Science.gov

Sample records for intrinsic phase response

  1. Intrinsic response of polymer liquid crystals in photochemical phase transition

    SciTech Connect

    Ikeda, Tomiki; Sasaki, Takeo; Kim, Haengboo )

    1991-01-24

    Time-resolved measurements were performed on the photochemically induced isothermal phase transition of polymer liquid crystals (PLC) with mesogenic side chains of phenyl benzoate (PAPB3) and cyanobiphenyl (PACB3) under conditions wherein the photochemical reaction of the doped photoresponsive molecule (4-butyl-4-{prime}-methoxyazobenzene, BMAB) was completed within {approximately} 10 ns, and the subsequent phase transition of the matrix PLC from nematic (N) to isotropic (I) state was followed by time-resolved measurements of the birefringence of the system. Formation of a sufficient amount of the cis isomer of BMAB with a single pulse of a laser lowered the N-I phase transition temperature of the mixture, inducing the N-I phase transition of PLCs isothermally in a time range of {approximately} 200 ms. This time range is comparable to that of low molecular weight liquid crystals, indicating that suppression in mobility of mesogens in PLCs does not affect significantly the thermodynamically controlled process.

  2. Intrinsic topological superfluidity - fluctuations and response

    NASA Astrophysics Data System (ADS)

    Levin, K.; Wu, Chien-Te; Anderson, Brandon; Boyack, Rufus

    Recent interest in topological superconductivity is based primarily on exploiting proximity effects to obtain this important phase. However, in cold gases it is possible to contemplate ``intrinsic'' topological superfluidity produced with a synthetic spin-orbit coupling and Zeeman field. It is important for such future experiments to establish how low in temperature one needs to go to reach the ordered phase. Similarly, it will be helpful to have a probe of the normal (pseudogap) phase to determine if the ultimate superfluid order will be topological or trivial. In this talk, we address these issues by considering fluctuation effects in such a superfluid, and calculate the critical transition temperature and response functions. We see qualitative signatures of topological superfluidity in spin and charge response functions. We also explore the suppression of superfluidity due to fluctuations, and importantly find that the temperature scales necessary to reach topological superfluidity are reasonably accessible

  3. Intrinsic Response Time of Graphene Photodetectors

    PubMed Central

    2011-01-01

    Graphene-based photodetectors are promising new devices for high-speed optoelectronic applications. However, despite recent efforts it is not clear what determines the ultimate speed limit of these devices. Here, we present measurements of the intrinsic response time of metal–graphene–metal photodetectors with monolayer graphene using an optical correlation technique with ultrashort laser pulses. We obtain a response time of 2.1 ps that is mainly given by the short lifetime of the photogenerated carriers. This time translates into a bandwidth of ∼262 GHz. Moreover, we investigate the dependence of the response time on gate voltage and illumination laser power. PMID:21627096

  4. Adaptive Responses Limited by Intrinsic Noise

    PubMed Central

    Shankar, Prabhat; Nishikawa, Masatoshi; Shibata, Tatsuo

    2015-01-01

    Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems. PMID:26305221

  5. Quantum phases in intrinsic Josephson junctions: Quantum magnetism analogy

    NASA Astrophysics Data System (ADS)

    Machida, Masahiko; Kobayashi, Keita; Koyama, Tomio

    2013-08-01

    We explore quantum phases in intrinsic Josephson junction (IJJ) stacks, whose in-plane area is so small that the capacitive coupling has a dominant role in the superconducting phase dynamics. In such cases, the effective Hamiltonian for the superconducting phase can be mapped onto that of one-dimensional ferromagnetically-interacting spin model, whose spin length S depends on the magnitude of the on-site Coulomb repulsion. The ferromagnetic model for IJJ’s prefers synchronized quantum features in contrast to the antiferromagnetically-interacting model in the conventional Josephson junction arrays.

  6. Intrinsic response of crystals to pure dilatation

    NASA Astrophysics Data System (ADS)

    Wang, Jinghan; Yip, S.; Phillpot, S.; Wolf, D.

    The response of an f.c.c. lattice with Lennard-Jones interaction under symmetric lattice extension has been studied by Monte Carlo simulation at several temperatures. The critical strain at which the crystal undergoes a structural change is found to be well predicted by the mechanical stability limit expressed in terms of either the elastic constants or the bulk modulus. At low temperature (reduced temperature T = 0.125), lattice decohesion is observed in the form of cleavage fracture, whereas at higher temperature (T = 0.3) the strained system deforms by cavitation with some degree of local plasticity. At still higher temperature (T = 0.5) the lattice undergoes homogeneous disordering with all the attendant characteristics of melting.

  7. Intrinsic fluctuations and driven response of insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Puckett, James G.; Dufresne, Eric R.; Ouellette, Nicholas T.

    2015-03-01

    Much of our understanding of collective behaviour in social animals comes from passive observations of animal groups. To understand the group dynamics fully, however, we must also characterize the response of animal aggregations to disturbances. Using three-dimensional particle tracking, we study both the intrinsic fluctuations of laboratory swarms of the non-biting midge Chironomus riparius and the response of the swarms to controlled external perturbations: the amplitude-modulated sound of male midge wingbeats. Although these perturbations have an insignificant effect on the behavior of individuals, we find that they can have a strong impact on the collective movement. Intriguingly, the response of the swarm is similar reminiscent to of that of a passive equilibrium system to an external driving force, with microscopic fluctuations underlying combining to produce a macroscopic linear response over a wide range of driving frequencies.

  8. Intrinsic fluctuations and driven response of insect swarms.

    PubMed

    Ni, Rui; Puckett, James G; Dufresne, Eric R; Ouellette, Nicholas T

    2015-09-11

    Animals of all sizes form groups, as acting together can convey advantages over acting alone; thus, collective animal behavior has been identified as a promising template for designing engineered systems. However, models and observations have focused predominantly on characterizing the overall group morphology, and often focus on highly ordered groups such as bird flocks. We instead study a disorganized aggregation (an insect mating swarm), and compare its natural fluctuations with the group-level response to an external stimulus. We quantify the swarm's frequency-dependent linear response and its spectrum of intrinsic fluctuations, and show that the ratio of these two quantities has a simple scaling with frequency. Our results provide a new way of comparing models of collective behavior with experimental data. PMID:26406859

  9. Intrinsic Fluctuations and Driven Response of Insect Swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Puckett, James G.; Dufresne, Eric R.; Ouellette, Nicholas T.

    2015-09-01

    Animals of all sizes form groups, as acting together can convey advantages over acting alone; thus, collective animal behavior has been identified as a promising template for designing engineered systems. However, models and observations have focused predominantly on characterizing the overall group morphology, and often focus on highly ordered groups such as bird flocks. We instead study a disorganized aggregation (an insect mating swarm), and compare its natural fluctuations with the group-level response to an external stimulus. We quantify the swarm's frequency-dependent linear response and its spectrum of intrinsic fluctuations, and show that the ratio of these two quantities has a simple scaling with frequency. Our results provide a new way of comparing models of collective behavior with experimental data.

  10. Broadband macroscopic cortical oscillations emerge from intrinsic neuronal response failures

    PubMed Central

    Goldental, Amir; Vardi, Roni; Sardi, Shira; Sabo, Pinhas; Kanter, Ido

    2015-01-01

    Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which were extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism—the intrinsic stochastic neuronal response failures (NRFs). These NRFs, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives. PMID:26578893

  11. Critical Evaluation of Ayurvedic Plants for Stimulating Intrinsic Antioxidant Response

    PubMed Central

    Shukla, Sunil Dutt; Bhatnagar, Maheep; Khurana, Sukant

    2012-01-01

    Oxidative damage caused by free radicals plays an important role in the causation and progression of many diseases, including aging. Free-radical damage is countered by many mechanisms, including both active antioxidant enzymatic activity in our body and passive antioxidants. Antioxidant response of our body can accommodate increased oxidative damage in diseased states to a level but beyond that level, additional antioxidants are required to combat the increased stress. Apart from the regular dietary sources of antioxidants, many traditional herbal medicines demonstrate a potential to boost antioxidant activity. Rasayana chikitsa that deals with rejuvenation and revitalization is a branch of the Indian traditional medical system of ayurveda. We review some select herbs described in rasayana chikitsa that have been assessed by modern means for stimulating intrinsic antioxidant responses in humans. A critical evaluation of rasayana chikitsa will likely provide urgently needed, actual stimulants of our physiological antioxidant responses and not just more passive antioxidants to add to an already large catalog. PMID:22855669

  12. Intrinsic spin hall effect induced by quantum phase transition in HgCdTe quantum wells.

    PubMed

    Yang, Wen; Chang, Kai; Zhang, Shou-Cheng

    2008-02-01

    The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions. PMID:18352404

  13. Intrinsic Spin Hall Effect Induced by Quantum Phase Transition in HgCdTe Quantum Wells

    SciTech Connect

    Yang, Wen; Chang, Kai; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall effect from the extrinsic one.

  14. Polymerase chain reaction with phase change as intrinsic thermal control

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei

    2013-04-01

    This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 °C to 45 °C. These features imply that the candle ccPCR system can provide robust medical detection services.

  15. Fingerprints of intrinsic phase separation: magnetically doped two-dimensional electron gas.

    PubMed

    Terletska, H; Dobrosavljević, V

    2011-05-01

    In addition to Anderson and Mott localization, intrinsic phase separation has long been advocated as the third fundamental mechanism controlling the doping-driven metal-insulator transitions. In electronic system, where charge neutrality precludes global phase separation, it may lead to various inhomogeneous states and dramatically affect transport. Here we theoretically predict the precise experimental signatures of such phase separation-driven metal-insulator transitions. We show that anomalous transport is expected in an intermediate regime around the transition, displaying very strong temperature and magnetic field dependence but very weak density dependence. Our predictions find striking agreement with recent experiments on Mn-doped CdTe quantum wells, a system where we identify the microscopic origin for intrinsic phase separation. PMID:21635108

  16. Plastic Change along the Intact Crossed Pathway in Acute Phase of Cerebral Ischemia Revealed by Optical Intrinsic Signal Imaging

    PubMed Central

    Guo, Xiaoli; He, Yongzhi; Lu, Hongyang; Li, Yao; Su, Xin; Jiang, Ying; Tong, Shanbao

    2016-01-01

    The intact crossed pathway via which the contralesional hemisphere responds to the ipsilesional somatosensory input has shown to be affected by unilateral stroke. The aim of this study was to investigate the plasticity of the intact crossed pathway in response to different intensities of stimulation in a rodent photothrombotic stroke model. Using optical intrinsic signal imaging, an overall increase of the contralesional cortical response was observed in the acute phase (≤48 hours) after stroke. In particular, the contralesional hyperactivation is more prominent under weak stimulations, while a strong stimulation would even elicit a depressed response. The results suggest a distinct stimulation-response pattern along the intact crossed pathway after stroke. We speculate that the contralesional hyperactivation under weak stimulations was due to the reorganization for compensatory response to the weak ipsilateral somatosensory input. PMID:27144032

  17. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers.

    PubMed

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-11-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327

  18. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

    NASA Astrophysics Data System (ADS)

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-11-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level.

  19. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

    PubMed Central

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-01-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327

  20. Theory of phase dynamics in intrinsic Josephson junctions with multigap superconducting layers

    NASA Astrophysics Data System (ADS)

    Ota, Y.; Machida, M.; Koyama, T.

    2011-11-01

    We construct a theory of dynamical behavior in intrinsic Josephson junction stacks with multigap superconducting layers. The theory predicts the existence of two kinds of phase modes, one of which is the Josephson-plasma mode and other of which is the Leggett’s mode. We discuss a cooperative phenomena induced by inter-band Josephson coupling in addition to capacitive and inductive couplings between the superconducting layers.

  1. Slow Conductances Could Underlie Intrinsic Phase-Maintaining Properties of Isolated Lobster (Panulirus interruptus) Pyloric Neurons

    PubMed Central

    Hooper, Scott L.; Buchman, Einat; Weaver, Adam L.; Thuma, Jeffrey B.; Hobbs, Kevin H.

    2009-01-01

    The rhythmic pyloric network of the lobster stomatogastric system approximately maintains phase (that is, the burst durations and durations between the bursts of its neurons change proportionally) when network cycle period is altered by current injection into the network pacemaker (Hooper, 1997a,b). When isolated from the network and driven by rhythmic hyperpolarizing current pulses, the delay to firing after each pulse of at least one network neuron type (Pyloric, PY) varies in a phase-maintaining manner when cycle period is varied (Hooper, 1998). These variations require PY neurons to have intrinsic mechanisms that respond to changes in neuron activity on time scales at least as long as two seconds. Slowly activating and deactivating conductances could provide such a mechanism. We tested this possibility by building models containing various slow conductances. This work showed that such conductances could indeed support intrinsic phase-maintenance and we show here results for one such conductance, a slow potassium conductance. These conductances supported phase maintenance because their mean activation level changed, hence altering neuron post-inhibition firing delay, when the rhythmic input to the neuron changed. Switching the sign of the dependence of slow conductance activation and deactivation on membrane potential resulted in neuron delays switching to change in an anti-phase maintaining manner. These data suggest that slow conductances or similar slow processes such as changes in intracellular Ca2+ concentration could underlie phase maintenance in pyloric network neurons. PMID:19211890

  2. Diminished neural responses predict enhanced intrinsic motivation and sensitivity to external incentive.

    PubMed

    Marsden, Karen E; Ma, Wei Ji; Deci, Edward L; Ryan, Richard M; Chiu, Pearl H

    2015-06-01

    The duration and quality of human performance depend on both intrinsic motivation and external incentives. However, little is known about the neuroscientific basis of this interplay between internal and external motivators. Here, we used functional magnetic resonance imaging to examine the neural substrates of intrinsic motivation, operationalized as the free-choice time spent on a task when this was not required, and tested the neural and behavioral effects of external reward on intrinsic motivation. We found that increased duration of free-choice time was predicted by generally diminished neural responses in regions associated with cognitive and affective regulation. By comparison, the possibility of additional reward improved task accuracy, and specifically increased neural and behavioral responses following errors. Those individuals with the smallest neural responses associated with intrinsic motivation exhibited the greatest error-related neural enhancement under the external contingency of possible reward. Together, these data suggest that human performance is guided by a "tonic" and "phasic" relationship between the neural substrates of intrinsic motivation (tonic) and the impact of external incentives (phasic). PMID:25348668

  3. Supramolecular reactivity in the gas phase: investigating the intrinsic properties of non-covalent complexes.

    PubMed

    Cera, Luca; Schalley, Christoph A

    2014-03-21

    The high vacuum inside a mass spectrometer offers unique conditions to broaden our view on the reactivity of supramolecules. Because dynamic exchange processes between complexes are efficiently suppressed, the intrinsic and intramolecular reactivity of the complexes of interest is observed. Besides this, the significantly higher strength of non-covalent interactions in the absence of competing solvent allows processes to occur that are unable to compete in solution. The present review highlights a series of examples illustrating different aspects of supramolecular gas-phase reactivity ranging from the dissociation and formation of covalent bonds in non-covalent complexes through the reactivity in the restricted inner phase of container molecules and step-by-step mechanistic studies of organocatalytic reaction cycles to cage contraction reactions, processes induced by electron capture, and finally dynamic molecular motion within non-covalent complexes as unravelled by hydrogen-deuterium exchange processes performed in the gas phase. PMID:24435245

  4. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals

    NASA Astrophysics Data System (ADS)

    Bardhan, Rizia; Hedges, Lester O.; Pint, Cary L.; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J.

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  5. An effect of temperature distribution on terahertz phase dynamics in intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Asai, Hidehiro; Kawabata, Shiro

    2013-11-01

    In this study, we numerically calculate the temperature distribution and the THz phase dynamics in the mesa-structured intrinsic Josephson junctions (IJJs) using the thermal diffusion equation and the Sine-Gordon equation. We observe that the temperature distribution has a broad peak around the center region of the IJJ mesa. Under a high external current, a “hot spot” where the temperature is locally higher than the superconducting critical temperature appears around this region. The transverse Josephson plasma wave is strongly excited by the inhomogeneous temperature distribution in the mesa. This gives rise to intense THz emission.

  6. Extrinsic and Intrinsic Responses to Environmental Change: Insights from Terrestrial Paleoecological Archives

    NASA Astrophysics Data System (ADS)

    Seddon, A. W. R.; Mackay, A. W.

    2015-12-01

    Current understanding of ecological behaviour indicates that systems can experience sudden and abrupt changes in state, driven either by a large external change in environmental conditions (extrinsically forced), or the result of a set local feedbacks and site-specific interactions (intrinsically mediated responses). Responses mediated by intrinsic processes are notoriously diffi- cult to predict, they can occur as slow environmental variables gradually erode the resilience of the system eventually resulting in threshold transitions between alternative stable states. Finding ways to identify, model and predict such complex ecosystem behavior has been identified as a priority research challenge for both ecology and paleoecology. The paleoecological record can play a role in understanding the processes behind abrupt ecological change because it enables the reconstruction of processes occurring over decadal-centennial timescales or longer. Therefore, paleoecological data can be used to identify the existence of ecological thresholds and to investigate the environmental processes that can lead to loss of resilience and abrupt transitions between alternate states. In addition, incidences of abrupt vegetation changes in the past can serve as palaeoecological model systems; analogues of abrupt dynamics which can be used to test theories surrounding ecological responses to climate change. Here, I present examples from a range of terrestrial ecosystems (Holocene environmental changes from a coastal lagoon in the Galapagos Islands; Northern European vegetation changes since the last deglaciation; the North American hemlock decline) demonstrating evidence of abrupt ecosystem change. For each system I present a set of statistical techniques tailored to distin- guish between extrinsic versus intrinsically mediated ecological responses. Examples are provided from both single sites (i.e. landscape scale) and multiple sites (regional-continental scale). These techniques provide a

  7. Microfluidic SAXS Study of Lamellar and Multilamellar Vesicle Phases of Linear Sodium Alkylbenzenesulfonate Surfactant with Intrinsic Isomeric Distribution.

    PubMed

    Poulos, Andreas S; Nania, Manuela; Lapham, Paul; Miller, Ruhina M; Smith, Andrew J; Tantawy, Hossam; Caragay, Joel; Gummel, Jérémie; Ces, Oscar; Robles, Eric S J; Cabral, João T

    2016-06-14

    The structure and flow behavior of a concentrated aqueous solution (45 wt %) of the ubiquitous linear sodium alkylbenzenesulfonate (NaLAS) surfactant is investigated by microfluidic small-angle X-ray scattering (SAXS) at 70 °C. NaLAS is an intrinsically complex mixture of over 20 surfactant molecules, presenting coexisting micellar (L1) and lamellar (Lα) phases. Novel microfluidic devices were fabricated to ensure pressure and thermal resistance, ability to handle viscous fluids, and low SAXS background. Polarized light optical microscopy showed that the NaLAS solution exhibits wall slip in microchannels, with velocity profiles approaching plug flow. Microfluidic SAXS demonstrated the structural spatial heterogeneity of the system with a characteristic length scale of 50 nL. Using a statistical flow-SAXS analysis, we identified the micellar phase and multiple coexisting lamellar phases with a continuous distribution of d spacings between 37.5 and 39.5 Å. Additionally, we showed that the orientation of NaLAS lamellar phases is strongly affected by a single microfluidic constriction. The bilayers align parallel to the velocity field upon entering a constriction and perpendicular to it upon exiting. On the other hand, multilamellar vesicle phases are not affected under the same flow conditions. Our results demonstrate that despite the compositional complexity inherent to NaLAS, microfluidic SAXS can rigorously elucidate its structure and flow response. PMID:27196820

  8. Terahertz Responses of Intrinsic Josephson Junctions in High T{sub C} Superconductors

    SciTech Connect

    Wang, H. B.; Wu, P. H.; Yamashita, T.

    2001-09-03

    High frequency responses of intrinsic Josephson junctions up to 2.5THz, including the observation of Shapiro steps under various conditions, are reported and discussed in this Letter. The sample was an array of intrinsic Josephson junctions singled out from inside a high T{sub C} superconducting Bi{sub 2}Sr {sub 2}CaCu{sub 2}O{sub 8+x} single crystal, with a bow-tie antenna integrated to it. The number of junctions in the array was controllable, the junctions were homogeneous, the distribution of applied irradiation among the junctions was even, and the junctions could synchronously respond to high frequency irradiation.

  9. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Rimmer, D. W.; Czeisler, C. A.

    2001-01-01

    The biological basis of preferences for morning or evening activity patterns ("early birds" and "night owls") has been hypothesized but has remained elusive. The authors reported that, compared with evening types, the circadian pacemaker of morning types was entrained to an earlier hour with respect to both clock time and wake time. The present study explores a chronobiological mechanism by which the biological clock of morning types may be set to an earlier hour. Intrinsic period, a fundamental property of the circadian system, was measured in a month-long inpatient study. A subset of participants also had their circadian phase assessed. Participants completed a morningness-eveningness questionnaire before study. Circadian period was correlated with morningness-eveningness, circadian phase, and wake time, demonstrating that a fundamental property of the circadian pacemaker is correlated with the behavioral trait of morningness-eveningness.

  10. Complete Firing-Rate Response of Neurons with Complex Intrinsic Dynamics

    PubMed Central

    Puelma Touzel, Maximilian; Wolf, Fred

    2015-01-01

    The response of a neuronal population over a space of inputs depends on the intrinsic properties of its constituent neurons. Two main modes of single neuron dynamics–integration and resonance–have been distinguished. While resonator cell types exist in a variety of brain areas, few models incorporate this feature and fewer have investigated its effects. To understand better how a resonator’s frequency preference emerges from its intrinsic dynamics and contributes to its local area’s population firing rate dynamics, we analyze the dynamic gain of an analytically solvable two-degree of freedom neuron model. In the Fokker-Planck approach, the dynamic gain is intractable. The alternative Gauss-Rice approach lifts the resetting of the voltage after a spike. This allows us to derive a complete expression for the dynamic gain of a resonator neuron model in terms of a cascade of filters on the input. We find six distinct response types and use them to fully characterize the routes to resonance across all values of the relevant timescales. We find that resonance arises primarily due to slow adaptation with an intrinsic frequency acting to sharpen and adjust the location of the resonant peak. We determine the parameter regions for the existence of an intrinsic frequency and for subthreshold and spiking resonance, finding all possible intersections of the three. The expressions and analysis presented here provide an account of how intrinsic neuron dynamics shape dynamic population response properties and can facilitate the construction of an exact theory of correlations and stability of population activity in networks containing populations of resonator neurons. PMID:26720924

  11. Complete Firing-Rate Response of Neurons with Complex Intrinsic Dynamics.

    PubMed

    Puelma Touzel, Maximilian; Wolf, Fred

    2015-12-01

    The response of a neuronal population over a space of inputs depends on the intrinsic properties of its constituent neurons. Two main modes of single neuron dynamics-integration and resonance-have been distinguished. While resonator cell types exist in a variety of brain areas, few models incorporate this feature and fewer have investigated its effects. To understand better how a resonator's frequency preference emerges from its intrinsic dynamics and contributes to its local area's population firing rate dynamics, we analyze the dynamic gain of an analytically solvable two-degree of freedom neuron model. In the Fokker-Planck approach, the dynamic gain is intractable. The alternative Gauss-Rice approach lifts the resetting of the voltage after a spike. This allows us to derive a complete expression for the dynamic gain of a resonator neuron model in terms of a cascade of filters on the input. We find six distinct response types and use them to fully characterize the routes to resonance across all values of the relevant timescales. We find that resonance arises primarily due to slow adaptation with an intrinsic frequency acting to sharpen and adjust the location of the resonant peak. We determine the parameter regions for the existence of an intrinsic frequency and for subthreshold and spiking resonance, finding all possible intersections of the three. The expressions and analysis presented here provide an account of how intrinsic neuron dynamics shape dynamic population response properties and can facilitate the construction of an exact theory of correlations and stability of population activity in networks containing populations of resonator neurons. PMID:26720924

  12. Forced and intrinsic variability in the response to increased wind stress of an idealized Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; Hughes, Chris W.; Blundell, Jeffrey R.

    2015-01-01

    use ensemble runs of a three layer, quasi-geostrophic idealized Southern Ocean model to explore the roles of forced and intrinsic variability in response to a linear increase of wind stress imposed over a 30 year period. We find no increase of eastward circumpolar volume transport in response to the increased wind stress. A large part of the resulting time series can be explained by a response in which the eddy kinetic energy is linearly proportional to the wind stress with a possible time lag, but no statistically significant lag is found. However, this simple relationship is not the whole story: several intrinsic time scales also influence the response. We find an e-folding time scale for growth of small perturbations of 1-2 weeks. The energy budget for intrinsic variability at periods shorter than a year is dominated by exchange between kinetic and potential energy. At longer time scales, we find an intrinsic mode with period in the region of 15 years, which is dominated by changes in potential energy and frictional dissipation in a manner consistent with that seen by Hogg and Blundell (2006). A similar mode influences the response to changing wind stress. This influence, robust to perturbations, is different from the supposed linear relationship between wind stress and eddy kinetic energy, and persists for 5-10 years in this model, suggestive of a forced oscillatory mode with period of around 15 years. If present in the real ocean, such a mode would imply a degree of predictability of Southern Ocean dynamics on multiyear time scales.

  13. Population response characteristics of intrinsic signals in the cat somatosensory cortex following canine mechanical stimulation.

    PubMed

    Tao, Jianxiang; Wang, Jian; Li, Zhong; Meng, Jianjun; Yu, Hongbo

    2016-08-01

    Intrinsic signal optical imaging has been widely used to measure functional maps in various sensory cortices due to better spatial resolution and sensitivity for detecting cortical neuroplasticity. However, application of this technique in dentistry has not been reported. In this study, intrinsic signal optical imaging was used to investigate mechanically driven responses in the cat somatosensory cortex, when punctate mechanical stimuli were applied to maxillary canines. The global signal and its spatial organization pattern were obtained. Global signal strength gradually increased with stimulus strength. There was no significant difference in response strength between contralateral and ipsilateral mechanical stimulation. A slightly greater response was recorded in the sigmoidal gyrus than in the coronal gyrus. The cat somatosensory cortex activated by sensory inputs from mechanical stimulation of canines lacks both topographical and functional organization. It is not organized into columns that represent sensory input from each tooth or direction of stimulation. These results demonstrate that intrinsic signal optical imaging is a valid tool for investigating neural responses and neuroplasticity in the somatosensory cortex that represents teeth. PMID:27163378

  14. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    SciTech Connect

    Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2015-10-19

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.

  15. Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons

    PubMed Central

    Rathour, Rahul Kumar; Narayanan, Rishikesh

    2012-01-01

    Voltage-gated ion channels play a critical role in regulating neuronal intrinsic response dynamics (IRD). Here, we computationally analysed the roles of the two inactivating subthreshold conductances (A and T), individually and in various combinations with the non-inactivating h conductance, in regulating several physiological IRD measurements in the theta frequency range. We found that the independent presence of a T conductance, unlike that of an h conductance, was unable to sustain an inductive phase lead in the theta frequency range, despite its ability to mediate theta frequency resonance. The A conductance, on the other hand, when expressed independently, acted in a manner similar to a leak conductance with reference to most IRD measurements. Next, analysing the impact of pair-wise coexpression of these channels, we found that the coexpression of the h and T conductances augmented the range of parameters over which they sustained resonance and inductive phase lead. Additionally, coexpression of the A conductance with the h or the T conductance elicited changes in IRD measurements that were similar to those obtained with the expression of a leak conductance with a resonating conductance. Finally, to understand the global sensitivity of IRD measurements to all parameters associated with models expressing all three channels, we generated 100,000 neuronal models, each built with a unique set of parametric values. We categorized valid models among these by matching their IRD measurements with experimental counterparts, and found that functionally similar models could be achieved even when underlying parameters displayed tremendous variability and exhibited weak pair-wise correlations. Our results suggest that the three prominent subthreshold conductances contribute differently to intrinsic excitability and to phase coding. We postulate that the differential expression and activity-dependent plasticity of these conductances contribute to robustness of subthreshold

  16. Caulobacter crescentus intrinsic dimorphism provides a prompt bimodal response to copper stress.

    PubMed

    Lawarée, Emeline; Gillet, Sébastien; Louis, Gwennaëlle; Tilquin, Françoise; Le Blastier, Sophie; Cambier, Pierre; Matroule, Jean-Yves

    2016-01-01

    Stress response to fluctuating environments often implies a time-consuming reprogramming of gene expression. In bacteria, the so-called bet hedging strategy, which promotes phenotypic stochasticity within a cell population, is the only fast stress response described so far(1). Here, we show that Caulobacter crescentus asymmetrical cell division allows an immediate bimodal response to a toxic metals-rich environment by allocating specific defence strategies to morphologically and functionally distinct siblings. In this context, a motile swarmer cell favours negative chemotaxis to flee from a copper source, whereas a sessile stalked sibling engages a ready-to-use PcoAB copper homeostasis system, providing evidence of a prompt stress response through intrinsic bacterial dimorphism. PMID:27562256

  17. Interdiffusion and intrinsic diffusion in the NiAl /delta/ phase of the Al-Ni system

    NASA Technical Reports Server (NTRS)

    Shankar, S.; Seigle, L. L.

    1978-01-01

    Interdiffusion coefficients at 950 to 1150 C and the ratio of intrinsic diffusion coefficients at 1100 C were measured as functions of composition in the NiAl (delta) phase of the Al-Ni system, using a vapor-solid technique. Diffusivity values were also obtained for the Ni3Al (epsilon) and Ni (Al) solid solution (zeta) phases from 950 to 1150 C. The interdiffusion coefficient in NiAl (delta) varies several orders of magnitude over the delta phase field with a deep minimum in the diffusivity-composition curve at 48 to 49 at% Al. The ratio of intrinsic diffusion coefficients DNi/DAl, in the delta phase also varies with composition from a value of 3 to 3.5 below 50 at% Al to 0.1 or less above 50 at% Al.

