Zhang Pengjie
2010-09-10
The galaxy intrinsic alignment is a severe challenge to precision cosmic shear measurement. We propose self-calibrating the induced gravitational shear-galaxy intrinsic ellipticity correlation (the GI correlation) in weak lensing surveys with photometric redshift measurements. (1) We propose a method to extract the intrinsic ellipticity-galaxy density cross-correlation (I-g) from the galaxy ellipticity-density measurement in the same redshift bin. (2) We also find a generic scaling relation to convert the extracted I-g correlation to the necessary GI correlation. We perform a concept study under simplified conditions and demonstrate its capability to significantly reduce GI contamination. We discuss the impact of various complexities on the two key ingredients of the self-calibration technique, namely the method for extracting the I-g correlation and the scaling relation between the I-g and the GI correlation. We expect that none of them will likely be able to completely invalidate the proposed self-calibration technique.
NASA Astrophysics Data System (ADS)
Okumura, Teppei; Jing, Y. P.; Li, Cheng
2009-03-01
We investigate the orientation correlation of giant elliptical galaxies by measuring the intrinsic ellipticity correlation function of 83,773 luminous red galaxies (LRGs) at redshifts 0.16-0.47 from the Sloan Digital Sky Survey. We have accurately determined the correlation up to 30 h-1 Mpc. Luminosity dependence of the ellipticity correlation is also detected although the error bars are large, while no evidence is found for its redshift evolution between z = 0.2 and z = 0.4. Then we use a cosmological N-body simulation to examine misalignment between the central LRGs and their parent dark matter halos. Central and satellite galaxies are assigned to simulated halos by employing a halo occupation distribution model for the LRGs. The ellipticity correlation is predicted to have the same shape as, but an amplitude about four times higher than, our observation if the central LRGs are perfectly aligned with their host halos. This indicates that the central LRG galaxies are preferentially but not perfectly aligned with their host halos. With the assumption that there is a misalignment angle between a central LRG and its host halo which follows a Gaussian distribution with a zero mean and a width σθ, we obtain a tight constraint on the misalignment parameter, σθ = 35.4+4.0 -3.3 deg. This type of intrinsic ellipticity correlation, if not corrected, can lead to contamination at 5% level to the shear power spectrum in weak lensing surveys of limiting magnitude RAB = 24.5 if the source central galaxies follow the same misalignment distribution as the LRGs.
NASA Astrophysics Data System (ADS)
Okumura, Teppei; Jing, Y. P.
2009-03-01
We examine whether the gravitational shear-intrinsic ellipticity (GI) correlation function of the luminous red galaxies (LRGs) can be modeled with the distribution function of a misalignment angle advocated recently by Okumura et al. For this purpose, we have accurately measured the GI correlation for the LRGs in the Data Release 6 (DR6) of the Sloan Digital Sky Survey (SDSS), which confirms the results of Hirata et al. who used the DR4 data. By comparing the GI correlation functions in the simulation and in the observation, we find that the GI correlation can be modeled in the current ΛCDM model if the misalignment follows a Gaussian distribution with a zero mean and a typical misalignment angle σθ = 34.9+1.9 -2.1 degrees. We also find a correlation between the axis ratios and intrinsic alignments of LRGs. This effect should be taken into account in theoretical modeling of the GI and intrinsic ellipticity-ellipticity correlations for weak lensing surveys.
A halo model for intrinsic alignments of galaxy ellipticities
NASA Astrophysics Data System (ADS)
Schneider, Michael D.; Bridle, Sarah
2010-03-01
Correlations between intrinsic ellipticities of galaxies are a potentially important systematic error when constraining dark energy properties from weak gravitational lensing (cosmic shear) surveys. In the absence of perfectly known galaxy redshifts, some modelling of the galaxy intrinsic alignments is likely to be required to extract the lensing signal to sufficient accuracy. We present a new model based on the placement of galaxies into dark matter haloes. The central galaxy ellipticity follows the large-scale potential and, in the simplest case, the satellite galaxies point at the halo centre. The two-halo term is then dominated by the linear-alignment model and the one-halo term provides a motivated extension of intrinsic alignment models to small scales. We provide fitting formulae for the spatial projected source power spectra for both intrinsic-intrinsic (II) and gravitational-intrinsic (GI) correlations. We illustrate the potential impact of ignoring intrinsic alignments on cosmological parameter constraints from non-tomographic surveys, finding that σ8 could be underestimated by up to the size of the current 1σ error bar from cosmic shear if very small scales are included in the analysis. Finally, we highlight areas of interest for numerical simulations of dark matter clustering and galaxy formation that can further constrain the intrinsic alignment signal.
Intrinsic shapes of elliptical galaxy: NGC 1052 using modified prior
NASA Astrophysics Data System (ADS)
Kumar Singh, Arun; Chakraborty, D. K.
Determination of intrinsic shapes of the individual elliptical galaxies using photometry is an important problem because the number of galaxies with good photometry is many more than those with good kinematics. We determine the intrinsic shapes of the light distribution of elliptical galaxies by combining the profiles of photometric data from the literature with triaxial models. We use ensembles of models so that the shape estimates are largely model independent. We follow the methodology as described in Statler (1994) which is modified to suit our requirements. We find that short to long axial ratios at very small radii and at very large radii, and the absolute value of the triaxiality difference are the best constrained shape parameters. Using a flat prior, the shapes of elliptical galaxies are reported by Chakraborty et al (2008) and Singh & Chakraborty (2009). The flat prior of 20 galaxies are superimposed over EAC-Ph other to obtain the distribution. This distribution is regarded as a prior (a modified prior) and shapes of 20 galaxies are again recalculated by using such modified prior. We determine the intrinsic shapes of the elliptical galaxy NGC 1052 using modified prior should be more reliable. These results are compared with the previous estimates which are determined by using flat prior. The plot shows the intrinsic shapes of the NGC 1052 as a function of (q0,q∞) for two dimensional shapes and (q0,q∞, |Td|) for three dimensional shapes, where q0 and q∞(=q) are the short to long axial ratios at small and at large radii and |Td| is the absolute values of the triaxiality difference, defined as |Td|= |T∞ - T0|. The probability is shown in the dark gray region: darker is the region higher is the probability. We find that the galaxy NGC 1052 is flatter inside and flatter outside.
Intrinsic momentum transport in tokamaks with tilted elliptical flux surfaces
NASA Astrophysics Data System (ADS)
Ball, Justin; Parra, Felix; Barnes, Michael; Dorland, William; Hammett, Gregory; Rodrigues, Paulo; Loureiro, Nuno
2014-10-01
Recent work demonstrated that breaking the up-down symmetry of tokamaks removes a constraint limiting intrinsic momentum transport, and hence toroidal rotation, to be small. We show, through MHD analysis, that ellipticity is most effective at introducing up-down asymmetry throughout the plasma. Using GS2, a local δf gyrokinetic code that self-consistently calculates momentum transport, we simulate tokamaks with tilted elliptical poloidal cross-sections and a Shafranov shift. These simulations show both the magnitude and poloidal dependence of nonlinear momentum transport. The results are consistent with TCV experimental measurements and suggest that this mechanism can generate rotation with an Alfven Mach number of several percent in a tilted elliptical ITER-like machine. It appears that rotation generated with up-down asymmetry may be sufficient to stabilize the resistive wall mode in reactor-sized devices. J.R.B. and F.I.P. were partially supported by the RCUK Energy Programme (grant number EP/I501045) and the European Unions Horizon 2020 research and innovation programme.
Forward-backward elliptic anisotropy correlations in parton cascades
NASA Astrophysics Data System (ADS)
Han, L. X.; Ma, G. L.; Ma, Y. G.; Cai, X. Z.; Chen, J. H.; Zhang, S.; Zhong, C.
2011-04-01
A potential experimental probe, the forward-backward elliptic anisotropy correlation (CFB), has been proposed by Liao and Koch to distinguish the jet and true elliptic flow contribution to the measured elliptic flow (v2) in relativistic heavy-ion collisions. The jet and flow fluctuation contribution to elliptic flow is investigated within the framework of a multiphase transport model using the CFB probe. We find that the CFB correlation is remarkably different from, and about two times that, proposed by Liao and Koch. It originates from the correlation between fluctuation of forward and that of backward elliptic flow at a low transverse momentum, which is mainly caused by the initial correlation between fluctuation of forward and that of backward eccentricity. This results in an amendment of the CFB by a term related to the correlation between fluctuation of forward and that of backward elliptic flow. Our results suggest that a suitable rapidity gap for CFB correlation studies is about ±3.5.
Properties of Ellipticity Correlation with Atmospheric Structure From Gemini South
Asztalos, Stephen J.; de Vries, W.H.; Rosenberg, L.J; Treadway, T.; Burke, D.; Claver, C.; Saha, A.; Puxley, P.; /Gemini Observ., La Serena
2007-01-17
Cosmic shear holds great promise for a precision independent measurement of {Omega}{sub m}, the mass density of the universe relative to the critical density. The signal is expected to be weak, so a thorough understanding of systematic effects is crucial. An important systematic effect is the atmosphere: shear power introduced by the atmosphere is larger than the expected signal. Algorithms exist to extract the cosmic shear from the atmospheric component, though a measure of their success applied to a range of seeing conditions is lacking. To gain insight into atmospheric shear, Gemini South imaging in conjunction with ground condition and satellite wind data were obtained. We find that under good seeing conditions Point-Spread-Function (PSF) correlations persist well beyond the separation typical of high-latitude stars. Under these conditions, ellipticity residuals based on a simple PSF interpolation can be reduced to within a factor of a few of the shot-noise induced ellipticity floor. We also find that the ellipticity residuals are highly correlated with wind direction. Finally, we correct stellar shapes using a more sophisticated procedure and generate shear statistics from stars. Under all seeing conditions in our data set the residual correlations lie everywhere below the target signal level. For good seeing we find that the systematic error attributable to atmospheric turbulence is comparable in magnitude to the statistical error (shape noise) over angular scales relevant to present lensing surveys.
Properties of Ellipticity Correlation with Atmospheric Structure from Gemini South
Asztalos, S J; Treadway, T; de Vries, W H; Rosenberg, L J; Burke, D; Claver, C; Saha, A; Puxley, P
2006-12-21
Cosmic shear holds great promise for a precision independent measurement of {Omega}{sub m}, the mass density of the universe relative to the critical density. The signal is expected to be weak, so a thorough understanding of systematic effects is crucial. An important systematic effect is the atmosphere: shear power introduced by the atmosphere is larger than the expected signal. Algorithms exist to extract the cosmic shear from the atmospheric component, though a measure of their success applied to a range of seeing conditions is lacking. To gain insight into atmospheric shear, Gemini South imaging in conjunction with ground condition and satellite wind data were obtained. We find that under good seeing conditions Point-Spread-Function (PSF) correlations persist well beyond the separation typical of high-latitude stars. Under these conditions, ellipticity residuals based on a simple PSF interpolation can be reduced to within a factor of a few of the shot-noise induced ellipticity floor. We also find that the ellipticity residuals are highly correlated with wind direction. Finally, we correct stellar shapes using a more sophisticated procedure and generate shear statistics from stars. Under all seeing conditions in our data set the residual correlations lie everywhere below the target signal level. For good seeing we find that the systematic error attributable to atmospheric turbulence is comparable in magnitude to the statistical error (shape noise) over angular scales relevant to present lensing surveys.
Characterizing the intrinsic correlations of scale-free networks
NASA Astrophysics Data System (ADS)
de Brito, J. B.; Sampaio Filho, C. I. N.; Moreira, A. A.; Andrade, J. S.
2016-08-01
When studying topological or dynamical properties of random scale-free networks, it is tacitly assumed that degree-degree correlations are not present. However, simple constraints, such as the absence of multiple edges and self-loops, can give rise to intrinsic correlations in these structures. In the same way that Fermionic correlations in thermodynamic systems are relevant only in the limit of low temperature, the intrinsic correlations in scale-free networks are relevant only when the extreme values for the degrees grow faster than the square root of the network size. In this situation, these correlations can significantly affect the dependence of the average degree of the nearest neighbors of a given vertex on this vertices degree. Here, we introduce an analytical approach that is capable to predict the functional form of this property. Moreover, our results indicate that random scale-free network models are not self-averaging, that is, the second moment of their degree distribution may vary orders of magnitude among different realizations. Finally, we argue that the intrinsic correlations investigated here may have profound impact on the critical properties of random scale-free networks.
Intrinsic quantum correlations of weak coherent states for quantum communication
Sua Yongmeng; Scanlon, Erin; Beaulieu, Travis; Bollen, Viktor; Lee, Kim Fook
2011-03-15
Intrinsic quantum correlations of weak coherent states are observed between two parties through a novel detection scheme, which can be used as a supplement to the existence decoy-state Bennett-Brassard 1984 protocol and the differential phase-shift quantum key distribution (DPS-QKD) protocol. In a proof-of-principle experiment, we generate bipartite correlations of weak coherent states using weak local oscillator fields in two spatially separated balanced homodyne detections. We employ a nonlinearity of postmeasurement method to obtain the bipartite correlations from two single-field interferences at individual homodyne measurements. This scheme is then used to demonstrate bits correlations between two parties over a distance of 10 km through a transmission fiber. We believe that the scheme can add another physical layer of security to these protocols for quantum key distribution.
Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sNN=200 GeV
NASA Astrophysics Data System (ADS)
Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2010-03-01
This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δη|<2). Assuming that non-flow correlations are of the order that is observed in p+p collisions for long-range correlations (|Δη|>2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.
Clique topology reveals intrinsic geometric structure in neural correlations
Giusti, Chad; Pastalkova, Eva; Curto, Carina; Itskov, Vladimir
2015-01-01
Detecting meaningful structure in neural activity and connectivity data is challenging in the presence of hidden nonlinearities, where traditional eigenvalue-based methods may be misleading. We introduce a novel approach to matrix analysis, called clique topology, that extracts features of the data invariant under nonlinear monotone transformations. These features can be used to detect both random and geometric structure, and depend only on the relative ordering of matrix entries. We then analyzed the activity of pyramidal neurons in rat hippocampus, recorded while the animal was exploring a 2D environment, and confirmed that our method is able to detect geometric organization using only the intrinsic pattern of neural correlations. Remarkably, we found similar results during nonspatial behaviors such as wheel running and rapid eye movement (REM) sleep. This suggests that the geometric structure of correlations is shaped by the underlying hippocampal circuits and is not merely a consequence of position coding. We propose that clique topology is a powerful new tool for matrix analysis in biological settings, where the relationship of observed quantities to more meaningful variables is often nonlinear and unknown. PMID:26487684
Visual representations are dominated by intrinsic fluctuations correlated between areas.
Henriksson, Linda; Khaligh-Razavi, Seyed-Mahdi; Kay, Kendrick; Kriegeskorte, Nikolaus
2015-07-01
Intrinsic cortical dynamics are thought to underlie trial-to-trial variability of visually evoked responses in animal models. Understanding their function in the context of sensory processing and representation is a major current challenge. Here we report that intrinsic cortical dynamics strongly affect the representational geometry of a brain region, as reflected in response-pattern dissimilarities, and exaggerate the similarity of representations between brain regions. We characterized the representations in several human visual areas by representational dissimilarity matrices (RDMs) constructed from fMRI response-patterns for natural image stimuli. The RDMs of different visual areas were highly similar when the response-patterns were estimated on the basis of the same trials (sharing intrinsic cortical dynamics), and quite distinct when patterns were estimated on the basis of separate trials (sharing only the stimulus-driven component). We show that the greater similarity of the representational geometries can be explained by coherent fluctuations of regional-mean activation within visual cortex, reflecting intrinsic dynamics. Using separate trials to study stimulus-driven representations revealed clearer distinctions between the representational geometries: a Gabor wavelet pyramid model explained representational geometry in visual areas V1-3 and a categorical animate-inanimate model in the object-responsive lateral occipital cortex. PMID:25896934
Visual representations are dominated by intrinsic fluctuations correlated between areas
Henriksson, Linda; Khaligh-Razavi, Seyed-Mahdi; Kay, Kendrick; Kriegeskorte, Nikolaus
2015-01-01
Intrinsic cortical dynamics are thought to underlie trial-to-trial variability of visually evoked responses in animal models. Understanding their function in the context of sensory processing and representation is a major current challenge. Here we report that intrinsic cortical dynamics strongly affect the representational geometry of a brain region, as reflected in response-pattern dissimilarities, and exaggerate the similarity of representations between brain regions. We characterized the representations in several human visual areas by representational dissimilarity matrices (RDMs) constructed from fMRI response-patterns for natural image stimuli. The RDMs of different visual areas were highly similar when the response-patterns were estimated on the basis of the same trials (sharing intrinsic cortical dynamics), and quite distinct when patterns were estimated on the basis of separate trials (sharing only the stimulus-driven component). We show that the greater similarity of the representational geometries can be explained by coherent fluctuations of regional-mean activation within visual cortex, reflecting intrinsic dynamics. Using separate trials to study stimulus-driven representations revealed clearer distinctions between the representational geometries: a Gabor wavelet pyramid model explained representational geometry in visual areas V1–3 and a categorical animate–inanimate model in the object-responsive lateral occipital cortex. PMID:25896934
Modelling the impact of intrinsic size and luminosity correlations on magnification estimation
NASA Astrophysics Data System (ADS)
Ciarlariello, Sandro; Crittenden, Robert
2016-08-01
Spatial correlations of the observed sizes and luminosities of galaxies can be used to estimate the magnification that arises through weak gravitational lensing. However, the intrinsic properties of galaxies can be similarly correlated through local physical effects, and these present a possible contamination to the weak lensing estimation. In an earlier paper (Ciarlariello et al. 2015) we modelled the intrinsic size correlations using the halo model, assuming the galaxy sizes reflect the mass in the associated halo. Here we extend this work to consider galaxy magnitudes and show that these may be even more affected by intrinsic correlations than galaxy sizes, making this a bigger systematic for measurements of the weak lensing signal. We also quantify how these intrinsic correlations are affected by sample selection criteria based on sizes and magnitudes.
Functional correlations of respiratory syncytial virus proteins to intrinsic disorder.
Whelan, Jillian N; Reddy, Krishna D; Uversky, Vladimir N; Teng, Michael N
2016-04-26
Protein intrinsic disorder is an important characteristic demonstrated by the absence of higher order structure, and is commonly detected in multifunctional proteins encoded by RNA viruses. Intrinsically disordered regions (IDRs) of proteins exhibit high flexibility and solvent accessibility, which permit several distinct protein functions, including but not limited to binding of multiple partners and accessibility for post-translational modifications. IDR-containing viral proteins can therefore execute various functional roles to enable productive viral replication. Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. In this study, we performed a comprehensive evaluation of predicted intrinsic disorder of the RSV proteome to better understand the functional role of RSV protein IDRs. We included 27 RSV strains to sample major RSV subtypes and genotypes, as well as geographic and temporal isolate differences. Several types of disorder predictions were applied to the RSV proteome, including per-residue (PONDR®-FIT and PONDR® VL-XT), binary (CH, CDF, CH-CDF), and disorder-based interactions (ANCHOR and MoRFpred). We classified RSV IDRs by size, frequency and function. Finally, we determined the functional implications of RSV IDRs by mapping predicted IDRs to known functional domains of each protein. Identification of RSV IDRs within functional domains improves our understanding of RSV pathogenesis in addition to providing potential therapeutic targets. Furthermore, this approach can be applied to other NNS viruses that encode essential multifunctional proteins for the elucidation of viral protein regions that can be manipulated for attenuation of viral replication. PMID:27062995
A correlation test of the intrinsic interpretation of QSO absorption redshifts
NASA Technical Reports Server (NTRS)
Opher, R.
1975-01-01
It is noted that the general intrinsic interpretation of QSO absorption redshifts predicts a high probability of clustering for the expulsion velocities of clouds ejected from a QSO core and that a correlation function has been defined which depends on the probability of clustering of three or more expulsion velocities. A test of this correlation is formulated which utilizes data on pairs of QSOs with similar emission redshifts and at least three well established absorption redshifts with corresponding expulsion velocities greater than 0.02c. It is shown that the correlation should be positive (maximum value +100%) if the absorption systems are intrinsic and correlated, zero if there is no physical connection among these systems, and negative if a strong anticorrelation exists or QSOs tend to eject one or two clouds at well separated characteristic velocities. Data on five QSOs are analyzed, and large positive values are obtained for the correlations.
An analysis of the intrinsic cross-correlations between API and meteorological elements using DPCCA
NASA Astrophysics Data System (ADS)
Shen, Chen-hua; Li, Cao-ling
2016-03-01
In order to reveal the intrinsic cross-correlations between air pollution index (API) records and synchronously meteorological elements data, the detrended partial cross-correlation (DPCC) coefficients are analyzed using a detrended partial cross-correlation analysis (DPCCA). DPCC coefficients for different spatial locations and seasons are calculated and compared. The results show that DPCCA can uncover intrinsic cross-correlations between API and meteorological elements, and most of their interactional mechanisms can be explained. DPCC coefficients are either positive or negative, and vary with spatial locations and seasons, with consistently interactional mechanisms. More remarkable, we find that detrended cross-correlation analysis can present the cross-correlations between the fluctuations in two nonstationary time series, but this cross-correlation does not always fully reflect the interactional mechanism for the original time series. Despite this, DPCCA is recommended as a comparatively reliable method for revealing intrinsic cross-correlations between API and meteorological elements, and it can also be useful for our understanding of their interactional mechanisms.
NASA Astrophysics Data System (ADS)
Shahmansouri, M.; Misra, A. P.
2016-07-01
The dispersion properties of elliptically polarized electromagnetic waves in a magnetized electron-positron-pair (EP-pair) plasma are studied with the effects of particle dispersion associated with the Bohm potential, the Fermi degenerate pressure, and the exchange-correlation force. Two possible modes of the extraordinary or X wave, modified by these quantum effects, are identified and their propagation characteristics are investigated numerically. It is shown that the upper-hybrid frequency and the cutoff and resonance frequencies are no longer constants but are dispersive due to these quantum effects. It is found that the particle dispersion and the exchange-correlation force can have different dominating roles on each other depending on whether the X waves are of short or long wavelengths (in comparison with the Fermi Debye length). The present investigation should be useful for understanding the collective behaviors of EP plasma oscillations and the propagation of extraordinary waves in magnetized dense EP-pair plasmas.
Systematic differences between the field and cluster elliptical galaxies
NASA Technical Reports Server (NTRS)
De Carvalho, R. R.; Djorgovski, S.
1992-01-01
Multivariate statistical techniques and fundamental plane fits are used here to study possible systematic differences between field ellipticals (FEs) and cluster ellipticals (CEs). The FEs show more intrinsic scatter in their properties, especially when stellar population variables are included. Pairwise correlations for the two samples are different; the correlations are systematically better for the cluster sample, meaning that ellipticals in the two samples populate their fundamental planes in different ways. Bivariate correlations are different for the two samples, implying that they have different fundamental planes. This is especially true for the correlations which include the population variables Mg2 and (B-V), which are sensitive both to the enrichment history and the storm formation history.
NASA Astrophysics Data System (ADS)
Liu, Z. Q.; Zhang, Z. F.
2013-12-01
Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels.
Goh, Gerard Kian-Meng; Dunker, A Keith; Uversky, Vladimir N
2016-05-24
Computational analyses revealed correlations between the intrinsic disorder propensity of shell proteins and case fatality rates (CFRs) among Flaviviruses and within at least two Flavivirus species, such as tick-borne encephalitis virus (TBEV) and dengue virus (DENV). The shell proteins analyzed in this study are capsid (C) and membrane (PrM, Pr, and M) proteins. The highest correlations can be found when regression analyses were conducted using Pr (Flavivirus: r(2) = 0.78, p < 0.01) or M (Flavivirus: r(2) = 0.91, p < 0.01) as an independent variable with C and CFR as co-explanatory and dependent variables, respectively. Interestingly, while predicted intrinsic disorder levels (PIDs) of both C and M are positively correlated with the virulence, the PIDs of Pr and CFR are negatively correlated. This is likely due to the fact that the Pr portion of PrM plays various roles in protecting the virion from damage, whereas M and C are assisted by greater potential in binding promiscuity as a result of greater disorder. The C protein of yellow fever virus (YFV), which is the most virulent virus in the sample, has the highest PID levels, whereas the second most virulent TBEV FE subtype has the second highest PID score due to its C protein, and the least virulent West Nile virus (WNV) has the least disordered C protein. This knowledge can be used while working on the development and identification of attenuated strains for vaccine. Curiously, unlike Flaviviruses, a disordered outer shell was described for hepatitis C virus (HCV), human immunodeficiency virus (HIV), and human simplex virus 2 (HSV-2), which currently have no effective vaccine. PMID:27102744
Lootvoet, Amélie Christelle; Philippon, Justine; Bessa-Gomes, Carmen
2015-01-01
Behavioral traits are likely to influence species vulnerability to anthropogenic threats and in consequence, their risk of extinction. Several studies have addressed this question and have highlighted a correlation between reproductive strategies and different viability proxies, such as introduction success and local extinction risk. Yet, very few studies have investigated the effective impact of social behaviour, and evidence regarding global extinction risk remains scant. Here we examined the effects of three main behavioral factors: the group size, the social and reproductive system, and the strength of sexual selection on global extinction risk. Using Primates as biological model, we performed comparative analysis on 93 species. The conservation status as described by the IUCN Red List was considered as a proxy for extinction risk. In addition, we added previously identified intrinsic factors of vulnerability to extinction, and a measure of the strength of the human impact for each species, described by the human footprint. Our analysis highlighted a significant effect of two of the three studied behavioral traits, group size and social and reproductive system. Extinction risk is negatively correlated with mean group size, which may be due to an Allee effect resulting from the difficulties for solitary and monogamous species to find a partner at low densities. Our results also indicate that species with a flexible mating system are less vulnerable. Taking into account these behavioral variables is thus of high importance when establishing conservation plans, particularly when assessing species relative vulnerability. PMID:26444966
Lootvoet, Amélie Christelle; Philippon, Justine; Bessa-Gomes, Carmen
2015-01-01
Behavioral traits are likely to influence species vulnerability to anthropogenic threats and in consequence, their risk of extinction. Several studies have addressed this question and have highlighted a correlation between reproductive strategies and different viability proxies, such as introduction success and local extinction risk. Yet, very few studies have investigated the effective impact of social behaviour, and evidence regarding global extinction risk remains scant. Here we examined the effects of three main behavioral factors: the group size, the social and reproductive system, and the strength of sexual selection on global extinction risk. Using Primates as biological model, we performed comparative analysis on 93 species. The conservation status as described by the IUCN Red List was considered as a proxy for extinction risk. In addition, we added previously identified intrinsic factors of vulnerability to extinction, and a measure of the strength of the human impact for each species, described by the human footprint. Our analysis highlighted a significant effect of two of the three studied behavioral traits, group size and social and reproductive system. Extinction risk is negatively correlated with mean group size, which may be due to an Allee effect resulting from the difficulties for solitary and monogamous species to find a partner at low densities. Our results also indicate that species with a flexible mating system are less vulnerable. Taking into account these behavioral variables is thus of high importance when establishing conservation plans, particularly when assessing species relative vulnerability. PMID:26444966
Testing the tidal alignment model of galaxy intrinsic alignment
Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu
2011-05-01
Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.
Dainotti, Maria Giovanna; Petrosian, Vahe'; Singal, Jack; Ostrowski, Michal E-mail: vahep@stanford.edu E-mail: dainotti@oa.uj.edu.pl
2013-09-10
Gamma-ray bursts (GRBs), which have been observed up to redshifts z Almost-Equal-To 9.5, can be good probes of the early universe and have the potential to test cosmological models. Dainotti's analysis of GRB Swift afterglow light curves with known redshifts and a definite X-ray plateau shows an anti-correlation between the rest-frame time when the plateau ends (the plateau end time) and the calculated luminosity at that time (or approximately an anti-correlation between plateau duration and luminosity). Here, we present an update of this correlation with a larger data sample of 101 GRBs with good light curves. Since some of this correlation could result from the redshift dependences of these intrinsic parameters, namely, their cosmological evolution, we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic and describe how we recover it and how this can be used to constrain physical models of the plateau emission, the origin of which is still unknown. The present result could help to clarify the debated nature of the plateau emission.
NASA Astrophysics Data System (ADS)
Wang, Fei; Maimaitiyiming-Tusun; Parouke-Paerhati; Ahmad-Abliz
2015-09-01
The influence of intrinsic decoherence on various correlations and dense coding in a model which consists of two identical superconducting charge qubits coupled by a fixed capacitor is investigated. The results show that, despite the intrinsic decoherence, the correlations as well as the dense coding channel capacity can be effectively increased via the combination of system parameters, i.e., the mutual coupling energy between the two charge qubits is larger than the Josephson energy of the qubit. The bigger the difference between them is, the better the effect is. Project supported by the Project to Develop Outstanding Young Scientific Talents of China (Grant No. 2013711019), the Natural Science Foundation of Xinjiang Province, China (Grant No. 2012211A052), the Foundation for Key Program of Ministry of Education of China (Grant No. 212193), and the Innovative Foundation for Graduate Students Granted by the Key Subjects of Theoretical Physics of Xinjiang Province, China (Grant No. LLWLL201301).
The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation.
Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin
2014-01-01
Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one's competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI). We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: after verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn. PMID:25278834
NASA Astrophysics Data System (ADS)
Ray, Santosh Kumar; Panigrahi, Durga Charan
2015-10-01
The paper describes a new electro-chemical method called wet oxidation potential technique for determining the susceptibility of coal to spontaneous combustion. Altogether 78 coal samples collected from thirteen different mining companies spreading over most of the Indian coalfields have been used for this experimental investigation. Experiments have also been carried out for proximate and ultimate analyses of coal. Susceptibility index obtained from wet oxidation potential was correlated with intrinsic parameters of coal. It has been found that susceptibility index bears a good correlation with moisture content, volatile matter, oxygen, hydrogen and carbon content of coal.
NASA Astrophysics Data System (ADS)
Schirò, Giorgio; Fichou, Yann; Gallat, Francois-Xavier; Wood, Kathleen; Gabel, Frank; Moulin, Martine; Härtlein, Michael; Heyden, Matthias; Colletier, Jacques-Philippe; Orecchini, Andrea; Paciaroni, Alessandro; Wuttke, Joachim; Tobias, Douglas J.; Weik, Martin
2015-03-01
Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity.
Schirò, Giorgio; Fichou, Yann; Gallat, Francois-Xavier; Wood, Kathleen; Gabel, Frank; Moulin, Martine; Härtlein, Michael; Heyden, Matthias; Colletier, Jacques-Philippe; Orecchini, Andrea; Paciaroni, Alessandro; Wuttke, Joachim; Tobias, Douglas J.; Weik, Martin
2015-01-01
Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity. PMID:25774711
Short-range correlations in carbon-12, oxygen-16, and neon-20: Intrinsic properties
NASA Technical Reports Server (NTRS)
Braley, R. C.; Ford, W. F.; Becker, R. L.; Patterson, M. R.
1972-01-01
The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used.
NASA Astrophysics Data System (ADS)
Lin, Fan-Chi; Tsai, Victor C.; Schmandt, Brandon
2014-08-01
We present a new 3-D seismic model of the western United States crust derived from a joint inversion of Rayleigh-wave phase velocity and ellipticity measurements using periods from 8 to 100 s. Improved constraints on upper-crustal structure result from use of short-period Rayleigh-wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios, measurements determined using multicomponent ambient noise cross-correlations. To retain the amplitude ratio information between vertical and horizontal components, for each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components. For each station pair, amplitude measurements between cross-correlations of different components (radial-radial, radial-vertical, vertical-radial and vertical-vertical) are then used to determine the Rayleigh-wave H/V ratios at the two station locations. We use all EarthScope/USArray Tranportable Array data available between 2007 January and 2011 June to determine the Rayleigh-wave H/V ratios and their uncertainties at all station locations and construct new Rayleigh-wave H/V ratio maps in the western United States between periods of 8 and 24 s. Combined with previous longer period earthquake Rayleigh-wave H/V ratio measurements and Rayleigh-wave phase velocity measurements from both ambient noise and earthquakes, we invert for a new 3-D crustal and upper-mantle model in the western United States. Correlation between the inverted model and known geological features at all depths suggests good resolution in five crustal layers. Use of short-period Rayleigh-wave H/V ratio measurements based on noise cross-correlation enables resolution of distinct near surface features such as the Columbia River Basalt flows, which overlie a thick sedimentary basin.
Attentional performance is correlated with the local regional efficiency of intrinsic brain networks
Xu, Junhai; Yin, Xuntao; Ge, Haitao; Han, Yan; Pang, Zengchang; Tang, Yuchun; Liu, Baolin; Liu, Shuwei
2015-01-01
Attention is a crucial brain function for human beings. Using neuropsychological paradigms and task-based functional brain imaging, previous studies have indicated that widely distributed brain regions are engaged in three distinct attention subsystems: alerting, orienting and executive control (EC). Here, we explored the potential contribution of spontaneous brain activity to attention by examining whether resting-state activity could account for individual differences of the attentional performance in normal individuals. The resting-state functional images and behavioral data from attention network test (ANT) task were collected in 59 healthy subjects. Graph analysis was conducted to obtain the characteristics of functional brain networks and linear regression analyses were used to explore their relationships with behavioral performances of the three attentional components. We found that there was no significant relationship between the attentional performance and the global measures, while the attentional performance was associated with specific local regional efficiency. These regions related to the scores of alerting, orienting and EC largely overlapped with the regions activated in previous task-related functional imaging studies, and were consistent with the intrinsic dorsal and ventral attention networks (DAN/VAN). In addition, the strong associations between the attentional performance and specific regional efficiency suggested that there was a possible relationship between the DAN/VAN and task performances in the ANT. We concluded that the intrinsic activity of the human brain could reflect the processing efficiency of the attention system. Our findings revealed a robust evidence for the functional significance of the efficiently organized intrinsic brain network for highly productive cognitions and the hypothesized role of the DAN/VAN at rest. PMID:26283939
Peri, Eitan; Chen, E. Elinor; Ben-Jacob, Eshel; Gomez, Christopher M.
2011-01-01
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of cerebellar degenerative disorders, characterized by progressive gait unsteadiness, hand incoordination, and dysarthria. The mutational mechanism in SCA1, a dominantly inherited form of SCA, consists of an expanded trinucleotide CAG repeat. In SCA1, there is loss of Purkinje cells, neuronal loss in dentate nucleus, olives, and pontine nuclei. In the present study, we sought to apply intrinsic functional connectivity analysis combined with diffusion tensor imaging to define the state of cerebellar connectivity in SCA1. Our results on the intrinsic functional connectivity in lateral cerebellum and thalamus showed progressive organizational changes in SCA1 noted as a progressive increase in the absolute value of the correlation coefficients. In the lateral cerebellum, the anatomical organization of functional clusters seen as parasagittal bands in controls is lost, changing to a patchy appearance in SCA1. Lastly, only fractional anisotropy in the superior peduncle and changes in functional organization in thalamus showed a linear dependence to duration and severity of disease. The present pilot work represents an initial effort describing connectivity biomarkers of disease progression in SCA1. The functional changes detected with intrinsic functional analysis and diffusion tensor imaging suggest that disease progression can be analyzed as a disconnection syndrome. PMID:20886327
Alinat, Elodie; Delaunay, Nathalie; Archer, Xavier; Gareil, Pierre
2015-09-01
Specific viscosities for a set of six nitrocellulose (NC) standards comprising three different mass-average molar masses (between 20,000 and 300,000 g mol(-1)) of two different nitrogen contents (11.2 and 12.1%) were measured at 20 °C in tetrahydrofuran, using capillary electrophoresis instrumentation as a bench-top viscometer in frontal mode. Intrinsic viscosities were derived applying Huggins' and Kraemer's models, showing excellent convergence of both models at infinitely diluted polymer concentration. Good overall consistency was shown between viscosity data experimentally acquired by this new protocol and the mass-average molar masses provided by the manufacturers. This simple protocol should be of interest for a better understanding of the solvent interaction given by this complex polymer, and beyond this, for tailoring NC solutions devoted to film deposition, and for the determination of mass-average molar masses of unknown NC samples. PMID:26005144
NASA Astrophysics Data System (ADS)
Oates, S. R.; Racusin, J. L.; De Pasquale, M.; Page, M. J.; Castro-Tirado, A. J.; Gorosabel, J.; Smith, P. J.; Breeveld, A. A.; Kuin, N. P. M.
2015-11-01
In this paper, we further investigate the relationship, reported by Oates et al., between the optical/UV afterglow luminosity (measured at restframe 200 s) and average afterglow decay rate (measured from restframe 200 s onwards) of long duration gamma-ray bursts (GRBs). We extend the analysis by examining the X-ray light curves, finding a consistent correlation. We therefore explore how the parameters of these correlations relate to the prompt emission phase and, using a Monte Carlo simulation, explore whether these correlations are consistent with predictions of the standard afterglow model. We find significant correlations between: log LO, 200 s and log LX, 200 s; αO, >200 s and αX, >200 s, consistent with simulations. The model also predicts relationships between log Eiso and log L200 s; however, while we find such relationships in the observed sample, the slope of the linear regression is shallower than that simulated and inconsistent at ≳3σ. Simulations also do not agree with correlations observed between log L200 s and α> 200 s, or logE_{iso} and α> 200 s. Overall, these observed correlations are consistent with a common underlying physical mechanism producing GRBs and their afterglows regardless of their detailed temporal behaviour. However, a basic afterglow model has difficulty explaining all the observed correlations. This leads us to briefly discuss alternative more complex models.
Exploring the behaviour of long gamma-ray bursts with intrinsic afterglow correlations
NASA Astrophysics Data System (ADS)
Oates, Samantha
2016-07-01
We present a correlation observed in both the optical and X-ray afterglows of long duration Gamma-ray Bursts (GRBs), between the initial luminosity (measured at restframe 200s) and average afterglow decay rate. This correlation does not depend on the presence of specific light curve features and is potentially applicable to all long GRB afterglows. We explore how the correlation parameters from the optical and X-ray bands relate to each other and to the prompt emission phase. We will also explore the implications and test if the observations are consistent with the expectations of the standard afterglow model.
Intrinsic correlated electronic structure of CrO2 revealed by hard x-ray photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Sperlich, M.; König, C.; Güntherodt, G.; Sekiyama, A.; Funabashi, G.; Tsunekawa, M.; Imada, S.; Shigemoto, A.; Okada, K.; Higashiya, A.; Yabashi, M.; Tamasaku, K.; Ishikawa, T.; Renken, V.; Allmers, T.; Donath, M.; Suga, S.
2013-06-01
Bulk-sensitive hard x-ray photoemission spectroscopy (HAXPES) reveals for as-grown epitaxial films of half-metallic ferromagnetic CrO2(100) a pronounced screening feature in the Cr 2p3/2 core level and an asymmetry in the O 1s core level. This gives evidence of a finite, metal-type Fermi edge, which is surprisingly not observed in HAXPES. A spectral weight shift in HAXPES to below the Fermi energy is attributed to single-ion recoil effects due to high-energy photoelectrons. In conjunction with inverse PES the intrinsic correlated Mott-Hubbard-type electronic structure is unraveled, yielding an averaged Coulomb correlation energy Uav ≅ 3.2 eV.
Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization
Burton, Shawn D.; Ermentrout, G. Bard
2012-01-01
Synchronous neural oscillations are found throughout the brain and are thought to contribute to neural coding and the propagation of activity. Several proposed mechanisms of synchronization have gained support through combined theoretical and experimental investigation, including mechanisms based on coupling and correlated input. Here, we ask how correlation-induced synchrony is affected by physiological heterogeneity across neurons. To address this question, we examined cell-to-cell differences in phase-response curves (PRCs), which characterize the response of periodically firing neurons to weak perturbations. Using acute slice electrophysiology, we measured PRCs across a single class of principal neurons capable of sensory-evoked oscillations in vivo: the olfactory bulb mitral cells (MCs). Periodically firing MCs displayed a broad range of PRCs, each of which was well fit by a simple three-parameter model. MCs also displayed differences in firing rate-current relationships and in preferred firing rate ranges. Both the observed PRC heterogeneity and moderate firing rate differences (∼10 Hz) separately reduced the maximum correlation-induced synchrony between MCs by up to 25–30%. Simulations further demonstrated that these components of heterogeneity alone were sufficient to account for the difference in synchronization among heterogeneous vs. homogeneous populations in vitro. Within this simulation framework, independent modulation of specific PRC features additionally revealed which aspects of PRC heterogeneity most strongly impact correlation-induced synchronization. Finally, we demonstrated good agreement of novel mathematical theory with our experimental and simulation results, providing a theoretical basis for the influence of heterogeneity on correlation-induced neural synchronization. PMID:22815400
Molecular gas in elliptical galaxies with dust lanes
NASA Technical Reports Server (NTRS)
Wang, Zhong; Kenney, Jeffrey D. P.; Ishizuki, Sumio
1992-01-01
We have searched for CO(1-0) line emission in eight dust lane elliptical and lenticular galaxies using the Nobeyama 45 m telescope. Five of the eight galaxies, including the well-studied elliptical NGC 1052, have CO emission at above the 5-sigma level, with inferred molecular gas masses ranging from 10 exp 8 to a few times 10 exp 9 solar masses. Our selection criterion differs from previous surveys in that it does not depend on the FIR fluxes, and thus is less sensitive to the sizes and distances of the host galaxies or to the degree to which dust is heated. The relatively high detection rate of CO in these ellipticals suggests a close correlation between molecular mass and cold dust. Compared with previously studied samples of FIR selected early-type galaxies, our sample has on average four times more CO emission per unit FIR (40-120 microns) luminosity. If the intrinsic gas-to-dust ratio of these galaxies as similar to that of the Milky Way, then only about 5 percent of the dust mass in dust lane ellipticals radiates substantially at 60 and 100 microns, and the remaining dust must be colder than about 30 K.
NASA Astrophysics Data System (ADS)
Kulkarni, Girish; Subrahmanyam, V.; Jha, Anand K.
2016-06-01
We study how one-particle correlations transfer to manifest as two-particle correlations in the context of parametric down-conversion (PDC), a process in which a pump photon is annihilated to produce two entangled photons. We work in the polarization degree of freedom and show that for any two-qubit generation process that is both trace-preserving and entropy-nondecreasing, the concurrence C (ρ ) of the generated two-qubit state ρ follows an intrinsic upper bound with C (ρ )≤(1 +P )/2 , where P is the degree of polarization of the pump photon. We also find that for the class of two-qubit states that is restricted to have only two nonzero diagonal elements such that the effective dimensionality of the two-qubit state is the same as the dimensionality of the pump polarization state, the upper bound on concurrence is the degree of polarization itself, that is, C (ρ )≤P . Our work shows that the maximum manifestation of two-particle correlations as entanglement is dictated by one-particle correlations. The formalism developed in this work can be extended to include multiparticle systems and can thus have important implications towards deducing the upper bounds on multiparticle entanglement, for which no universally accepted measure exists.
Piao, Lin; Fu, Zuntao; Yuan, Naiming
2016-01-01
In this study, relations between winter-time Pacific-Northern America pattern (PNA)/East Pacific wave-train (EPW) and winter-time drought in the west United States over the period of 1951-2010 are analyzed. Considering traditional Pearson's Correlation Coefficient can be influenced by non-stationarity and nonlinearity, a recently proposed method, Detrended Partial-Cross-Correlation Analysis (DPCCA) is applied. With DPCCA, we analyzed the "intrinsic" correlations between PNA/EPW and the winter drought with possible effects of ENSO and PDO removed. We found, i) significant negative correlations between PNA/EPW and drought on time scales of 5-6 years after removing the effects of ENSO, ii) and significant negative correlations between PNA/EPW and drought on time scales of 15-25 years after removing the effects of PDO. By further studying the temporal evolutions of the "intrinsic" correlations, we found on time scales of 5-6 years, the "intrinsic" correlations between PNA/EPW and drought can vary severely with time, but for most time, the correlations are negative. While on interdecadal (15-25 years) time scales, after the effects of PDO removed, unlike the relations between PNA and drought, the "intrinsic" correlations between EPW and drought takes nearly homogeneous-sign over the whole period, indicating a better model can be designed by using EPW. PMID:26813741
NASA Astrophysics Data System (ADS)
Yao, Xin-Cheng; Zhang, Qiu-Xiang; Li, Yang-Guo
2011-09-01
Intrinsic optical signal imaging (IOS) promises a noninvasive method for high resolution examination of retinal function. Using freshly isolated animal retinas, we have conducted a series of experiments to test fast IOSs which have time courses comparable to electrophysiological kinetics. In this article, we demonstrate the feasibility of in vivo imaging of fast IOSs correlated with retinal activation in anesthetized frog (Rana Pipiens). A rapid (68,000 lines/s) line-scan confocal ophthalmoscope was constructed to achieve high-speed (200 frames/s) near infared (NIR) recording of fast IOSs. By rejecting out-of-focus background light, the line-scan confocal imager provided enough resolution to differentiate individual photoreceptors in vivo. With visible light stimulation, NIR confocal images disclosed transient IOSs with time courses comparable to retinal ERG kinetics. High-resolution IOS images revealed both positive (increasing) and negative (decreasing) light responses, with sub-cellular complexity, in the activated retina.
Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass
NASA Astrophysics Data System (ADS)
Zhu, F.; Nguyen, H. K.; Song, S. X.; Aji, Daisman P. B.; Hirata, A.; Wang, H.; Nakajima, K.; Chen, M. W.
2016-05-01
β-relaxation has long been attributed to localized motion of constituent molecules or atoms confined to isolated regions in glasses. However, direct experimental evidence to support this spatially heterogeneous scenario is still missing. Here we report the evolution of nanoscale structural heterogeneity in a metallic glass during β-relaxation by utilizing amplitude-modulation dynamic atomic force microscopy. The successive degeneration of heterogeneity during β-relaxation can be well described by the Kohlrausch-Williams-Watts equation. The characteristic relaxation time and activation energy of the heterogeneity evolution are in accord with those of excess enthalpy release by β-relaxation. Our study correlates β-relaxation with nanoscale spatial heterogeneity and provides direct evidence on the structural origins of β-relaxation in metallic glasses.
Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass
Zhu, F.; Nguyen, H. K.; Song, S. X.; Aji, Daisman P. B.; Hirata, A.; Wang, H.; Nakajima, K.; Chen, M. W.
2016-01-01
β-relaxation has long been attributed to localized motion of constituent molecules or atoms confined to isolated regions in glasses. However, direct experimental evidence to support this spatially heterogeneous scenario is still missing. Here we report the evolution of nanoscale structural heterogeneity in a metallic glass during β-relaxation by utilizing amplitude-modulation dynamic atomic force microscopy. The successive degeneration of heterogeneity during β-relaxation can be well described by the Kohlrausch–Williams–Watts equation. The characteristic relaxation time and activation energy of the heterogeneity evolution are in accord with those of excess enthalpy release by β-relaxation. Our study correlates β-relaxation with nanoscale spatial heterogeneity and provides direct evidence on the structural origins of β-relaxation in metallic glasses. PMID:27158084
Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass.
Zhu, F; Nguyen, H K; Song, S X; Aji, Daisman P B; Hirata, A; Wang, H; Nakajima, K; Chen, M W
2016-01-01
β-relaxation has long been attributed to localized motion of constituent molecules or atoms confined to isolated regions in glasses. However, direct experimental evidence to support this spatially heterogeneous scenario is still missing. Here we report the evolution of nanoscale structural heterogeneity in a metallic glass during β-relaxation by utilizing amplitude-modulation dynamic atomic force microscopy. The successive degeneration of heterogeneity during β-relaxation can be well described by the Kohlrausch-Williams-Watts equation. The characteristic relaxation time and activation energy of the heterogeneity evolution are in accord with those of excess enthalpy release by β-relaxation. Our study correlates β-relaxation with nanoscale spatial heterogeneity and provides direct evidence on the structural origins of β-relaxation in metallic glasses. PMID:27158084
NASA Astrophysics Data System (ADS)
Frontera, Filippo; Amati, Lorenzo; Farinelli, Ruben; Dichiara, Simone; Guidorzi, Cristiano; Landi, Raffaella; Titarchuk, Lev
2016-03-01
It is recognized that very likely the correlation between peak energy Ep and bolometric intensity is intrinsic to GRBs. However, its physical origin is still debated. In this paper, we will discuss a possible interpretation of the correlation in the light of a GRB prompt emission spectral model, GRBCOMP, proposed in [L. Titarchuk, R. Farinelli, F. Frontera and L. Amati, Astrophys. J. 752 (2012) 116]. GRBCOMP is essentially a photospheric model for the prompt emission of GRBs. Its main ingredients are a thermal bath of soft seed photons and a subrelativistically expanding outflow plasma, consequence of the star explosion. The emerging spectrum is the result of two phases: first, up to the photospheric radius, Comptonization of a subrelativistic electron outflow with thermal bath of soft photons, then, convolution of the Comptonized photons in the first phase with a Green function. The result of this convolution is consistent with different physical processes, in particular Inverse Compton. GRBCOMP has been successfully tested using a significant sample of GRB time resolved spectra in the broad energy band from 2keV to 2MeV [F. Frontera, L. Amati, R. Farinelli, S. Dichiara, C. Guidorzi, R. Landi and L. Titarchuk, Astrophys. J. 779 (2013) 175].
Shen, N.; Matthews, M. J.; Elhadj, S.; Miller, P. E.; Nelson, A. J.; Hamilton, J.
2013-04-03
Here, chemical vapor deposition (CVD) is used for the production of fused silica optics in high-power laser applications. However, relatively little is known about the ultraviolet laser damage threshold of CVD films and how they relate to intrinsic defects produced during deposition. We present here a study relating structural and electronic defects in CVD films to 355 nm pulsed-laser damage threshold as a function of post-deposition annealing temperature (T_{HT}). Plasma-enhanced CVD based on SiH_{4}/N_{2}O under oxygen-rich conditions was used to deposit 1.5, 3.1 and 6.4 µm thick films on etched SiO2 substrates. Rapid annealing was performed using a scanned CO2 laser beam up to T_{HT} ~ 2100 K. The films were then characterized using x-ray photoemission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. A gradual transition in the damage threshold of annealed films was observed for T_{HT} values up to 1600 K, correlating with a decrease in non-bridging silanol and oxygen deficient centres. An additional sharp transition in damage threshold also occurs at ~1850 K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is proposed, and the potential of using high-T_{HT} CVD SiO_{2} to mitigate optical damage is also discussed.
NASA Astrophysics Data System (ADS)
Habermehl, S.; Apodaca, R. T.
2004-01-01
Poole-Frenkel emission in Si-rich nitride and silicon oxynitride thin films is studied in conjunction with compositional aspects of their elastic properties. For Si-rich nitrides varying in composition from SiN1.33 to SiN0.54, the Poole-Frenkel trap depth (ΦB) decreases from 1.08 to 0.52 eV as the intrinsic film strain (ɛi) decreases from 0.0036 to -0.0016. For oxynitrides varying in composition from SiN1.33 to SiO1.49N0.35, ΦB increases from 1.08 to 1.53 eV as ɛi decreases from 0.0036 to 0.0006. In both material systems, a direct correlation is observed between ΦB and ɛi. Compositionally induced strain relief as a mechanism for regulating ΦB is discussed.
Apodaca, Roger T.; Habermehl, Scott D.
2003-07-01
Poole-Frenkel emission in Si-rich nitride and silicon oxynitride thin films is studied in conjunction with compositional aspects of their elastic properties. For Si-rich nitrides varying in composition from SiN{sub 1.33} to SiN{sub 0.54}, the Poole-Frenkel trap depth ({Phi}{sub B}) decreases from 1.08 to 0.52 eV as the intrinsic film strain ({Epsilon}{sub i}) decreases from 0.0036 to -0.0016. For oxynitrides varying in composition from SiN{sub 1.33} to SiO{sub 1.49}N{sub 0.35}, {Phi}{sub B} increases from 1.08 to 1.53 eV as {Epsilon}{sub i} decreases from 0.0036 to 0.0006. In both material systems, a direct correlation is observed between {Phi}{sub B} and {Epsilon}{sub i}. Compositionally induced strain relief as a mechanism for regulating {Phi}{sub B} is discussed.
