582

  11. Linear relationship statistics in diffusion limited aggregation

    NASA Astrophysics Data System (ADS)

    Saberi, Abbas Ali

    2009-11-01

    We show that various surface parameters in two-dimensional diffusion limited aggregation (DLA) grow linearly with the number of particles. We find the ratio of the average length of the perimeter and the accessible perimeter of a DLA cluster together with its external perimeters to the cluster size, and define a microscopic schematic procedure for attachment of an incident new particle to the cluster. We measure the fractal dimension of the red sites (i.e., the sites such that cutting each of them splits the cluster) as equal to that of the DLA cluster. It is also shown that the average number of dead sites and the average number of red sites have linear relationships with the cluster size.

  12. Mechanics of fire ant aggregations

    NASA Astrophysics Data System (ADS)

    Tennenbaum, Michael; Liu, Zhongyang; Hu, David; Fernandez-Nieves, Alberto

    2016-01-01

    Fire ants link their bodies to form aggregations; these can adopt a variety of structures, they can drip and spread, or withstand applied loads. Here, by using oscillatory rheology, we show that fire ant aggregations are viscoelastic. We find that, at the lowest ant densities probed and in the linear regime, the elastic and viscous moduli are essentially identical over the spanned frequency range, which highlights the absence of a dominant mode of structural relaxation. As ant density increases, the elastic modulus rises, which we interpret by alluding to ant crowding and subsequent jamming. When deformed beyond the linear regime, the aggregation flows, exhibiting shear-thinning behaviour with a stress load that is comparable to the maximum load the aggregation can withstand before individual ants are torn apart. Our findings illustrate the rich, collective mechanical behaviour that can arise in aggregations of active, interacting building blocks.

  13. Mechanics of fire ant aggregations.

    PubMed

    Tennenbaum, Michael; Liu, Zhongyang; Hu, David; Fernandez-Nieves, Alberto

    2016-01-01

    Fire ants link their bodies to form aggregations; these can adopt a variety of structures, they can drip and spread, or withstand applied loads. Here, by using oscillatory rheology, we show that fire ant aggregations are viscoelastic. We find that, at the lowest ant densities probed and in the linear regime, the elastic and viscous moduli are essentially identical over the spanned frequency range, which highlights the absence of a dominant mode of structural relaxation. As ant density increases, the elastic modulus rises, which we interpret by alluding to ant crowding and subsequent jamming. When deformed beyond the linear regime, the aggregation flows, exhibiting shear-thinning behaviour with a stress load that is comparable to the maximum load the aggregation can withstand before individual ants are torn apart. Our findings illustrate the rich, collective mechanical behaviour that can arise in aggregations of active, interacting building blocks. PMID:26501413

  14. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  15. Immunogenicity of Therapeutic Protein Aggregates.

    PubMed

    Moussa, Ehab M; Panchal, Jainik P; Moorthy, Balakrishnan S; Blum, Janice S; Joubert, Marisa K; Narhi, Linda O; Topp, Elizabeth M

    2016-02-01

    Therapeutic proteins have a propensity for aggregation during manufacturing, shipping, and storage. The presence of aggregates in protein drug products can induce adverse immune responses in patients that may affect safety and efficacy, and so it is of concern to both manufacturers and regulatory agencies. In this vein, there is a lack of understanding of the physicochemical determinants of immunological responses and a lack of standardized analytical methods to survey the molecular properties of aggregates associated with immune activation. In this review, we provide an overview of the basic immune mechanisms in the context of interactions with protein aggregates. We then critically examine the literature with emphasis on the underlying immune mechanisms as they relate to aggregate properties. Finally, we highlight the gaps in our current understanding of this issue and offer recommendations for future research. PMID:26869409

  16. VAPOR PHASE MERCURY SORPTION BY ORGANIC-SULFIDE COATED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Tetra sulfide silane coated iron-copper nano-particle aggregates are found to be potentially very high capacity sorbents for vapor phase mercury capture. High equilibrium capacities were obtained for the silane coated iron copper nano-aggregate sorbent at 70 oC and 120 oC. Even a...

  17. Particle-directed assembly of semiflexible polymer chains.

    PubMed

    McGovern, Michael; Dorfman, Kevin D; Morse, David C

    2016-07-20

    We use Langevin dynamics simulations to study aggregation of semiflexible polymers driven by attractions between polymers and spherical particles. We consider a simple model with purely repulsive polymer/polymer and particle/particle interactions but attractive polymer/particle interactions. We find a rich "phase diagram" that contains several different types of globular and rod-like aggregates with either liquid-like or crystalline structure for the particle positions. Systems that exhibit rod-like aggregates with crystalline internal order exhibit a discontinuous rod-globule transition, while systems with liquid-like internal order exhibit a smooth crossover between isotropic and elongated aggregates with increasing chain stiffness. Polymers in elongated liquid-like aggregates often adopt helical configurations that wind around the axis of the aggregate. PMID:27378073

  18. Particle formation and interaction

    NASA Technical Reports Server (NTRS)

    Squyres, Steven; Corso, George J.; Griffiths, Lynn D.; Mackinnon, Ian D. R.; Marshall, John R.; Nuth, Joseph A., III; Werner, Brad; Wolfe, John

    1987-01-01

    A wide variety of experiments can be conducted on the Space Station that involve the physics of small particles of planetary significance. Processes of interest include nucleation and condensation of particles from a gas, aggregation of small particles into larger ones, and low velocity collisions of particles. All of these processes could be investigated with a general purpose facility on the Space Station. The microgravity environment would be necessary to perform many experiments, as they generally require that particles be suspended for periods substantially longer than are practical at 1 g. Only experiments relevant to planetary processes will be discussed in detail here, but it is important to stress that a particle facility will be useful to a wide variety of scientific disciplines, and can be used to address many scientific problems.

  19. Low-Velocity Aggregate Collisions Simulating Planetary Ring Dynamics

    NASA Astrophysics Data System (ADS)

    Dove, A.; Colwell, J. E.; Bradley, E. T.; Vamos, C.

    2012-12-01

    Proto-planetary and planetary ring system evolution is driven by collisions between small particles and aggregates that may be composed of dust, water ice, or a combination of materials. In these collisional systems, impacts between objects can occur at very low velocities, much less than 1 m/s. Low-velocity impacts can have competing effects: at the lowest velocities, collisions may play a critical role in growth into larger aggregates; at slightly higher velocities, collisions can cause break-up and release of material. In the Saturnian ring system, for instance, particles are excited to such "higher" velocities (10's of cm/s) in regions where density waves enhance particle concentrations. These conditions are present in the A ring, and it has been hypothesized that collisions have an additional effect of modifying the spectral properties of the ring particles, which are composed of a mix of ice and dust (Nicholson et al., 2008). This modification may occur when collisions cause ejection of material with different spectral characteristics, or by breaking particles apart to reveal more pristine interiors. We have designed and built an apparatus to simulate low-velocity collisions between aggregates in a laboratory vacuum environment. In our experiment, two aggregates are launched towards each other; the resulting impact velocities are controlled by the initial spring launch velocity, the masses of the aggregates, and timing of the collisions. Initially, we use lunar regolith simulant to create the aggregates; the simulant can be packed to different densities to control the mass and porosity of the impactors. We also create aggregates that are mixtures of materials, including icy components. A high-speed digital video camera is used to record the impacts to observe the behavior of both impactors and the resulting ejecta material. We observe over a range of velocities to identify the conditions under which aggregates shed only some material from the surface, or

  20. Perspectives on Preference Aggregation.

    PubMed

    Regenwetter, Michel

    2009-07-01

    For centuries, the mathematical aggregation of preferences by groups, organizations, or society itself has received keen interdisciplinary attention. Extensive theoretical work in economics and political science throughout the second half of the 20th century has highlighted the idea that competing notions of rational social choice intrinsically contradict each other. This has led some researchers to consider coherent democratic decision making to be a mathematical impossibility. Recent empirical work in psychology qualifies that view. This nontechnical review sketches a quantitative research paradigm for the behavioral investigation of mathematical social choice rules on real ballots, experimental choices, or attitudinal survey data. The article poses a series of open questions. Some classical work sometimes makes assumptions about voter preferences that are descriptively invalid. Do such technical assumptions lead the theory astray? How can empirical work inform the formulation of meaningful theoretical primitives? Classical "impossibility results" leverage the fact that certain desirable mathematical properties logically cannot hold in all conceivable electorates. Do these properties nonetheless hold true in empirical distributions of preferences? Will future behavioral analyses continue to contradict the expectations of established theory? Under what conditions do competing consensus methods yield identical outcomes and why do they do so? PMID:26158988

  1. Influence of surface potential on aggregation and transport of titania nanoparticles.

    PubMed

    Guzman, Katherine A Dunphy; Finnegan, Michael P; Banfield, Jillian F

    2006-12-15

    To investigate the effect of pH on nanoparticle aggregation and transport in porous media, we quantified nanoparticle transport in two-dimensional structures. Titania was used as a model compound to explore the effects of surface potential on particle mobility in the subsurface. Results show that pH, and therefore, surface potential and aggregate size, dominate nanoparticle interactions with each other and surfaces. In each solution, nanoparticle aggregate size distributions were bimodal or trimodal, and aggregate sizes increased as the pH approached the pH of the point of zero charge (pHzpc). Over 80% of suspended particles and aggregates were mobile over the pH range of 1-12, except close to the pHzpc of the surfaces, where the particles are highly aggregated. The effect of pH on transport is not symmetric around the pHzpc of the particles due to charging of the channel surfaces. However, transport speed of nanoparticle aggregates did not vary with pH. The surface element integration technique, which takes into account the effect of curvature of particles on interaction energy, was used to evaluate the ability of theory to predict nanoparticle transport. PMID:17256514

  2. Hail formation triggers rapid ash aggregation in volcanic plumes

    USGS Publications Warehouse

    Van Eaton, Alexa; Mastin, Larry G.; Herzog, M.; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi; Clarke, Amanda B

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet’ eruption. The 2009 eruption of Redoubt Volcano in Alaska incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits, and numerical modeling demonstrate that volcanic hail formed rapidly in the eruption plume, leading to mixed-phase aggregation of ~95% of the fine ash and stripping much of the cloud out of the atmosphere within 30 minutes. Based on these findings, we propose a mechanism of hail-like aggregation that contributes to the anomalously rapid fallout of fine ash and the occurrence of concentrically-layered aggregates in volcanic deposits.

  3. Effects of human urine on aggregation of calcium oxalate crystals.

    PubMed

    Springmann, K E; Drach, G W; Gottung, B; Randolph, A D

    1986-01-01

    The importance of aggregation in calcium oxalate urolithiasis, although not fully understood, has long been postulated. Previous investigators of calcium oxalate crystal aggregation have applied static crystallization rather than continuous flow techniques to their studies. We describe the use of a Couette agglomerator in series with our previously reported continuous flow mixed suspension-mixed product removal crystallization system. We compared synthetic urine controls with 5 per cent volume-in-volume human urine additions from normal persons or patients with calcium oxalate stones. There was no significant difference in nucleation, linear crystal growth rate or total crystal mass between normal persons and those with stones. Control nucleation rate was significantly higher than in either human urine addition group. Comparison of aggregator particle size distributions revealed significant differences in aggregation among the control, normal and stone groups. We concluded that urine inhibitors to aggregation are somewhat deficient in patients with stones, resulting in the generation of larger particle masses or eventually stones. PMID:3941471

  4. Aggregation and dendritic growth in a magnetic granular system

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, J.; Carrillo-Estrada, J. L.; Ruiz-Suárez, J. C.