  18. Intrinsic defects in B cell response to seasonal influenza vaccination in elderly humans

    PubMed Central

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Landin, Ana Marie; Phillips, Mitch; Lechner, Suzanne C.; Ryan, John G.; Blomberg, Bonnie B.

    2010-01-01

    We have evaluated the serum response to seasonal influenza vaccination in subjects of different ages and associated this with the specific B cell response to the vaccine in vitro. Although the serum response has previously been shown to decrease with age, this has largely been associated to decreased T cell functions. Our results show that in response to the vaccine, the specific response of B cells in vitro, as measured by AID (activation-induced cytidine deaminase), the in vivo serum HI (hemagglutination inhibition) response, and the in vivo generation of switch memory B cells are decreased with age, as evaluated in the same subjects. This is the first report to demonstrate that intrinsic B cell defects with age contribute to reduced antibody responses to the influenza vaccine. The level of AID in response to CpG before vaccination can also predict the robustness of the vaccine response. These results could contribute to developing more effective vaccines to protect the elderly as well as identifying those most at risk. PMID:20974306

  19. Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity

    PubMed Central

    Giacomin, Paul R.; Moy, Ryan H.; Noti, Mario; Osborne, Lisa C.; Siracusa, Mark C.; Alenghat, Theresa; Liu, Bigang; McCorkell, Kelly A.; Troy, Amy E.; Rak, Gregory D.; Hu, Yinling; May, Michael J.; Ma, Hak-Ling; Fouser, Lynette A.; Sonnenberg, Gregory F.

    2015-01-01

    Innate lymphoid cells (ILCs) are critical for maintaining epithelial barrier integrity at mucosal surfaces; however, the tissue-specific factors that regulate ILC responses remain poorly characterized. Using mice with intestinal epithelial cell (IEC)–specific deletions in either inhibitor of κB kinase (IKK)α or IKKβ, two critical regulators of NFκB activation, we demonstrate that IEC-intrinsic IKKα expression selectively regulates group 3 ILC (ILC3)–dependent antibacterial immunity in the intestine. Although IKKβΔIEC mice efficiently controlled Citrobacter rodentium infection, IKKαΔIEC mice exhibited severe intestinal inflammation, increased bacterial dissemination to peripheral organs, and increased host mortality. Consistent with weakened innate immunity to C. rodentium, IKKαΔIEC mice displayed impaired IL-22 production by RORγt+ ILC3s, and therapeutic delivery of rIL-22 or transfer of sort-purified IL-22–competent ILCs from control mice could protect IKKαΔIEC mice from C. rodentium–induced morbidity. Defective ILC3 responses in IKKαΔIEC mice were associated with overproduction of thymic stromal lymphopoietin (TSLP) by IECs, which negatively regulated IL-22 production by ILC3s and impaired innate immunity to C. rodentium. IEC-intrinsic IKKα expression was similarly critical for regulation of intestinal inflammation after chemically induced intestinal damage and colitis. Collectively, these data identify a previously unrecognized role for epithelial cell–intrinsic IKKα expression and TSLP in regulating ILC3 responses required to maintain intestinal barrier immunity. PMID:26371187

  20. Simultaneous imaging of intrinsic optical signals and cerebral vessel responses during cortical spreading depression in rats

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Chen, Shangbin; Luo, Weihua; Luo, Qingming

    2003-12-01

    Cortical spreading depression (CSD) is an important disease model for migraine and cerebral ischemia. We investigated the spatio-temporal characteristics of the intrinsic optical signals (IOS) at 570 nm and the cerebral blood vessel responses during CSD simultaneously by optical reflectance imaging in vivo. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. A four-phasic IOS response was observed at pial arteries and parenchymal sites in all experimental animals and an initial slight pial arteries dilation (21.5%+/-13.6%) and constriction (-4.2%+/-3.5%) precedes the dramatic dilation (69.2%+/-26.1%) of pial arterioles was recorded. Our experimental results show a high correlation (r = 0.89+/-0.025) between the IOS response and the diameter changes of the cerebral blood vessels during CSD in rats.

  1. Increase of Phase Retrapping Effects in the Switching Rate from the Finite Voltage State of the Underdamped Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Kitano, Haruhisa; Takahashi, Yusaku; Kakehi, Daiki; Yamaguchi, Hikaru; Koizumi, Shin-ichiro; Ayukawa, Shin-ya

    2016-05-01

    We report a detailed study of the phase switching rate from the first to the fourth switch for a small stack of Bi2Sr2CaCu2Oy intrinsic Josephson junctions (IJJs). Experimental results were analyzed by using the conventional single-junction model including the thermally-activated phase escape and the multiple phase retrapping. It is shown that the phase retrapping effects are more prominent for higher order switches, even for the underdamped IJJs showing a large hysteresis in the current–voltage characteristics. This clearly suggests that the tilted washboard potential representing the phase switch from the finite voltage state in IJJs can be influenced by a rapid oscillation generated in a phase-switched junction.

  2. Theanine prevents doxorubicin-induced acute hepatotoxicity by reducing intrinsic apoptotic response.

    PubMed

    Nagai, Katsuhito; Oda, Ayano; Konishi, Hiroki

    2015-04-01

    Doxorubicin (DOX) is widely used as an antitumor agent with topoisomerase II inhibiting activity; however, its dosage and duration of administration have been strictly limited due to dose-related organ damage. The present study investigated whether theanine, an amino acid found in green tea leaves, could reduce DOX-induced acute hepatotoxicity and the apoptotic response in mice. Activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum, biomarkers of hepatic impairment, were markedly increased after the administration of 20 mg/kg DOX, whereas the degree of these elevations was significantly attenuated by 10 mg/kg theanine, which was consistent with histological hepatic images assessed by microscopic examination. The hepatic expression of Bax and Fas, representative intrinsic and extrinsic apoptotic molecules, respectively, was significantly increased by dosing with DOX. However, the elevation in the hepatic expression of Bax, but not Fas, was suppressed to control levels by theanine. The formation of cleaved caspase-3 protein in the group given DOX with theanine was significantly lower than that in the group treated with DOX alone. These results suggest that theanine can protect against acute hepatic damage induced by DOX, which is attributed to the suppression of intrinsic caspase-3-dependent apoptotic signaling. PMID:25680506

  3. Measuring Students' Perceptions of Personal and Social Responsibility and the Relationship to Intrinsic Motivation in Urban Physical Education

    ERIC Educational Resources Information Center

    Li, Weidong; Wright, Paul M.; Rukavina, Paul Bernard; Pickering, Molly

    2008-01-01

    The purpose of the current study was to test the validity and reliability of a two-factor model of the Personal and Social Responsibility Questionnaire (PSRQ) and examine the relationships between perceptions of personal and social responsibility and intrinsic motivation in physical education. Participants were 253 middle school students who…

  4. Berry phases and the intrinsic thermal Hall effect in high-temperature cuprate superconductors.

    PubMed

    Cvetkovic, Vladimir; Vafek, Oskar

    2015-01-01

    Bogolyubov quasiparticles move in a practically uniform magnetic field in the vortex state of high-temperature cuprate superconductors. When set in motion by an externally applied heat current, the quasiparticles' trajectories may bend, causing a temperature gradient perpendicular to the heat current and the applied magnetic field, resulting in the thermal Hall effect. Here we relate this effect to the Berry curvature of quasiparticle magnetic sub-bands, and calculate the dependence of the intrinsic thermal Hall conductivity on superconductor's temperature, magnetic field and the amplitude of the d-wave pairing. The intrinsic contribution to thermal Hall conductivity displays a rapid onset with increasing temperature, which compares favourably with existing experiments at high magnetic field on the highest purity samples. Because such temperature onset is related to the pairing amplitude, our finding may help to settle a much-debated question of the bulk value of the pairing strength in cuprate superconductors in magnetic field. PMID:25758469

  5. Resonant phase escape in Bi2Sr2CaCu2O8+δ surface intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Yu, H. F.; Zhu, X. B.; Ren, J. K.; Peng, Z. H.; Cui, D. J.; Deng, H.; Cao, W. H.; Tian, Ye; Chen, G. H.; Zheng, D. N.; Jing, X. N.; Lu, Li; Zhao, S. P.

    2013-09-01

    We present a study of phase escape in surface Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions in the presence of microwave radiation. The measured switching current distributions display clear double-peak structures in the microwave field, which result from the single- and two-photon resonant escape processes accompanied by microwave-induced potential barrier suppression. We show that these results can be well explained by a quantum-mechanical model proposed by Fistul et al (2003 Phys. Rev. B 68 060504), from which the power and frequency dependences of the switching current distributions can be reproduced.

  6. Macroscopic quantum tunneling and phase diffusion in a La2-xSrxCuO4 intrinsic Josephson junction stack

    NASA Astrophysics Data System (ADS)

    Kubo, Yuimaru; Sboychakov, A. O.; Nori, Franco; Takahide, Y.; Ueda, S.; Tanaka, I.; Islam, A. T. M. N.; Takano, Y.

    2012-10-01

    We performed measurements of switching current distribution in a submicrometer La2-xSrxCuO4 (LSCO) intrinsic Josephson junction (IJJ) stack in a wide temperature range. The escape rate saturates below approximately 2 K, indicating that the escape event is dominated by a macroscopic quantum tunneling (MQT) process with a crossover temperature T*≈2K. We applied the theory of MQT for IJJ stacks, taking into account dissipation and the phase retrapping effect in the LSCO IJJ stack. The theory is in good agreement with the experiment both in the MQT and in the thermal activation regimes.

  7. Microsecond Molecular Dynamics Simulations of Intrinsically Disordered Proteins Involved in the Oxidative Stress Response

    PubMed Central

    Cino, Elio A.; Wong-ekkabut, Jirasak; Karttunen, Mikko; Choy, Wing-Yiu

    2011-01-01

    Intrinsically disordered proteins (IDPs) are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTα) and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2), with a common binding partner, Kelch-like ECH-associated protein 1(Keap1), are essential for regulating cellular response to oxidative stress. Misregulation of this pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to understand the mechanisms these two disordered proteins employ to bind to Keap1, we performed extensive 0.5–1.0 microsecond atomistic molecular dynamics (MD) simulations and isothermal titration calorimetry experiments to investigate the structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. The results show that in their free states, both ProTα and Neh2 have propensities to form bound-state-like β-turn structures but to different extents. We also found that, for both proteins, residues outside the Keap1-binding motifs may play important roles in stabilizing the bound-state-like structures. Based on our findings, we propose that the binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed structural elements (PSEs) and coupled folding and binding, with a heavy bias towards PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to enhance the oxidative stress response. PMID:22125611

  8. Identification of intrinsic deep level defects responsible for electret behavior in TlGaSe2 layered semiconductor

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Uzun, Talip; Odrinsky, Andrei P.; Yakar, Emin; Aliyeva, Vafa B.; Babayev, Sardar S.; Mammadov, Tofig G.

    2016-02-01

    Unusual behavior of pyroelectric current signal polarity near the Curie point (Tc) was observed for TlGaSe2 a ferroelectric-semiconductor. It has been revealed that the polarity of the spontaneous polarization near Tc depends on the sample poling prehistory. In particular, applying an external electric field only in the temperature range of the paraelectric state during cooling regime in darkness brought to the depolarization current at Tc with the sign opposite to the external field polarity. Otherwise, if the sample was poled in the temperature interval of the incommensurate phase, pyroelectric current exhibits a peak at Tc with the polarity that is the same as for the external poling electric field. These observations indicate that internal electric field is present in the bulk and near-surface layer regions of the electrically poled single crystal TlGaSe2. Possible mechanisms and origins responsible for the internal electric fields in TlGaSe2 are discussed. It is shown that the formation of internal electric fields in TlGaSe2 is due to charging of intrinsic native defects during the poling process. Characteristics of electrically active intrinsic defects in TlGaSe2 were investigated by using of Photo-Induced Current Transient Spectroscopy (PICTS) technique. Six deep defect levels in the band gap of TlGaSe2 were determined, which were localized both in the bulk and on the surface of the sample and could be electrically charged. The correlation between polarization effects and PICTS results has been established. It was shown that native deep defects (A3-A6) localized in the bulk of crystal are responsible for hetero-charge formation and negative sign of the pyroelectric current peak observed around the Curie temperature after poling the sample in the temperature intervals well above Tc. It was also shown that the positive sign pyrocurrent observed near the Curie point is attributed to the homo-charge formed by native A2-trapping centers which are localized near

  9. Surface wave tomography with USArray based on phase front tracking and amplitude mapping: isotropic, anisotropic, and intrinsic attenuation structures

    NASA Astrophysics Data System (ADS)

    Lin, F.; Ritzwoller, M. H.

    2011-12-01

    The deployment of the EarthScope/USArray Transportable Array has promoted new and better ways to utilize the dense array configuration and to resolve higher resolution crustal and upper mantle structures beneath the US. Here, we present a local inversion method for surface wave that utilizes the USArray first to determine the surface wave wavefield empirically and then to directly measure the surface wave propagation characteristics such as isotropic velocity, azimuthal anisotropy, and intrinsic attenuation by solving the 2D Helmholtz wave equation. The method starts with single event analysis, where for each period and earthquake all measurements across the array are aggregated to determine maps of phase travel time and amplitude on a fine spatial grid, which essentially describes the surface wave wavefield. The solution of the 2D wave equation contains real and imaginary parts, which are relevant to velocity and attenuation measurements, respectively. For the real part, directionally dependent phase velocities at each location are estimated from the gradient of phase travel time along with the Laplacian of amplitude. For the imaginary part, on the other hand, intrinsic attenuation at each location is estimated from the dot product of the gradients of phase travel time and amplitude along with the Laplacian of phase travel time. In both cases, the terms that contain the gradient operator are directly related to traditional ray theoretic approaches (e.g., eikonal equation for velocity measurement) whereas the terms involving the Laplacian operator provide corrections for off-ray sensitivity. In principle, by applying the correction terms, finite frequency effects such as wave interference, wavefront healing, and backward scattering are accounted for in phase velocity measurements and focus/defocusing is accounted for in attenuation measurements. We apply the method to Rayleigh wave measurements between 30 and 100 sec period from more than 700 earthquakes and all

  10. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload

    PubMed Central

    Scallan, Joshua P.; Wolpers, John H.; Muthuchamy, Mariappan; Gashev, Anatoliy A.; Zawieja, David C.

    2012-01-01

    Collecting lymphatic vessels share functional and biochemical characteristics with cardiac muscle; thus, we hypothesized that the lymphatic vessel pump would exhibit behavior analogous to homeometric regulation of the cardiac pump in its adaptation to elevated afterload, i.e., an increase in contractility. Single lymphangions containing two valves were isolated from the rat mesenteric microcirculation, cannulated, and pressurized for in vitro study. Pressures at either end of the lymphangion [input pressure (Pin), preload; output pressure (Pout), afterload] were set by a servo controller. Intralymphangion pressure (PL) was measured using a servo-null micropipette while internal diameter and valve positions were monitored using video methods. The responses to step- and ramp-wise increases in Pout (at low, constant Pin) were determined. PL and diameter data recorded during single contraction cycles were used to generate pressure-volume (P-V) relationships for the subsequent analysis of lymphangion pump behavior. Ramp-wise Pout elevation led to progressive vessel constriction, a rise in end-systolic diameter, and an increase in contraction frequency. Step-wise Pout elevation produced initial vessel distention followed by time-dependent declines in end-systolic and end-diastolic diameters. Significantly, a 30% leftward shift in the end-systolic P-V relationship accompanied an 84% increase in dP/dt after a step increase in Pout, consistent with an increase in contractility. Calculations of stroke work from the P-V loop area revealed that robust pumps produced net positive work to expel fluid throughout the entire afterload range, whereas weaker pumps exhibited progressively more negative work as gradual afterload elevation led to pump failure. We conclude that lymphatic muscle adapts to output pressure elevation with an intrinsic increase in contractility and that this compensatory mechanism facilitates the maintenance of lymph pump output in the face of edemagenic and

  11. Theoretical characterization on intrinsic ferrimagnetic phase in nanoscale laminated Cr2GeC

    NASA Astrophysics Data System (ADS)

    Li, N.; Dharmawardhana, C. C.; Yao, K. L.; Ching, W. Y.

    2013-11-01

    The structural, electronic and magnetic properties of the hexagonal nanolaminated layered MAX phases compound Cr2GeC are investigated using the full-potential linearized augmented-plane-waves (FPLAPW) method within the generalized gradient approximation (GGA) and GGA+U calculations. The results indicate Cr2GeC has a sizable moment of 1.667 μB revealing the existence of a ferrimagnetic ground state in a MAX phase compound. This surprising new result will lead to the possibility of applying the layered magnetic MAX phase compounds in electronics and spintronics areas.

  12. In-phase electrodynamics and terahertz wave emission in extended intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Koyama, Tomio; Matsumoto, Hideki; Machida, Masahiko; Kadowaki, Kazuo

    2009-03-01

    Strong emission of subterahertz electromagnetic (EM) waves has been observed recently in the high Tc superconductor Bi2Sr2CaCu2O8 intrinsic Josephson junctions (IJJ’s). We investigate numerically the dynamics of the EM fields both inside and outside the IJJ’s emitting terahertz EM waves under a constant bias current, using two-dimensional models composed of IJJ’s and the space surrounding them: (1) xy model and (2) xz model. In the xy model we investigate the EM modes excited in the rectangular junctions. In the voltage state the Josephson oscillation generates the oscillating EM field having nodes inside the junctions. The number of nodes depends on the DC voltage appearing in the junctions, and their direction is parallel to the shorter side of the junctions. The EM field shows a complex distribution pattern in the near field region. In the region far from the junctions we have only the expanding EM wave oscillating with the Josephson frequency. In the xz model we study the EM waves emitted in the xz plane from the junctions covered with normal electrodes. It is shown that the power of the emitted EM waves has distribution similar to that in the dipole emission in the system where electrodes of the same size are attached on top and bottom junctions. In the asymmetric system where the lower electrode is larger than the upper one the power distribution of emitted EM wave deviates from that in the dipole emission.

  13. Intrinsic optical signal imaging of glucose-stimulated physiological responses in the insulin secreting INS-1 β-cell line

    NASA Astrophysics Data System (ADS)

    Li, Yi-Chao; Cui, Wan-Xing; Wang, Xu-Jing; Amthor, Franklin; Yao, Xin-Cheng

    2011-03-01

    Intrinsic optical signal (IOS) imaging has been established for noninvasive monitoring of stimulus-evoked physiological responses in the retina and other neural tissues. Recently, we extended the IOS imaging technology for functional evaluation of insulin secreting INS-1 cells. INS-1 cells provide a popular model for investigating β-cell dysfunction and diabetes. Our experiments indicate that IOS imaging allows simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid image sequences reveal transient optical responses that have time courses comparable to glucose-evoked β-cell electrical activities.

  14. Intrinsic Charge Transport across Phase Transitions in Hybrid Organo-Inorganic Perovskites.

    PubMed

    Yi, Hee Taek; Wu, Xiaoxi; Zhu, Xiaoyang; Podzorov, Vitaly

    2016-08-01

    Hall effect measurements in CH3 NH3 PbBr3 single crystals reveal that the charge-carrier mobility follows an inverse-temperature power-law dependence, μ ∝ T(-) (γ) , with the power exponent γ = 1.4 ± 0.1 in the cubic phase, indicating an acoustic-phonon-dominated carrier scattering, and γ = 0.5 ± 0.1 in the tetragonal phase, suggesting another dominant mechanism, such as a piezoelectric or space-charge scattering. PMID:27185304

  15. The Pervasive Negative Effects of Rewards on Intrinsic Motivation: Response to Cameron (2001).

    ERIC Educational Resources Information Center

    Deci, Edward L.; Ryan, Richard M.; Koestner, Richard

    2001-01-01

    Replies to commentary by J. Cameron asserting that the negative results of extrinsic reward on intrinsic motivation are limited and avoidable. Suggests that the most recent meta analysis by Cameron and others shares methodological weaknesses with an earlier analysis, lacking ecological validity. (SLD)

  16. All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators.

    PubMed

    Marandi, Alireza; Leindecker, Nick C; Vodopyanov, Konstantin L; Byer, Robert L

    2012-08-13

    We demonstrate a novel all-optical quantum random number generator (RNG) based on above-threshold binary phase state selection in a degenerate optical parametric oscillator (OPO). Photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We show that the outcome is statistically random with 99% confidence, and verify that the randomness is due to the phase of initiating photons generated through spontaneous parametric down conversion of the pump, with negligible contribution of classical noise sources. With the use of micro- and nanoscale OPO resonators, this technique offers a promise for simple, robust, and high-speed on-chip all-optical quantum RNGs. PMID:23038574

  17. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    SciTech Connect

    Wang Xi; Wang Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-15

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  18. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Wang, Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-01

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  19. Interdiffusion in the Mg-Al system and Intrinsic Diffusion in (Al3Mg2) Phase

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Kulkarni, Nagraj S; Sohn, Yong Ho

    2011-01-01

    Increasing use and development of lightweight Mg-alloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As a strengthening component, Al is one of the most important and common alloying elements for Mg-alloys. In this study, solid-to-solid diffusion couple techniques were employed to examine the interdiffusion between pure Mg and Al. Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopies (SEM) were employed to observe the formation of the intermetallics -Al12Mg17 and -Al3Mg2, but not -phase. Concentration profiles were determined using X-ray energy dispersive spectroscopy (XEDS). The growth constants and activation energies were determined for each intermetallic phase.

  20. Intrinsic magnetic properties of single-phase Mn1+xGa (0 < x < 1) alloys

    PubMed Central

    Lu, Q. M.; Yue, M.; Zhang, H. G.; Wang, M. L.; Yu, F.; Huang, Q. Z.; Ryan, D. H.; Altounian, Z.

    2015-01-01

    Magnetization measurements have been carried out on a series of carefully prepared single-phase Mn1 + xGa (0 < x < 1) alloys. The saturation magnetization Ms, measured at 5 K, has a value of 92.0 emu/g for x = 0.15. This is the highest value reported in these alloys and is close to the calculated value of 116 emu/g for the stoichiometric compound (x = 0). Ms decreases gradually with x and has a value of 60.7 emu/g for x = 0.86. This behavior is consistent with the extra Mn atoms occupying Ga sites and coupling antiferromagnetically with the rest of the Mn atoms. The intrinsic magnetic properties of the Mn-Ga alloys indicate their great potential as novel, rare-earth free permanent magnetic materials. PMID:26597458

  1. Voltage sensing systems and methods for passive compensation of temperature related intrinsic phase shift

    DOEpatents

    Davidson, James R.; Lassahn, Gordon D.

    2001-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  2. How intrinsic sympathomimetic activity modulates the haemodynamic responses to β-adrenoceptor antagonists

    PubMed Central

    Veld, A. J. Man in 'T; Schalekamp, M. A. D. H.

    1982-01-01

    1 A survey has been made of the literature on acute and long-term haemodynamic effects of ten different β-adrenoceptor antagonists. The β-adrenoceptor blockers are: pindolol, practolol, alprenolol, oxprenolol, acebutolol, penbutolol, metoprolol, atenolol, propranolol and timolol. The total numbers of patients included in this review are 396 patients in 41 acute studies and 410 patients in 36 long-term studies. 2 The effects of β-adrenoceptor blockers on the concentrations of plasma noradrenaline have also been reviewed. Ten studies including 110 patients on non-ISA-β-adrenoceptor blockers and eight studies including 116 patients on pindolol are presented. 3 In the acute studies (i.e. 15-90 min) arterial pressure was lowered by 1-7% and in the long-term studies (i.e. 3 days-5 years) by 6-17%. 4 The degree of cardio-depression induced by the various β-adrenoceptor blockers was inversely correlated with their pharmacologically defined quantity of intrinsic sympathomimetic activity (ISA) both in acute and in long-term studies. 5 In the acute studies the increments in peripheral vascular resistance were directly correlated with the degree of cardio-depression. This suggests that a fall in arterial pressure immediately after administration of a β-adrenoceptor blocker is prevented by increased vasoconstrictor nerve activity mediated through the arterial baroreflex. 6 The compensatory response of vascular resistance to cardio-depression was similar for β1-selective and non-selective blockers, thereby indicating that extra-junctional vascular β-receptors are relatively unimportant for maintaining basal vascular tone. 7 In the long-term studies the correlation between changes in cardiac output and changes in vascular resistance was shifted to a lower level of vascular resistance. This means that the onset of blood pressure reduction during β-adrenoceptor blockade was associated with a fall in vascular resistance at any level of cardiac output. Thus vascular

  3. Maggot excretion products from the blowfly Lucilia sericata contain contact phase/intrinsic pathway-like proteases with procoagulant functions.

    PubMed

    Kahl, M; Gökçen, A; Fischer, S; Bäumer, M; Wiesner, J; Lochnit, G; Wygrecka, M; Vilcinskas, A; Preissner, K T

    2015-08-01

    For centuries, maggots have been used for the treatment of wounds by a variety of ancient cultures, as part of their traditional medicine. With increasing appearance of antimicrobial resistance and in association with diabetic ulcers, maggot therapy was revisited in the 1980s. Three mechanisms by which sterile maggots of the green bottle fly Lucilia sericata may improve healing of chronic wounds have been proposed: Biosurgical debridement, disinfecting properties, and stimulation of the wound healing process. However, the influence of maggot excretion products (MEP) on blood coagulation as part of the wound healing process has not been studied in detail. Here, we demonstrate that specific MEP-derived serine proteases from Lucilia sericata induce clotting of human plasma and whole blood, particularly by activating contact phase proteins factor XII and kininogen as well as factor IX, thereby providing kallikrein-bypassing and factor XIa-like activities, both in plasma and in isolated systems. In plasma samples deficient in contact phase proteins, MEP restored full clotting activity, whereas in plasma deficient in either factor VII, IX, X or II no effect was seen. The observed procoagulant/intrinsic pathway-like activity was mediated by (chymo-) trypsin-like proteases in total MEP, which were significantly blocked by C1-esterase inhibitor or other contact phase-specific protease inhibitors. No significant influence of MEP on platelet activation or fibrinolysis was noted. Together, MEP provides contact phase bypassing procoagulant activity and thereby induces blood clotting in the context of wound healing. Further characterisation of the active serine protease(s) may offer new perspectives for biosurgical treatment of chronic wounds. PMID:25948398

  4. Interaction between the intrinsic edge state and the helical boundary state of topological insulator phase in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Lü, Xiaoling; Jiang, Liwei; Zheng, Yisong

    2016-04-01

    Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can also be established in such a two-dimensional carbon material at the boundary of topological insulator (TI) phase realized by the extrinsic Rashba spin-orbital coupling (SOC) in gated bilayer graphene. We theoretically investigate the interaction between these two kinds of edge (boundary) states when they coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands at the two line defects are not equal to each other. In such a case, the backscattering lacking is still forbidden since the Kramers pairs are valley polarized.

  5. Pathobiochemical mechanisms during the acute phase response.

    PubMed

    Kleesiek, K; Greiling, H

    1984-01-01

    The acute phase response is characterised by the following sequence of principle phenomena: (1) an early local inflammatory reaction, (2) formation of inflammatory humoral factors inducing a systemic reaction, (3) stimulation of glycoprotein synthesis predominantly in the hepatocytes, and (4) an increase in the plasma concentration of acute phase proteins, when the rate of biosynthesis exceeds the degradation rate. Inflammatory mediators (lysosomal enzymes, oxygen derived radicals, prostaglandins) are mainly released during phagocytosis by granulocytes and macrophages. The signal reaching the hepatocytes is not yet clearly identified. A leukocyte endogenous mediator (LEM) released by macrophages is described. There is evidence that prostaglandins and probably proteinase alpha 2-macroglobulin complexes are also involved. The hepatic acute phase protein synthesis is modulated by hormones (insulin, cortisol, somatotropin). The biochemical events in the hepatocyte include an increase in protein synthesis and the regulatory control of the glycosylation of polypeptide precursors. The secreted glycoproteins serve variously as inhibitors or mediators of the inflammatory processes. PMID:6208159

  6. Monocytes from Irf5-/- mice have an intrinsic defect in their response to pristane-induced lupus.

    PubMed

    Yang, Lisong; Feng, Di; Bi, Xiaohui; Stone, Rivka C; Barnes, Betsy J

    2012-10-01

    The transcription factor IFN regulatory factor (IRF)5 has been identified as a human systemic lupus erythematosus (SLE) susceptibility gene by numerous joint linkage and genome-wide association studies. Although IRF5 expression is significantly elevated in primary blood cells of SLE patients, it is not yet known how IRF5 contributes to SLE pathogenesis. Recent data from mouse models of lupus indicate a critical role for IRF5 in the production of pathogenic autoantibodies and the expression of Th2 cytokines and type I IFN. In the present study, we examined the mechanisms by which loss of Irf5 protects mice from pristane-induced lupus at early time points of disease development. We demonstrate that Irf5 is required for Ly6C(hi) monocyte trafficking to the peritoneal cavity, which is thought to be one of the initial key events leading to lupus pathogenesis in this model. Chemotaxis assays using peritoneal lavage from pristane-injected Irf5(+/+) and Irf5(-/-) littermates support an intrinsic defect in Irf5(-/-) monocytes. We found the expression of chemokine receptors CXCR4 and CCR2 to be dysregulated on Irf5(-/-) monocytes and less responsive to their respective ligands, CXCL12 and CCL2. Bone marrow reconstitution experiments further supported an intrinsic defect in Irf5(-/-) monocytes because Irf5(+/+) monocytes were preferentially recruited to the peritoneal cavity in response to pristane. Taken together, these findings demonstrate an intrinsic role for IRF5 in the response of monocytes to pristane and their recruitment to the primary site of inflammation that is thought to trigger lupus onset in this experimental model of SLE. PMID:22933628

  7. Cell intrinsic role of NF-κB-inducing kinase in regulating T cell-mediated immune and autoimmune responses

    PubMed Central

    Li, Yanchuan; Wang, Hui; Zhou, Xiaofei; Xie, Xiaoping; Chen, Xiang; Jie, Zuliang; Zou, Qiang; Hu, Hongbo; Zhu, Lele; Cheng, Xuhong; Brightbill, Hans D; Wu, Lawren C.; Wang, Linfang; Sun, Shao-Cong

    2016-01-01

    NF-κB inducing kinase (NIK) is a central component of the noncanonical NF-κB signaling pathway. Although NIK has been extensively studied for its function in the regulation of lymphoid organ development and B-cell maturation, the role of NIK in regulating T cell functions remains unclear and controversial. Using T cell-conditional NIK knockout mice, we here demonstrate that although NIK is dispensable for thymocyte development, it has a cell-intrinsic role in regulating the homeostasis and function of peripheral T cells. T cell-specific NIK ablation reduced the frequency of effector/memory-like T cells and impaired T cell responses to bacterial infection. The T cell-conditional NIK knockout mice were also defective in generation of inflammatory T cells and refractory to the induction of a T cell-dependent autoimmune disease, experimental autoimmune encephalomyelitis. Our data suggest a crucial role for NIK in mediating the generation of effector T cells and their recall responses to antigens. Together, these findings establish NIK as a cell-intrinsic mediator of T cell functions in both immune and autoimmune responses. PMID:26912039

  8. Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes

    PubMed Central

    Bodor, Dani L.; Valente, Luis P.; Mata, João F.; Black, Ben E.; Jansen, Lars E. T.