Tadayonnejad, Reza; Yang, Shaolin; Kumar, Anand; Ajilore, Olusola
2014-01-01
The pervasive and persistent nature of depressive symptoms has made resting-state functional magnetic resonance imaging (rs-fMRI) an appropriate approach for understanding the underlying mechanisms of major depressive disorder. The majority of rs-fMRI research has focused on depression-related alterations in the interregional coordination of brain baseline low frequency oscillations (LFOs). However, alteration of the regional amplitude of LFOs in depression, particularly its clinical, cognitive and network implications have not been examined comprehensively yet. rs-fMRI amplitudes of low-frequency fluctuation (ALFF/fALFF) mediated by two LFOs bands of 0.01-0.08 Hz (LF-ALFF/fALFF) and 0.1-0.25 Hz (HF-ALFF/fALFF) were measured in unmedicated subjects with major depressive disorder (n=20) and a healthy control group (n=25). A novel method of “ALFF-based functional connectivity” analysis was developed to test regional/network interaction abnormalities in depression. Our results revealed abnormal alterations in ALFF for both lower and higher frequency bands of LFOs in regions that participate in affective networks, corticostriatal circuits and motor/somatosensory networks. A strong positive correlation was detected between depressive symptom severity and fALFF in the anterior cingulate cortex. Functional connectivity of the thalamus and postcentral area with altered ALFF were found to be decreased with other interacting regions of their involved networks. Major depressive disorder relates to the alterations of regional properties of intrinsic neural activity with meaningful clinical and cognitive correlations. This study also proposes an integrating regional/network dysfunction in MDD. PMID:25451423
Wu Qingwen; Zou Yuanchuan; Wang Dingxiong; Cao Xinwu; Chen Liang E-mail: zouyc@hust.edu.cn E-mail: cxw@shao.ac.cn
2011-10-10
We compile 23 gamma-ray bursts (GRBs) and 21 blazars with estimated Doppler factors, and the Doppler factors of GRBs are estimated from their Lorentz factors by assuming their jet viewing angles {theta} {yields} 0{sup 0}. Using the conventional assumption that the prompt emission of GRBs is dominated by the synchrotron radiation, we calculate the synchrotron luminosity of GRBs from their total isotropic energy and burst duration. Intriguingly, we discover a uniform correlation between the synchrotron luminosity and Doppler factor, L{sub syn}{proportional_to}D{sup 3.1}, for GRBs and blazars, which suggests that they may share some similar jet physics. One possible reason is that GRBs and blazars have, more or less, similar intrinsic synchrotron luminosities and both of them are strongly enhanced by the beaming effect. After Doppler and redshift correction, we find that the intrinsic peak energy of the GRBs ranges from 0.1 to 3 keV with a typical value of 1 keV. We further correct the beaming effect for the observed luminosity of GRBs and find that a positive correlation exists between the intrinsic synchrotron luminosity and peak energy for GRBs, which is similar to that of blazars. Our results suggest that both the intrinsic positive correlation and the beaming effect may be responsible for the observed tight correlation between the isotropic energy and the peak energy in GRBs (the so-called Amati relation).
Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.
2008-01-01
Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes ~90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes and coding sequence diversities possessing strong positive and negative correlation with long disordered regions. PMID:17391015
Kišonaitė, Miglė; Zubrienė, Asta; Čapkauskaitė, Edita; Smirnov, Alexey; Smirnovienė, Joana; Kairys, Visvaldas; Michailovienė, Vilma; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas
2014-01-01
The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation. PMID:25493428
Kišonaitė, Miglė; Zubrienė, Asta; Capkauskaitė, Edita; Smirnov, Alexey; Smirnovienė, Joana; Kairys, Visvaldas; Michailovienė, Vilma; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas
2014-01-01
The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation. PMID:25493428
Elliptically polarized bursty radio emissions from Jupiter
NASA Technical Reports Server (NTRS)
Reiner, M. J.; Desch, M. D.; Kaiser, M. L.; Manning, R.; Fainberg, J.; Stone, R. G.
1995-01-01
We report a new component of Jovian radio emission observed by the Ulysses spacecraft when Ulysses was at high Jovigraphic latitudes (greater than or approximately = 30 deg north or south of the Jovian magnetic equator). This bursty high-latitude emission is elliptically polarized in the right-hand sense when observed from northern latitudes and in the left-hand sense when observed from southern latitudes, consistent with extraordinary mode. The orientation of the polarization ellipse is observed to systematically vary with time relative to the observer. It is argued that the elliptically-polarized nature of the emission is intrinsic to the source region.
Rotation and conversion of transmission mode based on a rotatable elliptical core ring resonator
NASA Astrophysics Data System (ADS)
Liu, Bin; Liu, Yun-Feng; Li, Shu-Jing; He, Xing-Dao
2016-06-01
A compact plasmonic waveguide system consisting of a rotating elliptical core ring (ECR) coupled two metal-insulator-metal (MIM) waveguides is proposed. Influences of the eccentricity and rotation angle of the elliptical core on the transmission characteristics are studied in detail, by using Finite-Difference Time-Domain (FDTD) method. Compared with circular core in ring resonator, the elliptical core will lead to the asymmetric field distributions of intrinsic mode. Based on this, a 1×2 splitter is designed, in which the beam-splitting ratio can be adjusted by changing the eccentricity of the elliptical core. In addition, we find that the intrinsic mode of ECR rotate with elliptical core and gradually convert to its orthogonal mode. Separation of the pair orthogonal modes increases with growth of the eccentricity of the elliptical core. And, the higher order intrinsic mode corresponds to the shorter rotation angle of mode conversion.
Zheng, Zhida; Ma, Dejian; Yahr, Timothy L.; Chen, Lingling
2016-01-01
Many Gram-negative bacteria utilize a type III secretion system (T3SS) to deliver protein effectors to target host cells. Transcriptional control of T3SS gene expression is generally coupled to secretion through the release of a regulatory protein. T3SS gene expression in Pseudomonas aeruginosa is regulated by extracellular secretion of ExsE. ExsE is a small 81 residue protein that appears to lack a stable structural core as indicated by previous studies. In this study, we employed various NMR methods to characterize the structure of ExsE alone and when bound to its secretion chaperone ExsC. We found that ExsE is largely unfolded throughout the polypeptide chain, belonging to a class of proteins that are intrinsically disordered. The unfolded, extended conformation of ExsE may expedite efficient secretion through the narrow path of the T3SS secretion channel to activate gene expression in a timely manner. We also found that the structurally flexible ExsE samples through conformations with localized structurally ordered regions. Importantly, these transiently ordered elements are related to the secondary structures involved in binding ExsC based on a prior crystal structure of the ExsCExsE complex. These findings support the notion that preexisting structured elements facilitate binding of intrinsically disordered proteins to their targets. PMID:22138394
Mineev, Mark
2008-01-01
The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.
Speakman, J. R.; Ergon, T.; Cavanagh, R.; Reid, K.; Scantlebury, D. M.; Lambin, X.
2003-01-01
Resting metabolic rates at thermoneutral (RMRts) are unexpectedly variable. One explanation is that high RMRts intrinsically potentiate a greater total daily energy expenditure (DEE), but recent work has suggested that DEE is extrinsically defined by the environment, which independently affects RMRt. This extrinsic effect could occur because expenditure is forced upwards in poor habitats or enabled to rise in good habitats. We provide here an intraspecific test for an association between RMRt and DEE that separates intrinsic from extrinsic effects and forcing from enabling effects. We measured the DEE and RMRt of 75 free-living short-tailed field voles at two time points in late winter. Across all sites, there was a positive link between individual variation in RMRt and DEE. This correlation, however, emerged only because of an effect across sites, rather than because of an intrinsic association within sites. We defined site quality from the survivorship of voles at the sites and the time at which they commenced breeding in spring. The associations between DEE/RMRt and site quality suggested that in February voles in poorer sites had higher energy demands, indicating that DEE was forced upwards, but in March the opposite was true, with higher demands in good sites, indicating that high expenditure was enabled. These data show that daily energy demands are extrinsically defined, with a link to RMRt that is secondary or independent. Both forcing and enabling effects of the environment may pertain at different times of year. PMID:14615588
NASA Astrophysics Data System (ADS)
Racusin, J. L.; Oates, S. R.; de Pasquale, M.; Kocevski, D.
2016-07-01
We present a correlation between the average temporal decay ({α }{{X},{avg},\\gt 200{{s}}}) and early-time luminosity ({L}{{X},200{{s}}}) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the γ-ray trigger. The luminosity–average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.; Kettler, David T.; Prindle, Duncan J.; Ray, R. L.
2015-02-01
Background: A component of azimuth correlations from high-energy heavy ion collisions varying as cos (2φ ) and denoted by symbol v2 is conventionally interpreted to represent ‘elliptic flow,’ a hydrodynamic manifestation of the initial-state A-A overlap geometry. Several numerical methods are used to estimate v2, resulting in various combinations of ‘flow’ and ‘nonflow’ that reveal systematic biases in the v2 estimates. QCD jets contribute strongly to azimuth correlations and specifically to the cos (2φ ) component. Purpose: We question the extent of jet-related (‘nonflow’) bias in and hydrodynamic ‘flow’ interpretations of v2 measurements. Method: We introduce two-dimensional model fits to angular correlation data that distinguish accurately between jet-related correlation components and a nonjet (NJ) azimuth quadrupole that might represent ‘elliptic flow’ if that were relevant. We compare measured jet-related and ‘flow’-related data systematics and determine the jet-related contribution to v2 measurements. Results: Jet structure does introduce substantial bias to conventional v2 measurements, making interpretation difficult. The NJ quadrupole exhibits very simple systematics on centrality and collision energy—the two variables factorize. Within a Au-Au centrality interval where jets show no indication of rescattering or medium effects the NJ quadrupole amplitude rises to 60% of its maximum value. Conclusions: Disagreements between NJ quadrupole systematics and hydro theory expectations, the large quadrupole amplitudes observed in more-peripheral Au-Au collisions and a significant nonzero value in N-N ≈ p-p collisions strongly suggest that the NJ quadrupole does not arise from a hydrodynamic flow mechanism.
NASA Technical Reports Server (NTRS)
Janin, G.; Bond, V. R.
1980-01-01
An independent variable different from the time for elliptic orbit integration is used. Such a time transformation provides an analytical step-size regulation along the orbit. An intermediate anomaly (an anomaly intermediate between the eccentric and the true anomaly) is suggested for optimum performances. A particular case of an intermediate anomaly (the elliptic anomaly) is defined, and its relation with the other anomalies is developed.
Exposing the non-collectivity in elliptic flow
Liao, Jinfeng; Koch, Volker
2009-02-13
We show that backward-forward elliptic asymmetry correlations provide an experimentally accessible observable which distinguishes between collective and non-collective contributions to the observed elliptic asymmetry v2 in relativistic heavy ion collisions. The measurement of this observable will reveal the momentum scale at which collective expansion seizes and where the elliptic asymmetry is dominated by (semi)-hard processes. In addition, the knowledge of the actual magnitude of the collective component of the elliptic asymmetry will be essential for the extraction of the viscosity of the matter created in these collisions.
Roe, Anna W.; Chen, Li Min
2009-01-01
One of the most widely used functional brain mapping tools is blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI). This method has contributed to new understandings of the functional roles of different areas in the human brain. However, its ability to map cerebral cortex at high spatial (submillimeter) resolution is still unknown. Other methods such as single- and multiunit electrophysiology and intrinsic signal optical imaging have revealed submillimeter resolution of sensory topography and cortical columnar activations. However, they are limited either by spatial scale (electrophysiology characterizes only local groups of neurons) or by the inability to monitor deep structures in the brain (i.e., cortical regions buried in sulci or subcortical structures). A method that could monitor all regions of the brain at high spatial resolution would be ideal. This capacity would open the doors to investigating, for example, how networks of cerebral cortical columns relate to or produce behavior. In this article we demonstrate that, without benefit of contrast agents, at a magnetic field strength of 9.4 tesla, BOLD fMRI can reveal millimeter-sized topographic maps of digit representation in the somatosensory cortex of the anesthetized squirrel monkey. Furthermore, by mapping the “funneling illusion,” it is possible to detect even submillimeter shifts in activation in the cortex. Our data suggest that at high magnetic field strength, the positive BOLD signal can be used to reveal high spatial resolution maps of brain activity, a finding that weakens previous notions about the ultimate spatial specificity of the positive BOLD signal. PMID:18172338
NASA Astrophysics Data System (ADS)
Mattsson, A. E.; Mattsson, T. R.; Jennison, D. R.
2003-03-01
Based on the correction scheme presented in [1] we have developed a procedure to correct for the surface self-energy error (both exchange and correlation) in density functional calculations on real systems. The method works equally well for all approximations of the exchange-correlation functional, e.g. the local density and general gradient approximations. It has been successfully applied to Al, Pt, Pd, and Mo vacancy formation energies [2,3] and the Pd(111)/α-alumina work of adhesion [4]. We present the current status of our efforts and discuss how to extend the procedure to general systems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. [1] A. E. Mattsson, W. Kohn, J. Chem. Phys. 115, 3441 (2001). [2] K. Carling et al, Phys. Rev. Lett. 85, 3862 (2000). [3] T. R. Mattsson, A. E. Mattsson, Phys. Rev. B (Dec. 2002). [4] A. E. Mattsson, D. R. Jennison, Surf. Sci. 58, L611 (2002).
NASA Astrophysics Data System (ADS)
Akhlagh Moayed, Alireza; Hariri, Sepideh; Choh, Vivian; Bizheva, Kostadinka
2012-01-01
Visually evoked fast intrinsic optical signals (IOSs) were recorded for the first time in vivo from all layers of healthy chicken retina by using a combined functional optical coherence tomography (fOCT) and electroretinography (ERG) system. The fast IOSs were observed to develop within ~5 ms from the on-set of the visual stimulus, whereas slow IOSs were measured up to 1 s later. The visually evoked IOSs and ERG traces were recorded simultaneously, and a clear correlation was observed between them. The ability to measure visually evoked fast IOSs non-invasively and in vivo from individual retinal layers could significantly improve the understanding of the complex communication between different retinal cell types in healthy and diseased retinas.
Intrinsic alignments of BOSS LOWZ galaxies - II. Impact of shape measurement methods
NASA Astrophysics Data System (ADS)
Singh, Sukhdeep; Mandelbaum, Rachel
2016-04-01
Measurements of intrinsic alignments of galaxy shapes with the large-scale density field, and the inferred intrinsic alignments model parameters, are sensitive to the shape measurement methods used. In this paper, we measure the intrinsic alignments of the Sloan Digital Sky Survey-III (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) low redshift (LOWZ) galaxies using three different shape measurement methods (re-Gaussianization, isophotal, and de Vaucouleurs), identifying a variation in the inferred intrinsic alignments amplitude at the 40 per cent level between these methods, independent of the galaxy luminosity or other properties. We also carry out a suite of systematics tests on the shapes and their two-point correlation functions, identifying a pronounced contribution from additive point spread function systematics in the de Vaucouleurs shapes. Since different methods measure galaxy shapes at different effective radii, the trends we identify in the intrinsic alignments amplitude are consistent with the interpretation that the outer regions of galaxy shapes are more responsive to tidal fields, resulting in isophote twisting and stronger alignments for isophotal shapes. We observe environment dependence of ellipticity, with brightest galaxies in groups being rounder on average compared to satellite and field galaxies. We also study the anisotropy in intrinsic alignments measurements introduced by projected shapes, finding effects consistent with predictions of the non-linear alignment model and hydrodynamic simulations. The large variations seen using the different shape measurement methods have important implications for intrinsic alignments forecasting and mitigation with future surveys.
NASA Astrophysics Data System (ADS)
Kim, Dong-Woo
2005-10-01
We propose deep XMM-Newton observations of two young, post-merger elliptical galaxies, NGC 3377 and NGC 5018. Because their X-ray to optical luminosity ratios are the lowest among ellipticals and their stellar populations are significantly metal-enriched, they are the best candidates to address two biggest unsolved problems of the X-ray study of elliptical galaxies: large L_X/L_B scatter and ISM Fe discrepancy. Our XMM-Newton data, in conjunction with the existing Chandra data will allow us to accurately determine Fe and alpha-elements abundances. We will then address the origin of the large L_X/L_B scatter in terms of ISM removal mechanisms by merger-induced galactic winds.
Multilevel filtering elliptic preconditioners
NASA Technical Reports Server (NTRS)
Kuo, C. C. Jay; Chan, Tony F.; Tong, Charles
1989-01-01
A class of preconditioners is presented for elliptic problems built on ideas borrowed from the digital filtering theory and implemented on a multilevel grid structure. They are designed to be both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows the use of filter design techniques for constructing elliptic preconditioners and also provides an alternative framework for understanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess the convergence behavior of the new methods and to compare them with other preconditioners of multilevel type, including the usual multigrid method as preconditioner, the hierarchical basis method and a recent method proposed by Bramble-Pasciak-Xu.
The Ellipticity Distribution of Ambiguously Blended Objects
NASA Astrophysics Data System (ADS)
Dawson, William A.; Schneider, Michael D.; Tyson, J. Anthony; Jee, M. James
2016-01-01
Using overlapping fields with space-based Hubble Space Telescope and ground-based Subaru Telescope imaging we identify a population of blended galaxies that are blended to such a large degree that they are detected as single objects in the ground-based monochromatic imaging, which we label “ambiguous blends.” For deep imaging data, such as the depth targeted with the Large Synoptic Survey Telescope (LSST), the ambiguous blend population is both large (∼14%) and has a distribution of ellipticities that is different from that of unblended objects in a way that will likely be important for weak lensing measurements. Most notably, for a limiting magnitude of i ∼ 27 we find that ambiguous blending results in a ∼14% increase in shear noise (or an ∼12% decrease in the effective projected number density of lensed galaxies; neff) due to (1) larger intrinsic ellipticity dispersion, and (2) a scaling with the galaxy number density Ngal that is shallower than 1/\\sqrt{{N}{gal}}. For the LSST Gold Sample (i < 25.3) there is a ∼7% increase in shear noise (or ∼7% decrease in neff). More importantly than these increases in the shear noise, we find that the ellipticity distribution of ambiguous blends has an rms that is 13% larger than that of non-blended galaxies. Given the need of future weak lensing surveys to constrain the ellipticity distribution of galaxies to better than a percent in order to mitigate cosmic shear multiplicative biases, if it is unaccounted for, the different ellipticity distribution of ambiguous blends could be a dominant systematic.
Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine; Herbst, Christian; Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai
2015-10-01
A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue 'i' with that of residues 'i-1' and 'i+1' in ((13)C, (15)N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of (1) J CαN and (2) J CαN couplings to transfer the (15)N x magnetisation from amino acid residue 'i' to adjacent residues via the application of a band-selective (15)N-(13)C(α) heteronuclear cross-polarisation sequence of ~100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described. PMID:26282620
Kim, Do Yun; Hänni, Simon; Schüttauf, Jan-Willem; van Swaaij, René A C M M; Zeman, Miro
2016-08-17
Optical and electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells are strongly influenced by the morphology of underlying substrates. By texturing the substrates, the photogenerated current of nc-Si:H solar cells can increase due to enhanced light scattering. These textured substrates are, however, often incompatible with defect-less nc-Si:H growth resulting in lower Voc and FF. In this study we investigate the correlation between the substrate morphology, the nc-Si:H solar-cell performance, and the defect density in the intrinsic layer of the solar cells (i-nc-Si:H). Statistical surface parameters representing the substrate morphology do not show a strong correlation with the solar-cell parameters. Thus, we first quantify the line density of potentially defective valleys of randomly textured ZnO substrates where the opening angle is smaller than 130° (ρ<130). This ρ<130 is subsequently compared with the solar-cell performance and the defect density of i-nc-Si:H (ρdefect), which is obtained by fitting external photovoltaic parameters from experimental results and simulations. We confirm that when ρ<130 increases the Voc and FF significantly drops. It is also observed that ρdefect increases following a power law dependence of ρ<130. This result is attributed to more frequently formed defective regions for substrates having higher ρ<130. PMID:27463965
NASA Astrophysics Data System (ADS)
Bowden, C. M.; Sung, C. C.
1982-08-01
The model presented earlier (Bowden and Sung, 1979), which predicts the circumstances under which intrinsic mirrorless optical bistability (OB) can occur due to atomic pair correlation in a small volume, is outlined and the results presented. These results, which predict a first-order phase transition in steady state for an externally driven collection of a large number of atoms far removed from thermodynamic equilibrium, form the motivation for a detailed microscopic examination of the dynamical behavior of atomic pair correlation in the presence of externally applied coherent radiation. A model is presented and results are discussed for the transient dynamic evolution of two two-level atoms separated from each other by a distance r in the presence of an externally applied coherent radiation field. The results predict collective radiation reaction, frequency shifts, relaxation in terms of the atomic separation r (assumed much larger than single atom dimensions), the externally applied field intensity and spacial uniformity of the field with respect to the inter-atomic volume.
A new weak lensing shear analysis method using ellipticity defined by 0th order moments
NASA Astrophysics Data System (ADS)
Okura, Yuki; Futamase, Toshifumi
2015-04-01
We developed a new method that uses ellipticity defined by 0th order moments (0th-ellipticity) for weak gravitational lensing shear analysis. Although there is a strong correlation between the ellipticity calculated using this approach and the usual ellipticity defined by the 2nd order moment, the ellipticity calculated here has a higher signal-to-noise ratio because it is weighted to the central region of the image. These results were confirmed using data for Abell 1689 from the Subaru telescope. For shear analysis, we adopted the ellipticity of re-smeared artificial image method for point spread function correction, and we tested the precision of this 0th-ellipticity with simple simulation, then we obtained the same level of precision with the results of ellipticity defined by quadrupole moments. Thus, we can expect that weak lensing analysis using 0 shear will be improved in proportion to the statistical error.
Far-infrared emission from dusty ellipticals
NASA Technical Reports Server (NTRS)
Walsh, Duncan; Knapp, Jill
1990-01-01
The incidence of dust lanes in elliptical galaxies has been estimated at approx. 40 percent by Sadler and Gerhard (1985), although the observed fraction is lower because of inclination effects. A similar percentage of ellipticals has been detected by the Infrared Astronomy Satellite (IRAS) at 100 microns (Knapp et al. 1989); these have far-infrared colors expected for emission from cool dust (S sub 60 micron/S sub 100 micron approx. 1/3). For the far-infrared detected galaxies, neither L sub 100 microns/L sub B nor L sub 60 microns/L sub 100 microns are very dependent on dust content, suggesting that the source of the infrared luminosity is the same in both cases; and hence that dust is responsible even when not detected optically. Despite this indication, L sub 100 microns does not prove to be a good indicator of the quantity of cool interstellar matter in elliptical galaxies, as measured by the mass of neutral hydrogen. There even exist several examples of ellipticals with dust, strong 100 micron flux density and sensitive limits on HI mass (Walsh et al. in preparation). Chief reasons for the lack of correlation include the existence of other important sources of far-IR power in ellipticals, such as nonthermal continuum emission extending from longer wavelengths in flat spectrum radio sources (Golombek, Miley and Neugebauer 1988); and the fact that far-infrared luminosity per unit dust mass is extremely sensitive to the temperature of the ambient radiation field, which is not accurately known. In addition to having their appearance distorted by dust, several ellipticals also show such features as shells, box-shaped isophotes or inner disks. These may be signatures of past mergers, which could also add to the ISM content of the system.
NASA Astrophysics Data System (ADS)
Zhou, Ying-qun; Yu, Hua; Zhang, Yan-ling; Sun, Su-qin; Chen, Shi-lin; Zhao, Run-huai; Zhou, Qun; Noda, Isao
2010-06-01
To evaluate the intrinsic quality of licorice influenced by environmental factors, the spectral comparison of licorice from two typical ecological habitats was conducted by using FTIR and 2D-IR correlation spectroscopy. There were differences in the peak intensities of 1155, 1076 and 1048 cm -1 of FTIR profiles. The difference was amplified by the second derivative spectrum for the peak intensities at 1370, 1365 and 1317 cm -1 and the peak shape in 958-920 cm -1 and 1050-988 cm -1. The synchronous 2D-IR spectra within the range of 860-1300 cm -1 were classified into type I and type II and their frequency in the two groups was noticeably different. Although the chemical compounds of licorice samples from two areas were generally similar, the contents of starch, calcium oxalate, and some chemical compounds containing alcohol hydroxyl group were different, indicating the influence of precipitation and temperature. This study demonstrates that the systematical analysis of FTIR, the second derivative spectrum and 2D-IR can effectively determine the differences in licorice samples from different ecological habitats.
NASA Astrophysics Data System (ADS)
Cardona, Carlos; Gomez, Humberto
2016-06-01
Recently the CHY approach has been extended to one loop level using elliptic functions and modular forms over a Jacobian variety. Due to the difficulty in manipulating these kind of functions, we propose an alternative prescription that is totally algebraic. This new proposal is based on an elliptic algebraic curve embedded in a mathbb{C}{P}^2 space. We show that for the simplest integrand, namely the n - gon, our proposal indeed reproduces the expected result. By using the recently formulated Λ-algorithm, we found a novel recurrence relation expansion in terms of tree level off-shell amplitudes. Our results connect nicely with recent results on the one-loop formulation of the scattering equations. In addition, this new proposal can be easily stretched out to hyperelliptic curves in order to compute higher genus.
On the rotation of elliptical galaxies
NASA Technical Reports Server (NTRS)
Binney, J.
1978-01-01
The tensor virial theorem is applied to models of early-type galaxies. First the theorem is applied to rotating elliptical galaxies whose constant-density surfaces are similar ellipsoids. A relationship is obtained between the observed rotations and the forms of generally triaxial galaxies. By applying the results of Robert (1962) to the evaluation of the components of the Chandrasekhar tensor which occurs in this relationship, it is found that the form of a galaxy that lacks global velocity anisotropy uniquely determines the ratio of its rotational and random kinetic energies independently of the radial density profile of that galaxy. A distribution of three-dimensional prolate spheroids is derived which accounts for the observed distribution of ellipticities reported by Sandage, Freeman, and Stokes (1970). This is then used to derive curves giving the expected frequency of occurrence of galaxies of given rotational velocities for each of a number of different apparent elongations on the sky. It is found that if elliptical galaxies are prolate, there should be little correlation between apparent ellipticity and rotation velocity.
Effect of flow fluctuations and nonflow on elliptic flow methods
Ollitrault, Jean-Yves; Poskanzer, Arthur M.; Voloshin, Sergei A.
2009-04-16
We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v_2,PP elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v_2,RP in the reaction plane. Thus, the 20percent spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.
Herpers, Bram; Wink, Steven; Fredriksson, Lisa; Di, Zi; Hendriks, Giel; Vrieling, Harry; de Bont, Hans; van de Water, Bob
2016-05-01
Drug-induced liver injury (DILI) is an important problem both in the clinic and in the development of new safer medicines. Two pivotal adaptation and survival responses to adverse drug reactions are oxidative stress and cytokine signaling based on the activation of the transcription factors Nrf2 and NF-κB, respectively. Here, we systematically investigated Nrf2 and NF-κB signaling upon DILI-related drug exposure. Transcriptomics analyses of 90 DILI compounds in primary human hepatocytes revealed that a strong Nrf2 activation is associated with a suppression of endogenous NF-κB activity. These responses were translated into quantitative high-content live-cell imaging of induction of a selective Nrf2 target, GFP-tagged Srxn1, and the altered nuclear translocation dynamics of a subunit of NF-κB, GFP-tagged p65, upon TNFR signaling induced by TNFα using HepG2 cells. Strong activation of GFP-Srxn1 expression by DILI compounds typically correlated with suppression of NF-κB nuclear translocation, yet reversely, activation of NF-κB by TNFα did not affect the Nrf2 response. DILI compounds that provided strong Nrf2 activation, including diclofenac, carbamazepine and ketoconazole, sensitized toward TNFα-mediated cytotoxicity. This was related to an adaptive primary protective response of Nrf2, since loss of Nrf2 enhanced this cytotoxic synergy with TNFα, while KEAP1 downregulation was cytoprotective. These data indicate that both Nrf2 and NF-κB signaling may be pivotal in the regulation of DILI. We propose that the NF-κB-inhibiting effects that coincide with a strong Nrf2 stress response likely sensitize liver cells to pro-apoptotic signaling cascades induced by intrinsic cytotoxic pro-inflammatory cytokines. PMID:26026609
Blue ellipticals in compact groups
NASA Technical Reports Server (NTRS)
Zepf, Stephen E.; Whitmore, Bradley C.
1990-01-01
By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.
Elliptical Orbit Performance Computer Program
NASA Technical Reports Server (NTRS)
Myler, T.
1984-01-01
Elliptical Orbit Performance (ELOPE) computer program for analyzing orbital performance of space boosters uses orbit insertion data obtained from trajectory simulation to generate parametric data on apogee and perigee altitudes as function of payload data. Data used to generate presentation plots that display elliptical orbit performance capability of space booster.
Intrinsic alignment of simulated galaxies in the cosmic web: implications for weak lensing surveys
NASA Astrophysics Data System (ADS)
Codis, S.; Gavazzi, R.; Dubois, Y.; Pichon, C.; Benabed, K.; Desjacques, V.; Pogosyan, D.; Devriendt, J.; Slyz, A.
2015-04-01
The intrinsic alignment of galaxy shapes (by means of their angular momentum) and their cross-correlation with the surrounding dark matter tidal field are investigated using the 160 000, z = 1.2 synthetic galaxies extracted from the high-resolution cosmological hydrodynamical simulation HORIZON-AGN. One- and two-point statistics of the spin of the stellar component are measured as a function of mass and colour. For the low-mass galaxies, this spin is locally aligned with the tidal field `filamentary' direction while, for the high-mass galaxies, it is perpendicular to both filaments and walls. The bluest galaxies of our synthetic catalogue are more strongly correlated with the surrounding tidal field than the reddest galaxies, and this correlation extends up to ˜10 h- 1 Mpc comoving distance. We also report a correlation of the projected ellipticities of blue, intermediate-mass galaxies on a similar scale at a level of 10-4 which could be a concern for cosmic shear measurements. We do not report any measurable intrinsic alignments of the reddest galaxies of our sample. This work is a first step towards the use of very realistic catalogue of synthetic galaxies to evaluate the contamination of weak lensing measurement by the intrinsic galactic alignments.
Enhanced Elliptic Grid Generation
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
2007-01-01
An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are
NASA Technical Reports Server (NTRS)
Abou-Khousa, M. A.
2009-01-01
A novel modulated slot design has been proposed and tested. The proposed slot is aimed to replace the inefficient small dipoles used in conventional MST-based imaging systems. The developed slot is very attractive as MST array element due to its small size and high efficiency/modulation depth. In fact, the developed slot has been successfully used to implement the first prototype of a microwave camera operating at 24 GHZ. It is also being used in the design of the second generation of the camera. Finally, the designed elliptical slot can be used as an electronically controlled waveguide iris for many other purposes (for instance in constructing waveguide reflective phase shifters and multiplexers/switches).
Zhang, S. B.; Wei, S.-H.; Zunger, Alex
2001-02-15
ZnO typifies a class of materials that can be doped via native defects in only one way: either n type or p type. We explain this asymmetry in ZnO via a study of its intrinsic defect physics, including Zn{sub O}, Zn{sub i}, V{sub O}, O{sub i}, and V{sub Zn} and n-type impurity dopants, Al and F. We find that ZnO is n type at Zn-rich conditions. This is because (i) the Zn interstitial, Zn{sub i}, is a shallow donor, supplying electrons; (ii) its formation enthalpy is low for both Zn-rich and O-rich conditions, so this defect is abundant; and (iii) the native defects that could compensate the n-type doping effect of Zn{sub i} (interstitial O, O{sub i}, and Zn vacancy, V{sub Zn}), have high formation enthalpies for Zn-rich conditions, so these ''electron killers'' are not abundant. We find that ZnO cannot be doped p type via native defects (O{sub i},V{sub Zn}) despite the fact that they are shallow (i.e., supplying holes at room temperature). This is because at both Zn-rich and O-rich conditions, the defects that could compensate p-type doping (V{sub O},Zn{sub i},Zn{sub O}) have low formation enthalpies so these ''hole killers'' form readily. Furthermore, we identify electron-hole radiative recombination at the V{sub O} center as the source of the green luminescence. In contrast, a large structural relaxation of the same center upon double hole capture leads to slow electron-hole recombination (either radiative or nonradiative) responsible for the slow decay of photoconductivity.
Rotating convection in elliptical geometries
NASA Astrophysics Data System (ADS)
Evonuk, M.
2014-12-01
Tidal interactions between hot jupiter planets and their host stars are likely to result in non-spherical geometries. These elliptical instabilities may have interesting effects on interior fluid convective patterns, which in turn influence the nature of the magnetic dynamo within these planets. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine to first order the effect of ellipticity on convection for varying density contrasts with differing convective vigor and rotation rate. This survey is conducted in two dimensions in order to simulate a broad range of ellipticities and to maximize the parameter space explored.
Event-by-Event Elliptic Flow Fluctuations from PHOBOS
NASA Astrophysics Data System (ADS)
Wosiek, B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.
2009-04-01
Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in (Au+Au) collisions at sqrt {sNN}=200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.
THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES
Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.
2012-05-01
We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' Multiplication-Sign 107''), allowing us to achieve remarkably high signal-to-noise ratios of {approx}20-70 pixel{sup -1} in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions {sigma}{sub *} > 150 km s{sup -1}, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by {approx}50%, and only a weak correlation between {sigma}{sub *} and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are {approx} an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 R{sub e} , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high {alpha}-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.
Quasar Radio-Loudness and the Elliptical Core Problem
NASA Astrophysics Data System (ADS)
Hamilton, Timothy S.
2010-01-01
The dichotomy between radio-loud and radio-quiet QSOs is not simply one of host morphology. While radio-louds are almost always found in elliptical hosts, radio-quiets are known to reside in both elliptical and spiral galaxies. We find that what determines whether a given elliptical galaxy will host either a radio-loud or radio-quiet QSO is a combination of accretion rate and host scale. QSOs with high x-ray luminosities (above 10e44.9 erg/s at 0.5 keV) are nearly all found to be radio-loud. But those with low luminosities divide fairly neatly along the Kormendy law, the correlation between re and μe. Those larger than about 10 kpc are radio-loud, while smaller ones are radio-quiet. It has recently been found that core and coreless ellipticals are also divided at about this limit. This implies that for low-luminosity QSOs, radio-louds are found in core ellipticals, while radio-quiets are in coreless ellipticals and spirals. This segregation shows up particularly strongly for low-redshift objects. Since the presence or absence of a core may be tied to the galactic merger history, we have an evolutionary explanation for the differences between radio-loud and radio-quiet QSOs.
Bounding the elliptic Mahler measure
NASA Astrophysics Data System (ADS)
Pinner, Christopher
1998-11-01
We give a simple inequality relating the elliptic Mahler measure of a polynomial to the traditional Mahler measure (via the length of the polynomial). These bounds are essentially sharp. We also give the corresponding result for polynomials in several variables.
NASA Astrophysics Data System (ADS)
Youngblood, Allison; France, Kevin; Parke Loyd, R. O.
2016-01-01
UV stellar radiation can significantly impact planetary atmospheres through heating and photochemistry, even regulating production of potential biomarkers. Cool stars emit the majority of their UV radiation in the form of emission lines, and the incident UV radiation on close-in habitable-zone planets is significant. Lyα (1215.67 Å) dominates the 912 - 3200 Å spectrum of cool stars, but strong absorption from the interstellar medium (ISM) makes direct observations of the intrinsic Lyα emission of even nearby stars challenging. The MUSCLES Hubble Space Telescope Treasury Survey (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) has completed observations of 7 M and 4 K stars hosting exoplanets (d < 22 pc) with simultaneous X-ray and ground-based optical spectroscopy for many of the targets. We have reconstructed the intrinsic Lyα profiles using an MCMC technique and used the results to estimate the extreme ultraviolet (100 - 911 Å) spectrum. We also present empirical relations between chromospheric UV and optical lines, e.g., Lyα, Mg II, Ca II H & K, and Hα, for use when direct UV observations of low-mass exoplanet host stars are not possible. The spectra presented here will be made publicly available through MAST to support exoplanet atmosphere modeling.
Image Ellipticity from Atmospheric Aberrations
de Vries, W H; Olivier, S S; Asztalos, S J; Rosenberg, L J; Baker, K L
2007-03-06
We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1/{radical}N). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.
Decoupling antennas in printed technology using elliptical metasurface cloaks
NASA Astrophysics Data System (ADS)
M. Bernety, Hossein; Yakovlev, Alexander B.
2016-01-01
In this paper, we extend the idea of reducing the electromagnetic interactions between transmitting radiators to the case of widely used planar antennas in printed technology based on the concept of mantle cloaking. Here, we show that how lightweight elliptical metasurface cloaks can be engineered to restore the intrinsic properties of printed antennas with strip inclusions. In order to present the novel approach, we consider two microstrip-fed monopole antennas resonating at slightly different frequencies cloaked by confocal elliptical metasurfaces formed by arrays of sub-wavelength periodic elements, partially embedded in the substrate. The presence of the metasurfaces leads to the drastic suppression of mutual near-field and far-field couplings between the antennas, and thus, their radiation patterns are restored as if they were isolated. Moreover, it is worth noting that this approach is not limited to printed radiators and can be applied to other planar structures as well.
Energy and the Elliptical Orbit
NASA Astrophysics Data System (ADS)
Nettles, Bill
2009-03-01
In the January 2007 issue of The Physics Teacher, Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and important. This paper presents an exercise which uses an energy/angular momentum conservation model for elliptical orbits. This exercise can be done easily by an individual student and on regular notebook-sized paper.
The intrinsic shape of galaxies in SDSS/Galaxy Zoo
NASA Astrophysics Data System (ADS)
Rodríguez, Silvio; Padilla, Nelson D.
2013-09-01
By modelling the axis ratio distribution of Sloan Digital Sky Survey (SDSS) Data Release 8 galaxies, we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267 ± 0.009, slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215 ± 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584 ± 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies, we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.
Choi, Heechae; Song, Jin Dong; Lee, Kwang-Ryeol; Kim, Seungchul
2015-04-20
The visible-light absorption and luminescence of wide band gap (3.25 eV) strontium titanate (SrTiO3) are well-known, in many cases, to originate from the existence of natural oxygen deficiency in the material. In this study based on density functional theory (DFT) calculations, we provide, to the best of our knowledge, the first report indicating that oxygen vacancies in the bulk and on the surfaces of SrTiO3 (STO) play different roles in the optical and magnetic properties. We found that the doubly charged state of oxygen vacancy (VO(2+)) is dominant in bulk SrTiO3 and does not contribute to the sub-band gap photoexcitation or intrinsic magnetism of STO. Neutral oxygen vacancies (VO(0)) on (001) surfaces terminated with both TiO2 and SrO layers induce magnetic moments, which are dependent on the charged state of VO. The calculated absorption spectra for the (001) surfaces exhibit mid-infrared absorption (<0.5 eV) and sub-band gap absorption (2.5-3.1 eV) due to oxygen vacancies. In particular, VO(0) on the TiO2-terminated surface has a relatively low formation energy and magnetic moments, which can explain the recently observed spin-dependent photon absorptions of STO in a magnetic circular dichroism measurement [Rice, W. D.; et al. Nat. Mater.13, 481, 2014]. PMID:25815532
Wavelength meter having elliptical wedge
Hackel, Richard P.; Feldman, Mark
1992-01-01
A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.
Energy and the Elliptical Orbit
ERIC Educational Resources Information Center
Nettles, Bill
2009-01-01
In the January 2007 issue of "The Physics Teacher," Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and…
Wavelength meter having elliptical wedge
Hackel, R.P.; Feldman, M.
1992-12-01
A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.
Liouville Theory and Elliptic Genera
NASA Astrophysics Data System (ADS)
Taormina, A.
The structure and modular properties of N = 4 superconformal characters are reviewed and exploited, in an attempt to construct elliptic genera-like functions by decompactifying K_3. The construction is tested against expressions obtained in the context of strings propagating in background ALE spaces of type A_{N-1}, using the underlying superconformal theory N = 2 minimal ⊗ N = 2 Liouville.
Fourier Series and Elliptic Functions
ERIC Educational Resources Information Center
Fay, Temple H.
2003-01-01
Non-linear second-order differential equations whose solutions are the elliptic functions "sn"("t, k"), "cn"("t, k") and "dn"("t, k") are investigated. Using "Mathematica", high precision numerical solutions are generated. From these data, Fourier coefficients are determined yielding approximate formulas for these non-elementary functions that are…
The ESS elliptical cavity cryomodules
NASA Astrophysics Data System (ADS)
Darve, Christine; Bosland, Pierre; Devanz, Guillaume; Olivier, Gilles; Renard, Bertrand; Thermeau, Jean-Pierre
2014-01-01
The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production.
The ESS elliptical cavity cryomodules
Darve, Christine; Bosland, Pierre; Devanz, Guillaume; Renard, Bertrand; Olivier, Gilles; Thermeau, Jean-Pierre
2014-01-29
The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today’s leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production.
Families of ellipsoidal stellar systems adn the formation of dwarf elliptical galaxies
Kormendy, J.
1985-08-01
Core radii and central surface brightnesses of bulges and elliptical galaxies are measured using CCD photometry obtained with the Canada-France-Hawaii Telescope (scale = 0''.22 pixel/sup -1/; seeing = 0''.45--1''.0 FWHM). The correlations between core parameters are derived and compared for ellipticals, bulges, dwarf spheroidal galaxies, dwarf irregular galaxies, and globular clusters. The results are as follows. 1. Ihe data confirm the existence of well-defined correlations between the core parameters of elliptical galaxies. More luminous ellipticals have larger core radii r/sub c/ and lower central surface brightnesses ..mu../sub 0v/. Galaxies with larger core radii have larger central velocity dispersions. The small, bright core of M32 is normal for a galaxy of M/sub B/ = -15.2. Radio ellipticals and brightest cluster galaxies satisfy the correlations. 2. The bulges of disk galaxies are basically similar to elliptical galaxies. Their cores have slightly smaller r/sub c/ and brighter ..mu../sub 0v/ than ellipticals of the same luminosity, because their nonisothermal profiles rise more rapidly toward the center and because they often contain extra nuclei superposed on their cores. 3. There is a large discontinuity between the parameter correlations for bright ellipticals, including M32, and those for dwarf spheroidals. Seven dE's in the Local Group and three in the Virgo Cluster have core parameters which are correlated, but not as in ordinary ellipticals. More luminous dE's have larger r/sub c/ and brighter ..mu../sub 0v/.
Intrinsic anion oxidation potentials.
Johansson, Patrik
2006-11-01
Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600
Mergers in galaxy groups. I. Structure and properties of elliptical remnants
Taranu, Dan S.; Dubinski, John; Yee, H. K. C.
2013-11-20
We present collisionless simulations of dry mergers in groups of 3 to 25 galaxies to test the hypothesis that elliptical galaxies form at the centers of such groups. Mock observations of the central remnants confirm their similarity to ellipticals, despite having no dissipational component. We vary the profile of the original spiral's bulge and find that ellipticals formed from spirals with exponential bulges have too low Sersic indices. Mergers of spirals with de Vaucouleurs (classical) bulges produce remnants with larger Sersic indices correlated with luminosity, as with Sloan Digital Sky Survey ellipticals. Exponential bulge mergers are better fits to faint ellipticals, whereas classical bulge mergers better match luminous ellipticals. Similarly, luminous ellipticals are better reproduced by remnants undergoing many (>5) mergers, and fainter ellipticals by those with fewer mergers. The remnants follow tight size-luminosity and velocity dispersion-luminosity (Faber-Jackson) relations (<0.12 dex scatter), demonstrating that stochastic merging can produce tight scaling relations if the merging galaxies also follow tight scaling relations. The slopes of the size-luminosity and Faber-Jackson relations are close to observations but slightly shallower in the former case. Both relations' intercepts are offset—remnants are too large but have too low dispersions at fixed luminosity. Some remnants show substantial (v/σ > 0.1) rotational support, although most are slow rotators and few are very fast rotators (v/σ > 0.5). These findings contrast with previous studies concluding that dissipation is necessary to produce ellipticals from binary mergers of spirals. Multiple, mostly minor and dry mergers can produce bright ellipticals, whereas significant dissipation could be required to produce faint, rapidly rotating ellipticals.
Ellipticity of Rayleigh waves and crustal structure in northern Italy
NASA Astrophysics Data System (ADS)
Berbellini, Andrea; Morelli, Andrea; Ferreira, Ana M. G.
2016-04-01
Horizontal-to-vertical amplitude ratio of elliptically-polarised ground motion of Rayleigh waves depends on the local crustal structure. Its measurement therefore adds another, seldom used, tool to image shallow earth structure. Frequency-dependent sensitivity kernels are dominated by shear-wave velocity and are rather shallow, so they are a convenient tool to model sedimentary layers that nicely complement surface wave studies. We perform extensive measurements, in the period range between 10 and 110 s, on traces from about 500 globally-distributed earthquakes, occurred in years 2008 ÷ 2014, recorded by 95 stations in northern Italy - - a region including the wide basin of the Po Plain and encircling Alps and northern Apennines. The observations are well correlated with known strucure: high ellipticity correlates well with low seismic velocity (such as in the Po Plain), and low ellipticity corresponds to fast seismic velocity in hard rock environments in correspondence of Alps and Apennines. Comparison between observations and predicted ellipticity from a reference crustal model of the region (Molinari et al., 2015) shows substantial fit. Sensitivity to vS is quite non linear, but inversion is possible and may provide very useful complementary information to, e.g., surface wave phase or group velocity or receiver functions.
Geometric intrinsic symmetries
Gozdz, A. Szulerecka, A.; Pedrak, A.
2013-08-15
The problem of geometric symmetries in the intrinsic frame of a many-body system (nucleus) is considered. An importance of symmetrization group notion is discussed. Ageneral structure of the intrinsic symmetry group structure is determined.
Elliptic integrals: Symmetry and symbolic integration
Carlson, B.C. |
1997-12-31
Computation of elliptic integrals, whether numerical or symbolic, has been aided by the contributions of Italian mathematicians. Tricomi had a strong interest in iterative algorithms for computing elliptic integrals and other special functions, and his writings on elliptic functions and elliptic integrals have taught these subjects to many modern readers (including the author). The theory of elliptic integrals began with Fagnano`s duplication theorem, a generalization of which is now used iteratively for numerical computation in major software libraries. One of Lauricella`s multivariate hypergeometric functions has been found to contain all elliptic integrals as special cases and has led to the introduction of symmetric canonical forms. These forms provide major economies in new integral tables and offer a significant advantage also for symbolic integration of elliptic integrals. Although partly expository the present paper includes some new proofs and proposes a new procedure for symbolic integration.
Ma, Joel Z.; Russell, Tiffany A.; Spelman, Tim
2014-01-01
Herpes simplex viruses (HSV) are significant human pathogens that provide one of the best-described examples of viral latency and reactivation. HSV latency occurs in sensory neurons, being characterized by the absence of virus replication and only fragmentary evidence of protein production. In mouse models, HSV latency is especially stable but the detection of some lytic gene transcription and the ongoing presence of activated immune cells in latent ganglia have been used to suggest that this state is not entirely quiescent. Alternatively, these findings can be interpreted as signs of a low, but constant level of abortive reactivation punctuating otherwise silent latency. Using single cell analysis of transcription in mouse dorsal root ganglia, we reveal that HSV-1 latency is highly dynamic in the majority of neurons. Specifically, transcription from areas of the HSV genome associated with at least one viral lytic gene occurs in nearly two thirds of latently-infected neurons and more than half of these have RNA from more than one lytic gene locus. Further, bioinformatics analyses of host transcription showed that progressive appearance of these lytic transcripts correlated with alterations in expression of cellular genes. These data show for the first time that transcription consistent with lytic gene expression is a frequent event, taking place in the majority of HSV latently-infected neurons. Furthermore, this transcription is of biological significance in that it influences host gene expression. We suggest that the maintenance of HSV latency involves an active host response to frequent viral activity. PMID:25058429
On the distribution of galaxy ellipticity in clusters
NASA Astrophysics Data System (ADS)
D'Eugenio, F.; Houghton, R. C. W.; Davies, R. L.; Dalla Bontà, E.
2015-07-01
We study the distribution of projected ellipticity n(ɛ) for galaxies in a sample of 20 rich (Richness ≥ 2) nearby (z < 0.1) clusters of galaxies. We find no evidence of differences in n(ɛ), although the nearest cluster in the sample (the Coma Cluster) is the largest outlier (P(same) < 0.05). We then study n(ɛ) within the clusters, and find that ɛ increases with projected cluster-centric radius R (hereafter the ɛ-R relation). This trend is preserved at fixed magnitude, showing that this relation exists over and above the trend of more luminous galaxies to be both rounder and more common in the centres of clusters. The ɛ-R relation is particularly strong in the subsample of intrinsically flattened galaxies (ɛ > 0.4), therefore it is not a consequence of the increasing fraction of round slow rotator galaxies near cluster centers. Furthermore, the ɛ-R relation persists for just smooth flattened galaxies and for galaxies with de Vaucouleurs-like light profiles, suggesting that the variation of the spiral fraction with radius is not the underlying cause of the trend. We interpret our findings in light of the classification of early type galaxies (ETGs) as fast and slow rotators. We conclude that the observed trend of decreasing ɛ towards the centres of clusters is evidence for physical effects in clusters causing fast rotator ETGs to have a lower average intrinsic ellipticity near the centres of rich clusters.
Do elliptical galaxies have thick disks?
NASA Technical Reports Server (NTRS)
Thomson, R. C.; Wright, A. E.
1990-01-01
The authors discuss new evidence which supports the existence of thick disks in elliptical/SO galaxies. Numerical simulations of weak interactions with thick disk systems produce shell structures very similar in appearance to those observed in many shell galaxies. The authors think this model presents a more plausible explanation for the formation of shell structures in elliptical/SO galaxies than does the merger model and, if correct, supports the existence of thick disks in elliptical/SO galaxies.
Line Strength Gradients in Elliptical and Brightest Cluster Galaxies
NASA Astrophysics Data System (ADS)
Fisher, David; Franx, Marijn; Illingworth, Garth
1995-07-01
Line strengths and their gradients in Mg, Fe, and Hβ have been determined for seven elliptical and nine brightest cluster galaxies (BCGs) in order to study their stellar populations and investigate their relationship to one another. We find that BCGs follow the same relationship between central Mg b line strength and central velocity dispersion found for elliptical galaxies. Brightest cluster galaxies are in agreement with the known trend toward more massive elliptical galaxies having larger [Mg/Fe] ratios, while the internal gradients within our BCG and E galaxies are consistent with a roughly constant [Mg/Fe] ratio. We find that a correlation exists between the central [Mg/Fe] ratio and average Hβ line strength in the sense that both BCG and elliptical galaxies with larger [Mg/Fe] ratios have lower
Elliptic solitons in optical fiber media
NASA Astrophysics Data System (ADS)
Fandio Jubgang, Défi, Jr.; Dikandé, Alain M.; Sunda-Meya, A.
2015-11-01
We examine the evolution of a time-varying perturbation signal pumped into a monomode fiber in the anomalous dispersion regime. We establish analytically that the perturbation evolves into a conservative pattern of periodic pulses whose structures and profiles share a close similarity with the so-called soliton-crystal states recently observed in fiber media [see, e.g., A. Haboucha et al., Phys. Rev. A 78, 043806 (2008), 10.1103/PhysRevA.78.043806; D. Y. Tang et al., Phys. Rev. Lett. 101, 153904 (2008), 10.1103/PhysRevLett.101.153904; F. Amrani et al., Opt. Express 19, 13134 (2011), 10.1364/OE.19.013134]. We derive mathematically and generate numerically a crystal of solitons using time-division multiplexing of identical pulses. We suggest that at very fast pumping rates, the pulse signals overlap and create an unstable signal that is modulated by the fiber nonlinearity to become a periodic lattice of pulse solitons that can be described by elliptic functions. We carry out a linear stability analysis of the soliton-crystal structure and establish that the correlation of centers of mass of interacting pulses broadens their internal-mode spectrum, some modes of which are mutually degenerate. While it has long been known that high-intensity periodic pulse trains in optical fibers are generated from the phenomenon of modulational instability of continuous waves, the present study provides evidence that they can also be generated via temporal multiplexing of an infinitely large number of equal-intensity single pulses to give rise to stable elliptic solitons.
A relation between the dark mass of elliptical galaxies and their shape
NASA Astrophysics Data System (ADS)
Deur, A.