    2013-12-01

    We experimentally study the aggregation of non-Brownian paramagnetic beads in a vibrofluidized system induced by an external magnetic dipole. A dendritic growth is observed in real time, particle by particle, and with the naked eye. Two aggregation stages are observed, where tip, tip-split and side-branching growths are differentiated. We found clusters morphologically similar to those generated by a diffusion limited aggregation algorithm (DLA). However, in our case, due to the finite range of the magnetic field, the clusters reach a finite size and their structures exhibit different rates of aggregation. These are revealed by the existence of two different scaling relations of the mass with the gyration radius, and the nature of the radial mass distribution function. The structures of the clusters are fractal objects with an effective mass fractal dimension of around 1.8. We found that an exponential function describes the aggregation phenomenon as a function of time. This exponential behavior is independent of the final state of the morphology (shape and length) of the agglomerates.

  5. Hail formation triggers rapid ash aggregation in volcanic plumes

    PubMed Central

    Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052

  6. Hail formation triggers rapid ash aggregation in volcanic plumes.

    PubMed

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052

  7. Morphological characterization of carbonaceous aggregates in soot and free fall aerosol samples

    NASA Astrophysics Data System (ADS)

    Sachdeva, Kamna; Attri, Arun K.

    The morphological characteristics of BC aggregates present in the soot and carbonaceous aerosol (CA) samples were investigated. The process of soot formation under laboratory conditions took into account the commonly used practice of burning fuel in the households in India. The fractal morphology was determined by using box counting algorithm and maximum projected area of the aggregates by using their digital electron microscopic images. Former provided the estimates of perimeter fractal dimension (PD f) of each aggregate, and later estimated the average density fractal dimension (DD f) of aggregate groups. Numbers of particles constituting the aggregates, using projected area approach, were significantly higher than the estimates based on pixel counting. The measured average diameter of the primary particles in aggregates, ranged between 24 and 57 nm. The fractal dimensions, PD f, for the laboratory-generated soot aggregates varied from 1.36 to 1.88. The PD f for aggregates derived from diesel-vehicles and biomass burning showed significant variation: biomass, 1.27; diesel vehicle, 1.82 and 1.7. The size and the dimensions estimated for the free fall CA samples showed large deviation. The ratio L/ Rg (length/radius of gyration) for soot aggregates (gasoline, kerosene, diesel, mustard oil and hexane) ranged from 3.5 to 4.8. Surface morphology of these aggregates, using scanning electron microscope (SEM), showed the presence of spherical "charred cenosphere" like particles in gasoline and free fall aerosol aggregates. FTIR investigations revealed the presence of a large number of organic groups (OC) associated with carbonaceous aggregates present in soot and free fall aerosol samples.

  8. Accurate modelling of flow induced stresses in rigid colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Vanni, Marco

    2015-07-01

    A method has been developed to estimate the motion and the internal stresses induced by a fluid flow on a rigid aggregate. The approach couples Stokesian dynamics and structural mechanics in order to take into account accurately the effect of the complex geometry of the aggregates on hydrodynamic forces and the internal redistribution of stresses. The intrinsic error of the method, due to the low-order truncation of the multipole expansion of the Stokes solution, has been assessed by comparison with the analytical solution for the case of a doublet in a shear flow. In addition, it has been shown that the error becomes smaller as the number of primary particles in the aggregate increases and hence it is expected to be negligible for realistic reproductions of large aggregates. The evaluation of internal forces is performed by an adaptation of the matrix methods of structural mechanics to the geometric features of the aggregates and to the particular stress-strain relationship that occurs at intermonomer contacts. A preliminary investigation on the stress distribution in rigid aggregates and their mode of breakup has been performed by studying the response to an elongational flow of both realistic reproductions of colloidal aggregates (made of several hundreds monomers) and highly simplified structures. A very different behaviour has been evidenced between low-density aggregates with isostatic or weakly hyperstatic structures and compact aggregates with highly hyperstatic configuration. In low-density clusters breakup is caused directly by the failure of the most stressed intermonomer contact, which is typically located in the inner region of the aggregate and hence originates the birth of fragments of similar size. On the contrary, breakup of compact and highly cross-linked clusters is seldom caused by the failure of a single bond. When this happens, it proceeds through the removal of a tiny fragment from the external part of the structure. More commonly, however

  9. Growth and Destruction from Low-Velocity Dust Aggregate Collisions

    NASA Astrophysics Data System (ADS)

    Dove, Adrienne; Colwell, J.; Vamos, C.

    2012-10-01

    By exploring a variety of impactor densities and velocities, we can observe the ranges over which growth, compaction, or erosion occur for cm-sized aggregates. Evolution of proto-planetary and planetary ring systems is driven by collisions between objects that are likely to themselves be formed from aggregates of smaller particles. In these collisional systems, impacts between objects may occur at very low velocities, much less than 1 m/s. Low-velocity impacts may play a critical role in the growth of larger aggregates. In planetary ring systems and circumplanetary disks, collisions between aggregates or dust-covered objects release dust that is a more visible tracer of the underlying parent population of massive objects. We have designed and built an apparatus to simulate these low-velocity collisions in a laboratory vacuum environment. In our experiment, one aggregate is launched upward by a spring launching mechanism, while another is dropped from directly above the launcher to create the impact. Impact velocities are controlled by initial spring launch velocity, masses of the particles, and timing of the collisions. Initially, we use JSC-1 lunar regolith simulant to create the aggregates; the simulant can be packed to different densities to control the mass and porosity of the impactors. A high-speed digital video camera is used to record the impacts to observe the behavior of both impactors and the resulting ejecta material. By exploring a variety of impactor densities and velocities, we can observe the ranges over which grow, compaction, or erosion occur for cm-sized aggregates.

  10. Insights into asphaltene aggregation in the Na-montmorillonite interlayer.

    PubMed

    Zhu, Xinzhe; Chen, Daoyi; Wu, Guozhong

    2016-10-01

    This study aimed to provide insights into the diffusion and aggregation of asphaltenes in the Na-montmorillonite (MMT) interlayer with different water saturation, salinity, interlayer space and humic substances. The molecular configuration, density profile, diffusion coefficient and aggregation intensity were determined by molecular dynamic simulation, while the 3D topography and particle size of the aggregates were characterized by atomic force microscopy. Results indicated that the diffusivity of asphaltenes was up to 5-fold higher in the MMT interlayer filled with fresh water than with saline water (salinity: 35‰). However, salinity had little impact on the asphaltene aggregation. This study also showed a marked decrease in the mobility of asphaltenes with decrease in the pore water content and the interlayer space of MMT. This was more pronounced in the organo-MMT where the humic substances were present. The co-aggregation process resulted in the sequestration of asphaltenes in the hollow cone-shaped cavity of humic substances in the MMT interlayer, which decreased the asphaltene diffusion by up to one-order of magnitude and increased the asphaltene aggregation by about 33%. These findings have important ramifications for evaluating the fate and transport of heavy fractions of the residual oil in the contaminated soils. PMID:27362529

  11. Aggregation in charged nanoparticles solutions induced by different interactions

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  12. Structure and dynamic properties of colloidal asphaltene aggregates.

    PubMed

    Eyssautier, Joëlle; Frot, Didier; Barré, Loïc

    2012-08-21

    The abundant literature involving asphaltene often contrasts dynamic measurements of asphaltene solutions, highlighting the presence of small particle sizes between 1 and 3 nm, with static scattering measurements, revealing larger aggregates with a radius of gyration around 7 nm. This work demonstrates the complementary use of the two techniques: a homemade dynamic light scattering setup adapted to dark and fluorescent solutions, and small-angle X-ray and neutron scattering. Asphaltene solutions in toluene are prepared by a centrifugation separation to investigate asphaltene polydispersity. These experiments demonstrate that asphaltene solutions are made of Brownian colloidal aggregates. The hydrodynamic radii of asphaltene aggregates are between 5 and 10 nm, while their radii of gyration are roughly comparable, between 3.7 and 7.7 nm. A small fraction of asphaltenes with hydrodynamic and gyration radii around 40 nm is found in the pellet of the centrifugation tube. The fractal character of the largest clusters is observed from small angle scattering nearly on a decade length scale. Previous results on aggregation mechanisms are confirmed ( Eyssautier, J., et al. J. Phys. Chem. B 2011 , 115 , 6827 ): nanoaggregates of 3 nm radius, and with hydrodynamic properties also frequently illustrated in the literature, aggregate to form fractal clusters with a dispersity of aggregation number. PMID:22827858

  13. Lack of Aggregation of Molecules on Ice Nanoparticles.

    PubMed

    Pysanenko, Andriy; Habartová, Alena; Svrčková, Pavla; Lengyel, Jozef; Poterya, Viktoriya; Roeselová, Martina; Fedor, Juraj; Fárník, Michal

    2015-08-27

    Multiple molecules adsorbed on the surface of nanosized ice particles can either remain isolated or form aggregates, depending on their mobility. Such (non)aggregation may subsequently drive the outcome of chemical reactions that play an important role in atmospheric chemistry or astrochemistry. We present a molecular beam experiment in which the controlled number of guest molecules is deposited on the water and argon nanoparticles in a pickup chamber and their aggregation is studied mass spectrometrically. The studied molecules (HCl, CH3Cl, CH3CH2CH2Cl, C6H5Cl, CH4, and C6H6) form large aggregates on argon nanoparticles. On the other hand, no aggregation is observed on ice nanoparticles. Molecular simulations confirm the experimental results; they reveal a high degree of aggregation on the argon nanoparticles and show that the molecules remain mostly isolated on the water ice surface. This finding will influence the efficiency of ice grain-mediated synthesis (e.g., in outer space) and is also important for the cluster science community because it shows some limitations of pickup experiments on water clusters. PMID:26214577

  14. Stratification of colloidal aggregation coupled with sedimentation.

    PubMed

    González, Agustín E

    2006-12-01

    One of the consequences of sedimentation in colloidal aggregation is the stratification of the system in the sense that, after a sufficiently long elapsed time, the large clusters lie preferentially at the bottom zones of the confinement prism, and the structural and dynamical quantities describing the aggregates depend on the depth at which they are measured. A few years ago a computer simulation using particles for colloidal aggregation coupled with sedimentation was proposed by the author [A. E. González, Phys. Rev. Lett. 86, 1243 (2001)]. In that simulation, due to computational limitations, the mentioned quantities were averaged over all clusters in the prism, independently of the depth at which they were located, in order to have good statistics for the evaluation of the cluster fractal dimension and the cluster size distribution function. In this work we present a computer simulation using particles of colloidal aggregation coupled with sedimentation, for which the clusters in the simulation box represent those clusters inside a layer at a fixed depth and of arbitrary thickness in the prism. It would then be possible to compare the results with an eventual validation experiment, in which an aggregating sample is sipped out with a pipette at a fixed depth in the prism and subjected to further studies, or with a light scattering study in which the laser beam is focused at a fixed depth in the system. We confirm the acceleration of the aggregation rate, followed by a slowing down, compared with an aggregating system driven purely by diffusion (DLCA). In the present system, the large clusters when drifting downwards sweep smaller ones, which in turn occlude the holes and cavities of these large clusters, increasing in this way their compacticity. We also confirm that (i) in some cases of sedimentation strengths and layer depths, the mean width (perpendicular to the gravitational field direction) and the mean height of the large settling clusters scale with the

  15. Influence of surface modification on structure formation and micromechanical properties of spray-dried silica aggregates.