    2013-01-01

    Centromeres are the site of kinetochore formation during mitosis. Centromere protein A (CENP-A), the centromere-specific histone H3 variant, is essential for the epigenetic maintenance of centromere position. Previously we showed that newly synthesized CENP-A is targeted to centromeres exclusively during early G1 phase and is subsequently maintained across mitotic divisions. Using SNAP-based fluorescent pulse labeling, we now demonstrate that cell cycle–restricted chromatin assembly at centromeres is unique to CENP-A nucleosomes and does not involve assembly of other H3 variants. Strikingly, stable retention is restricted to the CENP-A/H4 core of the nucleosome, which we find to outlast general chromatin across several cell divisions. We further show that cell cycle timing of CENP-A assembly is independent of centromeric DNA sequences and instead is mediated by the CENP-A targeting domain. Unexpectedly, this domain also induces stable transmission of centromeric nucleosomes, independent of the CENP-A deposition factor HJURP. This demonstrates that intrinsic properties of the CENP-A protein direct its cell cycle–restricted assembly and induces quantitative mitotic transmission of the CENP-A/H4 nucleosome core, ensuring long-term stability and epigenetic maintenance of centromere position. PMID:23363600

  9. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway)

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, C.; Poornachandra, Y.; Chandrasekhar, Cheemalamarri

    2015-11-01

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2

  10. The acute phase response in panic disorder.

    PubMed

    Herrán, Andrés; Sierra-Biddle, Deirdre; García-Unzueta, Maria Teresa; Puente, Jesús; Vázquez-Barquero, José Luis; Antonio Amado, José

    2005-12-01

    An acute-phase response (APR), manifested as an increase of acute-phase proteins has been shown in major depression. Panic disorder (PD) may share some aetiopathogenic mechanisms with depression, but APR has not been studied in this disorder. Forty-one panic patients in the first stages of their illness were compared with 32 healthy subjects of comparable sex, age, and body mass index. Clinical diagnosis was established with the mini international neuropsychiatric interview, and severity with the panic disorder severity scale and the CGI scale. Laboratory determinations included four acute phase proteins (APPs) [albumin, gammaglobulins, fibrinogen, C-reactive-protein (CRP)] and basal cortisol level. Patients were studied after 8-wk follow-up taking selective serotonin reuptake inhibitors (SSRIs) to assess the evolution of the APPs. Gammaglobulin levels were lower, and both cortisol and CRP levels were higher in PD patients than in controls. APP did not differ between patients with or without agoraphobia. At follow-up, patients who responded to SSRIs presented a decrease in albumin levels, and a trend towards a decrease in cortisol and CRP compared with levels at intake. The conclusions of this study are that there is an APR in patients suffering from PD, and this APR tends to diminish after a successful treatment with SSRIs. PMID:15927091

  11. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway).

    PubMed

    Kumar, C Ganesh; Poornachandra, Y; Chandrasekhar, Cheemalamarri

    2015-11-28

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications. PMID:26503300

  12. The Intrinsically Disordered C-RING Biomineralization Protein, AP7, Creates Protein Phases That Introduce Nanopatterning and Nanoporosities into Mineral Crystals

    PubMed Central

    2015-01-01

    We report an interesting process whereby the formation of nanoparticle assemblies on and nanoporosities within calcite crystals is directed by an intrinsically disordered C-RING mollusk shell nacre protein, AP7. Under mineralization conditions, AP7 forms protein phases that direct the nucleation of ordered calcite nanoparticles via a repetitive protein phase deposition process onto calcite crystals. These organized nanoparticles are separated by gaps or spaces that become incorporated into the forming bulk crystal as nanoporosities. This is an unusual example of organized nanoparticle biosynthesis and mineral modification directed by a C-RING protein phase. PMID:24977921

  13. Inverted optical intrinsic response accompanied by decreased cerebral blood flow are related to both neuronal inhibition and excitation

    PubMed Central

    Ma, Zengguang; Cao, Pengjia; Sun, Pengcheng; Zhao, Linna; Li, Liming; Tong, Shanbao; Lu, Yiliang; Yan, Yan; Chen, Yao; Chai, Xinyu

    2016-01-01

    Negative hemodynamic response has been widely reported in blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging studies, however its origin is still controversial. Optical intrinsic signal (OIS) imaging can be used to study brain activity by simultaneously recording hemodynamic signals at different wavelengths with high spatial resolution. In this study, we found transcorneal electrical stimulation (TcES) could elicit both positive OIS response (POR) and negative OIS response (NOR) in cats’ visual cortex. We then investigated the property of this negative response to TcES and its relationship with cerebral blood flow (CBF) and neuronal activity. Results from laser speckle contrast imaging showed decreased CBF in the NOR region while increased CBF in the POR region. Both planar and laminar electrophysiological recordings in the middle (500–700 μm) cortical layers demonstrated that decreased and increased neuronal activities were coexisted in the NOR region. Furthermore, decreased neuronal activity was also detected in the deep cortical layers in the NOR region. This work provides evidence that the negative OIS together with the decreased CBF should be explained by mechanisms of both neuronal inhibition and excitation within middle cortical layers. Our results would be important for interpreting neurophysiological mechanisms underlying the negative BOLD signals. PMID:26860040

  14. IDO2 Modulates T Cell-Dependent Autoimmune Responses through a B Cell-Intrinsic Mechanism.

    PubMed

    Merlo, Lauren M F; DuHadaway, James B; Grabler, Samantha; Prendergast, George C; Muller, Alexander J; Mandik-Nayak, Laura

    2016-06-01

    Mechanistic insight into how adaptive immune responses are modified along the self-nonself continuum may offer more effective opportunities to treat autoimmune disease, cancer, and other sterile inflammatory disorders. Recent genetic studies in the KRN mouse model of rheumatoid arthritis demonstrate that the immunomodulatory molecule IDO2 modifies responses to self-antigens; however, the mechanisms involved are obscure. In this study, we show that IDO2 exerts a critical function in B cells to support the generation of autoimmunity. In experiments with IDO2-deficient mice, adoptive transplant experiments demonstrated that IDO2 expression in B cells was both necessary and sufficient to support robust arthritis development. IDO2 function in B cells was contingent on a cognate, Ag-specific interaction to exert its immunomodulatory effects on arthritis development. We confirmed a similar requirement in an established model of contact hypersensitivity, in which IDO2-expressing B cells are required for a robust inflammatory response. Mechanistic investigations showed that IDO2-deficient B cells lacked the ability to upregulate the costimulatory marker CD40, suggesting IDO2 acts at the T-B cell interface to modulate the potency of T cell help needed to promote autoantibody production. Overall, our findings revealed that IDO2 expression by B cells modulates autoimmune responses by supporting the cross talk between autoreactive T and B cells. PMID:27183624

  15. Cholinergic Responses and Intrinsic Membrane Properties of Developing Thalamic Parafascicular Neurons

    PubMed Central

    Ye, Meijun; Hayar, Abdallah; Garcia-Rill, Edgar

    2009-01-01

    Parafascicular (Pf) neurons receive cholinergic input from the pedunculopontine nucleus (PPN), which is active during waking and REM sleep. There is a developmental decrease in REM sleep in humans between birth and puberty and 10–30 days in rat. Previous studies have established an increase in muscarinic and 5-HT1 serotonergic receptor–mediated inhibition and a transition from excitatory to inhibitory GABAA responses in the PPN during the developmental decrease in REM sleep. However, no studies have been conducted on the responses of Pf cells to the cholinergic input from the PPN during development, which is a major target of ascending cholinergic projections and may be an important mechanism for the generation of rhythmic oscillations in the cortex. Whole cell patch-clamp recordings were performed in 9- to 20-day-old rat Pf neurons in parasagittal slices, and responses to the cholinergic agonist carbachol (CAR) were determined. Three types of responses were identified: inhibitory (55.3%), excitatory (31.1%), and biphasic (fast inhibitory followed by slow excitatory, 6.8%), whereas 6.8% of cells showed no response. The proportion of CAR-inhibited Pf neurons increased with development. Experiments using cholinergic antagonists showed that M2 receptors mediated the inhibitory response, whereas excitatory modulation involved M1, nicotinic, and probably M3 or M5 receptors, and the biphasic response was caused by the activation of multiple types of muscarinic receptors. Compared with CAR-inhibited cells, CAR-excited Pf cells showed 1) a decreased membrane time constant, 2) higher density of hyperpolarization-activated channels (Ih), 3) lower input resistance (Rin), 4) lower action potential threshold, and 5) shorter half-width duration of action potentials. Some Pf cells exhibited spikelets, and all were excited by CAR. During development, we observed decreases in Ih density, Rin, time constant, and action potential half-width. These results suggest that cholinergic

  16. Cholinergic responses and intrinsic membrane properties of developing thalamic parafascicular neurons.

    PubMed

    Ye, Meijun; Hayar, Abdallah; Garcia-Rill, Edgar

    2009-08-01

    Parafascicular (Pf) neurons receive cholinergic input from the pedunculopontine nucleus (PPN), which is active during waking and REM sleep. There is a developmental decrease in REM sleep in humans between birth and puberty and 10-30 days in rat. Previous studies have established an increase in muscarinic and 5-HT1 serotonergic receptor-mediated inhibition and a transition from excitatory to inhibitory GABA(A) responses in the PPN during the developmental decrease in REM sleep. However, no studies have been conducted on the responses of Pf cells to the cholinergic input from the PPN during development, which is a major target of ascending cholinergic projections and may be an important mechanism for the generation of rhythmic oscillations in the cortex. Whole cell patch-clamp recordings were performed in 9- to 20-day-old rat Pf neurons in parasagittal slices, and responses to the cholinergic agonist carbachol (CAR) were determined. Three types of responses were identified: inhibitory (55.3%), excitatory (31.1%), and biphasic (fast inhibitory followed by slow excitatory, 6.8%), whereas 6.8% of cells showed no response. The proportion of CAR-inhibited Pf neurons increased with development. Experiments using cholinergic antagonists showed that M2 receptors mediated the inhibitory response, whereas excitatory modulation involved M1, nicotinic, and probably M3 or M5 receptors, and the biphasic response was caused by the activation of multiple types of muscarinic receptors. Compared with CAR-inhibited cells, CAR-excited Pf cells showed 1) a decreased membrane time constant, 2) higher density of hyperpolarization-activated channels (I(h)), 3) lower input resistance (R(in)), 4) lower action potential threshold, and 5) shorter half-width duration of action potentials. Some Pf cells exhibited spikelets, and all were excited by CAR. During development, we observed decreases in I(h) density, R(in), time constant, and action potential half-width. These results suggest that

  17. Cell Intrinsic and Extrinsic Activators of the Unfolded Protein Response in Cancer: Mechanisms and Targets for Therapy

    PubMed Central

    Tameire, Feven; Verginadis, Ioannis I.; Koumenis, Constantinos

    2015-01-01

    A variety of cell intrinsic or extrinsic stresses evoke perturbations in the folding environment of the endoplasmic reticulum (ER), collectively known as ER stress. Adaptation to stress and reestablishment of ER homeostasis is achieved by activation of an integrated signal transduction pathway called the unfolded protein response (UPR). Both ER stress and UPR activation have been implicated in a variety of human cancers. Although at early stages, or physiological conditions of ER stress, the UPR generally promotes survival, when the stress becomes more stringent or prolonged, its role can switch to a pro-cell death one. Here, we discuss historical and recent evidence supporting an involvement of the UPR in malignancy, describe the main mechanisms by which how tumor cells overcome ER stress to promote their survival, tumor progression and metastasis and discuss the current state of efforts to develop therapeutic approaches of targeting the UPR. PMID:25920797

  18. Intrinsic diffusion simulation for single-phase multicomponent systems and its application for the analysis of the Darken-Manning and jump frequency formalisms

    NASA Astrophysics Data System (ADS)

    Kulkarni, Nagraj Sheshgiri

    A multicomponent, single-phase, diffusion simulation based on Darken's treatment of intrinsic diffusion has been developed, which provides all the information available from an intrinsic diffusion experiment, including composition profiles and diffusion paths, lattice shifts and velocities, intrinsic and interdiffusion fluxes, as well as fluxes and mean velocities in different frames of reference. The various steps involved in the simulation are discussed and the self-consistency of the simulation is tested with the aid of model systems having constant and variable molar volumes. After an examination of the historical development of the Darken-Manning theories and a brief discussion of previous tests in the literature, a systematic procedure for the comprehensive assessment of these theories is proposed in which the intrinsic diffusion simulation developed in this work occupies a central role. This procedure is then utilized to perform an assessment of the Darken-Manning relations for four binary systems: Ag-Cd, Au-Ni, Cu-Zn and Cu-Ni. It is shown that the Darken-Manning relations that provide the connection between the tracer, intrinsic and interdiffusion coefficients, are unsatisfactory. Hence, it is suggested that the development of multicomponent diffusion databases, which often use the Darken relations for the evaluation of the phenomenological coefficients, may be compromised. As an alternative to the traditional phenomenological formalism of multicomponent diffusion, a kinetic formalism based on atom jump frequencies is proposed. An expression for the intrinsic flux in terms of an unbiased and a biased component is derived. It is demonstrated with the aid of the simulation for the Cu-Zn system, that the biased flux may be evaluated from the experimental intrinsic flux and the unbiased flux (obtained from the tracer jump frequency). An unbiased jump frequency formalism that utilizes effective rather than tracer jump frequencies and avoids the complexities

  19. Control of the Acute Phase Response

    PubMed Central

    Kushner, Irving; Broder, Martin L.; Karp, David

    1978-01-01

    In order to investigate the magnitude and kinetics of the C-reactive protein (CRP) response after differing degrees of tissue injury, we studied changes in serum concentration of this acute phase protein in 19 patients after mild or extensive acute myocardial infarction. An increase in serum CRP concentration was seen in all patients. The rate of increase in concentration was found to be exponential, with a mean hourly rate constant for the entire group of patients of 0.085 (doubling time, 8.2 h). Patients with extensive infarction attained mean serum CRP levels about 4 times as great as did patients with mild infarction. No difference could be shown in the mean rate constant between these groups, the greater CRP response in the former group resulting principally from a more protracted period of rise in serum CRP concentration. A lag period before serum CRP levels began to rise was noted in only 4 of the 13 patients in whom this could be assessed. 7 of 10 patients with presumed unstable angina (coronary insufficiency) showed no rise in CRP concentration, while a small increase as noted in 3 patients. The data suggest that acute tissue injury, such as myocardial infarction, rapidly leads to acceleration in synthesis of CRP, and that the duration of this period of acceleration is related to the extent of tissue injury. PMID:621273

  20. Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress.

    PubMed

    Wallace, M D; Southard, T L; Schimenti, K J; Schimenti, J C

    2014-07-10

    Defective DNA replication can result in genomic instability, cancer and developmental defects. To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants defective for core DNA replication components, we utilized the Mcm4(Chaos3/Chaos3) ('Chaos3') mouse model that, by virtue of an amino-acid alteration in MCM4 that destabilizes the MCM2-7 DNA replicative helicase, has fewer dormant replication origins and an increased number of stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We found that animals doubly mutant for Chaos3 and components of the ataxia telangiectasia-mutated (ATM) double-strand break response pathway (Atm, p21/Cdkn1a and Chk2/Chek2) had decreased tumor latency and/or increased tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 deficiency than males. Atm deficiency was semilethal in the Chaos3 background and impaired embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against tumors with DNA replication defects. Hypomorphism for the 9-1-1 component Hus1 did not affect tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit impaired ATR pathway signaling. These and other data indicate that under conditions of systemic replication stress, the ATM pathway is particularly important both for cancer suppression and viability during development. PMID:23975433

  1. Resonant Phase Escape from the First Resistive State of Bi2Sr2CaCu2Oy Intrinsic Josephson Junctions under Strong Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Takahashi, Yusaku; Kakehi, Daiki; Takekoshi, Shuho; Ishikawa, Kazuki; Ayukawa, Shin-ya; Kitano, Haruhisa

    2016-07-01

    We report a study of the phase escape in Bi2Sr2CaCu2Oy intrinsic Josephson junctions under the strong microwave irradiation, focusing on the switch from the first resistive state (2nd SW). The resonant double-peak structure is clearly observed in the switching current distributions below 10 K and is successfully explained by a quantum-mechanical model on the quantum phase escape under the strong microwave field. These results provide the first evidence for the formation of the energy level quantization for the 2nd SW, supporting that the macroscopic quantum tunneling for the 2nd SW survives up to ˜10 K.

  2. On the Firing Rate Dependency of the Phase Response Curve of Rat Purkinje Neurons In Vitro

    PubMed Central

    Couto, João; Linaro, Daniele; De Schutter, E; Giugliano, Michele

    2015-01-01

    Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-output characterization of single cells, can provide insights into individual and collective properties of neurons and networks, by quantifying the impact of an infinitesimal depolarizing current pulse on the time of occurrence of subsequent action potentials, while a neuron is firing tonically. Recently, the PRC theory applied to cerebellar Purkinje cells revealed that these behave as phase-independent integrators at low firing rates, and switch to a phase-dependent mode at high rates. Given the implications for computation and information processing in the cerebellum and the possible role of synchrony in the communication with its post-synaptic targets, we further explored the firing rate dependency of the PRC in Purkinje cells. We isolated key factors for the experimental estimation of the PRC and developed a closed-loop approach to reliably compute the PRC across diverse firing rates in the same cell. Our results show unambiguously that the PRC of individual Purkinje cells is firing rate dependent and that it smoothly transitions from phase independent integrator to a phase dependent mode. Using computational models we show that neither channel noise nor a realistic cell morphology are responsible for the rate dependent shift in the phase response curve. PMID:25775448

  3. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response

    PubMed Central

    Conn, Kristen L.; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R.; Grant, Kyle G.; Domingues, Patricia

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated

  4. Microstructure Based Modeling of β Phase Influence on Mechanical Response of Cast AM Series Mg Alloys

    SciTech Connect

    Barker, Erin I.; Choi, Kyoo Sil; Sun, Xin; Deda, Erin; Allison, John; Li, Mei; Forsmark, Joy; Zindel, Jacob; Godlewski, Larry

    2014-09-30

    Magnesium alloys have become popular alternatives to aluminums and steels for the purpose of vehicle light-weighting. However, Mg alloys are hindered from wider application due to limited ductility as well as poor creep and corrosion performance. Understanding the impact of microstructural features on bulk response is key to improving Mg alloys for more widespread use and for moving towards truly predicting modeling capabilities. This study focuses on modeling the intrinsic features, particularly volume fraction and morphology of beta phase present, of cast Mg alloy microstructure and quantifying their impact on bulk performance. Computational results are compared to experimental measurements of cast plates of Mg alloy with varying aluminum content.

  5. Intrinsic n

    SciTech Connect

    Zhang, S. B.; Wei, S.-H.; Zunger, Alex

    2001-02-15

    ZnO typifies a class of materials that can be doped via native defects in only one way: either n type or p type. We explain this asymmetry in ZnO via a study of its intrinsic defect physics, including Zn{sub O}, Zn{sub i}, V{sub O}, O{sub i}, and V{sub Zn} and n-type impurity dopants, Al and F. We find that ZnO is n type at Zn-rich conditions. This is because (i) the Zn interstitial, Zn{sub i}, is a shallow donor, supplying electrons; (ii) its formation enthalpy is low for both Zn-rich and O-rich conditions, so this defect is abundant; and (iii) the native defects that could compensate the n-type doping effect of Zn{sub i} (interstitial O, O{sub i}, and Zn vacancy, V{sub Zn}), have high formation enthalpies for Zn-rich conditions, so these ''electron killers'' are not abundant. We find that ZnO cannot be doped p type via native defects (O{sub i},V{sub Zn}) despite the fact that they are shallow (i.e., supplying holes at room temperature). This is because at both Zn-rich and O-rich conditions, the defects that could compensate p-type doping (V{sub O},Zn{sub i},Zn{sub O}) have low formation enthalpies so these ''hole killers'' form readily. Furthermore, we identify electron-hole radiative recombination at the V{sub O} center as the source of the green luminescence. In contrast, a large structural relaxation of the same center upon double hole capture leads to slow electron-hole recombination (either radiative or nonradiative) responsible for the slow decay of photoconductivity.

  6. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin

    NASA Astrophysics Data System (ADS)

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.

    2015-06-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.

  7. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin

    PubMed Central

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.

    2015-01-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819

  8. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin.

    PubMed

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K

    2015-01-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819

  9. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics.

    PubMed

    Krawczyk-Balska, A; Markiewicz, Z

    2016-02-01

    Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures. PMID:26509460

  10. The MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae.

    PubMed

    Kandler, Justin L; Holley, Concerta L; Reimche, Jennifer L; Dhulipala, Vijaya; Balthazar, Jacqueline T; Muszyński, Artur; Carlson, Russell W; Shafer, William M

    2016-08-01

    During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.g., neutrophils) and intracellular survival. Previously studied gonococcal CAMP resistance mechanisms include modification of lipid A with phosphoethanolamine by LptA and export of CAMPs by the MtrCDE efflux pump. In the related pathogen Neisseria meningitidis, a two-component regulatory system (2CRS) termed MisR-MisS has been shown to contribute to the capacity of the meningococcus to resist CAMP killing. We report that the gonococcal MisR response regulator but not the MisS sensor kinase is involved in constitutive and inducible CAMP resistance and is also required for intrinsic low-level resistance to aminoglycosides. The 4- to 8-fold increased susceptibility of misR-deficient gonococci to CAMPs and aminoglycosides was independent of phosphoethanolamine decoration of lipid A and the levels of the MtrCDE efflux pump and seemed to correlate with a general increase in membrane permeability. Transcriptional profiling and biochemical studies confirmed that expression of lptA and mtrCDE was not impacted by the loss of MisR. However, several genes encoding proteins involved in membrane integrity and redox control gave evidence of being MisR regulated. We propose that MisR modulates the levels of gonococcal susceptibility to antimicrobials by influencing the expression of genes involved in determining membrane integrity. PMID:27216061

  11. Geometric, electronic and intrinsic chemical reactivity properties of mono- and bi-substituted quinoline derivatives for the ground state in gas phase

    NASA Astrophysics Data System (ADS)

    Neira Bueno, O. L.; Hincapié H, L.; García Madrid, C.

    2016-02-01

    The study of geometric, electronic properties and intrinsic chemical reactivity is presented for the case of Quinoline and three-derived molecules (4-Amino-Quinoline, 3- Phenyl-Quinoline, 4-Amino-3-phenylquinoline). The study was carried for the ground state in gas phase in the context of the functional theory density using B3LYP/6 31+G (d) model. The purpose of the study is aimed for identifying a compound derived from quinoline, on based to mono- or bi-substitution, using the amino fragment and the phenyl group.

  12. Dielectric behaviors of Aurivillius Bi5Ti3Fe0.5Cr0.5O15 multiferroic polycrystals: Determining the intrinsic magnetoelectric responses by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Chen, Chao; Yang, Jing; Zhang, Yuanyuan; Qi, Ruijuan; Huang, Rong; Tang, Xiaodong; Duan, Chun-Gang; Chu, Junhao

    2015-12-01

    Bismuth layer ferroelectrics (BLFs) pioneered by Aurivillius about sixty years ago have been revived recently because of the fatigue- and lead-free behaviors and high Curie temperature, and especially the robust magnetoelectric (ME) effect. However, discerning the intrinsic ME nature, and the inherence between charged defect dipole induced relaxation and spin-related behaviors are still an arduous task. Here, we report a quantitative analysis to reveal the intrinsic spin-lattice coupling in Aurivillius Cr-doped Bi5Ti3FeO15 (BTFCO) multiferroic polycrystals. Dielectric responses are systemically investigated by the temperature-dependent dielectric, module, impedance spectroscopy and equivalent circuit model, and two different dielectric relaxation processes occurred in grain interior of Aurivillius BTFCO polycrystals are clarified. One relaxation is proposed to associate with localized transfer of electrons between Fe3+ and Fe2+ while another one arises from the competition interaction of localized hopping of electrons between Fe3+ and Fe2+ and short-range migration of holes between Cr3+ and Cr6+. The variation of the intrinsic permittivity unambiguously confirms the coupling between spin and dipolar orderings in BTFCO polycrystals. These results offer a vital avenue for identifying the intrinsic and extrinsic signals of the electric and ME responses, and will give significant impetus to exploring the ME electronic devices of Aurivillius materials.

  13. Dielectric behaviors of Aurivillius Bi5Ti3Fe0.5Cr0.5O15 multiferroic polycrystals: Determining the intrinsic magnetoelectric responses by impedance spectroscopy

    PubMed Central

    Bai, Wei; Chen, Chao; Yang, Jing; Zhang, Yuanyuan; Qi, Ruijuan; Huang, Rong; Tang, Xiaodong; Duan, Chun-Gang; Chu, Junhao

    2015-01-01

    Bismuth layer ferroelectrics (BLFs) pioneered by Aurivillius about sixty years ago have been revived recently because of the fatigue- and lead-free behaviors and high Curie temperature, and especially the robust magnetoelectric (ME) effect. However, discerning the intrinsic ME nature, and the inherence between charged defect dipole induced relaxation and spin-related behaviors are still an arduous task. Here, we report a quantitative analysis to reveal the intrinsic spin-lattice coupling in Aurivillius Cr-doped Bi5Ti3FeO15 (BTFCO) multiferroic polycrystals. Dielectric responses are systemically investigated by the temperature-dependent dielectric, module, impedance spectroscopy and equivalent circuit model, and two different dielectric relaxation processes occurred in grain interior of Aurivillius BTFCO polycrystals are clarified. One relaxation is proposed to associate with localized transfer of electrons between Fe3+ and Fe2+ while another one arises from the competition interaction of localized hopping of electrons between Fe3+ and Fe2+ and short-range migration of holes between Cr3+ and Cr6+. The variation of the intrinsic permittivity unambiguously confirms the coupling between spin and dipolar orderings in BTFCO polycrystals. These results offer a vital avenue for identifying the intrinsic and extrinsic signals of the electric and ME responses, and will give significant impetus to exploring the ME electronic devices of Aurivillius materials. PMID:26639998

  14. Dielectric behaviors of Aurivillius Bi5Ti3Fe0.5Cr0.5O15 multiferroic polycrystals: Determining the intrinsic magnetoelectric responses by impedance spectroscopy.

    PubMed

    Bai, Wei; Chen, Chao; Yang, Jing; Zhang, Yuanyuan; Qi, Ruijuan; Huang, Rong; Tang, Xiaodong; Duan, Chun-Gang; Chu, Junhao

    2015-01-01

    Bismuth layer ferroelectrics (BLFs) pioneered by Aurivillius about sixty years ago have been revived recently because of the fatigue- and lead-free behaviors and high Curie temperature, and especially the robust magnetoelectric (ME) effect. However, discerning the intrinsic ME nature, and the inherence between charged defect dipole induced relaxation and spin-related behaviors are still an arduous task. Here, we report a quantitative analysis to reveal the intrinsic spin-lattice coupling in Aurivillius Cr-doped Bi(5)Ti(3)FeO(15) (BTFCO) multiferroic polycrystals. Dielectric responses are systemically investigated by the temperature-dependent dielectric, module, impedance spectroscopy and equivalent circuit model, and two different dielectric relaxation processes occurred in grain interior of Aurivillius BTFCO polycrystals are clarified. One relaxation is proposed to associate with localized transfer of electrons between Fe(3+) and Fe(2+) while another one arises from the competition interaction of localized hopping of electrons between Fe(3+) and Fe(2+) and short-range migration of holes between Cr(3+) and Cr(6+). The variation of the intrinsic permittivity unambiguously confirms the coupling between spin and dipolar orderings in BTFCO polycrystals. These results offer a vital avenue for identifying the intrinsic and extrinsic signals of the electric and ME responses, and will give significant impetus to exploring the ME electronic devices of Aurivillius materials. PMID:26639998

  15. Intrinsic cylindrical and spherical waves

    NASA Astrophysics Data System (ADS)

    Ludlow, I. K.

    2008-02-01

    Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed.

  16. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers

    PubMed Central

    Martin-Gayo, Enrique; Buzon, Maria Jose; Ouyang, Zhengyu; Hickman, Taylor; Cronin, Jacqueline; Pimenova, Dina; Walker, Bruce D.; Lichterfeld, Mathias; Yu, Xu G.

    2015-01-01

    The majority of HIV-1 elite controllers (EC) restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC) can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes. PMID:26067651

  17. The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons

    PubMed Central

    Stiefel, Klaus M.; Gutkin, Boris S.; Sejnowski, Terrence J.

