Science.gov

Sample records for intrinsic semiconductors based

  1. Intrinsic DX Centers in Ternary Chalcopyrite Semiconductors

    SciTech Connect

    Lany, S.; Zunger, A.

    2008-01-01

    In III-V and II-VI semiconductors, certain nominally electron-donating impurities do not release electrons but instead form deep electron-traps known as 'DX centers.' While in these compounds, such traps occur only after the introduction of foreign impurity atoms, we find from first-principles calculations that in ternary I-III-VI{sub 2} chalcopyrites like CuInSe{sub 2} and CuGaSe{sub 2}, DX-like centers can develop without the presence of any extrinsic impurities. These intrinsic DX centers are suggested as a cause of the difficulties to maintain high efficiencies in CuInSe{sub 2}-based thin-film solar-cells when the band gap is increased by addition of Ga.

  2. NdN: An intrinsic ferromagnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; McNulty, J. F.; Ruck, B. J.; Suzuki, M.; Mizumaki, M.; Antonov, V. N.; Quilty, J. W.; Strickland, N.; Trodahl, H. J.

    2016-02-01

    The rare-earth nitrides have recently regained attention due to findings that most members of the series are intrinsic ferromagnetic semiconductors, a class of materials that is crucial for the development of spintronics devices. Here we present a study of NdN thin films, with films grown via molecular beam epitaxy. Optical transmission measurements revealed a band gap of about 0.9 eV, while resistivity measurements confirmed semiconducting behavior with a negative temperature coefficient of resistance, though semimetallic behavior could not be ruled out. The room temperature resistivity of 0.6 m Ω cm indicates strong doping by nitrogen vacancies. Magnetization measurements show a ferromagnetic moment of 1.0 ±0.2 μB below the Curie temperature TC of 43 ±1 K, strongly suppressed from the Hund's rules value of 3.27 μB per ion. The ferromagnetic moment is strongly quenched and the TC is enhanced compared to previously studied bulk NdN, and crystal field calculations reveal that the quenched moment is likely due to lattice strain. X-ray magnetic circular dichroism measurements show that the magnetic moment is orbital dominant, placing NdN in the same category as SmN, an intrinsic ferromagnetic semiconductor with an orbital-dominant ferromagnetic moment.

  3. Acoustically induced stark effect for excitons in intrinsic semiconductors.

    PubMed

    Ivanov, A L; Littlewood, P B

    2001-09-24

    A Stark effect for excitons parametrically driven by coherent acoustic phonons is proposed. Our scheme refers to a low-temperature intrinsic semiconductor or semiconductor nanostructure pumped by an acoustic wave (frequency band nu(ac) approximately equal to 1-40 GHz and intensity range I(ac) approximately equal to 10(-2)-10(2) W/cm(2)) and probed by low-intensity light. Tunable optical band gaps, which strongly change the spectral shape of the exciton line, are induced in the polariton spectrum by acoustic pumping. We develop an exactly solvable model of the acoustic Stark effect and apply our results to GaAs driven by bulk or surface acoustic waves. PMID:11580613

  4. Extrinsic photoresponse enhancement under additional intrinsic photoexcitation in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Kounavis, P.

    2016-06-01

    Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominant extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.

  5. Benzodipyrrolidone (BDP)-based polymer semiconductors containing a series of chalcogen atoms: comprehensive investigation of the effect of heteroaromatic blocks on intrinsic semiconducting properties.

    PubMed

    Lee, Kyu Cheol; Park, Won-Tae; Noh, Yong-Young; Yang, Changduk

    2014-04-01

    In order to determine the effects of actual 'chalcogen atoms' on semiconducting properties for application in a variety of optoelectronic devices, a class of donor (D)-acceptor (A) polymer semiconductors, namely PBDP-Fu, PBDP-Th, and PBDP-Se, containing the recently formulated benzodipyrrolidone (BDP) accepting unit and furan (Fu), thiophene (Th), or selenophene (Se) as a donating unit has been synthesized, characterized, and used in an active layer of organic field-effect transistors (OFETs). With the LUMO levels being comparatively consistent for all three polymers (-3.58 to -3.60 eV) due to the dominant BDP contribution to the polymer backbone, the HOMO energies are somewhat sensitive to the structurally distinctive feature of the donor counits used. Utilizing a combination of X-ray diffraction (XRD) and atomic force microscopy (AFM), it is apparent that further crystalline domains occur with edge-on orientation for the polymers (PBDP-Th and PBDP-Se) with relatively heavier chalcogen atoms such as Th and Se, compared with PBDP-Fu which has a rather amorphous nature. Investigation of their OFET performance indicates that all the polymers show well balanced ambipolar operations. The desirable morphological structures of both the PBDP-Th and PBDP-Se result in higher mobilities in OFETs than those of PBDP-Fu. In particular, 200 °C annealed PBDP-Se OFETs results in ambipolarity being mobile for both holes of up to 1.7 × 10(-2) cm(2)/V·s and electrodes of up to 1.9 × 10(-2) cm(2)/V·s. In addition, OFETs with PBDP-Th show nearly equivalent charge carrier mobilities for both holes (μ(h) = 1.2 × 10(-2) cm(2)/V·s) and electrons (μ(e) = 1.1 × 10(-2) cm(2)/V·s). Consequently, we systematically demonstrate how the manipulation of existing heteroaromatics can modulate the electronic properties of conjugated D-A polymers, elucidating structure-property relationships that are desirable for the rational design of next generation materials. PMID:24620709

  6. Intrinsic charge trapping in organic and polymeric semiconductors: a physical chemistry perspective

    SciTech Connect

    Kaake, Loren; Barbara, Paul F.; Zhu, Xiaoyang

    2010-01-12

    We aim to understand the origins of intrinsic charge carrier traps in organic and polymeric semiconductor materials from a physical chemistry perspective. In crystalline organic semiconductors, we point out some of the inadequacies in the description of intrinsic charge traps using language and concepts developed for inorganic semiconductors. In π-conjugated polymeric semiconductors, we suggest the presence of a two-tier electronic energy landscape, a bimodal majority landscape due to two dominant structural motifs and a minority electronic energy landscape from intrinsic charged defects. The bimodal majority electronic energy landscape results from a combination of amorphous domains and microcrystalline or liquid-crystalline domains. The minority tier of the electronic density of states is comprised of deep Coulomb traps embedded in the majority electronic energy landscape. This minority electronic energy landscape may dominate transport properties at low charge carrier densities, such as those expected for organic photovoltaic devices, while the bimodal majority electronic energy landscape becomes significant at high carrier densities, that is, in organic field effect transistors.

  7. New concept to break the intrinsic properties of organic semiconductors for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Choy, Wallace C. H.

    2015-09-01

    As the intrinsic electrostatic limit, space charge limit (SCL) for photocurrent is a universal phenomenon which is fundamental important for organic semiconductors. We will demonstrate SCL breaking by a new plasmonic-electrical concept. As a proof-ofconcept, organic solar cells (OSCs) comprising metallic planar and grating electrodes are studied. Interestingly, although strong plasmonic resonances induce abnormally dense photocarriers around a grating anode, the grating incorporated inverted OSC is exempt from space charge accumulation (limit) and degradation of electrical properties. The plasmonic-electrical concept will open up a new way to manipulate both optical and electrical properties of semiconductor devices simultaneously.

  8. Electronic structure of intrinsic defects in non-stoichiometric amorphous In-Ga-Zn-O semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Woo Hyun; Chang, Kee Joo

    Amorphous oxide semiconductors, such as amorphous In-Ga-Zn-O (a-IGZO), have attracted much attention because of their use as a channel material in thin-film transistors (TFTs). Despite many advantages such as flexibility, transparency, and high electron mobility, a-IGZO based TFTs suffer from defects which cause the instability of threshold voltage under negative bias illumination stress (NBIS) as well as positive bias stress (PBS). Recently, we have proposed that O-vacancy and O-interstitial defects are responsible for the NBIS and PBS instabilities, respectively. In the previous studies, O-related defects were intentionally introduced in stoichiometric a-IGZO. Since the composition ratio is likely to be deviated from the ideal stoichiometry during fabrication, it is important to understand the electronic structure of non-stoichiometric a-IGZO. Here we perform density functional calculations to investigate the electronic structure of O-related defects in various a-IGZO systems with non-stoichiometric chemical compositions, which are generated through melt-and-quench molecular dynamics simulations. We consder both O-abundant and O-deficient samples and discuss the role of intrinsic defects in the device instability.

  9. Intrinsic Perturbation of the Landau Levels in Metals and Semiconductors at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Awobode, Ayodeji

    2009-03-01

    The de Haas--van Alphen effect in non-superconducting metals and semiconductors at very low temperatures is proposed as a test of an intrinsic perturbative term which appears in the Landau equation sequel to the modification of the Pauli equation. Corrections to the frequency (or period) of the de Haas--van Alphen oscillation in metals is calculated and shown to depend on the Fermi energy and the measured anomalous part of the electron magnetic moment. Precision measurement of the magneto-optical properties which arise from the motion of electrons in binary semiconductors placed in a weak magnetic field is also proposed as a means of observing very small changes in the.

  10. Unusual nonlinear current-voltage characteristics of a metal-intrinsic semiconductor-metal barrierless structure

    NASA Astrophysics Data System (ADS)

    Meriuts, A. V.; Gurevich, Yu. G.

    2015-03-01

    A nonlinear model for the electric current in a metal-intrinsic semiconductor-metal structure without potential barriers in contacts is considered using a drift diffusion approach. An analytical solution of the continuity equations and the current-voltage characteristic for various recombination rates in the contacts are obtained. It is shown that the current-voltage characteristics of such a structure exhibit not only linear behavior, corresponding to Ohm's law, but may also possess properties of current-voltage characteristics of the rectifier diode. It is also possible current-voltage characteristics with saturation in both forward and backward directions. Physical model that explains the obtained results is proposed.

  11. Intrinsic delay of permeable base transistor

    SciTech Connect

    Chen, Wenchao; Guo, Jing; So, Franky

    2014-07-28

    Permeable base transistors (PBTs) fabricated by vacuum deposition or solution process have the advantages of easy fabrication and low power operation and are a promising device structure for flexible electronics. Intrinsic delay of PBT, which characterizes the speed of the transistor, is investigated by solving the three-dimensional Poisson equation and drift-diffusion equation self-consistently using finite element method. Decreasing the emitter thickness lowers the intrinsic delay by improving on-current, and a thinner base is also preferred for low intrinsic delay because of fewer carriers in the base region at off-state. The intrinsic delay exponentially decreases as the emitter contact Schottky barrier height decreases, and it linearly depends on the carrier mobility. With an optimized emitter contact barrier height and device geometry, a sub-nano-second intrinsic delay can be achieved with a carrier mobility of ∼10 cm{sup 2}/V/s obtainable in solution processed indium gallium zinc oxide, which indicates the potential of solution processed PBTs for GHz operations.

  12. Mn-based ferromagnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz; Sawicki, Maciej

    2003-07-01

    The present status of research and prospects for device applications of ferromagnetic (diluted magnetic) semiconductors (DMS) is presented. We review the nature of the electronic states and the mechanisms of the carrier-mediated exchange interactions (mean-field Zener model) in p-type Mn-based III-V and II-VI compounds, highlighting a good correspondence of experimental findings and theoretical predictions. An account of the latest progress on the road of increasing the Currie point to above the room temperature is given for both families of compounds. We comment on a possibility of obtaining ferromagnetism in n-type materials, taking (Zn,Mn)O:Al as the example. Concerning technologically important issue of easy axis and domain engineering, we present theoretical predictions and experimental results on the temperature and carrier concentration driven change of magnetic anisotropy in (Ga,Mn)As.

  13. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4

    NASA Astrophysics Data System (ADS)

    Chen, Shiyou; Yang, Ji-Hui; Gong, X. G.; Walsh, Aron; Wei, Su-Huai

    2010-06-01

    Current knowledge of the intrinsic defect properties of Cu2ZnSnS4 (CZTS) is limited, which is hindering further improvement of the performance of CZTS-based solar cells. Here, we have performed first-principles calculations for a series of intrinsic defects and defect complexes in CZTS, from which we have the following observations. (i) It is important to control the elemental chemical potentials during crystal growth to avoid the formation of secondary phases such as ZnS, CuS, and Cu2SnS3 . (ii) The intrinsic p -type conductivity is attributed to the CuZn antisite which has a lower formation energy and relatively deeper acceptor level compared to the Cu vacancy. (iii) The low formation energy of many of the acceptor defects will lead to the intrinsic p -type character, i.e., n -type doping is very difficult in this system. (iv) The role of electrically neutral defect complexes is predicted to be important, because they have remarkably low formation energies and electronically passivate deep levels in the band gap. For example, [CuZn-+ZnCu+] , [VCu-+ZnCu+] , and [ZnSn2-+2ZnCu+] may form easily in nonstoichiometric samples. The band alignment between Cu2ZnSnS4 , CuInSe2 and the solar-cell window layer CdS has also been calculated, revealing that a type-II band alignment exists for the CdS/Cu2ZnSnS4 heterojunction. The fundamental differences between CZTS and CuInSe2 for use in thin-film photovoltaics are discussed. The results are expected to be relevant to other I2-II-IV-VI4 semiconductors.

  14. Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy

    PubMed Central

    He, Xiaochuan; Zhu, Gangbei; Yang, Jianbing; Chang, Hao; Meng, Qingyu; Zhao, Hongwu; Zhou, Xin; Yue, Shuai; Wang, Zhuan; Shi, Jinan; Gu, Lin; Yan, Donghang; Weng, Yuxiang

    2015-01-01

    Confirmation of direct photogeneration of intrinsic delocalized free carriers in small-molecule organic semiconductors has been a long-sought but unsolved issue, which is of fundamental significance to its application in photo-electric devices. Although the excitonic description of photoexcitation in these materials has been widely accepted, this concept is challenged by recently reported phenomena. Here we report observation of direct delocalized free carrier generation upon interband photoexcitation in highly crystalline zinc phthalocyanine films prepared by the weak epitaxy growth method using ultrafast spectroscopy. Transient absorption spectra spanning the visible to mid-infrared region revealed the existence of short-lived free electrons and holes with a diffusion length estimated to cross at least 11 molecules along the π−π stacking direction that subsequently localize to form charge transfer excitons. The interband transition was evidenced by ultraviolet-visible absorption, photoluminescence and electroluminescence spectroscopy. Our results suggest that delocalized free carriers photogeneration can also be achieved in organic semiconductors when the molecules are packed properly. PMID:26611323

  15. Finite size and intrinsic field effect on the polar-active properties of the ferroelectric-semiconductor heterostructures

    SciTech Connect

    Morozovska, A. N.; Eliseev, E. A.; Svechnikov, S. V.; Shur, V.Y.; Borisevich, Albina Y; Maksymovych, Petro; Kalinin, Sergei V

    2010-01-01

    Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium distributions of electric field, polarization and space charge in the ferroelectric-semiconductor heterostructures containing proper or incipient ferroelectric thin films. The role of the polarization gradient and intrinsic surface energy, interface dipoles and free charges on polarization dynamics are specifically explored. The intrinsic field effects, which originated at the ferroelectric-semiconductor interface, lead to the surface band bending and result into the formation of depletion space-charge layer near the semiconductor surface. During the local polarization reversal (caused by the electric field of the nanosized tip of the Scanning Probe Microscope) the thickness and charge of the interface layer drastically changes, in particular the sign of the screening carriers is determined by the polarization direction. Obtained analytical solutions could be extended to analyze polarization-mediated electronic transport.

  16. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  17. Intrinsic carrier effects in HfO2-Ge metal-insulator-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Dimoulas, A.; Vellianitis, G.; Mavrou, G.; Evangelou, E. K.; Sotiropoulos, A.