    PubMed

    Zellmer, Sabrina; Lindenau, Maylin; Michel, Stephanie; Garnweitner, Georg; Schilde, Carsten

    2016-02-15

    Spray drying processes were utilized for the production of hierarchical materials with defined structures. The structure formation during the spray drying process and the micromechanical properties of the obtained aggregates depend on the particle-particle interactions, the primary particle size and morphology as well as the process parameters of the spray drying process. Hence, the effect of different primary particle systems prepared as stable dispersions with various surface modifications were investigated on the colloidal structure formation and the micromechanical properties of silica particles as model aggregates and compared to theoretical considerations. The obtained results show that the structure formation of aggregates during the spray drying process for stable suspensions is almost independent on the functional groups present at the particle surface. Further, the mechanical properties of these aggregates differ considerably with the content of the bound ligand. This allows the defined adjustment of the aggregate properties, such as the strength and surface properties, as well as the formation of defined hierarchical aggregate structures. PMID:26619128

  16. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. I. Measurement of concentration and size of single platelets and aggregates.

    PubMed Central

    Bell, D N; Spain, S; Goldsmith, H L

    1989-01-01

    A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone. PMID:2605298

  17. Highly Sensitive Detection of Red Blood Cell Aggregation with Ultrasonic Peak Frequency

    NASA Astrophysics Data System (ADS)

    Sato, Takayuki; Tojo, Hiroyuki; Watanabe, Yasuaki

    2013-07-01

    A novel technique of detecting the peak frequency of an ultrasonic reflection spectrum was proposed, with the aim of enhancing the sensitivity and accuracy of estimating the aggregation size of red blood cells (RBCs). Peak frequencies for stagnant and running suspensions prepared with monodisperse particles of graphite and acryl that were used to mimic aggregated RBCs were acquired. As a result, the relationships between particle diameter and peak frequency, which were independent of the material of the particles and flow rate, were obtained. For bidisperse samples, i.e., mixtures of two different sizes of particle samples, quantitative relationships corresponding to changes in the mixing ratio were observed.

  18. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.

    2016-01-01

    Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary

  19. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    NASA Astrophysics Data System (ADS)

    Kamimoto, Takeyuki

    2006-07-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed.

  20. Arbuscular mycorrhizal fungi make a complex contribution to soil aggregation

    NASA Astrophysics Data System (ADS)

    McGee, Peter; Daynes, Cathal; Damien, Field

    2013-04-01

    Soil aggregates contain solid and fluid components. Aggregates develop as a consequence of the organic materials, plants and hyphae of arbuscular mycorrhizal (AM) fungi acting on the solid phase. Various correlative studies indicate hyphae of AM fungi enmesh soil particles, but their impact on the pore space is poorly understood. Hyphae may penetrate between particles, remove water from interstitial spaces, and otherwise re-arrange the solid phase. Thus we might predict that AM fungi also change the pore architecture of aggregates. Direct observations of pore architecture of soil, such as by computer-aided tomography (CT), is difficult. The refractive natures of solid and biological material are similar. The plant-available water in various treatments allows us to infer changes in pore architecture. Our experimental studies indicate AM fungi have a complex role in the formation and development of aggregates. Soils formed from compost and coarse subsoil materials were planted with mycorrhizal or non-mycorrhizal seedlings and the resultant soils compared after 6 or 14 months in separate experiments. As well as enmeshing particles, AM fungi were associated with the development of a complex pore space and greater pore volume. Even though AM fungi add organic matter to soil, the modification of pore space is not correlated with organic carbon. In a separate study, we visualised hyphae of AM fungi in a coarse material using CT. In this study, hyphae appeared to grow close to the surfaces of particles with limited ramification across the pore spaces. Hyphae of AM fungi appear to utilise soil moisture for their growth and development of mycelium. The strong correlation between moisture and hyphae has profound implications for soil aggregation, plant utilisation of soil water, and the distribution of water as water availability declines.

  1. Effect of lobe pumping on human albumin: investigating the underlying mechanisms of aggregate formation.

    PubMed

    Gomme, Peter T; Hunt, Ben M; Tatford, Owen C; Johnston, Anna; Bertolini, Joseph

    2006-02-01

    A common problem in the manufacture of liquid protein therapeutics is the tendency for aggregation and particle formation on extended storage. One aspect of processing that might contribute to particle formation is pumping. In the present study, we demonstrate that lobe pumps can promote aggregation in albumin preparations. This is accentuated where the clearance between the pump housing and lobes is increased. Under these conditions, the pump efficiency decreases, resulting in increased exposure of the protein to the pump environment. Depending on the inherent physicochemical stability of the protein, this can lead to aggregate formation, which can influence the long-term stability characteristics of the product. PMID:16246176

  2. Monte Carlo simulation of the heterotypic aggregation kinetics of platelets and neutrophils.

    PubMed

    Laurenzi, I J; Diamond, S L

    1999-09-01

    The heterotypic aggregation of cell mixtures or colloidal particles such as proteins occurs in a variety of settings such as thrombosis, immunology, cell separations, and diagnostics. Using the set of population balance equations (PBEs) to predict dynamic aggregate size and composition distributions is not feasible. The stochastic algorithm of Gillespie for chemical reactions (. J. Comput. Phys. 22:403-434) was reformulated to simulate the kinetic behavior of aggregating systems. The resulting Monte Carlo (MC) algorithm permits exact calculation of the decay rates of monomers and the temporally evolving distribution of sizes and compositions of the aggregates. Moreover, it permits calculation of all moments of these distributions. Using this method, we explored the heterotypic aggregation of fully activated platelets and neutrophils in a linear shear flow of shear rate G = 335 s(-1). At plasma concentrations, the half-lives of homotypically aggregating platelet and neutrophil singlets were 8.5 and 2.4 s, respectively. However, for heterotypic aggregation, the half-lives for platelets and neutrophils decreased to 2.0 and 0.11 s, respectively, demonstrating that flowing neutrophils accelerate capture of platelets and growth of aggregates. The required number of calculations per time step of the MC algorithm was typically a small fraction of Omega(1/2), where Omega is the initial number of particles in the system, making this the fastest MC method available. The speed of the algorithm makes feasible the deconvolution of kernels for general biological heterotypic aggregation processes. PMID:10465782

  3. Model for amorphous aggregation processes

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  4. Glycation precedes lens crystallin aggregation

    SciTech Connect

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-05-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both (/sup 3/H)NaBH/sub 4/ reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated.

  5. Modifiers of mutant huntingtin aggregation

    PubMed Central

    Teuling, Eva; Bourgonje, Annika; Veenje, Sven; Thijssen, Karen; de Boer, Jelle; van der Velde, Joeri; Swertz, Morris; Nollen, Ellen

    2011-01-01

    Protein aggregation is a common hallmark of a number of age-related neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and polyglutamine-expansion disorders such as Huntington’s disease, but how aggregation-prone proteins lead to pathology is not known. Using a genome-wide RNAi screen in a C. elegans-model for polyglutamine aggregation, we previously identified 186 genes that suppress aggregation. Using an RNAi screen for human orthologs of these genes, we here present 26 human genes that suppress aggregation of mutant huntingtin in a human cell line. Among these are genes that have not been previously linked to mutant huntingtin aggregation. They include those encoding eukaryotic translation initiation, elongation and translation factors, and genes that have been previously associated with other neurodegenerative diseases, like the ATP-ase family gene 3-like 2 (AFG3L2) and ubiquitin-like modifier activating enzyme 1 (UBA1). Unravelling the role of these genes will broaden our understanding of the pathogenesis of Huntington’s disease. PMID:21915392

  6. Aggregation and Sedimentation of Thalassiosira weissflogii (diatom) in a Warmer and More Acidified Future Ocean

    PubMed Central

    Seebah, Shalin; Fairfield, Caitlin; Ullrich, Matthias S.; Passow, Uta

    2014-01-01

    Increasing Transparent Exopolymer Particle (TEP) formation during diatom blooms as a result of elevated temperature and pCO2 have been suggested to result in enhanced aggregation and carbon flux, therewith potentially increasing the sequestration of carbon by the ocean. We present experimental results on TEP and aggregate formation by Thalassiosira weissflogii (diatom) in the presence or absence of bacteria under two temperature and three pCO2 scenarios. During the aggregation phase of the experiment TEP formation was elevated at the higher temperature (20°C vs. 15°C), as predicted. However, in contrast to expectations based on the established relationship between TEP and aggregation, aggregation rates and sinking velocity of aggregates were depressed in warmer treatments, especially under ocean acidification conditions. If our experimental findings can be extrapolated to natural conditions, they would imply a reduction in carbon flux and potentially reduced carbon sequestration after diatom blooms in the future ocean. PMID:25375640

  7. In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics.

    PubMed

    Grogan, Joseph M; Rotkina, Lolita; Bau, Haim H

    2011-06-01

    We report on real-time observations of the aggregation of gold nanoparticles using a custom-made liquid cell that allows for in situ electron microscopy. Process kinetics and fractal dimension of the aggregates are consistent with three-dimensional cluster-cluster diffusion-limited aggregation, even for large aggregates, for which confinement effects are expected. This apparent paradox was resolved through in situ observations of the interactions between individual particles as well as clusters at various stages of the aggregation process that yielded the large aggregates. The liquid cell described herein facilitates real-time observations of various processes in liquid media with the high resolution of the electron microscope. PMID:21797362

  8. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    PubMed

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in <0.05-mm aggregates. Organic carbon stability in micro-aggregates was higher than that in macro-aggregates and became more stable. Organic carbon contents in total residues, and within different aggregate sizes, were all negatively correlated with PAD. It indicated that organic materials had a more significant effect on macro-aggregate stability and the effects of iron-aluminium oxides maybe more important for stability of micro-aggregates. PMID:26832865

  9. Chain-aggregate aerosols in smoke from the Kuwait oil fires

    SciTech Connect

    Weiss, R.E.; Kapustin, V.N.; Hobbs, P.V.