    2010-01-01

    The response of an oscillator to perturbations is described by its phase-response curve (PRC), which is related to the type of bifurcation leading from rest to tonic spiking. In a recent experimental study, we have shown that the type of PRC in cortical pyramidal neurons can be switched by cholinergic neuromodulation from type II (biphasic) to type I (monophasic). We explored how intrinsic mechanisms affected by acetylcholine influence the PRC using three different types of neuronal models: a theta neuron, single-compartment neurons and a multi-compartment neuron. In all of these models a decrease in the amount of a spike-frequency adaptation current was a necessary and sufficient condition for the shape of the PRC to change from biphasic (type II) to purely positive (type I). PMID:18784991

  18. Phase response curves elucidating the dynamics of coupled oscillators.

    PubMed

    Granada, A; Hennig, R M; Ronacher, B; Kramer, A; Herzel, H

    2009-01-01

    Phase response curves (PRCs) are widely used in circadian clocks, neuroscience, and heart physiology. They quantify the response of an oscillator to pulse-like perturbations. Phase response curves provide valuable information on the properties of oscillators and their synchronization. This chapter discusses biological self-sustained oscillators (circadian clock, physiological rhythms, etc.) in the context of nonlinear dynamics theory. Coupled oscillators can synchronize with different frequency ratios, can generate toroidal dynamics (superposition of independent frequencies), and may lead to deterministic chaos. These nonlinear phenomena can be analyzed with the aid of a phase transition curve, which is intimately related to the phase response curve. For illustration purposes, this chapter discusses a model of circadian oscillations based on a delayed negative feedback. In a second part, the chapter provides a step-by-step recipe to measure phase response curves. It discusses specifications of this recipe for circadian rhythms, heart rhythms, neuronal spikes, central pattern generators, and insect communication. Finally, it stresses the predictive power of measured phase response curves. PRCs can be used to quantify the coupling strength of oscillations, to classify oscillator types, and to predict the complex dynamics of periodically driven oscillations. PMID:19216921

  19. Federal Radiological Monitoring and Assessment Center: Phase I Response

    SciTech Connect

    C. Riland; D. R. Bowman; R. Lambert; R. Tighe

    1999-09-30

    A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to a Lead Federal Agency (LFA) or State request when a radiological emergency is anticipated or has occurred. The FRMAC coordinates the off-site monitoring, assessment, and analysis activities during such an emergency. The FRMAC response is divided into three phases. FRMAC Phase 1 is a rapid, initial-response capability that can interface with Federal or State officials and is designed for a quick response time and rapid radiological data collection and assessment. FRMAC Phase 1 products provide an initial characterization of the radiological situation and information on early health effects to officials responsible for making and implementing protective action decisions.

  20. Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2. [jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Sengupta, G.

    1978-01-01

    Low frequency cabin noise and sonically induced stresses in an aircraft fuselage may be reduced by intrinsic tuning of the various structural members such as the skin, stringers, and frames and then applying damping treatments on these members. The concept is also useful in identifying the key structural resonance mechanisms controlling the fuselage response to broadband random excitation and in developing suitable damping treatments for reducing the structural response in various frequency ranges. The mathematical proof of the concept and the results of some laboratory and field tests on a group of skin-stringer panels are described. In the so-called stiffness-controlled region, the noise transmission may actually be controlled by stiffener resonances, depending upon the relationship between the natural frequencies of the skin bay and the stiffeners. Therefore, cabin noise in the stiffness-controlled region may be effectively reduced by applying damping treatments on the stiffeners.

  1. Cephalic phase responses to sweet taste.

    PubMed

    Abdallah, L; Chabert, M; Louis-Sylvestre, J

    1997-03-01

    The sweet taste of nonnutritive sweeteners has been reported to increase hunger and food intake through the mechanism of cephalic-phase insulin release (CPIR). We investigated the effect of oral sensation of sweetness on CPIR and other indexes associated with glucose metabolism using nutritive and nonnutritive sweetened tablets as stimuli. At lunchtime, 12 normal-weight men sucked for 5 min a sucrose, an aspartame-polydextrose, or an unsweetened polydextrose tablet (3 g) with no added flavor. The three stimuli were administered in a counterbalanced order, each on a separate day at 1-wk intervals. Blood was drawn continuously for 45 min before and 25 min after the beginning of sucking and samples were collected at 1-min intervals. Spontaneous oscillations in glucose, insulin, and glucagon concentrations were assessed as were increments (slopes) of fatty acid concentrations during the baseline period. The nature of the baseline (oscillations: glucose, insulin, and glucagon; and slopes: fatty acids) was taken into account in the analyses of postexposure events. No CPIR and no significant effect on plasma glucagon or fatty acid concentrations were observed after the three stimuli. However, there was a significant decrease in plasma glucose and insulin after all three stimuli. Only the consumption of the sucrose tablet was followed by a postabsorptive increase in plasma glucose and insulin concentrations starting 17 and 19 min, respectively, after the beginning of sucking. In conclusion, this study suggested that oral stimulation provided by sweet nonflavored tablets is not sufficient for inducing CPIR. PMID:9062523

  2. Observation of intrinsic Josephson effects in tetragonally synthesized single-crystalline NdBa2Cu3O6.65 films grown by tri-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yun, Kyung Sung; Hatano, Takeshi; Arisawa, Shunichi; Ishii, Akira; Wang, Huabing; Yamashita, Tsutomu; Iguchi, Ienari; Kawasaki, Masashi; Koinuma, Hideomi

    2008-07-01

    In this work twin-free tetragonal NdBa2Cu3O7-δ films were fabricated that exhibited superconductivity with sufficient anisotropy which produced intrinsic Josephson junction (IJJ) characteristics in the films. The intrinsic Josephson effects (IJEs) were observed in oxygen-deficient single-crystalline NdBa2Cu3O6.65 (NBCO) films grown on SrTiO3 (STO) substrates, using tri-phase epitaxy (TPE). The single-crystalline nature of NBCO films on well-matched STO substrates, and the precisely controlled oxygen content of the films, lead to the IJEs of the thin films. Furthermore, the films exhibit high anisotropy and clear multiple-branch structures, with hysteresis observed in the current-voltage characteristics. Periodic Josephson vortex-flow resistance oscillations were also observed for a magnetic field higher than 64 kOe, which was applied normal to the junctions. These results strongly support the single-crystal nature of TPE films, which play an important role in both the fundamental study and the practical applications of high-frequency devices.

  3. Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia

    PubMed Central

    Nanjappa, Som Gowda; Hernández-Santos, Nydiaris; Galles, Kevin; Wüthrich, Marcel; Suresh, M.; Klein, Bruce S.

    2015-01-01

    Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients. PMID:26367276

  4. Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia.

    PubMed

    Nanjappa, Som Gowda; Hernández-Santos, Nydiaris; Galles, Kevin; Wüthrich, Marcel; Suresh, M; Klein, Bruce S

    2015-09-01

    Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients. PMID:26367276

  5. Dose-response and intrinsic efficiency of thermoluminescent dosimeters in a 15 MV clinical photon beam in a liquid water phantom.

    PubMed

    Bravim, A; Sakuraba, R K; Cruz, J C; Campos, L L

    2012-07-01

    This paper compares the performance of CaSO4:Dy and LiF dosimeters irradiated with a 15 MV photon beam of a clinical linear accelerator to 0.1-10 Gy in a liquid water. The dose-response curves are linear up to 5 Gy. The average TL sensitivity of CaSO4:Dy is 26 and 287 times higher than the sensitivities of LiF:Mg,Ti and microLiF:Mg,Ti, respectively. CaSO4:Dy has an intrinsic efficiency 71% and 94% higher than the intrinsic efficiencies of LiF:Mg,Ti and microLiF:Mg,Ti, respectively. PMID:22342311

  6. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes. PMID:22060323

  7. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  8. The antigen-specific response to Toxoplasma gondii profilin, a TLR11/12 ligand, depends on its intrinsic adjuvant properties.

    PubMed

    Hedhli, Dorsaf; Moiré, Nathalie; Akbar, Haroon; Laurent, Fabrice; Héraut, Bruno; Dimier-Poisson, Isabelle; Mévélec, Marie Noëlle

    2016-08-01

    Agonists that activate Toll-like receptors (TLR) are potential vaccine adjuvants. In particular, Toxoplasma gondii profilin (TgPRF) is recognized by TLR11/12 to generate an inflammatory response. Unlike most TLR ligands, TgPRF is also a protein and can therefore simultaneously induce innate and adaptive immune responses. We found that variations in the conformation of TgPRF can affect its ability to induce a TLR11/12-dependent inflammatory response. The secreted recombinant T. gondii (S2-profilin), produced by Schneider 2 cells, has lost its ability to generate an IL-12 response. Reduction of the intramolecular disulfide bonds in S2-profilin rescued the TLR11/12-dependent IL-12 response. Immunization of mice with reduced S2-profilin induced strong cellular and humoral responses compared to mice immunized with unreduced S2-profilin. A mixed Th1/Th2 response was induced with both S2-profilins. However, a more polarized Th1-type response, which was consistent with the IgG2a-polarized humoral response, was observed with reduced S2-profilin. In conclusion, the intrinsic adjuvant properties of TgPRF had significant consequences on the immune response against TgPRF. PMID:26935827

  9. Modeling responses of Daphnia magna to pesticide pulse exposure under varying food conditions: intrinsic versus apparent sensitivity.

    PubMed

    Pieters, Barry J; Jager, Tjalling; Kraak, Michiel H S; Admiraal, Wim

    2006-10-01

    Recent studies showed that limiting food conditions resulted in either increased or decreased sensitivity of Daphnia magna to toxicants. It remained unclear whether these contrasting food-dependent alterations in toxicity resulted from differences in intrinsic sensitivity of the daphnids or from changes in toxicokinetics and resource allocation. It is hypothesized here that, if food level only affects accumulation kinetics and resource allocation, then the intrinsic sensitivity to this toxicant should be the same for all food regimes. This hypothesis was investigated using the DEBtox model, which is based on the theory of Dynamic Energy Budgets. We examined results of two recently conducted life-cycle studies on the combined effects of food level and a pulsed exposure to the pyrethroid insecticide fenvalerate (FV) on D. magna. The model described the effects of the time-varying exposure well, and indicated that when the animals did not die from exposure to FV, full reversibility of toxic effects was possible, allowing a complete recovery. Results revealed furthermore that the data from both studies could be described by the same NECs for survival and assimilation, killing rate and tolerance concentration (132 (49.2-228) x 10(-6) microg/L, 0 (0-1.18 x 10(-5)) microg/L, 74.4 (55.6-96.4) L (microg d)(-1) and 5.39 (2.72-18.5) x 10(-3) microg/L, respectively). It is therefore concluded that food-dependent FV toxicity can be explained by altered toxicokinetics and resource allocation, but not by changes in the intrinsic sensitivity of the daphnids. This study implies that the effect of pesticide application in the field depends on the trophic state of the receiving water body, but also that full recovery of survivors is possible after FV application. PMID:17024561

  10. Elastic response and phase behavior in binary liquid crystal mixtures.

    PubMed

    Sidky, Hythem; Whitmer, Jonathan K

    2016-05-11

    Utilizing density-of-states simulations, we perform a full mapping of the phase behavior and elastic responses of binary liquid crystalline mixtures represented by the multicomponent Lebwohl-Lasher model. Our techniques are able to characterize the complete phase diagram, including nematic-nematic phase separation predicted by mean-field theories, but previously not observed in simulations. Mapping this phase diagram permits detailed study of elastic properties across the miscible nematic region. Importantly, we observe for the first time local phase separation and disordering driven by the application of small linear perturbations near the transition temperature and more significantly through nonlinear stresses. These findings are of key importance in systems of blended nematics which contain particulate inclusions, or are otherwise confined. PMID:27093188

  11. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  12. Response of two-phase droplets to intense electromagnetic radiation.

    PubMed

    Spann, J F; Maloney, D J; Lawson, W F; Casleton, K H

    1993-04-20

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 microm) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid. PMID:20820360

  13. Ultrafast response of phase-change memory materials

    NASA Astrophysics Data System (ADS)

    Lindenberg, Aaron

    2015-03-01

    We describe recent experiments probing the first steps in the amorphous-to-crystalline transition that underlies the behavior of phase-change materials, examining both electric-field-driven and optically-driven responses in GeSbTe and AgInSbTe alloys. First measurements using femtosecond x-ray pulses at the Linac Coherent Light Source will be described which enable direct snapshots of these transitions and associated intermediate states. We will also describe studies using single-cycle terahertz pulses as an all-optical means of biasing phase-change materials on femtosecond time-scales in order to examine the threshold-switching response on microscopically relevant time-scales. These studies indicate nonlinear scaling with the applied electric field and field-induced crystallization as evidenced by ultrafast optical reflectivity and conductivity measurements, from which a mechanistic understanding of these phase transitions can be obtained.

  14. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  15. Phase-shifting response to light in older adults

    PubMed Central

    Kim, Seong Jae; Benloucif, Susan; Reid, Kathryn Jean; Weintraub, Sandra; Kennedy, Nancy; Wolfe, Lisa F; Zee, Phyllis C

    2014-01-01

    Abstract Age-related changes in circadian rhythms may contribute to the sleep disruption observed in older adults. A reduction in responsiveness to photic stimuli in the circadian timing system has been hypothesized as a possible reason for the advanced circadian phase in older adults. This project compared phase-shifting responses to 2 h of broad-spectrum white light at moderate and high intensities in younger and older adults. Subjects included 29 healthy young (25.1 ± 4.1 years; male to female ratio: 8: 21) and 16 healthy older (66.5 ± 6.0 years; male to female ratio: 5: 11) subjects, who participated in two 4-night and 3-day laboratory stays, separated by at least 3 weeks. Subjects were randomly assigned to one of three different time-points, 8 h before (−8), 3 h before (−3) or 3 h after (+3) the core body temperature minimum (CBTmin) measured on the baseline night. For each condition, subjects were exposed in a randomized order to 2 h light pulses of two intensities (2000 lux and 8000 lux) during the two different laboratory stays. Phase shifts were analysed according to the time of melatonin midpoint on the nights before and after light exposure. Older subjects in this study showed an earlier baseline phase and lower amplitude of melatonin rhythm compared to younger subjects, but there was no evidence of age-related changes in the magnitude or direction of phase shifts of melatonin midpoint in response to 2 h of light at either 2000 lux or 8000 lux. These results indicate that the acute phase-shifting response to moderate- or high-intensity broad spectrum light is not significantly affected by age. PMID:24144880

  16. Phase responses of harmonics reflected from radio-frequency electronics

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; McGowan, Sean F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Martone, Anthony F.; Narayanan, Ram M.

    2016-05-01

    The phase responses of nonlinear-radar targets illuminated by stepped frequencies are studied. Data is presented for an experimental radar and two commercial electronic targets at short standoff ranges. The amplitudes and phases of harmonics generated by each target at each frequency are captured over a 100-MHz-wide transmit band. As in the authors' prior work, target detection is demonstrated by receiving at least one harmonic of at least one transmit frequency. In the present work, experiments confirm that the phase of a harmonic reflected from a radio-frequency electronic target at a standoff distance is linear versus frequency. Similar to traditional wideband radar, the change of the reflected phase with respect to frequency indicates the range to the nonlinear target.

  17. Theoretical study on single-phase stability and intrinsic defects in different Cu2ZnSn(Se1-xSx)4 alloys

    NASA Astrophysics Data System (ADS)

    Sarker, Pranab; Huda, Muhammad N.

    2015-03-01

    Cu2ZnSn(Se1-xSx)4 (CZTSSe) alloy has been emerged as a potential next generation commercialized photovoltaic cell because of its higher solar-to-current efficiency (12.6 %) over parent compounds Cu2ZnSnS4(CZTS)andCu2ZnSnSe4 (CZTSe). However, the values of composition x in higher efficient CZTSSe (>11%) are not known yet. It has been inferred from the recent theoretical and experimental evidences that 0.375 <= x <= 0.625 (x = alloy ratio per unit cell) could be the range that poses to ensure higher PV efficiency in CZTSSe. The crystal structure of CZTSSe at those x values were determined using density functional theory. In addition, the probability of forming different intrinsic defects in those different CZTSSe alloys were evaluated at various growth conditions determined from chemical potential landscape analysis for the first time. Chemical potential landscape analysis further reveals that CZTSSe alloys have higher single phase stability than that of their parent structures. This work is partially supported by NREL.

  18. Effects of Crowding and Environment on the Evolution of Conformational Ensembles of the Multi-Stimuli-Responsive Intrinsically Disordered Protein, Rec1-Resilin: A Small-Angle Scattering Investigation.

    PubMed

    Balu, Rajkamal; Mata, Jitendra P; Knott, Robert; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K

    2016-07-14

    In this study, we explore the overall structural ensembles and transitions of a biomimetic, multi-stimuli-responsive, intrinsically disordered protein (IDP), Rec1-resilin. The structural transition of Rec1-resilin with change in molecular crowding and environment is evaluated using small-angle neutron scattering and small-angle X-ray scattering. The quantitative analyses of the experimental scattering data using a combination of computational models allowed comprehensive description of the structural evolution, organization, and conformational ensembles of Rec1-resilin in response to the changes in concentration, pH, and temperature. Rec1-resilin in uncrowded solutions demonstrates the equilibrium intrinsic structure quality of an IDP with radius of gyration Rg ∼ 5 nm, and a scattering function for the triaxial ellipsoidal model best fit the experimental dataset. On crowding (increase in concentration >10 wt %), Rec1-resilin molecules exert intermolecular repulsive force of interaction, the Rg value reduces with a progressive increase in concentration, and molecular chains transform from a Gaussian coil to a fully swollen coil. It is also revealed that the structural organization of Rec1-resilin dynamically transforms from a rod (pH 2) to coil (pH 4.8) and to globular (pH 12) as a function of pH. The findings further support the temperature-triggered dual-phase-transition behavior of Rec1-resilin, exhibiting rod-shaped structural organization below the upper critical solution temperature (∼4 °C) and a large but compact structure above the lower critical solution temperature (∼75 °C). This work attempted to correlate unusual responsiveness of Rec1-resilin to the evolution of conformational ensembles. PMID:27281267

  19. Development and implementation of a stereoselective normal-phase liquid chromatography-tandem mass spectrometry method for the determination of intrinsic metabolic clearance in human liver microsomes.

    PubMed

    Zhang, Yingru; Caporuscio, Christian; Dai, Jun; Witkusa, Michael; Rose, Anne; Santella, Joseph; D'Arienzo, Celia; Wang-Iverson, David B; Tymiak, Adrienne A

    2008-11-01

    The stereoselective determination of stereoisomers in biological samples provides vital information on stereospecific metabolism and pharmacokinetic profiles of the drugs. Despite the unique advantage and the great success of normal-phase (NP) HPLC for the separations of drug stereoisomers using polysaccharide-type chiral stationary phases (CSPs), the technique is rarely applied to quantitative HPLC-MS-MS bioanalysis. This is, at least in part, due to the incompatibility between the usual mobile phase (n-hexane or n-heptane) in normal-phase HPLC and the MS ionization sources which poses a potential detonation hazard. An environmentally friendly and nonflammable alternative solvent, ethoxynonafluorobutane (ENFB), was reported previously to potentially provide an ideal solution for combining the powers of stereoselective NP chromatographic separation and MS-MS detection. In this study, a stereoselective NP-HPLC-MS-MS method was developed using ENFB to quantify a pair of Bristol Myers Squibb (BMS) proprietary drug stereoisomers and their ketone metabolite for an in vitro study, which demonstrated, for the first time, the practical applicability and utility of ENFB for bioanalysis in pharmaceutical industry. The effects of different organic modifiers and temperature, as well as the comparison between ENFB and the usual solvent, heptane, for the separation, are discussed. The resolution of the stereoisomers was achieved using 63% of 3:1 mixture of ethanol and methanol with 37% ENFB on a Chiralpak AD-H column at 50 degrees C. High sensitivity was obtained using the MS-MS detection in the positive ion atmospheric pressure chemical ionization (APCI) mode. The lower limit of quantitation (LLOQ) for the first stereoisomer and the ketone metabolite was 5 ng/mL, and was 10 ng/mL for the second isomer in the human liver microsome-potassium phosphate buffer matrix. The linear dynamic range of 5-1000 ng/mL for both isomers and 10-1000 ng/mL for the metabolite were demonstrated

  20. Phase response theory extended to nonoscillatory network components

    NASA Astrophysics Data System (ADS)

    Sieling, Fred H.; Archila, Santiago; Hooper, Ryan; Canavier, Carmen C.; Prinz, Astrid A.

    2012-05-01

    New tools for analysis of oscillatory networks using phase response theory (PRT) under the assumption of pulsatile coupling have been developed steadily since the 1980s, but none have yet allowed for analysis of mixed systems containing nonoscillatory elements. This caveat has excluded the application of PRT to most real systems, which are often mixed. We show that a recently developed tool, the functional phase resetting curve (fPRC), provides a serendipitous benefit: it allows incorporation of nonoscillatory elements into systems of oscillators where PRT can be applied. We validate this method in a model system of neural oscillators and a biological system, the pyloric network of crustacean decapods.

  1. Phase response curves in the characterization of epileptiform activity

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, J. L.; Galán, R. F.; Dominguez, L. Garcia; Leshchenko, Y.; Lo, S.; Belkas, J.; Erra, R. Guevara

    2007-12-01

    Coordinated cellular activity is a major characteristic of nervous system function. Coupled oscillator theory offers unique avenues to address cellular coordination phenomena. In this study, we focus on the characterization of the dynamics of epileptiform activity, based on some seizures that manifest themselves with very periodic rhythmic activity, termed absence seizures. Our approach consists in obtaining experimentally the phase response curves (PRCs) in the neocortex and thalamus, and incorporating these PRCs into a model of coupled oscillators. Phase preferences of the stationary states and their stability are determined, and these results from the model are compared with the experimental recordings, and interpreted in physiological terms.

  2. Three phase bone scan interpretation based upon vascular endothelial response

    PubMed Central

    Kumar, Kush

    2015-01-01

    Objectives: A new method of interpretation of Three Phase Bone Scan (TPBS) scan based upon the normal physiological vascular endothelial related response. Materials and Methods: Fifty cases of TPBS were evaluated. Thirteen were normal. In remaining 37 positive studies, 20 showed localized hyperemic response. All localized hyperemic responses except one with vascular endothelial dysfunction were without infection (95.0%). Infection could be ruled out in absence of generalized massive flow and pool response. All 17 cases with generalized massive hyperemic response had infection, consistent with infection or CRPS/RSD. Micro-bacterial or histological confirmation of infection was obtained in 11 cases. All 11 cases with confirmed infection showed generalized massive hyperemic response (100.0%). Two were CRPS/RSD and 2 cases were of cellulitis (100.0%). Among remaining 2, one refused surgery and other was lost to follow-up. Additionally, 20 published cases in the literature of osteomyelitis were also analyzed. Nineteen cases of bone and joint infection, (osteomyelitis/arthritis/cellulitis) except one with endothelial dysfunction showed generalized massive increased flow and pool response (95.0%). All published cases of osteomyelitis in the literature showed generalized massive hyperemic response (100.0%). Results: The data clearly indicated that 100% of the cases of bone infection (osteomyelitis/arthritis/cellulitis) and cases of CRPS/RSD showed generalized massive flow and pool pattern. Infection could be ruled out in absence of generalized massive flow and pool response. All 100% published cases of osteomyelitis in the literature showed positive vascular endothelial response. Conclusion: By incorporating the concept of vascular endothelial related response causing massive vasodilatation in infection, the interpretation of the TPBS can be more précised as it is based upon the normal physiology. Larger studies are recommended. PMID:25829726

  3. Measurement of infinitesimal phase response curves from noisy real neurons

    NASA Astrophysics Data System (ADS)

    Ota, Keisuke; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru

    2011-10-01

    We sought to measure infinitesimal phase response curves (iPRCs) from rat hippocampal CA1 pyramidal neurons. It is difficult to measure iPRCs from noisy neurons because of the dilemma that either the linearity or the signal-to-noise ratio of responses to external perturbations must be sacrificed. To overcome this difficulty, we used an iPRC measurement model formulated as the Langevin phase equation (LPE) to extract iPRCs in the Bayesian scheme. We then simultaneously verified the effectiveness of the measurement model and the reliability of the estimated iPRCs by demonstrating that LPEs with the estimated iPRCs could predict the stochastic behaviors of the same neurons, whose iPRCs had been measured, when they were perturbed by periodic stimulus currents. Our results suggest that the LPE is an effective model for real oscillating neurons and that many theoretical frameworks based on it may be applicable to real nerve systems.

  4. Evaluation of the Phase-Dependent Rhythm Control of Human Walking Using Phase Response Curves

    PubMed Central

    Yamamoto, Yuki; Aoi, Shinya; Imai, Takashi; Aoyagi, Toshio; Tomita, Nozomi; Tsuchiya, Kazuo

    2016-01-01

    Humans and animals control their walking rhythms to maintain motion in a variable environment. The neural mechanism for controlling rhythm has been investigated in many studies using mechanical and electrical stimulation. However, quantitative evaluation of rhythm variation in response to perturbation at various timings has rarely been investigated. Such a characteristic of rhythm is described by the phase response curve (PRC). Dynamical simulations of human skeletal models with changing walking rhythms (phase reset) described a relation between the effective phase reset on stability and PRC, and phase reset around touch-down was shown to improve stability. A PRC of human walking was estimated by pulling the swing leg, but such perturbations hardly influenced the stance leg, so the relation between the PRC and walking events was difficult to discuss. This research thus examines human response to variations in floor velocity. Such perturbation yields another problem, in that the swing leg is indirectly (and weakly) perturbed, so the precision of PRC decreases. To solve this problem, this research adopts the weighted spike-triggered average (WSTA) method. In the WSTA method, a sequential pulsed perturbation is used for stimulation. This is in contrast with the conventional impulse method, which applies an intermittent impulsive perturbation. The WSTA method can be used to analyze responses to a large number of perturbations for each sequence. In the experiment, perturbations are applied to walking subjects by rapidly accelerating and decelerating a treadmill belt, and measured data are analyzed by the WSTA and impulse methods. The PRC obtained by the WSTA method had clear and stable waveforms with a higher temporal resolution than those obtained by the impulse method. By investigation of the rhythm transition for each phase of walking using the obtained PRC, a rhythm change that extends the touch-down and mid-single support phases is found to occur. PMID:27203839

  5. Evaluation of the Phase-Dependent Rhythm Control of Human Walking Using Phase Response Curves.

    PubMed

    Funato, Tetsuro; Yamamoto, Yuki; Aoi, Shinya; Imai, Takashi; Aoyagi, Toshio; Tomita, Nozomi; Tsuchiya, Kazuo

    2016-05-01

    Humans and animals control their walking rhythms to maintain motion in a variable environment. The neural mechanism for controlling rhythm has been investigated in many studies using mechanical and electrical stimulation. However, quantitative evaluation of rhythm variation in response to perturbation at various timings has rarely been investigated. Such a characteristic of rhythm is described by the phase response curve (PRC). Dynamical simulations of human skeletal models with changing walking rhythms (phase reset) described a relation between the effective phase reset on stability and PRC, and phase reset around touch-down was shown to improve stability. A PRC of human walking was estimated by pulling the swing leg, but such perturbations hardly influenced the stance leg, so the relation between the PRC and walking events was difficult to discuss. This research thus examines human response to variations in floor velocity. Such perturbation yields another problem, in that the swing leg is indirectly (and weakly) perturbed, so the precision of PRC decreases. To solve this problem, this research adopts the weighted spike-triggered average (WSTA) method. In the WSTA method, a sequential pulsed perturbation is used for stimulation. This is in contrast with the conventional impulse method, which applies an intermittent impulsive perturbation. The WSTA method can be used to analyze responses to a large number of perturbations for each sequence. In the experiment, perturbations are applied to walking subjects by rapidly accelerating and decelerating a treadmill belt, and measured data are analyzed by the WSTA and impulse methods. The PRC obtained by the WSTA method had clear and stable waveforms with a higher temporal resolution than those obtained by the impulse method. By investigation of the rhythm transition for each phase of walking using the obtained PRC, a rhythm change that extends the touch-down and mid-single support phases is found to occur. PMID:27203839

  6. Normal Caloric Responses during Acute Phase of Vestibular Neuritis

    PubMed Central

    Lee, Sun-Uk; Park, Seong-Ho; Kim, Hyo-Jung; Koo, Ja-Won

    2016-01-01

    Background and Purpose We report a novel finding of caloric conversion from normal responses into unilateral paresis during the acute phase of vestibular neuritis (VN). Methods We recruited 893 patients with a diagnosis of VN at Dizziness Clinic of Seoul National University Bundang Hospital from 2003 to 2014 after excluding 28 patients with isolated inferior divisional VN (n=14) and those without follow-up tests despite normal caloric responses initially (n=14). We retrospectively analyzed the neurotological findings in four (0.5%) of the patients who showed a conversion from initially normal caloric responses into unilateral paresis during the acute phase. Results In those four patients, the initial caloric tests were performed within 2 days of symptom onset, and conversion into unilateral caloric paresis was documented 1–4 days later. The clinical and laboratory findings during the initial evaluation were consistent with VN in all four patients except for normal findings in bedside head impulse tests in one of them. Conclusions Normal findings in caloric tests should be interpreted with caution during the acute phase of suspected VN. Follow-up evaluation should be considered when the findings of the initial caloric test are normal, but VN remains the most plausible diagnosis. PMID:26932259

  7. Pyrotechnic shock response predictions combining statistical energy analysis and local random phase reconstruction.

    PubMed

    Bodin, E; Brévart, B; Wagstaff, P; Borello, G

    2002-07-01

    Numerous pyrotechnic devices are used on satellites to separate structural subsystems, deploy appendages, and activate on-board operating subsystems. The firing of these pyrotechnic mechanisms leads to severe impulsive loads which could sometimes lead to failures in electronic systems. The objective of the present investigation is to assess the relevance of a method combining deterministic calculations and statistical energy analysis to predict the time overall shock environment of electronic equipment components. The methods are applied to the low- and high-frequency ranges, respectively, which may be defined using a modal parameter based on the effective transmissibility. Initially, in order to address the problem of the low-frequency content of the mechanical shock pulse, the linear dynamic response of the equipment was calculated using direct time integration of a finite element model of the structure. The inputs in the form of the accelerations measured in all three directions at each of the four bolted interfaces were injected into the model. The high-frequency content of the shock response is taken into account by considering the intrinsic dynamic filtering of the equipment. This frequency filter magnitude is extrapolated from the transfer function given by statistical energy analysis between the different imposed accelerations and the response accelerations. Their associated phases are synthesized by considering pseudo-modal phase variations around the group velocity of the structural flexural waves. Combining the effects of the high-frequency filter outputs and the low-frequency finite element calculations yields good predictions of the equipment shock time response over the whole frequency range of interest. PMID:12141340

  8. Pyrotechnic shock response predictions combining statistical energy analysis and local random phase reconstruction

    NASA Astrophysics Data System (ADS)

    Bodin, E.; Brevart, B.; Wagstaff, P.; Borello, G.