    2005-05-01

    Germanium metal-insulator-semiconductor capacitors with HfO2 or other high-κ gate dielectrics show unusual low frequency behavior of the high frequency (1 kHz or higher) capacitance-voltage characteristics when biased in inversion. Here, we provide evidence that this effect is partly due to the high intrinsic carrier concentration ni in Ge. We show in particular that the ac conductance in inversion is thermally activated and it is governed either by generation-recombination processes in depletion, varying proportional to ni or by diffusion-limited processes varying as ni2, depending on whether the temperature is below or above 45 °C, respectively. From these measurements, we also show that the minority carrier response time in Ge is very short, in the microsecond range (much shorter than in Si), depending inversely proportional to ni at room temperature. This means that due to high ni, the inversion charge is built fast in response to high frequency signals at the gate, inducing the observed low frequency behavior.

  18. Quantum random number generator based on photonic emission in semiconductors.

    PubMed

    Stipcević, M; Rogina, B Medved

    2007-04-01

    We report upon the realization of a novel fast nondeterministic random number generator whose randomness relies on the intrinsic randomness of the quantum physical processes of photonic emission in semiconductors and subsequent detection by the photoelectric effect. Timing information of detected photons is used to generate binary random digits-bits. The bit extraction method based on the restartable clock method theoretically eliminates both bias and autocorrelation while reaching efficiency of almost 0.5 bits per random event. A prototype has been built and statistically tested. PMID:17477690

  19. Metal-free ferromagnetic metal and intrinsic spin semiconductor: two different kinds of SWCNT functionalized BN nanoribbons.

    PubMed

    Lou, Ping

    2015-03-28

    Two different kinds of SWCNT functionalized zigzag edge BN nanoribbons with n chains (n-ZBNNRs), namely, (a) B-edge functionalized by (m,m)SWCNT and N-edge modified with H (nZBNNR-B-(m,m)SWCNTs); and (b) the B-edge modified with H and the N-edge functionalized by (m,m)SWCNT (nZBNNR-N-(m,m)SWCNTs), have been predicted. Amazingly, we find that unlike the semiconducting and nonmagnetic H-modified n-ZBNNRs, the nZBNNR-B-(m,m)SWCNTs are intrinsic ferromagnetic metals, regardless of ribbon widths n and tube diameters (m,m). At a given (m,m), their local magnetic moments, at first, exhibit oscillation with increasing n, whereas when n is larger than 5, they are independent of n. In contrast, unlike the metallic and nonmagnetic (m,m)SWCNTs, the nZBNNR-N-(m,m)SWCNTs are ferromagnetic intrinsic spin-semiconductors with direct band gaps, regardless of n and (m,m). Their local magnetic moments and band gaps are independent of n and (m,m). The DFT calculations reveal that the process of SWCNT functionalization of the n-ZBNNRs does not need any activation energy. Moreover, the formation energies of the SWCNT functionalized n-ZBNNRs are always less than zero. Therefore, the SWCNT functionalized n-ZBNNRs are not only stable, but can also be spontaneously formed. Furthermore, compared with n-ZBNNRs, the SWCNT functionalized n-ZBNNRs show significant improvements in their thermal and mechanical stabilities. Thus, (m,m)SWCNT functionalization of n-ZBNNRs may open new routes toward practical nanoelectronic and optoelectronic as well as spintronic devices based on BNC-based materials. PMID:25721493

  20. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  1. Metal Semiconductor Field-Effect Transistor with MoS2/Conducting NiO(x) van der Waals Schottky Interface for Intrinsic High Mobility and Photoswitching Speed.

    PubMed

    Lee, Hee Sung; Baik, Seung Su; Lee, Kimoon; Min, Sung-Wook; Jeon, Pyo Jin; Kim, Jin Sung; Choi, Kyujin; Choi, Hyoung Joon; Kim, Jae Hoon; Im, Seongil

    2015-08-25

    Molybdenum disulfide (MoS2) nanosheet, one of two-dimensional (2D) semiconductors, has recently been regarded as a promising material to break through the limit of present semiconductors. With an apparent energy band gap, it certainly provides a high carrier mobility, superior subthreshold swing, and ON/OFF ratio in field-effect transistors (FETs). However, its potential in carrier mobility has still been depreciated since the field-effect mobilities have only been measured from metal-insulator-semiconductor (MIS) FETs, where the transport behavior of conducting carriers located at the insulator/MoS2 interface is unavoidably interfered by the interface traps and gate voltage. Moreover, thin MoS2 MISFETs have always shown large hysteresis with unpredictable negative threshold voltages. Here, we for the first time report MoS2-based metal semiconductor field-effect transistors (MESFETs) using NiOx Schottky electrode which makes van der Waals interface with MoS2. We thus expect that the maximum mobilities or carrier transport behavior of the Schottky devices may hardly be interfered by interface traps or an on-state gate field. Our MESFETs with a few and ∼10 layer MoS2 demonstrate intrinsic-like high mobilities of 500-1200 cm(2)/(V s) at a certain low threshold voltage between -1 and -2 V without much hysteresis. Moreover, they work as a high speed and highly sensitive phototransistor with 2 ms switching and ∼5000 A/W, respectively, supporting their high intrinsic mobility results. PMID:26169189

  2. Transport phenomena in intrinsic semiconductors and insulators at high current densities: Suppression of the broken neutrality drift

    SciTech Connect

    Mnatsakanov, T. T.; Tandoev, A. G.; Yurkov, S. N.; Levinshtein, M. E.

    2013-08-14

    It is shown that, in addition to the diffusion and broken neutrality drift (BND) modes well-known for insulators and very lightly doped semiconductors, the quasineutral drift (QND) mode is possible. The transition from the BND to QND mode is accompanied by the appearance of a portion with a very sharp current rise in the current-voltage characteristic. This effect is observed in a new type of semiconductor detectors (CIDs, Current Injected Detectors) of high-intensity neutron and proton radiation, suggested, in particular, for Large Hadron Collider. The effect is unambiguously attributed now to the presence of radiation-induced deep centers in a semiconductor. It is shown, however, in this paper that the effect of a very sharp rise in current upon a slight increase in voltage is even possible when there are no deep centers. An equation adequately describing the possible transport modes in intrinsic semiconductors and insulators is derived. The results of an analytical study are confirmed by an adequate simulation.

  3. Transport phenomena in intrinsic semiconductors and insulators at high current densities: Suppression of the broken neutrality drift

    NASA Astrophysics Data System (ADS)

    Mnatsakanov, T. T.; Levinshtein, M. E.; Tandoev, A. G.; Yurkov, S. N.

    2013-08-01

    It is shown that, in addition to the diffusion and broken neutrality drift (BND) modes well-known for insulators and very lightly doped semiconductors, the quasineutral drift (QND) mode is possible. The transition from the BND to QND mode is accompanied by the appearance of a portion with a very sharp current rise in the current-voltage characteristic. This effect is observed in a new type of semiconductor detectors (CIDs, Current Injected Detectors) of high-intensity neutron and proton radiation, suggested, in particular, for Large Hadron Collider. The effect is unambiguously attributed now to the presence of radiation-induced deep centers in a semiconductor. It is shown, however, in this paper that the effect of a very sharp rise in current upon a slight increase in voltage is even possible when there are no deep centers. An equation adequately describing the possible transport modes in intrinsic semiconductors and insulators is derived. The results of an analytical study are confirmed by an adequate simulation.

  4. EDITORIAL: Frontiers in semiconductor-based devices Frontiers in semiconductor-based devices

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay; Phillips, Jamie; Ghosh, Siddhartha; Ma, Jack; Sabarinanthan, Jayshri; Stiff-Roberts, Adrienne; Xu, Jian; Zhou, Weidong

    2009-12-01

    This special cluster of Journal of Physics D: Applied Physics reports proceedings from the Frontiers in Semiconductor-Based Devices Symposium, held in honor of the 60th birthday of Professor Pallab Bhattacharya by his former doctoral students. The symposium took place at the University of Michigan, Ann Arbor on 6-7 December 2009. Pallab Bhattacharya has served on the faculty of the Electrical Engineering and Computer Science Department at the University of Michigan, Ann Arbor for 25 years. During this time, he has made pioneering contributions to semiconductor epitaxy, characterization of strained heterostructures, self-organized quantum dots, quantum-dot optoelectronic devices, and integrated optoelectronics. Professor Bhattacharya has been recognized for his accomplishments by membership of the National Academy of Engineering, by chaired professorships (Charles M Vest Distinguished University Professor and James R Mellor Professor of Engineering), and by selection as a Fellow of the IEEE, among numerous other honors and awards. Professor Bhattacharya has also made remarkable contributions in education, including authorship of the textbook Semiconductor Optoelectronic Devices (Prentice Hall, 2nd edition) and the production of 60 PhD students (and counting). In fact, this development of critical human resources is one of the biggest impacts of Professor Bhattacharya's career. His guidance and dedication have shaped the varied professional paths of his students, many of whom currently enjoy successful careers in academia, industry, and government around the world. This special cluster acknowledges the importance of Professor Bhattacharya's influence as all of the contributions are from his former doctoral students. The symposium reflects the significant impact of Professor Bhattacharya's research in that the topics span diverse, critical research areas, including: semiconductor lasers and modulators, nanoscale quantum structure-based devices, flexible CMOS-based

  5. Spin-based logic in semiconductors for reconfigurable large-scale circuits

    NASA Astrophysics Data System (ADS)

    Dery, H.; Dalal, P.; Cywiński, Ł.; Sham, L. J.

    2007-05-01

    Research in semiconductor spintronics aims to extend the scope of conventional electronics by using the spin degree of freedom of an electron in addition to its charge. Significant scientific advances in this area have been reported, such as the development of diluted ferromagnetic semiconductors, spin injection into semiconductors from ferromagnetic metals and discoveries of new physical phenomena involving electron spin. Yet no viable means of developing spintronics in semiconductors has been presented. Here we report a theoretical design that is a conceptual step forward-spin accumulation is used as the basis of a semiconductor computer circuit. Although the giant magnetoresistance effect in metals has already been commercially exploited, it does not extend to semiconductor/ferromagnet systems, because the effect is too weak for logic operations. We overcome this obstacle by using spin accumulation rather than spin flow. The basic element in our design is a logic gate that consists of a semiconductor structure with multiple magnetic contacts; this serves to perform fast and reprogrammable logic operations in a noisy, room-temperature environment. We then introduce a method to interconnect a large number of these gates to form a `spin computer'. As the shrinking of conventional complementary metal-oxide-semiconductor (CMOS) transistors reaches its intrinsic limit, greater computational capability will mean an increase in both circuit area and power dissipation. Our spin-based approach may provide wide margins for further scaling and also greater computational capability per gate.

  6. Intrinsic feature-based pose measurement for imaging motion compensation

    SciTech Connect

    Baba, Justin S.; Goddard, Jr., James Samuel

    2014-08-19

    Systems and methods for generating motion corrected tomographic images are provided. A method includes obtaining first images of a region of interest (ROI) to be imaged and associated with a first time, where the first images are associated with different positions and orientations with respect to the ROI. The method also includes defining an active region in the each of the first images and selecting intrinsic features in each of the first images based on the active region. Second, identifying a portion of the intrinsic features temporally and spatially matching intrinsic features in corresponding ones of second images of the ROI associated with a second time prior to the first time and computing three-dimensional (3D) coordinates for the portion of the intrinsic features. Finally, the method includes computing a relative pose for the first images based on the 3D coordinates.

  7. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  8. Teacher and Student Intrinsic Motivation in Project-Based Learning

    ERIC Educational Resources Information Center

    Lam, Shui-fong; Cheng, Rebecca Wing-yi; Ma, William Y. K.

    2009-01-01

    In this study we examined the relationship between teacher and student intrinsic motivation in project-based learning. The participants were 126 Hong Kong secondary school teachers and their 631 students who completed evaluation questionnaires after a semester-long project-based learning program. Both teachers and students were asked to indicate…

  9. Semiconductor-Nanowire-Based Superconducting Qubit.

    PubMed

    Larsen, T W; Petersson, K D; Kuemmeth, F; Jespersen, T S; Krogstrup, P; Nygård, J; Marcus, C M

    2015-09-18

    We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmonlike device ("gatemon") is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (~0.8 μs) and dephasing times (~1 μs), exceeding gate operation times by 2 orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces cross talk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information. PMID:26431009

  10. Optical switches based on semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kalman, Robert F.; Dias, Antonio R.; Chau, Kelvin K.; Goodman, Joseph W.

    1991-12-01

    Fiber-optic switching systems typically exhibit large losses associated with splitting and combining of the optical power, and with excess component losses. These losses increase quickly with switch size. To obtain acceptable signal-to-noise performance through large optical switching, optical amplifiers can be used. In applications requiring optical switching, semiconductor optical amplifiers (SOAs) are preferred over erbium-doped fiber amplifiers due to their fast switching speeds and the possibility of their integration in monolithic structures with passive waveguides and electronics. We present a general analysis of optical switching systems utilizing SOAs. These systems, in which the gain provided by SOAs is distributed throughout the optical system, are referred to as distributed optical gain (DOG) systems. Our model predicts the performance and achievable sizes of switches based on the matrix-vector multiplier crossbar and Benes network. It is found that for realistic SOA parameters optical switches accommodating extremely large numbers of nodes are, in principle, achievable.

  11. Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices

    NASA Astrophysics Data System (ADS)

    Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2014-10-01

    We investigate the intrinsic performance of vertical and lateral graphene-based heterostructure field-effect transistors, currently considered the most promising options to exploit graphene properties in post-CMOS electronics. We focus on three recently proposed graphene-based transistors, that in experiments have exhibited large current modulation. Our analysis is based on device simulations including the self-consistent solution of the electrostatic and transport equations within the Non-Equilibrium Green's Function formalism. We show that the lateral heterostructure transistor has the potential to outperform CMOS technology and to meet the requirements of the International Technology Roadmap for Semiconductors for the next generation of semiconductor integrated circuits. On the other hand, we find that vertical heterostructure transistors miss these performance targets by several orders of magnitude, both in terms of switching frequency and delay time, due to large intrinsic capacitances, and unavoidable current/capacitance tradeoffs.

  12. Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices

    PubMed Central

    Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2014-01-01

    We investigate the intrinsic performance of vertical and lateral graphene-based heterostructure field-effect transistors, currently considered the most promising options to exploit graphene properties in post-CMOS electronics. We focus on three recently proposed graphene-based transistors, that in experiments have exhibited large current modulation. Our analysis is based on device simulations including the self-consistent solution of the electrostatic and transport equations within the Non-Equilibrium Green's Function formalism. We show that the lateral heterostructure transistor has the potential to outperform CMOS technology and to meet the requirements of the International Technology Roadmap for Semiconductors for the next generation of semiconductor integrated circuits. On the other hand, we find that vertical heterostructure transistors miss these performance targets by several orders of magnitude, both in terms of switching frequency and delay time, due to large intrinsic capacitances, and unavoidable current/capacitance tradeoffs. PMID:25328156

  13. Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices.

    PubMed

    Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2014-01-01

    We investigate the intrinsic performance of vertical and lateral graphene-based heterostructure field-effect transistors, currently considered the most promising options to exploit graphene properties in post-CMOS electronics. We focus on three recently proposed graphene-based transistors, that in experiments have exhibited large current modulation. Our analysis is based on device simulations including the self-consistent solution of the electrostatic and transport equations within the Non-Equilibrium Green's Function formalism. We show that the lateral heterostructure transistor has the potential to outperform CMOS technology and to meet the requirements of the International Technology Roadmap for Semiconductors for the next generation of semiconductor integrated circuits. On the other hand, we find that vertical heterostructure transistors miss these performance targets by several orders of magnitude, both in terms of switching frequency and delay time, due to large intrinsic capacitances, and unavoidable current/capacitance tradeoffs. PMID:25328156

  14. Identification of intrinsic deep level defects responsible for electret behavior in TlGaSe2 layered semiconductor

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Uzun, Talip; Odrinsky, Andrei P.; Yakar, Emin; Aliyeva, Vafa B.; Babayev, Sardar S.; Mammadov, Tofig G.