    1992-09-20

    Electrooptical scattering was used to detect aggregated particle chains in the smoke from the Kuwait oil fires. Nonsphericity was detected by the change in light scattering brought about by induced alignment of particles when subjected to a pulsed, bipolar electric field. Measured parameters included the steady state enhancement of light scattering for complete orientation of the particles, and the rotational diffusion constant, calculated from the time required for the particles to relax to a random orientation after the electric field was removed. Chain aggregates of soot formed within seconds of combustion for those fires producing black smoke. These aggregates agglomerated to some extent in the smoke near the fires, but then remained relatively unchanged for several hours of travel downwind. Very little nonsphericity was detected for particles in the plume of white smoke, which consisted primarily of salt brine products emitted along with the oil. 10 refs., 4 figs., 1 tab.

  10. Tumbling in Turbulence: How much does particle shape effect particle motion?

    NASA Astrophysics Data System (ADS)

    Variano, E. A.; Andersson, H. I.; Zhao, L.; Byron, M.

    2014-12-01

    Natural particles suspended in surface water are often non-spherical. We explore the ways in which particle shape effects particle motion, focusing specifically on how particle rotation is divided into spinning and tumbling components. This, in turn, will effect particle collision, clustering, and settling rates. We focus on idealized axisymmetric particles shaped as rods, discs, and spheroids. They are chosen so as to explain the physics of aspherical-particle motion that will be relevant for natural particles such as plankton, sediment, or aggregates (e.g. oil-mineral aggregates, clay flocs, or bio-sediment aggregates held together by TEP). Our work begins with laboratory measurements of particle motion in a turbulence tank built to mimic the flow found in rivers, estuaries, and the ocean surface mixed layer. We then proceed to direct numerical simulation of particle-flow interactions in sheared turbulence similar to that which is found in the surface water of creeks and rivers. We find that shape has only a very weak effect on particle angular velocity, which is a quantity calculated with respect the global reference frame (i.e. east/north/up). If we analyze rotation in a particle's local frame (i.e. the particle's principle axes of rotation), then particle shape has a strong effect on rotation. In the local frame, rotation is described by two components: tumbling and spinning. We find that rod-shaped particles spin more than they tumble, and we find that disc-shaped particles tumble more than they spin. Such behavior is indicative of how particles respond the the directional influence of vortex tubes in turbulence, and such response has implications for particle motion other than rotation. Understanding particle alignment is relevant for predicting particle-particle collision rates, particle-wall collision rates, and the shear-driven breakup of aggregates. We discuss these briefly in the context of what can be concluded from the rotation data discussed above.

  11. Crystal aggregation in kidney stones; a polymer aggregation problem?

    NASA Astrophysics Data System (ADS)

    Wesson, J.; Beshensky, A.; Viswanathan, P.; Zachowicz, W.; Kleinman, J.

    2008-03-01

    Kidney stones most frequently form as aggregates of calcium oxalate monohydrate (COM) crystals with organic layers between them, and the organic layers contain principally proteins. The pathway leading to the formation of these crystal aggregates in affected people has not been identified, but stone forming patients are thought to have a defect in the structure or distribution of urinary proteins, which normally protect against stone formation. We have developed two polyelectrolyte models that will induce COM crystal aggregation in vitro, and both are consistent with possible urinary protein compositions. The first model was based on mixing polyanionic and polycationic proteins, in portions such that the combined protein charge is near zero. The second model was based on reducing the charge density on partially charged polyanionic proteins, specifically Tamm-Horsfall protein, the second most abundant protein in urine. Both models demonstrated polymer phase separation at solution conditions where COM crystal aggregation was observed. Correlation with data from other bulk crystallization measurements suggest that the anionic side chains form critical binding interactions with COM surfaces that are necessary along with the phase separation process to induce COM crystal aggregation.

  12. Shear-driven aggregation of binary colloids for randomly distributing nanoparticles in a matrix.

    PubMed

    Meng, Xia; Wu, Hua; Morbidelli, Massimo

    2016-04-20

    We propose a methodology for preparing composite materials where A nanoparticles (NPs) are uniformly and randomly distributed inside a matrix of B NPs. It is based on intense shear-driven aggregation of binary colloids composed of A and B NPs, without using any additives. Its feasibility has been demonstrated using stable binary colloids composed of poly-methyl methacrylate (PMMA) particles and polystyrene (PS) particles. The PS particles alone undergo shear-driven aggregation (shear-active), while the PMMA particles alone do not exhibit any aggregation under the same conditions (shear-inactive). It is found that the shear-driven aggregation of the binary colloids does occur, and the formed clusters are composed of both the "shear-active" PS and "shear-inactive" PMMA particles. The SEM pictures demonstrate that the PMMA particles are uniformly and randomly distributed among the PS particles in the clusters, thus confirming the feasibility of the proposed methodology. The mechanism leading to the aggregation of the binary colloids has been discussed based on the experimental observations. PMID:26983559

  13. Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate.

    PubMed

    Jeon, Seongho; Hurley, Katie R; Bischof, John C; Haynes, Christy L; Hogan, Christopher J

    2016-09-21

    A promising route to cancer treatment is hyperthermia, facilitated by superparamagnetic iron oxide nanoparticles (SPIONs). After exposure to an alternating external magnetic field, SPIONs generate heat, quantified by their specific absorption rate (SAR, in W g(-1) Fe). However, without surface functionalization, commercially available, high SAR SPIONs (EMG 308, Ferrotec, USA) aggregate in aqueous suspensions; this has been shown to reduce SAR. Further reduction in SAR has been observed for SPIONs in suspensions containing cells, but the origin of this further reduction has not been made clear. Here, we use image analysis methods to quantify the structures of SPION aggregates in the extra- and intracellular milieu of LNCaP cell suspensions. We couple image characterization with nanoparticle tracking analysis and SAR measurements of SPION aggregates in cell-free suspensions, to better quantify the influence of cellular uptake on SPION aggregates and ultimately its influence on SAR. We find that in both the intra- and extracellular milieu, SPION aggregates are well-described by a quasifractal model, with most aggregates having fractal dimensions in the 1.6-2.2 range. Intracellular aggregates are found to be significantly larger than extracellular aggregates and are commonly composed of more than 10(3) primary SPION particles (hence they are "superaggregates"). By using high salt concentrations to generate such superaggregates and measuring the SAR of suspensions, we confirm that it is the formation of superaggregates in the intracellular milieu that negatively impacts SAR, reducing it from above 200 W g(-1) Fe for aggregates composed of fewer than 50 primary particles to below 50 W g(-1) for superaggregates. While the underlying physical mechanism by which aggregation leads to reduction in SAR remains to be determined, the methods developed in this study provide insight into how cellular uptake influences the extent of SPION aggregation, and enable estimation of the

  14. Land use effects on phosphorus sequestration in soil aggregates in western Iran.

    PubMed

    Sheklabadi, M; Mahmoudzadeh, H; Mahboubi, A A; Gharabaghi, B; Ahrens, B

    2014-10-01

    Cultivating native lands may alter soil phosphorus (P) distribution and availability. The present study aimed to determine the distribution of P in soil aggregates for different long-term land management practices. The partitioned P in labile (L), Fe/Al-bound, Ca-bound, organic pools, and total P in four aggregate size fractions were determined for five land uses (forest, vineyard after 30 years, wetland, alfalfa, and wheat cultivated soil after 20 years). Both native land uses (forest and wetland) were distinguished by high and low amounts of large macro- and micro-aggregates, respectively, compared with disturbed soils (vineyard, alfalfa, and wheat soils). Labile P in large macro-aggregates were higher in native land use when compared with the other land uses, which led to increasing lability of P and accelerated water pollution. Soils under native conditions sequestered more Ca-bound P in large macro-aggregates than the soils in disturbed conditions. Conversion of native lands to agricultural land caused enhanced organic P storage in aggregates smaller than the 2 mm from 31.0 to 54.3%. Soils under forest had 30% total P more than the vineyard for the aggregates >2 mm after 30 years land use change. However, the amount of P in smaller (<2 mm) sized aggregates was increased by 29% for the vineyard when compared with the forest. The P storage as bound Ca particles for the large macro-aggregates had negative correlation with the micro-aggregates. PMID:24957658

  15. [Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil].

    PubMed

    An, Yan; Ji, Qiang; Zhao, Shi-xiang; Wang, Xu-dong

    2016-01-15

    Applying biochar to soil has been considered to be one of the important practices in improving soil properties and increasing carbon sequestration. In order to investigate the effects of biochar application on soil aggregates distribution and its organic matter content and soil moisture constant in different size aggregates, various particle-size fractions of soil aggregates were obtained with the dry-screening method. The results showed that, compared to the treatment without biochar (CK), the application of biochar reduced the mass content of 5-8 mm and < 0.25 mm soil aggregates at 0-10 cm soil horizon, while increased the content of 1-2 mm and 2-5 mm soil aggregates at this horizon, and the content of 1-2 mm aggregates significantly increased along with the rates of biochar application. The mean diameter of soil aggregates was reduced by biochar application at 0-10 cm soil horizon. However, the effect of biochar application on the mean diameter of soil aggregates at 10-20 cm soil horizon was not significant. Compared to CK, biochar application significantly increased soil organic carbon content in aggregates, especially in 1-2 mm aggregates which was increased by > 70% compared to CK. Both the water holding capacity and soil porosity were significantly increased by biochar application. Furthermore, the neutral biochar was more effective than alkaline biochar in increasing soil moisture. PMID:27078970

  16. Changes in soil aggregation and dust emission potential in response to aeolian processes

    NASA Astrophysics Data System (ADS)

    swet, Nitzan; Katra, Itzhak

    2016-04-01

    Aeolian (wind) dust emission has high environmental and socioeconomic significances due to loss of natural soil and air pollution. Dust emission involves complex interactions between the airflow and the soil surface. The soil aggregates were dust particles are held determine the topsoil erodibility in aeolian erosion. Although the key role of soil aggregation in dust emission mechanisms, information on changes in soil aggregate size distribution (ASD) due to aeolian erosion is lucking. This study is focused on quantitative ASD analyses before and after aeolian processes (saltation). Aeolian experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that saltation rates and PM emissions depend on the initial ASD and shear velocity. In all initial soil conditions, the content of aggregates at saltator-sized 63-250 μm was increased by 10-34 % following erosion of macro-aggregates > 500 μm. It revealed that the aggregate-saltator production increases with the shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight the dynamics in soil aggregation in response to aeolian transport and therefore its significance for determining the mechanisms of dust emission from soil aggregates.

  17. Aggregation Pattern Transitions by Slightly Varying the Attractive/Repulsive Function

    PubMed Central

    Cheng, Zhao; Zhang, Hai-Tao; Chen, Michael Z. Q.; Zhou, Tao; Valeyev, Najl V.