2014-02-01
We have studied a large number of elliptical galaxies and found a correlation between their dark matter content and the ellipticity of their visible shape. The galaxies were strictly selected so that only typical medium-size elliptical galaxies were considered. Galaxies with unusual characteristics were rejected to minimize point-to-point data scatter and avoid systematic biases. Data from six different techniques of extracting the galactic dark matter content were used to avoid methodological biases. A thorough investigation of the interrelation between attributes of elliptical galaxies was carried out to assess whether the correlation originates from an observational bias, but no such origin could be identified. At face value, the correlation found implies that at equal luminosities, rounder medium-size elliptical galaxies appear to contain less dark matter than flatter elliptical galaxies, e.g. the rounder galaxies are on average four times less massive than the flatter ones. This is puzzling in the context of the conventional model of cosmological structure formation.
Dark matter in elliptical galaxies
NASA Technical Reports Server (NTRS)
Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.
1995-01-01
We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.
Isolated elliptical galaxies in the local Universe
NASA Astrophysics Data System (ADS)
Lacerna, I.; Hernández-Toledo, H. M.; Avila-Reese, V.; Abonza-Sane, J.; del Olmo, A.
2016-04-01
Context. We have studied a sample of 89 very isolated, elliptical galaxies at z < 0.08 and compared their properties with elliptical galaxies located in a high-density environment such as the Coma supercluster. Aims: Our aim is to probe the role of environment on the morphological transformation and quenching of elliptical galaxies as a function of mass. In addition, we elucidate the nature of a particular set of blue and star-forming isolated ellipticals identified here. Methods: We studied physical properties of ellipticals, such as color, specific star formation rate, galaxy size, and stellar age, as a function of stellar mass and environment based on SDSS data. We analyzed the blue and star-forming isolated ellipticals in more detail, through photometric characterization using GALFIT, and infer their star formation history using STARLIGHT. Results: Among the isolated ellipticals ≈20% are blue, ≲8% are star forming, and ≈10% are recently quenched, while among the Coma ellipticals ≈8% are blue and just ≲1% are star forming or recently quenched. There are four isolated galaxies (≈4.5%) that are blue and star forming at the same time. These galaxies, with masses between 7 × 109 and 2 × 1010 h-2 M⊙, are also the youngest galaxies with light-weighted stellar ages ≲1 Gyr and exhibit bluer colors toward the galaxy center. Around 30-60% of their present-day luminosity, but only <5% of their present-day mass, is due to star formation in the last 1 Gyr. Conclusions: The processes of morphological transformation and quenching seem to be in general independent of environment since most of elliptical galaxies are "red and dead", although the transition to the red sequence should be faster for isolated ellipticals. In some cases, the isolated environment seems to propitiate the rejuvenation of ellipticals by recent (<1 Gyr) cold gas accretion.
Matrix factorizations and elliptic fibrations
NASA Astrophysics Data System (ADS)
Omer, Harun
2016-09-01
I use matrix factorizations to describe branes at simple singularities of elliptic fibrations. Each node of the corresponding Dynkin diagrams of the ADE-type singularities is associated with one indecomposable matrix factorization which can be deformed into one or more factorizations of lower rank. Branes with internal fluxes arise naturally as bound states of the indecomposable factorizations. Describing branes in such a way avoids the need to resolve singularities. This paper looks at gauge group breaking from E8 fibers down to SU (5) fibers due to the relevance of such fibrations for local F-theory GUT models. A purpose of this paper is to understand how the deformations of the singularity are understood in terms of its matrix factorizations. By systematically factorizing the elliptic fiber equation, this paper discusses geometries which are relevant for building semi-realistic local models. In the process it becomes evident that breaking patterns which are identical at the level of the Kodaira type of the fibers can be inequivalent at the level of matrix factorizations. Therefore the matrix factorization picture supplements information which the conventional less detailed descriptions lack.
Advanced Light Source elliptical wiggler
Hoyer, E.; Akre, J.; Humphries, D.; Marks, S.; Minamihara, Y.; Pipersky, P.
1994-07-01
A 3.5m long elliptical wiggler, optimized to produce elliptically polarized light in the 50 eV to 10 keV range, is currently under design and construction at the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory. Calculations of spectral performance show that the flux of circularly polarized photons exceeds 10{sup 13} photons/sec over the 50 eV to 10 keV operating range for current of 0.4 amps and 1.5 GeV electron energy. This device features vertical and horizontal magnetic structures of 14 and 14{1/2} periods respectively. The period length is 20.0 cm. The vertical structure is a hybrid permanent magnet design with tapered pole tips that produce a peak field of 2.0 T. The horizontal structure is an iron core electromagnetic design, shifted longitudinally {1/4} period, that is tucked between the upper and lower vertical magnetic structure sections. A maximum peak oscillating field of 0.095 T at a frequency up to 1 Hz will be achieved by excitation of the horizontal poles with a trapezoidal current waveform. The vacuum chamber is an unconventional design that is removable from the magnetic structure, after magnetic measurements, for UHV processing. The chamber is fabricated from non-magnetic stainless steel to minimize the effects of eddy currents. Device design is presented.
Shaping the beam profile of an elliptical Gaussian beam by an elliptical phase aperture
NASA Astrophysics Data System (ADS)
Wen, Wei; Wu, Gaofeng; Song, Kehui; Dong, Yiming
2013-03-01
Based on the generalized Collins integral formula, an analytical paraxial propagation formula for an elliptical Gaussian beam (EGB) passing through an astigmatic ABCD optical system with an elliptical phase aperture is derived by use of a tensor method. As an application example, we study the propagation properties of an EGB passing through an elliptical aperture in free space. It is found that the elliptical phase aperture can be used for shaping the beam profile of an EGB, which is useful in many applications, such as free space optical communication and material thermal processing. The elliptical phase aperture induced changes of the propagation factors of an EGB are also analyzed.
Wang, Jinbu; Walsh, Joseph D; Kuszewski, John; Wang, Yun-Xing
2007-11-01
We present a detailed description of a theory and a program called 3P. "3P" stands for periodicity, planarity, and pixel. The 3P program is based on the intrinsic periodic correlations between residual dipolar couplings (RDCs) and in-plane internuclear vectors, and between RDCs and the orientation of peptide planes relative to an alignment tensor. The program extracts accurate rhombic, axial components of the alignment tensor without explicit coordinates, and discrete peptide plane orientations, which are utilized in combination with readily available phi/psi angles to determine the three-dimensional backbone structures of proteins. The 3P program uses one alignment tensor. We demonstrate the utility and robustness of the program, using both experimental and synthetic data sets, which were added with different levels of noise or were incomplete. The program is interfaced to Xplor-NIH via a "3P" module and is available to the public. The limitations and differences between our program and existing methods are also discussed. PMID:17892961
ELLIPTIC FLOW FROM COLOR GLASS CONDENSATE.
KRASNITZ,A.; NARA,Y.; VENUGOPALAN,R.
2002-07-18
We show that an observable fraction of the measured elliptic flow may originate in classical gluon fields at the initial stage of a peripheral high-energy nuclear collision. This mechanism complements the contribution of late stage mechanisms, such as those described by hydrodynamics, to the observed elliptic flow.
Pressure algorithm for elliptic flow calculations with the PDF method
NASA Technical Reports Server (NTRS)
Anand, M. S.; Pope, S. B.; Mongia, H. C.
1991-01-01
An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.
Protein phase diagrams: The physics behind their elliptic shape
NASA Astrophysics Data System (ADS)
Lesch, Harald; Hecht, Christoph; Friedrich, Josef
2004-12-01
We relate the condition for the elliptic shape of the phase diagram of proteins to the degree of correlation in the fluctuations of the changes of enthalpy and volume at the denaturing-refolding transition. Since this degree cannot be larger than 1, hyperbolically shaped diagrams are not likely to exist. Experiments show that the correlation factor is actually quite low for proteins implying that one-order parameter is not enough to describe the folding-denaturing transition. These findings seem to be the thermodynamic manifestation of the glasslike properties of proteins despite the fact that the transition itself is of first order.
Euler characteristics and elliptic curves.
Coates, J; Howson, S
1997-10-14
Let E be a modular elliptic curve over [symbol, see text], without complex multiplication; let p be a prime number where E has good ordinary reduction; and let Finfinity be the field obtained by adjoining [symbol, see text] to all p-power division points on E. Write Ginfinity for the Galois group of Finfinity over [symbol, see text]. Assume that the complex L-series of E over [symbol, see text] does not vanish at s = 1. If p >/= 5, we make a precise conjecture about the value of the Ginfinity-Euler characteristic of the Selmer group of E over Finfinity. If one makes a standard conjecture about the behavior of this Selmer group as a module over the Iwasawa algebra, we are able to prove our conjecture. The crucial local calculations in the proof depend on recent joint work of the first author with R. Greenberg. PMID:11607752
Elliptical orbit performance computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1981-01-01
A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.
The elliptical multipole wiggler project
Gluskin, E.; Frachon, D.; Ivanov, P.M.
1995-06-01
The elliptical multipole wiggler (EMW) has been designed, constructed, and installed in the X13 straight section of the NSLS X-ray Ring. The EMW generates circularly polarized photons in the energy range of 0.1-10 keV with AC modulation of polarization helicity. The vertical magnetic field of 0.8 T is produced by a hybrid permanent magnet structure with a period of 16 cm. The horizontal magnetic field of 0.22 T is generated by an electromagnet, the core of which is fabricated from laminated iron to operate with a switching frequency up to 100 Hz. There are dynamic compensation trim magnets at the wiggler ends to control the first and second field integrals with very high accuracy throughout the AC cycle. The residual closed orbit motion due to the electromagnet AC operation is discussed.
The intrinsic shape of NGC 3379
NASA Technical Reports Server (NTRS)
Statler, Thomas S.
1994-01-01
Photometric and kinematic data from the literature are combined with new dynamical models to derive the intrinsic shape of the 'standard' elliptical galaxy NGC 3379. The parameters that are best constrained are the dynamical triaxiality T (essentially the triaxiality of the total mass distribution) and the short-to long axis ratio of the light distribution c(sub L). The inferred shape is given by a Bayesian probability distribution in the (T, c(sub L) plane. Assuming a uniform prior, the most probable shape is oblate with a flattening of c(sub L) = 87. The distribution is strongly non-Gaussian, however, and the expectation values, (T) = .31 (c(sub L) = .75, imply a flatter and more triaxial figure. The 68% highest posterior density region allows more triaxial shapes as long as they are fairly round, or flatter shapes as long as they are nearly oblate. These results are essentially unchanged if the galaxy is assumed to rotate about its short axis, or if it is modeled as an S0 with a negligible-mass disk rather than as an elliptical. The suggestion of Capaccioli et al. (ApJ, 371, 535 (1991)) that NGC 3379 is a rather flat, triaxial S0 galaxy is found to be improbable at the 98% level; this conclusion is largely independent of the bulge-to-disk ratio or the relative rotation speeds of the two components.
Intraday Variability: Intrinsic or Extrinsic?
NASA Astrophysics Data System (ADS)
Sarma Kuchibhotla, Huthavahana; Lister, Matthew; Homan, Dan; Kellermann, Ken; Aller, Hugh; Aller, Margo; Agudo, Ivan; Arshakian, Tigran; Kovalev, Yuri; Lobanov, Andrew; Pushkarev, Alexander; Ros, Eduardo; Savolainen, Tuomas; Zensus, Tony; Kadler, Matthias; Vermeulen, Rene; Gehrels, Neil; McEnery, Julie; Sambruna, Rita; Tueller, Jack; Cohen, Marshall; Hovatta, Talvikki; Kharb, Preeti; Cooper, Nathan; Hogan, Brandon; Cara, Mihai
A significant fraction of flat spectrum AGN exhibit rapid variability both in total intensity as well as polarization at cm wavelengths, on time scales ranging from a few hours to a few days, a phenomenon termed Intra Day Variability (IDV). The physical process responsible for this behavior is not well understood, though various models ranging from source-intrinsic (e.g., shock-in-jet) to source-extrinsic (e.g., scintillation due to electron density fl uctuations in the interstellar medium) have been proposed. The absence of multi-epoch data (especially at 2 cm) further exacerbates the situation. We present the results of analysis of archival VLBA data for a flux density limited sample of bright, flat spectrum AGN located predominantly in the north-ern sky, collected under the MOJAVE program. We find a clear detection of IDV in 25% of the 365 sources analyzed. We find significant differences in the IDV properties of quasars and true BL Lacs. Intermediate BL Lac objects, so classified due to the presence of broad lines in their optical spectra, have IDV characteristics similar to those of quasars. As expected, the presum-able weakly beamed CSS/GPS sources show no IDV. We find IDV properties to be correlated with source intrinsic properties such as Brightness temperature/Doppler factor and apparent speed. Episodes of IDV activity associated with radio flaring and/or component ejection have also been observed, suggesting an intrinsic mechanism at work. However, we also find IDV to be strongly correlated with the galactic latitude position of the source, indicative of a scintil-lation mechanism. However, we find no correlation between IDV and the observing day of the year, IDV and redshift of the source. We propose a qualitative model to explain all these results. The program is supported under the NSF grant 080786-AST and NASA grant NNX08AV67G.
Radial Motions in Disk Stars: Ellipticity or Secular Flows?
NASA Astrophysics Data System (ADS)
López-Corredoira, M.; González-Fernández, C.
2016-06-01
Average stellar orbits of the Galactic disk may have some small intrinsic ellipticity which breaks the exact axisymmetry and there may also be some migration of stars inwards or outwards. Both phenomena can be detected through kinematic analyses. We use the red clump stars selected spectroscopically from the APO Galactic Evolution Experiment, with known distances and radial velocities, to measure the radial component of the Galactocentric velocities within 5 kpc < R < 16 kpc, | b| \\lt 5^\\circ , and within 20° from the Sun–Galactic center line. The average Galactocentric radial velocity is VR = (1.48 ± 0.35)[R(kpc) ‑ (8.8 ± 2.7)] km s‑1 outwards in the explored range, with a higher contribution from stars below the Galactic plane. Two possible explanations can be given for this result: (i) the mean orbit of the disk stars is intrinsically elliptical with a Galactocentric radial gradient of eccentricity around 0.01 kpc‑1 or (ii) there is a net secular expansion of the disk, in which stars within R ≈ 9–11 kpc are migrating to the region R ≳ 11 kpc at the rate of ∼2 M⊙ yr‑1, and stars with R ≲ 9 kpc are falling toward the center of the Galaxy. This migration ratio would be unattainable for a long time and should decelerate, otherwise the Galaxy would fade away in around 1 Gyr. At present, both hypotheses are speculative and one would need data on the Galactocentric radial velocities for other azimuths different to the center or anticenter in order to confirm one of the scenarios.
Elliptic Functions with Disconnected Julia Sets
NASA Astrophysics Data System (ADS)
Koss, Lorelei
2016-06-01
In this paper, we investigate elliptic functions of the form fΛ = 1/(1 + (℘Λ)2), where ℘Λ is the Weierstrass elliptic function on a real rhombic lattice. We show that a typical function in this family has a superattracting fixed point at the origin and five other equivalence classes of critical points. We investigate conditions on the lattice which guarantee that fΛ has a double toral band, and we show that this family contains the first known examples of elliptic functions for which the Julia set is disconnected but not Cantor.
Ellipticity of Rayleigh waves in basin and hard-rock sites in Northern Italy
NASA Astrophysics Data System (ADS)
Berbellini, Andrea; Morelli, Andrea; Ferreira, Ana M. G.
2016-07-01
We measure ellipticity of teleseismic Rayleigh waves at 95 seismic stations in Northern Italy, for wave period between 10 and 110 s, using an automatic technique and a large volume of high-quality seismic recordings from over 500 global earthquakes that occurred in 2008-2014. Northern Italy includes a wide range of crustal structures, from the wide and deep Po Plain sedimentary basin to outcropping sedimentary and crystalline rocks in the Northern Apennines and Alps. It thus provides an excellent case for studying the influence of shallow earth structure on polarization of surface waves. The ellipticity measurements show excellent spatial correlation with geological features in the region, such as high ellipticity associated with regions of low seismic velocity in the Po Plain and low ellipticity values in faster, hard rock regions in the Alps and Apennine mountains. Moreover, the observed ellipticity values also relate to the thickness of the basement, as highlighted by observed differences beneath the Alps and the Apennines. Comparison between observations and predicted ellipticity from a reference crustal model of the region show substantial fit, particularly for T ˜ 38 s data. Discrepancy for shorter wave period suggests that slight modifications of the model are needed, and that the ellipticity measurements could help to better constrain the shallow crustal structure of the region. Predictions for the Po Plain are larger than the observations by a factor of four or more and transition from retrograde to prograde Rayleigh wave motion at the surface for periods of T ˜ 10-13 s is predicted for seismic stations in the plain. Analysis of corresponding real data indicates a possible detection of teleseismic prograde particle motion, but the weak teleseismic earthquake signals are mixed with ambient noise signals at the predicted, short, transition periods. Detection of the period of polarity inversion from the joint analysis of earthquake and ambient noise
Ellipticity of Rayleigh waves in basin and hard-rock sites in Northern Italy
NASA Astrophysics Data System (ADS)
Berbellini, Andrea; Morelli, Andrea; Ferreira, Ana M. G.
2016-04-01
We measure ellipticity of teleseismic Rayleigh waves at 95 seismic stations in Northern Italy, for wave period between 10 s and 110 s, using an automatic technique and a large volume of high-quality seismic recordings from over 500 global earthquakes that occurred in 2008-2014. Northern Italy includes a wide range of crustal structures, from the wide and deep Po Plain sedimentary basin to outcropping sedimentary and cristalline rocks in the Northern Apennines and Alps. It thus provides an excellent case for studying the influence of shallow earth structure on polarisation of surface waves. The ellipticity measurements show excellent spatial correlation with geological features in the region, such as high ellipticity associated with regions of low seismic velocity in the Po Plain and low ellipticity values in faster, hard rock regions in the Alps and Apennine mountains. Moreover, the observed ellipticity values also relate to the thickness of the basement, as highlighted by observed differences beneath the Alps and the Apennines. Comparison between observations and predicted ellipticity from a reference crustal model of the region show substantial fit, particularly for T ˜ 38 s data. Discrepancy for shorter wave period suggests that slight modifications of the model are needed, and that the ellipticity measurements could help to better constrain the shallow crustal structure of the region. Predictions for the Po Plain are larger than the observations by a factor of four or more and transition from retrograde to prograde Rayleigh wave motion at the surface for periods of T ˜ 10-13 s is predicted for seismic stations in the Plain. Analysis of corresponding real data indicates a possible detection of teleseismic prograde particle motion, but the weak teleseismic earthquake signals are mixed with ambient noise signals at the predicted, short, transition periods. Detection of the period of polarity inversion from the joint analysis of earthquake and ambient noise
NASA Astrophysics Data System (ADS)
Snellings, Raimond
2011-05-01
One of the fundamental questions in the field of subatomic physics is the question of what happens to matter at extreme densities and temperatures as may have existed in the first microseconds after the Big Bang and exists, perhaps, in the core of dense neutron stars. The aim of heavy-ion physics is to collide nuclei at very high energies and thereby create such a state of matter in the laboratory. The experimental program began in the 1990s with collisions made available at the Brookhaven Alternating Gradient Synchrotron (AGS) and the CERN Super Proton Synchrotron (SPS), and continued at the Brookhaven Relativistic Heavy-Ion Collider (RHIC) with the maximum center-of-mass energies of \\sqrt{s_{NN}} = 4.75 , 17.2 and 200 GeV, respectively. Collisions of heavy ions at the unprecedented energy of 2.76 TeV recently became available at the LHC collider at CERN. In this review, I give a brief introduction to the physics of ultrarelativistic heavy-ion collisions and discuss the current status of elliptic flow measurements.
Mapping Elliptical Orbits Around Europa
NASA Astrophysics Data System (ADS)
Vilhena de Moraes, Rodolpho; Prado, Antonio; Carvalho, Jean Paulo; Cardoso dos Santos, Josué
Due to specifics scientific purposes space missions has been proposed to explore natural satellites, comets and asteroids sending artificial satellites orbiting around these bodies. The planning of such missions must be taken into account a good choice for the orbits that reduces the cost related to station-keeping and the increasing the duration of the mission. The present research has the objective of using a new concept to map with respect the station-keeping maneuvers to study elliptical orbits around Europa. This concept is based in the integral of the perturbing forces over the time. This value can estimate the total variation of velocity received by the spacecraft from the perturbations forces acting on it. The value of this integral is a characteristic of the perturbations considered and the orbit chosen for the spacecraft. Numerical simulations are made showing the value of this integral for orbits around Europa as a function of the eccentricity and semi-major axis of the orbits. An important application of the present research is in the search for frozen orbits.
Consideration of the Martian magnetotail as evidence for an intrinsic magnetic field
NASA Technical Reports Server (NTRS)
Brecht, Stephen H.
1995-01-01
It has been suggested by Verigin et al. (1993) that the response of the Martian magnetotail to changes in the solar wind ram pressure indicates the presence of an intrinsic dipole magnetic field. 3-D hybrid particle simulations of Mars were performed including the magnetotail regions. The simulations are in agreement with published Phobos 2 data from the 3 elliptical orbits and reproduce the magnetopause diameter dependence on the solar wind ram pressure reported by Verigin et al. (1993). However, the simulations were performed with no intrinsic field present, indicating that the dependence of the magnetotail width on ram pressure, is not a discriminator for the presence of the intrinsic field.
Intrinsic time quantum geometrodynamics
NASA Astrophysics Data System (ADS)
Ita, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai
2015-08-01
Quantum geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl curvature hypothesis, and thermodynamic and gravitational "arrows of time" point in the same direction. Ricci scalar potential corresponding to Einstein's general relativity emerges as a zero-point energy contribution. A new set of fundamental commutation relations without Planck's constant emerges from the unification of gravitation and quantum mechanics.
Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics
Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Matteo, Tiziana Di; Feng, Yu; Khandai, Nishikanta
2015-03-11
The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensormore » but that luminosity versus mass weighting has only negligible effects. Both ED and wg₊ correlations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M⊙), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a wg₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that wg₊ (using subhalos as tracers of density and wδ (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.« less
Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics
Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Matteo, Tiziana Di; Feng, Yu; Khandai, Nishikanta
2015-03-11
The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (w_{g}₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensor but that luminosity versus mass weighting has only negligible effects. Both ED and w_{g}₊ correlations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M_{⊙}), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a w_{g}₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that w_{g}₊ (using subhalos as tracers of density and w_{δ} (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.
The Stellar Population Histories of Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Trager, Scott Charles
1997-08-01
This dissertation sets out to probe the stellar population histories of local field and distant cluster elliptical galaxies. Absorption-line strengths of the centers of 381 early-type galaxies and 38 globular clusters measured from the Lick Image Dissector Scanner (Lick/IDS) are presented. Error estimation and corrections for velocity-dispersion broadening are described in detail. Monte Carlo simulations show that the Lick/IDS data are not accurate enough to infer ages and abundances of individual ellipticals with confidence. The excellent data of Gonzalez (1993) are therefore used to infer the stellar population ages and abundances of the centers of local field ellipticals. Elliptical galaxy nuclei follow three relations in this sample. (1) The t-Z relation. Elliptical nuclei have an age-abundance relation at fixed velocity dispersion σ that follows the Worthey (1994) '3/2 rule.' Ellipticals therefore have fixed color and metal-line strengths at fixed σ. (2) The σ-Z relation. The abundance zeropoint of the t-Z relation increases with increasing σ. Taken together, (1) and (2) predict scaling relations like the Mg2-σ and color-magnitude relations. (3) The σ- (Mg/Fe) relation. The abundance ratio (Mg/Fe) increases with increasing σ, as the σ-Z relation for Mg has twice the slope of the σ-Z relation for Fe. Relations (1)-(3) can be expressed as a pair of planes in t-Z-σ space, one for Fe and one for Mg, with similar age dependences but different σ-dependences. Scenarios for the possible origins of these relations are presented. Absorption-line strengths of eighteen early-type galaxies in two rich clusters at z = 0.41 (CL0939 + 4713) and z = 0.76 (CL1322 + 3027) have been measured from Keck LRIS spectra. The Balmer-line strengths of ellipticals at z = 0.41 are consistent with passive evolution of local field ellipticals but seem too metal-rich. Both Balmer- and metal-line strengths of ellipticals at z = 0.76 are consistent with passive evolution of local
Rayleigh-wave ellipticity and shallow structure in sedimentary basins: the Po Plain (northern Italy)
NASA Astrophysics Data System (ADS)
Berbellini, A.; Morelli, A.; Ferreira, A. M. G.
2015-12-01
The amplitude ratio between horizontal and vertical components of Rayleigh waves (also known as ellipticity) is in principle uniquely sensitive to local earth structure beneath each recording station. Rayleigh wave ellipticity is mostly influenced by the shallowest layers, so it can be effectively used to infer the structure of the uppermost crust, with particular relevance for sedimentary environments. We implement an automatic method to measure Rayleigh wave ellipticity, and extensively apply it to teleseismic records from the northern part of Italy, for a period range between 10s and 130s. As expected, no appreciable correlation with epicenter distance or azimuth can be seen, but rather a strong correlation with local structure: generally high horizontal to vertical amplitude ratios are seen in sedimentary settings, with respect to Alpine and Apenninic crystalline-rock terrains. We verify that shortest usable period may be limited by very low shear-wave velocity in shallow sediments, when the assumed retrograde elliptical particle motion polarisation for the fundamental mode breaks off. The highly non-linear sensitivity of frequency-dependent ellipticity curves can then be inverted using a direct search method to infer shear wave velocity profiles below stations. By comparing our results with local a priori geological information we show that robust information can indeed be retrieved.
Predicting Intrinsic Motivation
ERIC Educational Resources Information Center
Martens, Rob; Kirschner, Paul A.
2004-01-01
Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the extent to…
Rayleigh wave ellipticity across the Iberian Peninsula and Morocco
NASA Astrophysics Data System (ADS)
Gómez García, Clara; Villaseñor, Antonio
2015-04-01
Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared
ERIC Educational Resources Information Center
Moneta, Giovanni B.; Siu, Christy M. Y.
2002-01-01
Examines the effects of trait intrinsic and extrinsic motivations, measured by the Work Preference Inventory, on creativity and academic performance. In an experimental creative writing task, intrinsic motivation correlated with creativity. In a follow-up study, intrinsic motivation correlated negatively with year-1 GPA, whereas extrinsic…
Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?
NASA Astrophysics Data System (ADS)
Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.
2001-12-01
We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.
Vortex dynamics in thin elliptic ferromagnetic nanodisks
NASA Astrophysics Data System (ADS)
Wysin, G. M.
2015-10-01
Vortex gyrotropic motion in thin ferromagnetic nanodisks of elliptical shape is described here for a pure vortex state and for a situation with thermal fluctuations. The system is analyzed using numerical simulations of the Landau-Lifshitz-Gilbert (LLG) equations, including the demagnetization field calculated with a Green's function approach for thin film problems. At finite temperature the thermalized dynamics is found using a second order Heun algorithm for a magnetic Langevin equation based on the LLG equations. The vortex state is stable only within a limited range of ellipticity, outside of which a quasi-single-domain becomes the preferred minimum energy state. A vortex is found to move in an elliptical potential, whose force constants along the principal axes are determined numerically. The eccentricity of vortex motion is directly related to the force constants. Elliptical vortex motion is produced spontaneously by thermal fluctuations. The vortex position and velocity distributions in thermal equilibrium are Boltzmann distributions. The results show that vortex motion in elliptical disks can be described by a Thiele equation.
Elastodynamics and resonances in elliptical geometry
NASA Astrophysics Data System (ADS)
Ancey, S.; Bazzali, E.; Gabrielli, P.; Mercier, M.
2013-11-01
The resonant modes of two-dimensional elastic elliptical objects are studied from a modal formalism by emphasizing the role of the symmetries of the objects. More precisely, as the symmetry is broken in the transition from the circular disc to the elliptical one, the splitting up of resonances and level crossings are observed. From the mathematical point of view, this observation can be explained by the broken invariance of the continuous symmetry group { {O}(2)} associated with the circular disc. The elliptical disc is however invariant under the finite group { {C}}_{2v} and the resonances are classified and associated with a given irreducible representation of this group. The main difficulty arises in the application of the group theory in elastodynamics where the vectorial formalism is used to express the physical quantities (elastic displacement and stress) involved in the boundary conditions. However, this method significantly simplifies the numerical treatment of the problem which is uncoupled over the four irreducible representations of { {C} }_{2v}. This provides a full classification of the resonances. They are tagged and tracked as the eccentricity of the elliptical disc increases. Then, the splitting up of resonances, which occurs in the transition from the circular disc to the elliptic one, is emphasized. The computation of displacement normal modes also highlights the mode splittings. A physical interpretation of resonances in terms of geometrical paths is provided.
Metallicity and the level of the ultraviolet rising branch in elliptical galaxies
NASA Technical Reports Server (NTRS)
Faber, S. M.
1986-01-01
This final report concerns a project to study the systematics of the ultraviolet flux level in elliptical galaxies. Prior to the inception of this work, the systematic behavior of the ultraviolet flux level was basically unknown and ultraviolet fluxes were observed to vary greatly from galaxy to galaxy. There was a suggestion, however, that there might be a dependence of ultraviolet flux on galaxy metallicity, but the correlation was based on just six galaxies. IUE spectra of elliptical galaxies have been reanalyzed and placed on a consistent, homogenous flux system. The major conclusion is a confirmation of the original hypothesis: galaxies with stronger Mg2 lines show enhanced ultraviolet flux.
The surface-brightness-effective-size relation for elliptical galaxies in the cores of clusters
NASA Technical Reports Server (NTRS)
Hoessel, J. G.; Oegerle, W. R.; Schneider, D. P.
1987-01-01
Surface photometry of 372 elliptical galaxies has been performed using CCD images of the centers of 97 nearby rich Abell clusters. The strong correlation between surface brightness and effective size, originally found by Kormendy (1977), is clear in the data. Brightest cluster galaxies show much less scatter about the mean relation defined by these data than do lower-luminosity cluster ellipticals, and the slope of the relation is shallower for the brightest galaxies; these two results are tentative, however, because of uncertain selection and environmental effects. When combined with published central velocity dispersions, the photometry yields a relation for brightest cluster galaxies that is in good agreement with the mean relation for elliptical galaxies found by Djorgovski and Davis (1987). Use of the surface-brightness/scale-length relation to measure the lookback luminosity evolution of the stellar content in galaxies is promising.
Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition
NASA Technical Reports Server (NTRS)
Smart, M. K.
1998-01-01
A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point.
A new method for the identification of non-Gaussian line profiles in elliptical galaxies
NASA Technical Reports Server (NTRS)
Van Der Marel, Roeland P.; Franx, Marijn
1993-01-01
A new parameterization for the line profiles of elliptical galaxies, the Gauss-Hermite series, is proposed. This approach expands the line profile as a sum of orthogonal functions which minimizes the correlations between the errors in the parameters of the fit. This method also make use of the fact that Gaussians provide good low-order fits to observed line profiles. The method yields measurements of the line strength, mean radial velocity, and the velocity dispersion as well as two extra parameters, h3 and h4, that measure asymmetric and symmetric deviations of the line profiles from a Gaussian, respectively. The new method was used to derive profiles for three elliptical galaxies which all have asymmetric line profiles on the major axis with symmetric deviations from a Gaussian. Results confirm that elliptical galaxies have complex structures due to their complex formation history.
Three-dimensional instability of elliptical flow
NASA Astrophysics Data System (ADS)
Bayly, B. J.
1986-10-01
A clarification of the physical and mathematical nature of Pierrhumbert's (1986) three-dimensional short-wave inviscid instability of simple two-dimensional elliptical flow is presented. The instabilities found are independent of length scale, extending Pierrhumbert's conclusion that the structures of the instabilities are independent of length scale in the limit of large wave number. The fundamental modes are exact solutions of the nonlinear equations, and they are plane waves whose wave vector rotates elliptically around the z axis with a period of 2(pi)/Omega. The growth rates are shown to be the exponents of a matrix Floquet problem, and good agreement is found with previous results.
Spontaneous motion of an elliptic camphor particle
NASA Astrophysics Data System (ADS)
Kitahata, Hiroyuki; Iida, Keita; Nagayama, Masaharu
2013-01-01
The coupling between deformation and motion in a self-propelled system has attracted broader interest. In the present study, we consider an elliptic camphor particle for investigating the effect of particle shape on spontaneous motion. It is concluded that the symmetric spatial distribution of camphor molecules at the water surface becomes unstable first in the direction of a short axis, which induces the camphor disk motion in this direction. Experimental results also support the theoretical analysis. From the present results, we suggest that when an elliptic particle supplies surface-active molecules to the water surface, the particle can exhibit translational motion only in the short-axis direction.
Intrinsic and extrinsic mortality reunited.
Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P; van Bodegom, David; Westendorp, Rudi G J
2015-07-01
Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic stressors in the causation of aging leads to the recognition that aging is not inevitable, but malleable through the environment. PMID:25916736
Direct Detections of Young Stars in Nearby Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Ford, H. Alyson; Bregman, Joel N.
2013-06-01
Small amounts of star formation in elliptical galaxies are suggested by several results: surprisingly young ages from optical line indices, cooling X-ray gas, and mid-infrared dust emission. Such star formation has previously been difficult to directly detect, but using ultraviolet Hubble Space Telescope Wide Field Camera 3 imaging, we have identified individual young stars and star clusters in four nearby ellipticals. Ongoing star formation is detected in all galaxies, including three ellipticals that have previously exhibited potential signposts of star-forming conditions (NGC 4636, NGC 4697, and NGC 4374), as well as the typical "red and dead" NGC 3379. The current star formation in our closest targets, where we are most complete, is between 2.0 and 9.8 × 10-5 M ⊙ yr-1. The star formation history was roughly constant from 0.5 to 1.5 Gyr (at (3-5) × 10-4 M ⊙ yr-1), but decreased by a factor of several in the past 0.3 Gyr. Most star clusters have a mass between 102 and 104 M ⊙. The specific star formation rates of ~10-16 yr-1 (at the present day) or ~10-14 yr-1 (when averaging over the past Gyr) imply that a fraction 10-8 of the stellar mass is younger than 100 Myr and 10-5 is younger than 1 Gyr, quantifying the level of frosting of recent star formation over the otherwise passive stellar population. There is no obvious correlation between either the presence or spatial distribution of postulated star formation indicators and the star formation we detect. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 11583.
DIRECT DETECTIONS OF YOUNG STARS IN NEARBY ELLIPTICAL GALAXIES
Ford, H. Alyson; Bregman, Joel N.
2013-06-20
Small amounts of star formation in elliptical galaxies are suggested by several results: surprisingly young ages from optical line indices, cooling X-ray gas, and mid-infrared dust emission. Such star formation has previously been difficult to directly detect, but using ultraviolet Hubble Space Telescope Wide Field Camera 3 imaging, we have identified individual young stars and star clusters in four nearby ellipticals. Ongoing star formation is detected in all galaxies, including three ellipticals that have previously exhibited potential signposts of star-forming conditions (NGC 4636, NGC 4697, and NGC 4374), as well as the typical ''red and dead'' NGC 3379. The current star formation in our closest targets, where we are most complete, is between 2.0 and 9.8 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}. The star formation history was roughly constant from 0.5 to 1.5 Gyr (at (3-5) Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1}), but decreased by a factor of several in the past 0.3 Gyr. Most star clusters have a mass between 10{sup 2} and 10{sup 4} M{sub Sun }. The specific star formation rates of {approx}10{sup -16} yr{sup -1} (at the present day) or {approx}10{sup -14} yr{sup -1} (when averaging over the past Gyr) imply that a fraction 10{sup -8} of the stellar mass is younger than 100 Myr and 10{sup -5} is younger than 1 Gyr, quantifying the level of frosting of recent star formation over the otherwise passive stellar population. There is no obvious correlation between either the presence or spatial distribution of postulated star formation indicators and the star formation we detect.
Buckling of elliptical rings under uniform external pressure
Tang, Y.
1991-04-03
A thin, elastic elliptical ring is subjected to uniform external pressure. The lowest critical pressure is computed and presented for various ratio of the major axis to the minor axis of the elliptical ring. It is found that the critical pressure for an elliptical ring is higher than that for the circular ring whose diameter is equal to the major axis of the elliptical ring. It can be shown that under the same external pressure, the axial force developed in the elliptical ring is less than that developed in the corresponding circular ring. Thus, a higher pressure is required to buckle the elliptical rings. Therefore, by changing the shape of the ring from circular to elliptical, the capability of the ring to sustain the external pressure can be increased substantially. The results of this study can be useful in the design of elliptical reinforcing rings and thin-walled tubes subjected to external pressure.
Disrupted Intrinsic Local Synchronization in Poststroke Aphasia
Yang, Mi; Li, Jiao; Yao, Dezhong; Chen, Huafu
2016-01-01
Abstract Evidence has accumulated from the task-related and task-free (i.e., resting state) studies that alternations of intrinsic neural networks exist in poststroke aphasia (PSA) patients. However, information is lacking on the changes in the local synchronization of spontaneous functional magnetic resonance imaging blood–oxygen level-dependent fluctuations in PSA at rest. We investigated the altered intrinsic local synchronization using regional homogeneity (ReHo) on PSA (n = 17) and age- and sex-matched healthy controls (HCs) (n = 20). We examined the correlations between the abnormal ReHo values and the aphasia severity and language performance in PSA. Compared with HCs, the PSA patients exhibited decreased intrinsic local synchronization in the right lingual gyrus, the left calcarine, the left cuneus, the left superior frontal gyrus (SFG), and the left medial of SFG. The local synchronization (ReHo value) in the left medial of SFG was positively correlated with aphasia severity (r = 0.55, P = 0.027) and the naming scores of Aphasia Battery of Chinese (r = 0.66, P = 0.005). This result is consistent with the important role of this value in language processing even in the resting state. The pathogenesis of PSA may be attributed to abnormal intrinsic local synchronous in multiple brain regions. PMID:26986152
Disrupted Intrinsic Local Synchronization in Poststroke Aphasia.
Yang, Mi; Li, Jiao; Yao, Dezhong; Chen, Huafu
2016-03-01
Evidence has accumulated from the task-related and task-free (i.e., resting state) studies that alternations of intrinsic neural networks exist in poststroke aphasia (PSA) patients. However, information is lacking on the changes in the local synchronization of spontaneous functional magnetic resonance imaging blood-oxygen level-dependent fluctuations in PSA at rest.We investigated the altered intrinsic local synchronization using regional homogeneity (ReHo) on PSA (n = 17) and age- and sex-matched healthy controls (HCs) (n = 20). We examined the correlations between the abnormal ReHo values and the aphasia severity and language performance in PSA.Compared with HCs, the PSA patients exhibited decreased intrinsic local synchronization in the right lingual gyrus, the left calcarine, the left cuneus, the left superior frontal gyrus (SFG), and the left medial of SFG. The local synchronization (ReHo value) in the left medial of SFG was positively correlated with aphasia severity (r = 0.55, P = 0.027) and the naming scores of Aphasia Battery of Chinese (r = 0.66, P = 0.005). This result is consistent with the important role of this value in language processing even in the resting state.The pathogenesis of PSA may be attributed to abnormal intrinsic local synchronous in multiple brain regions. PMID:26986152
Elliptic genera from multi-centers
NASA Astrophysics Data System (ADS)
Gaddam, Nava
2016-05-01
I show how elliptic genera for various Calabi-Yau threefolds may be understood from supergravity localization using the quantization of the phase space of certain multi-center configurations. I present a simple procedure that allows for the enumeration of all multi-center configurations contributing to the polar sector of the elliptic genera — explicitly verifying this in the cases of the quintic in {P} 4, the sextic in {W}{P} (2,1,1,1,1), the octic in {W}{P} (4,1,1,1,1) and the dectic in {W}{P} (5,2,1,1,1). With an input of the corresponding `single-center' indices (Donaldson-Thomas invariants), the polar terms have been known to determine the elliptic genera completely. I argue that this multi-center approach to the low-lying spectrum of the elliptic genera is a stepping stone towards an understanding of the exact microscopic states that contribute to supersymmetric single center black hole entropy in {N} = 2 supergravity.
Body tides on an elliptical rotating earth
NASA Technical Reports Server (NTRS)
Wahr, J. M.
1978-01-01
The complete tidal response of an elliptical, rotating, elastic Earth is found to contain small displacements which do not fit into the conventional Love number framework. Corresponding observable tidal quantities (gravity, tilt, strain, Eulerian potential, etc.) are modified by the addition of small latitude dependent terms.
Circular and Elliptic Submerged Impinging Water Jets
NASA Astrophysics Data System (ADS)
Claudey, Eric; Benedicto, Olivier; Ravier, Emmanuel; Gutmark, Ephraim
1999-11-01
Experiments and CFD have been performed to study circular and elliptic jets in a submerged water jet facility. The tests included discharge coefficient measurement to evaluate pressure losses encountered in noncircular nozzles compared to circular ones. Three-dimensional pressure mappings on the impingement surface and PIV measurement of the jet mean and turbulent velocity have been performed at different compound impingement angles relative to the impingement surface and at different stand-off distances. The objective was to investigate the effect of the non-circular geometry on the flow field and on the impact region. The tests were performed in a close loop system in which the water was pumped through the nozzles into a clear Plexiglas tank. The Reynolds numbers were typically in the range of 250000. Discharge coefficients of the elliptic nozzle was somewhat lower than that of the circular jet but spreading rate and turbulence level were higher. Pressure mapping showed that the nozzle exit geometry had an effect on the pressure distribution in the impact region and that high-pressure zones were generated at specific impact points. PIV measurements showed that for a same total exit area, the elliptic jets affected a surface area that is 8the equivalent circular. The turbulence level in the elliptic jet tripled due to the nozzle design. Results of the CFD model were in good agreement with the experimental data.
Transverse Mercator Projection Via Elliptic Integrals
NASA Technical Reports Server (NTRS)
Wallis, David E.
1992-01-01
Improved method of construction of U.S. Army's universal transverse Mercator grid system based on Gauss-Kruger transverse Mercator projection and on use of elliptic integrals of second kind. Method can be used to map entire northern or southern hemisphere with respect to single principal meridian.
Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC
NASA Astrophysics Data System (ADS)
Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2008-12-01
We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.
Application of rectangular and elliptical dielcore feed horns to elliptical reflector antennas
NASA Astrophysics Data System (ADS)
Lier, Erik; Rahmat-Samii, Yahya; Rengarajan, Sembiam R.
1991-11-01
The pattern characteristics of elliptical reflector antennas are investigated when they are fed by rectangular and elliptical horns partially filled with a dielectric. The bandwidth characteristics of these dielcore horns are superior to those of their corrugated horn counterparts. Representative reflector patterns are computed to properly demonstrate the utility of these feeds for reflector antennas with elliptical apertures. This reflector antenna exhibits high efficiency and low cross polarization, and may be suitable for radar and satellite antenna applications. The antenna configuration may become useful in relatively small antennas where more than 10 percent cross-polar bandwidth is required. The efficient dielcore horns may also be used as feeds for elliptical nonshaped dual-reflector antennas.
Differential Spectral Synthesis of Low-Luminosity Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Jones, Lewis Alexander
In this thesis, a study of the spectral variations in the integrated light of eight low-luminosity elliptical galaxies is presented. The unique opportunity provided by low-luminosity elliptical galaxies to study integrated spectra at high line definition is the motivation behind the observational approach for this study. A long wavelength baseline is sacrificed in favor of working at high resolution (~2 Å FWHM) with a large variety of narrow absorption features in a smaller wave-length window. A new spectral library has been developed with this approach in mind. The library consists of spectra of 684 stars all observed with the Coudé Feed Telescope and Spectrograph at the Kitt Peak National Observatory, covering the spectral ranges 3820-4500 Å and 4780-5450 Å and at a spectral resolution of ~2 Å FWHM. The coverage of the library is complete for spectral types A-K and luminosity classes I-V, in the range -2.5 <= FeH; <= +0.5, while the O, B, and M stars are near solar. The empirical investigation of the galaxy spectra in reference to the stellar sequences of the spectral library yields several key results. (1) There is a spread in the mean spectral types of the low-luminosity ellliptical galaxies. (2) The galaxies are similar in evolved star content, Fe line strengths, and their evolved star light is dominated by solar type giants. (3) Five of the eight galaxies are shown to contain less than a 5% hot star contribution, which is inconsistent with the prediction of ~10% from the simple model of chemical evolution (Worthey, Dorman, and Jones 1996). (4) From variations in the balance of dwarf and giant light in the galaxy spectra it is claimed that there is a spread in the mean stellar ages of the low-luminosity elliptical galaxies. These results are interpreted in the context of the evolutionary synthesis models of Worthey (1994). The main result from the comparison of the galaxies and models is that the low-luminosity elliptical galaxies show a large spread in
Intrinsically Disordered Energy Landscapes
NASA Astrophysics Data System (ADS)
Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.
2015-05-01
Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.
Intrinsically Disordered Energy Landscapes
Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.
2015-01-01
Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium. PMID:25999294
Intrinsically disordered energy landscapes.
Chebaro, Yassmine; Ballard, Andrew J; Chakraborty, Debayan; Wales, David J
2015-01-01
Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium. PMID:25999294
Predicting intrinsic brain activity.
Craddock, R Cameron; Milham, Michael P; LaConte, Stephen M
2013-11-15
Multivariate supervised learning methods exhibit a remarkable ability to decode externally driven sensory, behavioral, and cognitive states from functional neuroimaging data. Although they are typically applied to task-based analyses, supervised learning methods are equally applicable to intrinsic effective and functional connectivity analyses. The obtained models of connectivity incorporate the multivariate interactions between all brain regions simultaneously, which will result in a more accurate representation of the connectome than the ones available with standard bivariate methods. Additionally the models can be applied to decode or predict the time series of intrinsic brain activity of a region from an independent dataset. The obtained prediction accuracy provides a measure of the integration between a brain region and other regions in its network, as well as a method for evaluating acquisition and preprocessing pipelines for resting state fMRI data. This article describes a method for learning multivariate models of connectivity. The method is applied in the non-parametric prediction accuracy, influence, and reproducibility-resampling (NPAIRS) framework, to study the regional variation of prediction accuracy and reproducibility (Strother et al., 2002). The resulting spatial distribution of these metrics is consistent with the functional hierarchy proposed by Mesulam (1998). Additionally we illustrate the utility of the multivariate regression connectivity modeling method for optimizing experimental parameters and assessing the quality of functional neuroimaging data. PMID:23707580
NASA Astrophysics Data System (ADS)
Djidel, S.; Bouamar, M.; Khedrouche, D.
2016-04-01
This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.
Elliptic Genus of Phases of N = 2 Theories
NASA Astrophysics Data System (ADS)
Libgober, Anatoly
2015-12-01
We discuss an algebro-geometric description of Witten's phases of N = 2 theories and propose a definition of their elliptic genus provided some conditions on singularities of the phases are met. For Landau-Ginzburg phase one recovers elliptic genus of LG models proposed in physics literature in early 1990s. For certain transitions between phases we derive invariance of elliptic genus from an equivariant form of McKay correspondence for elliptic genus. As special cases one obtains Landau-Giznburg/Calabi-Yau correspondence for elliptic genus of weighted homogeneous potentials as well as certain hybrid/CY correspondences.
Multilevel elliptic smoothing of large three-dimensional grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1995-01-01
Elliptic grid generation methods have been used for many years to smooth and improve grids generated by algebraic interpolation schemes. However, the elliptic system that must be solved is nonlinear and convergence is generally very slow for large grids. In an attempt to make elliptic methods practical for large three-dimensional grids, a two-stage implementation is developed where the overall grid point locations are set using a coarse grid generated by the elliptic system. The coarse grid is then interpolated to generate a finer grid which is smoothed using only a few iterations of the elliptic system.
Jacobi-Bessel Analysis Of Antennas With Elliptical Apertures.
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1989-01-01
Coordinate transformation improves convergence pattern analysis of elliptical-aperture antennas. Modified version of Jacobi-Bessel expansion for vector diffraction analysis of reflector antennas uses coordinate transformation to improve convergence with elliptical apertures. Expansion converges rapidly for antennas with circular apertures, but less rapidly for elliptical apertures. Difference in convergence behavior between circular and elliptical Jacobi-Bessel algorithms indicated by highest values of indices m, n, and p required to achieve same accuracy in computed radiation pattern of offset paraboloidal antenna with elliptical aperture.
Intrinsic Feature Motion Tracking
Energy Science and Technology Software Center (ESTSC)
2013-03-19
Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over timemore » can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.« less
Intrinsic Feature Motion Tracking
Goddard, Jr., James S.
2013-03-19
Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Querci, Monique
1987-01-01
The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.
Religiousness and Mental Health Reconsidered: A Study of an Intrinsically Religious Sample.
ERIC Educational Resources Information Center
Bergin, Allen E.; And Others
1987-01-01
Assessed correlations between the intrinsic and extrinsic orientations of the Religious Orientation Scale, and anxiety, personality traits, self-control, irrational beliefs, and depression. Intrinsic orientation was negatively correlated with anxiety and positively correlated with self-control and "better" personality functioning, whereas the…
NASA Astrophysics Data System (ADS)
Ponder, Jerry M.; Burstein, David; O'Connell, Robert W.; Rose, James A.; Frogel, Jay A.; Wu, Chi-Chao; Crenshaw, D. Michael; Rieke, Marcia J.; Tripicco, Michael
1998-11-01
We present observations of the integrated light of four M31 globular clusters (MIV, MII, K280, and K58) and of the cores of six elliptical galaxies (NGC 3605, 3608, 5018, 5831, 6127, and 7619) made with the Faint Object Spectrograph on the Hubble Space Telescope. The spectra cover the range 2200-4800 Å at a resolution of 8 Å with signal-to-noise ratio of more than 20 and flux accuracy of ~5%. To these data we add from the literature IUE observations of the dwarf elliptical galaxy M32, Galactic globular clusters, and Galactic stars. The stellar populations in these systems are analyzed with the aid of mid-UV and near-UV colors and absorption line strengths. Included in the measured indices is the key NH feature at 3360 Å. We compare these line index measures with the 2600 - 3000 colors of these stars and stellar populations. We find that the M31 globular clusters, Galactic globular clusters/Galactic stars, and elliptical galaxies represent three distinct stellar populations, based on their behavior in color-line strength correlations involving Mg II, NH, CN, and several UV metallic blends. In particular, the M31 globular cluster MIV, as metal-poor as the Galactic globular M92, shows a strong NH 3360 Å feature. Other line indices, including the 3096 Å blend that is dominated by lines of Mg I and Al I, show intrinsic differences as well. We also find that the broadband line indices often employed to measure stellar population differences in faint objects, such as the 4000 Å and the Mg 2800 breaks, are disappointingly insensitive to these stellar population differences. We find that the hot (T > 20,000 K) stellar component responsible for the ``UV upturn'' at shorter wavelengths can have an important influence on the mid-UV spectral range (2400-3200 Å) as well. The hot component can contribute over 50% of the flux at 2600 Å in some cases and affects both continuum colors and line strengths. Mid-UV spectra of galaxies must be corrected for this effect before
Archaic chaos: intrinsically disordered proteins in Archaea
2010-01-01
Background Many proteins or their regions known as intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack unique 3D structure in their native states under physiological conditions yet fulfill key biological functions. Earlier bioinformatics studies showed that IDPs and IDRs are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition and signal transduction. Archaea belong to an intriguing domain of life whose members, being microbes, are characterized by a unique mosaic-like combination of bacterial and eukaryotic properties and include inhabitants of some of the most extreme environments on the planet. With the expansion of the archaea genome data (more than fifty archaea species from five different phyla are known now), and with recent improvements in the accuracy of intrinsic disorder prediction, it is time to re-examine the abundance of IDPs and IDRs in the archaea domain. Results The abundance of IDPs and IDRs in 53 archaea species is analyzed. The amino acid composition profiles of these species are generally quite different from each other. The disordered content is highly species-dependent. Thermoproteales proteomes have 14% of disordered residues, while in Halobacteria, this value increases to 34%. In proteomes of these two phyla, proteins containing long disordered regions account for 12% and 46%, whereas 4% and 26% their proteins are wholly disordered. These three measures of disorder content are linearly correlated with each other at the genome level. There is a weak correlation between the environmental factors (such as salinity, pH and temperature of the habitats) and the abundance of intrinsic disorder in Archaea, with various environmental factors possessing different disorder-promoting strengths. Harsh environmental conditions, especially those combining several hostile factors, clearly favor increased disorder content. Intrinsic disorder is highly abundant
Blue star-forming isolated elliptical galaxies
NASA Astrophysics Data System (ADS)
Lacerna, I.; Hernández-Toledo, H. M.; Avila-Reese, V.; Abonza-Sane, J.; del Olmo, A.