    2016-02-01

    Unusual behavior of pyroelectric current signal polarity near the Curie point (Tc) was observed for TlGaSe2 a ferroelectric-semiconductor. It has been revealed that the polarity of the spontaneous polarization near Tc depends on the sample poling prehistory. In particular, applying an external electric field only in the temperature range of the paraelectric state during cooling regime in darkness brought to the depolarization current at Tc with the sign opposite to the external field polarity. Otherwise, if the sample was poled in the temperature interval of the incommensurate phase, pyroelectric current exhibits a peak at Tc with the polarity that is the same as for the external poling electric field. These observations indicate that internal electric field is present in the bulk and near-surface layer regions of the electrically poled single crystal TlGaSe2. Possible mechanisms and origins responsible for the internal electric fields in TlGaSe2 are discussed. It is shown that the formation of internal electric fields in TlGaSe2 is due to charging of intrinsic native defects during the poling process. Characteristics of electrically active intrinsic defects in TlGaSe2 were investigated by using of Photo-Induced Current Transient Spectroscopy (PICTS) technique. Six deep defect levels in the band gap of TlGaSe2 were determined, which were localized both in the bulk and on the surface of the sample and could be electrically charged. The correlation between polarization effects and PICTS results has been established. It was shown that native deep defects (A3-A6) localized in the bulk of crystal are responsible for hetero-charge formation and negative sign of the pyroelectric current peak observed around the Curie temperature after poling the sample in the temperature intervals well above Tc. It was also shown that the positive sign pyrocurrent observed near the Curie point is attributed to the homo-charge formed by native A2-trapping centers which are localized near

  15. The relaxation of intrinsic compressive stress in complementary metal-oxide-semiconductor transistors by additional N ion implantation treatment with atomic force microscope-Raman stress extraction

    NASA Astrophysics Data System (ADS)

    Liao, M.-H.; Chen, C.-H.; Chang, L.-C.; Yang, C.; Kao, S.-C.

    2012-05-01

    Based on the stress extraction and measurement by atomic force microscope-Raman technique with the nanometer level space resolution, the high compressive stress about 550 MPa on the Si active region (OD) is observed for the current complementary metal-oxide-semiconductor (CMOS) transistor. During the thermal budget for the standard manufacture process of the current CMOS transistor, the difference of thermal expansion coefficients between Si and Shallow Trench Isolation (STI) oxide results in this high compressive stress in Si OD and further degrades the electron carrier mobility seriously. In order to relax this intrinsic processed compressive stress in Si OD and try to recover this performance loss, the novel process is proposed in this work in addition to the usage of one-side pad SiN layer. With this novel process of additional N-ion implantation (IMP) treatment in STI oxide, it can be found that the less compressive stress about 438 MPa in Si OD can be achieved by the smaller difference of thermal expansion coefficients between Si and N-doped SiO2 STI oxide. The formation of Si-N bonding in N-doped SiO2 STI region can be monitored by Fourier transform infrared spectroscopy spectra and thermal expansion coefficients for Si, SiO2, and SiN are 2.6 ppm/K, 0.4 ppm/K, and 2.87 ppm/K, respectively. The effective relaxation of intrinsic processed compressive stress in Si OD about 112 MPa (from 550 MPa to 438 MPa) by this proposed additional N IMP treatment contributes ˜14% electron carrier mobility enhancement/recovery. The experimental electrical data agree well with the theoretical piezoelectricity calculation for the strained-Si theory.

  16. Incremental learning of skill collections based on intrinsic motivation

    PubMed Central

    Metzen, Jan H.; Kirchner, Frank

    2013-01-01

    Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents that act in a complex, dynamic environment and are faced with different tasks over their lifetime. We address the question of how an agent can learn useful skills efficiently during a developmental period, i.e., when no task is imposed on him and no external reward signal is provided. Learning of skills in a developmental period needs to be incremental and self-motivated. We propose a new incremental, task-independent skill discovery approach that is suited for continuous domains. Furthermore, the agent learns specific skills based on intrinsic motivation mechanisms that determine on which skills learning is focused at a given point in time. We evaluate the approach in a reinforcement learning setup in two continuous domains with complex dynamics. We show that an intrinsically motivated, skill learning agent outperforms an agent which learns task solutions from scratch. Furthermore, we compare different intrinsic motivation mechanisms and how efficiently they make use of the agent's developmental period. PMID:23898265

  17. All-semiconductor metamaterial-based optical circuit board at the microscale

    SciTech Connect

    Min, Li; Huang, Lirong

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  18. Changing the Environment Based on Empowerment as Intrinsic Motivation

    NASA Astrophysics Data System (ADS)

    Salge, Christoph; Glackin, Cornelius; Polani, Daniel

    2014-05-01

    One aspect of intelligence is the ability to restructure your own environment so that the world you live in becomes more beneficial to you. In this paper we investigate how the information-theoretic measure of agent empowerment can provide a task-independent, intrinsic motivation to restructure the world. We show how changes in embodiment and in the environment change the resulting behaviour of the agent and the artefacts left in the world. For this purpose, we introduce an approximation of the established empowerment formalism based on sparse sampling, which is simpler and significantly faster to compute for deterministic dynamics. Sparse sampling also introduces a degree of randomness into the decision making process, which turns out to beneficial for some cases. We then utilize the measure to generate agent behaviour for different agent embodiments in a Minecraft-inspired three dimensional block world. The paradigmatic results demonstrate that empowerment can be used as a suitable generic intrinsic motivation to not only generate actions in given static environments, as shown in the past, but also to modify existing environmental conditions. In doing so, the emerging strategies to modify an agent's environment turn out to be meaningful to the specific agent capabilities, i.e., de facto to its embodiment.

  19. Quantitative proteome-based guidelines for intrinsic disorder characterization.

    PubMed

    Vincent, Michael; Whidden, Mark; Schnell, Santiago

    2016-06-01

    Intrinsically disordered proteins fail to adopt a stable three-dimensional structure under physiological conditions. It is now understood that many disordered proteins are not dysfunctional, but instead engage in numerous cellular processes, including signaling and regulation. Disorder characterization from amino acid sequence relies on computational disorder prediction algorithms. While numerous large-scale investigations of disorder have been performed using these algorithms, and have offered valuable insight regarding the prevalence of protein disorder in many organisms, critical proteome-based descriptive statistical guidelines that would enable the objective assessment of intrinsic disorder in a protein of interest remain to be established. Here we present a quantitative characterization of numerous disorder features using a rigorous non-parametric statistical approach, providing expected values and percentile cutoffs for each feature in ten eukaryotic proteomes. Our estimates utilize multiple ab initio disorder prediction algorithms grounded on physicochemical principles. Furthermore, we present novel threshold values, specific to both the prediction algorithms and the proteomes, defining the longest primary sequence length in which the significance of a continuous disordered region can be evaluated on the basis of length alone. The guidelines presented here are intended to improve the interpretation of disorder content and continuous disorder predictions from the proteomic point of view. PMID:27085142

  20. Ag-based semiconductor photocatalysts in environmental purification

    NASA Astrophysics Data System (ADS)

    Li, Jiade; Fang, Wen; Yu, Changlin; Zhou, Wanqin; zhu, Lihua; Xie, Yu

    2015-12-01

    Over the past decades, with the fast development of global industrial development, various organic pollutants discharged in water have become a major source of environmental pollution in waste fields. Photocatalysis, as green and environmentally friendly technology, has attracted much attention in pollutants degradation due to its efficient degradation rate. However, the practical application of traditional semiconductor photocatalysts, e.g. TiO2, ZnO, is limited by their weak visible light adsorption due to their wide band gaps. Nowadays, the study in photocatalysts focuses on new and narrow band gap semiconductors. Among them, Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Most of Ag-based semiconductors could exhibit high initial photocatalytic activity. But they easy suffer from poor stability because of photochemical corrosion. Design heterojunction, increasing specific surface area, enriching pore structure, regulating morphology, controlling crystal facets, and producing plasmonic effects were considered as the effective strategies to improve the photocatalytic performance of Ag-based photocatalyts. Moreover, combining the superior properties of carbon materials (e.g. carbon quantum dots, carbon nano-tube, carbon nanofibers, graphene) with Ag-based semiconductor could produce high efficient composite photocatalyts.

  1. Future of Semiconductor Based Thermal Neutron Detectors

    SciTech Connect

    Nikolic, R J; Cheung, C L; Reinhardt, C E; Wang, T F

    2006-02-22

    Thermal neutron detectors have seen only incremental improvements over the last decades. In this paper we overview the current technology of choice for thermal neutron detection--{sup 3}He tubes, which suffer from, moderate to poor fieldability, and low absolute efficiency. The need for improved neutron detection is evident due to this technology gap and the fact that neutrons are a highly specific indicator of fissile material. Recognizing this need, we propose to exploit recent advances in microfabrication technology for building the next generation of semiconductor thermal neutron detectors for national security requirements, for applications requiring excellent fieldability of small devices. We have developed an innovative pathway taking advantage of advanced processing and fabrication technology to produce the proposed device. The crucial advantage of our Pillar Detector is that it can simultaneously meet the requirements of high efficiency and fieldability in the optimized configuration, the detector efficiency could be higher than 70%.

  2. Semiconductor-based DNA sequencing of histone modification states.

    PubMed

    Cheng, Christine S; Rai, Kunal; Garber, Manuel; Hollinger, Andrew; Robbins, Dana; Anderson, Scott; Macbeth, Alyssa; Tzou, Austin; Carneiro, Mauricio O; Raychowdhury, Raktima; Russ, Carsten; Hacohen, Nir; Gershenwald, Jeffrey E; Lennon, Niall; Nusbaum, Chad; Chin, Lynda; Regev, Aviv; Amit, Ido

    2013-01-01

    The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues. PMID:24157732

  3. Semiconductor-based DNA sequencing of histone modification states

    PubMed Central

    Cheng, Christine S.; Rai, Kunal; Garber, Manuel; Hollinger, Andrew; Robbins, Dana; Anderson, Scott; Macbeth, Alyssa; Tzou, Austin; Carneiro, Mauricio O.; Raychowdhury, Raktima; Russ, Carsten; Hacohen, Nir; Gershenwald, Jeffrey E.; Lennon, Niall; Nusbaum, Chad; Chin, Lynda; Regev, Aviv; Amit, Ido

    2013-01-01

    The recent development of a semiconductor-based, non-optical DNA sequencing technology promises scalable, low-cost and rapid sequence data production. The technology has previously been applied mainly to genomic sequencing and targeted re-sequencing. Here we demonstrate the utility of Ion Torrent semiconductor-based sequencing for sensitive, efficient and rapid chromatin immunoprecipitation followed by sequencing (ChIP-seq) through the application of sample preparation methods that are optimized for ChIP-seq on the Ion Torrent platform. We leverage this method for epigenetic profiling of tumour tissues. PMID:24157732

  4. Key techniques for space-based solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  5. Anisotropy-based crystalline oxide-on-semiconductor material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  6. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  7. Space-division optical switches based on semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kalman, Robert F.; Kazovsky, Leonid G.; Goodman, Joseph W.

    Benes and distributed gain matrix-vector multiplier (MVM) switches larger than 10 exp 10 x 10 exp can, in principle, be achieved by using semiconductor optical amplifiers (SOA's). In contrast, lumped gain SOA-based MVM switches are limited in size to less than 100 x 100.

  8. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  9. Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.

    PubMed

    Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani

    2016-07-01

    Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response. PMID:27295453

  10. Thin-film transistors based on organic conjugated semiconductors

    NASA Astrophysics Data System (ADS)

    Garnier, Francis

    1998-02-01

    The use of organic semiconductors as active layers in thin-film transistors has raised in the recent years a large interest, both for the fundamental understanding of the charge transport processes in organic materials, and also for the potential applications of these devices in the new field of flexible electronics. Short conjugated oligomers have been shown to possess much higher field-effect mobilities than their parent conjugated polymers. The origin of such increase in the efficiency of charge transport is mainly attributed to the close-packing and long-range structural organization displayed in thin films of conjugated oligomers. The various routes for controlling this organization are described, which allow to realize liquid crystal-like two-dimensional structures for these semiconductors, whose carrier mobility has now become equivalent to that of amorphous silicon. It is also shown that the effect of conjugation length on carrier mobility is not as critical as previously thought, but the associated increase of the band gap energy effects the efficiency of charge injection at the metal/semiconductor interface. This problem can be answered by realizing a local doping of the semiconductor, which allows the injection of charge to operate through an efficient tunneling mechanism. Organic-based thin-film transistors have now become viable devices.

  11. Study of the new diluted magnetic semiconductors based on the doping of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Feng, Shan; Li, Linxian; Wang, Shaolei; Li, Yuke

    Diluted magnetic semiconductors(DMSs) have attracted increasing attention because of their potential applications in spintronics. Recently, a series of new bulk DMS materialswere synthesized by doping in the 122 and 1111 phases of iron-based superconductors(Fe-SC), which sheds light on the DMS research[3]. In this report, we have synthesized two systems of 1111 phases of DMSs based on Fe-SC materials (La1-xSrx) (Ag0.925 Mn0.075) SO(x =0, 0.025, 0.05, 0.075 and 0.1) and (Y1-xSrx) (Cu0.925 Mn0.075) SO (x =0, 0.025, 0.05,0.075 and 0.1) by solid state method. The structure and electrical, magnetic and optical properties have been investigated by means of XRD, 4KCCS, MPMS, PL, UV-Vis and Raman technique, respectively. Some interesting phenomena are found (Such as the Curie temperature Tc and band-gap energy Eg change regularly with the dopants additon). The results are helpful to clarify the intrinsic mechanism of the DMSs, and will provide new insights on the fabrication and application of devices based on these materials. This work was supported by the National Science Foundation of China (Grant No 61376094). Li Zhang would like to acknowledge a scholarship Granted by China Scholarship Council (CSC-201408330028)

  12. Study of the new diluted magnetic semiconductors based on the doping of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Feng, Shan; Li, Linxian; Wang, Shaolei; Lu, Bin; Li, Yuke

    2015-03-01

    Diluted magnetic semiconductors(DMSs) have attracted increasing attention because of their potential applications in spintronics. Recently, a series of new bulk DMS materialswere synthesized by doping in the 122 and 1111 phases of iron-based superconductors(Fe-SC), which sheds light on the DMS research. In this report, we have synthesized two systems of 1111 phases of DMSs based on Fe-SC materials (La1 - xSrx) (Ag0.925 Mn0.075)SO(x=0, 0.025, 0.05, 0.075 and 0.1) and (Y1 - xSrx) (Cu0.925 Mn0.075) SO (x=0, 0.025, 0.05,0.075 and 0.1) by solid state method. The structure and electrical, magnetic and optical properties have been investigated by means of XRD, 4KCCS, MPMS, PL, UV-Vis and Raman technique, respectively. Some interesting phenomena are found (Such as the Curie temperature Tc and band-gap energy Eg change regularly with the dopants additon). The results are helpful to clarify the intrinsic mechanism of the DMSs, and will provide new insights on the fabrication and application of devices based on these materials. This work was supported by the National Science Foundation of China (Grant No. 61376094). Li Zhang would like to acknowledge a scholarship granted by China Scholarship Council (CSC-201408330028).

  13. Method of plasma etching Ga-based compound semiconductors

    SciTech Connect

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  14. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.