    2002-07-01

    Numerous pyrotechnic devices are used on satellites to separate structural subsystems, deploy appendages, and activate on-board operating subsystems. The firing of these pyrotechnic mechanisms leads to severe impulsive loads which could sometimes lead to failures in electronic systems. The objective of the present investigation is to assess the relevance of a method combining deterministic calculations and statistical energy analysis to predict the time overall shock environment of electronic equipment components. The methods are applied to the low- and high-frequency ranges, respectively, which may be defined using a modal parameter based on the effective transmissibility. Initially, in order to address the problem of the low-frequency content of the mechanical shock pulse, the linear dynamic response of the equipment was calculated using direct time integration of a finite element model of the structure. The inputs in the form of the accelerations measured in all three directions at each of the four bolted interfaces were injected into the model. The high-frequency content of the shock response is taken into account by considering the intrinsic dynamic filtering of the equipment. This frequency filter magnitude is extrapolated from the transfer function given by statistical energy analysis between the different imposed accelerations and the response accelerations. Their associated phases are synthesized by considering pseudo-modal phase variations around the group velocity of the structural flexural waves. Combining the effects of the high-frequency filter outputs and the low-frequency finite element calculations yields good predictions of the equipment shock time response over the whole frequency range of interest. copyright 2002 Acoustical Society of America.

  9. Activation of Intrinsic Immune Responses and Microglial Phagocytosis in an Ex Vivo Spinal Cord Slice Culture Model of West Nile Virus Infection

    PubMed Central

    Quick, Eamon D.; Leser, J. Smith; Tyler, Kenneth L.

    2014-01-01

    ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that causes significant neuroinvasive disease involving the brain and/or spinal cord. Experimental mouse models of WNV infection have established the importance of innate and adaptive immune responses in controlling the extent and severity of central nervous system (CNS) disease. However, differentiating between immune responses that are intrinsic to the CNS and those that are dependent on infiltrating inflammatory cells has proven difficult. We used a murine ex vivo spinal cord slice culture (SCSC) model to determine the innate immune processes specific to the CNS during WNV infections. By 7 days after ex vivo infection of SCSCs, the majority of neurons and a substantial percentage of astrocytes were infected with WNV, resulting in apoptotic cell death and astrogliosis. Microglia, the resident immune cells of the CNS, were activated by WNV infection, as exemplified by their amoeboid morphology, the development of filopodia and lamellipodia, and phagocytosis of WNV-infected cells and debris. Microglial cell activation was concomitant with increased expression of proinflammatory cytokines and chemokines, including CXCL10, CXCL1, CCL5, CCL3, CCL2, tumor necrosis factor alpha (TNF-α), TNF-related apoptosis-inducing ligand (TRAIL), and interleukin-6 (IL-6). The application of minocycline, an inhibitor of neuroinflammation, altered the WNV-induced proinflammatory cytokine/chemokine expression profile, with inhibited production of CCL5, CCL2, and IL-6. Our findings establish that CNS-resident cells have the capacity to initiate a robust innate immune response against WNV infection in the absence of infiltrating inflammatory cells and systemic immune responses. IMPORTANCE There are no specific treatments of proven efficacy available for WNV neuroinvasive disease. A better understanding of the pathogenesis of WNV CNS infection is crucial for the rational development of novel therapies. Development of a spinal cord

  10. Intrinsic evolutions of dielectric function and electronic transition in tungsten doping Ge2Sb2Te5 phase change films discovered by ellipsometry at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Guo, S.; Ding, X. J.; Zhang, J. Z.; Hu, Z. G.; Ji, X. L.; Wu, L. C.; Song, Z. T.; Chu, J. H.

    2015-02-01

    Tungsten (W) doping effects on Ge2Sb2Te5 (GSTW) phase change films with different concentrations (3.2, 7.1, and 10.8%) have been investigated by variable-temperature spectroscopic ellipsometry. The dielectric functions from 210 K to 660 K have been evaluated with the aid of Tauc-Lorentz and Drude dispersion models. The analysis of Tauc gap energy (Eg) and partial spectral weight integral reveal the correlation between optical properties and local structural change. The order degree increment and chemical bond change from covalent to resonant should be responsible for band gap narrowing and electronic transition enhancement during the phase change process. It is found that the elevated crystalline temperature for GSTW can be related to improved disorder degree. Furthermore, the shrinkage of Eg for GSTW should be attributed to the enhanced metallicity compared with undoped GST.

  11. Cephalic phase metabolic responses in normal weight adults.

    PubMed

    Bruce, D G; Storlien, L H; Furler, S M; Chisholm, D J

    1987-08-01

    The presence and physiologic importance of cephalic phase insulin release in humans remains controversial. The aim of these studies was to determine whether cephalic phase insulin release could be demonstrated in normal weight subjects and whether it would be associated with changes in blood glucose, free fatty acid, and pancreatic polypeptide levels. The studies were followed by a hyperglycemic clamp to determine whether cephalic responses would alter overall glucose disposal or glucose-stimulated insulin secretion. In all, 17 subjects were studied on two occasions with and without (control study) presentation of food stimuli. Tease-feeding alone (n = 6), or the administration of a sweet taste alone (aspartame, n = 5) failed to stimulate cephalic responses. However, the presentation of the combined stimuli (tease meals plus sweet taste, n = 7) resulted in a significant fall (P less than .005) in blood glucose levels and a variable rise in serum insulin (% insulin rise 38 +/- 15%, P less than .05) and C-peptide levels (7 +/- 6%, NS) within five minutes of the food presentation when compared with control studies, with no change seen in free fatty acid or pancreatic polypeptide levels. The blood glucose fall correlated strongly (r = .90, P less than .01) with a score of the subjective response to the food and taste.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3298939

  12. Phase response curves for models of earthquake fault dynamics

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

    2016-06-01

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.

  13. Phase response curves for models of earthquake fault dynamics.

    PubMed

    Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

    2016-06-01

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period. PMID:27368770

  14. Collective phase response curves for heterogeneous coupled oscillators

    NASA Astrophysics Data System (ADS)

    Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.

    2015-08-01

    Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.

  15. Antigen Receptor-Intrinsic Non-Self: The Key to Understanding Regulatory Lymphocyte-Mediated Idiotypic Control of Adaptive Immune Responses.

    PubMed

    Lemke, Hilmar

    2016-01-01

    The clone-specific or idiotypic characters of B as well as T cell antigen receptors (BCRs/TCRs) are associated with (1) the third-complementarity-determining regions (CDR3s) that are created during V(D)J recombination (they scarcely occur in antibody light chains) and (2) BCR idiotopes created by somatic hypermutations (SHMs) during immune responses. Therefore, BCR/TCR idiotypic sites are antigen receptor-intrinsic Non-Self (AgR-iNS) portions that fulfill two tasks: serving as a crucial component of the epitope-binding paratope and serving as target sites for anti-idiotypic BCR/TCR paratopes of other anti-Non-Self clones that are contained in both normal repertoires. The antigen-induced immune response is thus directed not only toward the environmental stimulus but also against the AgR-iNS portions of the directly and further activated clones that form a subsiding idiotypic cascade. These idiotypic chain reactions form a completely integrated idiotypic control circuit among B and T cells which contains all regulatory T and B cells. However, this circuit cannot be viewed as a network of fixed interacting nodes but rather uses the genetic Self as reference. Hence, AgR-iNS offers a mechanistic understanding of regulatory lymphocyte-mediated idiotypic control of adaptive immune responses and reconciles clonal selection and idiotypic network theories hitherto believed to be incompatible. PMID:27480901

  16. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor.

    PubMed

    Tian, Minmin; Hanley, A Bryan; Dodds, Michael W J

    2013-06-01

    Oral malodor is a major social and psychological issue that affects general populations. Volatile sulfur compounds (VSCs), particularly hydrogen sulfide (H₂S) and methyl mercaptan (CH₃SH), are responsible for most oral malodor. The objectives for this study were to determine whether allyl isothiocyanate (AITC) at an organoleptically acceptable level can eliminate VSCs containing a free thiol moiety and further to elucidate the mechanism of action and reaction kinetics. The study revealed that gas chromatograph with a sulfur detector demonstrated a good linearity, high accuracy and sensitivity on analysis of VSCs. Zinc salts eliminate the headspace level of H₂S but not CH₃SH. AITC eliminates both H₂S and CH₃SH via a nucleophilic addition reaction. In addition, a chemical structure-activity relationship study revealed that the presence of unsaturated group on the side chain of the isothiocyanate accelerates the elimination of VSCs. PMID:23470258

  17. Activation of the Nrf2 response by intrinsic hepatotoxic drugs correlates with suppression of NF-κB activation and sensitizes toward TNFα-induced cytotoxicity.

    PubMed

    Herpers, Bram; Wink, Steven; Fredriksson, Lisa; Di, Zi; Hendriks, Giel; Vrieling, Harry; de Bont, Hans; van de Water, Bob

    2016-05-01

    Drug-induced liver injury (DILI) is an important problem both in the clinic and in the development of new safer medicines. Two pivotal adaptation and survival responses to adverse drug reactions are oxidative stress and cytokine signaling based on the activation of the transcription factors Nrf2 and NF-κB, respectively. Here, we systematically investigated Nrf2 and NF-κB signaling upon DILI-related drug exposure. Transcriptomics analyses of 90 DILI compounds in primary human hepatocytes revealed that a strong Nrf2 activation is associated with a suppression of endogenous NF-κB activity. These responses were translated into quantitative high-content live-cell imaging of induction of a selective Nrf2 target, GFP-tagged Srxn1, and the altered nuclear translocation dynamics of a subunit of NF-κB, GFP-tagged p65, upon TNFR signaling induced by TNFα using HepG2 cells. Strong activation of GFP-Srxn1 expression by DILI compounds typically correlated with suppression of NF-κB nuclear translocation, yet reversely, activation of NF-κB by TNFα did not affect the Nrf2 response. DILI compounds that provided strong Nrf2 activation, including diclofenac, carbamazepine and ketoconazole, sensitized toward TNFα-mediated cytotoxicity. This was related to an adaptive primary protective response of Nrf2, since loss of Nrf2 enhanced this cytotoxic synergy with TNFα, while KEAP1 downregulation was cytoprotective. These data indicate that both Nrf2 and NF-κB signaling may be pivotal in the regulation of DILI. We propose that the NF-κB-inhibiting effects that coincide with a strong Nrf2 stress response likely sensitize liver cells to pro-apoptotic signaling cascades induced by intrinsic cytotoxic pro-inflammatory cytokines. PMID:26026609

  18. The Touch and Zap Method for In Vivo Whole-Cell Patch Recording of Intrinsic and Visual Responses of Cortical Neurons and Glial Cells

    PubMed Central

    Schramm, Adrien E.; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J.

    2014-01-01

    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi

  19. Acute phase proteins response to feed deprivation in broiler chickens.

    PubMed

    Najafi, P; Zulkifli, I; Soleimani, A F; Goh, Y M

    2016-04-01

    Feed deprivation in poultry farming imposes some degree of stress to the birds, and adversely affects their well -being. Serum levels of acute phase proteins (APP) are potential physiological indicators of stress attributed to feed deprivation. However, it has not been determined how long it takes for a measurable APP response to stressors to occur in avian species. An experiment was designed to delineate the APP and circulating levels of corticosterone responses in commercial broiler chickens to feed deprivation for 30 h. It was hypothesized that feed deprivation would elicit both APP and corticosterone (CORT) reactions within 30 h that is probably associated with stress of hunger. Twenty-one day old birds were subjected to one of 5 feed deprivation periods: 0 (ad libitum, AL), 6, 12, 18, 24, and 30 h. Upon completion of the deprivation period, blood samples were collected to determine serum CORT, ovotransferrin (OVT), α1-acid glycoprotein (AGP), and ceruloplasmin (CP) concentrations. Results showed that feed deprivation for 24 h or more caused a marked elevation in CORT (P=0.002 and P<0.0001, respectively) when compared to AL. However, increases in AGP (P=0.0005), CP (P=0.0002), and OVT (P=0.0003) were only noted following 30 h of feed deprivation. It is concluded that elicitation of AGP, CP, and OVT response may represent a more chronic stressful condition than CORT response in assessing the well-being of broiler chickens. PMID:26908886

  20. HGFL supports mammary tumorigenesis by enhancing tumor cell intrinsic survival and influencing macrophage and T-cell responses

    PubMed Central

    Benight, Nancy M.; Wagh, Purnima K.; Zinser, Glendon M.; Peace, Belinda E.; Stuart, William D.; Vasiliauskas, Juozas; Pathrose, Peterson; Starnes, Sandra L.; Waltz, Susan E.

    2015-01-01

    The Ron receptor is overexpressed in human breast cancers and is associated with heightened metastasis and poor survival. Ron overexpression in the mammary epithelium of mice is sufficient to induce aggressive mammary tumors with a high degree of metastasis. Despite the well-documented role of Ron in breast cancer, few studies have examined the necessity of the endogenous Ron ligand, hepatocyte growth factor-like protein (HGFL) in mammary tumorigenesis. Herein, mammary tumor growth and metastasis were examined in mice overexpressing Ron in the mammary epithelium with or without HGFL. HGFL ablation decreased oncogenic Ron activation and delayed mammary tumor initiation. HGFL was important for tumor cell proliferation and survival. HGFL loss resulted in increased numbers of macrophages and T-cells within the tumor. T-cell proliferation and cytotoxicity dramatically increased in HGFL deficient mice. Biochemical analysis of HGFL proficient tumors showed increased local HGFL production, with HGFL loss decreasing β-catenin expression and NF-κB activation. Re-expression of HGFL in HGFL deficient tumor cells stimulated cell migration and invasion with coordinate activation of NF-κB and reduced apoptosis. Together, these results demonstrate critical in vivo functions for HGFL in promoting breast tumorigenesis and suggest that targeting HGFL may inhibit tumor growth and reactivate anti-tumor immune responses. PMID:25938541

  1. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice.

    PubMed

    Rosell, Meritxell; Kaforou, Myrsini; Frontini, Andrea; Okolo, Anthony; Chan, Yi-Wah; Nikolopoulou, Evanthia; Millership, Steven; Fenech, Matthew E; MacIntyre, David; Turner, Jeremy O; Moore, Jonathan D; Blackburn, Edith; Gullick, William J; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G; Christian, Mark

    2014-04-15

    Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with "browning," as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes. PMID:24549398

  2. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice

    PubMed Central

    Rosell, Meritxell; Kaforou, Myrsini; Frontini, Andrea; Okolo, Anthony; Chan, Yi-Wah; Nikolopoulou, Evanthia; Millership, Steven; Fenech, Matthew E.; MacIntyre, David; Turner, Jeremy O.; Moore, Jonathan D.; Blackburn, Edith; Gullick, William J.; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G.

    2014-01-01

    Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a “brite” transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with “browning,” as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes. PMID:24549398

  3. Acute phase protein response in the capybara (Hydrochoerus hydrochaeris).

    PubMed

    Bernal, Luis; Feser, Mariane; Martínez-Subiela, Silvia; García-Martínez, Juan D; Cerón, José J; Tecles, Fernando

    2011-10-01

    We evaluated the acute phase protein response in capybaras (Hydrochoerus hydrochaeris). Three animal groups were used: 1) healthy animals (n=30), 2) a group in which experimental inflammation with turpentine was induced (n=6), and 3) a group affected with sarcoptic scabies (n=14) in which 10 animals were treated with ivermectin. Haptoglobin (Hp), acid-soluble glycoprotein (ASG) and albumin were analyzed in all animals. In those treated with turpentine, Hp reached its maximum value at 2 wk with a 2.7-fold increase, whereas ASG increased 1.75-fold and albumin decreased 0.87-fold 1 wk after the induction of inflammation. Capybaras affected with sarcoptic scabies presented increases in Hp and ASG of 4.98- and 3.18-fold, respectively, and a 0.87-fold decrease in albumin, compared with healthy animals. Haptoglobin and ASG can be considered as moderate, positive acute phase proteins in capybaras because they showed less than 10-fold increases after an inflammatory process and reached their peak concentrations 1 wk after the induction of inflammation. Conversely, albumin can be considered a negative acute phase protein in capybaras because it showed a reduction in concentration after inflammatory stimulus. PMID:22102653

  4. Robust Entrainment of Circadian Oscillators Requires Specific Phase Response Curves

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin; Lefranc, Marc

    2011-01-01

    The circadian clocks keeping time in many living organisms rely on self-sustained biochemical oscillations entrained by external cues, such as light, to the 24-h cycle induced by Earth's rotation. However, environmental cues are unreliable due to the variability of habitats, weather conditions, or cue-sensing mechanisms among individuals. A tempting hypothesis is that circadian clocks have evolved so as to be robust to fluctuations in the signal that entrains them. To support this hypothesis, we analyze the synchronization behavior of weakly and periodically forced oscillators in terms of their phase response curve (PRC), which measures phase changes induced by a perturbation applied at different times of the cycle. We establish a general relationship between the robustness of key entrainment properties, such as stability and oscillator phase, on the one hand, and the shape of the PRC as characterized by a specific curvature or the existence of a dead zone, on the other hand. The criteria obtained are applied to computational models of circadian clocks and account for the disparate robustness properties of various forcing schemes. Finally, the analysis of PRCs measured experimentally in several organisms strongly suggests a case of convergent evolution toward an optimal strategy for maintaining a clock that is accurate and robust to environmental fluctuations. PMID:21641300

  5. The effects of inhaled corticosteroids on intrinsic responsiveness and histology of airways from infant monkeys exposed to house dust mite allergen and ozone

    SciTech Connect

    Joad, Jesse P. Kott, Kayleen S.; Bric, John M.; Schelegle, Edward S.; Gershwin, Laurel J.; Plopper, Charles G.; Peake, Janice L.; Pinkerton, Kent E.

    2008-01-15

    Inhaled corticosteroids (ICS) are recommended to treat infants with asthma, some with intermittent asthma. We previously showed that exposing infant monkeys to allergen/ozone resulted in asthma-like characteristics of their airways. We evaluated the effects of ICS on histology and intrinsic responsiveness of allergen/ozone-exposed and normal infant primate airways. Infant monkeys were exposed by inhalation to (1) filtered air and saline, (2) house dust mite allergen (HDMA) + ozone and saline, (3) filtered air and ICS (budesonide) or (4) HDMA + ozone and ICS. Allergen/ozone exposures started at 1 month and ICS at 3 months of age. At 6 months of age, methacholine-induced changes in luminal area of airways in proximal and distal lung slices were determined using videomicrometry, followed by histology of the same slices. Proximal airway responsiveness was increased by allergen/ozone and by ICS. Eosinophil profiles were increased by allergen/ozone in both proximal and distal airways, an effect that was decreased by ICS in distal airways. In both allergen/ozone- and air-exposed monkeys, ICS increased the number of alveolar attachments in distal airways, decreased mucin in proximal airways and decreased epithelial volume in both airways. ICS increased smooth muscle in air-exposed animals while decreasing it in allergen/ozone-exposed animals in both airways. In proximal airways, there was a small but significant positive correlation between smooth muscle and airway responsiveness, as well as between alveolar attachments and responsiveness. ICS change morphology and function in normal airways as well as allergen/ozone-exposed airways, suggesting that they should be reserved for infants with active symptoms.

  6. Electrodynamic response in the electronic nematic phase of BaFe2As2

    NASA Astrophysics Data System (ADS)

    Mirri, C.; Dusza, A.; Bastelberger, S.; Chinotti, M.; Chu, J.-H.; Kuo, H.-H.; Fisher, I. R.; Degiorgi, L.

    2016-02-01

    We perform, as a function of uniaxial stress, a temperature-dependent optical-reflectivity investigation of the parent Fe-arsenide compound BaFe2As2 over a broad spectral range, from the far infrared up to the ultraviolet, across the coincident structural tetragonal-to-orthorhombic and spin-density-wave (SDW) phase transitions at Ts ,N=135 K. Our results provide knowledge to the complete electrodynamic response of the title compound over a wide energy range as a function of both tunable variables. For temperatures below Ts ,N, varying the uniaxial stress in situ affects the twin domain population and yields hysteretic behavior of the optical properties as the stress is first increased and then decreased, whereas for temperatures above Ts ,N the stress-induced optical anisotropy is reversible, as anticipated. In particular, by analyzing the low-frequency infrared response, we obtain detailed insight to the effects determining the intrinsic anisotropy of the (metallic) charge dynamics in the orthorhombic state, and similarly the induced one due to applied uniaxial stress at higher temperatures in the tetragonal phase. The low-frequency optical conductivity thus allows establishing a link to the d c transport properties and reveals that they are determined almost exclusively by changes in the Drude weight, therefore by the anisotropy in the Fermi surface parameters. Finally, we show that the spectral weight distribution in the SDW state occurs for energies below approximately 1 eV, and therefore points towards a correlation mechanism due to Hund's coupling rather than on-site Coulomb interactions.

  7. Electrophysiological characterization of neurons in the dorsolateral pontine REM sleep induction zone of the rat: intrinsic membrane properties and responses to carbachol and orexins

    PubMed Central

    Brown§, Ritchie E.; Winston, Stuart; Basheer, Radhika; Thakkar, Mahesh M; McCarley, Robert W.

    2006-01-01

    Pharmacological, lesion and single-unit recording techniques in several animal species have identified a region of the pontine reticular formation (Subcoeruleus, SubC) just ventral to the locus coeruleus as critically involved in the generation of rapid-eye-movement (REM) sleep. However, the intrinsic membrane properties and responses of SubC neurons to neurotransmitters important in REM sleep control, such as acetylcholine and orexins/hypocretins, have not previously been examined in any animal species and thus were targeted in this study. We obtained whole-cell patch-clamp recordings from visually identified SubC neurons in rat brain slices in vitro. Two groups of large neurons (mean diameter 30 and 27μm) were tentatively identified as cholinergic (rostral SubC) and noradrenergic (caudal SubC) neurons. SubC reticular neurons (non-cholinergic, non-noradrenergic) showed a medium-sized depolarizing sag during hyperpolarizing current pulses and often had a rebound depolarization (low-threshold spike, LTS). During depolarizing current pulses they exhibited little adaptation and fired maximally at 30–90 Hz. Those SubC reticular neurons excited by carbachol (n=27) fired spontaneously at 6 Hz, often exhibited a moderately sized LTS, and varied widely in size (17–42 μm). Carbachol-inhibited SubC reticular neurons were medium-sized (15–25 μm) and constituted two groups. The larger group (n=22) was silent at rest and possessed a prominent LTS and associated 1–4 action potentials. The second, smaller group (n=8) had a delayed return to baseline at the offset of hyperpolarizing pulses. Orexins excited both carbachol excited and carbachol inhibited SubC reticular neurons. SubC reticular neurons had intrinsic membrane properties and responses to carbachol similar to those described for other reticular neurons but a larger number of carbachol inhibited neurons were found (> 50 %), the majority of which demonstrated a prominent LTS and may correspond to PGO-on neurons

  8. Performance evaluation of partial response continuous phase modulation: Discriminator detection

    NASA Astrophysics Data System (ADS)

    Trachtman, Eyal

    1989-09-01

    The principles of continuous phase modulation (CPM) are reviewed and signalling schemes based on it are discussed. The discriminator detector is widely used to detect CPM signals on band limited channels; it is a non-coherent detector which is widely used in mobile communication applications in which fading makes coherent detection difficult; it is suitable for frequency hopping systems. The detector's inferior response to that of a coherent detector can be compensated by suitable design. The performance is compared of various receivers which use the discriminator detector, using an especially written computer simulation. Receiver schemes considered included: Full response signal with integrate and dump filter; Integrate and dump filter with differential symbol detection; zero forcing linear equalization with symbol detection; Decision feedback equalization (DFE); Maximum likelihood sequence estimation; and Tomlinson filter configuration. The Tomlinson filter configuration, which has not previously been used in a CPM communication system, was compared with the other systems with respect to performance and complexity. For all CPM and detection schemes there are optimum values of h, the modulation index and there is no benefit in increasing the value of h and, therefore the bandwidth, beyond this value. Results are presented for various signal schemes, which indicate that detectability performance can be improved and bandwidth reduced by using a partial response CPM. There is a tradeoff between detectability performance and bandwidth, as a function of the baseband pulse duration. It was found that quaternary signal schemes gave better detectability performance than binary schemes, for the same bit-rates. The simulation results indicated that the Tomlinson-DFE configuration was effective for the partial response M-ary CPM channel with discriminator detection; spectral efficiency was not seriously degraded by precoding using the Tomlinson filter, and there was no

  9. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    SciTech Connect

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities.

  10. Optimal Colored Noise for Estimating Phase Response Curves

    NASA Astrophysics Data System (ADS)

    Morinaga, Kazuhiko; Miyata, Ryota; Aonishi, Toru

    2015-09-01

    The phase response curve (PRC) is an important measure representing the interaction between oscillatory elements. To understand synchrony in biological systems, many research groups have sought to measure PRCs directly from biological cells including neurons. Ermentrout et al. and Ota et al. showed that PRCs can be identified through measurement of white-noise spike-triggered averages. The disadvantage of this method is that one has to collect more than ten-thousand spikes to ensure the accuracy of the estimate. In this paper, to achieve a more accurate estimation of PRCs with a limited sample size, we use colored noise, which has recently drawn attention because of its unique effect on dynamical systems. We numerically show that there is an optimal colored noise to estimate PRCs in the most rigorous fashion.

  11. Ultrafast Intrinsic Photoresponse and Direct Evidence of Sub-gap States in Liquid Phase Exfoliated MoS2Thin Films

    PubMed Central

    Ghosh, Sujoy; Winchester, Andrew; Muchharla, Baleeswaraiah; Wasala, Milinda; Feng, Simin; Elias, Ana Laura; Krishna, M. Bala Murali; Harada, Takaaki; Chin, Catherine; Dani, Keshav; Kar, Swastik; Terrones, Mauricio; Talapatra, Saikat

    2015-01-01

    2-Dimensional structures with swift optical response have several technological advantages, for example they could be used as components of ultrafast light modulators, photo-detectors, and optical switches. Here we report on the fast photo switching behavior of thin films of liquid phase exfoliated MoS2, when excited with a continuous laser of λ = 658 nm (E = 1.88 eV), over a broad range of laser power. Transient photo-conductivity measurements, using an optical pump and THz probe (OPTP), reveal that photo carrier decay follows a bi-exponential time dependence, with decay times of the order of picoseconds, indicating that the photo carrier recombination occurs via trap states. The nature of variation of photocurrent with temperature confirms that the trap states are continuously distributed within the mobility gap in these thin film of MoS2, and play a vital role in influencing the overall photo response. Our findings provide a fundamental understanding of the photo-physics associated with optically active 2D materials and are crucial for developing advanced optoelectronic devices. PMID:26175112

  12. Geometric intrinsic symmetries

    SciTech Connect

    Gozdz, A. Szulerecka, A.; Pedrak, A.

    2013-08-15

    The problem of geometric symmetries in the intrinsic frame of a many-body system (nucleus) is considered. An importance of symmetrization group notion is discussed. Ageneral structure of the intrinsic symmetry group structure is determined.

  13. Interface property responsible for effective interactions of protean segments: Intrinsically disordered regions that undergo disorder-to-order transitions upon binding.

    PubMed

    Shaji, Divya; Amemiya, Takayuki; Koike, Ryotaro; Ota, Motonori

    2016-09-01

    Proteins that lack a well-defined conformation under native conditions are referred to as intrinsically disordered proteins. When interacting with partner proteins, short regions in disordered proteins can undergo disorder-to-order transitions upon binding; these regions are called protean segments (ProSs). It has been indicated that interactions of ProSs are effective: the number of contacts per residue of ProS interface is large. To reveal the properties of ProS interface that are responsible for the interaction efficiency, we classified the interface into core, rim and support, and analyzed them based on the relative accessible surface area (rASA). Despite the effective interactions, the ProS interface is mainly composed of rim residues, rather than core. The ProS rim is more effective than the rim of heterodimers, because the average rASAs of ProS rim, which is significantly large in the monomeric state, provides a large area to be used for the interactions. The amino acid composition of ProSs correlated well with those of heterodimers in both the core and rim. Therefore, the composition cannot explain why the rASAs of the ProS rim are large in the monomeric state. The balance between a small core and a large rim, and the large solvent exposure of the rim in the monomeric state, are the key to the disorder-to-order transition and the effective interactions of ProSs. PMID:27450808

  14. Shapiro Step Response of Intrinsic Josephson Junctions of (Bi1-xPbx)2Sr2CaCu2Oy at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Oya, G.; Miyasaka, T.; Kitamura, M.; Irie, A.

    We have studied the response of stacks of intrinsic Josephson junctions (IJJs) of (Bi1-xPbx)2Sr2CaCu2Oy (x = 0.15) to injection of microwave of frequencies frf of 2-20 GHz at 4.2 K and higher temperatures. Clear constant voltage steps, which are considered Shapiro steps, are successfully observed on the current-voltage characteristic of an IJJ with a resistivity of Josephson-vortex flow Rfl in any stack under the injection of microwave. The step of the eighth order, which is the highest in this study, is observed from the largest IJJ under injection of microwave of 10 GHz at 4.2 K. But, as the temperature increases, the number of steps decreases, and finally the steps disappear at ∼45 K due to large self-heating. In this IJJ a low Rfl plays an important role in appearance of the steps of the high order. The typical behavior of the steps at 4.2 K is well reproduced by numerical simulations on that of Shapiro steps of a JJ with the shunt resistivity equal to Rfl at the temperature.