2016-06-01
The isolated environment seems to favor the formation of blue, star-forming galaxies that are not observed in a high-density environment such as the Coma supercluster. These galaxies, with masses between 7 × 10^9 and 2 × 10^10 h‑2 Msun, are also the youngest galaxies from a sample of isolated elliptical galaxies with light-weighted stellar ages ˜1 < Gyr and exhibit bluer colors toward the galaxy center. Around 30-60% of their present-day luminosity, but only <5% of their present-day mass, is due to star formation in the last 1 Gyr. The color and star-formation activity in these galaxies could be explained by rejuvenation of ellipticals by recent (<1 Gyr) cold gas accretion.
Modelling elliptically polarised free electron lasers
NASA Astrophysics Data System (ADS)
Henderson, J. R.; Campbell, L. T.; Freund, H. P.; McNeil, B. W. J.
2016-06-01
A model of a free electron laser (FEL) operating with an elliptically polarised undulator is presented. The equations describing the FEL interaction, including resonant harmonic radiation fields, are averaged over an undulator period and generate a generalised Bessel function scaling factor, similar to that of planar undulator FEL theory. Comparison between simulations of the averaged model with those of an unaveraged model show very good agreement in the linear regime. Two unexpected results were found. Firstly, an increased coupling to harmonics for elliptical rather than planar polarisarised undulators. Secondly, and thought to be unrelated to the undulator polarisation, a significantly different evolution between the averaged and unaveraged simulations of the harmonic radiation evolution approaching FEL saturation.
The Invertible Double of Elliptic Operators
NASA Astrophysics Data System (ADS)
Booss-Bavnbek, Bernhelm; Lesch, Matthias
2009-02-01
First, we review the Dirac operator folklore about basic analytic and geometrical properties of operators of Dirac type on compact manifolds with smooth boundary and on closed partitioned manifolds and show how these properties depend on the construction of a canonical invertible double and are related to the concept of the Calderón projection. Then we summarize a recent construction of a canonical invertible double for general first order elliptic differential operators over smooth compact manifolds with boundary. We derive a natural formula for the Calderón projection which yields a generalization of the famous Cobordism Theorem. We provide a list of assumptions to obtain a continuous variation of the Calderón projection under smooth variation of the coefficients. That yields various new spectral flow theorems. Finally, we sketch a research program for confining, respectively closing, the last remaining gaps between the geometric Dirac operator type situation and the general linear elliptic case.
MIB Galerkin method for elliptic interface problems.
Xia, Kelin; Zhan, Meng; Wei, Guo-Wei
2014-12-15
Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the
A Jacobian elliptic single-field inflation
NASA Astrophysics Data System (ADS)
Villanueva, J. R.; Gallo, Emanuel
2015-06-01
In the scenario of single-field inflation, this field is described in terms of Jacobian elliptic functions. This approach provides, when constrained to particular cases, analytic solutions already known in the past, generalizing them to a bigger family of analytical solutions. The emergent cosmology is analyzed using the Hamilton-Jacobi approach and then the main results are contrasted with the recent measurements obtained from the Planck 2015 data.
Interstellar matter in Shapley-Ames elliptical galaxies. I. Multicolour CCD surface photometry
NASA Astrophysics Data System (ADS)
Goudfrooij, P.; Hansen, L.; Jorgensen, H. E.; Norgaard-Nielsen, H. U.; de Jong, T.; van den Hoek, L. B.
1994-04-01
We present accurate CCD surface photometry in Johnson B and V and Cousins I for a complete, magnitude-limited sample of 56 elliptical galaxies from the RSA catalog. For each galaxy we have determined radial profiles of surface brightness, B-V and/or B-I colour index, ellipticity, position angle, and the third- and fourth order Fourier coefficients that describe the deviations of the B, V, and I isophotes from perfect ellipses, using a full two-dimensional fitting technique. The present sample contains 13 galaxies for which no previous isophote analysis has been published, and 26 without published colour gradients. The radial profiles of the ellipticity, position angle, and the third- and fourth-order Fourier coefficients are found to show considerable detail. The profiles are mostly similar in all passbands, except in cases where dust lanes or patches are present. In this respect, the higher-order Fourier coefficients turn out to be sensitive diagnostic tools for the presence of dust in elliptical galaxies. Isophotal deviations from ellipses on the level of 0.5-1% are found to be common in elliptical galaxies. As noted before by others, these deviations are due to structures that do not necessarily align with the apparent major or minor axes of the galaxies, advocating the use of both the cosine and sine higher-order terms in correlation studies. We show that fitting outer radial intensity profiles of elliptical galaxies is an excellent tool for determining the sky background for the surface photometry. The sky values determined from a power-law fit to the outer intensity profiles are found to be within 0.1% of the sky values at the corners of present-day large CCDs where the contribution of galaxy light is negligible. The average colour gradients for the sample galaxies in B-V and B-I are 0.06 and 0.14 mag arcsec^-2^ per decade in radius, respectively. This compares well with colour gradients in elliptical galaxies found by others. The small uncertainty introduced
Fluxon Dynamics in Elliptic Annular Josephson Junctions
NASA Astrophysics Data System (ADS)
Monaco, Roberto; Mygind, Jesper
2016-04-01
We analyze the dynamics of a magnetic flux quantum (current vortex) trapped in a current-biased long planar elliptic annular Josephson tunnel junction. The system is modeled by a perturbed sine-Gordon equation that determines the spatial and temporal behavior of the phase difference across the tunnel barrier separating the two superconducting electrodes. In the absence of an external magnetic field, the fluxon dynamics in an elliptic annulus does not differ from that of a circular annulus where the stationary fluxon speed merely is determined by the system losses. The interaction between the vortex magnetic moment and a spatially homogeneous in-plane magnetic field gives rise to a tunable periodic non-sinusoidal potential which is strongly dependent on the annulus aspect ratio. We study the escape of the vortex from a well in the tilted potential when the bias current exceeds the depinning current. The smallest depinning current as well as the lowest sensitivity of the annulus to the external field is achieved when the axes ratio is equal to √{2}. The presented extensive numerical results are in good agreement with the findings of the perturbative approach. We also probe the rectifying properties of an asymmetric potential implemented with an egg-shaped annulus formed by two semi-elliptic arcs.
Elliptic Solvers for Adaptive Mesh Refinement Grids
Quinlan, D.J.; Dendy, J.E., Jr.; Shapira, Y.
1999-06-03
We are developing multigrid methods that will efficiently solve elliptic problems with anisotropic and discontinuous coefficients on adaptive grids. The final product will be a library that provides for the simplified solution of such problems. This library will directly benefit the efforts of other Laboratory groups. The focus of this work is research on serial and parallel elliptic algorithms and the inclusion of our black-box multigrid techniques into this new setting. The approach applies the Los Alamos object-oriented class libraries that greatly simplify the development of serial and parallel adaptive mesh refinement applications. In the final year of this LDRD, we focused on putting the software together; in particular we completed the final AMR++ library, we wrote tutorials and manuals, and we built example applications. We implemented the Fast Adaptive Composite Grid method as the principal elliptic solver. We presented results at the Overset Grid Conference and other more AMR specific conferences. We worked on optimization of serial and parallel performance and published several papers on the details of this work. Performance remains an important issue and is the subject of continuing research work.
The elliptic model for communication fluxes
NASA Astrophysics Data System (ADS)
Herrera-Yagüe, C.; Schneider, C. M.; Smoreda, Z.; Couronné, T.; Zufiria, P. J.; González, M. C.
2014-04-01
In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility.
Intrinsic ductility of glassy solids
NASA Astrophysics Data System (ADS)
Shi, Yunfeng; Luo, Jian; Yuan, Fenglin; Huang, Liping
2014-01-01
Glasses are usually brittle, seriously limiting their practical usage. Recently, the intrinsic ductility of glass was found to increase with the Poisson's ratio (v), with a sharp brittle-to-ductile (BTD) transition at vBTD = 0.31-0.32. Such a correlation between far-from-equilibrium fracture and near-equilibrium elasticity is unexpected and not understood. Molecular dynamics simulations, on three families of glasses (metallic glasses, amorphous silicon, and silica) with controlled bonding, processing, and testing conditions, show that glasses with low covalency and high structural disorder have high v and ductility, and vice versa. The BTD transitions triggered by the aforementioned causes in each system correspond to a unified vBTD value, which increases with its average coordination number (CN). The vBTD-CN relation can be comprehended by recognizing v as a measure of covalency and disorder, and the BTD transition as a competition between shear and cleavage. Our results provide guidelines for developing new recipes and processes for tough glasses.
Intelligent Viscoelastic Polyurethane Intrinsic Nanocomposites
NASA Astrophysics Data System (ADS)
Bilal Khan, M.
2010-04-01
Polyurethanes are multiphase systems comprising intrinsically variant nanodomains. The material properties can be tailored by adjusting the relative proportions and organizing the structure of the hard and soft segments akin to the spring-dashpot system in an automobile. This article describes how an intelligent polyurethane (PU) system is created to offer smart response to mechanical and vibration stimuli. In this work, unidirectional, dynamic mechanical thermal analysis (DMTA), acoustic, and impact testing results are qualified with the unique viscoelastic character that determines the rate-temperature response of the nanocomposite. Attenuated total reflection- infrared spectroscopy (ATR-IR) and DMTA offer a logical explanation of the observed viscoelastic behavior in terms of the nanodomains. Enhanced nanophase segregation between the polymer building blocks (hard and soft segments) is the primary mechanism that leads to a higher loss tangent peak in DMTA at a lower glass transition temperature ( T g ) for greater energy dissipation in the polymer matrix. Acoustic and impact attenuation are correlated with the mechanical modulus and loss tangent of the polymer. Finally, autodyne simulation reveals the unique shock absorbent behavior of the material layer when retrofitted to concrete structure. Typically, shock overpressure spikes of the order of 9.97 × 104 MPa experienced by the unprotected surface are entirely evened out at a lower overpressure threshold.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-12-25
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Origin of a bottom-heavy stellar initial mass function in elliptical galaxies
Bekki, Kenji
2013-12-10
We investigate the origin of a bottom-heavy stellar initial mass function (IMF) recently observed in elliptical galaxies by using chemical evolution models with a non-universal IMF. We adopt the variable Kroupa IMF with the three slopes (α{sub 1}, α{sub 2}, and α{sub 3}) dependent on metallicities ([Fe/H]) and densities (ρ{sub g}) of star-forming gas clouds and thereby search for the best IMF model that can reproduce (1) the observed steep IMF slope (α{sub 2} ∼ 3, i.e., bottom-heavy) for low stellar masses (m ≤ 1 M {sub ☉}) and (2) the correlation of α{sub 2} with chemical properties of elliptical galaxies in a self-consistent manner. We find that if the IMF slope α{sub 2} depends on both [Fe/H] and ρ{sub g}, then elliptical galaxies with higher [Mg/Fe] can have steeper α{sub 2} (∼3) in our models. We also find that the observed positive correlation of stellar mass-to-light ratios (M/L) with [Mg/Fe] in elliptical galaxies can be quantitatively reproduced in our models with α{sub 2}∝β[Fe/H] + γlog ρ{sub g}, where β ∼ 0.5 and γ ∼ 2. We discuss whether the IMF slopes for low-mass (α{sub 2}) and high-mass stars (α{sub 3}) need to vary independently from each other to explain a number of IMF-related observational results self-consistently. We also briefly discuss why α{sub 2} depends differently on [Fe/H] in dwarf and giant elliptical galaxies.
Ellipticals with Kinematically Distinct Cores: WFPC2 Imaging of Globular Clusters
NASA Astrophysics Data System (ADS)
Forbes, Duncan A.; Franx, Marijn; Illingworth, Garth D.; Carollo, C. M.
1996-08-01
New globular clusters may form in the merger of two galaxies. Perhaps the best examples of merger remnants are the set of ellipticals with kinematically distinct cores. Here we present Hubble Space Telescope (HST) Wide Field and Planetary Camera 2 (WFPC2) imaging of 14 kinematically distinct core ellipticals to examine their globular cluster systems. In particular, we probe the galaxy central regions, for which we might expect to see the strongest signatures of some formation and destruction processes. These data increase substantially the number of extragalactic globular cluster systems studied to date. We have developed a method for galaxy subtraction and selection of globular clusters which results in about 200 globulars per galaxy to a limiting magnitude of V ~ 25. Simulations of artificial globulars are described also. We find that the globular cluster luminosity, and color, vary only weakly, if at all, with galactocentric distance. The mean colors of globular clusters are constant with globular cluster magnitude. Several clear trends are also present. First, globular cluster colors are bluer (more metal poor by ~0.5 dex) than the underlying galaxy starlight at any given galactocentric distance. Second, we find a good correlation over roughly 10 magnitudes between the mean globular cluster metallicity and parent galaxy luminosity of the form Z is proportional to L^0.4^. This relationship includes dwarf ellipticals, spiral galaxy bulges, and giant ellipticals. Third, we find that globular cluster surface density distribution can be described by a core model, for which the core radius correlates with galaxy luminosity. Last, for the sample as a whole, the globular cluster systems are closely aligned with the galaxy major axis and are slightly rounder than the galaxy itself, although their are some notable exceptions. Our results favor scenarios in which ellipticals form from massive, gas rich progenitors at early epochs. Detailed simulations of the formation of
THE DARK HALO-SPHEROID CONSPIRACY AND THE ORIGIN OF ELLIPTICAL GALAXIES
Remus, Rhea-Silvia; Burkert, Andreas; Dolag, Klaus; Johansson, Peter H.; Naab, Thorsten; Oser, Ludwig; Thomas, Jens
2013-04-01
Dynamical modeling and strong-lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., {rho}{sub tot}{proportional_to}r {sup {gamma}} with {gamma} Almost-Equal-To -2. To understand the origin of this universal slope we study a set of simulated spheroids formed in isolated binary mergers as well as the formation within the cosmological framework. The total stellar plus dark matter density profiles can always be described by a power law with an index of {gamma} Almost-Equal-To -2.1 with a tendency toward steeper slopes for more compact, lower-mass ellipticals. In the binary mergers the amount of gas involved in the merger determines the precise steepness of the slope. This agrees with results from the cosmological simulations where ellipticals with steeper slopes have a higher fraction of stars formed in situ. Each gas-poor merger event evolves the slope toward {gamma} {approx} -2, once this slope is reached further merger events do not change it anymore. All our ellipticals have flat intrinsic combined stellar and dark matter velocity dispersion profiles. We conclude that flat velocity dispersion profiles and total density distributions with a slope of {gamma} {approx} -2 for the combined system of stars and dark matter act as a natural attractor. The variety of complex formation histories as present in cosmological simulations, including major as well as minor merger events, is essential to generate the full range of observed density slopes seen for present-day elliptical galaxies.
Elliptical instability of compressible flow in ellipsoids
NASA Astrophysics Data System (ADS)
Clausen, N.; Tilgner, A.
2014-02-01
Context. Elliptical instability is due to a parametric resonance of two inertial modes in a fluid velocity field with elliptical streamlines. This flow is a simple model of the motion in a tidally deformed, rotating body. Elliptical instability typically leads to three-dimensional turbulence. The associated turbulent dissipation together with the dissipation of the large scale mode may be important for the synchronization process in stellar and planetary binary systems. Aims: In order to determine the influence of the compressibility on the stability limits of tidal flows in stars or planets, we calculate the growth rates of perturbations in flows with elliptical streamlines within ellipsoidal boundaries of small ellipticity. In addition, the influence of the orbiting frequency of the tidal perturber ΩP and the viscosity of the fluid are taken into account. Methods: We studied the linear stability of the flow to determine the growth rates. We solved the Euler equation and the continuity equation. The viscosity was introduced heuristically in our calculations. We assumed a power law for the radial dependence of the background density. Together with the use of the anelastic approximation, this enabled us to use semi-analytical methods to solve the equations. Results: It is found that the growth rate of a certain mode combination depends on the compressibility. However, the influence of the compressibility is negligible for the growth rate maximized over all possible modes if viscous bulk damping effects can be neglected. The growth rate maximized over all possible modes determines the stability of the flow. The stability limit for the compressible fluid confined to an ellipsoid is the same as for incompressible fluid in an unbounded domain. Depending on the ratio ΩP/ΩF, with ΩF the spin rate of the central object in the frame of the rotating tidal perturber, certain pairs of modes resonate with each other. The size of the bulk damping term depends on the modes
Bernety, Hossein M; Yakovlev, Alexander B
2015-05-13
In this paper, we present a novel analytical approach for cloaking of dielectric and metallic elliptical cylinders with a graphene monolayer and a nanostructured graphene metasurface at low-terahertz frequencies. The analytical approach is based on the solution of the electromagnetic scattering problem in terms of elliptical waves represented by the radial and angular even and odd Mathieu functions, with the use of sheet impedance boundary conditions at the metasurface. It is shown that scattering cancellation occurs for all incident and observation angles. A special case concerns cloaking of a 2D metallic strip represented by a degenerated ellipse, wherein the focal points of the cloak metasurface correspond to the edges of the strip. The analytical approach has been extended in order to cloak a cluster of elliptical objects for different cases of closely spaced, merging, and overlapping configurations. The results obtained by our analytical approach are validated with full-wave numerical simulations. PMID:25894518
Intrinsic Angular Momentum of Light.
ERIC Educational Resources Information Center
Santarelli, Vincent
1979-01-01
Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)
Event-by-event hydrodynamics and elliptic flow from fluctuating initial states
Holopainen, H.; Eskola, K. J.; Niemi, H.
2011-03-15
We develop a framework for event-by-event ideal hydrodynamics to study the differential elliptic flow, which is measured at different centralities in Au + Au collisions at the Relativistic Heavy Ion Collider (RHIC). Fluctuating initial energy density profiles, which here are the event-by-event analogs of the wounded nucleon profiles, are created using a Monte Carlo Glauber model. Using the same event plane method for obtaining v{sub 2} as in the data analysis, we can reproduce both the measured centrality dependence and the p{sub T} shape of charged-particle elliptic flow up to p{sub T}{approx}2 GeV. We also consider the relation of elliptic flow to the initial-state eccentricity using different reference planes and discuss the correlation between the physical event plane and the initial participant plane. Our results demonstrate that event-by-event hydrodynamics with initial-state fluctuations must be accounted for before a meaningful lower limit for viscosity can be obtained from elliptic flow data.
Elliptic Functions and Integrals with Real Modulus in Fluid Mechanics
NASA Technical Reports Server (NTRS)
Legendre, Robert
1958-01-01
Advantage of the elliptic functions and of the more general functions of Schwarz for fluid mechanics. Flows outside and inside polygons. Application to the calculation of an elbow diffuser for a wind tunnel. Properties of the elliptic integrals of the first kind and of the elliptic functions. Properties of the theta functions and decomposition of the elliptic functions into products of theta functions. Properties of the zeta functions. Decomposition of the elliptic functions into sums of zeta functions and calculations of the elliptic integrals. Applications to the calculation of wing profiles, of compressor profiles, and to the study of the vibrations of airplane wings and of compressor vanes. The manuscript of the present paper was checked by Mr. Eichelbrenner who corrected several imperfections and suggested numerous improvements to make reading of the paper easier. However, the limited subject does not permit filling in more than an incomplete knowledge of the properties of analytic functions.
Properties of Dwarf Ellipticals in Low-Density Environments
NASA Astrophysics Data System (ADS)
Sur, Debnil; Guhathakurta, P.; Toloba, E.
2013-01-01
Dwarf elliptical galaxies have been studied only in dense cluster environments, where they are the most common type of object. While this suggests that their location affects their formation and evolution, the role of distance is not fully understood. Thus, to investigate the physical processes that shape these galaxies, we have conducted a study of dwarf elliptical galaxies (dEs) in low-density environments to compare their properties with those in clusters. Catalogs of such objects have not been created; thus, we have developed a novel objective method to find new dEs through comparing photometric properties with those of galaxies in the Virgo Cluster Catalog. This method utilizes optical colors, surface brightness and ellipticity, and it confirms smoothness through visual classification. In this last step, we found a very low contamination rate, which suggests the procedure’s utility in finding dEs. Through the NSA Sloan Atlas, we have analyzed the spectrophotometric properties of the dE candidates as a function of distance to the nearest massive galaxy, which we refer to as their host. We have found that these dEs are younger and more actively forming stars than dEs in denser regions. This is consistent with a transformation scenario in which low luminosity spiral galaxies are affected by the environment and transformed into quiescent galaxies. This low density regime contains objects in an intermediate state between the spiral galaxy and the classical dE in Virgo, where no star formation is ongoing. The correlation of the studied properties with the distance to the host galaxy provides new evidence that the dEs are created by a process called ram-pressure stripping: the interstellar medium of a host galaxy removes the gas of a smaller star-forming galaxy and provokes its quenching. We are currently analysing Keck/DEIMOS spectroscopy of some of the dE candidates from our catalog to explore in more detail their connection to cluster dEs. Possible similarities
Evolution of Hot Gas in Elliptical Galaxies
NASA Technical Reports Server (NTRS)
Mathews, William G.
2004-01-01
This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.
Liouville field, modular forms and elliptic genera
NASA Astrophysics Data System (ADS)
Eguchi, Tohru; Sugawara, Yuji; Taormina, Anne
2007-03-01
When we describe non-compact or singular Calabi-Yau manifolds by CFT, continuous as well as discrete representations appear in the theory. These representations mix in an intricate way under the modular transformations. In this article, we propose a method of combining discrete and continuous representations so that the resulting combinations have a simpler modular behavior and can be used as conformal blocks of the theory. We compute elliptic genera of ALE spaces and obtain results which agree with those suggested from the decompactification of K3 surface. Consistency of our approach is assured by some remarkable identity of theta functions whose proof, by D. Zagier, is included in an appendix.
Intrinsic Negative Mass from Nonlinearity
NASA Astrophysics Data System (ADS)
Di Mei, F.; Caramazza, P.; Pierangeli, D.; Di Domenico, G.; Ilan, H.; Agranat, A. J.; Di Porto, P.; DelRe, E.
2016-04-01
We propose and provide experimental evidence of a mechanism able to support negative intrinsic effective mass. The idea is to use a shape-sensitive nonlinearity to change the sign of the mass in the leading linear propagation equation. Intrinsic negative-mass dynamics is reported for light beams in a ferroelectric crystal substrate, where the diffusive photorefractive nonlinearity leads to a negative-mass Schrödinger equation. The signature of inverted dynamics is the observation of beams repelled from strongly guiding integrated waveguides irrespective of wavelength and intensity and suggests shape-sensitive nonlinearity as a basic mechanism leading to intrinsic negative mass.
Welch, Gary A.; Sage, Leslie J.; Young, Lisa M. E-mail: lsage@astro.umd.ed
2010-12-10
We report new observations of atomic and molecular gas in a volume-limited sample of elliptical galaxies. Combining the elliptical sample with an earlier and similar lenticular one, we show that cool gas detection rates are very similar among low-luminosity E and S0 galaxies but are much higher among luminous S0s. Using the combined sample we revisit the correlation between cool gas mass and blue luminosity which emerged from our lenticular survey, finding strong support for previous claims that the molecular gas in ellipticals and lenticulars has different origins. Unexpectedly, however, and contrary to earlier claims, the same is not true for atomic gas. We speculate that both the active galactic nucleus feedback and merger paradigms might offer explanations for differences in detection rates, and might also point toward an understanding of why the two gas phases could follow different evolutionary paths in Es and S0s. Finally, we present a new and puzzling discovery concerning the global mix of atomic and molecular gas in early-type galaxies. Atomic gas comprises a greater fraction of the cool interstellar medium in more gas-rich galaxies, a trend which can be plausibly explained. The puzzle is that galaxies tend to cluster around molecular-to-atomic gas mass ratios near either 0.05 or 0.5.
Intrinsically disordered proteins and biomineralization.
Boskey, Adele L; Villarreal-Ramirez, Eduardo
2016-01-01
In vertebrates and invertebrates, biomineralization is controlled by the cell and the proteins they produce. A large number of these proteins are intrinsically disordered, gaining some secondary structure when they interact with their binding partners. These partners include the component ions of the mineral being deposited, the crystals themselves, the template on which the initial crystals form, and other intrinsically disordered proteins and peptides. This review speculates why intrinsically disordered proteins are so important for biomineralization, providing illustrations from the SIBLING (small integrin binding N-glycosylated) proteins and their peptides. It is concluded that the flexible structure, and the ability of the intrinsically disordered proteins to bind to a multitude of surfaces is crucial, but details on the precise-interactions, energetics and kinetics of binding remain to be determined. PMID:26807759
Learning intrinsic excitability in medium spiny neurons
Scheler, Gabriele
2014-01-01
We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal modulation on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how modulation and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic modulation determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction. PMID:25520776
Intrinsic Response Time of Graphene Photodetectors
2011-01-01
Graphene-based photodetectors are promising new devices for high-speed optoelectronic applications. However, despite recent efforts it is not clear what determines the ultimate speed limit of these devices. Here, we present measurements of the intrinsic response time of metal–graphene–metal photodetectors with monolayer graphene using an optical correlation technique with ultrashort laser pulses. We obtain a response time of 2.1 ps that is mainly given by the short lifetime of the photogenerated carriers. This time translates into a bandwidth of ∼262 GHz. Moreover, we investigate the dependence of the response time on gate voltage and illumination laser power. PMID:21627096
Thermodynamics of Inozemtsev's elliptic spin chain
NASA Astrophysics Data System (ADS)
Klabbers, Rob
2016-06-01
We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.
The acetabular component: an elliptical monoblock alternative.
Sculco, Thomas P
2002-06-01
The major failure mode of cemented or noncemented acetabular fixation is osteolysis produced by biologic reaction to polyethylene and metallic debris. A monoblock acetabular noncemented component offers advantages in reducing the failure mechanism of acetabular cups. First, there is no extra-articular back surface polyethylene wear. Second, locking rings that may generate metallic debris are eliminated. Third, screw-holes, which decrease the surface area for ingrowth, are not needed, and pelvic entrance points for wear debris are eliminated. Fourth, an elliptical configuration allows better coaptation of the shell to the dome of the acetabulum. I have implanted >2,400 elliptical monoblock acetabular cups with a short-term follow-up of 6.5 years, with >4 years of follow-up in 840 hips. There have been no mechanical failures requiring revision. Four patients have been revised for recurrent hip instability, and one has been revised for infection. The need to convert to an acetabular component with screw fixation because of poor press-fit is <1%. PMID:12068420
Flow around a helically twisted elliptic cylinder
NASA Astrophysics Data System (ADS)
Kim, Woojin; Lee, Jungil; Choi, Haecheon
2016-05-01
In the present study, we conduct unsteady three-dimensional simulations of flows around a helically twisted elliptic (HTE) cylinder at the Reynolds numbers of 100 and 3900, based on the free-stream velocity and square root of the product of the lengths of its major and minor axes. A parametric study is conducted for Re = 100 by varying the aspect ratio (AR) of the elliptic cross section and the helical spanwise wavelength (λ). Depending on the values of AR and λ, the flow in the wake contains the characteristic wavelengths of λ, 2λ, 6λ, or even longer than 60λ, showing a wide diversity of flows in the wake due to the shape change. The drag on the optimal (i.e., having lowest drag) HTE cylinder (AR = 1.3 and λ = 3.5d) is lower by 18% than that of the circular cylinder, and its lift fluctuations are zero owing to complete suppression of vortex shedding in the wake. This optimal HTE configuration reduces the drag by 23% for Re = 3900 where the wake is turbulent, showing that the HTE cylinder reduces the mean drag and lift fluctuations for both laminar and turbulent flows.
Variational elliptic solver for atmospheric applications
Smolarkiewicz, P.K.; Margolin, L.G.
1994-03-01
We discuss a conjugate gradient type method -- the conjugate residual -- suitable for solving linear elliptic equations that result from discretization of complex atmospheric dynamical problems. Rotation and irregular boundaries typically lead to nonself-adjoint elliptic operators whose matrix representation on the grid is definite but not symmetric. On the other hand, most established methods for solving large sparse matrix equations depend on the symmetry and definiteness of the matrix. Furthermore, the explicit construction of the matrix can be both difficult and computationally expensive. An attractive feature of conjugate gradient methods in general is that they do not require any knowledge of the matrix; and in particular, convergence of conjugate residual algorithms do not rely on symmetry for definite operators. We begin by reviewing some basic concepts of variational algorithms from the perspective of a physical analogy to the damped wave equation, which is a simple alternative to the traditional abstract framework of the Krylov subspace methods. We derive two conjugate residual schemes from variational principles, and prove that either definiteness or symmetry ensures their convergence. We discuss issues related to computational efficiency and illustrate our theoretical considerations with a test problem of the potential flow of a Boussinesq fluid flow past a steep, three-dimensional obstacle.
Intrinsic magnetization of antiferromagnetic textures
NASA Astrophysics Data System (ADS)
Tveten, Erlend G.; Müller, Tristan; Linder, Jacob; Brataas, Arne
2016-03-01
Antiferromagnets (AFMs) exhibit intrinsic magnetization when the order parameter spatially varies. This intrinsic spin is present even at equilibrium and can be interpreted as a twisting of the homogeneous AFM into a state with a finite spin. Because magnetic moments couple directly to external magnetic fields, the intrinsic magnetization can alter the dynamics of antiferromagnetic textures under such influence. Starting from the discrete Heisenberg model, we derive the continuum limit of the free energy of AFMs in the exchange approximation and explicitly rederive that the spatial variation of the antiferromagnetic order parameter is associated with an intrinsic magnetization density. We calculate the magnetization profile of a domain wall and discuss how the intrinsic magnetization reacts to external forces. We show conclusively, both analytically and numerically, that a spatially inhomogeneous magnetic field can move and control the position of domain walls in AFMs. By comparing our model to a commonly used alternative parametrization procedure for the continuum fields, we show that the physical interpretations of these fields depend critically on the choice of parametrization procedure for the discrete-to-continuous transition. This can explain why a significant amount of recent studies of the dynamics of AFMs, including effective models that describe the motion of antiferromagnetic domain walls, have neglected the intrinsic spin of the textured order parameter.
Redshift and luminosity evolution of the intrinsic alignments of galaxies in Horizon-AGN
NASA Astrophysics Data System (ADS)
Chisari, N.; Laigle, C.; Codis, S.; Dubois, Y.; Devriendt, J.; Miller, L.; Benabed, K.; Slyz, A.; Gavazzi, R.; Pichon, C.
2016-09-01
Intrinsic galaxy shape and angular momentum alignments can arise in cosmological large-scale structure due to tidal interactions or galaxy formation processes. Cosmological hydrodynamical simulations have recently come of age as a tool to study these alignments and their contamination to weak gravitational lensing. We probe the redshift and luminosity evolution of intrinsic alignments in Horizon-AGN between z = 0 and 3 for galaxies with an r-band absolute magnitude of Mr ≤ -20. Alignments transition from being radial at low redshifts and high luminosities, dominated by the contribution of ellipticals, to being tangential at high redshift and low luminosities, where discs dominate the signal. This cannot be explained by the evolution of the fraction of ellipticals and discs alone: intrinsic evolution in the amplitude of alignments is necessary. The alignment amplitude of elliptical galaxies alone is smaller in amplitude by a factor of ≃2, but has similar luminosity and redshift evolution as in current observations and in the non-linear tidal alignment model at projected separations of ≳1 Mpc. Alignments of discs are null in projection and consistent with current low-redshift observations. The combination of the two populations yields an overall amplitude a factor of ≃4 lower than observed alignments of luminous red galaxies with a steeper luminosity dependence. The restriction on accurate galaxy shapes implies that the galaxy population in the simulation is complete only to Mr ≤ -20. Higher resolution simulations will be necessary to avoid extrapolation of the intrinsic alignment predictions to the range of luminosities probed by future surveys.
Ainsbury, Elizabeth A; Conein, Emma; Henshaw, Denis L
2005-07-01
Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 +/- 0.02 microT across all residences. In contrast, background field ellipticities were high, on average 47 +/- 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 +/- 21% and 21 +/- 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. PMID:15972990
NASA Astrophysics Data System (ADS)
Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.
2005-07-01
Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.
NASA Astrophysics Data System (ADS)
Márquez, I.; Lima Neto, G. B.; Capelato, H.; Durret, F.; Lanzoni, B.; Gerbal, D.
2001-12-01
In the present paper, we show that elliptical galaxies (Es) obey a scaling relation between potential energy and mass. Since they are relaxed systems in a post violent-relaxation stage, they are quasi-equilibrium gravitational systems and therefore they also have a quasi-constant specific entropy. Assuming that light traces mass, these two laws imply that in the space defined by the three Sérsic law parameters (intensity Sigma0 , scale a and shape nu ), elliptical galaxies are distributed on two intersecting 2-manifolds: the Entropic Surface and the Energy-Mass Surface. Using a sample of 132 galaxies belonging to three nearby clusters, we have verified that ellipticals indeed follow these laws. This also implies that they are distributed along the intersection line (the Energy-Entropy line), thus they constitute a one-parameter family. These two physical laws (separately or combined), allow to find the theoretical origin of several observed photometrical relations, such as the correlation between absolute magnitude and effective surface brightness, and the fact that ellipticals are located on a surface in the [log Reff, -2.5 log Sigma0, log nu ] space. The fact that elliptical galaxies are a one-parameter family has important implications for cosmology and galaxy formation and evolution models. Moreover, the Energy-Entropy line could be used as a distance indicator.
Quantitative morphology of E-S0 galaxies IV. Ellipticals and lenticulars as a single population
NASA Astrophysics Data System (ADS)
Michard, R.
1994-08-01
The geometrical properties of E and S0 galaxies have been intercompared using the data collected in Paper III (Michard & Marchal 1994) for 108 RSA objects in a complete, luminosity and distance limited, sample. As the apparent flattening (largely an effect of projection along the line of sight), is a determining factor in the segregation between E and S0 objects, the working hypothesis has been made that an important bias is introduced in the recognition of the two classes. It is perhaps as well to assume that galaxies of both Hubble types belong, but for a small(?) minority, to a common population of objects with similar structures. This hypothesis receives strong support from the frequency-diagrams of the ellipticity ɛ_max_, measured near its maximum or at the isophote of surface brightness V=21.5. The diagram for S0's alone cannot be generated by the random projection of any objects: it is clearly biased by the shift to the E type of many S0's of moderate inclination and relatively modest disk. This limits the significance of the same diagrams for E galaxies. The noted bias is much reduced if S0's and disky E's are considered together. Because of the strong outwards decrease of the ellipticities in disky E's and in the S0's with non-thin envelopes (thick disks and spheroidal haloes), the frequency diagrams of the ellipticities measured at the classical B=25, or at V=25, do not show the bias noted above for S0's. The lack of round E's requires the spheroidal components to be faintly triaxial, as recently emphasized by other authors. Our hypothesis is also supported by the overlap of E and S0 galaxies in ad hoc classification schemes of ellipticity profiles and envelope geometry, and in such correlation diagrams as: - the ellipticity in the envelope, i.e. near μ(V)= 25, against the intermediate maximum ellipticity - the extremum of the Carter's coefficient e_4_ (or a_4_ or c_4_ in other similar works) against the maximum ellipticity - the disk extent, as far as
VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE
Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P.
2011-12-01
To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II {lambda}6355 and Ca II H and K are related to the B - V color at peak brightness. We find that the maximum-light velocity of Si II {lambda}6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II {lambda}6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II {lambda}6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia-even after removing a linear trend with velocity-indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.
Yousefi, T.; Paknezhad, M.; Ashjaee, M.; Yazdani, S.
2009-09-15
Steady state two-dimensional natural convection heat transfer from the vertical array of five horizontal isothermal elliptic cylinders with vertical major axis which confined between two adiabatic walls has been studied experimentally. Experiments were carried out using a Mach-Zehnder interferometer. The Rayleigh number based on cylinder major axis was in the range 10{sup 3}{<=}Ra{<=}2.5 x 10{sup 3}, and dimensionless wall spacing 1.5{<=} t/b{<=}9 and infinity. The effect of wall spacing and Rayleigh number on the heat transfer from the individual cylinder and the array were investigated. Experiments are performed for ratio wall spacing to major diameter t/b = 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 and infinity. A correlation based on the experimental data for the average Nusselt number of the array as a function of Ra and t/b is presented in the aforementioned ranges. A relation has been derived for optimum wall spacing at which the Nusselt number of the array attains its maximum value. At optimum wall spacing, approximately 10% increase in the heat transfer from the confined array of elliptic cylinders has been observed as compared to the unconfined case. Also, a heat transfer correlation has been proposed for a single elliptic cylinder with vertical major axis and has been compared with earlier works. (author)
Prospects of Elliptic Flow Studies at NICA/MPD
NASA Astrophysics Data System (ADS)
Geraksiev, Nikolay
2016-01-01
As a key observable, anisotropic flow presents a unique insight into heavy ion collision physics. The presented poster reveals the prospects of studying elliptic flow at the NICA/MPD facility through the UrQMD model. Here, results for the elliptic flow of simulated and reconstructed hadrons at the planned NICA energy range are presented.
Working charts for the stress analysis of elliptic rings
NASA Technical Reports Server (NTRS)
Burke, Walter F
1933-01-01
This report presents charts which reduce the stress analysis of circular and elliptic rings of uniform cross section subjected to balanced systems of concentrated loads from a statically indeterminate problem to a statically determinate one. To demonstrate the use of the charts in the stress analysis of elliptic rings, an illustrative problem is included.
Elliptical Orbit [arrow right] 1/r[superscript 2] Force
ERIC Educational Resources Information Center
Prentis, Jeffrey; Fulton, Bryan; Hesse, Carol; Mazzino, Laura
2007-01-01
Newton's proof of the connection between elliptical orbits and inverse-square forces ranks among the "top ten" calculations in the history of science. This time-honored calculation is a highlight in an upper-level mechanics course. It would be worthwhile if students in introductory physics could prove the relation "elliptical orbit" [arrow right]…
Radial and elliptic flow at RHIC: Further predictions
Huovinen, Pasi; Kolb, Peter F.; Heinz, Ulrich; Ruuskanen, P.V.; Voloshin, Sergei A.
2001-01-30
Using a hydrodynamic model, we predict the transverse momentum dependence of the spectra and the elliptic flow for different hadrons in Au+Au collisions at sqrt(s)=130 AGeV. The dependence of the differential and p{_}t-integrated elliptic flow on the hadron mass, equation of state and freeze-out temperature is studied both numerically and analytically.
Elliptic cylinder geometry for distinguishability analysis in impedance tomography.
Saka, Birsen; Yilmaz, Atila
2004-01-01
Electrical impedance tomography (EIT) is a technique that computes the cross-sectional impedance distribution within the body by using current and voltage measurements made on the body surface. It has been reported that the image reconstruction is distorted considerably when the boundary shape is considered to be more elliptical than circular as a more realistic shape for the measurement boundary. This paper describes an alternative framework for determining the distinguishability region with a finite measurement precision for different conductivity distributions in a body modeled by elliptic cylinder geometry. The distinguishable regions are compared in terms of modeling error for predefined inhomogeneities with elliptical and circular approaches for a noncircular measurement boundary at the body surface. Since most objects investigated by EIT are noncircular in shape, the analytical solution for the forward problem for the elliptical cross section approach is shown to be useful in order to reach a better assessment of the distinguishability region defined in a noncircular boundary. This paper is concentrated on centered elliptic inhomogeneity in the elliptical boundary and an analytic solution for this type of forward problem. The distinguishability performance of elliptical cross section with cosine injected current patterns is examined for different parameters of elliptical geometry. PMID:14723501
The size-frequency distribution of elliptical impact craters
NASA Astrophysics Data System (ADS)
Collins, G. S.; Elbeshausen, D.; Davison, T. M.; Robbins, S. J.; Hynek, B. M.
2011-10-01
Impact craters are elliptical in planform if the impactor's trajectory is below a threshold angle of incidence. Laboratory experiments and 3D numerical simulations demonstrate that this threshold angle decreases as the ratio of crater size to impactor size increases. According to impact cratering scaling laws, this implies that elliptical craters occur at steeper impact angles as crater size or target strength increases. Using a standard size-frequency distribution for asteroids impacting the terrestrial planets we estimate the fraction of elliptical craters as a function of crater size on the Moon, Mars, Earth, Venus and Mercury. In general, the expected fraction of elliptical craters is ~ 2-4% for craters between 5 and 100-km in diameter, consistent with the observed population of elliptical craters on Mars. At larger crater sizes both our model and observations suggest a dramatic increase in the fraction of elliptical craters with increasing crater diameter. The observed fraction of elliptical craters larger than 100-km diameter is significantly greater than our model predictions, which may suggest that there is an additional source of large elliptical craters other than oblique impact.
Modified Elliptic Gamma Functions and 6d Superconformal Indices
NASA Astrophysics Data System (ADS)
Spiridonov, Vyacheslav P.
2014-04-01
We construct a modified double elliptic gamma function which is well defined when one of the base parameters lies on the unit circle. A model consisting of 6d hypermultiplets coupled to a gauge field theory living on a 4d defect is proposed whose superconformal index uses the double elliptic gamma function and obeys W( E 7)-group symmetry.
The ATLAS 3D project - XXIV. The intrinsic shape distribution of early-type galaxies
NASA Astrophysics Data System (ADS)
Weijmans, Anne-Marie; de Zeeuw, P. T.; Emsellem, Eric; Krajnović, Davor; Lablanche, Pierre-Yves; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Verdoes Kleijn, Gijs; Young, Lisa M.
2014-11-01
We use the ATLAS3D sample to perform a study of the intrinsic shapes of early-type galaxies, taking advantage of the available combined photometric and kinematic data. Based on our ellipticity measurements from the Sloan Digital Sky Survey Data Release 7, and additional imaging from the Isaac Newton Telescope, we first invert the shape distribution of fast and slow rotators under the assumption of axisymmetry. The so-obtained intrinsic shape distribution for the fast rotators can be described with a Gaussian with a mean flattening of q = 0.25 and standard deviation σq = 0.14, and an additional tail towards rounder shapes. The slow rotators are much rounder, and are well described with a Gaussian with mean q = 0.63 and σq = 0.09. We then checked that our results were consistent when applying a different and independent method to obtain intrinsic shape distributions, by fitting the observed ellipticity distributions directly using Gaussian parametrizations for the intrinsic axis ratios. Although both fast and slow rotators are identified as early-type galaxies in morphological studies, and in many previous shape studies are therefore grouped together, their shape distributions are significantly different, hinting at different formation scenarios. The intrinsic shape distribution of the fast rotators shows similarities with the spiral galaxy population. Including the observed kinematic misalignment in our intrinsic shape study shows that the fast rotators are predominantly axisymmetric, with only very little room for triaxiality. For the slow rotators though there are very strong indications that they are (mildly) triaxial.
Intrinsic Inhomogeneity and Multiscale Functionality in Transition Metal Oxides
NASA Astrophysics Data System (ADS)
Bishop, A. R.
2003-06-01
We briefly review a perspective of transition metal oxides as correlated electron materials governed by functional multiscale complexity. We emphasize several themes: the prevalence of intrinsic complexity realized in the coexistence or competition among broken-symmetry ground states; the origin of landscapes in coupled spin, charge and lattice (orbital) degrees-of-freedom; the importance of co-existing short- and long-range forces; and the importance of multiscale complexity for key material properties, including hierarchies of functional, connected scales, coupled intrinsic inhomogeneities in spin, charge and lattice, consequent intrinsic multiple timescales, and the importance of multifunctional "electro-elastic" materials. Finally, we suggest that such intrinsic multiscale features are characteristic of wide classes of inorganic, organic, and biological matter.
Non-elliptic wavevector anisotropy for magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Narita, Y.
2015-11-01
A model of non-elliptic wavevector anisotropy is developed for the inertial-range spectrum of magnetohydrodynamic turbulence and is presented in the two-dimensional wavevector domain spanning the directions parallel and perpendicular to the mean magnetic field. The non-elliptic model is a variation of the elliptic model with different scalings along the parallel and the perpendicular components of the wavevectors to the mean magnetic field. The non-elliptic anisotropy model reproduces the smooth transition of the power-law spectra from an index of -2 in the parallel projection with respect to the mean magnetic field to an index of -5/3 in the perpendicular projection observed in solar wind turbulence, and is as competitive as the critical balance model to explain the measured frequency spectra in the solar wind. The parameters in the non-elliptic spectrum model are compared with the solar wind observations.
Dynamic susceptibility of onion in ferromagnetic elliptical nanoring
NASA Astrophysics Data System (ADS)
Mu, Congpu; Song, Jiefang; Xu, Jianghong; Wen, Fusheng
2016-06-01
Micromagnetic simulation was performed to investigate the equilibrium state and dynamic susceptibility spectra of magnetic elliptical nanoring. There are two equilibrium states (onion and vortex) obtained in elliptical nanoring. The onion state can be used to record information in MRAM. And it is important to investigate the dynamic susceptibility spectra of onion state, which is closely related to writing and reading speed of magnetic memory devices. Those results show that two or three resonance peaks are found under different thickness of elliptical nanoring with onion state, respectively. The low resonance frequency of two resonance peaks is increasing with the arm width of the elliptical ring, but is decreasing with the thickness. However, the high frequency of two resonance peaks is decreasing with the arm width of the elliptical ring.
Intrinsic disorder in transcription factors†
Liu, Jiangang; Perumal, Narayanan B.; Oldfield, Christopher J.; Su, Eric W.; Uversky, Vladimir N.; Dunker, A. Keith
2008-01-01
Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for a general prevalence of intrinsic disorder in transcriptional regulation, we used the Predictor Of Natural Disorder Regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13% to 82.63% of transcription factors posses extended regions of intrinsic disorder, relative to 54.51% and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors for intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues, and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that: (a) The AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) The degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) The degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; (d) The level of α-MoRFs (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that the eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient. PMID:16734424
Second-generation Stellar Disks in Dense Star Clusters and Cluster Ellipticities
NASA Astrophysics Data System (ADS)
Mastrobuono-Battisti, Alessandra; Perets, Hagai B.
2016-05-01
Globular clusters (GCs) and nuclear star clusters (NSCs) are typically composed of several stellar populations, characterized by different chemical compositions. Different populations show different ages in NSCs, but not necessarily in GCs. The youngest populations in NSCs appear to reside in disk-like structures as observed in our Galaxy and in M31. Gas infall followed by formation of second-generation (SG) stars in GCs may similarly form disk-like structures in the clusters nuclei. Here we explore this possibility and follow the long-term evolution of stellar disks embedded in GCs, and study their effects on the evolution of the clusters. We study disks with different masses by means of detailed N-body simulations and explore their morphological and kinematic signatures on the GC structures. We find that as a SG disk relaxes, the old, first-generation stellar population flattens and becomes more radially anisotropic, making the GC structure become more elliptical. The SG stellar population is characterized by a lower velocity dispersion and a higher rotational velocity compared with the primordial older population. The strength of these kinematic signatures depends both on the relaxation time of the system and on the fractional mass of the SG disk. We therefore conclude that SG populations formed in flattened configurations will give rise to two systematic trends: (1) a positive correlation between GC ellipticity and fraction of SG population and (2) a positive correlation between GC relaxation time and ellipticity. Therefore, GC ellipticities and rotation could be related to the formation of SG stars and their initial configuration.
Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence
Ku, S; Dimond, P H; Dif-Pradalier, G; Kwon, J M; Sarazin, Y; Hahm, T S; Garbet, X; Chang, C S; Latu, G; Yoon, E S; Ghendrih, Ph; Yi, S; Strugarek, A; Solomon, W
2012-02-23
Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity
Subregions of Motion and Elliptic Halo Orbits in the Elliptic Restricted Three-Body Problem
NASA Technical Reports Server (NTRS)
Campagnola, Stefano; Lo, Martin; Newton, Paul
2008-01-01
In this paper we present regions of motion and periodic orbits in the spatial elliptic restricted three body problem (ER3BP). Periodic orbits and regions of motion are fundamental keys to understand any dynamical system; for this reason the Hill's surfaces or the families of halo orbits have been extensively studied in the frame of the circular restricted three body problem. It is our opinion that their natural extensions to the ER3BP have not been studied enough. We divide the position space into forbidden subregions, subregions of motion and low-velocity subregions.We use these notions to define necessary condition for a transfer trajectory in the ER3BP. Also we compute branches of elliptic halo orbits bifurcating from halo orbits in the circular restricted three body problem. The new periodic orbits have principal periods and stability properties different from those of the originating halo orbit.
Crack-face displacements for embedded elliptic and semi-elliptical surface cracks
NASA Technical Reports Server (NTRS)
Raju, I. S.
1989-01-01
Analytical expressions for the crack-face displacements of an embedded elliptic crack in infinite solid subjected to arbitrary tractions are obtained. The tractions on the crack faces are assumed to be expressed in a polynomial form. These displacements expressions complete the exact solution of Vijayakumar and Atluri, and Nishioki and Atluri. For the special case of an embedded crack in an infinite solid subjected to uniform pressure loading, the present displacements agree with those by Green and Sneddon. The displacement equations derived were used with the finite-element alternating method (FEAM) for the analysis of a semi-elliptic surface crack in a finite solid subjected to remote tensile loading. The maximum opening displacements obtained with FEAM are compared to those with the finite-element method with singularity elements. The maximum crack opening displacements by the two methods showed good agreement.
Shamloo, Zohreh Sepehri; Cox, W Miles
2010-02-01
The aim of this study was to determine how sense of control and intrinsic motivation are related to university students' motivational structure and alcohol consumption. Participants were 94 university students who completed the Personal Concerns Inventory, Shapiro Control Inventory, Helplessness Questionnaire, Intrinsic-Extrinsic Aspirations Scale, and Alcohol Use Questionnaire. Results showed that sense of control and intrinsic motivation were positively correlated with adaptive motivation and negatively correlated with alcohol consumption. Mediational analyses indicated that adaptive motivation fully mediated the relationship between sense of control/intrinsic motivation and alcohol consumption. PMID:19836901
The elliptic billiard: subtleties of separability
NASA Astrophysics Data System (ADS)
van Zon, R.; Ruijgrok, Th W.
1998-01-01
Some of the subtleties of the integrability of the elliptic quantum billiard are discussed. Considering a well known classical constant of the motion in the quantum case, we find that a naive calculation of the commutator with the Hamiltonian does not show whether or not it is zero. It is shown how this problem can be solved. A geometric picture is given that reveals why levels of a separable system cross. It is shown that the repulsions found by Ayant and Arvieu are computational effects and that the method used by Traiber et al is related to the present picture which explains the crossings they find. An asymptotic formula for the energy levels is derived and it is found that the statistical quantities of the spectrum P(s) and 0143-0807/19/1/011/img1 have the form expected for an integrable system.
Theoretical results for starved elliptical contacts
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
Eighteen cases were used in the theoretical study of the influence of lubricant starvation on film thickness and pressure in elliptical elastohydrodynamic conjunctions. From the results a simple and important critical dimensionless inlet boundary distance at which lubricant starvation becomes significant was specified. This inlet boundary distance defines whether a fully flooded or a starved condition exists in the contact. Furthermore, it was found that the film thickness for a starved condition is written in dimensionless terms as a function of the inlet distance parameter and the film thickness for a fully flooded condition. Contour plots of pressure and film thickness in and around the contact are shown for fully flooded and starved conditions.
Winding light beams along elliptical helical trajectories
NASA Astrophysics Data System (ADS)
Wen, Yuanhui; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan
2016-07-01
Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We developed a superposition caustic method capable of winding light beams along nonconvex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implemented the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of nonconvex trajectories, thereby opening up a route of manipulating light beams for fundamental research and practical applications.
Splitting of Forced Elliptic Jets and Flames
NASA Technical Reports Server (NTRS)
Hertzberg, J.; Carlton, J.; Schwieterman, M.; Davis, E.; Bradley, E.; Linne, M.
1997-01-01
The objective of this work is to understand the fluid dynamics in the interaction of large scale, three-dimensional vortex structures and transitional diffusion flames in a microgravity environment. The vortex structures are used to provide a known perturbation of the type used in passive and active shear layer control techniques. 'Passive techniques' refers to manipulation of the system geometry to influence the three dimensional dynamics of vortex structures, and 'active' refers to any technique which adds energy (acoustic or kinetic) to the flow to influence the shear layer vortex dynamics. In this work the passive forcing is provided by an elliptic jet cross-section, and the active forcing is incorporated by perturbing the jet velocity using a loudspeaker in the plenum section.
Interior models of Mercury with equatorial ellipticity
NASA Astrophysics Data System (ADS)
Dumberry, M.