    PubMed

    Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2015-01-14

    The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices. PMID:25517922

  15. Thermoelectric properties of zinc based pnictide semiconductors

    NASA Astrophysics Data System (ADS)

    Sreeparvathy, P. C.; Kanchana, V.; Vaitheeswaran, G.

    2016-02-01

    We report a detailed first principles density functional calculations to understand the electronic structure and transport properties of Zn-based pnictides ZnXPn2 (X: Si, Ge, and Sn; Pn: P and As) and ZnSiSb2. The electronic properties calculated using Tran-Blaha modified Becke-Johnson functional reveals the semi-conducting nature, and the resulting band gaps are in good agreement with experimental and other theoretical reports. We find a mixture of heavy and light bands in the band structure which is an advantage for good thermoelectric (TE) properties. The calculated transport properties unveils the favour p-type conduction in ZnXP2 (X: Si, Ge, and Sn) and n-type conduction in ZnGeP2 and ZnSiAs2. Comparison of transport properties of Zn-based pnictides with the prototype chalcopyrite thermoelectric materials implies that the thermopower values of the investigated compounds to be higher when compared with the prototype chalcopyrite thermoelectric materials, together with the comparable values for electrical conductivity scaled by relaxation time. In addition to this, Zn-based pnictides are found to possess higher thermopower than well known traditional TE materials at room temperature and above which motivates further research in these compounds.

  16. Method of plasma etching GA-based compound semiconductors

    SciTech Connect

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  17. Semiconductor-Nanocrystals-Based White Light-Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z.

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

  18. Semiconductor Nanocrystals-Based White Light Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Hu, Michael Z.; Duty, Chad E

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

  19. Simulation Study of Intrinsic Parameter Fluctuations in Variable-Body-Factor Silicon-on-Thin-Box Metal Oxide Semiconductor Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Yang, Yunxiang; Du, Gang; Han, Ruqi; Liu, Xiaoyan

    2011-04-01

    The effects of intrinsic parameter fluctuations, including line-edge-roughness (LER), silicon-body thickness variation (STV) and work-function variation (WFV), in 20-nm-gate variable-γ silicon-on-thin-box (SOTB) metal oxide semiconductor field effect transistors (MOSFETs) have been investigated and compared with those of the conventional SOTB. Results show that the variable-γ SOTB offers not only an enhanced Ion but also a reduced Ion fluctuation with a small increase in the active-state Ioff fluctuation. The Vth-roll-off value in the variable-γ SOTB can be reduced by adopting a reverse-biased side gate to optimize the short channel effect, but the variability of the DIBL effect is enlarged. It is expected that a thinner silicon body can be used to reduce the dominant variability sources.

  20. Novel optoelectronic devices based on single semiconductor nanowires (nanobelts)

    PubMed Central

    2012-01-01

    Semiconductor nanowires (NWs) or nanobelts (NBs) have attracted more and more attention due to their potential application in novel optoelectronic devices. In this review, we present our recent work on novel NB photodetectors, where a three-terminal metal–semiconductor field-effect transistor (MESFET) device structure was exploited. In contrast to the common two-terminal NB (NW) photodetectors, the MESFET-based photodetector can make a balance among overall performance parameters, which is desired for practical device applications. We also present our recent work on graphene nanoribbon/semiconductor NW (SNW) heterojunction light-emitting diodes (LEDs). Herein, by taking advantage of both graphene and SNWs, we have fabricated, for the first time, the graphene-based nano-LEDs. This achievement opens a new avenue for developing graphene-based nano-electroluminescence devices. Moreover, the novel graphene/SNW hybrid devices can also find use in other applications, such as high-sensitivity sensor and transparent flexible devices in the future. PMID:22501032

  1. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    DOEpatents

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  2. Intrinsic spin and momentum relaxation in organic single-crystalline semiconductors probed by ESR and Hall measurements

    NASA Astrophysics Data System (ADS)

    Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun

    Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.

  3. Optically induced transport through semiconductor-based molecular electronics

    SciTech Connect

    Li, Guangqi; Seideman, Tamar; Fainberg, Boris D.

    2015-04-21

    A tight binding model is used to investigate photoinduced tunneling current through a molecular bridge coupled to two semiconductor electrodes. A quantum master equation is developed within a non-Markovian theory based on second-order perturbation theory with respect to the molecule-semiconductor electrode coupling. The spectral functions are generated using a one dimensional alternating bond model, and the coupling between the molecule and the electrodes is expressed through a corresponding correlation function. Since the molecular bridge orbitals are inside the bandgap between the conduction and valence bands, charge carrier tunneling is inhibited in the dark. Subject to the dipole interaction with the laser field, virtual molecular states are generated via the absorption and emission of photons, and new tunneling channels open. Interesting phenomena arising from memory are noted. Such a phenomenon could serve as a switch.

  4. Optically induced transport through semiconductor-based molecular electronics

    NASA Astrophysics Data System (ADS)

    Li, Guangqi; Fainberg, Boris D.; Seideman, Tamar

    2015-04-01

    A tight binding model is used to investigate photoinduced tunneling current through a molecular bridge coupled to two semiconductor electrodes. A quantum master equation is developed within a non-Markovian theory based on second-order perturbation theory with respect to the molecule-semiconductor electrode coupling. The spectral functions are generated using a one dimensional alternating bond model, and the coupling between the molecule and the electrodes is expressed through a corresponding correlation function. Since the molecular bridge orbitals are inside the bandgap between the conduction and valence bands, charge carrier tunneling is inhibited in the dark. Subject to the dipole interaction with the laser field, virtual molecular states are generated via the absorption and emission of photons, and new tunneling channels open. Interesting phenomena arising from memory are noted. Such a phenomenon could serve as a switch.

  5. Progress in ion torrent semiconductor chip based sequencing.

    PubMed

    Merriman, Barry; Rothberg, Jonathan M

    2012-12-01

    In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives. PMID:23208921

  6. Tunnel based spin injection devices for semiconductor spintronics

    NASA Astrophysics Data System (ADS)

    Jiang, Xin

    This dissertation summarizes the work on spin-dependent electron transport and spin injection in tunnel based spintronic devices. In particular, it focuses on a novel three terminal hot electron device combining ferromagnetic metals and semiconductors---the magnetic tunnel transistor (MTT). The MTT has extremely high magnetic field sensitivity and is a useful tool to explore spin-dependent electron transport in metals, semiconductors, and at their interfaces over a wide energy range. In Chap. 1, the basic concept and fabrication of the MTT are discussed. Two types of MTTs, with ferromagnetic single and spin-valve base layers, respectively, are introduced and compared. In the following chapters, the transport properties of the MTT are discussed in detail, including the spin-dependent hot electron attenuation lengths in CoFe and NiFe thin films on GaAs (Chap. 2), the bias voltage dependence of the magneto-current (Chap. 3), the giant magneto-current effect in MTTs with a spin-valve base (Chap. 4), and the influence of non-magnetic seed layers on magneto-electronic properties of MTTs with a Si collector (Chap. 5). Chap. 6 concentrates on electrical injection of spin-polarized electrons into semiconductors, which is an essential ingredient in semiconductor spintronics. Two types of spin injectors are discussed: an MTT injector and a CoFe/MgO tunnel injector. The spin polarization of the injected electron current is detected optically by measuring the circular polarization of electroluminescence from a quantum well light emitting diode. Using an MTT injector a spin polarization of ˜10% is found for injection electron energy of ˜2 eV at 1.4K. This moderate spin polarization is most likely limited by significant electron spin relaxation at high energy. Much higher spin injection efficiency is obtained by using a CoFe/MgO tunnel injector with spin polarization values of ˜50% at 100K. The temperature and bias dependence of the electroluminescence polarization provides

  7. The Relationships among Measures of Intrinsic Motivation, Instructional Design, and Learning in Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Rezabek, Randy

    The intent of this study was to explore the intrinsic aspects of motivation, and to see if the design of instruction could positively affect learners' levels of intrinsic motivation toward the subject matter. The following questions were addressed: (1) Will different computer-based instructional treatments which have been designed to reflect…

  8. Microwave photonic interference mitigation filter based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Zhang, Xinliang; Zhou, Lina; Zhang, Yu; Yu, Yuan; Wang, Fei; Huang, Dexiu

    2009-11-01

    A microwave photonic interference mitigation filter is proposed and experimentally demonstrated. The structure is based on a recirculating delay line loop comprising a semiconductor optical amplifier (SOA) and a tunable narrowband optical filter. Converted signal used as negative tap is generated through wavelength conversion employing cross-gain modulation of amplified spontaneous emission spectrum of the SOA. The converted signal circulating in the RDL loop realizes a high quality factor (Q) response after photo-detection. A bandpass response with negative coefficients combined with a broadband allpass response achieves a notch response with flat passband.

  9. Trace explosive sensor devices based on semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Wang, Danling

    This dissertation discusses an explosive sensing device based on semiconductor nanomaterials. Here, we mainly focus on two kinds of materials: titanium dioxide nanowires and silicon nanowires to detect explosive trace vapor. Herein, methods for the synthesis, fabrication, design of nanostructured sensing materials using low-cost hydrothermal process are present. In addition, the nanomaterials have been systemically tested on different explosive. The first part of dissertation is focused on the fabrication of TiO2(B) dominant nanowires and testing the response to explosives. It was found that the high porous TiO2(B) nanowires when mixed anatase TiO2, exhibit a very fast and highly sensitive response to nitro-containing explosives. The second part of dissertation has studied the basic sensing mechanism of TiO2(B) nanowire sensor to detect explosives. It shows the specific surface characteristics of TiO2 responsible for the nitro-containing explosives. This information is then used to propose a method using UV illumination to reduce the effect of water vapor on TiO2(B) nanowires. The third part discussed an explosive sensor based on silicon nanowires. We analyzed the mechanism of silicon nanowires to detect nitro-related explosive compounds. In order to further investigate the sensing mechanism of TiO2, the fourth part of dissertation studies the effect on sensor performance by using different crystal phases of TiO2, different microstructure of TiO2, surface modification of TiO2, and different kinds of nanostructured semiconductors such as ZnO nanowires, TiO2 coated ZnO nanowires, V2O5 nanowires, and CdS nanowires to detect explosives. It is found that only TiO2 related semiconductor shows good response to explosives.

  10. Semiconductor-nanocrystals-based white light-emitting diodes.

    PubMed

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z

    2010-08-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white light-emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed. PMID:20602425

  11. Semiconductor product analysis challenges based on the 1999 ITRS

    SciTech Connect

    JOSEPH,THOMAS W.; ANDERSON,RICHARD E.; GILFEATHER,GLEN; LECLAIRE,CAROLE; YIM,DANIEL

    2000-05-30

    One of the most significant challenges for technology characterization and future analysis is to keep instrumentation and techniques in step with the development of technology itself. Not only are dimensions shrinking and new materials being employed, but the rate of change is increasing. According to the 1999 International Technology Roadmap for Semiconductors (ITRS) the number and difficulty of the technical challenges continue to increase as technology moves forward. It could be argued that technology cannot be developed without appropriate analytical technique, nevertheless while much effort is being directed at materials and processes, only a small proportion is being directed at analysis. Whereas previous versions of the Semiconductor Industry Association roadmap contained a small number of implicit references to characterization and analysis, the 1999 ITRS contains many explicit references. It is clear that characterization is now woven through the roadmap, and technology developers in all areas appreciate the fact that new instrumentation and techniques will be required to sustain the rate of development the semiconductor industry has seen in recent years. Late in 1999, a subcommittee of the Sematech Product Analysis Forum reviewed the ITRS and identified a top-ten list of challenges which the failure analysis community will face as present technologies are extended and future technologies are developed. This paper discusses the PAF top-ten list of challenges, which is based primarily on the Difficult Challenges tables from each ITRS working group. Eight of the top-ten are challenges of significant technical magnitude, only two could be considered non-technical in nature. Most of these challenges cut across several working group areas and could be considered common threads in the roadmap, ranging from fault simulation and modeling to imaging small features, from electrical defect isolation to reprocessing.

  12. Space division switches based on semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kalman, R. F.; Kazovsky, L. G.; Goodman, J. W.

    Semiconductor optical amplifiers (SOA's) can be used in space-division (SD) switches to provide both switching and optical gain. We present a general analysis of optical switches using SOA's, considering noise and saturation effects associated with amplified spontaneous emission. Based on this analysis, we derive size limitations of SD switches. Three specific SD switching architectures are considered. For a lumped gain matrix vector multiplier (MVM) switch, switch sizes are limited to the range of 3000 x 3000 for SOA's with saturation output powers of 100 mW. Based on the effects considered in our analysis, distributed gain MVM switches and Benes switches are not limited by signal-to noise ratio and saturation up to sizes of 10 exp 80 x 10 exp 80 for SOA's with saturation output powers of 100 mW.

  13. Dopant in Near-Surface Semiconductor Layers of Metal-Insulator-Semiconductor Structures Based on Graded-Gap p-Hg0.78Cd0.22Te Grown by Molecular-Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-02-01

    Peculiarities in determining the dopant concentration and dopant distribution profile in the near-surface layer of a semiconductor are investigated by measuring the admittance of metal-insulator-semiconductor structures (MIS structures) based on p-Hg0.78Cd0.22Te grown by molecular beam epitaxy. The dopant concentrations in the near-surface layer of the semiconductor are determined by measuring the admittance of MIS structures in the frequency range of 50 kHz to 1 MHz. It is shown that in this frequency range, the capacitance-voltage characteristics of MIS structures based on p-Hg0.78Cd0.22Te with a near-surface graded gap layer demonstrate a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level for an intrinsic semiconductor. The formation time of the inversion layer is decreased by less than two times, if a near-surface graded-gap layer is created. The dopant distribution profile in the near-surface layer of the semiconductor is found, and it is shown that for structures based on p-Hg0.78Cd0.22Te with a near-surface graded-gap layer, the dopant concentration has a minimum near the interface with the insulator. For MIS structure based on n-Hg0.78Cd0.22Te, the dopant concentration is more uniformly distributed in the near-surface layer of the semiconductor.