    2011-01-01

    Among collective behaviors of biological swarms and flocks, the attractive/repulsive (A/R) functional links between particles play an important role. By slightly changing the cutoff distance of the A/R function, a drastic transition between two distinct aggregation patterns is observed. More precisely, a large cutoff distance yields a liquid-like aggregation pattern where the particle density decreases monotonously from the inside to the outwards within each aggregated cluster. Conversely, a small cutoff distance produces a crystal-like aggregation pattern where the distance between each pair of neighboring particles remains constant. Significantly, there is an obvious spinodal in the variance curve of the inter-particle distances along the increasing cutoff distances, implying a legible transition pattern between the liquid-like and crystal-like aggregations. This work bridges the aggregation phenomena of physical particles and swarming of organisms in nature upon revealing some common mechanism behind them by slightly varying their inter-individual attractive/repulsive functions, and may find its potential engineering applications, for example, in the formation design of multi-robot systems and unmanned aerial vehicles (UAVs). PMID:21799776

  18. Fractal Aggregates in Tennis Ball Systems

    ERIC Educational Resources Information Center

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  19. Rab7 induces clearance of α-synuclein aggregates.

    PubMed

    Dinter, Elisabeth; Saridaki, Theodora; Nippold, Markus; Plum, Sarah; Diederichs, Leonie; Komnig, Daniel; Fensky, Luisa; May, Caroline; Marcus, Katrin; Voigt, Aaron; Schulz, Jörg B; Falkenburger, Björn H

    2016-09-01

    Parkinson's disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. Aggregates are degraded by the autophago-lysosomal pathway. Since Rab7 has been shown to regulate trafficking of late endosomes and autophagosomes, we hypothesized that over-expressing Rab7 might be beneficial in Parkinson's disease. To test this hypothesis, we expressed the pathogenic A53T mutant of α-synuclein in HEK293 cells and Drosophila melanogaster. In HEK293 cells, EGFP-Rab7-decorated vesicles contain α-synuclein. Rab7 over-expression reduced the percentage of cells with α-synuclein particles and the amount of α-synuclein protein. Time-lapse microscopy confirmed that particles frequently disappeared with Rab7 over-expression. Clearance of α-synuclein is explained by the increased occurrence of acidified α-synuclein vesicles with Rab7 over-expression, presumably representing autolysosomes. Rab7 over-expression reduced apoptosis and the percentage of dead cells in trypan blue staining. In the fly model, Rab7 rescued the locomotor deficit induced by neuronal expression of A53T-α-synuclein. These beneficial effects were not produced by Rab7 missense mutations causing Charcot Marie Tooth neuropathy, or by the related GTPases Rab5, Rab9, or Rab23. Using mass spectrometry, we identified Rab7 in neuromelanin granules purified from human substantia nigra, indicating that Rab7 might be involved in the biogenesis of these possibly protective, autophagosome-like organelles in dopaminergic neurons. Taken together, Rab7 increased the clearance of α-synuclein aggregates, reduced cell death, and rescued the phenotype in a fly model of Parkinson's disease. These findings indicate that Rab7 is rate-limiting for aggregate clearance, and that Rab7 activation may offer a therapeutic strategy for Parkinson's disease. Cells over-expressing aggregation-prone A53T alpha-synuclein develop cytoplasmic aggregates mimicking changes observed in

  20. Scaling in the diffusion limited aggregation model.

    PubMed

    Menshutin, Anton

    2012-01-01

    We present a self-consistent picture of diffusion limited aggregation (DLA) growth based on the assumption that the probability density P(r,N) for the next particle to be attached within the distance r to the center of the cluster is expressible in the scale-invariant form P[r/R{dep}(N)]. It follows from this assumption that there is no multiscaling issue in DLA and there is only a single fractal dimension D for all length scales. We check our assumption self-consistently by calculating the particle-density distribution with a measured P(r/R{dep}) function on an ensemble with 1000 clusters of 5×10{7} particles each. We also show that a nontrivial multiscaling function D(x) can be obtained only when small clusters (N<10 000) are used to calculate D(x). Hence, multiscaling is a finite-size effect and is not intrinsic to DLA. PMID:22304265

  1. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    PubMed

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust. PMID:16426748

  2. Aggregated Recommendation through Random Forests

    PubMed Central

    2014-01-01

    Aggregated recommendation refers to the process of suggesting one kind of items to a group of users. Compared to user-oriented or item-oriented approaches, it is more general and, therefore, more appropriate for cold-start recommendation. In this paper, we propose a random forest approach to create aggregated recommender systems. The approach is used to predict the rating of a group of users to a kind of items. In the preprocessing stage, we merge user, item, and rating information to construct an aggregated decision table, where rating information serves as the decision attribute. We also model the data conversion process corresponding to the new user, new item, and both new problems. In the training stage, a forest is built for the aggregated training set, where each leaf is assigned a distribution of discrete rating. In the testing stage, we present four predicting approaches to compute evaluation values based on the distribution of each tree. Experiments results on the well-known MovieLens dataset show that the aggregated approach maintains an acceptable level of accuracy. PMID:25180204

  3. Aggregated recommendation through random forests.

    PubMed

    Zhang, Heng-Ru; Min, Fan; He, Xu

    2014-01-01

    Aggregated recommendation refers to the process of suggesting one kind of items to a group of users. Compared to user-oriented or item-oriented approaches, it is more general and, therefore, more appropriate for cold-start recommendation. In this paper, we propose a random forest approach to create aggregated recommender systems. The approach is used to predict the rating of a group of users to a kind of items. In the preprocessing stage, we merge user, item, and rating information to construct an aggregated decision table, where rating information serves as the decision attribute. We also model the data conversion process corresponding to the new user, new item, and both new problems. In the training stage, a forest is built for the aggregated training set, where each leaf is assigned a distribution of discrete rating. In the testing stage, we present four predicting approaches to compute evaluation values based on the distribution of each tree. Experiments results on the well-known MovieLens dataset show that the aggregated approach maintains an acceptable level of accuracy. PMID:25180204

  4. Orientation specific deposition of mesoporous particles

    NASA Astrophysics Data System (ADS)

    Kjellman, Tomas; Bodén, Niklas; Wennerström, Hâkan; Edler, Karen J.; Alfredsson, Viveka

    2014-11-01

    We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface). A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  5. Glass/Jamming Transition in Colloidal Aggregation

    NASA Technical Reports Server (NTRS)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  6. Aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system

    NASA Astrophysics Data System (ADS)

    Mathieu, Jean-Baptiste; Martel, Sylvain

    2009-08-01

    A study of magnetic aggregation in the context of magnetic resonance imaging (MRI) based actuated targeting is proposed. MRI systems can induce displacement forces on magnetized particles as they flow through the blood vessels. Magnetic aggregation of the particles happens when they are placed within the magnetic field of the MRI system and can greatly influence the MRI steering dynamics of magnetic particles. In this paper, a review of the different parameters that can be used to tailor the size, geometry, stiffness, and density of magnetic aggregates is proposed. Then, magnetic aggregation experiments on a suspension of Fe3O4 microparticles ranging from 0.1 to 100 μm in diameter are described. The effects of particle concentration, flow rate, and magnetic field amplitude were evaluated. Field amplitudes of 1.5 mT, 0.4 T, and 1.5 T fields were applied without any magnetic steering gradients and caused aggregates that could sometimes exceed 1 mm in length. Since magnetic aggregates can reach higher magnetophoretic velocities than individual particles, large aggregates could be exploited in larger arteries with important blood flows. A few strategies are discussed to assist in the design of MRI steering experiments by enhancing the positive effects of magnetic aggregation over its negative effects.

  7. Aggregation operations for multiaspect fuzzy soft sets

    NASA Astrophysics Data System (ADS)

    Sulaiman, Nor Hashimah; Mohamad, Daud

    2015-10-01

    Multiaspect fuzzy soft set (MAFSS) is one of the generalized forms of fuzzy soft sets. In this paper, we introduce two types of aggregation operations for MAFSSs, namely the weighted arithmetic mean (WAM)-based MAFSS aggregation, and the ordered weighted aggregation (OWA)-based MAFSS aggregation. The applicability of the two MAFSS-aggregation operations is illustrated with numerical examples in group decision making.

  8. Towards a Dynamical Collision Model of Highly Porous Dust Aggregates

    NASA Astrophysics Data System (ADS)

    Güttler, Carsten; Krause, Maya; Geretshauser, Ralf; Speith, Roland; Blum, Jürgen

    2009-06-01

    In the recent years we have performed various experiments on the collision dynamics of highly porous dust aggregates and although we now have a comprehensive picture of the micromechanics of those aggregates, the macroscopic understanding is still lacking. We are therefore developing a mechanical model to describe dust aggregate collisions with macroscopic parameters like tensile strength, compressive strength and shear strength. For one well defined dust sample material, the tensile and compressive strength were measured in a static experiment and implemented in a Smoothed Particle Hydrodynamics (SPH) code. A laboratory experiment was designed to compare the laboratory results with the results of the SPH simulation. In this experiment, a mm-sized glass bead is dropped into a cm-sized dust aggregate with the previously measured strength parameters. We determine the deceleration of the glass bead by high-speed imaging and the compression of the dust aggregate by x-ray micro-tomography. The measured penetration depth, stopping time and compaction under the glass bead are utilized to calibrate and test the SPH code. We find that the statically measured compressive strength curve is only applicable if we adjust it to the dynamic situation with a ``softness'' parameter. After determining this parameter, the SPH code is capable of reproducing experimental results, which have not been used for the calibration before.

  9. Aggregation kinetics and colloidal stability of functionalized nanoparticles.

    PubMed

    Gambinossi, Filippo; Mylon, Steven E; Ferri, James K

    2015-08-01

    The functionalization of nanoparticles has primarily been used as a means to impart stability in nanoparticle suspensions. In most cases even the most advanced nanomaterials lose their function should suspensions aggregate and settle, but with the capping agents designed for specific solution chemistries, functionalized nanomaterials generally remain monodisperse in order to maintain their function. The importance of this cannot be underestimated in light of the growing use of functionalized nanomaterials for wide range of applications. Advanced functionalization schemes seek to exert fine control over suspension stability with small adjustments to a single, controllable variable. This review is specific to functionalized nanoparticles and highlights the synthesis and attachment of novel functionalization schemes whose design is meant to affect controllable aggregation. Some examples of these materials include stimulus responsive polymers for functionalization which rely on a bulk solution physicochemical threshold (temperature or pH) to transition from a stable (monodisperse) to aggregated state. Also discussed herein are the primary methods for measuring the kinetics of particle aggregation and theoretical descriptions of conventional and novel models which have demonstrated the most promise for the appropriate reduction of experimental data. Also highlighted are the additional factors that control nanoparticle stability such as the core composition, surface chemistry and solution condition. For completeness, a case study of gold nanoparticles functionalized using homologous block copolymers is discussed to demonstrate fine control over the aggregation state of this type of material. PMID:25150615

  10. Evaporation effects in elastocapillary aggregation

    NASA Astrophysics Data System (ADS)

    Vella, Dominic; Hadjittofis, Andreas; Singh, Kiran; Lister, John

    2015-11-01

    We consider the effect of evaporation on the aggregation of a number of elastic objects due to a liquid's surface tension. In particular, we consider an array of spring-block elements in which the gaps between blocks are filled by thin liquid films that evaporate during the course of an experiment. Using lubrication theory to account for the fluid flow within the gaps, we study the dynamics of aggregation. We find that a non-zero evaporation rate causes the elements to aggregate more quickly and, indeed, to contact within finite time. However, we also show that the number of elements within each cluster decreases as the evaporation rate increases. We explain these results quantitatively by comparison with the corresponding two-body problem and discuss their relevance for controlling pattern formation in carbon nanotube forests.