  15. Individual Patterns in Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Hom, Harry L., Jr.; Maxwell, Frederick R.

    The effects of extrinsic reward on students' intrinsic interest was investigated using a single-subject design in a behavior disorders classroom. Baseline measures of the interest level of five children (ages 9-11 years) were collected for academic and non-academic tasks. Assessment was then made of each subject's response hierarchy or level of…

  16. Motexafin-Gadolinium and Involved Field Radiation Therapy for Intrinsic Pontine Glioma of Childhood: A Children's Oncology Group Phase 2 Study

    SciTech Connect

    Bradley, Kristin A.; Zhou Tianni; McNall-Knapp, Rene Y.; Jakacki, Regina I.; Pollack, Ian F.

    2013-01-01

    Purpose: To evaluate the effects on 1-year event-free survival (EFS) and overall survival (OS) of combining motexafin and gadolinium (MGd), a potent radiosensitizer, with daily fractionated radiation therapy in children with newly diagnosed intrinsic pontine gliomas. Methods and Materials: Patients with newly diagnosed intrinsic pontine glioma were treated with MGd daily for 5 consecutive days each week, for a total of 30 doses. Patients received a 5- to 10-min intravenous bolus of MGd, 4.4 mg/kg/day, given 2 to 5 h prior to standard dose irradiation. Radiation therapy was administered at a daily dose of 1.8 Gy for 30 treatments over 6 weeks. The total dose was 54 Gy. Results: Sixty eligible children received MGd daily, concurrent with 6 weeks of radiation therapy. The estimated 1-year EFS was 18% {+-} 5%, and the estimated 1-year OS was 53% {+-} 6.5%. The most common grade 3 to 4 toxicities were lymphopenia, transient elevation of liver transaminases, and hypertension. Conclusions: Compared to historical controls, the addition of MGd to a standard 6-week course of radiation did not improve the survival of pediatric patients with newly diagnosed intrinsic pontine gliomas.

  17. Ecotoxicological evaluation of low-concentration bisphenol A exposure on the soil nematode Caenorhabditis elegans and intrinsic mechanisms of stress response in vivo.

    PubMed

    Zhou, Dong; Yang, Jie; Li, Hui; Lu, Qiang; Liu, Yong-di; Lin, Kuang-Fei

    2016-08-01

    As a representative species of nematodes, Caenorhabditis elegans is an attractive animal model for evaluating ecotoxicological effects and intrinsic mechanisms of the stress response in vivo. To acquire a better knowledge of environmental effects of bisphenol A (BPA), ecotoxicological evaluations were conducted using C. elegans on the physiological (growth, locomotion behaviors, and reproduction), biochemical (lipofuscin accumulation, reactive oxygen species production, and cell apoptosis), and molecular (stress-related gene expression) responses. Nematodes were exposed to BPA (0.001-10 µM) in 2 assay systems (L4 larvae for 24 h and L1 larvae for 72 h). Exposure to BPA could significantly (p < 0.05) alter body length, locomotion behaviors, brood size, cell apoptosis, and selected stress-related gene expression. At the physiological level, BPA exerted adverse effects on nematodes at the microgram per liter level in both assay systems, with head thrashes as the most sensitive endpoint. At the biochemical level, apoptosis degree showed increases at concentrations above 0.1 µM in both assay systems. At the molecular level, BPA induced increases in selected stress-related gene expression, even at the lowest tested concentration. In addition, BPA-induced cell apoptosis was suggested as a potential mode of action, resulting in adverse physiological effects. Therefore, BPA exposure was speculated to impose developmental, reproductive, and neurobehavioral toxicities on C. elegans and caused variations of stress-related gene expression. Environ Toxicol Chem 2016;35:2041-2047. © 2016 SETAC. PMID:26748796

  18. Detecting and identifying two-dimensional symmetry-protected topological, symmetry-breaking, and intrinsic topological phases with modular matrices via tensor-network methods

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Yu; Wei, Tzu-Chieh

    2016-04-01

    Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry-breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices to study transitions in a few families of two-dimensional (2D) wave functions which are ZN (N =2 and3 ) symmetric. We find that in addition to the topologically ordered phases, the modular matrices can be used to identify nontrivial SPT phases and detect transitions between different SPT phases as well as between symmetric and symmetry-breaking phases. Therefore modular matrices can be used to characterize various types of gapped phases in a unifying way.

  19. Rhodopsin and Melanopsin Contributions to the Early Redilation Phase of the Post-Illumination Pupil Response (PIPR)

    PubMed Central

    Adhikari, Prakash; Feigl, Beatrix; Zele, Andrew J.

    2016-01-01

    Melanopsin expressing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) entirely control the post-illumination pupil response (PIPR) from 6 s post-stimulus to the plateau during redilation after light offset. However, the photoreceptor contributions to the early redilation phase of the PIPR (< 6 s post-stimulus) have not been reported. Here, we evaluated the photoreceptor contributions to the early phase PIPR (0.6 s to 5.0 s) by measuring the spectral sensitivity of the criterion PIPR amplitude in response to 1 s light pulses at five narrowband stimulus wavelengths (409, 464, 508, 531 and 592 nm). The retinal irradiance producing a criterion PIPR was normalised to the peak and fitted by either a single photopigment nomogram or the combined melanopsin and rhodopsin spectral nomograms with the +L+M cone photopic luminous efficiency (Vλ) function. We show that the PIPR spectral sensitivity at times ≥ 1.7 s after light offset is best described by the melanopsin nomogram. At times < 1.7 s, the peak PIPR sensitivity shifts to longer wavelengths (range: 482 to 498 nm) and is best described by the combined photoreceptor nomogram, with major contributions from melanopsin and rhodopsin. This first report of melanopsin and rhodopsin contributions to the early phase PIPR is in line with the electrophysiological findings of ipRGC and rod signalling after the cessation of light stimuli and provides a cut-off time for isolating photoreceptor specific function in healthy and diseased eyes. PMID:27548480

  20. Self-biased magnetoelectric response in three-phase laminates

    NASA Astrophysics Data System (ADS)

    Yang, Su-Chul; Park, Chee-Sung; Cho, Kyung-Hoon; Priya, Shashank

    2010-11-01

    This study reports the experimental observation and analysis of self-biased magnetoelectric (ME) effect in three-phase laminates. The 2-2 L-T mode laminates were fabricated by attaching nickel (Ni) plates and ME particulate composite plates having 3-0 connectivity with 0.948Na0.5K0.5NbO3-0.052LiSbO3 (NKNLS) matrix and Ni0.8Zn0.2Fe2O4 (NZF) dispersant. The presence of two types of ferromagnetic materials, Ni and NZF, results in built-in magnetic bias due to difference in their magnetic susceptibilities and coercivity. This built-in bias (Hbias) provides finite ME effect at zero applied magnetic dc field. The ME response of bending mode trilayer laminate NKNLS-NZF/Ni/NKNLS-NZF in off-resonance and on-resonance conditions was shown to be mathematical combination of the trilayers with configuration NKNLS-NZF/Ni/NKNLS-NZF and NKNLS/Ni/NKNLS representing contributions from magnetic interaction and bending strain.

  1. Acute phase proteins in salmonids: evolutionary analyses and acute phase response.

    PubMed

    Jensen, L E; Hiney, M P; Shields, D C; Uhlar, C M; Lindsay, A J; Whitehead, A S

    1997-01-01

    Inflammation induces dramatic changes in the biosynthetic profile of the liver, leading to increased serum concentrations of positive acute phase (AP) proteins and decreased concentrations of negative AP proteins. Serum amyloid A (SAA) and the pentraxins C-reactive protein (CRP) and serum amyloid P component (SAP) are major AP proteins: their serum levels can rise by 1000-fold, indicating that they play a critical role in defense and/or the restoration of homeostasis. We have cloned SAA and a SAP-like pentraxin from salmonid fish species. The salmonid SAA shares approximately 70% amino acid identity with mammalian AP SAA. When salmonids are challenged with an AP stimulus, i.e., Aeromonas salmonicida, SAA responds dramatically as a major AP reactant. The salmonid pentraxin shows approximately 40% amino acid identity to both mammalian SAP and CRP. Evolutionary analysis suggests the presence of only a single such protein in teleosts and lower animal species. Surprisingly, the salmonid pentraxin behaves as a negative AP reactant, reminiscent of the SAP-like Syrian hamster female protein, in that hepatic mRNA concentrations decline to 50% of prestimulus levels. This study reinforces the hypothesis that SAA induction is an essential and universal feature of the vertebrate AP response and that it represents part of an ancient host defense system. Conversely, the species-dependent heterogeneity of pentraxin expression during the vertebrate AP response supports the possibility that its most important ancestral (and perhaps present) function is not related to its AP behavior. PMID:8977214

  2. Phase Response of Brain Alpha Wave to Temporally Alternating Red/Blue Light Emitting Diode Stimuli

    NASA Astrophysics Data System (ADS)

    Nishifuji, Seiji; Tanaka, Shogo

    2003-09-01

    Spatial phase response of the alpha wave is investigated under the condition that red and blue flicker stimuli are temporally alternately applied. The alternating stimuli lead to two distinct phase distributions depending on the subjects: 1) a phase reversal, in which the phases of the alpha waves are antilocked between the occipital and frontal regions, and 2) a quasi-phase-locking, in which the phase difference distribution includes the temporal alternation of a phase locking over the entire scalp and the phase reversal between the occiput and front. The result suggests possibilities for the underlying mechanism of the hyper-synchronization of the brain waves seen in photosensitive epilepsy.

  3. Identification of S-phase DNA damage-response targets in fission yeast reveals conservation of damage-response networks.

    PubMed

    Willis, Nicholas A; Zhou, Chunshui; Elia, Andrew E H; Murray, Johanne M; Carr, Antony M; Elledge, Stephen J; Rhind, Nicholas

    2016-06-28

    The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase-specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes. PMID:27298342

  4. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  5. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  6. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  7. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  8. Intrinsic Control of Axon Regeneration.

    PubMed

    He, Zhigang; Jin, Yishi

    2016-05-01

    A determinant of axon regeneration is the intrinsic growth ability of injured neurons, which dictates a battery of injury responses in axons and cell bodies. While some of these regulatory mechanisms are evolutionarily conserved, others are unique to the mammalian central nervous system (CNS) where spontaneous regeneration usually does not occur. Here we examine our current understanding of these mechanisms at cellular and molecular terms and discuss their potential implications for promoting axon regeneration and functional recovery after nerve injury. PMID:27151637

  9. The dynamic response of high pressure phase of Si using phase contrast imaging and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Galtier, E.; Xing, Z.; Gleason, A.; Granados, E.; Tavella, F.; Schropp, A.; Seiboth, F.; Schroer, C.; Higginbotham, A.; Brown, S.; Arnold, B.; Curiel, R.; Peterswright, D.; Fry, A.; Nagler, B.

    2015-11-01

    Static compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including body-centered tetragonal phase, an orthorhombic phase, and a hexagonal primitive phase. However, the dynamic response of silicon at high pressure is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. With respect to the elastic and plastic compression, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudoflat top shape creates high pressures up to 60 GPa. We also measure the crystal structure by observing the X-ray diffraction orthogonal to the shock propagation direction over a range of pressure. In this talk, we will present the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and will discuss the dynamic response of Si in high pressure phases

  10. Characterization of Recombinant Human Cytomegaloviruses Encoding IE1 Mutants L174P and 1-382 Reveals that Viral Targeting of PML Bodies Perturbs both Intrinsic and Innate Immune Responses

    PubMed Central

    Scherer, Myriam; Otto, Victoria; Stump, Joachim D.; Klingl, Stefan; Müller, Regina; Reuter, Nina; Muller, Yves A.; Sticht, Heinrich

    2015-01-01

    early protein IE1 binds to PML via a central globular domain (IE1CORE), and we have shown previously that this is sufficient to antagonize intrinsic immunity. Here, we demonstrate that modification of PML by IE1CORE not only abrogates intrinsic defense mechanisms but also attenuates the interferon response during infection. Our data show that PML plays a novel coregulatory role in type I as well as type II interferon-induced gene expression, which is antagonized by IE1CORE. Importantly, our finding supports the view that targeting of PML-NBs by viral regulatory proteins has evolved as a strategy to inhibit both intrinsic and innate immune defense mechanisms. PMID:26559840

  11. Intrinsic affinities of alkali cations for 15-crown-5 and 18-crown-6: Bond dissociation energies of gas-phase M{sup +}-crown ether complexes

    SciTech Connect

    More, M.B.; Ray, D.; Armentrout, P.B.

    1999-01-20

    Bond dissociation energies (BDEs) of M{sup +}[c-(C{sub 2}H{sub 4}O){sub 5}] and M{sup +}[c-(C{sub 2}H{sub 4}O){sub 6}] for M = Na, K, Rb, and Cs are reported. The BDEs are determined experimentally by analysis of the thresholds for collision-induced dissociation of the cation-crown ether complexes by xenon measured by using guided ion beam mass spectrometry. In all cases, the primary and lowest energy dissociation channel observed experimentally in endothermic loss of the ligand molecule. The cross section thresholds are interpreted to yield 0 and 298 K BDEs after accounting for the effects of multiple ion-molecule collisions, internal energy of the complexes, and unimolecular decay rates. For both 18-crown-6 and 15-crown-5, the BDEs decrease monotonically with increasing cation size. These results indicate that the intrinsic affinity of c-(C{sub 2}H{sub 4}O){sub 5} and c-(C{sub 2}H{sub 4}O){sub 6} for M{sup +} is determined principally by the charge density of the cation not by the ratio of the ionic radius to the cavity size. The BDEs reported here are in fair agreement with recent ab initio calculations at the MP2 level with 6-31+G* basis sets. The experimental values are systematically smaller than the computed values by 8 {+-} 2 kJ/mol per metal-oxygen interaction. The existence of less strongly bound isomers in the experimental apparatus for Rb{sup +}(15-crown-5) and Cs{sup +}(15-crown-5) appears likely, but their absence for Na{sup +} and K{sup +} complexes indicates interesting metal-dependent dynamics to the formation of such isomers.

  12. Response trajectories reveal conflict phase in image-word mismatch.

    PubMed

    van Vugt, Floris T; Cavanagh, Patrick

    2012-02-01

    In the present study, response trajectories were used in a picture–word conflict task to determine the timing of intermediate processing stages that are relatively inaccessible to response time measures. A marker was placed above or below the word ABOVE or BELOW so that its location was congruent or in conflict with the word's meaning. To report either word location(above or below the marker) or word meaning, participants moved a mouse upward toward the appropriate top left or right answer corner on the display screen.Their response trajectories showed a number of distinctive features: First, at about 200 ms after stimulus onset(the "decision moment"), the trajectory abruptly began to arc toward the appropriate answer corner; second,when the word's meaning and position were in conflict,the trajectory showed an interruption that continued until the conflict was resolved. By varying the SOA of the word and marker onsets, we found that the word meaning and word position became available at approximately 325 ms and 251 ms, respectively, after their onsets, and that the delay to resolve conflicts was about 138 ms. The timing of these response trajectory events was more stable than any extracted from the final response times, demonstrating the power of response trajectories to reveal processing stages that are only poorly resolved, if at all, by response time measures [added]. PMID:22219088

  13. [Intrinsically Photosensitive Retinal Ganglion Cells].

    PubMed

    Skorkovská, K; Skorkovská, Š

    2015-06-01

    Recently discovered intrinsically photosensitive melanopsin-containing retinal ganglion cells contribute to circadian photoentrainment and pupillary constriction; recent works have also brought new evidence for their accessory role in the visual system in humans. Pupil light reaction driven by individual photoreceptors can be isolated by means of the so called chromatic pupillography. The use of chromatic stimuli to elicit different pupillary responses may become an objective clinical pupil test in the detection of retinal diseases and in assessing new therapeutic approaches particularly in hereditary retinal degenerations like retinitis pigmentosa. In advanced stages of disease, the pupil light reaction is even more sensitive than standard electroretinography for detecting residual levels of photoreceptor activity. This review summarizes current knowledge on intrinsically photosensitive retinal cells and highlights its possible implications for clinical practice. PMID:26201360

  14. Response of an all digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Garodnick, J.; Greco, J.; Schilling, D. L.

    1974-01-01

    An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.

  15. Theory of the spin-galvanic effect and the anomalous phase shift φ0 in superconductors and Josephson junctions with intrinsic spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Konschelle, François; Tokatly, Ilya V.; Bergeret, F. Sebastián

    2015-09-01

    Due to the spin-orbit coupling (SOC) an electric current flowing in a normal metal or semiconductor can induce a bulk magnetic moment. This effect is known as the Edelstein (EE) or magnetoelectric effect. Similarly, in a bulk superconductor a phase gradient may create a finite spin density. The inverse effect, also known as the spin-galvanic effect, corresponds to the creation of a supercurrent by an equilibrium spin polarization. Here, by exploiting the analogy between a linear-in-momentum SOC and a background SU(2) gauge field, we develop a quasiclassical transport theory to deal with magnetoelectric effects in superconducting structures. For bulk superconductors this approach allows us to easily reproduce and generalize a number of previously known results. For Josephson junctions we establish a direct connection between the inverse EE and the appearance of an anomalous phase shift φ0 in the current-phase relation. In particular we show that φ0 is proportional to the equilibrium spin current in the weak link. We also argue that our results are valid generically, beyond the particular case of linear-in-momentum SOC. The magnetoelectric effects discussed in this study may find applications in the emerging field of coherent spintronics with superconductors.

  16. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    PubMed Central

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette; Poulsen, Karin T.; Campbell, Fiona M.; Eckersall, P. David; Heegaard, Peter M.H.

    2009-01-01

    The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other parts of innate host defence reactions remain somewhat elusive. In order to gain new insight into this early host defence response in the context of bacterial infection we studied gene expression changes in peripheral lymphoid tissues as compared to hepatic expression changes, 14–18 h after lung infection in pigs. The lung infection was established with the pig specific respiratory pathogen Actinobacillus pleuropneumoniae. Quantitative real-time PCR based expression analysis were performed on samples from liver, tracheobronchial lymph node, tonsils, spleen and on blood leukocytes, supplemented with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14–18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase protein response occurring concomitantly with the hepatic response. This suggests that the acute phase protein response is a more disseminated systemic response than previously thought. The current study provides to our knowledge the first example of porcine extrahepatic expression and regulation of C-reactive protein, haptoglobin, fibrinogen, pig major acute phase protein, and transferrin in peripheral lymphoid tissues. PMID:19236838

  17. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1

    PubMed Central

    Brown, James R.; Conn, Kristen L.; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven

    2016-01-01

    ABSTRACT Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against

  18. THE ACUTE PHASE RESPONSE INDUCED BY BRONCHOSCOPY WITH LAVAGE

    EPA Science Inventory

    Bronchoscopy has been used to evaluate the inflammatory responses in vitro and in vivo. The procedure may affect acute inflammation in the lower respiratory tract. We reviewed consecutive bronchoscopies done in normal healthy non-smokers between April, 1998 and April, 2004. The...

  19. Elastic Phase Response of Silica Nanoparticles Buried in Soft Matter

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Lynch, Rachel M; Voy, Brynn H; Shekhawat, Gajendra; Dravid, Vinayak; Thundat, Thomas George

    2008-01-01

    Tracking the uptake of nanomaterials by living cells is an important component in assessing both potential toxicity and in designing future materials for use in vivo. We show that the difference in the local elasticity at the site of silica (SiO{sub 2}) nanoparticles confined within a macrophage enables functional ultrasonic interactions. By elastically exciting the cell, a phase perturbation caused by the buried SiO{sub 2} nanoparticles was detected and used to map the subsurface populations of nanoparticles. Localization and mapping of stiff chemically synthesized silica nanoparticles within the cellular structures of a macrophage are important in basic as well as applied studies.

  20. Acute phase protein response in Alpine ibex with sarcoptic mange.

    PubMed

    Rahman, Md Mizanur; Lecchi, Cristina; Fraquelli, Cristina; Sartorelli, Paola; Ceciliani, Fabrizio

    2010-03-25

    The acute phase proteins (APP) are a group of serum proteins that change their concentration in animals following external or internal challenges, such as infection, inflammation or stress. The concentrations of four APPs, including serum amyloid A (SAA), haptoglobin (Hp), alpha(1)-acid glycoprotein (AGP) and ceruloplasmin (Cp) were determined in serum collected from healthy Alpine ibexes (Capra ibex) and ibexes with Sarcoptes scabiei mange. Primary structures of all four APPs were determined by cDNA sequencing. The concentrations of all four APPs were higher in serum of animals with clinical signs of sarcoptic mange when compared to healthy animals. Two of the APPs, including SAA and AGP, acted as major APPs, since their serum concentrations were increased more than 10-folds when compared to healthy animals (P<0.001). The other two APPs, including Hp and Cp, acted as minor acute phase proteins, as their concentrations were increased from two to five folds (P<0.001). These findings provide a remarkable potential as diagnostic markers for the early detection of sarcoptic mange in free ranging animals. PMID:20036058

  1. Lipolytic and metabolic response to glucagon in fasting king penguins: phase II vs. phase III.

    PubMed

    Bernard, Servane F; Thil, Marie-Anne; Groscolas, Rene

    2003-02-01

    This study aims to determine how glucagon intervenes in the regulation of fuel metabolism, especially lipolysis, at two stages of a spontaneous long-term fast characterized by marked differences in lipid and protein availability and/or utilization (phases II and III). Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo in a subantarctic bird (king penguin) before, during, and after a 2-h glucagon infusion. In the two fasting phases, glucagon infusion at a rate of 0.025 microg. kg(-1). min(-1) induced a three- to fourfold increase in the plasma concentration and in the rate of appearance (Ra) of glycerol and nonesterified fatty acids, the percentage of primary reesterification remaining unchanged. Infusion of glucagon also resulted in a progressive elevation of the plasma concentration of glucose and beta-hydroxybutyrate and in a twofold higher insulinemia. These changes were not significantly different between the two phases. The plasma concentrations of triacylglycerols and uric acid were unaffected by glucagon infusion, except for a 40% increase in plasma uric acid in phase II birds. Altogether, these results indicate that glucagon in a long-term fasting bird is highly lipolytic, hyperglycemic, ketogenic, and insulinogenic, these effects, however, being similar in phases II and III. The maintenance of the sensitivity of adipose tissue lipolysis to glucagon could suggest that the major role of the increase in basal glucagonemia observed in phase III is to stimulate gluconeogenesis rather than fatty acid delivery. PMID:12388477

  2. Fluid phase recognition molecules in neutrophil-dependent immune responses.

    PubMed

    Jaillon, Sébastien; Ponzetta, Andrea; Magrini, Elena; Barajon, Isabella; Barbagallo, Marialuisa; Garlanda, Cecilia; Mantovani, Alberto

    2016-04-01

    The innate immune system comprises both a cellular and a humoral arm. Neutrophils are key effector cells of the immune and inflammatory responses and have emerged as a major source of humoral pattern recognition molecules (PRMs). These molecules, which include collectins, ficolins, and pentraxins, are specialised in the discrimination of self versus non-self and modified-self and share basic multifunctional properties including recognition and opsonisation of pathogens and apoptotic cells, activation and regulation of the complement cascade and tuning of inflammation. Neutrophils act as a reservoir of ready-made soluble PRMs, such as the long pentraxin PTX3, the peptidoglycan recognition protein PGRP-S, properdin and M-ficolin, which are stored in neutrophil granules and are involved in neutrophil effector functions. In addition, other soluble PRMs, such as members of the collectin family, are not expressed in neutrophils but can modulate neutrophil-dependent immune responses. Therefore, soluble PRMs are an essential part of the innate immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on molecules involved in neutrophil effector functions. PMID:27021644

  3. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level.

    PubMed Central

    Wegenka, U M; Buschmann, J; Lütticken, C; Heinrich, P C; Horn, F

    1993-01-01

    Interleukin-6 (IL-6) is known to be a major mediator of the acute-phase response in liver. We show here that IL-6 triggers the rapid activation of a nuclear factor, termed acute-phase response factor (APRF), both in rat liver in vivo and in human hepatoma (HepG2) cells in vitro. APRF bound to IL-6 response elements in the 5'-flanking regions of various acute-phase protein genes (e.g., the alpha 2-macroglobulin, fibrinogen, and alpha 1-acid glycoprotein genes). These elements contain a characteristic hexanucleotide motif, CTGGGA, known to be required for the IL-6 responsiveness of these genes. Analysis of the binding specificity of APRF revealed that it is different from NF-IL6 and NF-kappa B, transcription factors known to be regulated by cytokines and involved in the transcriptional regulation of acute-phase protein genes. In HepG2 cells, activation of APRF was observed within minutes after stimulation with IL-6 or leukemia-inhibitory factor and did not require ongoing protein synthesis. Therefore, a preexisting inactive form of APRF is activated by a posttranslational mechanism. We present evidence that this activation occurs in the cytoplasm and that a phosphorylation is involved. These results lead to the conclusions that APRF is an immediate target of the IL-6 signalling cascade and is likely to play a central role in the transcriptional regulation of many IL-6-induced genes. Images PMID:7678052

  4. A pilot study of phase-evoked acoustic responses from the ears of human subjects

    NASA Astrophysics Data System (ADS)

    Christensen, Anders T.; Dewey, James; Dhar, Sumitrajit; Ordoñez, Rodrigo; Hammershøi, Dorte

    2015-12-01

    Otoacoustic emissions (OAEs) evoked by pure tones lock onto the phase of the stimulus at the place of their generation in the cochlea. The effects of phase transitions in a pure tone stimulus on OAEs have not been investigated. By combining responses to pure tones with smooth phase transitions, phase-evoked residual responses (PERRs) were extracted from nine normal-hearing subjects. Five of them had PERRs in at least 18 of 36 parameter conditions expected to yield a response. PERRs do not have a straightforward dependence on stimulus parameters, but their general prevalence suggests a temporary decoupling between stimulus and OAE phase - between 5 and 10 ms. Since the stimulus is narrow in the frequency domain, the PERR may reflect the dynamic behavior of localized regions of OAE generators.

  5. Multimodal Responses of Self-Organized Circuitry in Electronically Phase Separated Materials

    DOE PAGESBeta

    Herklotz, Andreas; Guo, Hangwen; Wong, Anthony T.; Lee, Ho Nyung; Rack, Philip D.; Ward, Thomas Z.

    2016-07-13

    When confining an electronically phase we separated manganite film to the scale of its coexisting self-organized metallic and these insulating domains allows resistor-capacitor circuit-like responses while providing both electroresistive and magnetoresistive switching functionality.

  6. An ATM-independent S-phase checkpoint response involves CHK1 pathway

    NASA Technical Reports Server (NTRS)

    Zhou, Xiang-Yang; Wang, Xiang; Hu, Baocheng; Guan, Jun; Iliakis, George; Wang, Ya

    2002-01-01

    After exposure to genotoxic stress, proliferating cells actively slow down the DNA replication through a S-phase checkpoint to provide time for repair. We report that in addition to the ataxia-telangiectasia mutated (ATM)-dependent pathway that controls the fast response, there is an ATM-independent pathway that controls the slow response to regulate the S-phase checkpoint after ionizing radiation in mammalian cells. The slow response of S-phase checkpoint, which is resistant to wortmannin, sensitive to caffeine and UCN-01, and related to cyclin-dependent kinase phosphorylation, is much stronger in CHK1 overexpressed cells, and it could be abolished by Chk1 antisense oligonucleotides. These results provide evidence that the ATM-independent slow response of S-phase checkpoint involves CHK1 pathway.

  7. The frequency response of phased-array antennas

    NASA Astrophysics Data System (ADS)

    Brock, B. C.

    1989-02-01

    The phased-array antenna will be examined from the point of view of effects caused by changes in frequency. Both simple linear arrays and the more complex conformal array are examined. For the conformal array, a comparison between a corporate-feed structure and a row series-feed structure is included. There are two primary effects which will be discussed: beam-pointing errors and distortion of large bandwidth signals. A formula for estimating the operating or tunable array bandwidth for narrow-bandwidth signals is derived. An expression for the wide-bandwidth-signal transfer function is also obtained and examined. It will be shown that the transfer function depends both on the array scan angle and the position within the mainbeam.

  8. The frequency response of phased-array antennas

    SciTech Connect

    Brock, B.C.

    1989-02-01

    The phased-array antenna will be examined from the point of view of effects caused by changes in frequency. Both simple linear arrays and the more complex conformal array are examined. For the conformal array, a comparison between a corporate-feed structure and a row series-feed structure is included. There are two primary effects which will be discussed: beam-pointing errors and distortion of large bandwidth signals. A formula for estimating the operating or tunable array bandwidth for narrow-bandwidth signals is derived. An expression for the wide-bandwidth-signal transfer function is also obtained and examined. It will be shown that the transfer function depends both on the array scan angle and the position within the mainbeam. 25 figs.

  9. Atomic-Scale Determination of Active Facets on the MoVTeNb Oxide M1 Phase and Their Intrinsic Catalytic Activity for Ethane Oxidative Dehydrogenation.

    PubMed

    Melzer, Daniel; Xu, Pinghong; Hartmann, Daniela; Zhu, Yuanyuan; Browning, Nigel D; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2016-07-25

    Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) has been used to image the basal {001} plane of the catalytically relevant M1 phase in MoVTeNb complex oxides. Facets {010}, {120}, and {210} are identified as the most frequent lateral termination planes of the crystals. Combination of STEM with He ion microscopy (HIM) images, Rietveld analysis, and kinetic tests reveals that the activation of ethane is correlated to the availability of facets {001}, {120}, and {210} at the surface of M1 crystals. The lateral facets {120} and {210} expose crystalline positions related to the typical active centers described for propane oxidation. Conversely, the low activity of the facet {010} is attributed to its configuration, consisting of only stable M6 O21 units connected by a single octahedron. Thus, we quantitatively demonstrated that differences in catalytic activity among M1 samples of equal chemical composition depend primarily on the morphology of the particles, which determines the predominant terminating facets. PMID:26990594

  10. Intrinsic time quantum geometrodynamics

    NASA Astrophysics Data System (ADS)

    Ita, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai

    2015-08-01

    Quantum geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl curvature hypothesis, and thermodynamic and gravitational "arrows of time" point in the same direction. Ricci scalar potential corresponding to Einstein's general relativity emerges as a zero-point energy contribution. A new set of fundamental commutation relations without Planck's constant emerges from the unification of gravitation and quantum mechanics.