  14. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  15. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  16. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    PubMed Central

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455

  17. Optimization algorithm based characterization scheme for tunable semiconductor lasers.

    PubMed

    Chen, Quanan; Liu, Gonghai; Lu, Qiaoyin; Guo, Weihua

    2016-09-01

    In this paper, an optimization algorithm based characterization scheme for tunable semiconductor lasers is proposed and demonstrated. In the process of optimization, the ratio between the power of the desired frequency and the power except of the desired frequency is used as the figure of merit, which approximately represents the side-mode suppression ratio. In practice, we use tunable optical band-pass and band-stop filters to obtain the power of the desired frequency and the power except of the desired frequency separately. With the assistance of optimization algorithms, such as the particle swarm optimization (PSO) algorithm, we can get stable operation conditions for tunable lasers at designated frequencies directly and efficiently. PMID:27607701

  18. Novel diluted magnetic semiconductor materials based on zinc oxide

    NASA Astrophysics Data System (ADS)

    Chakraborti, Deepayan

    The primary aim of this work was to develop a ZnO based diluted magnetic semiconductor (DMS) materials system which displays ferromagnetism above room temperature and to understand the origin of long-range ferromagnetic ordering in these systems. Recent developments in the field of spintronics (spin based electronics) have led to an extensive search for materials in which semiconducting properties can be integrated with magnetic properties to realize the objective of successful fabrication of spin-based devices. For these devices we require a high efficiency of spin current injection at room temperature. Diluted magnetic semiconductors (DMS) can serve this role, but they should not only display room temperature ferromagnetism (RTFM) but also be capable of generating spin polarized carriers. Transition metal doped ZnO has proved to be a potential candidate as a DMS showing RTFM. The origin of ferromagnetic ordering in ZnO is still under debate. However, the presence of magnetic secondary phases, composition fluctuations and nanoclusters could also explain the observation of ferromagnetism in the DMS samples. This encouraged us to investigate Cu-doped(+ spin in the 2+ valence state) ZnO system as a probable candidate exhibiting RTFM because neither metallic Cu nor its oxides (Cu2O or CuO) are ferromagnetic. The role of defects and free carriers on the ferromagnetic ordering of Cu-doped ZnO thin films was studied to ascertain the origin of ferromagnetism in this system. A novel non-equilibrium Pulsed Laser Deposition technique has been used to grow high quality epitaxial thin films of Cu:ZnO and (Co,Cu):ZnO on c-plane Sapphire by domain matching epitxay. Both the systems showed ferromagnetic ordering above 300K but Cu ions showed a much stronger ferromagnetic ordering than Co, especially at low concentrations (1-2%) of Cu where we realized near 100% polarization. But, the incorporation of Cu resulted in a 2-order of magnitude rise in the resistivity from 10-1 to 101

  19. Trion-based Optical Processes in Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Baldwin, Thomas Kendrick

    In a semiconductor, negative charge is carried by conduction-band electrons and positive charge is carried by valence-band holes. While charge transport properties can be understood by considering the motion of these carriers individually, the optical properties are largely determined by their mutual interaction. The hydrogen-like bound state of an electron with a hole, or exciton, is the fundamental optical excitation in direct-gap materials such as gallium arsenide and cadmium telluride. In this dissertation, we consider charged excitons, or trions. A bound state of an exciton with a resident electron or hole, trions are a relatively pure manifestation of the three-body problem which can be studied experimentally. This is a subject of practical as well as academic interest: Since the trion is the elementary optical excitation of a resident free carrier, the related optical processes can open pathways for manipulating carrier spin and carrier transport. We present three experimental investigations of trion-based optical processes in semiconductor quantum wells. In the first, we demonstrate electromagnetically induced transparency via the electron spin coherence made possible by the trion transition. We explore the practical limits of this technique in high magnetic fields. In the second, we present a direct measurement of trion and exciton oscillator strength at high magnetic fields. These data reveal insights about the structure of the trion's three-body wavefunction relative to that of its next excited state, the triplet trion. In the last, we investigate the mechanism underlying exciton-correlated tunneling, an optically-controllable transport process in mixed-type quantum wells. Extensive experimental studies indicate that it is due to a local, indirect interaction between an exciton and a hole, forming one more example of a trion-mediated optical process. This dissertation includes previously published co-authored material.

  20. EDITORIAL: Challenges for first-principles based properties of defects in semiconductors and oxides Challenges for first-principles based properties of defects in semiconductors and oxides

    NASA Astrophysics Data System (ADS)

    2009-12-01

    First-principles methods based on density functional theory (DFT) have been the mainstay of theoretical studies of the properties of semiconductor and oxide materials. Despite the tremendous successes of the past few decades, significant challenges remain in adapting these methods for predictive simulations that are quantitatively useful in predicting device behavior. Recent advances in computational capabilities, and improved theoretical methods taking advantage of ever more powerful computer hardware, offer the possibility that computational modeling may finally fulfill the long-sought goal of truly predictive simulations for defect properties. The exciting prospect of using modelling as `virtual experiments' to obtain quantitatively accurate predictions of semiconductor behavior seems tantalizingly close, but challenges still remain, which is evident in the many divergent approaches adopted for the modelling and simulation of various aspects of defect behavior. This special issue consists of papers describing different approaches to the study of defects, and the challenges that remain from the perspective of leading scientists in the field. It includes contributions on the theoretical and computational issues of using density functional methods for defect calculations [Nieminen], treatments to account for finite computational cell effects in periodic defect supercell calculations using analytical constructions [Lany and Zunger], or cell-size extrapolation techniques [Castleton et al], or instead using embedded cluster calculations to model charge-trapping defects [Shluger et al]. This issue also includes a description of the computation of g-tensor and hyperfine splitting for defect centers [Valentin and Pacchione], computation of vibrational properties of impurities from dynamical DFT calculations [Estreicher et al], and the use of DFT supercell calculations to predict charge transition energy levels of intrinsic defects in GaAs [Schultz and von Lilienfeld

  1. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    SciTech Connect

    Mario Agio

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  2. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    NASA Astrophysics Data System (ADS)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  3. Ground based preparation for microgravity growth of alloy semiconductors

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, W. J.; Crouch, R. K.; Simchick, R. T.; Sorokach, S. K.; Rosch, W.; Knuteson, D. J.; Barber, P. G.

    1991-01-01

    Ground-based research conducted in order to prepare a microgravity space flight experiment is presented. The thermophysical properties of a PbSnTe alloy used for semiconductors are investigated, and furnace calibration and fluid-flow measurements are performed. The alloy has a zero energy crossing at approximately 40 percent SnTe in its band-gap vs composition diagram, which facilitates the design of long-wavelength IR detectors and lasers. The uniformity of devices made from this material depends on the ratio of PbTe and SnTe and requires the composition of the crystal growth to be closely controlled. The main obstacle to such control is the fact that liquid of this material is always solutally or thermally unstable, and, in a high-temperature gradient, the double convective instability cannot be made stable by balancing thermal and solutal expansion. In order to extend the science of crystal growth, the limits of suppression of convection have to be tested in low earth orbit.

  4. Nanomesh electrode on MgZnO-based metal-semiconductor-metal ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Lin, Heng-Yu; Tseng, Chun-Yen

    2015-09-01

    In this work, the nano-scaled mesh electrodes are fabricated by obliquely depositing metals through the highly ordered polystyrene nanosphere mask. Furthermore, the intrinsic MgZnO film is deposited as the absorption layer for the metal-semiconductor-metal ultraviolet photodetectors (MSM-UV-PDs) using the vapor cooling condensation system. The 100-nm-linewidth nanomesh electrodes with metal occupying a roughly 10% of the device surface region consequently render PDs with a high transmittance in the ultraviolet (UV) wavelength range. The photoresponsivity of MgZnO-based MSM-UV-PDs evaluated at the wavelength of 330 nm with the operating bias voltage of 5 V is elevated from 0.135 to 0.248 A/W when the thin metal electrode is replaced by the nanomesh electrode, and the corresponding quantum efficiency is improved from 50.75 to 93.23%. Finally, adopting the nanomesh electrode also helps to enhance the UV-visible rejection ratio (R330nm/R450nm) and the detectivity from 1663 and 1.78 × 1010 cmHz0.5W-1 to 2480 and 2.43 × 1010 cmHz0.5W-1, respectively.

  5. Nanomesh electrode on MgZnO-based metal-semiconductor-metal ultraviolet photodetectors.

    PubMed

    Lee, Ching-Ting; Lin, Heng-Yu; Tseng, Chun-Yen

    2015-01-01

    In this work, the nano-scaled mesh electrodes are fabricated by obliquely depositing metals through the highly ordered polystyrene nanosphere mask. Furthermore, the intrinsic MgZnO film is deposited as the absorption layer for the metal-semiconductor-metal ultraviolet photodetectors (MSM-UV-PDs) using the vapor cooling condensation system. The 100-nm-linewidth nanomesh electrodes with metal occupying a roughly 10% of the device surface region consequently render PDs with a high transmittance in the ultraviolet (UV) wavelength range. The photoresponsivity of MgZnO-based MSM-UV-PDs evaluated at the wavelength of 330 nm with the operating bias voltage of 5 V is elevated from 0.135 to 0.248 A/W when the thin metal electrode is replaced by the nanomesh electrode, and the corresponding quantum efficiency is improved from 50.75 to 93.23%. Finally, adopting the nanomesh electrode also helps to enhance the UV-visible rejection ratio (R330nm/R450nm) and the detectivity from 1663 and 1.78 × 10(10) cmHz(0.5)W(-1) to 2480 and 2.43 × 10(10) cmHz(0.5)W(-1), respectively. PMID:26324247

  6. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Hou, Xiandeng; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-04-01

    Ratiometric fluorescent sensors, which can provide built-in self-calibration for correction of a variety of analyte-independent factors, have attracted particular attention for analytical sensing and optical imaging with the potential to provide a precise and quantitative analysis. A wide variety of ratiometric sensing probes using small fluorescent molecules have been developed. Compared with organic dyes, exploiting semiconductor quantum dots (QDs) in ratiometric fluorescence sensing is even more intriguing, owing to their unique optical and photophysical properties that offer significant advantages over organic dyes. In this review, the main photophysical mechanism for generating dual-emission from QDs for ratiometry is discussed and categorized in detail. Typically, dual-emission can be obtained either with energy transfer from QDs to dyes or with independent dual fluorophores of QDs and dye/QDs. The recent discovery of intrinsic dual-emission from Mn-doped QDs offers new opportunities for ratiometric sensing. Particularly, the signal transduction of QDs is not restricted to fluorescence, and electrochemiluminescence and photoelectrochemistry from QDs are also promising for sensing, which can be made ratiometric for correction of interferences typically encountered in electrochemistry. All these unique photophysical properties of QDs lead to a new avenue of ratiometry, and the recent progress in this area is addressed and summarized here. Several interesting applications of QD-based ratiometry are presented for the determination of metal ions, temperature, and biomolecules, with specific emphasis on the design principles and photophysical mechanisms of these probes.

  7. A game theoretic framework for incentive-based models of intrinsic motivation in artificial systems

    PubMed Central

    Merrick, Kathryn E.; Shafi, Kamran

    2013-01-01

    An emerging body of research is focusing on understanding and building artificial systems that can achieve open-ended development influenced by intrinsic motivations. In particular, research in robotics and machine learning is yielding systems and algorithms with increasing capacity for self-directed learning and autonomy. Traditional software architectures and algorithms are being augmented with intrinsic motivations to drive cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been considered in reinforcement learning, active learning and supervised learning settings among others. This paper considers game theory as a novel setting for intrinsic motivation. A game theoretic framework for intrinsic motivation is formulated by introducing the concept of optimally motivating incentive as a lens through which players perceive a game. Transformations of four well-known mixed-motive games are presented to demonstrate the perceived games when players' optimally motivating incentive falls in three cases corresponding to strong power, affiliation and achievement motivation. We use agent-based simulations to demonstrate that players with different optimally motivating incentive act differently as a result of their altered perception of the game. We discuss the implications of these results both for modeling human behavior and for designing artificial agents or robots. PMID:24198797

  8. Stimulating Students' Intrinsic Motivation for Learning Chemistry through the Use of Context-Based Learning Modules

    ERIC Educational Resources Information Center

    Vaino, Katrin; Holbrook, Jack; Rannikmae, Miia

    2012-01-01

    This paper introduces a research project in which five chemistry teachers, working in cooperation with university researchers, implemented a new teaching approach using context-based modules specially designed to stimulate the intrinsic motivation of students. The intention was to induce change in chemistry teachers' teaching approach from more…

  9. Flexible OFDM-based access systems with intrinsic function of chromatic dispersion compensation

    NASA Astrophysics Data System (ADS)

    Konishi, Tsuyoshi; Murakawa, Takuya; Nagashima, Tomotaka; Hasegawa, Makoto; Shimizu, Satoshi; Hattori, Kuninori; Okuno, Masayuki; Mino, Shinji; Himeno, Akira; Uenohara, Hiroyuki; Wada, Naoya; Cincotti, Gabriella

    2015-12-01

    Cost-effective and tunable chromatic dispersion compensation in a fiber link are still an open issue in metro and access networks to cope with increasing costs and power consumption. Intrinsic chromatic dispersion compensation functionality of optical fractional orthogonal frequency division multiplexing is discussed and experimentally demonstrated using dispersion-tunable transmitter and receiver based on wavelength selective switching devices.

  10. Cu2O-based solar cells using oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0

  11. Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics

    NASA Astrophysics Data System (ADS)

    Fukumura, T.; Yamada, Y.; Toyosaki, H.; Hasegawa, T.; Koinuma, H.; Kawasaki, M.

    2004-02-01

    A review is given for the recent progress of research in the field of oxide-based diluted magnetic semiconductor (DMS), which was triggered by combinatorial discovery of transparent ferromagnet. The possible advantages of oxide semiconductor as a host of DMS are described in comparison with conventional compound semiconductors. Limits and problems for identifying novel ferromagnetic DMS are described in view of recent reports in this field. Several characterization techniques are proposed in order to eliminate unidentified ferromagnetism of oxide-based DMS unidentified ferromagnetic oxide (UFO). Perspectives and possible devices are also given.

  12. Assessing Online Textual Feedback to Support Student Intrinsic Motivation Using a Collaborative Text-Based Dialogue System: A Qualitative Study

    ERIC Educational Resources Information Center

    Shroff, Ronnie H.; Deneen, Christopher

    2011-01-01

    This paper assesses textual feedback to support student intrinsic motivation using a collaborative text-based dialogue system. A research model is presented based on research into intrinsic motivation, and the specific construct of feedback provides a framework for the model. A qualitative research methodology is used to validate the model.…

  13. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    SciTech Connect

    Tanaka, Masaaki; Ohya, Shinobu Nam Hai, Pham

    2014-03-15

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  14. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Ohya, Shinobu; Nam Hai, Pham

    2014-03-01

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  15. Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.

  16. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.

    PubMed

    Fu, Yuanyuan; Guo, Yanzhi; Wang, Yuelong; Luo, Jiesi; Pu, Xuemei; Li, Menglong; Zhang, Zhihang

    2015-06-01

    Protein-protein interactions (PPIs) play essential roles in many biological processes. In protein-protein interaction networks, hubs involve in numbers of PPIs and may constitute an important source of drug targets. The intrinsic disorder proteins (IDPs) with unstable structures can promote the promiscuity of hubs and also involve in many disease pathways, so they also could serve as potential drug targets. Moreover, proteins with similar functions measured by semantic similarity of gene ontology (GO) terms tend to interact with each other. Here, the relationship between hub proteins and drug targets based on GO terms and intrinsic disorder was explored. The semantic similarities of GO terms and genes between two proteins, and the rate of intrinsic disorder residues of each protein were extracted as features to characterize the functional similarity between two interacting proteins. Only using 8 feature variables, prediction models by support vector machine (SVM) were constructed to predict PPIs. The accuracy of the model on the PPI data from human hub proteins is as high as 83.72%, which is very promising compared with other PPI prediction models with hundreds or even thousands of features. Then, 118 of 142 PPIs between hubs are correctly predicted that the two interacting proteins are targets of the same drugs. The results indicate that only 8 functional features are fully efficient for representing PPIs. In order to identify new targets from IDP dataset, the PPIs between hubs and IDPs are predicted by the SVM model and the model yields a prediction accuracy of 75.84%. Further research proves that 3 of 5 PPIs between hubs and IDPs are correctly predicted that the two interacting proteins are targets of the same drugs. All results demonstrate that the model with only 8-dimensional features from GO terms and intrinsic disorder still gives a good performance in predicting PPIs and further identifying drug targets. PMID:25854804

  17. Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production.