  11. Molecular Aggregation in Disodium Cromoglycate

    NASA Astrophysics Data System (ADS)

    Singh, Gautam; Agra-Kooijman, D.; Collings, P. J.; Kumar, Satyendra

    2012-02-01

    Details of molecular aggregation in the mesophases of the anti-asthmatic drug disodium cromoglycate (DSCG) have been studied using x-ray synchrotron scattering. The results show two reflections, one at wide angles corresponding to π-π stacking (3.32 å) of molecules, and the other at small angles which is perpendicular to the direction of molecular stacking and corresponds to the distance between the molecular aggregates. The latter varies from 35 - 41 å in the nematic (N) phase and 27 -- 32 å in the columnar (M) phase. The temperature evolution of the stack height, positional order correlations in the lateral direction, and orientation order parameter were determined in the N, M, and biphasic regions. The structure of the N and M phases and the nature of the molecular aggregation, together with their dependence on temperature and concentration, will be presented.

  12. Global kinetic analysis of seeded BSA aggregation.

    PubMed

    Sahin, Ziya; Demir, Yusuf Kemal; Kayser, Veysel

    2016-04-30

    Accelerated aggregation studies were conducted around the melting temperature (Tm) to elucidate the kinetics of seeded BSA aggregation. Aggregation was tracked by SEC-HPLC and intrinsic fluorescence spectroscopy. Time evolution of monomer, dimer and soluble aggregate concentrations were globally analysed to reliably deduce mechanistic details pertinent to the process. Results showed that BSA aggregated irreversibly through both sequential monomer addition and aggregate-aggregate interactions. Sequential monomer addition proceeded only via non-native monomers, starting to occur only by 1-2°C below the Tm. Aggregate-aggregate interactions were the dominant mechanism below the Tm due to an initial presence of small aggregates that acted as seeds. Aggregate-aggregate interactions were significant also above the Tm, particularly at later stages of aggregation when sequential monomer addition seemed to cease, leading in some cases to insoluble aggregate formation. The adherence (or non-thereof) of the mechanisms to Arrhenius kinetics were discussed alongside possible implications of seeding for biopharmaceutical shelf-life and spectroscopic data interpretation, the latter of which was found to often be overlooked in BSA aggregation studies. PMID:26970282

  13. Localization of Protein Aggregation in Escherichia coli Is Governed by Diffusion and Nucleoid Macromolecular Crowding Effect

    PubMed Central

    Coquel, Anne-Sophie; Jacob, Jean-Pascal; Primet, Mael; Demarez, Alice; Dimiccoli, Mariella; Julou, Thomas; Moisan, Lionel

    2013-01-01

    Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular

  14. Nanopore analysis of amyloid fibrils formed by lysozyme aggregation.

    PubMed

    Martyushenko, Nikolay; Bell, Nicholas A W; Lamboll, Robin D; Keyser, Ulrich F

    2015-07-21

    The measurement of single particle size distributions of amyloid fibrils is crucial for determining mechanisms of growth and toxicity. Nanopore sensing is an attractive solution for this problem since it gives information on aggregates' shapes with relatively high throughput for a single particle technology. In this paper we study the translocation of lysozyme fibrils through quartz glass nanopores. We demonstrate that, under appropriate salt and pH conditions, lysozyme fibrils translocate through bare quartz nanopores without causing significant clogging. This enables us to measure statistics on tens of thousands of translocations of lysozyme fibrils with the same nanopore and track their development over a time course of aggregation spanning 24 h. Analysis of our events shows that the statistics are consistent with a simple bulk conductivity model for the passage of rods with a fixed cross sectional area through a conical glass nanopore. PMID:25994201

  15. Environmentalism and natural aggregate mining

    USGS Publications Warehouse

    Drew, L.J.; Langer, W.H.; Sachs, J.S.

    2002-01-01

    Sustaining a developed economy and expanding a developing one require the use of large volumes of natural aggregate. Almost all human activity (commercial, recreational, or leisure) is transacted in or on facilities constructed from natural aggregate. In our urban and suburban worlds, we are almost totally dependent on supplies of water collected behind dams and transported through aqueducts made from concrete. Natural aggregate is essential to the facilities that produce energy-hydroelectric dams and coal-fired powerplants. Ironically, the utility created for mankind by the use of natural aggregate is rarely compared favorably with the environmental impacts of mining it. Instead, the empty quarries and pits are seen as large negative environmental consequences. At the root of this disassociation is the philosophy of environmentalism, which flavors our perceptions of the excavation, processing, and distribution of natural aggregate. The two end-member ideas in this philosophy are ecocentrism and anthropocentrism. Ecocentrism takes the position that the natural world is a organism whose arteries are the rivers-their flow must not be altered. The soil is another vital organ and must not be covered with concrete and asphalt. The motto of the ecocentrist is "man must live more lightly on the land." The anthropocentrist wants clean water and air and an uncluttered landscape for human use. Mining is allowed and even encouraged, but dust and noise from quarry and pit operations must be minimized. The large volume of truck traffic is viewed as a real menace to human life and should be regulated and isolated. The environmental problems that the producers of natural aggregate (crushed stone and sand and gravel) face today are mostly difficult social and political concerns associated with the large holes dug in the ground and the large volume of heavy truck traffic associated with quarry and pit operations. These concerns have increased in recent years as society's demand for

  16. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium.

    PubMed

    Steinberg, Susan L; Kluitenberg, Gerard J; Jones, Scott B; Daidzic, Nihad E; Reddi, Lakshmi N; Xiao, Ming; Tuller, Markus; Newman, Rebecca M; Or, Dani; Alexander, J Iwan D

    2005-09-01

    Baked ceramic aggregates (fritted clay, arcillite) have been used for plant research both on the ground and in microgravity. Optimal control of water and air within the root zone in any gravity environment depends on physical and hydraulic properties of the aggregate, which were evaluated for 0.25-1-mm and 1-2-mm particle size distributions. The maximum bulk densities obtained by any packing technique were 0.68 and 0.64 g cm-3 for 0.25-1-mm and 1-2-mm particles, respectively. Wettable porosity obtained by infiltration with water was approximately 65%, substantially lower than total porosity of approximately 74%. Aggregate of both particle sizes exhibited a bimodal pore size distribution consisting of inter-aggregate macropores and intra-aggregate micropores, with the transition from macro- to microporosity beginning at volumetric water content of approximately 36% to 39%. For inter-aggregate water contents that support optimal plant growth there is 45% change in water content that occurs over a relatively small matric suction range of 0-20 cm H2O for 0.25-1-mm and 0 to -10 cm H2O for 1-2-mm aggregate. Hysteresis is substantial between draining and wetting aggregate, which results in as much as a approximately 10% to 20% difference in volumetric water content for a given matric potential. Hydraulic conductivity was approximately an order of magnitude higher for 1-2-mm than for 0.25-1-mm aggregate until significant drainage of the inter-aggregate pore space occurred. The large change in water content for a relatively small change in matric potential suggests that significant differences in water retention may be observed in microgravity as compared to earth. PMID:16173159

  17. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L.; Kluitenberg, Gerard J.; Jones, Scott B.; Daidzic, Nihad E.; Reddi, Lakshmi N.; Xiao, Ming; Tuller, Markus; Newman, Rebecca M.; Or, Dani; Alexander, J. Iwan. D.

    2005-01-01

    Baked ceramic aggregates (fritted clay, arcillite) have been used for plant research both on the ground and in microgravity. Optimal control of water and air within the root zone in any gravity environment depends on physical and hydraulic properties of the aggregate, which were evaluated for 0.25-1-mm and 1-2-mm particle size distributions. The maximum bulk densities obtained by any packing technique were 0.68 and 0.64 g cm-3 for 0.25-1-mm and 1-2-mm particles, respectively. Wettable porosity obtained by infiltration with water was approximately 65%, substantially lower than total porosity of approximately 74%. Aggregate of both particle sizes exhibited a bimodal pore size distribution consisting of inter-aggregate macropores and intra-aggregate micropores, with the transition from macro- to microporosity beginning at volumetric water content of approximately 36% to 39%. For inter-aggregate water contents that support optimal plant growth there is 45% change in water content that occurs over a relatively small matric suction range of 0-20 cm H2O for 0.25-1-mm and 0 to -10 cm H2O for 1-2-mm aggregate. Hysteresis is substantial between draining and wetting aggregate, which results in as much as a approximately 10% to 20% difference in volumetric water content for a given matric potential. Hydraulic conductivity was approximately an order of magnitude higher for 1-2-mm than for 0.25-1-mm aggregate until significant drainage of the inter-aggregate pore space occurred. The large change in water content for a relatively small change in matric potential suggests that significant differences in water retention may be observed in microgravity as compared to earth.

  18. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater

    PubMed Central

    2009-01-01

    Background The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules) and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation) and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu). Results The montmorillonite-only system increased the degree of aggregation with salinity increase, as would be expected for suspended colloids whose dispersion-aggregation behavior is largely controlled by the surface electrostatic properties and van der Waals forces. When montmorillonite is combined with humic acid or chitin, the aggregation of montmorillonite was effectively inhibited. The surface interaction energy model calculations reveal that the steric repulsion, rather than the increase in electronegativity, is the primary cause for the inhibition of aggregation by the addition of humic acid or chitin. Conclusion These results help explain the range of dispersion-aggregation behaviors observed in natural river and estuarine systems. It is postulated that the composition of suspended particles, specifically the availability of steric polymers such as those contained in humic acid, determine whether the river suspension is rapidly aggregated and settled or remains dispersed in suspension when it encounters increasingly saline environments of estuaries and oceans. PMID:19166595

  19. A coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation

    NASA Astrophysics Data System (ADS)

    Ilie, Ioana M.; den Otter, Wouter K.; Briels, Wim J.

    2016-02-01

    Particles in simulations are traditionally endowed with fixed interactions. While this is appropriate for particles representing atoms or molecules, objects with significant internal dynamics—like sequences of amino acids or even an entire protein—are poorly modelled by invariable particles. We develop a highly coarse grained polymorph patchy particle with the ultimate aim of simulating proteins as chains of particles at the secondary structure level. Conformational changes, e.g., a transition between disordered and β-sheet states, are accommodated by internal coordinates that determine the shape and interaction characteristics of the particles. The internal coordinates, as well as the particle positions and orientations, are propagated by Brownian Dynamics in response to their local environment. As an example of the potential offered by polymorph particles, we model the amyloidogenic intrinsically disordered protein α-synuclein, involved in Parkinson's disease, as a single particle with two internal states. The simulations yield oligomers of particles in the disordered state and fibrils of particles in the "misfolded" cross-β-sheet state. The aggregation dynamics is complex, as aggregates can form by a direct nucleation-and-growth mechanism and by two-step-nucleation through conversions between the two cluster types. The aggregation dynamics is complex, with fibrils formed by direct nucleation-and-growth, by two-step-nucleation through the conversion of an oligomer and by auto-catalysis of this conversion.