  11. Intrinsic structure in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.

    2015-10-01

    Saturn's rings are the most prominent in our Solar system and one example of granular matter in space. Dominated by tides and inelastic collisions the system is highly flattened being almost 300000km wide while only tens of meters thick. Individual particles are composed of primarily water ice and range from microns to few tens of meters in size. Apparent patterns comprise ringlets, gaps, kinematic wakes, propellers, bending waves, and the winding spiral arms of density waves. These large-scale structures are perturbations foremost created by external as well as embedded moons. Observations made by the Cassini spacecraft currently in orbit around Saturn show these structures in unprecedented detail. But high-resolution measurements reveal the presence of small-scale structures throughout the system. These include self-gravity wakes (50-100m), overstable waves (100-300m), subkm structure at the A and B ring edges, "straw" and "ropy" structures (1-3km), and the C ring "ghosts". Most of these had not been anticipated and are found in perturbed regions, driven by resonances with external moons, where the system undergoes periodic phases of compression and relaxation that correlate with the presence of structure. High velocity dispersion and the presence of large clumps imply structure formation on time scales as short as one orbit (about 10 hours). The presence of these intrinsic structures is seemingly the response to varying local conditions such as internal density, optical depth, underlying particle size distribution, granular temperature, and distance from the central planet. Their abundance provides evidence for an active and dynamic ring system where aggregation and fragmentation are ongoing on orbital timescales. Thus a kinetic description of the rings may be more appropriate than the fluid one. I will present Cassini Ultraviolet Spectrometer (UVIS) High Speed Photometer (HSP) occultations, Voyager 1 and 2 Imaging Science Subsystem (ISS), and high

  12. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.

    PubMed

    Hayashi, Keiji; Kawashima, Takayo; Suzuki, Yuichi

    2012-07-01

    To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia. PMID:22604882

  13. Phase I and Phase II Objective Response Rates are Correlated in Pediatric Cancer Trials: An Argument for Better Clinical Trial Efficiency.

    PubMed

    Yeh, Jonathan C; Huang, Peng; Cohen, Kenneth J

    2016-07-01

    Although many phase I trials report tumor response, formal analysis of efficacy is deferred to phase II. We reviewed paired phase I and II pediatric oncology trials to ascertain the relationship between phase I and II objective response rate (OR%). Single-agent phase I trials were paired with corresponding phase II trials (comparable study drug, dosing schedule, and population). Phase I trials without efficacy data or a matching phase II trial were excluded. OR% was tabulated for all trials, and phase II authors' subjective conclusions regarding efficacy were documented; 35 pairs of trials were analyzed. The correlation between phase I and II OR% was 0.93. Between phase II studies with a "positive" conclusion versus a "negative" one, there was a statistically significant difference in mean phase I OR% (32.0% vs. 4.5%, P<0.001). Thirteen phase II studies were undertaken despite phase I OR% of 0%; only 1 had a "positive" conclusion, and none exceeded OR% of 15%. OR% are highly correlated between phase I and II pediatric oncology trials. Although not a formal measure of drug efficacy, phase I OR% may provide an estimate of phase II response, inform phase II study design, and should be given greater consideration. PMID:27164535

  14. Diminished acute phase response and increased hepatic inflammation of aged rats in response to intraperitoneal injection of lipopolysaccharide.

    PubMed

    Gomez, Christian R; Acuña-Castillo, Claudio; Pérez, Claudio; Leiva-Salcedo, Elías; Riquelme, Denise M; Ordenes, Gamaliel; Oshima, Kiyoko; Aravena, Mauricio; Pérez, Viviana I; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2008-12-01

    Aging is associated with a deterioration of the acute phase response to inflammatory challenges. However, the nature of these defects remains poorly defined. We analyzed the hepatic inflammatory response after intraperitoneal administration of lipopolysaccharide (LPS) given to Fisher 344 rats aged 6, 15, and 22-23 months. Induction of the acute phase proteins (APPs), haptoglobin, alpha-1-acid glycoprotein, and T-kininogen was reduced and/or retarded with aging. Initial induction of interleukin-6 in aged rats was normal, but the later response was increased relative to younger counterparts. An exacerbated hepatic injury was observed in aged rats receiving LPS, as evidenced by the presence of multiple microabscesses in portal tracts, confluent necrosis, higher neutrophil accumulation, and elevated serum levels of alanine aminotransferase, relative to younger animals. Our results suggest that aged rats displayed a reduced expression of APPs and increased hepatic injury in response to the inflammatory insult. PMID:19126842

  15. Titanosilicates with Strong Phase-Matched Second Harmonic Generation Responses.

    PubMed

    Chao, Tzu-Ling; Chang, Wen-Jung; Wen, Shu-Han; Lin, Yu-Qing; Chang, Bor-Chen; Lii, Kwang-Hwa

    2016-07-27

    The search for new and efficient nonlinear optical (NLO) materials has been an active research because of their technological importance in laser applications. Although a large number of frequency-doubling oxides, phosphates, borates, and fluoride-containing borates were found, no transition-metal silicate with useful NLO properties has been reported. We have now synthesized and grown crystals of two new titanosilicates, Li2K4[(TiO)Si4O12] and Li2Rb4[(TiO)Si4O12], by using a flux and supercritical hydrothermal method. Their unique 3D framework structures contain highly compressed TiO5 square pyramids which are arranged one over the other to form infinite ···Ti-O···Ti-O straight chains with alternating short and long Ti-O distances. These two materials meet the requirements for efficient second harmonic generation including lack of center of inversion symmetry, large susceptibility, phase matching, transmitting at wavelengths of interest, resistant to laser damage, and thermally stable. These attributes make them very attractive for frequency-doubling materials. PMID:27416357

  16. Origins of asymmetric stress-strain response in phase transformations

    SciTech Connect

    Sehitoglu, H.; Gall, K.

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  17. Dissociable Roles of Right Inferior Frontal Cortex and Anterior Insula in Inhibitory Control: Evidence from Intrinsic and Task-Related Functional Parcellation, Connectivity, and Response Profile Analyses across Multiple Datasets

    PubMed Central

    Ryali, Srikanth; Chen, Tianwen; Li, Chiang-Shan R.

    2014-01-01

    The right inferior frontal cortex (rIFC) and the right anterior insula (rAI) have been implicated consistently in inhibitory control, but their differential roles are poorly understood. Here we use multiple quantitative techniques to dissociate the functional organization and roles of the rAI and rIFC. We first conducted a meta-analysis of 70 published inhibitory control studies to generate a commonly activated right fronto-opercular cortex volume of interest (VOI). We then segmented this VOI using two types of features: (1) intrinsic brain activity; and (2) stop-signal task-evoked hemodynamic response profiles. In both cases, segmentation algorithms identified two stable and distinct clusters encompassing the rAI and rIFC. The rAI and rIFC clusters exhibited several distinct functional characteristics. First, the rAI showed stronger intrinsic and task-evoked functional connectivity with the anterior cingulate cortex, whereas the rIFC had stronger intrinsic and task-evoked functional connectivity with dorsomedial prefrontal and lateral fronto-parietal cortices. Second, the rAI showed greater activation than the rIFC during Unsuccessful, but not Successful, Stop trials, and multivoxel response profiles in the rAI, but not the rIFC, accurately differentiated between Successful and Unsuccessful Stop trials. Third, activation in the rIFC, but not rAI, predicted individual differences in inhibitory control abilities. Crucially, these findings were replicated in two independent cohorts of human participants. Together, our findings provide novel quantitative evidence for the dissociable roles of the rAI and rIFC in inhibitory control. We suggest that the rAI is particularly important for detecting behaviorally salient events, whereas the rIFC is more involved in implementing inhibitory control. PMID:25355218

  18. Predicting Intrinsic Motivation

    ERIC Educational Resources Information Center

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the extent to…

  19. A low-pH-inducible, stationary-phase acid tolerance response in Salmonella typhimurium.

    PubMed Central

    Lee, I S; Slonczewski, J L; Foster, J W

    1994-01-01

    Acid is an important environmental condition encountered by Salmonella typhimurium during its pathogenesis. Our studies have shown that the organism can actively adapt to survive potentially lethal acid exposures by way of at least three possibly overlapping systems. The first is a two-stage system induced in response to low pH by logarithmic-phase cells called the log-phase acid tolerance response (ATR). It involves a major molecular realignment of the cell including the induction of over 40 proteins. The present data reveal that two additional systems of acid resistance occur in stationary-phase cells. One is a pH-dependent system distinct from log-phase ATR called stationary-phase ATR. It was shown to provide a higher level of acid resistance than log-phase ATR but involved the synthesis of fewer proteins. Maximum induction of stationary-phase ATR occurred at pH 4.3. A third system of acid resistance is not induced by low pH but appears to be part of a general stress resistance induced by stationary phase. This last system requires the alternative sigma factor, RpoS. Regulation of log-phase ATR and stationary-phase ATR remains RpoS independent. Although the three systems are for the most part distinct from each other, together they afford maximum acid resistance for S. typhimurium. Images PMID:8113183

  20. Microsecond linear optical response in the unusual nematic phase of achiral bimesogens

    NASA Astrophysics Data System (ADS)

    Panov, V. P.; Balachandran, R.; Nagaraj, M.; Vij, J. K.; Tamba, M. G.; Kohlmeier, A.; Mehl, G. H.

    2011-12-01

    Some hydrocarbon linked mesogenic dimers are known to exhibit an additional nematic phase (Nx) below a conventional uniaxial nematic (Nu) phase. Although composed of non-chiral molecules, the Nx phase is found to exhibit linear (polar) switching under applied electric field. This switching has remarkably low response time of the order of a few microseconds. Two chiral domains with opposite handedness and consequently opposite responses are found in planar cells. Uniformly lying helix, electroclinic, and flexoelectric effects are given as possible causes for this intriguing phenomenon.

  1. Angus and Romosinuano steers exhibit differential acute phase responses following an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our primary objective was to elucidate the acute phase response in cattle while evaluating potential genetic differences between two diverse Bos taurus breeds [Angus (AG) and Romosinuano (RO)] in response to an endotoxin challenge. The Romosinuano is a tropically adapted Bos taurus breed developed i...

  2. Neuro-oscillatory phase alignment drives speeded multisensory response times: an electro-corticographic investigation.

    PubMed

    Mercier, Manuel R; Molholm, Sophie; Fiebelkorn, Ian C; Butler, John S; Schwartz, Theodore H; Foxe, John J

    2015-06-01

    Even simple tasks rely on information exchange between functionally distinct and often relatively distant neuronal ensembles. Considerable work indicates oscillatory synchronization through phase alignment is a major agent of inter-regional communication. In the brain, different oscillatory phases correspond to low- and high-excitability states. Optimally aligned phases (or high-excitability states) promote inter-regional communication. Studies have also shown that sensory stimulation can modulate or reset the phase of ongoing cortical oscillations. For example, auditory stimuli can reset the phase of oscillations in visual cortex, influencing processing of a simultaneous visual stimulus. Such cross-regional phase reset represents a candidate mechanism for aligning oscillatory phase for inter-regional communication. Here, we explored the role of local and inter-regional phase alignment in driving a well established behavioral correlate of multisensory integration: the redundant target effect (RTE), which refers to the fact that responses to multisensory inputs are substantially faster than to unisensory stimuli. In a speeded detection task, human epileptic patients (N = 3) responded to unisensory (auditory or visual) and multisensory (audiovisual) stimuli with a button press, while electrocorticography was recorded over auditory and motor regions. Visual stimulation significantly modulated auditory activity via phase reset in the delta and theta bands. During the period between stimulation and subsequent motor response, transient synchronization between auditory and motor regions was observed. Phase synchrony to multisensory inputs was faster than to unisensory stimulation. This sensorimotor phase alignment correlated with behavior such that stronger synchrony was associated with faster responses, linking the commonly observed RTE with phase alignment across a sensorimotor network. PMID:26041921

  3. Subjective, Physiological, and Cognitive Responses to Intravenous Nicotine: Effects of Sex and Menstrual Cycle Phase

    PubMed Central

    DeVito, Elise E; Herman, Aryeh I; Waters, Andrew J; Valentine, Gerald W; Sofuoglu, Mehmet

    2014-01-01

    Nicotine dependence is a serious public health concern. Optimal treatment of nicotine dependence will require greater understanding of the mechanisms that contribute to the maintenance of smoking behaviors. A growing literature indicates sex and menstrual phase differences in responses to nicotine. The aim of this study was to assess sex and menstrual phase influences on a broad range of measures of nicotine response including subjective drug effects, cognition, physiological responses, and symptoms of withdrawal, craving, and affect. Using a well-established intravenous nicotine paradigm and biochemical confirmation of overnight abstinence and menstrual cycle phase, analyses were performed to compare sex (age 18–50 years; 115 male and 45 female) and menstrual cycle phase (29 follicular and 16 luteal) effects. Females had diminished subjective drug effects of, but greater physiological responses to, nicotine administration. Luteal-phase females showed diminished subjective drug effects and better cognition relative to follicular-phase women. These findings offer candidate mechanisms through which the luteal phase, wherein progesterone is dominant relative to estradiol, may be protective against vulnerability to smoking. PMID:24345818

  4. The additional loss of Bak and not the lack of the protein tyrosine kinase p56/Lck in one JCaM1.6 subclone caused pronounced apoptosis resistance in response to stimuli of the intrinsic pathway.

    PubMed

    Rudner, J; Mueller, A-C; Matzner, N; Huber, S M; Handrick, R; Belka, C; Jendrossek, V

    2009-05-01

    Ionising radiation, hypoxia, and the cyclooxygenase-2 inhibitor Celecoxib are known agonists of the intrinsic apoptosis pathway that involves mitochondrial damage upstream of caspase activation. Mitochondrial integrity is regulated by the pro-apoptotic Bcl-2 protein family members Bak and Bax. Upstream of the mitochondria, many kinases and phosphatases control the apoptotic response. However, the role of the non-receptor tyrosine kinase p56/Lck during apoptosis is controversial. The present investigation demonstrate the existence of two JCaM1.6 subclones, one expressing and one deficient for Bak. The lack of p56/Lck expression in JCaM1.6 cells per se did hardly affect apoptosis induced by ionising radiation, hypoxia, or Celecoxib. Only the additional loss of Bak expression, as observed in one JCaM1.6 subclone, rendered the cells resistant. siRNA-mediated downregulation of Bak and p56/Lck mimicked the observed effects in the subclones. Earlier experiments performed with the Bak-negative clone might have lead to the wrong assumption that lack of p56/Lck alone, and not the additonal loss of Bak, was responsible for reduced sensitivity towards stimuli of the intrinsic apoptosis pathway. PMID:19343496

  5. Acute phase response induced following tumor treatment by photodynamic therapy: relevance for the therapy outcome

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Merchant, Soroush; Stott, Brandon; Cecic, Ivana; Payne, Peter; Sun, Jinghai

    2006-02-01

    Acute phase response is an effector process orchestrated by the innate immune system for the optimal mobilization of the resources of the organism distant from the local insult site needed in the execution of a host-protecting reaction. Our research has shown that mice bearing tumors treated by photodynamic therapy (PDT) exhibit the three major hallmarks of acute phase response: release of acute phase reactants, neutrophilia, and pituitary/adrenal axis activation. Of particular interest in this study were acute phase proteins that have a pivotal role in the clearance of dead cells, since the occurrence of this process in PDT-treated tumors emerges as a critical event in the course of PDT-associated host response. It is shown that this type of acute phase reactants, including complement proteins (C3, C5, C9, mannose-binding lectin, and ficolin A) and related pentraxins (serum amyloid P component and PTX3), are upregulated following tumor PDT and accumulate in the targeted lesions. Based on the recently accumulated experimental evidence it is definitely established that the acute phase response is manifested in the hosts bearing PDT-treated tumors and it is becoming clear that this effector process is an important element of PDT-associated host response bearing in impact on the eventual outcome of this therapy.

  6. Experimental evidence of the theoretical spatial frequency response of cubic phase mask wavefront coding imaging systems.

    PubMed

    Somayaji, Manjunath; Bhakta, Vikrant R; Christensen, Marc P

    2012-01-16

    The optical transfer function of a cubic phase mask wavefront coding imaging system is experimentally measured across the entire range of defocus values encompassing the system's functional limits. The results are compared against mathematical expressions describing the spatial frequency response of these computational imagers. Experimental data shows that the observed modulation and phase transfer functions, available spatial frequency bandwidth and design range of this imaging system strongly agree with previously published mathematical analyses. An imaging system characterization application is also presented wherein it is shown that the phase transfer function is more robust than the modulation transfer function in estimating the strength of the cubic phase mask. PMID:22274533

  7. Natural twilight phase-response curves for the cave-dwelling bat, Hipposideros speoris.

    PubMed

    Vanlalnghaka, C; Keny, V L; Satralkar, M K; Khare, P V; Pujari, P D; Joshi, D S

    2005-01-01

    Phase-response curves (PRCs) for the circadian rhythm of flight activity of the microchiropteran bat (Hipposideros speoris) were determined in a cave, employing discrete natural dawn and dusk twilight pulses. These PRCs are reported for the first time for any circadian system and they are unlike other PRCs constructed for nocturnal mammals. Dawn and dusk twilight pulses evoked advance and delay phase shifts, respectively. Advance phase shifts were followed by 3 to 4 advancing transients and a subsequent shortening of free-running period (tau); whereas, the delay phase shifts were instantaneous without any transients but with a subsequent lengthening of tau. PMID:16298767

  8. Effects of low-spatial-frequency response of phase plates on TEM imaging

    NASA Astrophysics Data System (ADS)

    Edgcombe, C. J.

    2015-10-01

    Images of simple objects produced by a perfect lens and a phase plate have been calculated by use of Abbe theory for Foucault, Hilbert and Zernike phase plates. The results show that with a Zernike plate, white outlines and ringing like those observed previously can be caused by the beam hole, which limits the low-spatial-frequency response of the system even when the lens behaves perfectly. When the change of phase added by the phase plate is distributed over a range of radius rather than a simple step, the unwanted effects are substantially reduced.

  9. Oltipraz-induced phase 2 enzyme response conserved in cells lacking mitochondrial DNA.

    PubMed

    Chua, Yee Liu; Zhang, Dawei; Boelsterli, Urs; Moore, Philip K; Whiteman, Matthew; Armstrong, Jeffrey S

    2005-11-11

    Oltipraz, a member of a class of 1,2-dithiolethiones, is a potent phase 2 enzyme inducing agent used as a cancer chemopreventive. In this study, we investigated regulation of the phase 2 enzyme response and protection against endogenous oxidative stress in lymphoblastic leukemic parental CEM cells and cells lacking mitochondrial DNA (mtDNA) (rho0) by oltipraz. Glutathione (GSH) levels (total and mitochondrial) and glutathione S-transferase (GST) activity were significantly increased after pretreatment with oltipraz in both parental (rho+) and rho0 cells, and both cell lines were resistant to mitochondrial oxidation, loss of mitochondrial membrane potential, and cell death in response to the GSH depleting agent diethylmaleate. These results show that the phase 2 enzyme response, by enhancing GSH-dependent systems involved in xenobiotic metabolism, blocks endogenous oxidative stress and cell death, and that this response is intact in cells lacking mtDNA. PMID:16188238

  10. The effects of digitizing rate and phase distortion errors on the shock response spectrum

    NASA Technical Reports Server (NTRS)

    Wise, J. H.

    1983-01-01

    Some of the methods used for acquisition and digitization of high-frequency transients in the analysis of pyrotechnic events, such as explosive bolts for spacecraft separation, are discussed with respect to the reduction of errors in the computed shock response spectrum. Equations are given for maximum error as a function of the sampling rate, phase distortion, and slew rate, and the effects of the characteristics of the filter used are analyzed. A filter is noted to exhibit good passband amplitude, phase response, and response to a step function is a compromise between the flat passband of the elliptic filter and the phase response of the Bessel filter; it is suggested that it be used with a sampling rate of 10f (5 percent).

  11. Survival of Campylobacter jejuni during Stationary Phase: Evidence for the Absence of a Phenotypic Stationary-Phase Response

    PubMed Central

    Kelly, Alison F.; Park, Simon F.; Bovill, Richard; Mackey, Bernard M.

    2001-01-01

    When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions. PMID:11319108

  12. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose)

    PubMed Central

    Altmeyer, Matthias; Neelsen, Kai J.; Teloni, Federico; Pozdnyakova, Irina; Pellegrino, Stefania; Grøfte, Merete; Rask, Maj-Britt Druedahl; Streicher, Werner; Jungmichel, Stephanie; Nielsen, Michael Lund; Lukas, Jiri

    2015-01-01

    Intrinsically disordered proteins can phase separate from the soluble intracellular space, and tend to aggregate under pathological conditions. The physiological functions and molecular triggers of liquid demixing by phase separation are not well understood. Here we show in vitro and in vivo that the nucleic acid-mimicking biopolymer poly(ADP-ribose) (PAR) nucleates intracellular liquid demixing. PAR levels are markedly induced at sites of DNA damage, and we provide evidence that PAR-seeded liquid demixing results in rapid, yet transient and fully reversible assembly of various intrinsically disordered proteins at DNA break sites. Demixing, which relies on electrostatic interactions between positively charged RGG repeats and negatively charged PAR, is amplified by aggregation-prone prion-like domains, and orchestrates the earliest cellular responses to DNA breakage. We propose that PAR-seeded liquid demixing is a general mechanism to dynamically reorganize the soluble nuclear space with implications for pathological protein aggregation caused by derailed phase separation. PMID:26286827

  13. Observation of spectrum effect on the measurement of intrinsic error field on EAST

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui; Sun, You-Wen; Qian, Jin-Ping; Shi, Tong-Hui; Shen, Biao; Gu, Shuai; Liu, Yue-Qiang; Guo, Wen-Feng; Chu, Nan; He, Kai-Yang; Jia, Man-Ni; Chen, Da-Long; Xue, Min-Min; Ren, Jie; Wang, Yong; Sheng, Zhi-Cai; Xiao, Bing-Jia; Luo, Zheng-Ping; Liu, Yong; Liu, Hai-Qing; Zhao, Hai-Lin; Zeng, Long; Gong, Xian-Zu; Liang, Yun-Feng; Wan, Bao-Nian; The EAST Team

    2016-06-01

    Intrinsic error field on EAST is measured using the ‘compass scan’ technique with different n  =  1 magnetic perturbation coil configurations in ohmically heated discharges. The intrinsic error field measured using a non-resonant dominated spectrum with even connection of the upper and lower resonant magnetic perturbation coils is of the order {{b}r2,1}/{{B}\\text{T}}≃ {{10}-5} and the toroidal phase of intrinsic error field is around {{60}{^\\circ}} . A clear difference between the results using the two coil configurations, resonant and non-resonant dominated spectra, is observed. The ‘resonant’ and ‘non-resonant’ terminology is based on vacuum modeling. The penetration thresholds of the non-resonant dominated cases are much smaller than that of the resonant cases. The difference of penetration thresholds between the resonant and non-resonant cases is reduced by plasma response modeling using the MARS-F code.

  14. Sulfur antisite-induced intrinsic high-temperature ferromagnetism in Ag2S:Y nanocrystals.

    PubMed

    Wang, Pan; Yang, Tianye; Zhao, Rui; Zhang, Mingzhe

    2016-04-21

    There is an urgent need for a complete understanding of intrinsic ferromagnetism, due to the necessity for application of ferromagnetic semiconductors. Here, further insight into the magnetic mechanism of sulfur antisite-induced intrinsic high-temperature ferromagnetism is investigated in Ag2S:Y nanocrystals. The gas-liquid phase chemical deposition method is adopted to obtain the monoclinic Ag2S:Y nanocrystals. The field and temperature-dependent magnetization measurements demonstrate the robust high-temperature ferromagnetism of Ag2S:Y nanocrystals. As revealed in the magnetic origin study from first-principles calculations, the intrinsic sulfur antisite defect is only responsible for the creation of a magnetic moment which mainly comes from the S 3p and Ag 4d orbitals. Such a mechanism, which is essentially different from those of dopants and other native defects, provides new insight into the origin of the magnetism. PMID:27009760

  15. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe2-x Crystals.

    PubMed

    Mahjouri-Samani, Masoud; Liang, Liangbo; Oyedele, Akinola; Kim, Yong-Sung; Tian, Mengkun; Cross, Nicholas; Wang, Kai; Lin, Ming-Wei; Boulesbaa, Abdelaziz; Rouleau, Christopher M; Puretzky, Alexander A; Xiao, Kai; Yoon, Mina; Eres, Gyula; Duscher, Gerd; Sumpter, Bobby G; Geohegan, David B

    2016-08-10

    Defect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. Here, we demonstrate the growth of MoSe2-x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to ∼20%, that exhibit a remarkable transition in electrical transport properties from n- to p-type character with increasing Se vacancy concentration. A new defect-activated phonon band at ∼250 cm(-1) appears, and the A1g Raman characteristic mode at 240 cm(-1) softens toward ∼230 cm(-1) which serves as a fingerprint of vacancy concentration in the crystals. We show that post-selenization using pulsed laser evaporated Se atoms can repair Se-vacant sites to nearly recover the properties of the pristine crystals. First-principles calculations reveal the underlying mechanisms for the corresponding vacancy-induced electrical and optical transitions. PMID:27416103

  16. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe 2−x Crystals

    DOE PAGESBeta

    Mahjouri-Samani, Masoud; Liang, Liangbo; Oyedele, Akinola; Kim, Yong-Sung; Tian, Mengkun; Cross, Nicholas; Wang, Kai; Lin, Ming-Wei; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; et al

    2016-07-14

    Defect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. In this paper, we demonstrate the growth of MoSe2–x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to ~20%, that exhibit a remarkable transition in electrical transport properties frommore » n- to p-type character with increasing Se vacancy concentration. A new defect-activated phonon band at ~250 cm-1 appears, and the A1g Raman characteristic mode at 240 cm-1 softens toward ~230 cm-1 which serves as a fingerprint of vacancy concentration in the crystals. We show that post-selenization using pulsed laser evaporated Se atoms can repair Se-vacant sites to nearly recover the properties of the pristine crystals. Finally, first-principles calculations reveal the underlying mechanisms for the corresponding vacancy-induced electrical and optical transitions.« less

  17. Ab Initio Infrared Spectra and Electronic Response Calculations for the Insulating Phases of VO2

    NASA Astrophysics Data System (ADS)

    Hendriks, Christopher; Huffman, Tyler; Walter, Eric; Qazilbash, Mumtaz; Krakauer, Henry

    Previous studies have shown that, under doping or tensile strain and upon heating, the well-known vanadium dioxide (VO2) transition from an insulating monoclinic (M1) to a metallic rutile (R) phase progresses through a triclinic symmetry (T) phase and a magnetic monoclinic phase (M2), both of which are insulating. Structurally, this progression from M1 to R through T and M2 can be characterized by the progressive breaking of the V dimers. Investigation of the effect of these structural changes on the insulating phases of VO2 may help resolve questions surrounding the long-debated issue of the respective roles of electronic correlation and Peierls mechanisms in driving the MIT. We investigated electronic and vibrational properties of the insulating phases of VO2 in the framework of DFT+U. We will present ab initio calculations of infrared spectra and optical electronic responses for the insulating phases and compare these to available experimental measurements. Supported by ONR.

  18. Enhanced response to ozone exposure during the follicular phase of the menstrual cycle

    SciTech Connect

    Fox, S.D.; Adams, W.C.; Brookes, K.A.; Lasley, B.L. )

    1993-08-01

    Exposure to ozone (O[sub 3]), a toxic component of photochemical smog, results in significant airway inflammation, respiratory discomfort, and pulmonary function impairment. These effects can be reduced via pretreatment with anti-inflammatory agents. Progesterone, a gonadal steroid, is known to reduce general inflammation in the uterine endometrium. However, it is not known whether fluctuation in blood levels of progesterone, which are experienced during the normal female menstrual cycle, could alter O[sub 3] inflammatory-induced pulmonary responses. In this study, we tested the hypothesis that young, adult females are more responsive to O[sub 3] inhalation with respect to pulmonary function impairment during their follicular (F) menstrual phase when progesterone levels are lowest that during their mid-luteal (ML) phase when progesterone levels are highest. Nine subjects with normal ovarian function were exposed in random order for 1 hour each to filtered air and to 0.30 ppm O[sub 3] in their F and ML menstrual phases. Ozone responsiveness was measured by percent change in pulmonary function from pre- to postexposure. Significant gas concentration effects (filtered air versus O[sub 3]) were observed for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1]), and forced expiratory flow between 25 and 75% of FVC (FEF[sub 25-75]), showed a significant menstrual phase and gas concentration interaction effect, with larger decrements observed in the F menstrual phase when progesterone concentrations were significantly lower. We conclude that young, adult females appear to be more responsive to acute O[sub 3] exposure during the F phase than during the ML phase of their menstrual cycles. This difference in pulmonary function response could be related to the anti-inflammatory effects of increased progesterone concentrations during the luteal phase.