2012-09-01
The combination of planetary rotation observations and gravity field measurements by the MESSENGER spacecraft can be used to constrain the internal structure of Mercury. A recently published model suggests a mean mantle density of ρm = 3650 ± 225 kg m-3, substantially larger than that expected of a silicate mantle (3300 kg m-3) and possibly hinting at the presence of an FeS-rich layer at the base of the mantle. Here, we show that a large ρm is only required if the core-mantle boundary (CMB) of the planet is assumed axially-symmetric. An equatorial ellipticity of CMB of the order of 2 · 10-5 allows to satisfy gravity and rotation constraints with a mean mantle density typical of silicate material. Possible origin of such topography include past mantle convection, aspherical planetary shrinking, remnant tidal deformation, or a combination thereof.
Products of Independent Elliptic Random Matrices
NASA Astrophysics Data System (ADS)
O'Rourke, Sean; Renfrew, David; Soshnikov, Alexander; Vu, Van
2015-07-01
For fixed , we study the product of independent elliptic random matrices as tends to infinity. Our main result shows that the empirical spectral distribution of the product converges, with probability , to the -th power of the circular law, regardless of the joint distribution of the mirror entries in each matrix. This leads to a new kind of universality phenomenon: the limit law for the product of independent random matrices is independent of the limit laws for the individual matrices themselves. Our result also generalizes earlier results of Götze-Tikhomirov (On the asymptotic spectrum of products of independent random matrices, available at http://arxiv.org/abs/1012.2710) and O'Rourke-Soshnikov (J Probab 16(81):2219-2245, 2011) concerning the product of independent iid random matrices.
Horizon complementarity in elliptic de Sitter space
NASA Astrophysics Data System (ADS)
Hackl, Lucas; Neiman, Yasha
2015-02-01
We study a quantum field in elliptic de Sitter space dS4/Z2—the spacetime obtained from identifying antipodal points in dS4. We find that the operator algebra and Hilbert space cannot be defined for the entire space, but only for observable causal patches. This makes the system into an explicit realization of the horizon complementarity principle. In the absence of a global quantum theory, we propose a recipe for translating operators and states between observers. This translation involves information loss, in accordance with the fact that two observers see different patches of the spacetime. As a check, we recover the thermal state at the de Sitter temperature as a state that appears the same to all observers. This thermal state arises from the same functional that, in ordinary dS4, describes the Bunch-Davies vacuum.
Spectral multigrid methods for elliptic equations
NASA Technical Reports Server (NTRS)
Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.
1981-01-01
An alternative approach which employs multigrid concepts in the iterative solution of spectral equations was examined. Spectral multigrid methods are described for self adjoint elliptic equations with either periodic or Dirichlet boundary conditions. For realistic fluid calculations the relevant boundary conditions are periodic in at least one (angular) coordinate and Dirichlet (or Neumann) in the remaining coordinates. Spectral methods are always effective for flows in strictly rectangular geometries since corners generally introduce singularities into the solution. If the boundary is smooth, then mapping techniques are used to transform the problem into one with a combination of periodic and Dirichlet boundary conditions. It is suggested that spectral multigrid methods in these geometries can be devised by combining the techniques.
Magnetic elliptical polarization of Schumann resonances
Sentman, D.D.
1987-08-01
Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references.
Magnetic elliptical polarization of Schumann resonances
NASA Technical Reports Server (NTRS)
Sentman, D. D.
1987-01-01
Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.
Ultrasonic guided waves in elliptical annular cylinders.
Rajagopal, Prabhu; Pattanayak, Roson Kumar
2015-09-01
This paper studies the influence of cross-section ovalness or ellipticity on lower order axisymmetric guided wave modes in thin pipes. The second longitudinal mode L(0,2) and the fundamental torsional mode T(0,1) are studied, as these are of interest to current pipe inspection. The semi-analytical finite element (FE) method is mainly used, with three-dimensional FE simulations for visualization and cross-validation of results. The studies reveal that even a small degree of ovalness can affect mode shapes and velocities. The effect is more pronounced on the L(0,2) mode than on T(0,1) and this may be important for practical inspection applications. PMID:26428836
Nonlinear, dispersive, elliptically polarized Alfven wavaes
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Buti, B.; Hada, T.; Pellat, R.
1988-01-01
The derivative nonlinear Schroedinger (DNLS) equation is derived by an efficient means that employs Lagrangian variables. An expression for the stationary wave solutions of the DNLS that contains vanishing and nonvanishing and modulated and nonmodulated boundary conditions as subcases is then obtained. The solitary wave solutions for elliptically polarized quasiparallel Alfven waves in the magnetohydrodynamic limit (nonvanishing, unmodulated boundary conditions) are obtained. These converge to the Korteweg-de Vries and the modified Korteweg-de Vries solitons obtained previously for oblique propagation, but are more general. It is shown that there are no envelope solitary waves if the point at infinity is unstable to the modulational instability. The periodic solutions of the DNLS are characterized.
Intrinsic structure in Saturn's rings
NASA Astrophysics Data System (ADS)
Albers, N.
2015-10-01
Saturn's rings are the most prominent in our Solar system and one example of granular matter in space. Dominated by tides and inelastic collisions the system is highly flattened being almost 300000km wide while only tens of meters thick. Individual particles are composed of primarily water ice and range from microns to few tens of meters in size. Apparent patterns comprise ringlets, gaps, kinematic wakes, propellers, bending waves, and the winding spiral arms of density waves. These large-scale structures are perturbations foremost created by external as well as embedded moons. Observations made by the Cassini spacecraft currently in orbit around Saturn show these structures in unprecedented detail. But high-resolution measurements reveal the presence of small-scale structures throughout the system. These include self-gravity wakes (50-100m), overstable waves (100-300m), subkm structure at the A and B ring edges, "straw" and "ropy" structures (1-3km), and the C ring "ghosts". Most of these had not been anticipated and are found in perturbed regions, driven by resonances with external moons, where the system undergoes periodic phases of compression and relaxation that correlate with the presence of structure. High velocity dispersion and the presence of large clumps imply structure formation on time scales as short as one orbit (about 10 hours). The presence of these intrinsic structures is seemingly the response to varying local conditions such as internal density, optical depth, underlying particle size distribution, granular temperature, and distance from the central planet. Their abundance provides evidence for an active and dynamic ring system where aggregation and fragmentation are ongoing on orbital timescales. Thus a kinetic description of the rings may be more appropriate than the fluid one. I will present Cassini Ultraviolet Spectrometer (UVIS) High Speed Photometer (HSP) occultations, Voyager 1 and 2 Imaging Science Subsystem (ISS), and high
Elliptical Undulators HU256 for Synchrotron SOLEIL
Batrakov, A.; Churkin, I.; Ilyin, I.; Kolokolnikov, Yu.; Rouvinski, E.; Semenov, E.; Steshov, A.; Vobly, P.; Briquez, F.; Chubar, O.; Dael, A.; Marcouile, O.; Marteau, F.; Roux, G.; Valleau, M.
2007-01-19
Three elliptical undulators HU256 of electromagnetic type were produced, tested and magnetically measured by the Budker Institute of Nuclear Physics (Russia) for Synchrotron Soleil (France). The undulators have a new design of a Bx and Bz closed structure for insertion vacuum chamber. In the elliptical undulator HU256 with period of the magnetic fields of 256 mm, the vertical magnetic field (Bzmax=0.44 T) formed by 27 Bz laminated dipole magnets is symmetric, and the horizontal magnetic field (Bxmax=0.33 T) formed by 28 Bx laminated dipole magnets is asymmetric. The undulator can work in standard mode as well as in a quasi-periodical mode. The vertical magnetic field may be modulated by switching on the modulation coils placed on the Bz dipoles. Two power supply systems allow us to modulate the horizontal magnetic field, and change the radiation spectrum. The magnetic calculations of the individual dipoles and dipoles in ''undulator'' environment were executed by means of Mermaid 3D Code. The magnetic measurements of the individual dipoles had confirmed the magnetic calculations. On basis of semiempirical dependences from the mechanical characteristics the estimates of the magnetic parameters for all dipoles were calculated. Sorting of dipoles in the undulators have been done, and it has improved the magnetic parameters of the assembled undulators in comparison with the statistical estimations. The magnetic measurements of the undulators HU256 were carried out at Budker INP by Hall probes and at Soleil by Hall probes and Stretched Wire. Now the 1st undulator HU256 is installed at Soleil Storage Ring.
Elliptical Undulators HU256 for Synchrotron SOLEIL
NASA Astrophysics Data System (ADS)
Batrakov, A.; Briquez, F.; Chubar, O.; Churkin, I.; Dael, A.; Ilyin, I.; Kolokolnikov, Yu.; Marcouile, O.; Marteau, F.; Roux, G.; Rouvinski, E.; Semenov, E.; Steshov, A.; Valleau, M.; Vobly, P.
2007-01-01
Three elliptical undulators HU256 of electromagnetic type were produced, tested and magnetically measured by the Budker Institute of Nuclear Physics (Russia) for Synchrotron Soleil (France). The undulators have a new design of a Bx & Bz closed structure for insertion vacuum chamber. In the elliptical undulator HU256 with period of the magnetic fields of 256 mm, the vertical magnetic field (Bzmax=0.44 T) formed by 27 Bz laminated dipole magnets is symmetric, and the horizontal magnetic field (Bxmax=0.33 T) formed by 28 Bx laminated dipole magnets is asymmetric. The undulator can work in standard mode as well as in a quasi-periodical mode. The vertical magnetic field may be modulated by switching on the modulation coils placed on the Bz dipoles. Two power supply systems allow us to modulate the horizontal magnetic field, and change the radiation spectrum. The magnetic calculations of the individual dipoles and dipoles in "undulator" environment were executed by means of Mermaid 3D Code. The magnetic measurements of the individual dipoles had confirmed the magnetic calculations. On basis of semiempirical dependences from the mechanical characteristics the estimates of the magnetic parameters for all dipoles were calculated. Sorting of dipoles in the undulators have been done, and it has improved the magnetic parameters of the assembled undulators in comparison with the statistical estimations. The magnetic measurements of the undulators HU256 were carried out at Budker INP by Hall probes and at Soleil by Hall probes and Stretched Wire. Now the 1st undulator HU256 is installed at Soleil Storage Ring.
Phylogeny of major intrinsic proteins.
Danielson, Jonas A H; Johanson, Urban
2010-01-01
Major intrinsic proteins (MIPs) form a large superfamily of proteins that can be divided into different subfamilies and groups according to phylogenetic analyses. Plants encode more MIPs than o ther organisms and se ven subfamilies have been defined, whereofthe Nodulin26-like major intrinsic proteins (NIPs) have been shown to permeate metalloids. In this chapter we review the phylogeny of MIPs in general and especially of the plant MIPs. We also identify bacterial NIP-like MIPs and discuss the evolutionary implications of this finding regarding the origin and ancestral transport specificity of the NIPs. PMID:20666221
Constrained molecular dynamics for quantifying intrinsic ductility versus brittleness
NASA Astrophysics Data System (ADS)
Tanguy, D.
2007-10-01
Evaluating the critical load levels for intrinsic ductility and brittle propagation is a first, but necessary, step for modeling semibrittle crack propagation. In the most general case, the calculations have to be fully atomistic because the details of the crack tip structure cannot be captured by continuum mechanics. In this paper, we present a method to explore ductile and brittle configurations, within the same force field, giving a quantitative estimate of the proximity of a transition from intrinsic ductility to brittleness. The shear localization is characterized by a centrosymmetry criterion evaluated on each atom in the vicinity of the crack tip. This provides an efficient order parameter to track the nucleation and propagation of dislocations. We show that it can be used as a holonomic constraint within molecular dynamics simulations, giving a precise control over plasticity during crack propagation. The equations of motion are derived and applied to crack propagation in the [112¯] direction of an fcc crystal loaded in mode I along [111]. The critical loads for dislocation emission and for brittle propagation are computed. The key point is that the generalized forces of constraint are not dissipative. Therefore, they do not spoil the critical elastic energy release rates (the Griffith criterion is preserved). As an example of the possibilities of the method, the response of blunted tips is investigated for three configurations: a slab of vacancies, an elliptical hole, and a circular hole. Brittle propagation by an alternative mechanism to cleavage, called “vacancy injection,” is reported.
The intrinsic two-dimensional size of Sagittarius A*
Bower, Geoffrey C.; Markoff, Sera; Brunthaler, Andreas; Falcke, Heino; Law, Casey; Maitra, Dipankar; Clavel, M.; Goldwurm, A.; Morris, M. R.; Witzel, Gunther; Meyer, Leo; Ghez, A. M.
2014-07-20
We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array observations at a wavelength of 7 mm. The intrinsic source is modeled as an elliptical Gaussian with major-axis size 35.4 × 12.6 R{sub S} in position angle 95° east of north. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95°. We also place a maximum peak-to-peak change of 15% in the intrinsic major-axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports the conclusion that NIR and X-ray flares are primarily due to electron excitation and not to an enhanced accretion rate onto the black hole.
Intrinsic and Extrinsic Motivation for Smoking Cessation.
ERIC Educational Resources Information Center
Curry, Susan; And Others
1990-01-01
Evaluated intrinsic-extrinsic model of motivation for smoking cessation using two samples (Ns=1,217 and 151) of smokers. Analysis on Reasons for Quitting scale supported intrinsic-extrinsic motivation distinction, defining four-factor model with two intrinsic and two extrinsic dimensions. Found that smokers with higher levels of intrinsic relative…
Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies
NASA Technical Reports Server (NTRS)
Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.
2013-01-01
Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.
Global variational approach to elliptic transport barriers in three dimensions
NASA Astrophysics Data System (ADS)
Oettinger, David; Blazevski, Daniel; Haller, George
2016-03-01
We introduce an approach to identify elliptic transport barriers in three-dimensional, time-aperiodic flows. Obtained as Lagrangian Coherent Structures (LCSs), the barriers are tubular non-filamenting surfaces that form and bound coherent material vortices. This extends a previous theory of elliptic LCSs as uniformly stretching material surfaces from two-dimensional to three-dimensional flows. Specifically, we obtain explicit expressions for the normals of pointwise (near-) uniformly stretching material surfaces over a finite time interval. We use this approach to visualize elliptic LCSs in steady and time-aperiodic ABC-type flows.
New Elliptic Solutions of the Yang-Baxter Equation
NASA Astrophysics Data System (ADS)
Chicherin, D.; Derkachov, S. E.; Spiridonov, V. P.
2016-07-01
We consider finite-dimensional reductions of an integral operator with the elliptic hypergeometric kernel describing the most general known solution of the Yang-Baxter equation with a rank 1 symmetry algebra. The reduced R-operators reproduce at their bottom the standard Baxter's R-matrix for the 8-vertex model and Sklyanin's L-operator. The general formula has a remarkably compact form and yields new elliptic solutions of the Yang-Baxter equation based on the finite-dimensional representations of the elliptic modular double. The same result is also derived using the fusion formalism.
New Elliptic Solutions of the Yang-Baxter Equation
NASA Astrophysics Data System (ADS)
Chicherin, D.; Derkachov, S. E.; Spiridonov, V. P.
2016-02-01
We consider finite-dimensional reductions of an integral operator with the elliptic hypergeometric kernel describing the most general known solution of the Yang-Baxter equation with a rank 1 symmetry algebra. The reduced R-operators reproduce at their bottom the standard Baxter's R-matrix for the 8-vertex model and Sklyanin's L-operator. The general formula has a remarkably compact form and yields new elliptic solutions of the Yang-Baxter equation based on the finite-dimensional representations of the elliptic modular double. The same result is also derived using the fusion formalism.
Global variational approach to elliptic transport barriers in three dimensions.
Oettinger, David; Blazevski, Daniel; Haller, George
2016-03-01
We introduce an approach to identify elliptic transport barriers in three-dimensional, time-aperiodic flows. Obtained as Lagrangian Coherent Structures (LCSs), the barriers are tubular non-filamenting surfaces that form and bound coherent material vortices. This extends a previous theory of elliptic LCSs as uniformly stretching material surfaces from two-dimensional to three-dimensional flows. Specifically, we obtain explicit expressions for the normals of pointwise (near-) uniformly stretching material surfaces over a finite time interval. We use this approach to visualize elliptic LCSs in steady and time-aperiodic ABC-type flows. PMID:27036192
Single optical tweezers based on elliptical core fiber
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhao, Li; Chen, Yunhao; Liu, Zhihai; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo
2016-04-01
We propose and demonstrate a new single optical tweezers based on an elliptical core fiber, which can realize the trapped yeast cell rotation with a precise and simple control. Due to the elliptical shape of the fiber core, the LP11 mode beam can propagate stably. When we rotate the fiber tip, the LP11 mode beam will also rotate along with the fiber tip, which helps to realize the trapped micro-particle rotation. By using this method, we can easily realize the rotation of the trapped yeast cells, the rotating angle of the yeast cell is same as the elliptical core fiber tip.
Jacobi-Bessel analysis of reflector antennas with elliptical apertures
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya
1987-01-01
Although many reflector antennas possess circular projected apertures, there are recent satellite and ground antenna applications for which it is desirable to employ reflectors with elliptical apertures. Here a modification of the Jacobi-Bessel expansion is presented for the diffraction analysis of reflectors with elliptical apertures. A comparative study is also performed between this modified Jacobi-Bessel algorithm and the one which uses the Jacobi-Bessel expansion over a circumscribing circular region. Numerical results are presented for offset reflectors with elliptical and circular apertures and the improved convergence properties of the modified algorithm are highlighted.
Reading: Intrinsic versus Extrinsic Motivation.
ERIC Educational Resources Information Center
Ediger, Marlow
Much debate centers on motivating student in reading achievement. Should students feel motivated from within (intrinsic motivation), or is it better to have extrinsic motivation whereby external stimuli are used to help learners achieve optimally in reading? This paper aims to analyze the two points of view about motivating students in reading…
Individual Patterns in Intrinsic Motivation.
ERIC Educational Resources Information Center
Hom, Harry L., Jr.; Maxwell, Frederick R.
The effects of extrinsic reward on students' intrinsic interest was investigated using a single-subject design in a behavior disorders classroom. Baseline measures of the interest level of five children (ages 9-11 years) were collected for academic and non-academic tasks. Assessment was then made of each subject's response hierarchy or level of…
Intrinsic Motivation in Physical Education
ERIC Educational Resources Information Center
Davies, Benjamin; Nambiar, Nathan; Hemphill, Caroline; Devietti, Elizabeth; Massengale, Alexandra; McCredie, Patrick
2015-01-01
This article describes ways in which educators can use Harter's perceived competence motivation theory, the achievement goal theory, and self-determination theory to develop students' intrinsic motivation to maintain physical fitness, as demonstrated by the Sound Body Sound Mind curriculum and proven effective by the 2013 University of…
Tracing the Formation and Evolution of Massive Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Davari, Roozbeh
Massive galaxies at higher redshift, z > 2, show different characteristics than their local counterparts. They are compact and most likely have a disk. Understanding the evolutionary path of these massive galaxies can give us some clues on how the universe has been behaving in the last 10 billion years. How well can we measure the bulge and disk properties of these systems? We perform two sets of comprehensive simulations in order to systematically quantify the effects of non-homology in structures and the methods employed. For the first set of simulations, by accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at z ≈ 2 are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. For the second set of simulations, we employ empirical scaling relations to produce realistic-looking two-component local galaxies with a uniform and wide range of bulge-to-total ratios (B/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at z ≈ 2. This provides the first set of simulations for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/T . We can measure B/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/T ≥ 0.2. The disk component, by contrast, can be measured with little difficulty. Next, we trace back the evolution of local massive galaxies but performing detailed morphological analysis: namely, single Swrsic fitting and bulge+disk decomposition. CANDELS images and catalogues offer an ideal dataset for this study. We
Age and metallicity gradients in fossil ellipticals
NASA Astrophysics Data System (ADS)
Eigenthaler, P.; Zeilinger, W. W.
2013-05-01
Context. Fossil galaxy groups are speculated to be old and highly evolved systems of galaxies that formed early in the universe and had enough time to deplete their L∗ galaxies through successive mergers of member galaxies, building up one massive central elliptical, but retaining the group X-ray halo. Aims: Considering that fossils are the remnants of mergers in ordinary groups, the merger history of the progenitor group is expected to be imprinted in the fossil central galaxy (FCG). We present for the first time radial gradients of single-stellar population (SSP) ages and metallicites in a sample of FCGs to constrain their formation scenario. We also measure line-strength gradients for the strongest absorption features in these galaxies. Methods: We took deep spectra with the long-slit spectrograph ISIS at the William Herschel Telescope (WHT) for six FCGs. The obtained spectra are fit with Pegase HR SSP models within the full-spectrum fitting package ULySS yielding SSP ages and metallicities of the stellar populations. We measure radial gradients of SSP ages and metallicities along the major axes. Lick indices are measured for the strongest absorption features to determine line-strength gradients and compare with the full-spectrum fitting results. Results: Our sample comprises some of the most massive galaxies in the universe exhibiting an average central velocity dispersion of σ0 = 271 ± 28 km s-1. Metallicity gradients are throughout negative with comparatively flat slopes of ∇[Fe/H] = -0.19 ± 0.08 while age gradients are found to be insignificant (∇age = 0.00 ± 0.05). All FCGs lie on the fundamental plane, suggesting that they are virialised systems. We find that gradient strengths and central metallicities are similar to those found in cluster ellipticals of similar mass. Conclusions: The comparatively flat metallicity gradients with respect to those predicted by monolithic collapse (∇Z = -0.5) suggest that fossils are indeed the result of
Elliptic Solvers with Adaptive Mesh Refinement on Complex Geometries
Phillip, B.
2000-07-24
Adaptive Mesh Refinement (AMR) is a numerical technique for locally tailoring the resolution computational grids. Multilevel algorithms for solving elliptic problems on adaptive grids include the Fast Adaptive Composite grid method (FAC) and its parallel variants (AFAC and AFACx). Theory that confirms the independence of the convergence rates of FAC and AFAC on the number of refinement levels exists under certain ellipticity and approximation property conditions. Similar theory needs to be developed for AFACx. The effectiveness of multigrid-based elliptic solvers such as FAC, AFAC, and AFACx on adaptively refined overlapping grids is not clearly understood. Finally, a non-trivial eye model problem will be solved by combining the power of using overlapping grids for complex moving geometries, AMR, and multilevel elliptic solvers.
Design and fabrication of embedded two elliptical cores hollow fiber
NASA Astrophysics Data System (ADS)
Tian, Fengjun; Yuan, Libo; Dai, Qian; Liu, Zhihai
2011-11-01
We propose a novel embedded two elliptical cores fiber with a hollow air hole, and demonstrate the fabrication of the embedded two elliptical cores hollow fiber (EECHF). By using a suspended core-in-tube technique, the fibers are drawn from the preform utilizing a fiber drawing system with a pressure controller. The fiber have a 60μm diameter hollow air hole centrally, a 125μm diameter cladding, two 7.2μm /3.0μm (major axis/minor axis) elliptical cores, and a 3μm thickness silica cladding between core layer and air hole. The EECHF has a great potential for PMFs, high sensitivity in-fiber interferometers, poling fiber and Bio-sensor based on evanescent wave field. The fabrication technology is simple and versatile, and can be easily utilized to fabricate multi-core fiber with any desired aspect ratio elliptical core.
C1,1 regularity for degenerate elliptic obstacle problems
NASA Astrophysics Data System (ADS)
Daskalopoulos, Panagiota; Feehan, Paul M. N.
2016-03-01
The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.
Iterative methods for elliptic finite element equations on general meshes
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.; Choudhury, Shenaz
1986-01-01
Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.
STELLAR POPULATIONS OF ELLIPTICAL GALAXIES IN THE LOCAL UNIVERSE
Zhu Guangtun; Blanton, Michael R.; Moustakas, John E-mail: michael.blanton@nyu.ed
2010-10-10
We study the stellar populations of 1923 elliptical galaxies at z < 0.05 selected from the Sloan Digital Sky Survey as a function of velocity dispersion, {sigma}, and environment. Our sample constitutes among the largest high-fidelity samples of elliptical galaxies with uniform imaging and optical spectroscopy assembled to date. Confirming previous studies, we find that elliptical galaxies dominate at high luminosities ({approx}>L*), and that the highest-{sigma} ellipticals favor high-density environments. We construct average, high signal-to-noise spectra in bins of {sigma} and environment and find the following: (1) lower-{sigma} galaxies have a bluer optical continuum and stronger (but still weak) emission lines; (2) at fixed {sigma}, field ellipticals have a slightly bluer stellar continuum, especially at wavelengths {approx}<4000 A, and have stronger (but still weak) emission lines compared with their group counterparts, although this environmental dependence is strongest for low-{sigma} ellipticals and the highest-{sigma} ellipticals are much less affected. Based on Lick indices measured from both the individual and average spectra, we find that (1) at a given {sigma}, elliptical galaxies in groups have systematically weaker Balmer absorption than their field counterparts, although this environmental dependence is most pronounced at low {sigma}; (2) there is no clear environmental dependence of (Fe), while the {alpha}-element absorption indices such as Mg b are only slightly stronger in galaxies belonging to rich groups. An analysis based on simple stellar populations (SSPs) reveals that more massive elliptical galaxies are older, more metal-rich, and more strongly {alpha}-enhanced. We also find that (1) the SSP-equivalent ages of galaxies in rich groups are, on average, {approx}1 Gyr older than in the field, although once again this effect is strongest at low {sigma}; (2) galaxies in rich groups have slightly lower [Fe/H] and are marginally more strongly
Elliptical varied line-space (EVLS) gratings
NASA Astrophysics Data System (ADS)
Thomas, Roger J.
2004-10-01
Imaging spectroscopy at wavelengths below 2000 Å offers an especially powerful method for studying many extended high-temperature astronomical objects, like the Sun and its outer layers. But the technology to make such measurements is also especially challenging, because of the poor reflectance of all standard materials at these wavelengths, and because the observation must be made from above the absorbing effects of the Earth's atmosphere. To solve these problems, single-reflection stigmatic spectrographs for XUV wavelengths have bee flown on several space missions based on designs with toroidal uniform line-space (TULS) or spherical varied line-space (SVLS) gratings that operate at near normal-incidence. More recently, three solar EUV/UV instruments have been selected that use toroidal varied line-space (TVLS) gratings; these are SUMI and RAISE, both sounding rocket payloads, and NEXUS, a SMEX satellite-mission. The next logical extension to such designs is the use of elliptical surfaces for varied line-space (EVLS) rulings. In fact, EVLS designs are found to provide superior imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. In some cases, such designs may be optimized even further by using a hyperbolic surface for the feeding telescope. The optical characteristics of two solar EUV spectrometers based on these concepts are described: EUS and EUI, both being developed as possible instruments for ESA's Solar Orbiter mission by consortia led by RAL and by MSSL, respectively.
Formation and Evolution of Dwarf Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Chilingarian, Igor
2006-11-01
This thesis presents observational studies of evolution of dwarf elliptical galaxies. dE's are numerically dominant population in clusters of galaxies, but their origin and evolution is a matter of debate. Several scenarios of gas removal from dE's exist: galactic winds, ram pressure stripping, gravitaional harassment. We present new method to estimate stellar population parameters and internal kinematics, based on fitting observed spectra in the pixel space by PEGASE.HR synthetic populations. We apply this technique to 3D-spectroscopic observations of dE galaxies in the Virgo cluster and nearby groups and multiobject spectroscopy of several dozens of dE's in the Abell 496 cluster. We present discovery of young nuclei in bright dE galaxies in the Virgo cluster. Based on the analysis of observational data we conclude that: (1) there is an evolutionary connection between dE's and dIrr's, (2) the most probable scenario of gas removal is ram pressure stripping by the intergalactic medium.
Elliptical acoustic particle motion in underwater waveguides.
Dall'Osto, David R; Dahl, Peter H
2013-07-01
Elliptical particle motion, often encountered in acoustic fields containing interference between a source signal and its reflections, can be quantified by the degree of circularity, a vector quantity formulated from acoustic particle velocity, or vector intensity measurements. Acoustic analysis based on the degree of circularity is expected to find application in ocean waveguides as its spatial dependence relates to the acquisition geometry, water column sound speed, surface conditions, and bottom properties. Vector sensor measurements from a laboratory experiment are presented to demonstrate the depth dependence of both the degree of circularity and an approximate formulation based on vertical intensity measurements. The approximation is applied to vertical intensity field measurements made in a 2006 experiment off the New Jersey coast (in waters 80 m deep) to demonstrate the effect of sediment structure on the range dependence of the degree of circularity. The mathematical formulation presented here establishes the framework to readily compute the degree of circularity from experimental measurements; the experimental examples are provided as evidence of the spatial and frequency dependence of this fundamental vector property. PMID:23862789
Anomaly cancelling terms from the elliptic genus
NASA Astrophysics Data System (ADS)
Lerche, W.; Nilsson, B. E. W.; Schellekens, A. N.; Warner, N. P.
1988-03-01
We calculate the heterotic string one-loop diagram in 2n + 2 dimensions with one external Bμν and n external gravitons and/or gauge bosons. The result is a modular integral over the weight zero terms of the character valued partition function (or elliptic genus) of the theory, and can be directly expressed in terms of the factor which multiplies TrF2 - TrR2 in the field theory anomaly. The integrands have a non-trivial dependence on the modular parameter τ, reflecting contributions not only from the physical massless states but also from an infinity of ``unphysical'' modes. Some of them are identical to integrands which have been discussed recently in relation with Atkin-Lehner symmetry and the cosmological constant. As a corollary we find a method to compute these integrals without using Atkin-Lehner transformations. On leave of absence from: Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA 02139, USA. Work supported in part by National Science Foundation Grant #84-07109.
Banana orbits in elliptic tokamaks with hole currents
NASA Astrophysics Data System (ADS)
Martin, P.; Castro, E.; Puerta, J.
2015-03-01
Ware Pinch is a consequence of breaking of up-down symmetry due to the inductive electric field. This symmetry breaking happens, though up-down symmetry for magnetic surface is assumed. In previous work Ware Pinch and banana orbits were studied for tokamak magnetic surface with ellipticity and triangularity, but up-down symmetry. Hole currents appear in large tokamaks and their influence in Ware Pinch and banana orbits are now considered here for tokamaks magnetic surfaces with ellipticity and triangularity.
Elliptical dichroism: operating principle of planar chiral metamaterials.
Zhukovsky, Sergei V; Novitsky, Andrey V; Galynsky, Vladimir M
2009-07-01
We employ a homogenization technique based on the Lorentz electronic theory to show that planar chiral structures (PCSs) can be described by an effective dielectric tensor similar to that of biaxial elliptically dichroic crystals. Such a crystal is shown to behave like a PCS insofar as it exhibits its characteristic optical properties, namely, corotating elliptical polarization eigenstates and asymmetric, direction-dependent transmission for left- or right-handed incident wave polarization. PMID:19571975
Depth-resolved measurements with elliptically polarized reflectance spectroscopy
Bailey, Maria J.; Sokolov, Konstantin
2016-01-01
The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712
Interference of multiplane wings having elliptical lift distribution
NASA Technical Reports Server (NTRS)
Von Sanden, H
1924-01-01
In calculating the self-induction of a wing surface, elliptical lift distribution is assumed, while in calculating the mutual induction or interference of two wing surfaces, a uniform distribution of the lift along the wing has hitherto been assumed. Whether the results of these calculations are substantially altered by assuming an elliptical lift distribution (which is just as probable as uniform distribution) is examined here.
Bifurcations in elliptical, asymmetric non-neutral plasmas
NASA Astrophysics Data System (ADS)
Fajans, Joel; Gilson, Erik
1999-11-01
When subjected to a stationary, l=2 potential perturbation on the wall, a pure electron plasma will deform into an elliptical shape. At first, the plasma's ellipticity is proportional to the strength of the potential perturbation. Once the perturbation is increased beyond a critical value, the plasma equilibrium bifurcates into two off-axis states. This bifurcation has been observed experimentally and will be described in this poster. (see http://socrates.berkeley.edu/ fajans/EquilStab/EllipseBifurcation.avi)
Beam-beam deflection and signature curves for elliptic beams
Ziemann, V.
1990-10-22
In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
NASA Astrophysics Data System (ADS)
Rys, Agnieszka; Falcon-Barroso, J.; van de Ven, G.
2013-01-01
Dwarf elliptical galaxies (dEs) are the most common galaxy class in dense environments. They are also a surprisingly inhomogenous class, which has made it challenging both to relate different dE subtypes to each other, as well as place the whole class in the larger context of galaxy assembly and (trans)formation processes. Here we will show the effects of environmental evolution on Virgo Cluster and field dEs, presenting the first large-scale integral-field spectroscopic (SAURON) data for this galaxy class. Our sample consists of 12 galaxies and no two of them are alike. We find that the level of rotation is not tied to flattening; we observe kinematic twists; we discover large-scale kinematically-decoupled components; we see varying gradients in line-strength maps. This great variety of morphological, kinematic, and stellar population parameters supports the claim that dEs are defunct dwarf spiral/irregular galaxies and points to a formation scenario that allows for a stochastic shaping of galaxy properties. The combined influence of ram-pressure stripping and harassment fulfils this requirement, still, their exact impact is not yet understood. We thus further investigate the properties of our sample by performing a detailed comprehensive analysis of its kinematic, dynamical, and stellar population properties. We infer the total (dark and baryonic) matter distribution by fitting the observed stellar velocity and velocity dispersion with the solutions of the Jeans equations. We obtain 2D age, metallicity, and enrichment information from line-strength analysis. We then tie these results to the galaxies' intrinsic (i.e. deprojected) locations in the cluster with the use of surface-brightness fluctuation distances. This step is essential to providing unbiased correlations with the local environment density. We show that the dark matter fraction, unlike the level of rotational support, appears to correlate with the clustrocentric distance, and that our dwarfs have
[Intrinsically Photosensitive Retinal Ganglion Cells].
Skorkovská, K; Skorkovská, Š
2015-06-01
Recently discovered intrinsically photosensitive melanopsin-containing retinal ganglion cells contribute to circadian photoentrainment and pupillary constriction; recent works have also brought new evidence for their accessory role in the visual system in humans. Pupil light reaction driven by individual photoreceptors can be isolated by means of the so called chromatic pupillography. The use of chromatic stimuli to elicit different pupillary responses may become an objective clinical pupil test in the detection of retinal diseases and in assessing new therapeutic approaches particularly in hereditary retinal degenerations like retinitis pigmentosa. In advanced stages of disease, the pupil light reaction is even more sensitive than standard electroretinography for detecting residual levels of photoreceptor activity. This review summarizes current knowledge on intrinsically photosensitive retinal cells and highlights its possible implications for clinical practice. PMID:26201360
Intrinsic Control of Axon Regeneration.
He, Zhigang; Jin, Yishi
2016-05-01
A determinant of axon regeneration is the intrinsic growth ability of injured neurons, which dictates a battery of injury responses in axons and cell bodies. While some of these regulatory mechanisms are evolutionarily conserved, others are unique to the mammalian central nervous system (CNS) where spontaneous regeneration usually does not occur. Here we examine our current understanding of these mechanisms at cellular and molecular terms and discuss their potential implications for promoting axon regeneration and functional recovery after nerve injury. PMID:27151637
Quasar redshifts: the intrinsic component
NASA Astrophysics Data System (ADS)
Hansen, Peter M.
2016-09-01
The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.
Electron dynamics of molecular double ionization by elliptically polarized few-cycle laser pulses
NASA Astrophysics Data System (ADS)
Ai-Hong, Tong; Guo-Qiang, Feng; Dan, Liu
2015-03-01
Using the classical ensemble method, we have investigated double ionization (DI) of diatomic molecules driven by elliptically polarized few-cycle laser pulses. The results show that DI channel depends strongly on internuclear distances (R), which is dominated by nonsequential double ionization (NSDI) for small and large R, while sequential double ionization (SDI) for mediate R. By tracing NSDI trajectories, we find that NSDI mainly originates from recollision process for small R and collision process for large R. Moreover, the correlated momentum distributions along the long axis strongly depend on the carrier-envelope-phase (CEP), and this phase dependence is affected by R.
Elliptic Relaxation of a Tensor Representation of the Pressure-Strain and Dissipation Rate
NASA Technical Reports Server (NTRS)
Carlson, John R.; Gatski, Thomas B.
2002-01-01
A formulation to include the effects of wall-proximity in a second moment closure model is presented that utilizes a tensor representation for the redistribution term in the Reynolds stress equations. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. DNS data and Reynolds stress solutions using a full differential approach at channel Reynolds number of 590 are compared to the new model.
NASA Technical Reports Server (NTRS)
Carlson, J. R.; Gatski, T. B.
2002-01-01
A formulation to include the effects of wall proximity in a second-moment closure model that utilizes a tensor representation for the redistribution terms in the Reynolds stress equations is presented. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. Direct numerical simulation data and Reynolds stress solutions using a full differential approach are compared for the case of fully developed channel flow.
Quaternion Formalism for the Intrinsic Transfer Matrix
NASA Astrophysics Data System (ADS)
Cretu, Nicolae; Pop, Mihail Ioan; Boer, Attila
A quaternion formulation is applied to the intrinsic transfer matrix for longitudinal elastic wave propagation through a multilayer medium in order to find the spectral response of a sonic crystal. Resonance conditions and the band structure of the crystal are obtained. The presence of a defect is also analysed. The analysis is carried out theoretically and through simulations. A coupled oscillators model is used to validate the obtained results from a phenomenological point of view. Experimental measurements are carried out for some periodic multilayer arrangements and they are correlated with theory. The obtained spectral response and band structure are essential in characterising the sonic crystal and also in optimising its structure in order to obtain specific passbands and stopbands. The adaptedness of the quaternion formulation to periodic structures and to the inclusion of defects is considered.
Intrinsic Frequency and the Single Wave Biopsy
Petrasek, Danny; Pahlevan, Niema M.; Tavallali, Peyman; Rinderknecht, Derek G.; Gharib, Morteza
2015-01-01
Insulin resistance is the hallmark of classical type II diabetes. In addition, insulin resistance plays a central role in metabolic syndrome, which astonishingly affects 1 out of 3 adults in North America. The insulin resistance state can precede the manifestation of diabetes and hypertension by years. Insulin resistance is correlated with a low-grade inflammatory condition, thought to be induced by obesity as well as other conditions. Currently, the methods to measure and monitor insulin resistance, such as the homeostatic model assessment and the euglycemic insulin clamp, can be impractical, expensive, and invasive. Abundant evidence exists that relates increased pulse pressure, pulse wave velocity (PWV), and vascular dysfunction with insulin resistance. We introduce a potential method of assessing insulin resistance that relies on a novel signal-processing algorithm, the intrinsic frequency method (IFM). The method requires a single pulse pressure wave, thus the term “ wave biopsy.” PMID:26183600
Decoherence: Intrinsic, Extrinsic, and Environmental
NASA Astrophysics Data System (ADS)
Stamp, Philip
2012-02-01
Environmental decoherence times have been difficult to predict in solid-state systems. In spin systems, environmental decoherence is predicted to arise from nuclear spins, spin-phonon interactions, and long-range dipolar interactions [1]. Recent experiments have confirmed these predictions quantitatively in crystals of Fe8 molecules [2]. Coherent spin dynamics was observed over macroscopic volumes, with a decoherence Q-factor Qφ= 1.5 x10^6 (the upper predicted limit in this system being Qφ= 6 x10^7). Decoherence from dipolar interactions is particularly complex, and depends on the shape and the quantum state of the system. No extrinsic ``noise'' decoherence was observed. The generalization to quantum dot and superconducting qubit systems is also discussed. We then discuss searches for ``intrinsic'' decoherence [3,4], coming from non-linear corrections to quantum mechanics. Particular attention is paid to condensed matter tests of such intrinsic decoherence, in hybrid spin/optomechanical systems, and to ways of distinguishing intrinsic decoherence from environmental and extrinsic decoherence sources. [4pt] [1] Morello, A. Stamp, P. C. E. & Tupitsyn, Phys. Rev. Lett. 97, 207206 (2006).[0pt] [2] S. Takahashi et al., Nature 476, 76 (2011).[0pt] [3] Stamp, P. C. E., Stud. Hist. Phil. Mod. Phys. 37, 467 (2006). [0pt] [4] Stamp, P.C.E., Phil. Trans. Roy. Soc. A (to be published)
Troponins, intrinsic disorder, and cardiomyopathy.
Na, Insung; Kong, Min J; Straight, Shelby; Pinto, Jose R; Uversky, Vladimir N
2016-08-01
Cardiac troponin is a dynamic complex of troponin C, troponin I, and troponin T (TnC, TnI, and TnT, respectively) found in the myocyte thin filament where it plays an essential role in cardiac muscle contraction. Mutations in troponin subunits are found in inherited cardiomyopathies, such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). The highly dynamic nature of human cardiac troponin and presence of numerous flexible linkers in its subunits suggest that understanding of structural and functional properties of this important complex can benefit from the consideration of the protein intrinsic disorder phenomenon. We show here that mutations causing decrease in the disorder score in TnI and TnT are significantly more abundant in HCM and DCM than mutations leading to the increase in the disorder score. Identification and annotation of intrinsically disordered regions in each of the troponin subunits conducted in this study can help in better understanding of the roles of intrinsic disorder in regulation of interactomes and posttranslational modifications of these proteins. These observations suggest that disease-causing mutations leading to a decrease in the local flexibility of troponins can trigger a whole plethora of functional changes in the heart. PMID:27074551
Jacob, Elizabeth; Glass, G. B. J.
1971-01-01
In an attempt to localize intrinsic factor in the human parietal cell, and to study its intracellular union with the intrinsic factor antibody and complement, intrinsic factor antibody was separated from coexisting parietal cell antibody in pernicious anaemia sera by gel filtration. Intrinsic factor antibody of both `binding' and `blocking' type was also produced in rabbits by immunization with semi-purified human intrinsic factor–[57Co]B12 complex. Intrinsic factor antibody obtained from both sources produced fluorescence in the human parietal cells in the indirect Coons' test in the presence of fluoresceinated anti-human IgG. The fluorescence was localized peripherally, at the cell membrane. When instead of the fluoresceinated anti-human IgG a fluoresceinated anti-human complement (C) serum and normal complement containing serum were used, intrinsic factor antibody from both sources produced fluorescence of the entire parietal cell cytoplasm of the human mucosa. Thus, intrinsic factor was localized at highest concentration at the membrane of the parietal cell in man, the intrinsic factor antibody–intrinsic factor complex was demonstrated within the human parietal cell, and evidence was obtained that this antigen–antibody complex fixes complement (C). The possible role of the intrinsic factor–intrinsic factor antibody–complement complex in the development of gastric atrophy in pernicious anaemia has been considered. ImagesFIG. 3FIG. 4FIG. 5 PMID:4995933
Formation, evolution and properties of isolated field elliptical galaxies
NASA Astrophysics Data System (ADS)
Niemi, Sami-Matias; Heinämäki, Pekka; Nurmi, Pasi; Saar, Enn
2010-06-01
We study the properties, evolution and formation mechanisms of isolated field elliptical (IfE) galaxies. We create a `mock' catalogue of IfE galaxies from the Millennium Simulation Galaxy Catalogue, and trace their merging histories. The formation, identity and assembly redshifts of simulated isolated and non-isolated elliptical galaxies are studied and compared. Observational and numerical data are used to compare age, mass and the colour-magnitude relation. Our results, based on simulation data, show that almost 7 per cent of all elliptical galaxies brighter than -19mag in B band can be classified as IfE galaxies. Results also show that isolated elliptical galaxies have a rather flat luminosity function; a number density of ~3 × 10-6h3Mpc-3mag-1, throughout their B-band magnitudes. IfE galaxies show bluer colours than non-isolated elliptical galaxies and they appear younger, in a statistical sense, according to their mass-weighted age. IfE galaxies also form and assemble at lower redshifts compared to non-isolated elliptical galaxies. About 46 per cent of IfE galaxies have undergone at least one major merging event in their formation history, while the same fraction is only ~33 per cent for non-isolated ellipticals. Almost all (~98 per cent) isolated elliptical galaxies show merging activity during their evolution, pointing towards the importance of mergers in the formation of IfE galaxies. The mean time of the last major merging is at z ~ 0.6 or 6Gyr ago for isolated ellipticals, while non-isolated ellipticals experience their last major merging significantly earlier at z ~ 1.1 or 8Gyr ago. After inspecting merger trees of simulated IfE galaxies, we conclude that three different, yet typical, formation mechanisms can be identified: solitude, coupling and cannibalism. Our results also predict a previously unobserved population of blue, dim and light galaxies that fulfil observational criteria to be classified as IfE galaxies. This separate population comprises
Elliptical accretion disks in active galactic nuclei
NASA Technical Reports Server (NTRS)
Eracleous, Michael; Livio, Mario; Halpern, Jules P.; Storchi-Bergmann, Thaisa
1995-01-01
We present a calculation of the profiles of emission lines originating in a relativistic, eccentric disk, and show examples of the resulting model profiles. Our calculations are motivated by the fact that in about one-quarter of the double-peaked emission lines observed in radio-loud active galactic nuclei (and in the mildly active nucleus of NGC 1097), the red peak is stronger than the blue peak, which is contrary to the prediction of relativistic, circular disk models. Using the eccentric disk model we fit some of the observed profiles that cannot be fitted with a circular disk model. We propose two possible scenarios for the formation of an eccentric disk in an active galactic nucleus: (a) tidal perturbation of the disk around a supermassive black hole by a smaller binary companion, and (b) formation of an elliptical disk from the debris resulting from the tidal disruption of a star by the central black hole. In the former case we show that the eccentricity can be long-lived because of the presence of the binary companion. In the latter case, although the inner parts of the disk may circularize quickly, we estimate that the outer parts will maintain their eccentricity for times much longer than the local viscous time. We suggest that it may be possible to detect profile variability on much shorter timescales than those ranging from a decade to several centuries by comparing the evolution of the line profile with detailed model predictions. We argue that line-profile variability may also be the most promising discriminant among competing models for the origin of asymmetric, double-peaked emission lines.
Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell.
Tiwari, Ishant; Phogat, Richa; Parmananda, P; Ocampo-Espindola, J L; Rivera, M
2016-08-01
In this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V_{0}) in the cell is chosen such that the anodic current (I) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals. The irregular time intervals chosen are of deterministic and stochastic origins. The amplitude of the intrinsic internal noise, regulated by the concentration of chloride ions, is then monotonically increased, and the provoked dynamics are analyzed. The signal to noise ratio and the cross-correlation coefficient versus the chloride ions' concentration curves have a unimodal shape indicating the emergence of an intrinsic periodic or aperiodic stochastic resonance. The abscissa for the maxima of these unimodal curves correspond to the optimum value of intrinsic noise where maximum regularity of the invoked dynamics is observed. In the particular case of the intrinsic periodic stochastic resonance, the scanning electron microscope images for the electrode metal surfaces are shown for certain values of chloride ions' concentrations. These images, qualitatively, corroborate the emergence of order as a result of the interaction between the nonlinear dynamics and the composite signal. PMID:27627301
Effects of Optical Blur Reduction on Equivalent Intrinsic Blur
Valeshabad, Ali Kord; Wanek, Justin; McAnany, J. Jason; Shahidi, Mahnaz
2015-01-01
Purpose To determine the effect of optical blur reduction on equivalent intrinsic blur, an estimate of the blur within the visual system, by comparing optical and equivalent intrinsic blur before and after adaptive optics (AO) correction of wavefront error. Methods Twelve visually normal individuals (age; 31 ± 12 years) participated in this study. Equivalent intrinsic blur (σint) was derived using a previously described model. Optical blur (σopt) due to high-order aberrations was quantified by Shack-Hartmann aberrometry and minimized using AO correction of wavefront error. Results σopt and σint were significantly reduced and visual acuity (VA) was significantly improved after AO correction (P ≤ 0.004). Reductions in σopt and σint were linearly dependent on the values before AO correction (r ≥ 0.94, P ≤ 0.002). The reduction in σint was greater than the reduction in σopt, although it was marginally significant (P = 0.05). σint after AO correlated significantly with σint before AO (r = 0.92, P < 0.001) and the two parameters were related linearly with a slope of 0.46. Conclusions Reduction in equivalent intrinsic blur was greater than the reduction in optical blur due to AO correction of wavefront error. This finding implies that VA in subjects with high equivalent intrinsic blur can be improved beyond that expected from the reduction in optical blur alone. PMID:25785538
Cosmological information in the intrinsic alignments of luminous red galaxies
Chisari, Nora Elisa; Dvorkin, Cora E-mail: cdvorkin@ias.edu
2013-12-01
The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.
Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell
NASA Astrophysics Data System (ADS)
Tiwari, Ishant; Phogat, Richa; Parmananda, P.; Ocampo-Espindola, J. L.; Rivera, M.
2016-08-01
In this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V0) in the cell is chosen such that the anodic current (I ) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals. The irregular time intervals chosen are of deterministic and stochastic origins. The amplitude of the intrinsic internal noise, regulated by the concentration of chloride ions, is then monotonically increased, and the provoked dynamics are analyzed. The signal to noise ratio and the cross-correlation coefficient versus the chloride ions' concentration curves have a unimodal shape indicating the emergence of an intrinsic periodic or aperiodic stochastic resonance. The abscissa for the maxima of these unimodal curves correspond to the optimum value of intrinsic noise where maximum regularity of the invoked dynamics is observed. In the particular case of the intrinsic periodic stochastic resonance, the scanning electron microscope images for the electrode metal surfaces are shown for certain values of chloride ions' concentrations. These images, qualitatively, corroborate the emergence of order as a result of the interaction between the nonlinear dynamics and the composite signal.
Cosmological information in the intrinsic alignments of luminous red galaxies
NASA Astrophysics Data System (ADS)
Chisari, Nora Elisa; Dvorkin, Cora
2013-12-01
The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski & Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by fNL = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.
Intrinsic motivation and amotivation in first episode and prolonged psychosis.
Luther, Lauren; Lysaker, Paul H; Firmin, Ruth L; Breier, Alan; Vohs, Jenifer L
2015-12-01
The deleterious functional implications of motivation deficits in psychosis have generated interest in examining dimensions of the construct. However, there remains a paucity of data regarding whether dimensions of motivation differ over the course of psychosis. Therefore, this study examined two motivation dimensions, trait-like intrinsic motivation, and the negative symptom of amotivation, and tested the impact of illness phase on the 1) levels of these dimensions and 2) relationship between these dimensions. Participants with first episode psychosis (FEP; n=40) and prolonged psychosis (n=66) completed clinician-rated measures of intrinsic motivation and amotivation. Analyses revealed that when controlling for group differences in gender and education, the FEP group had significantly more intrinsic motivation and lower amotivation than the prolonged psychosis group. Moreover, intrinsic motivation was negatively correlated with amotivation in both FEP and prolonged psychosis, but the magnitude of the relationship did not statistically differ between groups. These findings suggest that motivation deficits are more severe later in the course of psychosis and that low intrinsic motivation may be partially independent of amotivation in both first episode and prolonged psychosis. Clinically, these results highlight the importance of targeting motivation in early intervention services. PMID:26386901
Saperstein, Alice M; Fiszdon, Joanna M; Bell, Morris D
2011-09-01
Intrinsic motivation is a construct commonly used in explaining goal-directed behavior. In people with schizophrenia, intrinsic motivation is usually subsumed as a feature of negative symptoms or underlying neurocognitive dysfunction. A growing literature reflects an interest in defining and measuring motivational impairment in schizophrenia and in delineating the specific role of intrinsic motivation as both an independent predictor and a mediator of psychosocial functioning. This cross-sectional study examined intrinsic motivation as a predictor of vocational outcomes for 145 individuals with schizophrenia and schizoaffective disorder participating in a 6-month work rehabilitation trial. Correlation and mediation analyses examined baseline intrinsic motivation and negative symptoms in relation to work hours and work performance. Data support a significant relationship between intrinsic motivation and negative symptoms and significant correlations with outcome variables, such that lower negative symptoms and greater intrinsic motivation were associated with better work functioning. Moreover, in this sample, intrinsic motivation fully mediated the relationships between negative symptoms, work productivity, and work performance. These results have significant implications on the design of work rehabilitation interventions for people with schizophrenia and support a role for targeting intrinsic motivation directly to influence vocational functioning. Future directions for research and intervention are discussed. PMID:21878781
Estimating interstellar extinction towards elliptical galaxies and star clusters.
NASA Astrophysics Data System (ADS)
de Amôres, E. B.; Lépine, J. R. D.