  20. The importance of crop residue on soil aggregation and soil organic matter components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Above- and below-ground plant residues are the soil’s main sources of organic materials that bind soil particles together into aggregates and increase soil carbon storage. Serving to stabilize soil particles, soil organic matter assists in supplying plant available nutrients, increases water holding...

  1. Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation.

    PubMed

    Nicoud, Lucrèce; Lattuada, Marco; Lazzari, Stefano; Morbidelli, Massimo

    2015-10-01

    Gaining fundamental knowledge about diffusion in crowded environments is of great relevance in a variety of research fields, including reaction engineering, biology, pharmacy and colloid science. In this work, we determine the effective viscosity experienced by a spherical tracer particle immersed in a concentrated colloidal dispersion by means of Brownian dynamics simulations. We characterize how the effective viscosity increases from the solvent viscosity for small tracer particles to the macroscopic viscosity of the dispersion when large tracer particles are employed. Our results show that the crossover between these two regimes occurs at a tracer particle size comparable to the host particle size. In addition, it is found that data points obtained in various host dispersions collapse on one master curve when the normalized effective viscosity is plotted as a function of the ratio between the tracer particle size and the mean host particle size. In particular, this master curve was obtained by varying the volume fraction, the average size and the polydispersity of the host particle distribution. Finally, we extend these results to determine the size dependent effective viscosity experienced by a fractal cluster in a concentrated colloidal system undergoing aggregation. We include this scaling of the effective viscosity in classical aggregation kernels, and we quantify its impact on the kinetics of aggregate growth as well as on the shape of the aggregate distribution by means of population balance equation calculations. PMID:26339696

  2. Topology change due to particle heterogeneity in DLAs

    NASA Astrophysics Data System (ADS)

    Candia, Lucas Ismael; Carbonetti, Julio; Garcia, Guillermo Daniel; Sanchez-Varretti, Fabricio Orlando

    2015-05-01

    In the present paper, a variation of the widespread model of diffusion-limited aggregation (DLA) is presented. Unlike the traditional DLA model, where particles are attached to the aggregate whenever they touch it, we here restrict attachment by reducing the number of available bonds of the particles. This subtle change in the model changes the topological properties of the resulting aggregate. By using a binary mixture of particles, with different coordination number, the fractal dimension (df), the spectral dimension (ds) and the random walk dimension (dw) are studied as a function of particle-type ratio. The behavior of the system shows non-negligible deviation from the traditional model.

  3. Diffusion limited aggregation. The role of surface diffusion

    NASA Astrophysics Data System (ADS)

    García-Ruiz, Juan M.; Otálora, Fermín

    1991-11-01

    We present a growth model in which the hitting particles are able to diffuse to more stable growth sites in the perimeter of a cluster growing by diffusion limited aggregation. By tuning the diffusion path Ls, the morphological output - from disordered fractal to perfect single crystals - can be controlled. Instabilities appear when the mean length of the crystal faces Lf are greater than 2 Ls.

  4. Investigating nanoparticle aggregation dynamics in an aqueous magnetic fluid by light scattering anisotropy

    NASA Astrophysics Data System (ADS)

    Chicea, Dan

    2010-05-01

    Light scattering on particles having the diameter comparable with the wavelength is accurately described by the Mie theory and the light scattering anisotropy can conveniently be described by the one parameter Henyey Greenstein phase function. An aqueous suspension containing magnetite nanoparticles was the target of a coherent light scattering experiment. By fitting the scattering phase function on the experimental data the scattering anisotropy parameter can be assessed. As the scattering parameter strongly depends of the scatterer size, the average particle diameter was thus estimated and particle aggregates presence was probed. This technique was used to investigate the nanoparticle aggregation dynamics and the results are presented in this work.

  5. Effects of size polydispersity on the extinction spectra of colloidal nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Ershov, Alexander E.; Isaev, Ivan L.; Semina, Polina N.; Markel, Vadim A.; Karpov, Sergei V.

    2012-01-01

    We investigate the effect of particle polydispersity on the optical extinction spectra of colloidal aggregates of spherical metallic (silver) nanoparticles, taking into account the realistic interparticle gaps caused by layers of stabilizing polymer adsorbed on the metal surface (adlayers). The spectra of computer-generated aggregates are computed using two different methods. The coupled-multipole method is used in the quasistatic approximation and the coupled-dipole method beyond the quasistatics. The latter approach is applicable if the interparticle gaps are sufficiently wide relative to the particle radii. Simulations are performed for two different particle size distribution functions (bimodal and Gaussian), varying the number of particles per aggregate, and different distribution functions of the interparticle gap width. The strong influence of the latter factor on the spectra is demonstrated and investigated in detail.

  6. Predictive model for diffusion-limited aggregation kinetics of nanocolloids under high concentration.

    PubMed

    Lattuada, Marco

    2012-01-12

    Smoluchowski's equation for the rate of aggregation of colloidal particles under diffusion-limited conditions has set the basis for the interpretation of kinetics of aggregation phenomena. Nevertheless, its use is limited to sufficiently dilute conditions. In this work we propose a correction to Smoluchowski's equation by using a result derived by Richards ( J. Phys. Chem. 1986 , 85 , 3520 ) within the framework of trapping theory. This corrected aggregation kernel, which accounts for concentration dependence effects, has been implemented in a population-balance equations scheme and used to model the aggregation kinetics of colloidal particles undergoing diffusion-limited aggregation under concentrated conditions (up to a particle volume fraction of 30%). The predictions of population balance calculations have been validated by means of Brownian dynamic simulations. It was found that the corrected kernel can very well reproduce the results from Brownian dynamic simulations for all concentration values investigated, and is also able to accurately predict the time required by a suspension to reach the gel point. On the other hand, classical Smoluchowski's theory substantially underpredicts the rate of aggregation as well as the onset of gelation, with deviations becoming progressively more severe as the particle volume fraction increases. PMID:22148884

  7. Mesoscale Simulation of Asphaltene Aggregation.

    PubMed

    Wang, Jiang; Ferguson, Andrew L

    2016-08-18

    Asphaltenes constitute a heavy aromatic crude oil fraction with a propensity to aggregate and precipitate out of solution during petroleum processing. Aggregation is thought to proceed according to the Yen-Mullins hierarchy, but the molecular mechanisms underlying mesoscopic assembly remain poorly understood. By combining coarse-grained molecular models parametrized using all-atom data with high-performance GPU hardware, we have performed molecular dynamics simulations of the aggregation of hundreds of asphaltenes over microsecond time scales. Our simulations reveal a hierarchical self-assembly mechanism consistent with the Yen-Mullins model, but the details are sensitive and depend on asphaltene chemistry and environment. At low concentrations asphaltenes exist predominantly as dispersed monomers. Upon increasing concentration, we first observe parallel stacking into 1D rod-like nanoaggregates, followed by the formation of clusters of nanoaggregates associated by offset, T-shaped, and edge-edge stacking. Asphaltenes possessing long aliphatic side chains cannot form nanoaggregate clusters due to steric repulsions between their aliphatic coronae. At very high concentrations, we observe a porous percolating network of rod-like nanoaggregates suspended in a sea of interpenetrating aliphatic side chains with a fractal dimension of ∼2. The lifetime of the rod-like aggregates is described by an exponential distribution reflecting a dynamic equilibrium between coagulation and fragmentation. PMID:27455391

  8. RAGG - R EPISODIC AGGREGATION PACKAGE

    EPA Science Inventory

    The RAGG package is an R implementation of the CMAQ episodic model aggregation method developed by Constella Group and the Environmental Protection Agency. RAGG is a tool to provide climatological seasonal and annual deposition of sulphur and nitrogen for multimedia management. ...

  9. Flocculation and aggregation in a microgravity environment (FAME)

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Suh, Kwang I.

    1994-01-01

    An experiment to study flocculation phenomena in the constrained microgravity environment of a space shuttle or space station is described. The small size and light weight experiment easily fits in a Spacelab Glovebox. Using an integrated fiber optic dynamic light scattering (DLS) system we obtain high precision particle size measurements from dispersions of colloidal particles within seconds, needs no onboard optical alignment, no index matching fluid, and offers sample mixing and shear melting capabilities to study aggregation (flocculation and coagulation) phenomena under both quiescent and controlled agitation conditions. The experimental system can easily be adapted for other microgravity experiments requiring the use of DLS. Preliminary results of ground-based study are reported.

  10. Gelation in Aerosols; Non-Mean-Field Aggregation and Kinetics

    NASA Technical Reports Server (NTRS)

    Sorensen, C. M.; Chakrabarti, A.

    2008-01-01

    Nature has many examples of systems of particles suspended in a fluid phase; colloids when in a liquid, aerosols when in a gas. These systems are inherently unstable since if the particles can come together, van der Waals forces will keep them together. In this work we studied the aggregation kinetics of particulate systems, most often aerosols. The emphasis of our work was to study dense systems and systems that gel since previous work had not considered these. Our work obtained a number of significant discoveries and results which are reported here.

  11. Optimizing off-lattice Diffusion-Limited Aggregation

    NASA Astrophysics Data System (ADS)

    Kuijpers, Kasper R.; de Martín, Lilian; van Ommen, J. Ruud

    2014-03-01

    We present a technique to improve the time scaling of Diffusion-Limited Aggregation simulations. The proposed method reduces the number of calculations by making an extensive use of the RAM memory to store information about the particles’ positions and distances. We have simulated clusters up to 5ṡ106 particles in 2D and up to 1ṡ106 particles in 3D and compared the calculation times with previous algorithms proposed in the literature. Our method scales t∝Np1.08, outperforming the current optimization techniques.