  19. Hypercapnic blood pressure response is greater during the luteal phase of the menstrual cycle.

    PubMed

    Edwards, N; Wilcox, I; Polo, O J; Sullivan, C E

    1996-11-01

    We investigated the cardiovascular responses to acute hypercapnia during the menstrual cycle. Eleven female subjects with regular menstrual cycles performed hypercapnic rebreathing tests during the follicular and luteal phases of their menstrual cycles. Ventilatory and cardiovascular variables were recorded breath by breath. Serum progesterone and estradiol were measured on each occasion. Serum progesterone was higher during the luteal [50.4 +/- 9.6 (SE) nmol/l] than during the follicular phase (2.1 +/- 0.7 nmol/l; P < 0.001), but serum estradiol did not differ (follicular phase, 324 +/- 101 pmol/l; luteal phase, 162 +/- 71 pmol/l; P = 0.61). The systolic blood pressure responses during hypercapnia were 2.0 +/- 0.3 and 4.0 +/- 0.5 mmHg/Torr (1 Torr = 1 mmHg rise in end-tidal PCO2) during the follicular and luteal phases, respectively, of the menstrual cycle (P < 0.01). The diastolic blood pressure responses were 1.1 +/- 0.2 and 2.1 +/- 0.3 mmHg/Torr during the follicular and luteal phases, respectively (P < 0.002). Heart rate responses did not differ during the luteal (1.7 +/- 0.3 beats.min-1.Torr-1) and follicular phases (1.4 +/- 0.3 beats.min-1.Torr-1; P = 0.59). These data demonstrate a greater pressor response during the luteal phase of the menstrual cycle that may be related to higher serum progesterone concentrations. PMID:8941539

  20. Associations between adrenocortical activity and nicotine response in female smokers by menstrual phase.

    PubMed

    Huttlin, Eileen A; Allen, Alicia M; Tosun, Nicole L; Allen, Sharon S; al'Absi, Mustafa

    2015-11-01

    Previous research suggests that menstrual phase may influence smoking-related symptomatology. The present study analyzes the relationship between menstrual phase and salivary cortisol with subjective responses to nicotine among female smokers during ad libitum smoking. We hypothesize higher cortisol levels would be associated with increased positive and decreased negative subjective responses to nicotine. We also expected that these associations would vary by menstrual phase. Females aged 18-40 who smoke at least five cigarettes/day, reported regular menstrual cycles and did not use exogenous hormones or psychotropic medications were enrolled into a controlled cross-over trial. Participants completed identical data collection procedures during follicular (F) and luteal (L) phases; including self-collected salivary cortisol samples and completion of a nicotine response lab session involving administration of nicotine nasal spray and monitoring of subjective response to nicotine via the Subjective State Scale and Visual Analog Scale. Participants (n = 116) were 29.1 ± 6.9 years old and smoked an average of 12.3 ± 5.5 cigarettes daily. During F phase, higher morning cortisol was associated with decreased negative affect (r = -0.21, p = 0.03), withdrawal (r = -0.30, p < 0.01) and increased relaxation (r = 0.24, p = 0.02) after administration of nicotine nasal spray. Conversely, during L phase, higher morning cortisol was associated with a decrease in head rush (r = -0.26, p = 0.01) and urge to smoke (r = -0.21, p = 0.04) after administration of nicotine nasal spray. Similar associations between greater diurnal cortisol variation and response to nicotine were seen. These observations indicate that cortisol may have a phase-specific association with some subjective responses to nicotine in female smokers. Additional research should explore how these relationships may influence smoking cessation efforts. PMID:26135333

  1. Intrinsic gas-phase reactivity of ionized 6-(oxomethylene)cyclohexa-2,4-dienone: evidence pointing to its neutral alpha-oxoketene counterpart as a proper precursor of various benzopyran-4-ones and analogues.

    PubMed

    de Carvalho, Paulo Sergio; Nachtigall, Fabiane M; Eberlin, Marcos Nogueira; Moraes, Luiz Alberto Beraldo

    2007-08-01

    Despite its unique structure and potential use as an important building block in organic synthesis, the title alpha-oxoketene 1 has been formed mostly under very special conditions as a short-lived species. The reactivity of 1 is, therefore, nearly unexplored. In great contrast, it seemed that its ionized gaseous form 1*+ is stable and easily accessible. In this study, we used multiple-stage pentaquadrupole mass spectrometry to probe the formation of gaseous 1*+ and explore its stability and intrinsic reactivity. With water and methanol, gaseous 1*+ was found to react similarly to solvated 1, which indicates that there is a close parallel between their reactivities. Gaseous 1*+ was also found to react promptly via polar [3 + 2] cycloadditons with various dienophiles including alkenes, alkynes, isocyanates, ketones and esters, thus forming a series of benzopyran-4-ones (flavones, 4-chromanones, 4-chromenones, benzo[1,3]dioxin-4-ones, and analogues) that are common structural units in many natural products. The present availability of 1 at room temperature and the gas-phase findings reported herein for gaseous 1*+ indicate that solvated 1 should undergo many [4 + 2] cycloadditions and functions as a versatile precursor of a variety of biologically active molecules. PMID:17629330

  2. Intraday Variability: Intrinsic or Extrinsic?

    NASA Astrophysics Data System (ADS)

    Sarma Kuchibhotla, Huthavahana; Lister, Matthew; Homan, Dan; Kellermann, Ken; Aller, Hugh; Aller, Margo; Agudo, Ivan; Arshakian, Tigran; Kovalev, Yuri; Lobanov, Andrew; Pushkarev, Alexander; Ros, Eduardo; Savolainen, Tuomas; Zensus, Tony; Kadler, Matthias; Vermeulen, Rene; Gehrels, Neil; McEnery, Julie; Sambruna, Rita; Tueller, Jack; Cohen, Marshall; Hovatta, Talvikki; Kharb, Preeti; Cooper, Nathan; Hogan, Brandon; Cara, Mihai

    A significant fraction of flat spectrum AGN exhibit rapid variability both in total intensity as well as polarization at cm wavelengths, on time scales ranging from a few hours to a few days, a phenomenon termed Intra Day Variability (IDV). The physical process responsible for this behavior is not well understood, though various models ranging from source-intrinsic (e.g., shock-in-jet) to source-extrinsic (e.g., scintillation due to electron density fl uctuations in the interstellar medium) have been proposed. The absence of multi-epoch data (especially at 2 cm) further exacerbates the situation. We present the results of analysis of archival VLBA data for a flux density limited sample of bright, flat spectrum AGN located predominantly in the north-ern sky, collected under the MOJAVE program. We find a clear detection of IDV in 25% of the 365 sources analyzed. We find significant differences in the IDV properties of quasars and true BL Lacs. Intermediate BL Lac objects, so classified due to the presence of broad lines in their optical spectra, have IDV characteristics similar to those of quasars. As expected, the presum-able weakly beamed CSS/GPS sources show no IDV. We find IDV properties to be correlated with source intrinsic properties such as Brightness temperature/Doppler factor and apparent speed. Episodes of IDV activity associated with radio flaring and/or component ejection have also been observed, suggesting an intrinsic mechanism at work. However, we also find IDV to be strongly correlated with the galactic latitude position of the source, indicative of a scintil-lation mechanism. However, we find no correlation between IDV and the observing day of the year, IDV and redshift of the source. We propose a qualitative model to explain all these results. The program is supported under the NSF grant 080786-AST and NASA grant NNX08AV67G.

  3. A phase response curve to single bright light pulses in human subjects

    NASA Technical Reports Server (NTRS)

    Khalsa, Sat Bir S.; Jewett, Megan E.; Cajochen, Christian; Czeisler, Charles A.

    2003-01-01

    The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.

  4. The adaptation of a reflex response to the ongoing phase of locomotion in fish.

    PubMed

    Grillner, S; Rossignol, S; Wallén, P

    1977-10-24

    The reflex response to stimulation of the tail fin has been studied in the swimming fish, by bilateral electromyographical (EMG) recordings in several segments along the body. The response varies with the phase of swimming. When the muscles on one side (segment) are active, a large response will occur on this side but no response on the contralateral side at the same level. When the other side becomes active an identical stimulus will cause an activation of this side but no response on the previously active side. When the movements were filmed a powerful mechanical effect was demonstrated with an augmentation of the ongoing movement, that would result in an instantaneous increase in speed. The stimulus causes in addition a shortening of the duration of the swimming cycle and its components. Most of the results were obtained on spinal dogfish, which also exhibits spontaneous locomotion after a spinal transection. Mainly electrical bipolar stimulation of the tail fin was used. Identical stimuli applied in different phases on an ongoing movement, thus give a reflex response that changes dramatically with the phase of the movement. This phase dependent reflex reversal is functionally meaningful; it is fast and due to spinal mechanisms. PMID:590408

  5. Controlling the nonlinear optical properties of plasmonic nanoparticles with the phase of their linear response.

    PubMed

    Butet, Jérémy; Raziman, T V; Yang, Kuang-Yu; Bernasconi, Gabriel D; Martin, Olivier J F

    2016-07-25

    We numerically investigate the second harmonic generation from different plasmonic systems and evidence the key role played in their nonlinear response by the phase at the fundamental wavelength. In the case of a single plasmonic nanorod, the interference between the second harmonic dipolar and quadrupolar emission modes depends on their relative phase, which is deeply related to the excitation wavelength. The knowledge obtained in this simple case is then used to describe and understand the nonlinear response from a more complex structure, namely a gold nanodolmen. The complex phase evolution associated with a Fano resonance arising at the fundamental wavelength enables dramatically modifying the second harmonic emission patterns from plasmonic metamolecules within minute wavelength shifts. These results emphasize the importance of the phase in the nonlinear optical processes arising in plasmonic nanostructures, in addition to the increase in conversion yield associated with the excitation of localized surface plasmon resonances. PMID:27464164

  6. Intrinsic and extrinsic mortality reunited.

    PubMed

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P; van Bodegom, David; Westendorp, Rudi G J

    2015-07-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic stressors in the causation of aging leads to the recognition that aging is not inevitable, but malleable through the environment. PMID:25916736

  7. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    SciTech Connect

    Shu, Michael J.; Zalden, Peter; Chen, Frank; Weems, Ben; Chatzakis, Ioannis; Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S.; Hoffmann, Matthias C.; Wuttig, Matthias; Lindenberg, Aaron M.

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  8. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015

    PubMed Central

    Auger, R. Robert; Burgess, Helen J.; Emens, Jonathan S.; Deriy, Ludmila V.; Thomas, Sherene M.; Sharkey, Katherine M.

    2015-01-01

    A systematic literature review and meta-analyses (where appropriate) were performed and the GRADE approach was used to update the previous American Academy of Sleep Medicine Practice Parameters on the treatment of intrinsic circadian rhythm sleep-wake disorders. Available data allowed for positive endorsement (at a second-tier degree of confidence) of strategically timed melatonin (for the treatment of DSWPD, blind adults with N24SWD, and children/ adolescents with ISWRD and comorbid neurological disorders), and light therapy with or without accompanying behavioral interventions (adults with ASWPD, children/adolescents with DSWPD, and elderly with dementia). Recommendations against the use of melatonin and discrete sleep-promoting medications are provided for demented elderly patients, at a second- and first-tier degree of confidence, respectively. No recommendations were provided for remaining treatments/ populations, due to either insufficient or absent data. Areas where further research is needed are discussed. Citation: Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. J Clin Sleep Med 2015;11(10):1199–1236. PMID:26414986

  9. Evidence that venoconstriction reverses the phase II sympathoinhibitory and bradycardic response to haemorrhage.

    PubMed

    Potas, J R; Dampney, R A L

    2004-03-31

    Severe hypotensive haemorrhage results in a biphasic response, characterized by an initial increase in heart rate and sympathetic vasomotor activity (phase I) followed by a life-threatening hypotension, accompanied by profound sympathoinhibition and bradycardia (phase II). The phase II response is believed to be dependent on inputs from cardiopulmonary receptors, and may be triggered by the reduction in venous return and cardiac filling associated with severe haemorrhage. In this study, we tested the hypothesis that the phase II response could be reversed by venoconstriction, which is known to enhance venous return and cardiac filling, by comparing the effects of phenylephrine (which constricts veins as well as arterioles) with that of vasopressin (which constricts arterioles but not veins). In sodium pentobarbitone-anaesthetised rats, haemorrhage evoked an initial increase in heart rate (HR) and renal sympathetic activity (RSNA) followed by a large decrease in both variables to levels below the pre-haemorrhage baseline levels (phase II response). During the phase II response, an intravenous injection of phenylephrine, sufficient to restore mean arterial pressure to the pre-haemorrhage level, resulted in a gradually developing increase (over 3-4 min) in HR and RSNA back to the baseline levels. In contrast, intravenous injection of an equipressor dose of vasopressin did not result in any increase in RSNA and only a transient increase in HR. Injection of phenylephrine, but not vasopressin, also increased the pulsatile component of central venous pressure, indicative of reduced venous capacitance. The findings indicate that venoconstriction reverses the phase II sympathoinhibition and bradycardia. PMID:15109933

  10. Discrimination of Speech Stimuli Based on Neuronal Response Phase Patterns Depends on Acoustics But Not Comprehension

    PubMed Central

    Poeppel, David

    2010-01-01

    Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3–7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response. PMID:20484530

  11. Post-traumatic inflammatory response: perhaps a succession of phases with a nutritional purpose.

    PubMed

    Aller, Maria-Angeles; Arias, Jorge-Luis; Arias, Jaime

    2004-01-01

    Post-traumatic inflammatory response, whether this be local or systemic, is considered to be the succession of three functional phases called nervous, immune and endocrine, that could have a nutritional significance. In the nervous phase, ischemia-reperfusion, which causes interstitial and cellular edema, is produced. Both types of edema could represent an ancestral mechanism to feed the cells by diffusion. During the immune phase, the tissues are infiltrated by inflammatory cells and bacteria. Then, extracellular digestion, by enzyme release (fermentation), and intracellular digestion by phagocytosis could be associated with a hypothetical trophic capacity for the neighbouring cells. Finally, in the late or endocrine phase nutrition mediated by the blood capillaries is established. In these three successive phases the inflammatory response goes on from an anaerobic metabolism (ischemia) through a metabolism characterized by a defective oxygen use (reperfusion, oxidative burst and heat hyperproduction) to an oxidative metabolism (oxidative phosphorilation) with a correct use of oxygen to produce usable energy. This type of metabolism is characterized by a large production of ATP, which is used to drive specialized multiple cellular processes. Since the nervous, immune and endocrine phases of the inflammatory response go from ischemia to the development of an oxidative metabolism, It is also tempting to speculate on whether the body reproduces the successive stages by which life passes from its origin without oxygen until it develops an effective, although costly, system for the use of oxygen every time we suffer post-traumatic acute inflammation. PMID:15193345

  12. Increased vasopressin and adrenocorticotropin responses to stress in the midluteal phase of the menstrual cycle.

    PubMed

    Altemus, M; Roca, C; Galliven, E; Romanos, C; Deuster, P

    2001-06-01

    Accumulating evidence indicates that gonadal steroids modulate functioning of the hypothalamic-pituitary-adrenal (HPA) axis, which has been closely linked to the pathophysiology of anxiety and depression. However, the effect of the natural menstrual cycle on HPA axis responsivity to stress has not been clearly described. In nine healthy women, metabolic and hormonal responses to treadmill exercise stress during the early follicular phase of the menstrual cycle, when gonadal steroid levels are low, were compared with responses in the midluteal phase of the cycle, when both progesterone and estrogen levels are relatively high. Exercise intensity was gradually increased over 20 min to reach 90% of each subject's maximal oxygen consumption during the final 5 min of exercise. Basal plasma lactate, glucose, ACTH, vasopressin, oxytocin, and cortisol levels were similar in the two cycle phases. However, in response to exercise stress, women in the midluteal phase had enhanced ACTH (P < 0.0001), vasopressin (P < 0.01), and glucose (P < 0.001) secretion. These findings suggest that relatively low levels of gonadal steroids during the early follicular phase of the menstrual cycle provide protection from the impact of stress on the HPA axis. PMID:11397850

  13. Phase Synchronization and Desynchronization of Structural Response Induced by Turbulent and External Sound

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2002-01-01

    Acoustic and turbulent boundary layer flow loadings over a flexible structure are used to study the spatial-temporal dynamics of the response of the structure. The stability of the spatial synchronization and desynchronization by an active external force is investigated with an array of coupled transducers on the structure. In the synchronous state, the structural phase is locked, which leads to the formation of spatial patterns while the amplitude peaks exhibit chaotic behaviors. Large amplitude, spatially symmetric loading is superimposed on broadband, but in the desynchronized state, the spectrum broadens and the phase space is lost. The resulting pattern bears a striking resemblance to phase turbulence. The transition is achieved by using a low power external actuator to trigger broadband behaviors from the knowledge of the external acoustic load inducing synchronization. The changes are made favorably and efficiently to alter the frequency distribution of power, not the total power level. Before synchronization effects are seen, the panel response to the turbulent boundary layer loading is discontinuously spatio-temporally correlated. The stability develops from different competing wavelengths; the spatial scale is significantly shorter than when forced with the superimposed external sound. When the external sound level decreases and the synchronized phases are lost, changes in the character of the spectra can be linked to the occurrence of spatial phase transition. These changes can develop broadband response. Synchronized responses of fuselage structure panels have been observed in subsonic and supersonic aircraft; results from two flights tests are discussed.

  14. Intrinsic and Extrinsic Motivation among Collegiate Instrumentalists

    ERIC Educational Resources Information Center

    Diaz, Frank M.

    2010-01-01

    The purpose of this study was to gather and compare information on measures of intrinsic and extrinsic motivation among instrumentalists enrolled in collegiate ensembles. A survey instrument was developed to gather information concerning demographic data and responses to questions on motivational preference. Participants were undergraduate and…

  15. Optimal phase response curves for stochastic synchronization of limit-cycle oscillators by common Poisson noise

    NASA Astrophysics Data System (ADS)

    Hata, Shigefumi; Arai, Kensuke; Galán, Roberto F.; Nakao, Hiroya

    2011-07-01

    We consider optimization of phase response curves for stochastic synchronization of noninteracting limit-cycle oscillators by common Poisson impulsive signals. The optimal functional shape for sufficiently weak signals is sinusoidal, but can differ for stronger signals. By solving the Euler-Lagrange equation associated with the minimization of the Lyapunov exponent characterizing synchronization efficiency, the optimal phase response curve is obtained. We show that the optimal shape mutates from a sinusoid to a sawtooth as the constraint on its squared amplitude is varied.

  16. Roles of STAT3 in Protein Secretion Pathways during the Acute-Phase Response

    PubMed Central

    Ahyi, Ayele-Nati N.; Quinton, Lee J.; Jones, Matthew R.; Ferrari, Joseph D.; Pepper-Cunningham, Zachary A.; Mella, Juan R.; Remick, Daniel G.

    2013-01-01

    The acute-phase response is characteristic of perhaps all infections, including bacterial pneumonia. In conjunction with the acute-phase response, additional biological pathways are induced in the liver and are dependent on the transcription factors STAT3 and NF-κB, but these responses are poorly understood. Here, we demonstrate that pneumococcal pneumonia and other severe infections increase expression of multiple components of the cellular secretory machinery in the mouse liver, including the endoplasmic reticulum (ER) translocon complex, which mediates protein translation into the ER, and the coat protein complexes (COPI and COPII), which mediate vesicular transport of proteins to and from the ER. Hepatocyte-specific mutation of STAT3 prevented the induction of these secretory pathways during pneumonia, with similar results observed following pharmacological activation of ER stress by using tunicamycin. These findings implicate STAT3 in the unfolded protein response and suggest that STAT3-dependent optimization of secretion may apply broadly. Pneumonia also stimulated the binding of phosphorylated STAT3 to promoter regions of secretion-related genes in the liver, supporting a direct role for STAT3 in their transcription. Altogether, these results identify a novel function of STAT3 during the acute-phase response, namely, the induction of secretory machinery in hepatocytes. This may facilitate the processing and delivery of newly synthesized loads of acute-phase proteins, enhancing innate immunity and preventing liver injury during infection. PMID:23460517

  17. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae

    PubMed Central

    Smith, Ryan C.; Barillas-Mury, Carolina; Jacobs-Lorena, Marcelo

    2015-01-01

    Plasmodium parasites must complete development in the mosquito vector for transmission to occur. The mosquito innate immune response is remarkably efficient in limiting parasite numbers. Previous work has identified a LPS-induced TNFα transcription factor (LITAF)-like transcription factor, LITAF-like 3 (LL3), which significantly influences parasite numbers. Here, we demonstrate that LL3 does not influence invasion of the mosquito midgut epithelium or ookinete-to-oocyst differentiation but mediates a late-phase immune response that decreases oocyst survival. LL3 expression in the midgut and hemocytes is activated by ookinete midgut invasion and is independent of the mosquito microbiota, suggesting that LL3 may be a component of a wound-healing response. LL3 silencing abrogates the ability of mosquito hemocytes to differentiate and respond to parasite infection, implicating hemocytes as critical modulators of the late-phase immune response. PMID:26080400

  18. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae.

    PubMed

    Smith, Ryan C; Barillas-Mury, Carolina; Jacobs-Lorena, Marcelo

    2015-06-30

    Plasmodium parasites must complete development in the mosquito vector for transmission to occur. The mosquito innate immune response is remarkably efficient in limiting parasite numbers. Previous work has identified a LPS-induced TNFα transcription factor (LITAF)-like transcription factor, LITAF-like 3 (LL3), which significantly influences parasite numbers. Here, we demonstrate that LL3 does not influence invasion of the mosquito midgut epithelium or ookinete-to-oocyst differentiation but mediates a late-phase immune response that decreases oocyst survival. LL3 expression in the midgut and hemocytes is activated by ookinete midgut invasion and is independent of the mosquito microbiota, suggesting that LL3 may be a component of a wound-healing response. LL3 silencing abrogates the ability of mosquito hemocytes to differentiate and respond to parasite infection, implicating hemocytes as critical modulators of the late-phase immune response. PMID:26080400

  19. Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights.

    PubMed Central

    Smith, V C; Lee, B B; Pokorny, J; Martin, P R; Valberg, A

    1992-01-01

    1. We measured the response of macaque ganglion cells to sinusoidally modulated red and green lights as the relative phase, theta, of the lights was varied. 2. At low frequencies, red-green ganglion cells of the parvocellular (PC-) pathway with opponent inputs from middle-wavelength sensitive (M-) and long-wavelength sensitive (L-) cones were minimally sensitive to luminance modulation (theta = 0 deg) and maximally sensitive to chromatic modulation (theta = 180 deg). With increasing frequency, the phase, theta, of minimal amplitude gradually changed, in opposite directions for cells with M- and L-cone centres. 3. At high frequencies (at and above 20 Hz), phasic cells of the magnocellular (MC-) pathway were maximally responsive when theta approximately 0 deg and minimally responsive when theta approximately 180 deg, as expected from an achromatic mechanism. At lower frequencies, the phase of minimal response shifted, for both on- and off-centre cells, to values of theta intermediate between 0 and 180 deg. This phase asymmetry was absent if the centre alone was stimulated with a small field. 4. For PC-pathway cells, it was possible to provide an account of response phase as a function of theta, using a model involving three parameters; phases of the L- and M-cone mechanisms and a L/M cone weighting term. For red-green cells, the phase parameters were monotonically related to temporal frequency and revealed a centre-surround phase difference. The phase difference was linear with a slope of 1-3 deg Hz-1. If this represents a latency difference, it would be 3-8 ms. Otherwise, temporal properties of the M- and L-cones appeared similar if not identical. By addition of a scaling term, the model could be extended to give an adequate account of the amplitude of responses. 5. We were able to activate selectively the surrounds of cells with short-wavelength (S-) cone input to their centres, and so were able to assess L/M cone weighting to the surround. M- and L-cone inputs

  20. Elastin-like Polypeptides as Models of Intrinsically Disordered Proteins

    PubMed Central

    Roberts, Stefan; Dzuricky, Michael; Chilkoti, Ashutosh

    2015-01-01

    Elastin-like polypeptides (ELPs) are a class of stimuli-responsive biopolymers inspired by the intrinsically disordered domains of tropoelastin that are composed of repeats of the VPGXG pentapeptide motif, where X is a “guest residue”. They undergo a reversible, thermally triggered lower critical solution temperature (LCST) phase transition, which has been utilized for a variety of applications including protein purification, affinity capture, immunoassays, and drug delivery. ELPs have been extensively studied as protein polymers and as biomaterials, but their relationship to other disordered proteins has heretofore not been established. The biophysical properties of ELPs that lend them their unique material behavior are similar to the properties of many intrinsically disordered proteins (IDP). Their low sequence complexity, phase behavior, and elastic properties make them an interesting “minimal” artificial IDP, and the study of ELPs can hence provide insights into the behavior of other more complex IDPs. Motivated by this emerging realization of the similarities between ELPs and IDPs, this review discusses the biophysical properties of ELPs, their biomedical utility, and their relationship to other disordered polypeptide sequences. PMID:26325592

  1. Predicting intrinsic brain activity.

    PubMed

    Craddock, R Cameron; Milham, Michael P; LaConte, Stephen M

    2013-11-15

    Multivariate supervised learning methods exhibit a remarkable ability to decode externally driven sensory, behavioral, and cognitive states from functional neuroimaging data. Although they are typically applied to task-based analyses, supervised learning methods are equally applicable to intrinsic effective and functional connectivity analyses. The obtained models of connectivity incorporate the multivariate interactions between all brain regions simultaneously, which will result in a more accurate representation of the connectome than the ones available with standard bivariate methods. Additionally the models can be applied to decode or predict the time series of intrinsic brain activity of a region from an independent dataset. The obtained prediction accuracy provides a measure of the integration between a brain region and other regions in its network, as well as a method for evaluating acquisition and preprocessing pipelines for resting state fMRI data. This article describes a method for learning multivariate models of connectivity. The method is applied in the non-parametric prediction accuracy, influence, and reproducibility-resampling (NPAIRS) framework, to study the regional variation of prediction accuracy and reproducibility (Strother et al., 2002). The resulting spatial distribution of these metrics is consistent with the functional hierarchy proposed by Mesulam (1998). Additionally we illustrate the utility of the multivariate regression connectivity modeling method for optimizing experimental parameters and assessing the quality of functional neuroimaging data. PMID:23707580

  2. Intrinsically Disordered Energy Landscapes

    PubMed Central

    Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.

    2015-01-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium. PMID:25999294

  3. Intrinsically Disordered Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.

    2015-05-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.

  4. Intrinsically disordered energy landscapes.

    PubMed

    Chebaro, Yassmine; Ballard, Andrew J; Chakraborty, Debayan; Wales, David J

    2015-01-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium. PMID:25999294

  5. Effect of phase shifts in pressure-flow relationship on response to inspiratory resistance.

    PubMed

    Younes, M; Sanii, R

    1989-08-01

    Inspiratory prolongation is an integral component of the response to added inspiratory resistance. To ascertain whether this response depends on the relation between inspiratory flow (V) and the pressure perturbation, we compared the responses when this relationship was made progressively less distinct by creating phase shifts between V and the resulting negative mouth pressure (Pm). This was done with an apparatus that altered Pm in proportion to V (J. Appl. Physiol. 62:2491-2499, 1987). V was passed through low-pass electronic filters of different frequency responses before serving as the command signal to the apparatus. In six normal subjects the average neural inspiratory duration (TI) response (delta TI) was sharply (P less than 0.01) reduced (0.32 +/- 0.07 to 0.12 +/- 0.07 s) when the filter's frequency response decreased from 7.5 to 3.0 Hz. The TI response was essentially flat between tube resistance (i.e., no lag, delta TI = 0.36 +/- 0.11 s) and the 7.5-Hz filter, and there was no further change in TI response with filters having a frequency response less than 3.0 Hz, with all TI responses in this range being not significant. Subjects could not consciously perceive a difference between various filter settings. We conclude that the TI response is critically influenced by the phase of the negative pressure wave relative to TI. Furthermore the TI responses are not deliberate, although consciousness is required for their elicitation. PMID:2676945

  6. Optically addressed and submillisecond response phase only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangjie; Duan, Jiazhu; Zhang, Dayong; Luo, Yongquan

    2014-10-01

    Liquid crystal based phase only spatial light modulator has attracted many research interests since last decades because of its superior advantage. Until now the liquid crystal spatial light modulator has been applied in many fields, but the response speed of nematic LC limited its further application. In this paper, an optically addressed phase only LC spatial light modulator was proposed based on polymer network liquid crystal. Morphology effect on the light scattering of PNLC was studied, which was mainly consisted of fiber and fiber bundles. The morphology nearly determined the light scattering and electro-optical property. Due to the high threshold voltage, to address the PNLC phase modulator was also concerned. Optical addressing method was proposed, in which BSO crystal was selected to replace one of the glass substrate. The response speed of PNLC was so fast that the reorientation of liquid crystal director will follow the change of effective voltage applied on LC layer, which was related with the voltage signal and especially with electron transport of photo-induced carriers due to diffusion and drift. The on state dynamic response of phase change was investigated. Based on this device, beam steering was also achieved by loading 488nm laser strip on the optical addressed phase only spatial light modulator.

  7. Investigating the Temporal Patterns within and between Intrinsic Connectivity Networks under Eyes-Open and Eyes-Closed Resting States: A Dynamical Functional Connectivity Study Based on Phase Synchronization

    PubMed Central

    Wang, Xun-Heng; Li, Lihua; Xu, Tao; Ding, Zhongxiang

    2015-01-01

    The brain active patterns were organized differently under resting states of eyes open (EO) and eyes closed (EC). The altered voxel-wise and regional-wise resting state active patterns under EO/EC were found by static analysis. More importantly, dynamical spontaneous functional connectivity has been observed in the resting brain. To the best of our knowledge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynamical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project. Through Hilbert transform, time-varying phase synchronization (PS) was applied to evaluate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynamical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony. The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between certain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC relative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony. Moreover, default mode network (DMN) might play an important role in information processing during EO/EC. Together, the dynamical temporal patterns within and between ICNs were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could be potential biomarkers for human functional connectome. PMID:26469182

  8. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  9. Altered postnatal acute phase response in heifers exposed to lipopolysachcharide in utero

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to LPS challenge in heifer calves. Pregnant crossbred cows (n=50) were separated into prenatal stress (PNS; n=25; administered 0.1 microgram per kilogram...

  10. 40 CFR 35.6570 - Use of the same engineer during subsequent phases of response.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... it selected the engineer and the code of conduct requirements described in 40 CFR 31.36(b)(3). (ii... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Use of the same engineer during... Agreement § 35.6570 Use of the same engineer during subsequent phases of response. (a) If the public...