    PubMed

    Yang, Jinhui; Yan, Hongjian; Zong, Xu; Wen, Fuyu; Liu, Meiying; Li, Can

    2013-08-13

    A photocatalyst is defined as a functional composite material with three components: photo-harvester (e.g. semiconductor), reduction cocatalyst (e.g. for hydrogen evolution) and oxidation cocatalyst (e.g. for oxidation evolution from water). Loading cocatalysts on semiconductors is proved to be an effective approach to promote the charge separation and transfer, suppress the charge recombination and enhance the photocatalytic activity. Furthermore, the photocatalytic performance can be significantly improved by loading dual cocatalysts for reduction and oxidation, which could lower the activation energy barriers, respectively, for the two half reactions. A quantum efficiency (QE) as high as 93 per cent at 420 nm for H₂ production has been achieved for Pt-PdS/CdS, where Pt and PdS, respectively, act as reduction and oxidation cocatalysts and CdS as a photo-harvester. The dual cocatalysts work synergistically and enhance the photocatalytic reaction rate, which is determined by the slower one (either reduction or oxidation). This work demonstrates that the cocatalysts, especially the dual cocatalysts for reduction and oxidation, are crucial and even absolutely necessary for achieving high QEs in photocatalytic hydrogen production, as well as in photocatalytic water splitting. PMID:23816907

  18. High-efficiency photovoltaics based on semiconductor nanostructures

    SciTech Connect

    Yu, Paul K.L.; Yu, Edward T.; Wang, Deli

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  19. Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors

    NASA Astrophysics Data System (ADS)

    Reason, Matthew; Bennett, Brian R.; Magno, Richard; Boos, J. Brad

    2011-01-01

    We have investigated regrowth of p + InGaSb on AlGaSb and on thin InAs etch-stop layers after atomic hydrogen cleaning (AHC) surface treatments. Following certain cleaning conditions, the surface morphologies for In0.27Ga0.73Sb regrown on InAs exhibit smooth surfaces with similar root-mean-square (rms) roughness to the as-grown InAs, which in turn is similar to the roughness of the AlGaSb buffer layer below it. In addition, hole mobilities for InGaSb regrown on AHC InAs approach the highest mobilities reported to date for any p + III-V semiconductors. A wide range of AHC conditions including substrate temperatures from 280°C to 370°C and exposure durations between 5 min and 30 min result in smooth InGaSb films with low resistivity.

  20. Novel semiconductor radiation detector based on mercurous halides

    NASA Astrophysics Data System (ADS)

    Chen, Henry; Kim, Joo-Soo; Amarasinghe, Proyanthi; Palosz, Withold; Jin, Feng; Trivedi, Sudhir; Burger, Arnold; Marsh, Jarrod C.; Litz, Marc S.; Wiejewarnasuriya, Priyalal S.; Gupta, Neelam; Jensen, Janet; Jensen, James

    2015-08-01

    The three most important desirable features in the search for room temperature semiconductor detector (RTSD) candidate as an alternative material to current commercially off-the-shelf (COTS) material for gamma and/or thermal neutron detection are: low cost, high performance and long term stability. This is especially important for pager form application in homeland security. Despite years of research, no RTSD candidate so far can satisfy the above 3 features simultaneously. In this work, we show that mercurous halide materials Hg2X2 (X= I, Cl, Br) is a new class of innovative compound semiconductors that is capable of delivering breakthrough advances to COTS radiation detector materials. These materials are much easier to grow thicker and larger volume crystals. They can detect gamma and potentially neutron radiation making it possible to detect two types of radiation with just one crystal material. The materials have wider bandgaps (compared to COTS) meaning higher resistivity and lower leakage current, making this new technology more compatible with available microelectronics. The materials also have higher atomic number and density leading to higher stopping power and better detector sensitivity/efficiency. They are not hazardous so there are no environmental and health concerns during manufacturing and are more stable making them more practical for commercial deployment. Focus will be on Hg2I2. Material characterization and detector performance will be presented and discussed. Initial results show that an energy resolution better than 2% @ 59.6 keV gamma from Am-241 and near 1% @ 662 keV from Cs-137 source can be achieved at room temperature.

  1. A bio-aerosol detection technique based on tryptophan intrinsic fluorescence measurement

    NASA Astrophysics Data System (ADS)

    Cai, Shuyao; Zhang, Pei; Zhu, Linglin; Zhao, Yongkai; Huang, Huijie

    2011-12-01

    Based on the measurement of intrinsic fluorescence, a set of bio-aerosol including virus aerosols detection instrument is developed, with which a method of calibration is proposed using tryptophan as the target. The experimental results show a good linear relationship between the fluorescence voltage of the instrument and the concentration of the tryptophan aerosol. An excellent correlation (R2>=0.99) with the sensitivity of 4000PPL is obtained. The research demonstrates the reliability of the bio-aerosol detection by measuring the content of tryptophan. Further more the feasibility of prejudgment to the species of bio-aerosol particles with the multi-channel fluorescence detection technology is discussed.

  2. Terahertz applications of integrated circuits based on intrinsic Josephson junctions in high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Huabing; Wu, Peiheng; Yamashita, Tsutomu

    2001-10-01

    Using a newly developed double-side fabrication method, an IJJ stack plus a bow-tie antenna and chokes were integrated in a slice 200 nm thick and singled out from inside a bulk Bi2Sr2CaCu2O8+x (BSCCO) single crystal. The junctions in the fabricated stack were very uniform, and the number of junctions involved was rather controllable. In addition to this method, which can be used to fabricate integrated circuits based on intrinsic Josephson junctions in high temperature (Tc) superconductors, also reported will be terahertz responses of IJJs, and the possible applications in quantum voltage standard, spectroscopy, and so on.

  3. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-09-01

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al2O3 or HfO2 dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO2 based capacitors compared to Al2O3 based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  4. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    SciTech Connect

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-09-07

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al{sub 2}O{sub 3} or HfO{sub 2} dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO{sub 2} based capacitors compared to Al{sub 2}O{sub 3} based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  5. Quasiparticle band structure of the almost-gapless transition-metal-based Heusler semiconductors

    NASA Astrophysics Data System (ADS)

    Tas, M.; Şaşıoǧlu, E.; Galanakis, I.; Friedrich, C.; Blügel, S.

    2016-05-01

    Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the G W approximation within the framework of the FLAPW method, we study the quasiparticle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the s p -electron based semiconductors such as Si and GaAs, in these systems, the many-body corrections have a minimal effect on the electronic band structure and the energy band gap increases by less than 0.2 eV, which makes the starting point density functional theory (DFT) a good approximation for the description of electronic and optical properties of these materials. Furthermore, the band gap can be tuned either by the variation of the lattice parameter or by the substitution of the s p -chemical element.

  6. Semiconductor-based experiments for neutrinoless double beta decay search

    NASA Astrophysics Data System (ADS)

    Barnabé Heider, Marik; Gerda Collaboration

    2012-08-01

    Three experiments are employing semiconductor detectors in the search for neutrinoless double beta (0νββ) decay: COBRA, Majorana and GERDA. COBRA is studying the prospects of using CdZnTe detectors in terms of achievable energy resolution and background suppression. These detectors contain several ββ emitters and the most promising for 0νββ-decay search is 116Cd. Majorana and GERDA will use isotopically enriched high purity Ge detectors to search for 0νββ-decay of 76Ge. Their aim is to achieve a background ⩽10-3 counts/(kgṡyṡkeV) at the Q improvement compared to the present state-of-art. Majorana will operate Ge detectors in electroformed-Cu vacuum cryostats. A first cryostat housing a natural-Ge detector array is currently under preparation. In contrast, GERDA is operating bare Ge detectors submerged in liquid argon. The construction of the GERDA experiment is completed and a commissioning run started in June 2010. A string of natural-Ge detectors is operated to test the complete experimental setup and to determine the background before submerging the detectors enriched in 76Ge. An overview and a comparison of these three experiments will be presented together with the latest results and developments.

  7. Organic Semiconductors based on Dyes and Color Pigments.

    PubMed

    Gsänger, Marcel; Bialas, David; Huang, Lizhen; Stolte, Matthias; Würthner, Frank

    2016-05-01

    Organic dyes and pigments constitute a large class of industrial products. The utilization of these compounds in the field of organic electronics is reviewed with particular emphasis on organic field-effect transistors. It is shown that for most major classes of industrial dyes and pigments, i.e., phthalocyanines, perylene and naphthalene diimides, diketopyrrolopyrroles, indigos and isoindigos, squaraines, and merocyanines, charge-carrier mobilities exceeding 1 cm(2) V(-1) s(-1) have been achieved. The most widely investigated molecules due to their n-channel operation are perylene and naphthalene diimides, for which even values close to 10 cm(2) V(-1) s(-1) have been demonstrated. The fact that all of these π-conjugated colorants contain polar substituents leading to strongly quadrupolar or even dipolar molecules suggests that indeed a much larger structural space shows promise for the design of organic semiconductor molecules than was considered in this field traditionally. In particular, because many of these dye and pigment chromophores demonstrate excellent thermal and (photo-)chemical stability in their original applications in dyeing and printing, and are accessible by straightforward synthetic protocols, they bear a particularly high potential for commercial applications in the area of organic electronics. PMID:27028553

  8. Spin selector based on periodic diluted-magnetic-semiconductor/nonmagnetic-barrier superlattices

    SciTech Connect

    Yang, Ping-Fan; Guo, Yong; Zhu, Rui

    2015-07-15

    We propose a spin selector based on periodic diluted-magnetic-semiconductor/nonmagnetic-barrier (DMS/NB) superlattices subjected to an external magnetic field. We find that the periodic DMS/NB superlattices can achieve 100% spin filtering over a dramatically broader range of incident energies than the diluted-magnetic-semiconductor/semiconductor (DMS/S) case studied previously. And the positions and widths of spin-filtering bands can be manipulated effectively by adjusting the geometric parameters of the system or the strength of external magnetic field. Such a compelling filtering feature stems from the introduction of nonmagnetic barrier and the spin-dependent giant Zeeman effect induced by the external magnetic field. We also find that the external electric field can exert a significant influence on the spin-polarized transport through the DMS/NB superlattices.

  9. Universal carrier thermoelectric-transport model based on percolation theory in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Lu, Nianduan; Li, Ling; Liu, Ming

    2015-05-01

    Recent measurements conducted over a large range of temperature and carrier density have found that the Seebeck coefficient exhibits an approaching disorder-free transport feature in high-mobility conjugated polymers [D. Venkateshvaran et al., Nature 515, 384 (2014), 10.1038/nature13854]. It is difficult for the current Seebeck coefficient model to interpret the feature of the charge transport approaching disorder-free transport. We present a general analytical model to describe the Seebeck effect for organic semiconductors based on the hopping transport and percolation theory. The proposed model can well explain the Seebeck feature of the polymers with approaching disorder-free transport, as well as that of the organic semiconductors with the general disorder. The simulated results imply that the Seebeck coefficient in the organic semiconductors would happen to transfer from temperature dependence to temperature independence with the decrease of the energetic disorder.

  10. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    NASA Astrophysics Data System (ADS)

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  11. Intrinsic signatures of polymer based fiber reinforced composite structures: An ultrasonic approach

    SciTech Connect

    Good, M.S.; Hansen, N.H.; Heasler, P.G.; Undem, H.A.; Fuller, J.L.; Skorpik, J.R.

    1993-09-01

    Combination of ultrasound, image comparison, and statistical analysis provide a method for acquiring a subsurface, intrinsic signature from polymer based, fiber-reinforced composites. Although materials properties are carefully controlled, localized fluctuations in the macrostructure and microstructure permit a basis for ultrasound and other NDE methods to read intrinsic signatures from a material. Under ideal conditions where a material signature is stable and has sufficient spatial features as a signature, an error rate on the order of one-out-of-a-million is feasible. A conclusion of an independent functional test performed on the laboratory prototype as it existed in June 1991 is that the system proved effective as a proof-of-concept system. An issue raised by the independent evaluation is that system performance is still at risk of factors relating to signature stability, particularly moisture absorption and material creep. System improvements made to mitigate noise sources identified by the independent evaluation include (1) implementation of a 3.0 {minus} 4.5 {mu}S software gate, (2) use of a RMS amplitude instead of the gated peak amplitude, and (3) optional use of a suction cup holder to facilitate reader alignment and scan consistency.

  12. Intrinsic interference mitigating coordinated beamforming for the FBMC/OQAM based downlink

    NASA Astrophysics Data System (ADS)

    Cheng, Yao; Li, Peng; Haardt, Martin

    2014-12-01

    In this work, we propose intrinsic interference mitigating coordinated beamforming (IIM-CBF)-based transmission strategies for the downlink of multi-user multiple-input-multiple-out (MIMO) systems and coordinated multi-point (CoMP) systems where filter bank based multi-carrier with offset quadrature amplitude modulation (FBMC/OQAM) is employed. Our goal is to alleviate the dimensionality constraint imposed on the state-of-the-art solutions for FBMC/OQAM-based space division multiple access that the total number of receive antennas of the users must not exceed the number of transmit antennas at the base station. First, two IIM-CBF algorithms are developed for a single-cell multi-user MIMO downlink system. The central idea is to jointly and iteratively calculate the precoding matrix and decoding matrix for each subcarrier to mitigate the multi-user interference as well as the intrinsic interference inherent in FBMC/OQAM-based systems. Second, for a CoMP downlink scenario where partial coordination among the base stations is considered, the application of coordinated beamforming-based transmission schemes is further investigated. An appropriate IIM-CBF technique is proposed. Simulation results show that when the number of transmit antennas at the base station is equal to the total number of receive antennas of the users, the proposed IIM-CBF algorithm outperforms the existing transmission strategies for FBMC/OQAM-based multi-user MIMO downlink systems. Moreover, we evaluate the performances of the IIM-CBF schemes in the downlink of multi-user MIMO systems and CoMP systems where the total number of receive antennas of users exceeds the number of transmit antennas at the base station. It is observed that by employing the IIM-CBF techniques, FBMC/OQAM systems achieve a similar bit error rate (BER) performance as its orthogonal frequency division multiplexing with the cyclic prefix insertion (CP-OFDM)-based counterpart while exhibiting superiority in terms of a higher

  13. Light-induced resistive switching in silicon-based metal-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Tikhov, S. V.; Gorshkov, O. N.; Koryazhkina, M. N.; Antonov, I. N.; Kasatkin, A. P.

    2016-05-01

    We have studied light-induced resistive switching in metal-insulator-semiconductor structures based on silicon covered with a tunneling-thin SiO2 layer and nanometer-thick layer of antimony. The role of an insulator was played by yttria-stabilized zirconia.

  14. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  15. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    SciTech Connect

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  16. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    SciTech Connect

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  17. Imaging performance comparison between a LaBr3: Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera.

    PubMed

    Russo, P; Mettivier, G; Pani, R; Pellegrini, R; Cinti, M N; Bennati, P

    2009-04-01

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3: Ce scintillator continuous crystal (49 x 49 x 5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14 x 14 x 1 mm3) with 256 x 256 square pixels and a pitch of 55 microm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 microm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported. PMID:19472638

  18. Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor.

    PubMed

    Fu, Wangyang; Xu, Zhi; Bai, Xuedong; Gu, Changzhi; Wang, Enge

    2009-03-01

    We demonstrate the intrinsic memory function of ferroelectric field-effect transistors (FeFETs) based on an integration of individual single-walled carbon nanotubes (SWCNTs) and epitaxial ferroelectric films. In contrast to the previously reported "charge-storage" CNT-FET memories, whose operations are haunted by a lack of control over the "charge traps", the present CNT-FeFETs exhibit a well-defined memory hysteresis loop induced by the reversible remnant polarization of the ferroelectric films. Large memory windows approximately 4 V, data retention time up to 1 week, and ultralow power consumption (energy per bit) of femto-joule, are highlighted in this report. Further simulations and experimental results show that the memory device is valid under operation voltage less than 1 V due to an electric-field enhancement effect induced by the ultrathin SWCNTs. PMID:19206218

  19. Computational design of intrinsic molecular rectifiers based on asymmetric functionalization of N-phenylbenzamide

    DOE PAGESBeta

    Ding, Wendu; Koepf, Matthieu; Koenigsmann, Christopher; Batra, Arunabh; Venkataraman, Latha; Negre, Christian F. A.; Brudvig, Gary W.; Crabtree, Robert H.; Schmuttenmaer, Charles A.; Batista, Victor S.