The ability to estimate interstellar extinction is essential for color corrections and distance calculations of all sorts of astronomical objects being fundamental for galactic structure studies. We performed comparisons of interstellar extinction models by Amores & Lépine (2005) that are available at: http://www.astro.iag.usp.br/\\symbol{126}amores. These models are based on the hypothesis that gas and dust are homogeneously mixed, and make use of the dust-to gas ratio. The gas density distribution used in the models is obtained from the gas large scale surveys: Berkeley and Parkes HI surveys and from the Columbia University CO survey. In the present work, we compared these models with extinction predictions of elliptical galaxies (gE) and star clusters. We used the similar sample of gE galaxies proposed by Burstein for the comparison between the extinction calculation methods of Burstein & Heiles (1978, 1982) and of Schlegel et al. (1998) extending the comparison to our models. We found rms differences equal to 0.0179 and 0.0189 mag respectively, in the comparison of the predictions of our "model A" with the two methods mentioned. The comparison takes into account the "zero points" introduced by Burstein. The correlation coefficient obtained in the comparison is around 0.85. These results bring to light that our models can be safely used for the estimation of extinction in our Galaxy for extragalactic work, as an alternative method to the BH and SFD predictions. In the comparison with the globular clusters we found rms differences equal to 0.32 and 0.30 for our models A and S, respectively. For the open clusters we made comparisons using different samples and the rms differences were around 0.25.
Pair breaking and ``intrinsic`` {Tc}
Wolf, S.A.; Kresin, V.Z.; Ovchinnikov, Y.N.
1996-12-31
An analysis of the temperature dependence of the upper critical field in several cuprate families leads to the conclusion that magnetic impurities are present even in samples with the maximum observed value of T{sub c}. A new parameter, intrinsic T{sub c} (T{sub c;intr}) which is its value in the absence of magnetic impurities, is introduced. The maximum value of T{sub c;intr}, which corresponds to the maximum doping level, appears to be similar for different cuprates and to be equal to 160--170 K. This is an upper limit of T{sub c} in the cuprates.
Nuclear Filtering of Intrinsic Charm
Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan
2010-11-12
Nuclei are transparent for a heavy intrinsic charm (IC) component of the beam hadrons, what leads to an enhanced nuclear dependence of open charm production at large Feynman x{sub F}. Indeed, such an effect is supported by data from the SELEX experiment published recently [1]. Our calculations reproduce well the data, providing strong support for the presence of IC in hadrons in amount less than 1%. Moreover, we performed an analysis of nuclear effects in J/{Psi} production and found at large x{sub F} a similar, albeit weaker effect, which does not contradict data.
Elliptic Cones Alone and with Wings at Supersonic Speed
NASA Technical Reports Server (NTRS)
Jorgensen, Leland H
1958-01-01
To help fill the gap in the knowledge of aerodynamics of shapes intermediate between bodies of revolution and flat triangular wings, force and moment characteristics for elliptic cones have been experimentally determined for Mach numbers of 1.97 and 2.94. Elliptic cones having cross-sectional axis ratios from 1 through 6 and with lengths and base areas equal to circular cones of fineness ratios 3.67 and 5 have been studied for angles of bank of 0 degree and 90 degrees. Elliptic and circular cones in combination with triangular wings of aspect ratios 1 and 1.5 also have been considered. The angle-of-attack range was from 0 degree to about 16 degrees, and the Reynolds number was 8 x 10(6), based on model length. In addition to the forces and moments at angle of attack, pressure distributions for elliptic cones at zero angle of attack have been determined. The results of this investigation indicate that there are distinct aerodynamic advantages to the use of elliptic cones.
Applications of Elliptically Polarized, Few-Cycle Attosecond Pulses
NASA Astrophysics Data System (ADS)
Starace, Anthony F.
2016-05-01
Use of elliptically-polarized light opens the possibility of investigating effects that are not accessible with linearly-polarized pulses. This talk presents two new physical effects that are predicted for ionization of the helium atom by few-cycle, elliptically polarized attosecond pulses. For double ionization of He by an intense elliptically polarized attosecond pulse, we predict a nonlinear dichroic effect (i.e., the difference of the two-electron angular distributions in the polarization plane for opposite helicities of the ionizing pulse) that is sensitive to the carrier-envelope phase, ellipticity, peak intensity I, and temporal duration of the pulse. For single ionization of He by two oppositely circularly polarized, time-delayed attosecond pulses we predict that the photoelectron momentum distributions in the polarization plane have helical vortex structures that are exquisitely sensitive to the time-delay between the pulses, their relative phase, and their handedness. Both of these effects manifest the ability to control the angular distributions of the ionized electrons by means of the attosecond pulse parameters. Our predictions are obtained numerically by solving the six-dimensional two-electron time-dependent Schrödinger equation for the case of elliptically polarized attosecond pulses. They are interpreted analytically by means of perturbation theory analyses of the two ionization processes. This work is supported in part by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Award No. DE-FG03-96ER14646.
Intrinsic cylindrical and spherical waves
NASA Astrophysics Data System (ADS)
Ludlow, I. K.
2008-02-01
Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed.
Neutral hydrogen in elliptical galaxies with nuclear radio sources and optical emission lines
NASA Technical Reports Server (NTRS)
Dressel, L. L.; Bania, T. M.; Oconnell, R. W.
1982-01-01
An H I detection survey of eleven elliptical galaxies with powerful nuclear radio sources was conducted, using the 305 m antenna of Arecibo Observatory, to test the hypothesis that large H I mass is conductive to the formation of nuclear radio sources in elliptical galaxies. The H I was detected in emission in UGC 09114 and was possibly detected in absorption in UGC 06671. Observations of the remaining galaxies were not sensitive enough to support or refute the hypothesis. Data was combined from other H I surveys and spectroscopic surveys to search for correlations of H I mass with other galactic properties and environmental conditions. Strong correlations of (O II) lambda 3727 emission with H I content and with nuclear radio power were found. The latter two properties may simply indicate, respectively, whether a significant amount of gas is available to be ionized and whether energy is provided by nuclear activity for ionization. No dependence of H I content on optical luminosity or on degree of isolation from other galaxies was found.
Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies.
McConnell, Nicholas J; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A; Murphy, Jeremy D; Lauer, Tod R; Graham, James R; Richstone, Douglas O
2011-12-01
Observational work conducted over the past few decades indicates that all massive galaxies have supermassive black holes at their centres. Although the luminosities and brightness fluctuations of quasars in the early Universe suggest that some were powered by black holes with masses greater than 10 billion solar masses, the remnants of these objects have not been found in the nearby Universe. The giant elliptical galaxy Messier 87 hosts the hitherto most massive known black hole, which has a mass of 6.3 billion solar masses. Here we report that NGC 3842, the brightest galaxy in a cluster at a distance from Earth of 98 megaparsecs, has a central black hole with a mass of 9.7 billion solar masses, and that a black hole of comparable or greater mass is present in NGC 4889, the brightest galaxy in the Coma cluster (at a distance of 103 megaparsecs). These two black holes are significantly more massive than predicted by linearly extrapolating the widely used correlations between black-hole mass and the stellar velocity dispersion or bulge luminosity of the host galaxy. Although these correlations remain useful for predicting black-hole masses in less massive elliptical galaxies, our measurements suggest that different evolutionary processes influence the growth of the largest galaxies and their black holes. PMID:22158244
Elliptic jets, part 2. Dynamics of coherent structures: Pairing
NASA Technical Reports Server (NTRS)
Husain, Hyder S.; Hussain, Fazle
1992-01-01
The dynamics of the jet column mode of vortex pairing in the near field of an elliptic jet was investigated. Hot-wire measurements and flow visualization were used to examine the details of the pairing mechanism of nonplanar vortical elliptic structures and its effect on such turbulence measures as coherent velocities, incoherent turbulence intensities, incoherent and coherent Reynolds, stresses, turbulence production, and mass entrainment. It was found that pairing of elliptic vortices in the jet column does not occur uniformly around the entire perimeter, unlike in a circular jet. Merger occurs only in the initial major-axis plane. In the initial minor-axis plane, the trailing vortex rushes through the leading vortex without pairing and then breaks down violently, producing considerably greater entrainment and mixing than in circular or plane jets.
System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow
NASA Astrophysics Data System (ADS)
Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.
2007-06-01
This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.
Dynamical properties of the soft-wall elliptical billiard.
Kroetz, Tiago; Oliveira, Hércules A; Portela, Jefferson S E; Viana, Ricardo L
2016-08-01
Physical systems such as optical traps and microwave cavities are realistically modeled by billiards with soft walls. In order to investigate the influence of the wall softness on the billiard dynamics, we study numerically a smooth two-dimensional potential well that has the elliptical (hard-wall) billiard as a limiting case. Considering two parameters, the eccentricity of the elliptical equipotential curves and the wall hardness, which defines the steepness of the well, we show that (1) whereas the hard-wall limit is integrable and thus completely regular, the soft wall elliptical billiard exhibits chaos, (2) the chaotic fraction of the phase space depends nonmonotonically on the hardness of the wall, and (3) the effect of the hardness on the dynamics depends strongly on the eccentricity of the billiard. We further show that the limaçon billiard can exhibit enhanced chaos induced by wall softness, which suggests that our findings generalize to quasi-integrable systems. PMID:27627309
Cluster flight control for fractionated spacecraft on an elliptic orbit
NASA Astrophysics Data System (ADS)
Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin
2016-08-01
This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.
Elliptic surface grid generation on minimal and parametrized surfaces
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.
1995-01-01
An elliptic grid generation method, which generates boundary conforming grids in a two dimensional physical space, is presented. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the Poisson grid generation system with control functions specified by the algebraic transformation. It is shown that the grid generation on a minimal surface in a three dimensional space is equivalent to the grid generation in a two dimensional domain in physical space. A second elliptic grid generation method, which generates boundary conforming grids on smooth surfaces, is presented. Concerning surface modeling, it is shown that bicubic Hermit interpolation is an excellent method to generate a smooth surface crossing a discrete set of control points.
Ball bearing lubrication: The elastohydrodynamics of elliptical contacts
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
The history of ball bearings is examined, taking into account rollers and the wheel in the early civilizations, the development of early forms of rolling-element bearings in the classical civilizations, the Middle Ages, the Industrial Revolution, the emergence of the precision ball bearing, scientific studies of contact mechanics and rolling friction, and the past fifty years. An introduction to ball bearings is presented, and aspects of ball bearing mechanics are explored. Basic characteristics of lubrication are considered along with lubrication equations, the lubrication of rigid ellipsoidal solids, and elastohydrodynamic lubrication theory. Attention is given to the theoretical results for fully flooded elliptical hydrodynamic contacts, the theoretical results for starved elliptical contacts, experimental investigations, the elastohydrodynamics of elliptical contacts for materials of low elastic modulus, the film thickness for different regimes of fluid-film lubrication, and applications.
Precession and circularization of elliptical space-tether motion
NASA Technical Reports Server (NTRS)
Chapel, Jim D.; Grosserode, Patrick
1993-01-01
In this paper, we present a simplified analytic model for predicting motion of long space tethers. The perturbation model developed here addresses skip rope motion, where each end of the tether is held in place and the middle of the tether swings with a motion similar to that of a child's skip rope. If the motion of the tether midpoint is elliptical rather than circular, precession of the ellipse complicates the procedures required to damp this motion. The simplified analytic model developed in this paper parametrically predicts the precession of elliptical skip rope motion. Furthermore, the model shows that elliptic skip rope motion will circularize when damping is present in the longitudinal direction. Compared with high-fidelity simulation results, this simplified model provides excellent predictions of these phenomena.
Magnetohydrodynamics equilibrium of a self-confined elliptical plasma ball
Wu, H. P. O. Box 8730, Beijing 100080 and Institute of Mechanics, Academia Sinica, Beijing, People's Republic of China ); Oakes, M.E. )
1991-08-01
A variational principle is applied to the problem of magnetohydrodynamics (MHD) equilibrium of a self-contained elliptical plasma ball, such as elliptical ball lightning. The principle is appropriate for an approximate solution of partial differential equations with arbitrary boundary shape. The method reduces the partial differential equation to a series of ordinary differential equations and is especially valuable for treating boundaries with nonlinear deformations. The calculations conclude that the pressure distribution and the poloidal current are more uniform in an oblate self-confined plasma ball than that of an elongated plasma ball. The ellipticity of the plasma ball is obviously restricted by its internal pressure, magnetic field, and ambient pressure. Qualitative evidence is presented for the absence of sighting of elongated ball lightning.
Cluster flight control for fractionated spacecraft on an elliptic orbit
NASA Astrophysics Data System (ADS)
Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin
2016-04-01
This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.
Evolution of a barotropic shear layer into elliptical vortices.
Guha, Anirban; Rahmani, Mona; Lawrence, Gregory A
2013-01-01
When a barotropic shear layer becomes unstable, it produces the well-known Kelvin-Helmholtz instability (KHI). The nonlinear manifestation of the KHI is usually in the form of spiral billows. However, a piecewise linear shear layer produces a different type of KHI characterized by elliptical vortices of constant vorticity connected via thin braids. Using direct numerical simulation and contour dynamics, we show that the interaction between two counterpropagating vorticity waves is solely responsible for this KHI formation. We investigate the oscillation of the vorticity wave amplitude, the rotation and nutation of the elliptical vortex, and straining of the braids. Our analysis also provides a possible explanation for the formation and evolution of elliptical vortices appearing in geophysical and astrophysical flows, e.g., meddies, stratospheric polar vortices, Jovian vortices, Neptune's Great Dark Spot, and coherent vortices in the wind belts of Uranus. PMID:23410439
Questions on Pure Luminosity Evolution for Elliptical Galaxies
NASA Astrophysics Data System (ADS)
He, Ping; Zhang, Yuan-Zhong
1999-02-01
The explanation for the existence of an excess population of faint blue galaxies (FBGs) has been a mystery for nearly two decades and remains one of the grand astronomical issues to date. Existing models cannot explain all of the observational data, such as galaxy number counts in the optical and infrared passbands and the redshift distributions of galaxies. Here, by modeling the morphological number counts derived from the Hubble Space Telescope, as well as the number counts in optical and infrared passbands and the redshift and color distributions of galaxies obtained from ground-based observations, we show that the ``FBG problem'' cannot be resolved if elliptical galaxies are assumed to have formed in an instantaneous burst of star formation at high redshift with no subsequent star formation events, which is the conventional scenario for formation and evolution of ellipticals. There exist great discrepancies between the observed B-K color distribution and the predicted distribution for ellipticals by such a pure luminosity evolution (PLE) model in the context of the conventional scenario. Neither can the mild evolution (i.e., the star formation events have lasted for a longer time than those of the instantaneous burst and passive evolution since the formation of galaxies) for ellipticals be accepted in the context of PLE assumption. The introduction of dust extinction also cannot save the PLE models. This conclusion holds for each of the three cosmological models under consideration: flat, open, and Λ-dominated. Hence, our investigation suggests that PLE assumption for elliptical galaxies is questionable, and number evolution may be essential for ellipticals.
Evolution of an elliptic vortex ring in a viscous fluid
NASA Astrophysics Data System (ADS)
Cheng, M.; Lou, J.; Lim, T. T.
2016-03-01
The evolution of a viscous elliptic vortex ring in an initially quiescent fluid or a linear shear flow is numerically simulated using a lattice Boltzmann method. A wide range of parameters are considered, namely, aspect ratios (AR) (1 ≤ AR ≤ 8), core radius to ring radius ratios (σ0) (0.1 ≤ σ0 ≤ 0.3), Reynolds number (Re) (500 ≤ Re ≤ 3000), and shear rate (K) (0 ≤ K ≤ 0.12). The study aims to fill the gap in the current knowledge of the dynamics of an elliptic vortex ring in a viscous fluid and also to address the issue of whether an elliptic ring undergoes vortex stretching and compression during axis-switching. In a quiescent fluid, results show that for fixed Re and σ0, there exists a critical aspect ratio (ARc), below which an elliptic ring undergoes oscillatory deformation with the period that increases with increasing AR. Above ARc, the vortex ring breaks up into two or three sub-rings after the first half-cycle of oscillation. While higher Reynolds number enhances vortex ring breakup, larger core size has the opposite effect. Contrary to an inviscid theory, an elliptic ring does undergo vortex stretching and compression during oscillatory deformation. In the presence of a linear shear flow, the vortex ring undergoes not only oscillatory deformation and stretching but also tilting as it propagates downstream. The tilting angle increases with the shear rate K and is responsible for inducing a "tail" that consists of a counter-rotating vortex pair (CVP) near the upstream end of the initial major axis after the first half-cycle of oscillation. For a high shear rate, the CVP wraps around the ring and transforms its topological structure from a simple elliptic geometry to a complicated structure that eventually leads to the generation of turbulence.
Modifications of bundles, elliptic integrable systems, and related problems
NASA Astrophysics Data System (ADS)
Zotov, A. V.; Smirnov, A. V.
2013-10-01
We describe a construction of elliptic integrable systems based on bundles with nontrivial characteristic classes, especially attending to the bundle-modification procedure, which relates models corresponding to different characteristic classes. We discuss applications and related problems such as the Knizhnik-Zamolodchikov-Bernard equations, classical and quantum R-matrices, monopoles, spectral duality, Painlevé equations, and the classical-quantum correspondence. For an SL(N,ℂ)-bundle on an elliptic curve with nontrivial characteristic classes, we obtain equations of isomonodromy deformations.
Study of medium beta elliptical cavities for CADS
NASA Astrophysics Data System (ADS)
Wen, Liangjian; Zhang, Shenghu; Li, Yongming; Wang, Ruoxu; Guo, Hao; Zhang, Cong; Jia, Huan; Jiang, Tiancai; Li, Chunlong; He, Yuan
2016-02-01
The China Accelerator-Driven Sub-critical System (CADS) is a high intensity proton facility to dispose of nuclear waste and generate electric power. CADS is based on a 1.5 GeV, 10 mA CW superconducting (SC) linac as a driver. The high energy section of the linac is composed of two families of SC elliptical cavities which are designed with geometrical beta 0.63 and 0.82. In this paper, the 650 MHz β=0.63 SC elliptical cavity is studied, including cavity optimization, multipacting, high order modes (HOMs) and generator RF power calculation. Supported by National Natural Science Foundation of China (91426303)
Elliptic flow in Au+Au collisions at RHIC
NASA Astrophysics Data System (ADS)
Vale, Carla M.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Ngyuen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.
2005-04-01
Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the relativistic heavy ion collider (RHIC). The elliptic flow dependences on transverse momentum, centrality and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.
Elliptical flux vortices in YBa2Cu3O7
NASA Technical Reports Server (NTRS)
Hickman, H.; Dekker, A. J.; Chen, T. M.
1991-01-01
The most energetically favorable vortex in YBa2Cu3O7 forms perpendicular to an anisotropic plane. This vortex is elliptical in shape and is distinguished by an effective interchange of London penetration depths from one axis of the ellipse to another. By generalizing qualitatively from the isotropic to the anisotropic case, we suggest that the flux flow resistivity for the vortex that forms perpendicular to an anistropic plane should have a preferred direction. Similar reasoning indicates that the Kosterlitz-Thouless transition temperature for a vortex mediated transition should be lower if the vortex is elliptical in shape.
Plastic Deformation in Profile-Coated Elliptical KB Mirrors
Liu, Chian; Conley, R.; Qian, J.; Kewish, C. M.; Liu, W.; Assoufid, L.; Macrander, A. T.; Ice, G. E.; Tischler, J. Z.
2012-01-01
Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now, precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si-, Au-, and Pt-coated KB mirrors under prolonged synchrotron X-ray radiation and low-temperature vacuum annealing will be discussed in terms of film stress relaxation and Si plastic deformation.
On the Dirichlet problem for a nonlinear elliptic equation
NASA Astrophysics Data System (ADS)
Egorov, Yu V.
2015-04-01
We prove the existence of an infinite set of solutions to the Dirichlet problem for a nonlinear elliptic equation of the second order. Such a problem for a nonlinear elliptic equation with Laplace operator was studied earlier by Krasnosel'skii, Bahri, Berestycki, Lions, Rabinowitz, Struwe and others. We study the spectrum of this problem and prove the weak convergence to 0 of the sequence of normed eigenfunctions. Moreover, we obtain some estimates for the 'Fourier coefficients' of functions in W^1p,0(Ω). This allows us to improve the preceding results. Bibliography: 8 titles.
Two-dimensional subsonic compressible flow past elliptic cylinders
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1938-01-01
The method of Poggi is used to calculate, for perfect fluids, the effect of compressibility upon the flow on the surface of an elliptic cylinder at zero angle of attack and with no circulation. The result is expressed in a closed form and represents a rigorous determination of the velocity of the fluid at the surface of the obstacle insofar as the second approximation is concerned. Comparison is made with Hooker's treatment of the same problem according to the method of Janzen and Rayleight and it is found that, for thick elliptic cylinders, the two methods agree very well. The labor of computation is considerably reduced by the present solution.
Homogeneous turbulence subjected to mean flow with elliptic streamlines
NASA Technical Reports Server (NTRS)
Blaisdell, G. A.; Shariff, K.
1994-01-01
Direct numerical simulations are performed for homogeneous turbulence with a mean flow having elliptic streamlines. This flow combines the effects of rotation and strain on the turbulence. Qualitative comparisons are made with linear theory for cases with high Rossby number. The nonlinear transfer process is monitored using a generalized skewness. In general, rotation turns off the nonlinear cascade; however, for moderate ellipticities and rotation rates the nonlinear cascade is turned off and then reestablished. Turbulence statistics of interest in turbulence modeling are calculated, including full Reynolds stress budgets.
Analysis of surface pressure distributions on two elliptic missile configurations
NASA Technical Reports Server (NTRS)
Allen, J. M.; Pittman, J. L.
1983-01-01
The state-of-the-art methods for predicting missile aerodynamic characteristics do not accurately predict the loads of missile configurations with bodies of elliptic cross section. An investigation of this problem found significant nonlinear flow disturbance on the windward surface of a 3:1 elliptic body at Mach 2.50 in addition to the nonlinear vortical flows which develop on the leeside. A nonlinear full-potential flow method (NCOREL) was found to provide extremely accurate pressure estimates for attached-flow conditions and the vortex prediction method contained in the state-of-the-art method (NOSEVTX) was shown to accurately calculate body vortices and leeside pressures.
Implementation of Elliptic Curve Cryptography in Binary Field
NASA Astrophysics Data System (ADS)
Susantio, D. R.; Muchtadi-Alamsyah, I.
2016-04-01
Currently, there is a steadily increasing demand of information security, caused by a surge in information flow. There are many ways to create a secure information channel, one of which is to use cryptography. In this paper, we discuss the implementation of elliptic curves over the binary field for cryptography. We use the simplified version of the ECIES (Elliptic Curve Integrated Encryption Scheme). The ECIES encrypts a plaintext by masking the original message using specified points on the curve. The encryption process is done by separating the plaintext into blocks. Each block is then separately encrypted using the encryption scheme.
Plastic deformation in profile-coated elliptical KB mirrors
Liu, Chian; Conley, R.; Qian, J; Kewish, C. M.; Liu, Wenjun; Assoufid, Lahsen; Macrander, Albert T.; Ice, Gene E; Tischler, Jonathan
2012-01-01
Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si, Au-, and Pt-coated KB mirrors under prolonged synchrotron x-ray radiation and low-temperature vacuum annealing will be discussed in terms of film-stress relaxation and Si plastic deformation.
Centaurus A galaxy, type EO peculiar elliptical, also radio source
NASA Technical Reports Server (NTRS)
2002-01-01
Centaurus A galaxy, type EO peculiar elliptical, also radio source. CTIO 4-meter telescope, 1975. NGC 5128, a Type EO peculiar elliptical galaxy in the constellation Centaurus. This galaxy is one of the most luminous and massive galaxies known and is a strong source of both radio and X-ray radiation. Current theories suggest that the nucleus is experiencing giant explosions involving millions of stars and that the dark band across the galactic disk is material being ejected outward. Cerro Toloto 4-meter telescope photo. Photo credit: National Optical Astronomy Observatories
Intrinsic rotation with gyrokinetic models
Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Ivan
2012-05-15
The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.
Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems
Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei
2015-01-01
The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode. PMID:26427063
Relationship between placental traits and maternal intrinsic factors in sheep.
Ocak, S; Ogun, S; Onder, H
2013-06-01
The relationship between maternal intrinsic factors and placental traits was investigated on three Southern Mediterranean breed of sheep; Cukurova Assaf (CA), Cukurova (C) and Cukurova Meat Sheep (CMS). The effect of parity and birth type were also considered in the study as a potential influencing factor. Our hypothesis was to show that while differences in placental traits between breed, parity and birth type affected lamb condition and survivability, its correlation to maternal intrinsic behavioral factors may also be a strong indicator. The study found breed related differences of maternal behavioral factors and also showed significant correlation of these behavioral patterns to various placental traits. It confirmed earlier findings that parity played a major role in the refinement of these behavioral patterns. Significant differences in birth weight (P<0.05), placental weight (P<0.05), number of cotyledons (P<0.01) and cotyledon length (P<0.05) was seen between breeds. Cotyledon weight (P<0.05), width (P<0.01) and length (P<0.05) were found to differ by parity. Breed and parity interaction significantly influenced cotyledon quantity. While we detected breed specific differences in relation to maternal intrinsic factors we also noticed significant variance within breeds to these behavioral patterns when linked to placental traits. Further study is required on the correlation between placental traits and postnatal behavior on not just the ewes but also on their lambs. This could have a significant bearing on how producers manage and maximize lamb survivability. PMID:23602010
Intrinsic Functional Relations Between Human Cerebral Cortex and Thalamus
Zhang, Dongyang; Snyder, Abraham Z.; Fox, Michael D.; Sansbury, Mark W.; Shimony, Joshua S.; Raichle, Marcus E.
2008-01-01
The brain is active even in the absence of explicit stimuli or overt responses. This activity is highly correlated within specific networks of the cerebral cortex when assessed with resting-state functional magnetic resonance imaging (fMRI) blood oxygen level–dependent (BOLD) imaging. The role of the thalamus in this intrinsic activity is unknown despite its critical role in the function of the cerebral cortex. Here we mapped correlations in resting-state activity between the human thalamus and the cerebral cortex in adult humans using fMRI BOLD imaging. Based on this functional measure of intrinsic brain activity we partitioned the thalamus into nuclear groups that correspond well with postmortem human histology and connectional anatomy inferred from nonhuman primates. This structure/function correspondence in resting-state activity was strongest between each cerebral hemisphere and its ipsilateral thalamus. However, each hemisphere was also strongly correlated with the contralateral thalamus, a pattern that is not attributable to known thalamocortical monosynaptic connections. These results extend our understanding of the intrinsic network organization of the human brain to the thalamus and highlight the potential of resting-state fMRI BOLD imaging to elucidate thalamocortical relationships. PMID:18701759
Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems.
Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei
2015-01-01
The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode. PMID:26427063
The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators?
NASA Astrophysics Data System (ADS)
Lima Neto, G. B.; Gerbal, D.; Márquez, I.
1999-10-01
Dynamical systems in equilibrium have a stationary entropy; we suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have in principle a unique specific entropy. This uniqueness, a priori unknown, should be reflected in correlations between the fundamental parameters describing the mass (light) distribution in galaxies. Following recent photometrical work on elliptical galaxies by Caon et al., Graham & Colless and Prugniel & Simien, we use the Sérsic law to describe the light profile and an analytical approximation to its three-dimensional deprojection. The specific entropy is then calculated, supposing that the galaxy behaves as a spherical, isotropic, one-component system in hydrostatic equilibrium, obeying the ideal-gas equations of state. We predict a relation between the three parameters of the Sérsic law linked to the specific entropy, defining a surface in the parameter space, an `Entropic Plane', by analogy with the well-known Fundamental Plane. We have analysed elliptical galaxies in two rich clusters of galaxies (Coma and ABCG 85) and a group of galaxies (associated with NGC 4839, near Coma). We show that, for a given cluster, the galaxies follow closely a relation predicted by the constant specific entropy hypothesis with a typical dispersion (one standard deviation) of 9.5per cent around the mean value of the specific entropy. Moreover, assuming that the specific entropy is also the same for galaxies of different clusters, we are able to derive relative distances between Coma, ABGC 85, and the group of NGC 4839. If the errors are due only to the determination of the specific entropy (about 10per cent), then the error in the relative distance determination should be less than 20per cent for rich clusters. We suggest that the unique specific entropy may provide a physical explanation for the distance indicators based on the Sérsic profile put forward by Young & Currie and recently discussed by Binggeli & Jerjen.
Optics ellipticity performance of an unobscured off-axis space telescope.
Zeng, Fei; Zhang, Xin; Zhang, Jianping; Shi, Guangwei; Wu, Hongbo
2014-10-20
With the development of astronomy, more and more attention is paid to the survey of dark matter. Dark matter cannot be seen directly but can be detected by weak gravitational lensing measurement. Ellipticity is an important parameter used to define the shape of a galaxy. Galaxy ellipticity changes with weak gravitational lensing and nonideal optics. With our design of an unobscured off-axis telescope, we implement the simulation and calculation of optics ellipticity. With an accurate model of optics PSF, the characteristic of ellipticity is modeled and analyzed. It is shown that with good optical design, the full field ellipticity can be quite small. The spatial ellipticity change can be modeled by cubic interpolation with very high accuracy. We also modeled the ellipticity variance with time and analyzed the tolerance. It is shown that the unobscured off-axis telescope has good ellipticity performance and fulfills the requirement of dark matter survey. PMID:25401561
Spectroscopic ellipsometer based on direct measurement of polarization ellipticity
Watkins, Lionel R.
2011-06-20
A polarizer-sample-Wollaston prism analyzer ellipsometer is described in which the ellipsometric angles {psi} and {Delta} are determined by direct measurement of the elliptically polarized light reflected from the sample. With the Wollaston prism initially set to transmit p- and s-polarized light, the azimuthal angle P of the polarizer is adjusted until the two beams have equal intensity. This condition yields {psi}={+-}P and ensures that the reflected elliptically polarized light has an azimuthal angle of {+-}45 deg. and maximum ellipticity. Rotating the Wollaston prism through 45 deg. and adjusting the analyzer azimuth until the two beams again have equal intensity yields the ellipticity that allows {Delta} to be determined via a simple linear relationship. The errors produced by nonideal components are analyzed. We show that the polarizer dominates these errors but that for most practical purposes, the error in {psi} is negligible and the error in {Delta} may be corrected exactly. A native oxide layer on a silicon substrate was measured at a single wavelength and multiple angles of incidence and spectroscopically at a single angle of incidence. The best fit film thicknesses obtained were in excellent agreement with those determined using a traditional null ellipsometer.
Numerical Investigation of Viscous Dissipation in Elliptic Microducts
NASA Astrophysics Data System (ADS)
Vocale, P.; Puccetti, G.; Morini, G. L.; Spiga, M.
2014-11-01
In this work a numerical analysis of heat transfer in elliptical microchannels heated at constant and uniform heat flux is presented. A gaseous flow has been considered, in laminar steady state condition, in hydrodynamically and thermally fully developed forced convection, accounting for the rarefaction effects. The velocity and temperature distributions have been determined in the elliptic cross section, for different values of aspect ratio, Knudsen number and Brinkman number, solving the Navier-Stokes and energy equations within the Comsol Multiphysics® environment. The numerical procedure has been validated resorting to data available in literature for slip flow in elliptic cross sections with Br =0 and for slip flow in circular ducts with Br > 0. The comparison between numerical results and data available in literature shows a perfect agreement. The velocity and temperature distributions thus found have been used to calculate the average Nusselt number in the cross section. The numerical results for Nusselt number are presented in terms of rarefaction degree (Knudsen number), of viscous dissipation (Brinkman number), and of the aspect ratio. The results point out that the thermal fluid behavior is significantly affected by the viscous dissipation for low rarefaction degrees and for aspect ratios of the elliptic cross-section higher than 0.2.
Elliptic instability in a Rankine vortex with axial flow
NASA Astrophysics Data System (ADS)
Lacaze, Laurent; Birbaud, Anne-Laure; Le Dizès, Stéphane
2005-01-01
The elliptic instability of a Rankine vortex with axial flow subject to a weak strain field perpendicular to its axis is analyzed by asymptotic methods in the limit of small strain rate. General unstable modes associated with resonant Kelvin modes of arbitrary azimuthal wavenumbers are considered. Both the effects of axial flow and viscosity are analyzed in details.
The dynamical fingerprint of core scouring in massive elliptical galaxies
Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.
2014-02-10
The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r{sub b} , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.
Elliptical galaxies kinematics within general relativity with renormalization group effects
Rodrigues, Davi C.
2012-09-01
The renormalization group framework can be applied to Quantum Field Theory on curved space-time, but there is no proof whether the beta-function of the gravitational coupling indeed goes to zero in the far infrared or not. In a recent paper [1] we have shown that the amount of dark matter inside spiral galaxies may be negligible if a small running of the General Relativity coupling G is present (δG/G{sub 0}∼<10{sup −7} across a galaxy). Here we extend the proposed model to elliptical galaxies and present a detailed analysis on the modeling of NGC 4494 (an ordinary elliptical) and NGC 4374 (a giant elliptical). In order to compare our results to a well known alternative model to the standard dark matter picture, we also evaluate NGC 4374 with MOND. In this galaxy MOND leads to a significative discrepancy with the observed velocity dispersion curve and has a significative tendency towards tangential anisotropy. On the other hand, the approach based on the renormalization group and general relativity (RGGR) could be applied with good results to these elliptical galaxies and is compatible with lower mass-to-light ratios (of about the Kroupa IMF type)
Reconfigurable Optical Spectra from Perturbations on Elliptical Whispering Gallery Resonances
NASA Technical Reports Server (NTRS)
Mohageg, Makan; Maleki, Lute
2008-01-01
Elastic strain, electrical bias, and localized geometric deformations were applied to elliptical whispering-gallery-mode resonators fabricated with lithium niobate. The resultant perturbation of the mode spectrum is highly dependant on the modal indices, resulting in a discretely reconfigurable optical spectrum. Breaking of the spatial degeneracy of the whispering-gallery modes due to perturbation is also observed.
Towards a cladistics of double Yangians and elliptic algebras*
NASA Astrophysics Data System (ADS)
Arnaudon, D.; Avan, J.; Frappat, L.; Ragoucy, E.; Rossi, M.
2000-09-01
A self-contained description of algebraic structures, obtained by combinations of various limit procedures applied to vertex and face sl(2) elliptic quantum affine algebras, is given. New double Yangian structures of dynamical type are defined. Connections between these structures are established. A number of them take the form of twist-like actions. These are conjectured to be evaluations of universal twists.
An experimental study on jets issuing from elliptic inclined nozzles
NASA Astrophysics Data System (ADS)
New, T. H.
2009-06-01
This paper reports on an experimental flow visualisation and digital particle image velocimetry investigation on forced jets exhausting from aspect ratio equal to three elliptic nozzles with exits inclined at 30° and 60°. Flow images show that shear layer instabilities and subsequent vortex roll-ups are formed parallel to the inclined nozzle exits at 30° incline and that rapid re-orientation of the vortex roll-ups occurs at 60° incline. Flow observations also show that strong axis-switching occurs in a non-inclined elliptic nozzle. However, 30° and 60° elliptic inclined nozzles produce significant distortions to and suppression of the axis-switching behaviour, respectively. As a result, flow stresses and turbulent kinetic energy distributions become increasingly asymmetric. Their coherency and magnitudes along the shorter nozzle lengths also vary significantly. This can be attributed to the dissimilar formations of vortex roll-ups and rib structures, as well as unequal mutual interactions between them as the incline-angle increases. Lastly, results also show that unlike circular inclined nozzles, elliptic inclined nozzles do not produce serpentine-shaped jet columns nor lead to significant lateral jet-spread at large incline-angles.
Triangularity effects on the collisional diffusion for elliptic tokamaks
NASA Astrophysics Data System (ADS)
Martín, Pablo; Castro, Enrique
2015-09-01
The effect of ellipticity and triangularity will be analyzed for axisymmetric tokamak in the collisional regime. Analytic forms for the magnetic field cross sections are taken from those derived recently by other authors. Analytic results can be obtained in elliptic plasmas with triangularity by using an special system of tokamak coordinates previously published. Our results show that triangularities smaller than 0.6 increase confinement for ellipticities in the range 1.2-2. This behavior happens for negative and positive triangularities, however this effect is stronger for negative than for positive triangularities. The maximum diffusion velocity is not obtained for zero triangularity, but for small negative triangularities. Ellipticity is also very important in confinement, but the effect of triangularity seems to be more important. High electric inductive fields increase confinement, though this field is difficult to modify once the tokamak has been built. The analytic form of the current produced by this field is like that of a weak Ware pinch with an additional factor, which weakens the effect by an order of magnitude. The dependence of the triangularity effect with the Shafranov shift is also analyzed.
The infrared emission from the elliptical galaxy NGC 1052
NASA Technical Reports Server (NTRS)
Becklin, E. E.; Tokunaga, A. T.; Wynn-Williams, C. G.
1982-01-01
Multi-aperture IR photometry of the elliptical galaxy NGC 1052 shows that its IR excess is confined to a region smaller than 2 arc sec (300 pc) in diameter coincident with the visible nucleus. It is suggested that the emission in the 5-20 micron range arises from dust heated by the nonthermal source seen at other wavelengths.
Shielding of elliptic guides with direct sight to the moderator
NASA Astrophysics Data System (ADS)
Böni, P.; Grünauer, F.; Schanzer, C.
2010-12-01
With the invention of elliptic guides, the neutron flux at instruments can be increased significantly even without sacrificing resolution. In addition, the phase space homogeneity of the delivered neutrons is improved. Using superpolished metal substrates that are coated with supermirror, it is now possible to install neutron guides close to the moderator thus decreasing the illumination losses of the guide and reducing the background because the entrance window of the elliptic guide can be decreased significantly. We have performed Monte Carlo simulations using the program package MCNP5 to calculate the shielding requirements for an elliptic guide geometry assuming that the initial guide section elements are composed of Al substrates. We show that shielding made from heavy concrete shields the neutron and γ-radiation effectively to levels below 1 μSv/h. It is shown that the elliptic geometry allows to match the phase space of the transported neutrons easily to the needs of the instruments to be installed. In particular it is possible to maintain a compact phase space during the transport of the neutrons because the reflection losses are strongly reduced.
Constructing massive blue elliptical galaxies in the local universe
NASA Astrophysics Data System (ADS)
Haines, Tim
Over cosmic time, galaxy mass assembly has transitioned from low-mass, star-forming disk galaxies to massive, quiescent elliptical galaxies. The merger hypothesis for the formation of new elliptical galaxies provides one physical explanation to the observed buildup of this population, a key prediction of which is a brief phase of morphological transformation from highly-disturbed remnant to blue elliptical. We study 12 plausible new ellipticals with varying degrees of morphological peculiarities visually selected from a larger parent sample of nearby (0.01 ≤ z ≤ 0.04), massive (M* ≥ 10 10 M⊙ ), concentrated (Petrosian R90/R50 ≥ 2.6), and optically blue galaxies from the SDSS DR4 catalog. Using integral field spectroscopy, we construct two-dimensional spectra of the stellar populations and azimuthally bin them into concentric annuli to determine the relative ages of the stellar populations as a function of radius. Using this data and conclusions from simulations, we seek to distinguish post-mergers from galaxies undergoing other modes of mass assembly. We find that 1/3 of our sample is consistent with having undergone a recent, gas-rich major merger. Another 1/3 of our sample is consistent with having undergone a 'frosting' of recent star formation. The final 1/3 of our sample is either inconsistent with or inconclusive of having undergone a recent, gas-rich major merger.
A Primer on Elliptic Functions with Applications in Classical Mechanics
ERIC Educational Resources Information Center
Brizard, Alain J.
2009-01-01
The Jacobi and Weierstrass elliptic functions used to be part of the standard mathematical arsenal of physics students. They appear as solutions of many important problems in classical mechanics: the motion of a planar pendulum (Jacobi), the motion of a force-free asymmetric top (Jacobi), the motion of a spherical pendulum (Weierstrass) and the…
Exploring Strange Nonchaotic Attractors through Jacobian Elliptic Functions
ERIC Educational Resources Information Center
Garcia-Hoz, A. Martinez; Chacon, R.
2011-01-01
We demonstrate the effectiveness of Jacobian elliptic functions (JEFs) for inquiring into the reshaping effect of quasiperiodic forces in nonlinear nonautonomous systems exhibiting strange nonchaotic attractors (SNAs). Specifically, we characterize analytically and numerically some reshaping-induced transitions starting from SNAs in the context of…
The use of MACSYMA for solving elliptic boundary value problems
NASA Technical Reports Server (NTRS)
Thejll, Peter; Gilbert, Robert P.
1990-01-01
A boundary method is presented for the solution of elliptic boundary value problems. An approach based on the use of complete systems of solutions is emphasized. The discussion is limited to the Dirichlet problem, even though the present method can possibly be adapted to treat other boundary value problems.
The elliptic wing based on the potential theory
NASA Technical Reports Server (NTRS)
Krienes, Klaus
1941-01-01
This article is intended as a contribution to the theory of the lifting surface. The aerodynamics of the elliptic wing in straight and oblique flow are explored on the basis of potential theory. The foundation of the calculation is the linearized theory of the acceleration potential in which all small quantities of higher order are disregarded.
Buckling characteristic of multi-laminated composite elliptical cylindrical shells
NASA Astrophysics Data System (ADS)
Kassegne, Samuel Kinde; Chun, Kyoung-Sik
2015-03-01
Fiber-reinforced composite materials continue to experience increased adoption in aerospace, marine, automobile, and civil structures due to their high specific strength, high stiffness, and light weight. This increased use has been accompanied by applications involving non-traditional configurations such as compression members with elliptical cross-sections. To model such shapes, we develop and report an improved generalized shell element called 4EAS-FS through a combination of enhanced assumed strain and the substitute shear strain fields. A flat shell element has been developed by combining a membrane element with drilling degree-of-freedom and a plate bending element. We use the element developed to determine specifically buckling loads and mode shapes of composite laminates with elliptical cross-section including transverse shear deformations. The combined influence of shell geometry and elliptical cross-sectional parameters, fiber angle, and lay-up on the buckling loads of an elliptical cylinder is examined. It is hoped that the critical buckling loads and mode shapes presented here will serve as a benchmark for future investigations.
Instability of low viscosity elliptic jets with varying aspect ratio
NASA Astrophysics Data System (ADS)
Kulkarni, Varun
2011-11-01
In this work an analytical description of capillary instability of liquid elliptic jets with varying aspect ratio is presented. Linear stability analysis in the long wave approximation with negligible gravitational effects is employed. Elliptic cylindrical coordinate system is used and perturbation velocity potential substituted in the Laplace equation to yield Mathieu and Modified Mathieu differential equations. The dispersion relation for elliptical orifices of any aspect ratio is derived and validated for axisymmetric disturbances with m = 0, in the limit of aspect ratio, μ = 1 , i.e. the case of a circular jet. As Mathieu functions and Modified Mathieu function solutions converge to Bessel's functions in this limit the Rayleigh-Plateau instability criterion is met. Also, stability of solutions corresponding to asymmetric disturbances for the kink mode, m = 1 and flute modes corresponding to m >= 2 is discussed. Experimental data from earlier works is used to compare observations made for elliptical orifices with μ ≠ 1 . This novel approach aims at generalizing the results pertaining to cylindrical jets with circular cross section leading to better understanding of breakup in liquid jets of various geometries.
Elastohydrodynamics of elliptical contacts for materials of low elastic modulus
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
The influence of the ellipticity parameter k and the dimensionless speed U, load W, and materials G parameters on minimum film thickness for materials of low elastic modulus was investigated. The ellipticity parameter was varied from 1 (a ball-on-plane configuration) to 12 (a configuration approaching a line contact); U and W were each varied by one order of magnitude. Seventeen cases were used to generate the minimum- and central-film-thickness relations. The influence of lubricant starvation on minimum film thickness in starved elliptical, elastohydrodynamic configurations was also investigated for materials of low elastic modulus. Lubricant starvation was studied simply by moving the inlet boundary closer to the center of the conjunction in the numerical solutions. Contour plots of pressure and film thickness in and around the contact were presented for both fully flooded and starved lubrication conditions. It is evident from these figures that the inlet pressure contours become less circular and closer to the edge of the Hertzian contact zone and that the film thickness decreases substantially as the serverity of starvation increases. The results presented reveal the essential features of both fully flooded and starved, elliptical, elastohydrodynamic conjunctions for materials of low elastic modulus.
Elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide.
Zhang, Li; Xiong, Qiulin; Li, Xiaopeng; Ma, Junxian
2015-08-10
We researched an elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide and evaluated its mode characteristics using the finite element method software COMSOL. The waveguide consists of three parts: an elliptic cylindrical silicon nanowire, a silver film layer, and a silica covering layer between them. All of the components are surrounded by air. After optimizing the geometrical parameters of the waveguide, we can achieve the waveguide's strong field confinement (ranging from λ^{2}/270 to λ^{2}/27) and long propagation distances (119-485 μm). In order to further understand the impact of the waveguide's architecture on its performance, we also studied the ridge hybrid waveguide. The results show that the ridge waveguide has moderate local field confinement ranging from λ^{2}/190 to λ^{2}/20 and its maximum propagation distance is about 340 μm. We compared the elliptic cylindrical and ridge nanowire hybrid waveguides with the cylindrical hybrid waveguide that we studied before. The elliptic cylindrical waveguide achieves a better trade-off between reasonable mode confinement and maximum propagation length in the three waveguides. The researched hybrid surface plasmon polaritons waveguides are useful to construct devices such as a directional coupler and may find potential applications in photonic integrated circuits or other novel SPP devices. PMID:26368373
Reconfigurable optical spectra from perturbations on elliptical whispering gallery resonances.
Mohageg, Makan; Maleki, Lute
2008-02-01
Elastic strain, electrical bias, and localized geometric deformations were applied to elliptical whispering-gallery-mode resonators fabricated with lithium niobate. The resultant perturbation of the mode spectrum is highly dependant on the modal indices, resulting in a discretely reconfigurable optical spectrum. Breaking of the spatial degeneracy of the whispering-gallery modes due to perturbation is also observed. PMID:18542283
Issues in Purchasing and Maintaining Intrinsic Standards
PETTIT,RICHARD B.; JAEGER,KLAUS; EHRLICH,CHARLES D.
2000-09-12
Intrinsic standards are widely used in the metrology community because they realize the best level uncertainty for many metrology parameters. For some intrinsic standards, recommended practices have been developed to assist metrologists in the selection of equipment and the development of appropriate procedures in order to realize the intrinsic standard. As with the addition of any new standard, the metrology laboratory should consider the pros and cons relative to their needs before purchasing the standard so that the laboratory obtains the maximum benefit from setting up and maintaining these standards. While the specific issues that need to be addressed depend upon the specific intrinsic standard and the level of realization, general issues that should be considered include ensuring that the intrinsic standard is compatible with the laboratory environment, that the standard is compatible with the current and future workload, and whether additional support standards will be required in order to properly maintain the intrinsic standard. When intrinsic standards are used to realize the best level of uncertainty for a specific metrology parameter, they usually require critical and important maintenance activities. These activities can including training of staff in the system operation, as well as safety procedures; performing periodic characterization measurements to ensure proper system operation; carrying out periodic intercomparisons with similar intrinsic standards so that proper operation is demonstrated; and maintaining control or trend charts of system performance. This paper has summarized many of these important issues and therefore should be beneficial to any laboratory that is considering the purchase of an intrinsic standard.
MIB method for elliptic equations with multi-material interfaces.
Xia, Kelin; Zhan, Meng; Wei, Guo-Wei
2011-06-01
Elliptic partial differential equations (PDEs) are widely used to model real-world problems. Due to the heterogeneous characteristics of many naturally occurring materials and man-made structures, devices, and equipments, one frequently needs to solve elliptic PDEs with discontinuous coefficients and singular sources. The development of high-order elliptic interface schemes has been an active research field for decades. However, challenges remain in the construction of high-order schemes and particularly, for nonsmooth interfaces, i.e., interfaces with geometric singularities. The challenge of geometric singularities is amplified when they are originated from two or more material interfaces joining together or crossing each other. High-order methods for elliptic equations with multi-material interfaces have not been reported in the literature to our knowledge. The present work develops matched interface and boundary (MIB) method based schemes for solving two-dimensional (2D) elliptic PDEs with geometric singularities of multi-material interfaces. A number of new MIB schemes are constructed to account for all possible topological variations due to two-material interfaces. The geometric singularities of three-material interfaces are significantly more difficult to handle. Three new MIB schemes are designed to handle a variety of geometric situations and topological variations, although not all of them. The performance of the proposed new MIB schemes is validated by numerical experiments with a wide range of coefficient contrasts, geometric singularities, and solution types. Extensive numerical studies confirm the designed second order accuracy of the MIB method for multi-material interfaces, including a case where the derivative of the solution diverges. PMID:21691433
From Flat Substrate to Elliptical KB Mirror by Profile Coating
Liu Chian; Conley, R.; Assoufid, L.; Cai, Z.; Qian, J.; Macrander, A.T.
2004-05-12
For microfocusing x-ray mirrors, an elliptical shape is essential for aberration-free optics. However, it is difficult to polish elliptical mirrors to x-ray-quality smoothness. Profile coatings have been applied on both cylindrical and flat Si substrates to make the desired elliptical shape. In a profile-coating process, the sputter source power is kept constant, while the substrate is passed over a contoured mask at a constant speed to obtain a desired profile along the direction perpendicular to the substrate-moving direction. The shape of the contour was derived from a desired profile and the thickness distribution of the coating material at the substrate level. The thickness distribution was measured on films coated on Si wafers using a spectroscopic ellipsometer with computer-controlled X-Y translation stages. The mirror coating profile is determined from the difference between the ideal surface figure of a focusing ellipse and the surface figure obtained from a long trace profiler measurement on the substrate. The number of passes and the moving speed of the substrate are determined according to the required thickness and the growth-rate calibration of a test run. A KB mirror pair was made using Au as a coating material and cylindrically polished mirrors as substrates. Synchrotron x-ray results using this KB mirror pair showed a focused spot size of 0.4 x 0.4 {mu}m2. This technique has also been applied for making elliptical KB mirrors from flat Si substrates. The challenges and solutions associated with elliptical profile coating on flat substrates will be discussed.
Double Ionization of He by an Intense Elliptically-Polarized, Few-Cycle Attosecond Pulse
NASA Astrophysics Data System (ADS)
Ngoko Djiokap, Jean Marcel; Manakov, Nikolai M.; Meremianin, Alexei V.; Hu, Suxing; Madsen, Lars B.; Starace, Anthony F.
2015-05-01
By solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an arbitrarily-polarized intense attosecond XUV pulse, we demonstrate numerically the control of He double ionization by means of the pulse polarization and its carrier-envelope phase (CEP). Using perturbation theory (PT), we predict a new type of CEP-sensitive polarization asymmetry that is normally absent in single photon double ionization of He, but does occur for an elliptically-polarized, few-cycle attosecond XUV pulse. We call this new effect nonlinear dichroism, which is sensitive not only to the ellipticity, peak intensity I, and temporal duration of the pulse, but also to the energy-sharing. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to investigate and control S- and D-wave channels of the two-electron continuum. Nonlinear dichroism probes electron correlation on its natural timescale since it vanishes for long pulses. Research supported in part by DOE, BES, Chem. Sciences, Geosciences, and Biosciences Div., Grant No. DEFG03-96ER14646.
Elliptic flow of identified hadrons in Pb-Pb collisions at TeV
NASA Astrophysics Data System (ADS)
Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.
2015-06-01
The elliptic flow coefficient ( v 2) of identified particles in Pb-Pb collisions at TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of |Δ η| > 0 .9 between the identified hadron under study and the reference particles. The v 2 is reported for π ±, K±, K{S/0}, , ϕ, , and in several collision centralities. In the low transverse momentum ( p T) region, p T < 3 GeV/ c, v 2( p T) exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for π ± and the combined K± and K{S/0} results, are described fairly well by hydrodynamic calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the v 2( p T) for , ϕ, and . For transverse momentum values larger than about 3 GeV/ c, particles tend to group according to their type, i.e. mesons and baryons. The present measurements exhibit deviations from the number of constituent quark (NCQ) scaling at the level of ±20% for p T > 3 GeV/ c. [Figure not available: see fulltext.
Vidal-Codina, F.; Nguyen, N.C.; Giles, M.B.; Peraire, J.
2015-09-15
We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basis approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.