  12. An Aggregation Advisor for Ligand Discovery.

    PubMed

    Irwin, John J; Duan, Da; Torosyan, Hayarpi; Doak, Allison K; Ziebart, Kristin T; Sterling, Teague; Tumanian, Gurgen; Shoichet, Brian K

    2015-09-10

    Colloidal aggregation of organic molecules is the dominant mechanism for artifactual inhibition of proteins, and controls against it are widely deployed. Notwithstanding an increasingly detailed understanding of this phenomenon, a method to reliably predict aggregation has remained elusive. Correspondingly, active molecules that act via aggregation continue to be found in early discovery campaigns and remain common in the literature. Over the past decade, over 12 thousand aggregating organic molecules have been identified, potentially enabling a precedent-based approach to match known aggregators with new molecules that may be expected to aggregate and lead to artifacts. We investigate an approach that uses lipophilicity, affinity, and similarity to known aggregators to advise on the likelihood that a candidate compound is an aggregator. In prospective experimental testing, five of seven new molecules with Tanimoto coefficients (Tc's) between 0.95 and 0.99 to known aggregators aggregated at relevant concentrations. Ten of 19 with Tc's between 0.94 and 0.90 and three of seven with Tc's between 0.89 and 0.85 also aggregated. Another three of the predicted compounds aggregated at higher concentrations. This method finds that 61 827 or 5.1% of the ligands acting in the 0.1 to 10 μM range in the medicinal chemistry literature are at least 85% similar to a known aggregator with these physical properties and may aggregate at relevant concentrations. Intriguingly, only 0.73% of all drug-like commercially available compounds resemble the known aggregators, suggesting that colloidal aggregators are enriched in the literature. As a percentage of the literature, aggregator-like compounds have increased 9-fold since 1995, partly reflecting the advent of high-throughput and virtual screens against molecular targets. Emerging from this study is an aggregator advisor database and tool ( http://advisor.bkslab.org ), free to the community, that may help distinguish between

  13. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. PMID:25586667

  14. Effects of Ocean Acidification on the Ballast of Surface Aggregates Sinking through the Twilight Zone

    PubMed Central

    de Jesus Mendes, Pedro A.; Thomsen, Laurenz

    2012-01-01

    The dissolution of CaCO3 is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for simulation of aggregate settling, our results suggest that future pCO2 conditions can significantly change the ballast composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic communities, which rely on the vertical flow of carbon as primary source of energy. PMID:23272075

  15. Morphology and structure of photosensitive dye J-aggregates adsorbed on AgBr microcrystals grown in gelatin.

    PubMed

    Saijo, H; Shiojiri, M

    1998-07-15

    Though the cyanine dye J-aggregates carry the role to sense the exposing light in the silver halide photographic system, little research on the morphology of the aggregates in adsorption has been made with modern surface analytical methods. In this paper, we describe the size, epitaxy, multi-layered array formation, nucleation and preferential adsorption, and irregular distribution of population between particles and the segregation on a particle, of J-aggregates adsorbed on AgBr grown in gelatin. We employed cathodoluminescence microscopy, low energy high resolution scanning electron microscopy, and atomic force microscopy. Dye molecules aggregate together near the surface of AgBr and adsorb on the surface. The growth of adsorbed aggregates is controlled by the diffusion of dye molecules from the surrounding solution. The population of J-aggregates adsorbed on an AgBr particle varies from almost none to full coverage. Each aggregate is about (20-30) x (30-50) nm in size and is 2.1 nm thick for thiacarbocyanine with sodium ion, 1.04 nm for thiacarbocyanine with tosyl ion, and 0.5 nm for an oxacarbocyanine. The aggregates connect their longer edges to each other to form arrays, and the arrays build up multi-layered stacks. The arrays align parallel and segregate to form terraces. The longer edges of J-aggregates align along [210] on AgBr (100) or [632] on AgBr (111). PMID:9728883

  16. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region

    NASA Astrophysics Data System (ADS)

    Tang, F. K.; Cui, M.; Lu, Q.; Liu, Y. G.; Guo, H. Y.; Zhou, J. X.

    2015-08-01

    Changes in soil utilization significantly affect aggregate stability and aggregate-associated soil organic carbon (SOC). A field investigation and indoor analysis were conducted in order to study the soil aggregate stability and organic carbon distribution in the water-stable aggregates (WSA) of the bare land (BL), grassland (GL), shrubland (SL), and woodland (WL) in a typical karst gorge region. The results indicated that the BL, GL, SL, and WL were dominated by particles with sizes > 5 mm under dry sieving treatment, and that the soil aggregate contents of various sizes decreased as the particle size decreased. In addition, the BL, GL, SL, and WL were predominantly comprised of WSA < 0.25 mm under wet sieving treatment, and that the WSA contents initially increased, then decreased, and then increased again as the particle size decreased. Furthermore, at a soil depth of 0-60 cm, the mean weight diameter (MWD), geometrical mean diameter (GMD), and fractal dimensions (D) of the dry aggregates and water-stable aggregates in the different types of land were ranked, in descending order, as WL > GL > SL > BL. The contents of WSA > 0.25 mm, MWD and GMD increased significantly, in that order, and the percentage of aggregate destruction (PAD) and fractal dimensions decreased significantly as the soil aggregate stability improved. The results of this study indicated that, as the SOC contents increased after vegetation restoration, the average SOC content of WL was 2.35, 1.37, and 1.26 times greater than that in the BL, GL, and SL, respectively. The total SOC and SOC associated in WSA of various sizes were the highest at a soil depth of 0-20 cm. In addition, the SOC contents of the WSA increased as the soil aggregate sizes decreased. The SOC contents of the WSA < 0.25 mm were highest except in the bare land, and the SOC contents of the aggregates < 0.25 mm, which ranged from 18.85 to 41.08 %, comprised the majority of the total aggregate SOC contents. The woodland and

  17. Growth of volcanic ash aggregates in the presence of liquid water and ice: an experimental approach

    NASA Astrophysics Data System (ADS)

    Van Eaton, Alexa R.; Muirhead, James D.; Wilson, Colin J. N.; Cimarelli, Corrado

    2012-11-01

    Key processes influencing the aggregation of volcanic ash and hydrometeors are examined with an experimental method employing vibratory pan aggregation. Mechanisms of aggregation in the presence of hail and ice pellets, liquid water (≤30 wt%), and mixed water phases are investigated at temperatures of 18 and -20 °C. The experimentally generated aggregates, examined in hand sample, impregnated thin sections, SEM imagery, and X-ray microtomography, closely match natural examples from phreatomagmatic phases of the 27 ka Oruanui and 2010 Eyjafjallajökull eruptions. Laser diffraction particle size analysis of parent ash and aggregates is also used to calculate the first experimentally derived aggregation coefficients that account for changing liquid water contents and subzero temperatures. These indicate that dry conditions (<5-10 wt% liquid) promote strongly size selective collection of sub-63 μm particles into aggregates (given by aggregation coefficients >1). In contrast, liquid-saturated conditions (>15-20 wt% liquid) promote less size selective processes. Crystalline ice was also capable of preferentially selecting volcanic ash <31 μm under liquid-free conditions in a two-stage process of electrostatic attraction followed by ice sintering. However, this did not accumulate more than a monolayer of ash at the ice surface. These quantitative relationships may be used to predict the timescales and characteristics of aggregation, such as aggregate size spectra, densities, and constituent particle size characteristics, when the initial size distribution and water content of a volcanic cloud are known. The presence of an irregularly shaped, millimeter-scale vacuole at the center of natural aggregates was also replicated during interaction of ash and melting ice pellets, followed by sublimation. Fine-grained rims were formed by adding moist aggregates to a dry mixture of sub-31 μm ash, which adhered by electrostatic forces and sparse liquid bridges. From this, we

  18. Simulating aggregate dynamics in ocean biogeochemical models

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Burd, Adrian B.

    2015-04-01

    The dynamics of elements in the water column is complex, depending on multiple biological and physical processes operating at very different physical scales. Coagulation of particulate material is important for transforming particles and moving them in the water column. Mechanistic models of coagulation processes provide a means to predict these processes, help interpret observations, and provide insight into the processes occurring. However, most model applications have focused on describing simple marine systems and mechanisms. We argue that further model development, in close collaboration with field and experimental scientists, is required in order to extend the models to describe the large-scale elemental distributions and interactions being studied as part of GEOTRACES. Models that provide a fundamental description of trace element-particle interactions are required as are experimental tests of the mechanisms involved and the predictions arising from models. However, a comparison between simple and complicated models of aggregation and trace metal provides a means for understanding the implications of simplifying assumptions and providing guidance as to which simplifications are needed.

  19. Analysis of patterns formed by two-component diffusion limited aggregation.

    PubMed

    Postnikov, E B; Ryabov, A B; Loskutov, A

    2010-11-01

    We consider diffusion limited aggregation of particles of two different kinds. It is assumed that a particle of one kind may adhere only to another particle of the same kind. The particles aggregate on a linear substrate which consists of periodically or randomly placed particles of different kinds. We analyze the influence of initial patterns on the structure of growing clusters. It is shown that at small distances from the substrate, the cluster structures repeat initial patterns. However, starting from a critical distance the initial periodicity is abruptly lost, and the particle distribution tends to a random one. An approach describing the evolution of the number of branches is proposed. Our calculations show that the initial pattern can be detected only at the distance which is not larger than approximately one and a half of the characteristic pattern size. PMID:21230475

  20. PM10 emissions from aggregate fractions of an Entic Haplustoll under two contrasting tillage systems

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano J.; Aimar, Silvia B.; Buschiazzo, Daniel E.

    2015-12-01

    Tillage systems affect physical and chemical properties of soils modifying its aggregation. How changes of the aggregate size distribution affect the capacity of the soil to emit fine particulate matter (PM10) to the atmosphere during wind erosion processes, is a less investigated issue. In order to answer this question, PM10 emissions from an Entic Haplustoll submitted to 25 years of continuous conventional tillage (LC) and no-till (NT) were analyzed. Soil samples were sieved with a rotary sieve in order to determine the aggregate size distribution (fractions : <0.42 mm, 0.42-0.84 mm, 0.84-2 mm, 2-6.4 mm, 6.4-19.2 mm, and >19.2 mm), the dry aggregate stability (DAS) and the erodible fraction (EF). The organic matter contents (OM), the particle size composition and the PM10 emission of each aggregate fraction were also measured. Results showed that NT promoted OM accumulations in all aggregate fractions which favored DAS and soil aggregation. The <0.42 mm sized aggregates (27%) predominated in CT and the >19.2 mm (41.7%) in NT, while the proportion of the other aggregate fractions was similar in both tillage systems. As a consequence of the smaller proportion of the <0.42 mm aggregates, the erodible fraction was lower in NT (EF: 17.3%) than in CT (30.8%). PM10 emissions of each aggregate fraction (AE) decreased exponentially with increasing size of the fractions in both tillage systems, mainly as a consequence of the smaller size and higher specific surface. AE was higher in CT than in NT for all aggregate fractions, but the higher differences were found in the <0.42 mm aggregates (18 μg g-1 in CT vs 8 μg g-1 in NT). The PM10 emission of the whole soil was three times higher in CT than in NT, while the emission of the erodible fraction (EFE) was in CT four times higher than in NT. PM10 emissions of the <0.42 mm aggregates represented over 50% of SE and 90% of EFE. We concluded that NT reduced the capacity of soils of the semiarid Pampas to emit PM10 because it

  1. Synthesis of crystallographically oriented olivine aggregates using colloidal processing in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Koizumi, Sanae; Suzuki, Tohru S.; Sakka, Yoshio; Yabe, Kosuke; Hiraga, Takehiko

    2016-07-01

    This study develops a fabrication technique to obtain Fe-free and Fe-bearing (Fe:Mg = 1:9) olivine aggregates not only with high density and fine grain size but with crystallographic preferred orientation (CPO). A magnetic field (≤12 T) is applied to synthetic, fine-grained (~120 nm), olivine particles dispersed in solvent. The alignment of certain crystallographic axes of the particles with respect to a magnetic direction is anticipated due to magnetic anisotropy of olivine. The dispersed particles are gradually consolidated on a porous alumina mold cove