    2015-11-03

    Here, we report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findingsmore » are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions.« less

  20. Computational design of intrinsic molecular rectifiers based on asymmetric functionalization of N-phenylbenzamide

    SciTech Connect

    Ding, Wendu; Koepf, Matthieu; Koenigsmann, Christopher; Batra, Arunabh; Venkataraman, Latha; Negre, Christian F. A.; Brudvig, Gary W.; Crabtree, Robert H.; Schmuttenmaer, Charles A.; Batista, Victor S.

    2015-11-03

    Here, we report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findings are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions.

  1. Intrinsically tunable bulk acoustic wave resonators based on sol-gel grown PMN-PT films

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Spreitzer, M.; Veber, A.; Suvorov, D.; Gevorgian, S.

    2014-08-01

    Intrinsically tunable bulk acoustic wave resonators, based on sol-gel 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-PT) thin films, with high effective electromechanical coupling coefficient of 13% and tunability of the series resonance frequency up to 4.0% are fabricated and characterized. The enhanced electroacoustic properties of the PMN-PT resonators are attributed to the mechanism of polarization rotation occurring in the region of the morphotropic phase boundary. Electroacoustic performance of the PMN-PT resonators is analyzed using the theory of dc field-induced piezoelectric effect in ferroelectrics. Extrinsic acoustic loss in the PMN-PT resonators is analyzed using the model of the wave scattering at reflections from rough interfaces. Mechanical Q-factor of the resonators is up to 70 at 4.1 GHz and limited mainly by losses in the PMN-PT film.

  2. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment

    NASA Astrophysics Data System (ADS)

    Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.

    2013-12-01

    Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model

  3. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Chang, Shoude; Grover, Chander P.

    2004-06-01

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  4. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin

    PubMed Central

    Fu, Yingbin; Zhong, Haining; Wang, Min-Hua H.; Luo, Dong-Gen; Liao, Hsi-Wen; Maeda, Hidetaka; Hattar, Samer; Frishman, Laura J.; Yau, King-Wai

    2005-01-01

    In mammals, intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate non-image-forming visual functions such as pupillary light reflex (PLR) and circadian photoentrainment. This photosensitivity requires melanopsin, an invertebrate opsin-like protein expressed by the ipRGCs. The precise role of melanopsin remains uncertain. One suggestion has been that melanopsin may be a photoisomerase, serving to regenerate an unidentified pigment in ipRGCs. This possibility was echoed by a recent report that melanopsin is expressed also in the mouse retinal pigment epithelium (RPE), a key center for regeneration of rod and cone pigments. To address this question, we studied mice lacking RPE65, a protein essential for the regeneration of rod and cone pigments. Rpe65-/- ipRGCs were ≈20- to 40-fold less photosensitive than normal at both single-cell and behavioral (PLR) levels but were rescued by exogenous 9-cis-retinal (an 11-cis-retinal analog), indicating the requirement of a vitamin A-based chromophore for ipRGC photosensitivity. In contrast, 9-cis-retinal was unable to restore intrinsic photosensitivity to melanopsin-ablated ipRGCs, arguing against melanopsin functioning merely in photopigment regeneration. Interestingly, exogenous all-trans-retinal was also able to rescue the low sensitivity of rpe65-/- ipRGCs, suggesting that melanopsin could be a bistable pigment. Finally, we detected no melanopsin in the RPE and no changes in rod and cone sensitivities due to melanopsin ablation. Together, these results strongly suggest that melanopsin is the photopigment in the ipRGCs. PMID:16014418

  5. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    PubMed

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies. PMID:26498319

  6. Fast optical recording media based on semiconductor nanostructures for image recording and processing

    SciTech Connect

    Kasherininov, P. G. Tomasov, A. A.

    2008-11-15

    Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.

  7. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals

    SciTech Connect

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

    2006-09-09

    In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

  8. UXO detection and identification based on intrinsic target polarizabilities: A case history

    SciTech Connect

    Gasperikova, E.; Smith, J.T.; Morrison, H.F.; Becker, A.; Kappler, K.

    2008-07-15

    Electromagnetic induction data parameterized in time dependent object intrinsic polarizabilities allow discrimination of unexploded ordnance (UXO) from false targets (scrap metal). Data from a cart-mounted system designed for discrimination of UXO with 20 mm to 155 mm diameters are used. Discrimination of UXO from irregular scrap metal is based on the principal dipole polarizabilities of a target. A near-intact UXO displays a single major polarizability coincident with the long axis of the object and two equal smaller transverse polarizabilities, whereas metal scraps have distinct polarizability signatures that rarely mimic those of elongated symmetric bodies. Based on a training data set of known targets, object identification was made by estimating the probability that an object is a single UXO. Our test survey took place on a military base where both 4.2-inch mortar shells and scrap metal were present. The results show that we detected and discriminated correctly all 4.2-inch mortars, and in that process we added 7%, and 17%, respectively, of dry holes (digging scrap) to the total number of excavations in two different survey modes. We also demonstrated a mode of operation that might be more cost effective than the current practice.

  9. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering.

    PubMed

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-28

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion. PMID:26204442

  10. Mueller based scatterometry and optical characterization of semiconductor materials

    NASA Astrophysics Data System (ADS)

    Muthinti, Gangadhara Raja

    Scatterometry is one of the most useful metrology methods for the characterization and control of critical dimensions (CD) and the detailed topography of periodic structures found in microelectronics fabrication processes. Spectroscopic ellipsometry (SE) and normal incidence reflectometry (NI) based scatterometry are the most widely used optical methodologies for metrology of these structures. Evolution of better optical hardware and faster computing capabilities led to the development of Mueller Matrix (MM) based Scatterometry (MMS). Dimensional metrology using full Mueller Matrix (16 element) scatterometry in the wavelength range of 245nm-1000nm was discussed in this work. Unlike SE and NI, MM data provides complete information about the optical reflection and transmission of polarized light reflected from a sample. MM is a 4x4 transformation matrix (16 elements) describing the change in the intensities of incident polarized light expressed by means of a Stokes Vector. The symmetry properties associated with MM provide an excellent means of measuring and understanding the topography of the periodic nanostructures. Topography here refers to uniformity of the periodic order of arrayed structure. The advantage of MMS over traditional SE Scatterometry is the ability of MMS to measure samples that have anisotropic optical properties and depolarize light. The present work focuses on understanding the Mueller based Scatterometry with respect to other methodologies by a systematic approach. Several laterally complex nano-scale structures with dimensions in the order of nanometers were designed and fabricated using e-beam lithography. Also Mueller based analysis was used to extract profile information and anisotropy coefficients of complex 3D FinFET, SOI fin grating structures. Later, Spectroscopic Mueller matrix (all 16 elements) and SE data were collected in planar diffraction mode for the samples using a J.A. Woollam RC2(TM) Spectroscopic Ellipsometer. Nano

  11. Analytical modelling of a refractive index sensor based on an intrinsic micro Fabry-Perot interferometer.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C; Estudillo-Ayala, Julian M; Rojas-Laguna, Roberto

    2015-01-01

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10(-4) RIU can be implemented by using a couple of standard and low cost photodetectors. PMID:26501277

  12. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer

    PubMed Central

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D.; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C.; Estudillo-Ayala, Julian M.; Rojas-Laguna, Roberto

    2015-01-01

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10−4 RIU can be implemented by using a couple of standard and low cost photodetectors. PMID:26501277

  13. Structure-based Inhibitor Design for the Intrinsically Disordered Protein c-Myc

    PubMed Central

    Yu, Chen; Niu, Xiaogang; Jin, Fan; Liu, Zhirong; Jin, Changwen; Lai, Luhua

    2016-01-01

    Intrinsically disordered proteins (IDPs) are associated with various diseases and have been proposed as promising drug targets. However, conventional structure-based approaches cannot be applied directly to IDPs, due to their lack of ordered structures. Here, we describe a novel computational approach to virtually screen for compounds that can simultaneously bind to different IDP conformations. The test system used c-Myc, an oncoprotein containing a disordered basic helix-loop-helix-leucine zipper (bHLH-LZ) domain that adopts a helical conformation upon binding to Myc-associated factor X (Max). For the virtual screen, we used three binding pockets in representative conformations of c-Myc370–409, which is part of the disordered bHLH-LZ domain. Seven compounds were found to directly bind c-Myc370–409 in vitro, and four inhibited the growth of the c-Myc-overexpressing cells by affecting cell cycle progression. Our approach of IDP conformation sampling, binding site identification, and virtual screening for compounds that can bind to multiple conformations provides a useful strategy for structure-based drug discovery targeting IDPs. PMID:26931396

  14. Structure-based Inhibitor Design for the Intrinsically Disordered Protein c-Myc.

    PubMed

    Yu, Chen; Niu, Xiaogang; Jin, Fan; Liu, Zhirong; Jin, Changwen; Lai, Luhua

    2016-01-01

    Intrinsically disordered proteins (IDPs) are associated with various diseases and have been proposed as promising drug targets. However, conventional structure-based approaches cannot be applied directly to IDPs, due to their lack of ordered structures. Here, we describe a novel computational approach to virtually screen for compounds that can simultaneously bind to different IDP conformations. The test system used c-Myc, an oncoprotein containing a disordered basic helix-loop-helix-leucine zipper (bHLH-LZ) domain that adopts a helical conformation upon binding to Myc-associated factor X (Max). For the virtual screen, we used three binding pockets in representative conformations of c-Myc370-409, which is part of the disordered bHLH-LZ domain. Seven compounds were found to directly bind c-Myc370-409 in vitro, and four inhibited the growth of the c-Myc-overexpressing cells by affecting cell cycle progression. Our approach of IDP conformation sampling, binding site identification, and virtual screening for compounds that can bind to multiple conformations provides a useful strategy for structure-based drug discovery targeting IDPs. PMID:26931396

  15. Retinal Stimulation on Rabbit Using Complementary Metal Oxide Semiconductor Based Multichip Flexible Stimulator toward Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Tokuda, Takashi; Asano, Ryosuke; Sugitani, Sachie; Taniyama, Mari; Terasawa, Yasuo; Nunoshita, Masahiro; Nakauchi, Kazuaki; Fujikado, Takashi; Tano, Yasuo; Ohta, Jun

    2008-04-01

    The Functionality of a complementary metal oxide semiconductor (CMOS) LSI-based, multichip flexible retinal stimulator was demonstrated in retinal stimulation experiments on rabbits. A 1×4-configured multichip stimulator was fabricated for application to experiments on animals. An experimental procedure including surgical operations was developed, and retinal stimulation was performed with the fabricated multichip stimulator. Neural responses on the visual cortex were successfully evoked by the fabricated stimulator. The stimulator is confirmed to be applicable to acute animal experiments.

  16. Improved design of a polarization converter based on semiconductor optical waveguide bends.

    PubMed

    Obayya, S S; Rahman, B M; Grattan, K T; El-Mikati, H A

    2001-10-20

    By using an efficient vector finite-element-based beam-propagation method, we present an improved design of a polarization converter. This design relies on the use of a single-section deeply etched bent semiconductor waveguide with slanted sidewalls. By careful adjustment of the bend radius, the waveguide width, and the sidewall angle we obtained a nearly 100% polarization conversion ratio with no appreciable radiation loss and a bending angle of less than 180 degrees . PMID:18364819

  17. Microwave photonic phase shifter based on birefringence effects in a semiconductor optical amplifier.

    PubMed

    Chen, Han; Sun, Mingming; Ding, Yi; Sun, Xiaohan

    2013-09-01

    A continuously tunable microwave photonic (MWP) phase shifter based on birefringence effects in a semiconductor optical amplifier (SOA) is presented and the theoretical fundamentals of the design are explained. This proposed device provides a high efficiency phase-shift tuning range beyond 2π rad by controlling the SOA launch power. A prototype of the MWP phase shifter with a frequency of 10 GHz and 2π rad tuning range is experimentally demonstrated. PMID:23988932

  18. Flexible perovskite solar cells based on the metal-insulator-semiconductor structure.

    PubMed

    Wei, Jing; Li, Heng; Zhao, Yicheng; Zhou, Wenke; Fu, Rui; Pan, Huiyue; Zhao, Qing

    2016-09-14

    The metal-insulator-semiconductor (MIS) structure is applied to perovskite solar cells, in which the traditional compact layer TiO2 is replaced by Al2O3 as the hole blocking material to realize an all-low-temperature process. Flexible devices based on this structure are also realized with excellent flexibility, which hold 85% of their initial efficiency after bending 100 times. PMID:27524362

  19. Experimental characterization of semiconductor-based thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Bortot, D.; Pola, A.; Introini, M. V.; Lorenzoli, M.; Gómez-Ros, J. M.; Sacco, D.; Esposito, A.; Gentile, A.; Buonomo, B.; Palomba, M.; Grossi, A.

    2015-04-01

    In the framework of NESCOFI@BTF and NEURAPID projects, active thermal neutron detectors were manufactured by depositing appropriate thickness of 6LiF on commercially available windowless p-i-n diodes. Detectors with different radiator thickness, ranging from 5 to 62 μm, were manufactured by evaporation-based deposition technique and exposed to known values of thermal neutron fluence in two thermal neutron facilities exhibiting different irradiation geometries. The following properties of the detector response were investigated and presented in this work: thickness dependence, impact of parasitic effects (photons and epithermal neutrons), linearity, isotropy, and radiation damage following exposure to large fluence (in the order of 1012 cm-2).

  20. ZnCdMgSe-Based Semiconductors for Intersubband Devices

    SciTech Connect

    Tamargo, Maria C.

    2008-11-13

    This paper presents a review of recent results on the application of ZnCdMgSe-based wide bandgap II-VI compounds to intersubband devices such as quantum cascade lasers and quantum well infrared photodetectors operating in the mid-infrared region. The conduction band offset of ZnCdSe/ZnCdMgSe quantum well structures was determined from contactless electroreflectance measurements to be as high as 1.12 eV. FT-IR was used to measure intersubband absorption in multi-quantum well structures in the mid-IR range. Electroluminescence at 4.8 {mu}m was observed from a quantum cascade emitter structure made from these materials. Preliminary results are also presented on self assembled quantum dots of CdSe on ZnCdMgSe, and novel quantum well structures with metastable binary MgSe barriers.

  1. Silicon-based semimetals and semiconductors for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Sun, Hui

    The direct conversion between heat and electricity can be achieved by thermoelectric devices. Thus, thermoelectricity is considered as not only an environmentally friendly substitute for compressor-based refrigerators but also a promising energy solution to harvest waste heat. State-of-the-art thermoelectric materials are often comprised of expensive tellurium or germanium elements and hence are hardly suitable for mass production. The silicon-based thermoelectrics, e.g. semimetallic CoSi and semiconducting beta -FeSi2 materials we study here, are composed of abundant elements in nature. They are also chemically stable, non-toxic, and mechanically robust. Despite the above benefits, they exhibit relatively lower efficiencies compared to state-of-the-art materials. In this dissertation, we have intended to understand the thermal and electrical transport in these materials and enhance their thermoelectric performance. CoSi possesses one of the highest power factors among thermoelectrics due to the sharp features around the Fermi level in its electronic density of states. In order to improve the performance, the effects of p-type dopants, isoelectronic substitutions, n-type dopants, and double doping were systematically studied for arc-melted CoSi samples. The results show that p-type dopants like iron and gallium and n-type dopants like nickel and palladium deteriorate the electrical properties due to the introduction of excess holes and electrons, respectively. Boron and platinum have very limited solubility in CoSi and the segregated impurity phases at grain boundaries are helpful to improve the electrical properties. The isoelectronic substitutions influence the power factor slightly; however, they result in a drastic decrease in the lattice thermal conductivity and hence an enhancement in the figure of merit. In addition, CoSi samples prepared by powder processing were investigated to further reduce the lattice thermal conductivity. Unfortunately, all the

  2. Multiple Exciton Generation in Semiconductor Nanostructures: DFT-based Computation

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Kryjevski, Andrei; Kilin, Dmitri; Kilina, Svetlana; Vogel, Dayton

    Multiple exciton generation (MEG) in nm-sized H-passivated Si nanowires (NWs), and quasi 2D nanofilms depends strongly on the degree of the core structural disorder as shown by the perturbation theory calculations based on the DFT simulations. In perturbation theory, we work to the 2nd order in the electron-photon coupling and in the (approximate) RPA-screened Coulomb interaction. We also include the effect of excitons for which we solve Bethe-Salpeter Equation. To describe MEG we calculate exciton-to-biexciton as well as biexciton-to-exciton rates and quantum efficiency (QE). We consider 3D arrays of Si29H36 quantum dots, NWs, and quasi 2D silicon nanofilms, all with both crystalline and amorphous core structures. Efficient MEG with QE of 1.3 up to 1.8 at the photon energy of about 3Egap is predicted in these nanoparticles except for the crystalline NW and film where QE ~=1. MEG in the amorphous nanoparticles is enhanced by the electron localization due to structural disorder. The exciton effects significantly red-shift QE vs. photon energy curves. Nm-sized a-Si NWs and films are predicted to have effective MEG within the solar spectrum range. Also, we find efficient MEG in the chiral single-wall Carbon nanotubes and in a perovskite nanostructure.