Dwarf Elliptical Galaxies in the Coma Cluster Core
NASA Astrophysics Data System (ADS)
Secker, Jeff
1995-12-01
I have analyzed deep R- and B-band CCD images of the central ~ 700 arcmin(2) of the Coma cluster (Abell 1656, v = 7000 km/s, richness-class 2), using a statistically rigorous and automated method for the detection, photometry and classification of faint objects on digital images. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7 <= (B-R) <= 1.9 mag; within this interval and complete to R = 22.5 mag, there are 2535 dE candidates in the cluster core, and 694 objects on the associated control field (2.57x less area). I detected a significant metallicity gradient in the radial distribution of dE galaxies, which goes as Z ~ R(-0.32) outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These observations are consistent with a model in which the intracluster gas exerted a confinement pressure (greatest near the cluster core), impeding the outflow of supernovae-driven metal-rich gas from the young dE galaxies. The spatial distribution of faint dEs is well fit by a standard King model with a core radius R_c = 18.7 arcmin ( =~ 0.44 Mpc), significantly larger than found for the brightest dEs and giant cluster galaxies, and consistent with tidal disruption of faint dEs in the dense cluster core. The composite luminosity function for Coma galaxies was modeled as the sum of a log-normal distribution for the giant galaxies and a Schechter function for the dE galaxies. Decomposing the galaxy luminosity function in this manner, I found that the early-type dwarf-to-giant ratio (EDGR) for the Coma cluster core is identical with that of the Virgo cluster. I proposed that the presence of substructure is an important factor in determining the cluster's EDGR, since during the merger of two or more richness-class 1 galaxy clusters, the total number of dwarf and giant galaxies will be conserved. Thus, this low EDGR
Intrinsic Disorder in the Kinesin Superfamily.
Seeger, Mark A; Rice, Sarah E
2013-09-01
Kinesin molecular motors perform a myriad of intracellular transport functions. While their mechanochemical mechanisms are well understood and well-conserved throughout the superfamily, the cargo-binding and regulatory mechanisms governing the activity of kinesins are highly diverse and in general, are incompletely characterized. Here we present evidence from bioinformatic predictions indicating that most kinesin superfamily members contain significant regions of intrinsically disordered (ID) residues. ID regions can bind to multiple partners with high specificity, and are highly labile to post-translational modification and degradation signals. In kinesins, the predicted ID regions are primarily found in areas outside the motor domains, where primary sequences diverge by family, suggesting that ID may be a critical structural element for determining the functional specificity of individual kinesins. To support this idea, we present a systematic analysis of the kinesin superfamily, family by family, for predicted regions of ID. We combine this analysis with a comprehensive review of kinesin binding partners and post-translational modifications. We find two key trends across the entire kinesin superfamily. First, ID residues tend to be in the tail regions of kinesins, opposite the superfamily-conserved motor domains. Second, predicted ID regions correlate to regions that are known to bind to cargoes and/or undergo post-translational modifications. We therefore propose that ID is a structural element utilized by the kinesin superfamily in order to impart functional specificity to individual kinesins. PMID:24244223
Rapid identification of microorganisms by intrinsic fluorescence
NASA Astrophysics Data System (ADS)
Bhatta, Hemant; Goldys, Ewa M.; Learmonth, Robert
2005-03-01
Microbial contamination has serious consequences for the industries that use fermentation processes. Common contaminants such as faster growing lactic acid bacteria or wild yeast can rapidly outnumber inoculated culture yeast and produce undesirable end products. Our study focuses on a rapid method of identification of such contaminants based on autofluorescence spectroscopy of bacterial and yeast species. Lactic acid bacteria (Lac-tobacillus casei), and yeast (Saccharomyces cerevisiae) were cultured under controlled conditions and studied for variations in their autofluorescence. We observed spectral differences in the spectral range representative of tryptophan residues of proteins, with excitation at 290 nm and emission scanned in the 300 nm - 440 nm range. Excitation scans between 240 nm and 310 nm were also performed for the emission at 340 nm. Moreover, we observed clearly pronounced differences in the excitation and emission in the visible range, with 410 nm excitation. These results demonstrate that bacterial and yeast species can be differentiated using their intrinsic fluorescence both in UV and in the visible region. The comparative spectroscopic study of selected strains of Saccharomyces yeast showed clear differences between strains. Spectrally-resolved laser scanning microscopy was carried out to link the results obtained using ensembles of cells with spectral properties of individual cells. Strongly fluorescent subpopulation were observed for all yeast strains with excitation at 405 nm. The fluorescence spectra showed variations correlated with cell brightness. The presented results demonstrate that using autofluorescence, it is possible to differentiate between yeast and lactic acid bacteria and between different yeast species.
Intrinsic Disorder in the Kinesin Superfamily
Seeger, Mark A.; Rice, Sarah E.
2012-01-01
Kinesin molecular motors perform a myriad of intracellular transport functions. While their mechanochemical mechanisms are well understood and well-conserved throughout the superfamily, the cargo-binding and regulatory mechanisms governing the activity of kinesins are highly diverse and in general, are incompletely characterized. Here we present evidence from bioinformatic predictions indicating that most kinesin superfamily members contain significant regions of intrinsically disordered (ID) residues. ID regions can bind to multiple partners with high specificity, and are highly labile to post-translational modification and degradation signals. In kinesins, the predicted ID regions are primarily found in areas outside the motor domains, where primary sequences diverge by family, suggesting that ID may be a critical structural element for determining the functional specificity of individual kinesins. To support this idea, we present a systematic analysis of the kinesin superfamily, family by family, for predicted regions of ID. We combine this analysis with a comprehensive review of kinesin binding partners and post-translational modifications. We find two key trends across the entire kinesin superfamily. First, ID residues tend to be in the tail regions of kinesins, opposite the superfamily-conserved motor domains. Second, predicted ID regions correlate to regions that are known to bind to cargoes and/or undergo post-translational modifications. We therefore propose that ID is a structural element utilized by the kinesin superfamily in order to impart functional specificity to individual kinesins. PMID:24244223
Intrinsic Localized Modes in Proteins
Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick
2015-01-01
Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321
Intrinsic Localized Modes in Proteins.
Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick
2015-01-01
Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321
Intrinsically photosensitive retinal ganglion cells.
Do, Michael Tri Hoang; Yau, King-Wai
2010-10-01
Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors. PMID:20959623
Structure and Formation of Elliptical and Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf
2009-05-01
New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT <= -21.66 have cuspy cores—"missing light"—at small radii. Cores are well known and naturally scoured by binary black holes (BHs) formed in dissipationless ("dry") mergers. All 17 ellipticals with -21.54 <= MVT <= -15.53 do not have cores. We find a new distinct component in these galaxies: all coreless ellipticals in our sample have extra light at the center above the inward extrapolation of the outer Sérsic profile. In large ellipticals, the excess light is spatially resolved and resembles the central components predicted in numerical simulations of mergers of galaxies that contain gas. In the simulations, the gas dissipates, falls toward the center, undergoes a starburst, and builds a compact stellar component that, as in our observations, is distinct from the Sérsic-function main body of the elliptical. But ellipticals with extra light also contain supermassive BHs. We suggest that the starburst has swamped core scouring by binary BHs. That is, we interpret extra light components as a signature of formation in dissipative ("wet") mergers. Besides extra light, we find three new aspects to the ("E-E") dichotomy into two types of elliptical galaxies. Core galaxies are known to be slowly rotating, to have relatively anisotropic velocity distributions, and to have boxy isophotes. We show that they have Sérsic indices n > 4 uncorrelated
Intrinsic bioremediation of landfills interim report
Brigmon, R.L.; Fliermans, C.B.
1997-07-14
Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).
Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis.
Martel, Britta C; Litman, Thomas; Hald, Andreas; Norsgaard, Hanne; Lovato, Paola; Dyring-Andersen, Beatrice; Skov, Lone; Thestrup-Pedersen, Kristian; Skov, Søren; Skak, Kresten; Poulsen, Lars K
2016-06-01
Atopic dermatitis (AD) is a common inflammatory skin disease with underlying defects in epidermal function and immune responses. In this study, we used microarray analysis to investigate differences in gene expression in lesional skin from patients with mild extrinsic or intrinsic AD compared to skin from healthy controls and from lesional psoriasis skin. The primary aim was to identify differentially expressed genes involved in skin barrier formation and inflammation, and to compare our results with those reported for patients with moderate and severe AD. In contrast to severe AD, expression of the majority of genes associated with skin barrier formation was unchanged or upregulated in patients with mild AD compared to normal healthy skin. Among these, no significant differences in the expression of filaggrin (FLG) and loricrin at both mRNA and protein level were found in lesional skin from patients with mild AD, despite the presence of heterozygous FLG mutations in the majority of patients with mild extrinsic AD. Several inflammation-associated genes such as S100A9, MMP12, CXCL10 and CCL18 were highly expressed in lesional skin from patients with mild psoriasis and were also increased in patients with mild extrinsic and intrinsic AD similar to previous reports for severe AD. Interestingly, expression of genes involved in inflammatory responses in intrinsic AD resembled that of psoriasis more than that of extrinsic AD. Overall, differences in expression of inflammation-associated genes found among patients with mild intrinsic and extrinsic AD correlated with previous findings for patients with severe intrinsic and extrinsic AD. PMID:26841714
Separating Scattering from Intrinsic Attenuation
NASA Astrophysics Data System (ADS)
van Wijk, K.; Scales, J. A.
2003-12-01
The subsurface appears disordered at all length-scales. Therefore, wave propatation at seismic or ultrasonic frequencies is subject to complicated scatterings. A pulse propagating in the subsurface loses energy at each scattering off an impedance contrast, but also decreases in amplitude as the impulse interacts with fluids in the rock. We call the latter non-elastic effect "intrinsic Q", while the former is "scattering Q". It is often the fluids in the rocks that are of interest, but conventional reflection and transmission of the incident pulse only cannot deceipher the individual components of Q due to scattering and fluid movement in the pore-space. We present an approach that can unravel these two mechanisms, allowing a separate estimate of absorption. This method treats the propagation of the average intensity in the framework of radiative transfer (RT); the arrival of (what is left of) the incident pulse is modeled as the coherent energy, whereas the later arriving multiply scattered events form the incoherent intensity. The coherent pulse decays exponentially due to a combination of scattering and absorption, and so does the incoherent intensity. However, multiple scattering can re-direct energy back to the receiver, supplying a gain-term at later times that makes up the incoherent intensity. Strictly speaking, one can invert for scattering and absorption from the intensity at late times only, often modeled with the late-time equivalent of RT, diffusion. However, we will show that fitting both early- and late-time signal with RT constrains absorption and scattering constants more rigorously. These ideas are illustrated by laboratory and sonic-logging measurements.
Vibration and Noise Characteristics of Elliptical Gears due to Non-Uniform Rotation
NASA Astrophysics Data System (ADS)
Liu, Xing; Nagamura, Kazuteru; Ikejo, Kiyotaka
Elliptical gear is a typical non-circular gear, which transmits a variable-ratio rotation and power simultaneously. Due to the non-uniform rotation, the vibration and noise of elliptical gears demonstrate particular characteristics which should be paid attention to in practical application. In this paper, two elliptical gears, which are a single elliptical gear and a double elliptical gear, have been investigated to analyze the vibration and noise characteristics of elliptical gears. The corresponding circular gears for comparison are also investigated. General factors including the torque, the rotation speed, the gear vibration acceleration and the gear noise of the four test gears are measured by running test. The root mean square of the Circumferential Vibration Acceleration (CVA) and the sound pressure level of the noise of elliptical gears are obtained from the measured results and compared with those of circular gears to clarify the vibration and noise characteristics of elliptical gears. Furthermore, the frequency analysis of the CVA of elliptical gears is conducted by Fast Fourier Transform Algorithm (FFT) and compared with that of circular gears. The main vibration component of elliptical gear is uncovered according to the obtained frequency spectra. In addition, the Critical Rotation Speeds of Tooth Separation (CRSTS) of elliptical gear is obtained and its relation with load torque is unveiled.
Intrinsic Coupling Modes in Source-Reconstructed Electroencephalography
Breakspear, Michael; Britz, Juliane; Boonstra, Tjeerd W.
2014-01-01
Abstract Intrinsic coupling of neuronal assemblies constitutes a key feature of ongoing brain activity, yielding the rich spatiotemporal patterns observed in neuroimaging data and putatively supporting cognitive processes. Intrinsic coupling has been investigated in electrophysiological recordings using two types of functional connectivity measures: amplitude and phase coupling. These two coupling modes differ in their likely causes and functions, and have been proposed to provide complementary insights into intrinsic neuronal interactions. Here, we investigate the relationship between amplitude and phase coupling in source-reconstructed electroencephalography (EEG). Volume conduction is a key obstacle for connectivity analysis in EEG—we therefore also test the envelope correlation of orthogonalized signals and the phase lag index. Functional connectivity between six seed source regions (bilateral visual, sensorimotor, and auditory cortices) and all other cortical voxels was computed. For all four measures, coupling between homologous sensory areas in both hemispheres was significantly higher than with other voxels at the same physical distance. The frequency of significant coupling differed between sensory areas: 10 Hz for visual, 30 Hz for auditory, and 40 Hz for sensorimotor cortices. By contrasting envelope correlations and phase locking values, we observed two distinct clusters of voxels showing a different relationship between amplitude and phase coupling. Large clusters contiguous to the seed regions showed an identity (1:1) relationship between amplitude and phase coupling, whereas a cluster located around the contralateral homologous regions showed higher phase than amplitude coupling. These results show a relationship between intrinsic coupling modes that is distinct from the effect of volume conduction. PMID:25230358
Marks, Steve; Prestemon, Soren; Robin, David; Schlueter, Ross D.; Steier, Christoph; Wolski, Andrew; Jung, Jin-Young; Chubar, Oleg
2005-11-29
Three elliptically polarizing undulators (EPU) are installed and operational at the Advanced Light Source (ALS); the most recent was installed in April 2005. Operational experience has shown a variation in electron beam size which correlates with the EPU's magnetic quadrant shifts used to vary polarization. Storage ring electron dynamics studies pointed to the existence of a shift dependent skew quadrupole (SQ) component generated within the EPUs. Detailed magnetic and mechanical measurements demonstrated that the field errors were the result of systematic individual magnetic block displacements which vary with quadrant shift. This paper will discuss the results of electron dynamics studies, magnetic and mechanical measurements, design modifications planned for future EPUs to eliminate the SQ source, and the design and implementation of SQ compensation coils.
Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations?
NASA Astrophysics Data System (ADS)
Cenarro, A. J.; Gorgas, J.; Vazdekis, A.; Cardiel, N.; Peletier, R. F.
2003-02-01
We present new relations between recently defined line-strength indices in the near-infrared (CaT*, CaT, PaT, MgI and sTiO) and central velocity dispersion (σ0) for a sample of 35 early-type galaxies, showing evidence for significant anti-correlations between CaII triplet indices (CaT* and CaT) and log σ0. These relations are interpreted in the light of our recent evolutionary synthesis model predictions, suggesting the existence of important Ca underabundances with respect to Fe and/or an increase of the dwarf to giant stars ratio along the mass sequence of elliptical galaxies.
Elliptic and triangular flow of identified particles from the AMPT model at RHIC energies
NASA Astrophysics Data System (ADS)
Sun, Xu; Liu, Jianli; Schmah, Alexander; Shi, Shusu; Zhang, Jingbo; Jiang, Hanzhi; Huo, Lei
2015-11-01
The elliptic flow (v2) at \\sqrt{{s}{NN}} = 11.5, 39 and 200 GeV and triangular flow (v3) at \\sqrt{{s}{NN}} = 200 GeV of identified particles ({π }+/- ,{K}+/- ,{K}S0,p,\\bar{p},φ ,{{Λ }} and \\bar{{{Λ }}}) from 0-80% central Au+Au collisions are analyzed using a multiphase transport (AMPT) model. It is shown that the experimental results from the η-sub event plane method can be reproduced with a parton scattering cross-section between 1.5 and 3 mb. We also studied the differential and integrated {v}2/{v}3 ratios and conclude that they are anti-correlated with the parton scattering cross-section.
Near-field structure of underexpanded elliptic jets
NASA Astrophysics Data System (ADS)
Mitchell, Daniel M.; Honnery, Damon R.; Soria, Julio
2013-07-01
Quantitative measurements of velocity for a low aspect ratio underexpanded elliptical jet are presented. Four jets at nozzle pressure ratios NPR = [2.2, 2.6, 3.4, 4.2] are studied for a smoothly contoured elliptical nozzle with an aspect ratio a/ b = 2. High-resolution planar particle image velocimetry is used to extract information about the velocity fields and turbulent statistics. All four jets display the expected axis switching phenomenon, with the axis switching gaining strength with increasing pressure ratio. Evidence of regular reflection is seen for jets at pressure ratios of 2.6 and above. Measurements of fluctuating velocity indicate an oscillatory flapping mode in the minor axis plane for all but the highest pressure ratio. At the highest pressure ratio of NPR = 4.2, there is evidence of a cut-and-connect vortex bifurcation previously only observed for jets with higher aspect ratio.
A New Elliptical Model for Device-Free Localization.
Lei, Qian; Zhang, Haijian; Sun, Hong; Tang, Linling
2016-01-01
Device-free localization (DFL) based on wireless sensor networks (WSNs) is expected to detect and locate a person without the need for any wireless devices. Radio tomographic imaging (RTI) has attracted wide attention from researchers as an emerging important technology in WSNs. However, there is much room for improvement in localization estimation accuracy. In this paper, we propose a geometry-based elliptical model and adopt the orthogonal matching pursuit (OMP) algorithm. The new elliptical model uses not only line-of-sight information, but also non-line-of-sight information, which divides one ellipse into several areas with different weights. Meanwhile the OMP, which can eliminate extra bright spots in image reconstruction, is used to derive an image estimator. The experimental results demonstrate that the proposed algorithm could improve the accuracy of positioning by up to 23.8% for one person and 33.3% for two persons over some state-of-the-art RTI methods. PMID:27110788
Establishing the Metallicity Distribution in Normal Giant Ellipticals
NASA Astrophysics Data System (ADS)
Harris, William
2003-07-01
NGC 3377 and 3379, the Leo Group ellipticals at d=11 Mpc, are the nearest E galaxies commonly regarded to be structually"normal", and as such, they are keystone objects for understanding the evolution and early star formation history of large ellipticals. The ACS/WFC camera now gives us the ability to obtain the metallicity distribution function {MDF} of their stellar population by direct resolution and photometry of their halo stars. To do this, we will follow the same highly successful techniques we have previously used for NGC 5128 with WFPC2 {V, I} imaging: the {V-I} colors of the brightest red-giant stars are highly sensitive to metallicity, and their locations in the color-magnitude diagram can be used for direct construction of the MDF. This will be a major step forward to understanding the formation history of these cosmologically dominant galaxies.
Parallel computation with adaptive methods for elliptic and hyperbolic systems
Benantar, M.; Biswas, R.; Flaherty, J.E.; Shephard, M.S.
1990-01-01
We consider the solution of two dimensional vector systems of elliptic and hyperbolic partial differential equations on a shared memory parallel computer. For elliptic problems, the spatial domain is discretized using a finite quadtree mesh generation procedure and the differential system is discretized by a finite element-Galerkin technique with a piecewise linear polynomial basis. Resulting linear algebraic systems are solved using the conjugate gradient technique with element-by-element and symmetric successive over-relaxation preconditioners. Stiffness matrix assembly and linear system solutions are processed in parallel with computations scheduled on noncontiguous quadrants of the tree in order to minimize process synchronization. Determining noncontiguous regions by coloring the regular finite quadtree structure is far simpler than coloring elements of the unstructured mesh that the finite quadtree procedure generates. We describe linear-time complexity coloring procedures that use six and eight colors.
Isothermal elastohydrodynamic lubrication of point contacts. II - Ellipticity parameter results
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1975-01-01
A numerical solution of the isothermal elastohydrodynamic problem for point contacts has been presented which reproduces all the essential features of the previously reported experimental observations based upon optical interferometry. In particular, the two 'side lobes' in which minimum film thickness regions occur are shown to emerge in the theoretical solutions. The influence of the ellipticity parameter upon solutions to the point contact problem has been explored in the present paper. The ellipticity parameter (k) was varied from one (a ball on a plate) to eight (a configuration approaching line contact), and it has been shown that both the central and minimum film thicknesses can be related to the well known line contact solutions by remarkably simple expressions involving either (k) or the effective radius of curvature ratio (Ry/Rx).
The Multi-Talented Elliptical Galaxy NGC1052
NASA Astrophysics Data System (ADS)
Irwin, Jimmy
2004-09-01
We propose to observe the nearby elliptical galaxy NGC1052 for 60 ksec with Chandra to address a variety of issues. First, we will study the interaction between the hot X-ray gas and radio jets/lobes present in this galaxy. A previous short (2 ksec) Chandra observation indicated extended soft emission at the location of the radio emission. Second, NGC1052 is the prototypical LINER galaxy, and this Chandra observation will constrain competing spectral models for the origin of LINER X-ray emission. Finally, we will constrain the X-ray binary--globular cluster connection in elliptical galaxies. NGC1052 contains a large number of globular clusters per unit light, and will be quite useful for determining if all X-ray binaries are formed within globular clusters.
Artist concept of Magellan spacecraft in elliptical orbit around Venus
NASA Technical Reports Server (NTRS)
1988-01-01
Magellan spacecraft is shown in elliptical orbit around Venus, collecting data (radar mapping), and then transmitting data back to Earth in this artist concept. When the spacecraft orbit is close to Venus the synthetic aperature radar (SAR) will image a swath between 9 and 15 nautical miles (10 and 17 statute miles), beginning at or near the north pole and continuing to the southern hemisphere. Subsequent swaths will slightly overlap and, during its primary mission, the spacecraft will map most of the planet. When the spacecraft moves into the part of its elliptical orbit farthest from Venus, the spacecraft high-gain antenna will be turned toward Earth and will send the data collected during the imaging to Earth. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the spacecraft and Hughes Air
Artist concept of Magellan spacecraft in elliptical orbit around Venus
NASA Technical Reports Server (NTRS)
1988-01-01
Magellan spacecraft is shown in elliptical orbit around Venus, collecting data (radar mapping), and then transmitting data back to Earth in this artist concept. When the spacecraft orbit is close to Venus the synthetic aperature radar (SAR) will image a swath between 9 and 15 nautical miles (10 and 17 statute miles) (highlighted in image), beginning at or near the north pole and continuing to the southern hemisphere. Subsequent swaths will slightly overlap and, during its primary mission, the spacecraft will map most of the planet. When the spacecraft moves into the part of its elliptical orbit farthest from Venus, the spacecraft high-gain antenna will be turned toward Earth and will send the data collected during the imaging to Earth. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the sp
Is the Capsular Bag Perimeter Round or Elliptical?
Amigó, Alfredo; Bonaque-González, Sergio
2016-01-01
Purpose: To report findings that could suggest an elliptical shape of the capsular bag. Methods: Five eyes of three patients with axial length greater than 24 mm underwent phacoemulsification cataract surgery with plate-haptic multifocal toric intraocular lens (IOL) implantation oriented in the vertical meridian. Results: In all cases, correct orientation of the IOLs was verified 30 minutes after surgery. After 24 hours, all eyes demonstrated unwanted rotation of the IOLs ranging from 15 to 45 degrees. The IOLs remained stable in the new position in all cases until adhesion of the capsular bag took place. Conclusion: These observations could suggest that the perimeter of the capsular bag has an elliptical shape. Therefore, the IOL tends to become fixated in a meridian of the capsular bag that best fits the diagonal diameter of the IOL. PMID:27413495
The missing mass in clusters of galaxies and elliptical galaxies
NASA Technical Reports Server (NTRS)
Mushotzky, Richard F.
1991-01-01
We review the available data for the existence of dark matter in clusters of galaxies and elliptical galaxies. While the amount of dark matter in clusters is not well determined, both the X-ray and optical data show that more than 50 percent of the total mass must be dark. There is in general fair agreement in the binding mass estimates between the X-ray and optical techniques, but there is not detailed agreement on the form of the potential or the distribution of dark matter. The X-ray spectral and spatial observations of elliptical galaxies demonstrate that dark matter is also required in these objects and that it must be considerably more extended than the stellar distribution.
Sole Inversion Precomputation for Elliptic Curve Scalar Multiplications
NASA Astrophysics Data System (ADS)
Dahmen, Erik; Okeya, Katsuyuki
This paper presents a new approach to precompute points [3]P, [5]P, ..., [2k-1]P, for some k ≥ 2 on an elliptic curve over \\mathbb{F}_p. Those points are required for the efficient evaluation of a scalar multiplication, the most important operation in elliptic curve cryptography. The proposed method precomputes the points in affine coordinates and needs only one single field inversion for the computation. The new method is superior to all known methods that also use one field inversion, if the required memory is taken into consideration. Compared to methods that require several field inversions for the precomputation, the proposed method is faster for a broad range of ratios of field inversions and field multiplications. The proposed method benefits especially from ratios as they occur on smart cards.
Wireless OAM transmission system based on elliptical microstrip patch antenna.
Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming
2016-05-30
The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application. PMID:27410080
A New Elliptical Model for Device-Free Localization
Lei, Qian; Zhang, Haijian; Sun, Hong; Tang, Linling
2016-01-01
Device-free localization (DFL) based on wireless sensor networks (WSNs) is expected to detect and locate a person without the need for any wireless devices. Radio tomographic imaging (RTI) has attracted wide attention from researchers as an emerging important technology in WSNs. However, there is much room for improvement in localization estimation accuracy. In this paper, we propose a geometry-based elliptical model and adopt the orthogonal matching pursuit (OMP) algorithm. The new elliptical model uses not only line-of-sight information, but also non-line-of-sight information, which divides one ellipse into several areas with different weights. Meanwhile the OMP, which can eliminate extra bright spots in image reconstruction, is used to derive an image estimator. The experimental results demonstrate that the proposed algorithm could improve the accuracy of positioning by up to 23.8% for one person and 33.3% for two persons over some state-of-the-art RTI methods. PMID:27110788
Two-center black holes, qubits, and elliptic curves
NASA Astrophysics Data System (ADS)
Lévay, Péter
2011-07-01
We relate the U-duality invariants characterizing two-center extremal black-hole solutions in the stu, st2, and t3 models of N=2, d=4 supergravity to the basic invariants used to characterize entanglement classes of four-qubit systems. For the elementary example of a D0D4-D2D6 composite in the t3 model we illustrate how these entanglement invariants are related to some of the physical properties of the two-center solution. Next we show that it is possible to associate elliptic curves to charge configurations of two-center composites. The hyperdeterminant of the hypercube, a four-qubit polynomial invariant of order 24 with 2 894 276 terms, is featuring the j invariant of the elliptic curve. We present some evidence that this quantity and its straightforward generalization should play an important role in the physics of two-center solutions.
Elliptical x-ray microprobe mirrors by differential deposition
Ice, Gene E.; Chung, Jin-Seok; Tischler, Jonathan Z.; Lunt, Andrew; Assoufid, Lahsen
2000-07-01
A differential coating method is described for fabricating high-performance x-ray microfocusing mirrors. With this method, the figure of ultrasmooth spherical mirrors can be modified to produce elliptical surfaces with low roughness and low figure errors. Submicron focusing is demonstrated with prototype mirrors. The differential deposition method creates stiff monolithic mirrors which are compact, robust, and easy to cool and align. Prototype mirrors have demonstrated gains of more than 10{sup 4} in beam intensity while maintaining submilliradian divergence on the sample. This method of producing elliptical mirrors is well matched to the requirements of an x-ray microdiffraction Kirkpatrick-Baez focusing system. (c) 2000 American Institute of Physics.
Analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems
Bramble, J.H.; Pasciak, J.E.; Xu, J.
1988-10-01
We prove some new estimates for the convergence of multigrid algorithms applied to nonsymmetric and indefinite elliptic boundary value problems. We provide results for the so-called 'symmetric' multigrid schemes. We show that for the variable V-script-cycle and the W-script-cycle schemes, multigrid algorithms with any amount of smoothing on the finest grid converge at a rate that is independent of the number of levels or unknowns, provided that the initial grid is sufficiently fine. We show that the V-script-cycle algorithm also converges (under appropriate assumptions on the coarsest grid) but at a rate which may deteriorate as the number of levels increases. This deterioration for the V-script-cycle may occur even in the case of full elliptic regularity. Finally, the results of numerical experiments are given which illustrate the convergence behavior suggested by the theory.
Dynamic separation of nanomagnet sublattices by orientation of elliptical elements
NASA Astrophysics Data System (ADS)
Yahagi, Y.; Berk, C. R.; Harteneck, B. D.; Cabrini, S. D.; Schmidt, H.
2014-04-01
We report the separation of the magnetization dynamics of densely packed nanomagnets depending on their orientation. The arrays consist of interleaved sublattices of identical nickel elliptical disks. By controlling the orientation of the elliptic disks relative to the external field in each sublattice, we simultaneously analyzed the magnetization dynamics in each sublattice using a time-resolved magnetooptic Kerr effect (TR-MOKE) microscopy system. The Fourier spectra showed clearly separated precession modes for sublattices with different orientations. The spectra were shown to be robust against the error in applied field orientation. The sublattice response can be tuned to a single collective frequency by choosing a symmetric field orientation. We analyzed the effect of the interelement coupling with various spacing between nanomagnets and found a relatively weak dependence on dipolar interactions in good agreement with micromagnetic simulations.
Transverse-momentum-flow correlations in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2016-04-01
The correlation between the transverse momentum and the azimuthal asymmetry of the flow is studied. A correlation coefficient is defined between the average transverse momentum of hadrons emitted in an event and the square of the elliptic or triangular flow coefficient. The hydrodynamic model predicts a positive correlation of the transverse momentum with the elliptic flow, and almost no correlation with the triangular flow in Pb-Pb collisions at LHC energies. In p -Pb collisions the new correlation observable is very sensitive to the mechanism of energy deposition in the first stage of the collision.
Mott scattering in an elliptically polarized laser field
Attaourti, Y.; Manaut, B.; Taj, S.
2004-08-01
We study Mott scattering in the presence of a strong elliptically polarized field. Using the first Born approximation and the Dirac-Volkov states for the electron, we obtain an analytic formula for the unpolarized differential cross section. This generalizes the results found for the linearly polarized field by Li et al. [ 67, 063409 (2003)] and for the circularly polarized field by Attaourti and Manaut [ 68, 067401 (2003)].
Nonexistence results for elliptic equations with gradient terms
NASA Astrophysics Data System (ADS)
Alarcón, S.; Burgos-Pérez, M. Á.; García-Melián, J.; Quaas, A.
2016-01-01
We consider the elliptic problem - Δu +| ∇u | q = λf (u) in exterior domains of RN. Here q > 1, f is a nondecreasing, continuous and positive nonlinearity defined in (0, + ∞) and λ > 0 is a parameter. Under suitable assumptions on f near zero or infinity, we obtain some nonexistence results for positive supersolutions, depending on the relative values of q and N/N-1 and on the parameter λ.
INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES
Mould, Jeremy; Reynolds, Tristan; Readhead, Tony; Matthews, Keith; Floyd, David; Brown, Michael; Jannuzi, Buell; Atlee, David; Cotter, Garret; Ferrarese, Laura
2012-11-15
In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett {gamma}, and [Fe II]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource.
Two elliptic closed geodesics on positively curved Finsler spheres
NASA Astrophysics Data System (ADS)
Duan, Huagui
2016-06-01
In this paper, we prove that for every Finsler n-dimensional sphere (Sn , F) with reversibility λ and flag curvature K satisfying (λ/1+λ) 2 < K ≤ 1, either there exist infinitely many closed geodesics, or there exist at least two elliptic closed geodesics and each linearized Poincaré map has at least one eigenvalue of the form e √{ - 1 } θ with θ being an irrational multiple of π.
The augmented Lagrangian method for parameter estimation in elliptic systems
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Kunisch, Karl
1990-01-01
In this paper a new technique for the estimation of parameters in elliptic partial differential equations is developed. It is a hybrid method combining the output-least-squares and the equation error method. The new method is realized by an augmented Lagrangian formulation, and convergence as well as rate of convergence proofs are provided. Technically the critical step is the verification of a coercivity estimate of an appropriately defined Lagrangian functional. To obtain this coercivity estimate a seminorm regularization technique is used.
Towards a theory of automated elliptic mesh generation
NASA Technical Reports Server (NTRS)
Cordova, J. Q.
1992-01-01
The theory of elliptic mesh generation is reviewed and the fundamental problem of constructing computational space is discussed. It is argued that the construction of computational space is an NP-Complete problem and therefore requires a nonstandard approach for its solution. This leads to the development of graph-theoretic, combinatorial optimization and integer programming algorithms. Methods for the construction of two dimensional computational space are presented.
Fast algorithms for computing isogenies between elliptic curves
NASA Astrophysics Data System (ADS)
Bostan, A.; Morain, F.; Salvy, B.; Schost, E.
2008-09-01
We survey algorithms for computing isogenies between elliptic curves defined over a field of characteristic either 0 or a large prime. We introduce a new algorithm that computes an isogeny of degree ell ( ell different from the characteristic) in time quasi-linear with respect to ell E This is based in particular on fast algorithms for power series expansion of the Weierstrass wp -function and related functions.
Intrinsic operators for the electromagnetic nuclear current
J. Adam, Jr.; H. Arenhovel
1996-09-01
The intrinsic electromagnetic nuclear meson exchange charge and current operators arising from a separation of the center-of-mass motion are derived for a one-boson-exchange model for the nuclear interaction with scalar, pseudoscalar and vector meson exchange including leading order relativistic terms. Explicit expressions for the meson exchange operators corresponding to the different meson types are given in detail for a two-nucleon system. These intrinsic operators are to be evaluated between intrinsic wave functions in their center-of-mass frame.
Instability of a supersonic shock free elliptic jet
NASA Technical Reports Server (NTRS)
Baty, Roy S.; Seiner, John M.; Ponton, Michael K.
1990-01-01
This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements.
Anisotropic elliptic optical fibers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kang, Soon Ahm
1991-01-01
The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.
Major and minor axis kinematics of 22 ellipticals
NASA Astrophysics Data System (ADS)
Franx, Marijn; Illingworth, Garth; Heckman, Timothy
1989-09-01
Rotation curves and velocity dispersion profiles have been determined for the major and the minor axes of 22 elliptical galaxies. Rotation was detected in all but one galaxy, even though the sample was biased toward round ellipticals. Minor axis rotation larger than major axis rotation was measured in two galaxies, NGC 4406 and NGC 7507. Roughly 10 percent of ellipticals may show large minor axis velocities relative to those on the major axis. A simple model is used to derive a rotational axis from the observed minor and major axis velocities to a typical accuracy of 6 deg. The rotational and photometric minor axes aligned to better than 10 deg for 60 percent of the sample, implying that the direction of the angular momentum is related to the orientation of the figure of the galaxy. IC 1459 has a kinematically distinct core with its angular momentum opposite to the angular momentum of the outer parts, and NGC 4406 has a core with its angular momentum perpendicular to that of the outer parts.
Instability of a supersonic shock free elliptic jet
Baty, R.S. ); Seiner, J.M.; Ponton, M.K. . Langley Research Center)
1990-01-01
This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements. 18 refs., 18 figs., 1 tab.
On the distribution of scalar k for elliptic scalar multiplication
NASA Astrophysics Data System (ADS)
Ajeena, Ruma Kareem K.; Kamarulhaili, Hailiza
2015-10-01
In this study, we introduce the probability distribution of the elliptic curve scalar multiplication through finding the probability distribution of the secret key, namely, the scalar k of the scalar multiplication kP of a point P which has a large prime order n lying on elliptic curve group E(Fp) over a finite prime field Fp. To determine this distribution of k, we use the integer sub-decomposition (ISD) approach that inspired from Gallant, Lambert and Vanstone (GLV) idea. In ISD approach, the distribution of the values of scalars k lie outside the range ±√{n } on the interval [1, n - 1]. This distribution determines the successful rate to compute a scalar multiplication kP, on ISD approach, in comparison with the original GLV method. The conception of the ISD approach depends on the sub- decomposition of the scalar k to compute the scalar multiplication kP which uses efficiently computable endomorphisms Ψ1 and Ψ2 of elliptic curve E over Fp. The ISD sub-decomposition can be defined by k P =k11P +k12ψ1(P )+k21P +k22ψ2(P ), with max{ | k11 | ,| k12 | } and max{ | k21 | ,| k22 | } ≤C √{n }, for some explicit constant C > 0. Furthermore, this study compares between the GLV and ISD approaches on the basis of the probability distribution of the scalar k in the interval [1, n - 1], where n is a large prime number.
Shape measurement biases from underfitting and ellipticity gradients
Bernstein, Gary M.
2010-08-21
With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF) and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 10^{3} for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.
Shape measurement biases from underfitting and ellipticity gradients
Bernstein, Gary M.
2010-08-21
With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF)more » and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 103 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.« less
Determining spatial orientation of axes of elliptical magnetic field
NASA Astrophysics Data System (ADS)
Rudnitskiy, L. M.; Frumin, V. L.; Guyetskiy, B. A.; Klimov, N. Z.
1984-11-01
The rotating magnetic field in induction motors is often elliptical, because of asymmetry of the polyphase line voltages or structural asymmetry in the machine. For an accurate analysis of electromechanical energy conversion in such a machine, one must then take into account the ellipticity of the magnetic field with the attendant nonuniformity of saturation. A generalized two field model of an induction motor is proposed for this purpose, with superposition of two mutually orthogonal elliptical pulsating fields in stator coordinates. The self inductances and the mutual inductances can be subsequently calculated on this basis. The spatial orientation of the two ellipses, specifically of their axes, needs to be determined first and this is done here for the most general case of an asymmetric machine with m stator phases and n rotor phases under asymmetric input voltages. The magnetizing force of any stator phase and any rotor phase is calculated accordingly, then the resultant magnetizing force and its space distribution. The major axis and the minor axis of the resultant ellipse correspond to the direction of the respectively maximum and minimum magnetizing force. Numerical results converging after six iterations are shown for a machine with m 3 stator phases and n = 2 rotor phases.
Elliptic surface grid generation on minimal and parmetrized surfaces
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.
1995-01-01
An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.
Theoretical results for fully flooded, elliptical hydrodynamic contacts
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1982-01-01
The influence of the ellipticity parameter and the dimensionless speed, load, and materials parameters on minimum film thickness was investigated. The ellipticity parameter was varied from 1 (a ball-on-plate configuration) to 8 (a configuration approaching a line contact). The dimensionless speed parameter was varied over a range of nearly two orders of magnitude. Conditions corresponding to the use of solid materials of bronze, steel, and silicon nitride and lubricants of praffinic and naphthemic mineral oils were considered in obtaining the exponent in the dimensionless materials parameter. Thirty-four different cases were used in obtaining the minimum film thickness formula H min = 3.63U to the 0.68 power G to the 0.49 power W to the -0.073 power 1-e to the 0.68K power). A simplified expression for the ellipticity parameter was found where k = 1.03 (r(y)/r(x)) to the 0.64 power. Contour plots were also shown which indicate in detail the pressure spike and two side lobes in which the minimum film thickness occurs. These theoretical solutions of film thickness have all the essential features of the previously reported experimental observations based upon optical interferometry.
Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model
NASA Astrophysics Data System (ADS)
Zhua, Ningning; Jiaa, Yonghong; Luo, Lun
2016-06-01
The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.
Elliptically polarized terahertz radiation from a chiral oxide
Takeda, R.; Kida, N. Sotome, M.; Okamoto, H.
2015-09-28
Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses. Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.
BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES
O'Shaughnessy, R.; Kalogera, V.; Belczynski, Krzysztof E-mail: vicky@northwestern.ed
2010-06-10
In this paper, we estimate binary compact object merger detection rates for LIGO, including the potentially significant contribution from binaries that are produced in elliptical galaxies near the epoch of peak star formation. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for elliptical- and spiral-galaxy star formation history as a function of redshift. Our results favor local merger rate densities of 4 x 10{sup -3} Mpc{sup -3} Myr{sup -1} for binary black holes (BHs), 3 x 10{sup -2} Mpc{sup -3} Myr{sup -1} for binary neutron stars (NSs), and 10{sup -2} Mpc{sup -3} Myr{sup -1} for BH-NS binaries. We find that mergers in elliptical galaxies are a significant fraction of our total estimate for BH-BH and BH-NS detection rates; NS-NS detection rates are likely dominated by the contribution from spiral galaxies. Limiting attention to elliptical-galaxy plus only those spiral-galaxy models that reproduce current observations of Galactic NS-NS, we find slightly higher rates for NS-NS and largely similar ranges for BH-NS and BH-BH binaries. Assuming a detection signal-to-noise ratio threshold of 8 for a single detector (in practice as part of a network, to reduce its noise), corresponding to radii D {sub bns} of the effective volume inside of which a single LIGO detector could observe the inspiral of two 1.4 M {sub sun} NSs of 14 Mpc and 197 Mpc, for initial and advanced LIGO, we find event rates of any merger type of 2.9 x 10{sup -2}-0.46 and 25-400 yr{sup -1} (at 90% confidence level), respectively. We also find that the probability P {sub detect} of detecting one or more mergers with this single detector can be approximated by (1) P {sub detect} {approx_equal} 0.4 + 0.5 log(T/0.01 yr), assuming D {sub bns} = 197 Mpc and it operates for T yr, for T between 2 days and 0.1 yr, or by (2) P {sub detect} {approx_equal} 0.5 + 1.5 log(D {sub bns}/32 Mpc), for 1 yr of operation and for D {sub bns
Intrinsic network connectivity reflects consistency of synesthetic experiences.
Dovern, Anna; Fink, Gereon R; Fromme, A Christina B; Wohlschläger, Afra M; Weiss, Peter H; Riedl, Valentin
2012-05-30
Studying cognitive processes underlying synesthesia, a condition in which stimulation of one sensory modality automatically leads to abnormal additional sensory perception, allows insights into the neural mechanisms of normal and abnormal cross-modal sensory processing. Consistent with the notion that synesthesia results from hyperconnectivity, functional connectivity analysis (adopting independent component analysis and seed-based correlation analysis) of resting-state functional magnetic resonance imaging data of 12 grapheme-color synesthetes and 12 nonsynesthetic control subjects revealed, in addition to increased intranetwork connectivity, both a global and a specific (medial and lateral visual networks to a right frontoparietal network) increase of intrinsic internetwork connectivity in grapheme-color synesthesia. Moreover, this increased intrinsic network connectivity reflected the strength of synesthetic experiences. These findings constitute the first direct evidence of increased functional network connectivity in synesthesia. In addition to this significant contribution to the understanding of the neural mechanisms of synesthesia, our results have important general implications. In combination with data derived from clinical populations, our data strongly suggest that altered differences in intrinsic network connectivity are directly related to the phenomenology of human experiences. PMID:22649240
Miniaturized INtrinsic DISsolution Screening (MINDISS) assay for preformulation.
Alsenz, Jochem; Haenel, Elisabeth; Anedda, Aline; Du Castel, Pauline; Cirelli, Giorgio
2016-05-25
This study describes a novel Miniaturized INtrinsic DISsolution Screening (MINDISS) assay for measuring disk intrinsic dissolution rates (DIDR). In MINDISS, compacted mini disks of drugs (2-5mg/disk) are prepared in custom made holders with a surface area of 3mm(2). Disks are immersed, pellet side down, into 0.35ml of appropriate dissolution media per well in 96-well microtiter plates, media are stirred and disk-holders are transferred to new wells after defined periods of time. After filtration, drug concentration in dissolution media is quantified by Ultra Performance Liquid Chromatography (UPLC) and solid state property of the disk is characterized by Raman spectroscopy. MINDISS was identified as an easy-to-use tool for rapid, parallel determination of DIDR of compounds that requires only small amounts of compound and of dissolution medium. Results obtained with marketed drugs in MINDISS correlate well with large scale DIDR methods and indicate that MINDISS can be used for (1) rank-ordering of compounds by intrinsic dissolution in late phase discovery and early development, (2) comparison of polymorphic forms and salts, (3) screening and selection of appropriate dissolution media, and (4) characterization of the intestinal release behavior of compounds along the gastro intestinal tract by changing biorelevant media during experiments. PMID:26360839
Intrinsic Monitoring Using Behaviour Models in IPv6 Networks
NASA Astrophysics Data System (ADS)
Höfig, Edzard; Coşkun, Hakan
In conventional networks, correlating path information to resource utilisation on the granularity of packets is a hard problem when using policy-based traffic handling schemes. We introduce a new approach termed ‘intrinsic monitoring’ which relies on the use of IPv6 extension headers in combination with formal behaviour models to gather resource information along a path. This allows a network monitoring system to delegate monitoring functionality to the network devices themselves, with the result of a drastic reduction in management traffic due to the increased autonomy of the monitoring system. As monitoring information travels in-band with the network traffic, path information remains perfectly accurate.
Intrinsic and acquired resistance mechanisms in enterococcus
Hollenbeck, Brian L.; Rice, Louis B.
2012-01-01
Enterococci have the potential for resistance to virtually all clinically useful antibiotics. Their emergence as important nosocomial pathogens has coincided with increased expression of antimicrobial resistance by members of the genus. The mechanisms underlying antibiotic resistance in enterococci may be intrinsic to the species or acquired through mutation of intrinsic genes or horizontal exchange of genetic material encoding resistance determinants. This paper reviews the antibiotic resistance mechanisms in Enterococcus faecium and Enterococcus faecalis and discusses treatment options. PMID:23076243
Elliptic flow of charged particles in Pb-Pb collisions at sqrt[S(NN)] = 2.76 TeV.
Aamodt, K; Abelev, B; Quintana, A Abrahantes; Adamová, D; Adare, A M; Aggarwal, M M; Rinella, G Aglieri; Agocs, A G; Salazar, S Aguilar; Ahammed, Z; Masoodi, A Ahmad; Ahmad, N; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Molina, R Alfaro; Alici, A; Alkin, A; Aviña, E Almaráz; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Aystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Ferroli, R Baldini; Baldisseri, A; Baldit, A; Pedrosa, F Baltasar Dos Santos; Bán, J; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Beole, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Bergmann, C; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Bombonati, C; Book, J; Borel, H; Borissov, A; Bortolin, C; Bose, S; Bossú, F; Botje, M; Böttger, S; Boyer, B; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bugaiev, K; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Villar, E Calvo; Camerini, P; Canoa Roman, V; Romeo, G Cara; Carena, F; Carena, W; Carminati, F; Díaz, A Casanova; Caselle, M; Castellanos, J Castillo; Catanescu, V; Cavicchioli, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Barroso, V Chibante; Chinellato, D D; Chochula, P; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Coffin, J-P; Coli, S; Balbastre, G Conesa; del Valle, Z Conesa; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Morales, Y Corrales; Maldonado, I Cortés; Cortese, P; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; Erasmo, G D; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, A; Dash, S; De, S; Moregula, A De Azevedo; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Remigis, R; de Rooij, R; Debski, P R; Sanchez, E Del Castillo; Delagrange, H; Mercado, Y Delgado; Dellacasa, G; Deloff, A; Demanov, V; Dénes, E; Deppman, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dietel, T; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Majumdar, A K Dutta; Majumdar, M R Dutta; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Feofilov, G; Téllez, A Fernández; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Fini, R; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Fuchs, U; Furano, F; Furget, C; Girard, M Fusco; Gaardhøje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Ganti, M S; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gemme, R; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; Santos, H González; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Gotovac, S; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Gutierrez, C Guerra; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Harris, J W; Hartig, M; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernández, C; Corral, G Herrera; Herrmann, N; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Huber, S; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Jachołkowski, A; Jacobs, P M; Jancurová, L; Jangal, S; Janik, R; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanović, P; Jung, H; Jung, W; Jusko, A; Kalcher, S; Kaliňák, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kaplin, V; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J H; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, S H; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Klovning, A; Kluge, A; Knichel, M L; Koch, K; Köhler, M K; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornaś, E; Don, C Kottachchi Kankanamge; Kour, R; Kowalski, M; Kox, S; Meethaleveedu, G Koyithatta; Kozlov, K; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Kretz, M; Krivda, M; Krizek, F; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; La Rocca, P; Ladrón de Guevara, P; Lafage, V; Lara, C; Lardeux, A; Larsen, D T; Lazzeroni, C; Le Bornec, Y; Lea, R; Lee, K S; Lee, S C; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; Monzón, I León; Vargas, H León; Lévai, P; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Loizides, C; Loo, K K; Lopez, X; Noriega, M López; Torres, E López; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luparello, G; Luquin, L; Luzzi, C; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Mal'Kevich, D; Malaev, M; Cervantes, I Maldonado; Malinina, L; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Davalos, A Martínez; García, G Martínez; Martynov, Y; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Lorenzo, P Mendez; Menis, I; Pérez, J Mercado; Meres, M; Mereu, P; Miake, Y; Midori, J; Milano, L; Milosevic, J; Mischke, A; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, A K; Mohanty, B; Molnar, L; Zetina, L Montaño; Monteno, M; Montes, E; Morando, M; De Godoy, D A Moreira; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Müller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nicassio, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Obayashi, H; Ochirov, A; Oeschler, H; Oh, S K; Oleniacz, J; Oppedisano, C; Velasquez, A Ortiz; Ortona, G; Oskarsson, A; Ostrowski, P; Otterlund, I; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Jayarathna, S P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Pappalardo, G S; Park, W J; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Peresunko, D; Lara, C E Pérez; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Piyarathna, D B; Platt, R; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Rademakers, O; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Reyes, A Ramírez; Rammler, M; Raniwala, R; Raniwala, S; Räsänen, S S; Read, K F; Real, J; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Cahuantzi, M Rodríguez; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosinský, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Montero, A J Rubio; Rui, R; Rivetti, A; Rusanov, I; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Saiz, P; Sakai, S; Sakata, D; Salgado, C A; Samanta, T; Sambyal, S; Samsonov, V; Castro, X Sanchez; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Søgaard, C; Soloviev, A; Soltz, R; Son, H; Song, J; Song, M; Soos, C; Soramel, F; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stokkevag, C H; Stolpovskiy, M; Strmen, P; Suaide, A A P; Vásquez, M A Subieta; Sugitate, T; Suire, C; Sukhorukov, M; Sumbera, M; Susa, T; Swoboda, D; Symons, T J M; de Toledo, A Szanto; Szarka, I; Szostak, A; Tagridis, C; Takahashi, J; Takaki, J D Tapia; Tauro, A; Tavlet, M; Muñoz, G Tejeda; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Thomas, J H; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Tosello, F; Traczyk, T; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A J; Tveter, T S; Ulery, J; Ullaland, K; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vajzer, M; Vala, M; Palomo, L Valencia; Vallero, S; van der Kolk, N; van Leeuwen, M; Vande Vyvre, P; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernekohl, D C; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Baillie, O Villalobos; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Karampatsos, L Xaplanteris; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yokoyama, H; Yoo, I-K; Yu, W; Yuan, X; Yushmanov, I; Zabrodin, E; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zichichi, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M
2010-12-17
We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at sqrt[S(NN)] =2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η|<0.8) and transverse momentum range 0.2
elliptic flow signal v₂, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ± 0.002(stat) ± 0.003(syst) in the 40%-50% centrality class. The differential elliptic flow v₂ p t reaches a maximum of 0.2 near p t =3 GeV/c. Compared to RHIC Au-Au collisions at sqrt[S(NN)] 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase. PMID:21231580
The intrinsic resistome of bacterial pathogens
Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.
2013-01-01
Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241
NASA Astrophysics Data System (ADS)
Shafizadeh, Mohsen
The purposes of the present investigation were to study the relationships between goal orientation, motivational climate and perceived ability with intrinsic motivation, behavioral patterns and performance. One hundred and sixty three males and females students from physical education classes selected and completed the Task and Ego Orientation, Intrinsic Motivation, Perceived Motivational Climate in Sport and Perceived Ability questionnaires. The results of structural equation models (SEM) and correlation coefficients showed that there are significant correlations between ego-orientation, task-orientation and mastery climate with intrinsic motivation (R = 0.58,X2 = 103.72, p< 0.0001) and between intrinsic motivation with trend, effort and performance (R = 0.42, X2 = 37.85, p< 0.0001). In conclusion, to increase trend and effort of students in sport classes their achievement goal orientations should to considered and increasing the intrinsic motivation, perceived ability and mastery climate have a facilitative role.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
Reactions of human and hog intrinsic factors with type I antibody to intrinsic factor
Gullberg, R.
1970-01-01
A simple and rapid small-scale gel filtration method was applied in studies of type I antibody to intrinsic factor using radioactive vitamin B12 of high specific activity and purified human and hog intrinsic factor preparations, taking into account the unsaturated B12-binding capacity of the individual pernicious anaemia sera. This procedure allows the use of small amounts of reagents. Evidence was obtained for a close antigenic similarity of determinants of human and hog intrinsic factor. The use of purified intrinsic-factor preparations is important. PMID:4097742
Ozkaya, Ozgur
2013-01-01
The Wingate all-out test (WAT) is commonly used to estimate anaerobic capabilities of athletes by using an upper or lower body cycle ergometer, however, a new test modality called elliptical all-out test (EAT) which measures activated whole-body locomotor tasks has recently been proposed. The purpose of this study was to evaluate the familiarization effects of a 30-s EAT versus WAT. Twenty male trained athletes performed pre-familiarization (Trial- I), post-familiarization (Trial-II) and retest of Trial-II (Trial-III) sessions on both cycle ergometer and elliptical trainer. Peak power (PP), average power (AP), power drop (PD) and fatigue index ratio (FI%) were analyzed using student's t-test for paired samples and correlated by intra-class correlation coefficients (ICC). Moreover, an error detection procedure was administered using data attained from illogical interrelations among 5-s segments of 30-s tests. The main results showed that there were significant familiarization effects in all mechanical power outputs obtained from Trial-I and Trial-II in both EAT (ICC = 0.49-0.55) and WAT (ICC = 0.50-0.57) performances (p ≤ 0.01). Significant segmental disorders were detected in power production during Trial-I of EAT, however, none existed in any of test trails in the WAT (p ≤ 0.001). After familiarization sessions, reliability coefficients between Trial-II and Trial-III showed moderate to strong-level agreements for both EAT (ICC = 0.74-0.91) and the WAT (ICC=0.76-0.93). Our results suggested that prior to the performance tests, combination of a well designed familiarization session with one full all-out test administration is necessary to estimate the least moderately reliable and accurate test indices for both WAT and EAT. Key PointsA well designed familiarization session, and then, one additional all-out test administration, several days prior to main test, is suggested to estimate more accurate and reliable retest correlations for both cycling and elliptical
Lee, Jin-Ho; Park, Hun-Kuk; Kim, Kyung Sook
2016-05-01
Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation. PMID:26403968
The Puzzlingly Large Ca II Triplet Absorption in Dwarf Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Michielsen, D.; De Rijcke, S.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.
2003-11-01
We present central CaT, PaT, and CaT* indices for a sample of 15 dwarf elliptical galaxies (dE's). Twelve of these have CaT*~7 Å and extend the negative correlation between the CaT* index and the central velocity dispersion σ, which was derived for bright elliptical galaxies (E's), down to 20 km s-1 < σ < 55 km s-1. For five dE's, we have independent age and metallicity estimates. Four of these have CaT*~7 Å, much higher than expected from their low metallicities (-1.5<[Z/H]<-0.5). The observed anticorrelation of CaT* as a function of σ or Z is in flagrant disagreement with theory. We discuss some of the amendments that have been proposed to bring the theoretical predictions into agreement with the observed CaT* values of bright E's and how they can be extended to incorporate the observed CaT* values of dE's as well. Moreover, three dE's in our sample have CaT*~5 Å, as would be expected for metal-poor stellar systems. Any theory for dE evolution will have to be able to explain the coexistence of low-CaT* and high-CaT* dE's at a given mean metallicity. This could be the first direct evidence that the dE population is not homogeneous and that different evolutionary paths led to morphologically and kinematically similar but chemically distinct objects. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Program 165.N 0115).
Wake potential in a semi-elliptic pill-box cavity
NASA Astrophysics Data System (ADS)
Yang, J. S.; Chen, K. W.
1989-10-01
In this article we compared the wake potential in a cavity of semi-elliptic cross section and elliptic cross section. The semi-elliptic cavity is considered to have an advantage that we can experimentally simulate an elliptic cavity with one beam line. It is found that we can produce considerably strong accelerating fields inside this cavity. We calculate the resonant modes of this cavity using previous analytical mode analysis1. Also the wake field inside this cavity is derived analytically and numerical results are presented to determine the usefulness of this cavity.
Andrade, R.; Grassi, F.; Hama, Y.; Kodama, T.; Socolowski, O. Jr.
2006-11-17
Elliptic flow at BNL RHIC is computed event by event with NeXSPheRIO. We show that when symmetry of the particle distribution in relation to the reaction plane is assumed, as usually done in the experimental extraction of elliptic flow, there is a disagreement between the true and reconstructed elliptic flows (15%-30% for {eta}=0, 30% for p{sub perpendicular}=0.5 GeV). We suggest a possible way to take into account the asymmetry and get good agreement between these elliptic flows.
Excess ellipticity of hot and cold spots in the WMAP data?
Berntsen, Eirik; Hansen, Frode K. E-mail: frodekh@astro.uio.no
2013-12-10
We investigate claims of excess ellipticity of hot and cold spots in the Wilkinson Microwave Anisotropy Probe (WMAP) data. Using the cosmic microwave background (CMB) data from 7 yr of observations by the WMAP satellite, we find, contrary to previous claims of a 10σ detection of excess ellipticity in the 3 yr data, that the ellipticity of hot and cold spots is perfectly consistent with simulated CMB maps based on the concordance cosmology. We further test for excess obliquity and excess skewness/kurtosis of ellipticity and obliquity and find the WMAP7 data consistent with Gaussian simulated maps.
The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae
Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Stritzinger, Maximilian; Contreras, Carlos; Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco; Folatelli, Gaston; Suntzeff, Nicholas B.
2014-07-01
We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.
Multigrid lattice Boltzmann method for accelerated solution of elliptic equations
NASA Astrophysics Data System (ADS)
Patil, Dhiraj V.; Premnath, Kannan N.; Banerjee, Sanjoy
2014-05-01
A new solver for second-order elliptic partial differential equations (PDEs) based on the lattice Boltzmann method (LBM) and the multigrid (MG) technique is presented. Several benchmark elliptic equations are solved numerically with the inclusion of multiple grid-levels in two-dimensional domains at an optimal computational cost within the LB framework. The results are compared with the corresponding analytical solutions and numerical solutions obtained using the Stone's strongly implicit procedure. The classical PDEs considered in this article include the Laplace and Poisson equations with Dirichlet boundary conditions, with the latter involving both constant and variable coefficients. A detailed analysis of solution accuracy, convergence and computational efficiency of the proposed solver is given. It is observed that the use of a high-order stencil (for smoothing) improves convergence and accuracy for an equivalent number of smoothing sweeps. The effect of the type of scheduling cycle (V- or W-cycle) on the performance of the MG-LBM is analyzed. Next, a parallel algorithm for the MG-LBM solver is presented and then its parallel performance on a multi-core cluster is analyzed. Lastly, a practical example is provided wherein the proposed elliptic PDE solver is used to compute the electro-static potential encountered in an electro-chemical cell, which demonstrates the effectiveness of this new solver in complex coupled systems. Several orders of magnitude gains in convergence and parallel scaling for the canonical problems, and a factor of 5 reduction for the multiphysics problem are achieved using the MG-LBM.
Two-dimensional gap solitons in elliptic-lattice potentials
He Yingji; Malomed, Boris A.; Hu Bambi
2010-03-15
We study two-dimensional (2D) matter-wave gap solitons trapped in an elliptically deformed concentric lattice potential, within the framework of the Gross-Pitaevskii equation (GPE) with self-attraction or self-repulsion. For a fixed eccentricity of the lattice, soliton families are found in both the repulsive and attractive models. In the former case, the analysis reveals two kinds of gap solitons trapped in the first oval trough (the ring-shaped potential minimum closest to the center): elliptic annular solitons (EASs), and double solitons (DSs), which are formed by two tightly localized density peaks located at diametrically opposite points of the trough, with zero phase difference between them. With the decrease of the norm, the density distribution in the EAS along the azimuthal direction changes from nearly uniform to double-peaked and, eventually, to the DS. In the attractive model, there exist only DSs in the oval trough, while EASs are not found. All such solitons without the angular momentum (l=0) are fully stable. For l{ne}0, vortical solitons--both EASs with a sufficiently large norm (in the repulsive model) and DSs (in models with both signs of the nonlinearity)--are quasistable, exhibiting rocking motion in the elliptic trough (we consider the cases of l=1 and l=2). At smaller values of the norm, the vortical annular solitons (in the repulsive model) are unstable. Stable fundamental solitons trapped in the central potential well are investigated, too, in both the attractive and repulsive models, by means of the variational approximation and numerical methods.
Orbital structure and mass distribution in elliptical galaxies
NASA Astrophysics Data System (ADS)
Kronawitter, Andi; Saglia, R. P.; Gerhard, Ortwin; Bender, Ralf
2000-05-01
We report on a homogeneous dynamical analysis of a sample of 21 round (17 E0/E1, 4 E2) elliptical galaxies. We present new kinematic data for eight of these galaxies and new photometry for one object. The remaining kinematic and photometric data and the required distance information are taken from the literature. The analysis uses non-parametric spherical models and takes into account line profile information as well as velocity dispersions. We present model fits to the kinematic data and the derived radial profiles of orbital anisotropy and B-band mass-to-light ratio, including confidence intervals. The circular velocity curves resulting from our model fits are all consistent with being flat outside R~ 0.3 R_e. Generally, the M/L ratio profiles show an outward increase, although models based on luminous matter are ruled out at 95% confidence only for three galaxies (NGC 2434, NGC 7507, NGC 7626). For NGC 1399, NGC 4472, NGC 4486, and NGC 4636, where X-ray observations are available, the mass profiles of the best fit models match the ones derived from the X-ray analysis. The best models for most galaxies are isotropic to slightly radially anisotropic, with typical beta <~0.3, in a few cases beta <~0 .5 at R_e/2. We discuss the generally small effects of flattening along the line-of-sight (the expected
Optical proximity correction challenges with highly elliptical contacts
NASA Astrophysics Data System (ADS)
Cork, Chris; Barnes, Levi; Ping, Yang; Li, Xiaohai; Jang, Stephen
2010-09-01
The steady march of Moore's law demands ever smaller feature sizes to be printed and Optical Proximity Correction to correct to ever tighter dimensional tolerances. Recently pitch doubling techniques has relieved the pressure on CD reduction, which instead of being achieved lithographically are reduced by subsequent etching or chemical interaction with spin-on layers. CD tolerance reductions, however, still need to match the overall design rule shrinkage. The move to immersion lithography, where effective Numerical Apertures now reach 1.35, has been accompanied by a significantly reduction in depth of focus, especially on isolated contacts. To remedy this, RET techniques such as assist feature placement, have been implemented. Certain local placements of assist features and neighboring contacts are observed to result in highly elliptical contacts being printed. In some layouts small changes in the aspect ratio of the contact on the mask leads to strong changes in the aspect ratio of the printed contact, whereas in other layouts the response is very weak. This effect can be described as an aspect ratio MEEF. The latter type of contact can pose a significant challenge to the OPC recipe which is driven by the need to place the printed contour within a small range of distance from target points placed on the midpoint of edges of a nominally square contact. The OPC challenge naturally will be compounded when the target layout is rectangular in the opposite sense to the natural elliptical shape of the printed contact. Approaches to solving this can vary from intervening at the assist feature placement stage, at the possible loss of depth of focus, to accepting a certain degree of ellipticity in the final contour and making the OPC recipe concentrate on minimizing any residual errors. This paper investigates which contact layouts are most challenging, discusses the compromises associated with achieving the correction target and results are shown from a few different
Intrinsic errors in several ab initio methods. The dissociation energy of N{sub 2}
Peterson, K.A. |; Dunning, T.H. Jr.
1995-03-23
Using sequences of correlation consistent basis sets, complete basis set (CBS) limits for the dissociation energy D{sub c} of N{sub 2} have been estimated for a variety of commonly used electron correlation methods. After extrapolation to the CBS limit, the difference between theory and experiment corresponds to the error intrinsic to the chosen theoretical method. Correlated wave functions (valence electrons correlated only) for which intrinsic errors have been estimated include internally contracted multireference configuration interaction (CMRCI), singles and doubles coupled cluster theory with and without perturbative triple excitations [CCSD, CCSD(T)], and second-, third-, and fourth-order Moller-Plesset perturbation theory (MP2, MP3, MP4). For CMRCI and CCSD(T), D{sub c} converges smoothly from below the experimental value and yields the smallest intrinsic errors, -0.8 and -1.6 kcal/mol, respectively. In contrast, for MP2 and MP4, D{sub c} exhibits fortuitously good agreement with experiment for small basis sets but leads to CBS limits that are 11.6 and 3.4 kcal/mol larger than experiment, respectively. Correlation of the 1s core electrons is predicted to yield intrinsic errors of less than 1 kcal/mol for CMRCI and CCSD(T), while those for MP2 and MP4 increase still further. 38 refs., 1 fig., 1 tab.
Intrinsic delay of permeable base transistor
Chen, Wenchao; Guo, Jing; So, Franky
2014-07-28
Permeable base transistors (PBTs) fabricated by vacuum deposition or solution process have the advantages of easy fabrication and low power operation and are a promising device structure for flexible electronics. Intrinsic delay of PBT, which characterizes the speed of the transistor, is investigated by solving the three-dimensional Poisson equation and drift-diffusion equation self-consistently using finite element method. Decreasing the emitter thickness lowers the intrinsic delay by improving on-current, and a thinner base is also preferred for low intrinsic delay because of fewer carriers in the base region at off-state. The intrinsic delay exponentially decreases as the emitter contact Schottky barrier height decreases, and it linearly depends on the carrier mobility. With an optimized emitter contact barrier height and device geometry, a sub-nano-second intrinsic delay can be achieved with a carrier mobility of ∼10 cm{sup 2}/V/s obtainable in solution processed indium gallium zinc oxide, which indicates the potential of solution processed PBTs for GHz operations.
Mitchell, Marci R.; Balodis, Iris M.; DeVito, Elise E.; Lacadie, Cheryl M.; Yeston, Jon; Scheinost, Dustin; Constable, R. Todd; Carroll, Kathleen M.; Potenza, Marc N.
2013-01-01
Background Cocaine-dependent individuals demonstrate neural and behavioral differences compared to healthy comparison subjects when performing the Stroop color-word inference test. Stroop measures also relate to treatment outcome for cocaine dependence. Intrinsic connectivity analyses assess the extent to which task-related regional brain activations are related to each other in the absence of defining a priori regions-of-interest. Objective This study examined: 1) the extent to which cocaine-dependent and non-addicted individuals differed on measures of intrinsic connectivity during fMRI Stroop performance; and, 2) the relationships between fMRI Stroop intrinsic connectivity and treatment outcome in cocaine dependence. Methods Sixteen treatment-seeking cocaine-dependent patients and matched non-addicted comparison subjects completed an fMRI Stroop task. Between-group differences in intrinsic connectivity were assessed and related to self-reported and urine-toxicology-based cocaine-abstinence measures. Results Cocaine-dependent patients vs. comparison subjects showed less intrinsic connectivity in cortical and sub-cortical regions. When adjusting for individual degree of intrinsic connectivity, cocaine-dependent vs. comparison subjects showed relatively greater intrinsic connectivity in the ventral striatum, putamen, inferior frontal gyrus, anterior insula, thalamus, and substantia nigra. Non-mean-adjusted intrinsic-connectivity measures in the midbrain, thalamus, ventral striatum, substantia nigra, insula, and hippocampus negatively correlated with measures of cocaine abstinence. Conclusion The diminished intrinsic connectivity in cocaine-dependent vs. comparison subjects suggests poorer communication across brain regions during cognitive-control processes. In mean-adjusted analyses, the cocaine-dependent group displayed relatively greater Stroop-related connectivity in regions implicated in motivational processes in addictions. The relationships between treatment
Incomplete block factorization preconditioning for indefinite elliptic problems
Guo, Chun-Hua
1996-12-31
The application of the finite difference method to approximate the solution of an indefinite elliptic problem produces a linear system whose coefficient matrix is block tridiagonal and symmetric indefinite. Such a linear system can be solved efficiently by a conjugate residual method, particularly when combined with a good preconditioner. We show that specific incomplete block factorization exists for the indefinite matrix if the mesh size is reasonably small. And this factorization can serve as an efficient preconditioner. Some efforts are made to estimate the eigenvalues of the preconditioned matrix. Numerical results are also given.
On an Elliptic Equation Arising from Composite Materials
NASA Astrophysics Data System (ADS)
Dong, Hongjie; Zhang, Hong
2016-03-01
In this paper, we derive an interior Schauder estimate for the divergence form elliptic equation D_i (a(x)D_iu) = D_i f_i in R^2 ,where {a(x)} and {f_i (x)} are piecewise Hölder continuous in a domain containing two touching balls as subdomains. When {f_i ≡ 0} and a is piecewise constant, we prove that u is piecewise smoothwith bounded derivatives.This completely answers a question raised by Li andVogelius (Arch Ration Mech Anal 153(2):91-151, 2000) in dimension 2.
Some new addition formulae for Weierstrass elliptic functions
Eilbeck, J. Chris; England, Matthew; Ônishi, Yoshihiro
2014-01-01
We present new addition formulae for the Weierstrass functions associated with a general elliptic curve. We prove the structure of the formulae in n-variables and give the explicit addition formulae for the 2- and 3-variable cases. These new results were inspired by new addition formulae found in the case of an equianharmonic curve, which we can now observe as a specialization of the results here. The new formulae, and the techniques used to find them, also follow the recent work for the generalization of Weierstrass functions to curves of higher genus. PMID:25383018
Symmetry energy from elliptic flow in 197Au + 197Au
NASA Astrophysics Data System (ADS)
Russotto, P.; Wu, P. Z.; Zoric, M.; Chartier, M.; Leifels, Y.; Lemmon, R. C.; Li, Q.; Łukasik, J.; Pagano, A.; Pawłowski, P.; Trautmann, W.
2011-03-01
The elliptic-flow ratio of neutrons with respect to protons or light complex particles in reactions of neutron-rich systems at relativistic energies is proposed as an observable sensitive to the strength of the symmetry term in the equation of state at supra-normal densities. The results obtained from the existing FOPI/LAND data for 197Au + 197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model favor a moderately soft symmetry term with a density dependence of the potential term proportional to (ρ /ρ0) γ with γ = 0.9 ± 0.4.
Dynamical models of elliptical galaxies - I. Simple methods
NASA Astrophysics Data System (ADS)
Agnello, A.; Evans, N. W.; Romanowsky, A. J.
2014-08-01
We study dynamical models for elliptical galaxies, deriving the projected kinematic profiles in a form that is valid for general surface brightness laws and (spherical) total mass profiles, without the need for any explicit deprojection. We provide accurate approximations of the line of sight and aperture-averaged velocity dispersion profiles for galaxies with total mass density profiles with slope near -2 and with modest velocity anisotropy using only single or double integrals, respectively. This is already sufficient to recover many of the kinematic properties of nearby ellipticals. As an application, we provide two different sets of mass estimators for elliptical galaxies, based on either the velocity dispersion at a location at or near the effective radius, or the aperture-averaged velocity dispersion. In the large aperture (virial) limit, mass estimators are naturally independent of anisotropy. The spherical mass enclosed within the effective radius Re can be estimated as 2.4 R_e < σ 2_p > / G, where < σ ^2_p > is the average of the squared velocity dispersion over a finite aperture. This formula does not depend on assumptions such as mass-follows-light, and is a compromise between the cases of small and large aperture sizes. Its general agreement with results from other methods in the literature makes it a reliable means to infer masses in the absence of detailed kinematic information. If on the other hand the velocity dispersion profile is available, tight mass estimates can be found that are independent of the mass-model and anisotropy profile. In particular, for a de Vaucouleurs surface brightness, the velocity dispersion measured at ≈1Re yields a tight mass estimate (with 10 per cent accuracy) at ≈3Re that is independent of the mass model and the anisotropy profile. This allows us to probe the importance of dark matter at radii where it dominates the mass budget of galaxies. Explicit formulae are given for small anisotropy, large radii and/or power
Effective material properties of thermoelectric composites with elliptical fibers
NASA Astrophysics Data System (ADS)
Wang, Yi-Ze
2015-06-01
In the present work, the effective material properties of thermoelectric composites with elliptical fibers are studied. Explicit solutions are derived by the conformal mapping function and Mori-Tanaka method. Numerical simulations are performed to present the behaviors of normalized effective material constants. From the results, it can be observed that both the effective electric and thermal conductivities can be reduced by increasing the filling ratio and a/ b. Such influences can also be found for the effective thermoelectric figure of merit. But they are different from those on the effective Seebeck and Peltier coefficients.
Metallicity Gradients in the Halos of Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Greene, Jenny E.; Ma, Chung-Pei; Goulding, Andrew; McConnell, Nicholas J.; Blakeslee, John P.; Davis, Timothy; Thomas, Jens
2016-08-01
We discuss the stellar halos of massive elliptical galaxies, as revealed by our ambitious integral-field spectroscopic survey MASSIVE. We show that metallicity drops smoothly as a function of radius out to ~ 2.5 Re , while the [α/Fe] abundance ratios stay flat. The stars in the outskirts likely formed rapidly (to explain the high ratio of alpha to Fe) but in a relatively shallow potential (to explain the low metallicities). This is consistent with expectations for a two-phase growth of massive galaxies, in which the second phase involves accretion of small satellites. We also show some preliminary study of the gas content of these most MASSIVE galaxies.
Cavity modes and their excitations in elliptical plasmonic patch nanoantennas.
Chakrabarty, Ayan; Wang, Feng; Minkowski, Fred; Sun, Kai; Wei, Qi-Huo
2012-05-21
We present experimental and theoretical studies of two dimensional periodic arrays of elliptical plasmonic patch nanoantennas. Experimental and simulation results demonstrate that the azimuthal symmetry breaking of the metal patches leads to the occurrence of even and odd resonant cavity modes and the excitation geometries dependent on their modal symmetries. We show that the cavity modes can be described by the product of radial and angular Mathieu functions with excellent agreements with both simulations and experiments. The effects of the patch periodicity on the excitation of the surface plasmon and its coupling with the cavity modes are also discussed. PMID:22714147
Using elliptical best fits to characterize dental shapes.
Bauer, Catherine C; Bons, Paul D; Benazzi, Stefano; Harvati, Katerina
2016-02-01
A variety of geometric morphometric methods have recently been used to describe dental shape variation in human evolutionary studies. However, the applicability of these methods is limited when teeth are worn or are difficult to orient accurately. Here we show that elliptical best fits on outlines of dental tissues below the crown provide basic size- and orientation-free shape descriptors. Using the dm(2) and M(3) as examples, we demonstrate that these descriptors can be used for taxonomic purposes, such as distinguishing between Neanderthal and recent modern human teeth. We propose that this approach can be a useful alternative to existing methodology. PMID:26381860
The motion of elliptic cylinder under free surface
NASA Astrophysics Data System (ADS)
Kostikov, V. K.; Makarenko, N. I.
2016-06-01
A problem on generation of unsteady nonlinear waves on the surface of an infinitely deep ideal fluid due to the motion of a submerged elliptical cylinder is considered. It is supposed that the cylinder can rotate in addition to translational two-dimensional motion. The initial formulation of the problem is reduced to an integrodifferential system of equations for the functions defining the free surface shape, the normal and tangential components of velocity on the free boundary. The small-time asymptotics of the solution is constructed in the case of the cylinder that moves with a constant acceleration from rest.
Conceptual design of a hybrid-type elliptically polarizing undulator
NASA Astrophysics Data System (ADS)
Sasaki, Shigemi
2002-03-01
A hybrid-type planar undulator was designed to generate circularly polarized radiation. It is an APPLE-type design consisting of four rows of hybrid structures that can be shifted with respect to each other. The magnetic field on axis can thus be adjusted so it can have linear or circular polarization including intermediate (elliptical polarization) positions. A short-period device of this kind can provide 100% circularly polarized radiation in a hard x-ray region when it is installed in a high-energy storage ring, such as the Advanced Photon Source.
Chopper z-scan technique for elliptic Gaussian beams.
Dávila-Pintle, J A; Reynoso-Lara, E; Bravo-García, Y E
2016-09-01
This paper reports an improvement to the chopper z-scan technique for elliptic Gaussian beams. This improvement results in a higher sensitivity by measuring the ratio of eclipsing time to rotating period (duty cycle) of a chopper that eclipses the beam along the main axis. It is shown that the z-scan curve of the major axis is compressed along the z-axis. This compression factor is equal to the ratio between the minor and major axes. It was found that the normalized peak-valley difference with respect to the linear value does not depend on the axis along which eclipsing occurs. PMID:27607713
The origin of magnetic fields in elliptical galaxies
NASA Astrophysics Data System (ADS)
Shukurov, Anvar
We argue that interstellar gas in elliptical galaxies can be turbulent, with turbulent scale and velocity of 400 pc and 20 km s-1 respectively. An upper limit on turbulent velocity, ~=50 km s-1, follows from the requirement that the turbulence dissipation rate does not exceed the X-ray gas luminosity. The turbulence can generate random magnetic fields of 0.3 μG strength at the above scale via fluctuation dynamo action. The resulting Faraday rotation is random, with a typical value of 5-30 rad m-2, consistent with observational evidence available.
The construction of preconditioners for elliptic problems by substructuring, IV
Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.
1987-06-01
We consider the problem of solving the algebraic system of equations which result from the discretization of elliptic boundary value problems defined on three dimensional Euclidean space. We develop preconditioners for such systems based on substructuring (also known as domain decomposition). The resulting algorithms are well suited to emerging parallel computing architectures. We describe two techniques for developing these precondictioners. A theory for the analysis of the condition number for the resulting preconditioned system is given and the results of supporting numerical experiments are presented. 16 refs., 2 tabs.
Iterative schemes for nonsymmetric and indefinite elliptic boundary value problems
Bramble, J.H.; Leyk, Z.; Pasciak, J.E.
1993-01-01
The purpose of this paper is twofold. The first is to describe some simple and robust iterative schemes for nonsymmetric and indefinite elliptic boundary value problems. The schemes are based in the Sobolev space H ([Omega]) and require minimal hypotheses. The second is to develop algorithms utilizing a coarse-grid approximation. This leads to iteration matrices whose eigenvalues lie in the right half of the complex plane. In fact, for symmetric indefinite problems, the iteration is reduced to a well-conditioned symmetric positive definite system which can be solved by conjugate gradient interation. Applications of the general theory as well as numerical examples are given. 20 refs., 8 tabs.
The construction of preconditioners for elliptic problems by substructuring, IV
Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.
1989-07-01
We consider the problem of solving the algebraic system of equations which result from the discretization of elliptic boundary value problems defined on three-dimensional Euclidean space. We develop preconditioners for such systems based on substructuring (also known as domain decomposition). The resulting algorithms are well suited to emerging parallel computing architectures. We describe two techniques for developing these preconditioners. A theory for the analysis of the condition number for the resulting preconditioned system is given and the results of supporting numerical experiments are presented.
Construction of preconditioners for elliptic problems by substructuring. II
Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.
1987-07-01
We give a method for constructing preconditioners for the discrete systems arising in the approximation of solutions of elliptic boundary value problems. These preconditioners are based on domain decomposition techniques and lead to algorithms which are well suited for parallel computing environments. The method presented in this paper leads to a preconditioned system with condition number proportional to d/h where d is the subdomain size and h is the mesh size. These techniques are applied to singularly perturbed problems and problems in the three dimensions. The results of numerical experiments illustrating the performance of the method on problems in two and three dimensions are given.
Iterative method for elliptic problems on regions partitioned into substructures
Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.
1986-04-01
Some new preconditioners for discretizations of elliptic boundary problems are studied. With these preconditioners, the domain under consideration is broken into subdomains and preconditioners are defined which only require the solution of matrix problems on the subdomains. Analytic estimates are given which guarantee that under appropriate hypotheses, the preconditioned iterative procedure converges to the solution of the discrete equations with a rate per iteration that is independent of the number of unknowns. Numerical examples are presented which illustrate the theoretically predicted iterative convergence rates.
[The impact of mood on the intrinsic functional connectivity].
Wang, Zicong; Song, Sen; Wang, Lihong
2014-04-01
Although a great number of studies have investigated the changes of resting-state functional connectivity (rsFC) in patients with mental disorders, such as depression and schizophrenia etc, little is known how stable the changes are, and whether temporal sad or happy mood can modulate the intrinsic rsFC. In our experiments, happy and sad video clips were used to induce temporally happy and sad mood states in 20 healthy young adults. We collected functional magnetic resonance imaging (fMRI) data while participants were watching happy or sad video clips, which were administrated in two consecutive days. Seed-based functional connectivity analyses were conducted using the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), and amygdala as seeds to investigate neural network related to executive function, attention, and emotion. We also investigated the association of the rsFC changes with emotional arousability level to understand individual differences. There is significantly stronger functional connectivity between the left DLPFC and posterior cingulate cortex (PCC) under sad mood than that under happy mood. The increased connectivity strength was positively correlated with subjects' emotional arousability. The increased positive correlation between the left DLPFC and PCC under sad relative to happy mood might reflect an increased processing of negative emotion-relevant stimuli. The easier one was induced by strong negative emotion (higher emotional arousability), the greater the left DLPFC-PCC connectivity was indicated, the greater the instability of the intrinsic rsFC was shown. PMID:25039124
On the search for an intrinsic magnetic field at Venus
NASA Technical Reports Server (NTRS)
Russell, C. T.; Elphic, R. C.; Luhmann, J. G.; Slavin, J. A.
1980-01-01
Magnetic field observations obtained by the Pioneer Venus orbiter at low altitude are now available for two sets of orbits in the Venus wake. Data from these 130 orbits are examined for possible surface correlated features or any intrinsic magnetic moment. No surface correlated magnetic fields are observed, but the threshold for the detectability of such fields at Venus is about an order of magnitude greater than at the moon. A surface feature of 10 deg extent would have to create an anomaly of at least 5 gammas at 200 km to be detected in the Pioneer Venus data. Using measurements averaged in 72 10 x 10 deg bins, a planetary magnetic dipole moment of 0.87 + or - 3.00 x 10 to the 21st gauss-cu cm is obtained. Thus the upper limit of the present day Venus moment is less than 4 x 10 to the -5th of the terrestrial moment.
NASA Astrophysics Data System (ADS)
Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew
2016-03-01
We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo Cluster using deep imaging obtained as part of the Next Generation Virgo Cluster Survey (NGVS). We build a sample of nearly 300 red-sequence cluster members in the yet-unexplored -14 < Mg < -8 mag range, and we measure their apparent axis ratios, q, through Sérsic fits to their two-dimensional light distribution, which is well described by a constant ellipticity parameter. The resulting distribution of apparent axis ratios is then fit by families of triaxial models with normally distributed intrinsic ellipticities, E = 1 - C/A, and triaxialities, T = (A2 - B2)/(A2 - C2). We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface-brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity \\bar{E} = {0.43}-0.02+0.02 and a mean triaxiality \\bar{T} = {0.16}-0.06+0.07. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. The core of Virgo lacks highly elongated low-luminosity galaxies, with 95% of the population having q > 0.45. We additionally attempt a study of the intrinsic shapes of Local Group (LG) satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity \\bar{E} = {0.51}-0.06+0.07, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. Numerical studies that follow the tidal evolution of satellites within LG-sized halos are in good agreement with the inferred shape distributions, but the mismatch for faint galaxies in Virgo highlights the need for more adequate simulations of this population in the cluster environment. We finally compare the intrinsic shapes of NGVS low-mass galaxies with
ERIC Educational Resources Information Center
Midic, Uros
2012-01-01
Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…
The fundamental plane correlations for globular clusters
NASA Technical Reports Server (NTRS)
Djorgovski, S.
1995-01-01
In the parameter space whose axes include a radius (core, or half-light), a surface brightness (central, or average within the half-light radius), and the central projected velocity dispersion, globular clusters lie on a two-dimensional surface (a plane, if the logarithmic quantities are used). This is analogous to the 'fundamental plane' of elliptical galaxies. The implied bivariate correlations are the best now known for globular clusters. The derived scaling laws for the core properties imply that cluster cores are fully virialized, homologous systems, with a constant (M/L) ratio. The corresponding scaling laws on the half-light scale are differrent, but are nearly identical to those derived from the 'fundamental plane' of ellipticals. This may be due to the range of cluster concentrations, which are correlated with other parameters. A similar explanation for elliptical galaxies may be viable. These correlations provide new empirical constraints for models of globular cluster formation and evolution, and may also be usable as rough distance-indicator relations for globular clusters.
Intrinsic and extrinsic switching in molecular devices
NASA Astrophysics Data System (ADS)
van der Molen, Sense Jan; Trouwborst, Marius L.
2015-01-01
The details of metal-molecule coupling play a pivotal role in the functionality of molecular junctions. Molecules that have intrinsic switchable properties may lose this capability after coupling to electrodes. On the other hand, connecting passive molecules to electrodes may lead to a switchable molecular device ('extrinsic switching'). Here, we first discuss this general matter, and then focus on two specific cases, one of intrinsic switching (for photochromic diarylethenes) and one of extrinsic switching (for hydrogen molecules) in gold-molecule-gold structures.
Bootstrapped models for intrinsic random functions
Campbell, K.
1987-01-01
The use of intrinsic random function stochastic models as a basis for estimation in geostatistical work requires the identification of the generalized covariance function of the underlying process, and the fact that this function has to be estimated from the data introduces an additional source of error into predictions based on the model. This paper develops the sample reuse procedure called the ''bootstrap'' in the context of intrinsic random functions to obtain realistic estimates of these errors. Simulation results support the conclusion that bootstrap distributions of functionals of the process, as well as of their ''kriging variance,'' provide a reasonable picture of the variability introduced by imperfect estimation of the generalized covariance function.
Bootstrapped models for intrinsic random functions
Campbell, K.
1988-08-01
Use of intrinsic random function stochastic models as a basis for estimation in geostatistical work requires the identification of the generalized covariance function of the underlying process. The fact that this function has to be estimated from data introduces an additional source of error into predictions based on the model. This paper develops the sample reuse procedure called the bootstrap in the context of intrinsic random functions to obtain realistic estimates of these errors. Simulation results support the conclusion that bootstrap distributions of functionals of the process, as well as their kriging variance, provide a reasonable picture of variability introduced by imperfect estimation of the generalized covariance function.
Rovniak, Liza S.; Denlinger, LeAnn; Duveneck, Ellen; Sciamanna, Christopher N.; Kong, Lan; Freivalds, Andris; Ray, Chester A.
2013-01-01
Objectives This study aimed to evaluate the feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities. A secondary aim was to evaluate if two accelerometers attached to the elliptical device could provide reliable and valid assessments of participants’ frequency and duration of elliptical device use. Design Physically inactive adults (n = 32, age range = 25–65) were recruited through local advertisements and selected using stratified random sampling based on sex, body mass index (BMI), and age. Methods Indirect calorimetry was used to assess participants’ energy expenditure while seated and while using the elliptical device at a self-selected intensity level. Participants also self-reported their interest in using the elliptical device during sedentary activities. Two Actigraph GT3X accelerometers were attached to the elliptical device to record time-use patterns. Results Participants expended a median of 179.1 kilocalories per hour while using the elliptical device (range = 108.2–269.0), or a median of 87.9 more kilocalories (range = 19.7–178.6) than they would expend per hour of sedentary sitting. Participants reported high interest in using the elliptical device during TV watching and computer work, but relatively low interest in using the device during office meetings. Women reported greater interest in using the elliptical device than men. The two accelerometers recorded identical time-use patterns on the elliptical device and demonstrated concurrent validity with time-stamped computer records. Conclusions Compact elliptical devices could increase energy expenditure during sedentary activities, and may provide proximal environmental cues for increasing energy expenditure across multiple life domains. PMID:24035273
The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies
Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.
2006-03-10
Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.
Anisotropy in Dynamical Models of Elliptical Galaxy Dark Halos
NASA Astrophysics Data System (ADS)
Forestell, Amy; Gebhardt, K.
2013-07-01
Abstract (2,250 Maximum Characters): We discuss the orbital anisotropy results of axisymmetric orbit-superposition dynamical models of elliptical galaxies NGC 821 and NGC 4697. For NGC 821 stellar kinematics are used to determine the best-fitted dark halo (Forestell 2010), then we determine the orbital properties required for planetary nebulae to match the observed kinematic data (Romanowsky et al. 2003) in that assumed dark halo. For NGC 4697 we use both stellar and planetary nebula kinematics (Pinkney et al. 2003, Mendez et al. 2009) to model the galaxy dark halo. In both galaxies we find that the planetary nebulae, which are located at large radii, show radial anisotropy. This is consistent with the results of Dekel et al. (2005), who use disk galaxy merger simulations to show that large anisotropies can be created in the resulting elliptical galaxies and that this anisotropy in combination with the different density profile of a young population could explain how the low dispersions from planetary nebulae measurements are also consistent with typical dark matter halos.
Integrated photoelasticity through imaging fourier polarimetry of an elliptic retarder.
Berezhna, S; Berezhnyy, I; Takashi, M
2001-02-10
It is shown that three optical parameters that are necessary for stress computation in integrated photoelasticity can be measured with high accuracy by use of a Fourier polarimetry method. Inasmuch as a photoelastic sample, which is an object of investigation in integrated photoelasticity, is a kind of an elliptic retarder, the technique presented here measures relative retardation delta, azimuth angle theta, and ellipticity angle epsilon instead of the characteristic parameters that traditionally have been used in integrated photoelasticity. The ability of the new technique to provide better accuracy with a simpler setup has been proved experimentally. Furthermore, the technique is self-contained as for phase measurement; i.e., it automatically performs phase unwrapping at the points where phase data exceed the value of pi. The full value of a phase at a certain point is retrieved by processing of pi-modulo phase data that have been precisely measured at several wavelengths. The usefulness of the new method for integrated photoelasticity has been demonstrated through measurement of a diametrically compressed disk viewed at oblique light incidence. PMID:18357041
The case against bimodal star formation in elliptical galaxies
NASA Astrophysics Data System (ADS)
Gibson, B. K.
1996-02-01
We consider the present-day photometric and chemical properties of elliptical galaxies, adopting the bimodal star formation scenario of Elbaz, Arnaud & Vangioni-Flam. These models utilize an initial mass function (IMF) biased heavily toward massive stars during the early phases of galactic evolution, leading to early Type II supernovae-driven galactic winds. A subsequent lengthy, milder star formation phase with a normal IMF ensues, supposedly responsible for the stellar population observed today. Based upon chemical evolution arguments alone, this scenario has been invoked to explain the observed metal mass, and their abundance ratios, in the intracluster medium of galaxy clusters. Building upon the recent compilations of metallicity-dependent isochrones for simple stellar populations, we have constructed a coupled photometric and chemical evolution package for composite stellar populations in order to quantify the effects of such a model upon the photochemical properties of the resultant elliptical galaxies. We demonstrate that these predicted properties are incompatible with those observed at the current epoch.
Circular, elliptic and oval billiards in a gravitational field
NASA Astrophysics Data System (ADS)
da Costa, Diogo Ricardo; Dettmann, Carl P.; Leonel, Edson D.
2015-05-01
We consider classical dynamical properties of a particle in a constant gravitational force and making specular reflections with circular, elliptic or oval boundaries. The model and collision map are described and a detailed study of the energy regimes is made. The linear stability of fixed points is studied, yielding exact analytical expressions for parameter values at which a period-doubling bifurcation occurs. The dynamics is apparently ergodic at certain energies in all three models, in contrast to the regularity of the circular and elliptic billiard dynamics in the field-free case. This finding is confirmed using a sensitive test involving Lyapunov weighted dynamics. In the last part of the paper a time dependence is introduced in the billiard boundary, where it is shown that for the circular billiard the average velocity saturates for zero gravitational force but in the presence of gravitational it increases with a very slow growth rate, which may be explained using Arnold diffusion. For the oval billiard, where chaos is present in the static case, the particle has an unlimited velocity growth with an exponent of approximately 1/6.
Signed Decomposition Method for Scalar Multiplication in Elliptic Curve Cryptography
NASA Astrophysics Data System (ADS)
Said, M. R. M.; Mohamed, M. A.; Atan, K. A. Mohd; Zulkarnain, Z. Ahmad
2010-11-01
Addition chain is the solution to computability constraint of the problematic large number arithmetic. In elliptic curve cryptography, a point arithmetic on elliptic curve can be reduced to repetitive addition and doubling operations. Based on this idea, various methods were proposed, lately a decomposition method based on prime decomposition was put forward. This method uses a pre-generated set of rules to calculate an addition chain for n. Though the method shows it own advantage over others in some cases, but some improvements is still avail. We develop an enhancement version called signed decomposition method which takes rule from decomposition method as an input. We also generalize the idea of a prime rule to an integer rule. An improvement is done to the original add rule in decomposition method by allowing subtraction operation to terms. In so doing, we optimize the original form of add rule. The result shows not only an improvement over decomposition method but also become an all time superior compare to preceeding methods. Furthermore, having secret key in a form of rule will put up extra security to the message under communication.
Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-06-01
An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.
The superconformal index and an elliptic algebra of surface defects
NASA Astrophysics Data System (ADS)
Bullimore, Mathew; Fluder, Martin; Hollands, Lotte; Richmond, Paul
2014-10-01
In this paper we continue the study of the superconformal index of four-dimensional =2 theories of class in the presence of surface defects. Our main result is the construction of an algebra of difference operators, whose elements are labeled by irreducible representations of A N -1. For the fully antisymmetric tensor representations these difference operators are the Hamiltonians of the elliptic Ruijsenaars-Schneider system. The structure constants of the algebra are elliptic generalizations of the Littlewood-Richardson coefficients. In the Macdonald limit, we identify the difference operators with local operators in the two-dimensional TQFT interpretation of the superconformal index. We also study the dimensional reduction to difference operators acting on the three-sphere partition function, where they characterize supersymmetric defects supported on a circle, and show that they are transformed to supersymmetric Wilson loops under mirror symmetry. Finally, we compare to the difference operators that create 't Hooft loops in the four-dimensional =2* theory on a four-sphere by embedding the three-dimensional theory as an S-duality domain wall.
Optimizing elliptic curve scalar multiplication for small scalars
NASA Astrophysics Data System (ADS)
Giorgi, Pascal; Imbert, Laurent; Izard, Thomas
2009-08-01
On an elliptic curve, the multiplication of a point P by a scalar k is defined by a series of operations over the field of definition of the curve E, usually a finite field Fq. The computational cost of [k]P = P + P + ...+ P (k times) is therefore expressed as the number of field operations (additions, multiplications, inversions). Scalar multiplication is usually computed using variants of the binary algorithm (double-and-add, NAF, wNAF, etc). If s is a small integer, optimized formula for [s]P can be used within a s-ary algorithm or with double-base methods with bases 2 and s. Optimized formulas exists for very small scalars (s <= 5). However, the exponential growth of the number of field operations makes it a very difficult task when s > 5. We present a generic method to automate transformations of formulas for elliptic curves over prime fields in various systems of coordinates. Our method uses a directed acyclic graph structure to find possible common subexpressions appearing in the formula and several arithmetic transformations. It produces efficient formulas to compute [s]P for a large set of small scalars s. In particular, we present a faster formula for [5]P in Jacobian coordinates. Moreover, our program can produce code for various mathematical software (Magma) and libraries (PACE).
A heterogeneous stochastic FEM framework for elliptic PDEs
Hou, Thomas Y. Liu, Pengfei
2015-01-15
We introduce a new concept of sparsity for the stochastic elliptic operator −div(a(x,ω)∇(⋅)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the equations using the heterogeneous coupling of spatial basis with local stochastic basis to exploit the local stochastic structure of the solution space. We also provide a sampling method to construct the local stochastic basis for this framework using the randomized range finding techniques. The resulting HSFEM involves two stages and suits the multi-query setting: in the offline stage, the local stochastic structure of the solution space is identified; in the online stage, the equation can be efficiently solved for multiple forcing functions. An online error estimation and correction procedure through Monte Carlo sampling is given. Numerical results for several problems with high dimensional stochastic input are presented to demonstrate the efficiency of the HSFEM in the online stage.
Development of an innovative device for ultrasonic elliptical vibration cutting.
Zhou, Ming; Hu, Linhua
2015-07-01
An innovative ultrasonic elliptical vibration cutting (UEVC) device with 1st resonant mode of longitudinal vibration and 3rd resonant mode of bending vibration was proposed in this paper, which can deliver higher output power compared to previous UEVC devices. Using finite element method (FEM), resonance frequencies of the longitudinal and bending vibrations were tuned to be as close as possible in order to excite these two vibrations using two-phase driving voltages at a single frequency, while wave nodes of the longitudinal and bending vibrations were also adjusted to be as coincident as possible for mounting the device at a single fixed point. Based on the simulation analysis results a prototype device was fabricated, then its vibration characteristics were evaluated by an impedance analyzer and a laser displacement sensor. With two-phase sinusoidal driving voltages both of 480 V(p-p) at an ultrasonic frequency of 20.1 kHz, the developed prototype device achieved an elliptical vibration with a longitudinal amplitude of 8.9 μm and a bending amplitude of 11.3 μm. The performance of the developed UEVC device is assessed by the cutting tests of hardened steel using single crystal diamond tools. Experimental results indicate that compared to ordinary cutting process, the tool wear is reduced significantly by using the proposed device. PMID:25769218
The density profile of the elliptical planetary nebula NGC 3242
NASA Technical Reports Server (NTRS)
Soker, Noam; Zucker, Daniel B.; Balick, Bruce
1992-01-01
We present the three-dimensional density structure of the elliptical planetary nebula NGC 3242, deconvolved from its H-alpha image. Using the simplistic assumptions that each mass element preserves its original velocity, which is radial and depends only on latitude, we deduce from this density profile the variation of mass-loss rate from the progenitor of NGC 3242 with latitude and time. The resulting somewhat qualitative mass-loss geometry and history are used to constrain models for the formation of the elliptical structure of NGC 3242. We argue that a triple system, with a very close brown dwarf companion and a more massive distant tertiary star, is compatible with the morphology of NGC 3242. In this model the brown dwarf, of about 0.01 solar mass, shared a common envelope with the progenitor star, and spun up the envelope through deposition of angular momentum. The oblate rotating envelope blew an axisymmetrical wind. We suggest that the presence of a third star, with a mass of about 1 solar mass and an orbital period of about 4000 years, could have caused the large scale deviation from axial symmetry seen in the density structure.
A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass
NASA Astrophysics Data System (ADS)
Verolme, E. K.; Cappellari, M.; Copin, Y.; van der Marel, R. P.; Bacon, R.; Bureau, M.; Davies, R. L.; Miller, B. M.; de Zeeuw, P. T.
2002-09-01
We present dynamical models of the nearby compact elliptical galaxy M32, using high-quality kinematic measurements, obtained with the integral-field spectrograph SAURON mounted on the William Herschel Telescope on La Palma. We also include STIS data obtained previously by Joseph et al. We find a best-fitting black hole mass of M•= (2.5 +/- 0.5) × 106 Msolar and a stellar I-band mass-to-light ratio of (1.85 +/- 0.15) Msolar/Lsolar. For the first time, we are also able to constrain the inclination along which M32 is observed to 70°+/- 5°. Assuming that M32 is indeed axisymmetric, the averaged observed flattening of 0.73 then corresponds to an intrinsic flattening of 0.68 +/- 0.03. These tight constraints are mainly caused by the use of integral-field data. We show this quantitatively by comparing with models that are constrained by multiple slits only. We show the phase-space distribution and intrinsic velocity structure of the best-fitting model and investigate the effect of regularization on the orbit distribution.
The Intrinsic Shape of Sagittarius A* at 3.5 mm Wavelength
NASA Astrophysics Data System (ADS)
Ortiz-León, Gisela N.; Johnson, Michael D.; Doeleman, Sheperd S.; Blackburn, Lindy; Fish, Vincent L.; Loinard, Laurent; Reid, Mark J.; Castillo, Edgar; Chael, Andrew A.; Hernández-Gómez, Antonio; Hughes, David H.; León-Tavares, Jonathan; Lu, Ru-Sen; Montaña, Alfredo; Narayanan, Gopal; Rosenfeld, Katherine; Sánchez, David; Schloerb, F. Peter; Shen, Zhi-qiang; Shiokawa, Hotaka; SooHoo, Jason; Vertatschitsch, Laura
2016-06-01
The radio emission from Sgr A{}\\ast is thought to be powered by accretion onto a supermassive black hole of ∼ 4× {10}6 {M}ȯ at the Galactic Center. At millimeter wavelengths, Very Long Baseline Interferometry (VLBI) observations can directly resolve the bright innermost accretion region of Sgr A{}\\ast . Motivated by the addition of many sensitive long baselines in the north–south direction, we developed a full VLBI capability at the Large Millimeter Telescope Alfonso Serrano (LMT). We successfully detected Sgr A{}\\ast at 3.5 mm with an array consisting of six Very Long Baseline Array telescopes and the LMT. We model the source as an elliptical Gaussian brightness distribution and estimate the scattered size and orientation of the source from closure amplitude and self-calibration analysis, obtaining consistent results between methods and epochs. We then use the known scattering kernel to determine the intrinsic two-dimensional source size at 3.5 mm: (147+/- 7 μ {{as}})× (120+/- 12 μ {{as}}), at position angle 88^\\circ +/- 7^\\circ east of north. Finally, we detect non-zero closure phases on some baseline triangles, but we show that these are consistent with being introduced by refractive scattering in the interstellar medium and do not require intrinsic source asymmetry to explain.
Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?
NASA Astrophysics Data System (ADS)
de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration
2016-09-01
We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.
ERIC Educational Resources Information Center
Corpus, Jennifer Henderlong; McClintic-Gilbert, Megan S.; Hayenga, Amynta O.
2009-01-01
The present study was designed to investigate the nature, timing, and correlates of motivational change among a large sample (N = 1051) of third- through eighth-grade students. Analyses of within-year changes in students' motivational orientations revealed that both intrinsic and extrinsic motivations decreased from fall to spring, with declines…
COMPUTING INTRINSIC LY{alpha} FLUXES OF F5 V TO M5 V STARS
Linsky, Jeffrey L.; France, Kevin; Ayres, Tom
2013-04-01
The Ly{alpha} emission line dominates the far-ultraviolet spectra of late-type stars and is a major source for photodissociation of important molecules including H{sub 2}O, CH{sub 4}, and CO{sub 2} in exoplanet atmospheres. The incident flux in this line illuminating an exoplanet's atmosphere cannot be measured directly as neutral hydrogen in the interstellar medium (ISM) attenuates most of the flux reaching the Earth. Reconstruction of the intrinsic Ly{alpha} line has been accomplished for a limited number of nearby stars, but is not feasible for distant or faint host stars. We identify correlations connecting the intrinsic Ly{alpha} flux with the flux in other emission lines formed in the stellar chromosphere, and find that these correlations depend only gradually on the flux in the other lines. These correlations, which are based on Hubble Space Telescope spectra, reconstructed Ly{alpha} line fluxes, and irradiance spectra of the quiet and active Sun, are required for photochemical models of exoplanet atmospheres when intrinsic Ly{alpha} fluxes are not available. We find a tight correlation of the intrinsic Ly{alpha} flux with stellar X-ray flux for F5 V to K5 V stars, but much larger dispersion for M stars. We also show that knowledge of the stellar effective temperature and rotation rate can provide reasonably accurate estimates of the Ly{alpha} flux for G and K stars, and less accurate estimates for cooler stars.
Wiedersich, Johannes; Köhler, Simone; Skerra, Arne; Friedrich, Josef
2008-01-01
We have measured the equilibrium constant for the denaturation transition of the engineered fluorescein-binding lipocalin FluA as a function of pressure and temperature, taking advantage of the fact that the ligand's fluorescence is almost fully quenched when complexed with the folded protein, but reversibly reappears on denaturation. From the equilibrium constant as a function of pressure and temperature all of the involved thermodynamic parameters of protein folding, in particular the changes in entropy and volume, compressibility, thermal expansion, and specific heat, were deduced in a global fitting procedure. Assuming that these parameters are independent of temperature and pressure, we can demonstrate from the ratio of Δβ, Δα2, ΔCp that the phase diagram of protein folding assumes an elliptic shape. Furthermore, we can show that the thermodynamic condition for such an elliptic phase diagram is related to the degree of correlation between the fluctuations of the changes in volume and enthalpy at the phase boundary. For the protein investigated this correlation is low, as generally expected for highly degenerate systems. Our study suggests that the elliptic phase diagram is a consequence of the inherent conformational disorder of proteins and that it may be viewed as the thermodynamic manifestation of the high degeneracy of conformational energies that is characteristic for this class of macromolecules. PMID:18391216