  3. Microfluidic separation of viruses from blood cells based on intrinsic transport processes

    PubMed Central

    Zhao, Chao; Cheng, Xuanhong

    2011-01-01

    Clinical analysis of acute viral infection in blood requires the separation of viral particles from blood cells, since the cytoplasmic enzyme inhibits the subsequent viral detection. To facilitate this procedure in settings without access to a centrifuge, we present a microfluidic device to continuously purify bionanoparticles from cells based on their different intrinsic movements on the microscale. In this device, a biological sample is layered on top of a physiological buffer, and both fluids are transported horizontally at the same flow rate in a straight channel under laminar flow. While the micron sized particles such as cells sediment to the bottom layer with a predictable terminal velocity, the nanoparticles move vertically by diffusion. As their vertical travel distances have a different dependence on time, the micro- and nanoparticles can preferentially reside in the bottom and top layers respectively after certain residence time, yielding purified viruses. We first performed numerical analysis to predicate the particle separation and then tested the theory using suspensions of synthetic particles and biological samples. The experimental results using dilute synthetic particles closely matched the numerical analysis of a two layer flow system containing different sized particles. Similar purification was achieved using diluted blood spiked with human immunodeficiency virus. However, viral purification in whole blood is compromised due to extensive bioparticle collisions. With the parallelization and automation potential offered by microfluidics, this device has the potential to function as an upstream sample preparation module to continuously provide cell depleted bio-nanoparticles for downstream analysis. PMID:22007267

  4. Colorimetric detection of Shewanella oneidensis based on immunomagnetic capture and bacterial intrinsic peroxidase activity

    NASA Astrophysics Data System (ADS)

    Wen, Junlin; Zhou, Shungui; Chen, Junhua

    2014-06-01

    Rapid detection and enumeration of target microorganisms is considered as a powerful tool for monitoring bioremediation process that typically involves cleaning up polluted environments with functional microbes. A novel colorimetric assay is presented based on immunomagnetic capture and bacterial intrinsic peroxidase activity for rapidly detecting Shewanella oneidensis, an important model organism for environmental bioremediation because of its remarkably diverse respiratory abilities. Analyte bacteria captured on the immunomagnetic beads provided a bacterial out-membrane peroxidase-amplified colorimetric readout of the immunorecognition event by oxidizing 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the present of hydrogen peroxide. The high-efficiency of immunomagnetic capture and signal amplification of peroxidase activity offers an excellent detection performance with a wide dynamic range between 5.0 × 103 and 5.0 × 106 CFU/mL toward target cells. Furthermore, this method was demonstrated to be feasible in detecting S. oneidensis cells spiked in environmental samples. The proposed colorimetric assay shows promising environmental applications for rapid detection of target microorganisms.

  5. Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis

    PubMed Central

    2014-01-01

    This paper discusses the use of 13C-based metabolism analysis for the assessment of intrinsic product yields — the actual carbon contribution from a single carbon substrate to the final product via a specific biosynthesis route — in the following four cases. First, undefined nutrients (such as yeast extract) in fermentation may contribute significantly to product synthesis, which can be quantified through an isotopic dilution method. Second, product and biomass synthesis may be dependent on the co-metabolism of multiple-carbon sources. 13C labeling experiments can track the fate of each carbon substrate in the cell metabolism and identify which substrate plays a main role in product synthesis. Third, 13C labeling can validate and quantify the contribution of the engineered pathway (versus the native pathway) to the product synthesis. Fourth, the loss of catabolic energy due to cell maintenance (energy used for functions other than production of new cell components) and low P/O ratio (Phosphate/Oxygen Ratio) significantly reduces product yields. Therefore, 13C-metabolic flux analysis is needed to assess the influence of suboptimal energy metabolism on microbial productivity, and determine how ATP/NAD(P)H are partitioned among various cellular functions. Since product yield is a major determining factor in the commercialization of a microbial cell factory, we foresee that 13C-isotopic labeling experiments, even without performing extensive flux calculations, can play a valuable role in the development and verification of microbial cell factories. PMID:24642094

  6. Colorimetric detection of Shewanella oneidensis based on immunomagnetic capture and bacterial intrinsic peroxidase activity

    PubMed Central

    Wen, Junlin; Zhou, Shungui; Chen, Junhua

    2014-01-01

    Rapid detection and enumeration of target microorganisms is considered as a powerful tool for monitoring bioremediation process that typically involves cleaning up polluted environments with functional microbes. A novel colorimetric assay is presented based on immunomagnetic capture and bacterial intrinsic peroxidase activity for rapidly detecting Shewanella oneidensis, an important model organism for environmental bioremediation because of its remarkably diverse respiratory abilities. Analyte bacteria captured on the immunomagnetic beads provided a bacterial out-membrane peroxidase-amplified colorimetric readout of the immunorecognition event by oxidizing 3, 3′, 5, 5′-tetramethylbenzidine (TMB) in the present of hydrogen peroxide. The high-efficiency of immunomagnetic capture and signal amplification of peroxidase activity offers an excellent detection performance with a wide dynamic range between 5.0 × 103 and 5.0 × 106 CFU/mL toward target cells. Furthermore, this method was demonstrated to be feasible in detecting S. oneidensis cells spiked in environmental samples. The proposed colorimetric assay shows promising environmental applications for rapid detection of target microorganisms. PMID:24898751

  7. First principles study of Fe in diamond: A diamond-based half metallic dilute magnetic semiconductor

    SciTech Connect

    Benecha, E. M.; Lombardi, E. B.

    2013-12-14

    Half-metallic ferromagnetic ordering in semiconductors, essential in the emerging field of spintronics for injection and transport of highly spin polarised currents, has up to now been considered mainly in III–V and II–VI materials. However, low Curie temperatures have limited implementation in room temperature device applications. We report ab initio Density Functional Theory calculations on the properties of Fe in diamond, considering the effects of lattice site, charge state, and Fermi level position. We show that the lattice sites and induced magnetic moments of Fe in diamond depend strongly on the Fermi level position and type of diamond co-doping, with Fe being energetically most favorable at the substitutional site in p-type and intrinsic diamond, while it is most stable at a divacancy site in n-type diamond. Fe induces spin polarized bands in the band gap, with strong hybridization between Fe-3d and C-2s,2p bands. We further consider Fe-Fe spin interactions in diamond and show that substitutional Fe{sup +1} in p-type diamond exhibits a half-metallic character, with a magnetic moment of 1.0 μ{sub B} per Fe atom and a large ferromagnetic stabilization energy of 33 meV, an order of magnitude larger than in other semiconductors, with correspondingly high Curie temperatures. These results, combined with diamond's unique properties, demonstrate that Fe doped p-type diamond is likely to be a highly suitable candidate material for spintronics applications.

  8. Understanding the Influence of Intrinsic and Extrinsic Factors on Inquiry-Based Science Education at Township Schools in South Africa

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2016-01-01

    This mixed-methods research investigated teachers' perceptions of intrinsic factors (personal attributes of the teacher) and extrinsic factors (environmental) influencing the implementation of inquiry-based science learning at township (underdeveloped urban area) high schools in South Africa. Quantitative data were collected by means of an adapted…

  9. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaolong; Chen, Liang; He, Yongning; Liu, Jinliang; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting; Zhang, Zhongbing; Ouyang, Xiaoping

    2016-04-01

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 1013 Ω cm due to the compensation of the donor defects (VO) and acceptor defects (VZn and Oi) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  10. Anisotropy of the electron g factor in quantum wells based on cubic semiconductors

    SciTech Connect

    Alekseev, P. S.

    2013-09-15

    A new mechanism for the spin splitting of electron levels in asymmetric quantum wells based on GaAs-type semiconductors relative to rotations of the magnetic field in the well plane is suggested. It is demonstrated that the anisotropy of the Zeeman splitting (linear in a magnetic field) arises in asymmetric quantum wells due to the interface spin-orbit terms in the electron Hamiltonian. In the case of symmetric quantum wells, it is shown that the anisotropy of the Zeeman splitting is a cubic function of the magnitude of the magnetic field, depends on the direction of the magnetic field in the interface plane as the fourth-order harmonic, and is governed by the spin-orbit term of the fourth order by the kinematic momentum in the electron Hamiltonian of a bulk semiconductor.

  11. Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers.

    PubMed

    Yokoyama, H; Sato, A; Guo, H-C; Sato, K; Mure, M; Tsubokawa, H

    2008-10-27

    We developed picosecond optical-pulse sources suitable for multiphoton microscopy based on mode-locked semiconductor lasers. Using external-cavity geometry, stable hybrid mode locking was achieved at a repetition rate of 500 MHz. Semiconductor optical amplifiers driven by synchronized electric pulses reached subharmonic optical-pulse repetition rates of 1-100 MHz. Two-stage Yb-doped fiber amplifiers produced optical pulses of 2 ps duration, with a peak power of a few kilowatts at a repetition rate of 10 MHz. These were employed successfully for nonlinear-optic bio-imaging using two-photon fluorescence, second-harmonic generation, and sum-frequency generation of synchronized two-color pulses. PMID:18958056

  12. Graphene-based half-metal and spin-semiconductor for spintronic applications

    NASA Astrophysics Data System (ADS)

    Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji

    2016-03-01

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics.

  13. Graphene-based half-metal and spin-semiconductor for spintronic applications.

    PubMed

    Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji

    2016-03-31

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics. PMID:26933773

  14. Expanding the Scope of Thiophene Based Semiconductors: Perfluoroalkylated Materials and Fused Thienoacenes

    NASA Astrophysics Data System (ADS)

    Black, Hayden Thompson

    Thiophene based semiconductors with new molecular and macromolecular structures were explored for applications in field effect transistors. Perfluoroalkylation was studied both as a means for controlling the self-assembly properties of polythiophenes, as well as modifying the molecular orbital energies of a series of oligothiophenes. End-perfluoroalkylation of poly(3-hexylthiophene) resulted in interesting self-assembly of the polymer into a bilayer vesicle. Similar fluorophilic assembly may be useful for controlling blend morphologies in heterojunction based devices. On the other hand, perfluoroalkylation of small molecule thiophene semiconductors leads to low lying LUMO levels, and can be used to promote electron injection for n-type transistor devices. This strategy was employed in combination with a pi-electron deficient benzothiadiazole to afford a new n-type semiconductor with an exceptionally low LUMO. Monoperfluoroalkylated oligothiophenes were also synthesized and studied in field effect transistors for the first time. In addition, two new fused thienoacene compounds were synthesized and their crystal structures were analyzed. The fused compounds showed exceptional pi-pi stacking and assembled into well defined one-dimensional microcrystals from the vapor phase. Field effect transistors were fabricated employing the new thienoacenes, showing p-type conductivity with equivalent charge carrier mobilities.

  15. Far- and Deep-UV Spectroscopy of Semiconductor Nanoparticles Measured Based on Attenuated Total Reflectance spectroscopy.

    PubMed

    Tanabe, Ichiro; Yamada, Yosuke; Ozaki, Yukihiro

    2016-02-16

    Far- and deep-ultraviolet spectra (150-300 nm) of semiconductor nanoparticles (zinc oxide and zinc sulfide) are successfully measured by using attenuated total reflectance (ATR) spectroscopy, and analyzed using finite-difference time-domain (FDTD) simulations. The obtained spectra show good consistency with earlier synchrotron-radiation spectra and with theoretical calculations. The FDTD simulation results show that the present system collected the correct spectra. In the present system, the obtained spectra are affected by the real part n of the complex refractive index more strongly than the imaginary part k. It is also revealed both experimentally and theoretically that spectral intensities of the semiconductor nanoparticles are approximately one tenth those of liquid samples. These results provide insights into the far- and deep-ultraviolet spectroscopy based on the ATR system, and show the general applicability of our original ATR spectroscopy to semiconductor nanoparticles. The system needs neither high vacuum nor much space, and enables rapid and systematic investigation of the electronic states of various materials. PMID:26691240

  16. Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.

    PubMed

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2012-05-01

    We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed. PMID:22565677

  17. THz semiconductor-based front-end receiver technology for space applications

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Siegel, Peter

    2004-01-01

    Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.

  18. Imaging performance comparison between a LaBr{sub 3}:Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera

    SciTech Connect

    Russo, P.; Mettivier, G.; Pani, R.; Pellegrini, R.; Cinti, M. N.; Bennati, P.

    2009-04-15

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr{sub 3}:Ce scintillator continuous crystal (49x49x5 mm{sup 3}) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14x14x1 mm{sup 3}) with 256x256 square pixels and a pitch of 55 {mu}m, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 {mu}m, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  19. Achievement-Based Rewards and Intrinsic Motivation: A Test of Cognitive Mediators

    ERIC Educational Resources Information Center

    Cameron, Judy; Pierce, W. David; Banko, Katherine M.; Gear, Amber

    2005-01-01

    This study assessed how rewards impacted intrinsic motivation when students were rewarded for achievement while learning an activity, for performing at a specific level on a test, or for both. Undergraduate university students engaged in a problem-solving activity. The design was a 2 * 2 factorial with 2 levels of reward in a learning phase…

  20. Extracting Intrinsic Functional Networks with Feature-Based Group Independent Component Analysis

    ERIC Educational Resources Information Center

    Calhoun, Vince D.; Allen, Elena

    2013-01-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in…

  1. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    NASA Astrophysics Data System (ADS)

    Shen, Haoting

    conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance

  2. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    NASA Astrophysics Data System (ADS)

    Shen, Haoting

    conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance

  3. Electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy

    NASA Astrophysics Data System (ADS)

    Jiang, F. D.; Feng, J. Y.

    2008-02-01

    Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.

  4. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    SciTech Connect

    Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  5. Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors

    NASA Astrophysics Data System (ADS)

    Morozan, A.; Bourgeteau, T.; Tondelier, D.; Geffroy, B.; Jousselme, B.; Artero, V.

    2016-09-01

    Organic semiconductors have great potential for producing hydrogen in a sustainable and economically-viable manner because they rely on readily available materials with highly tunable properties. We demonstrate here the relevance of heterojunctions to the construction of H2-evolving photocathodes, exclusively based on earth-abundant elements. Boron subnaphthalocyanine chloride proved a very promising acceptor in that perspective. It absorbs a part of the solar spectrum complementary to α-sexithiophene as a donor, thus generating large photocurrents and providing a record onset potential for light-driven H2 evolution under acidic aqueous conditions using a nanoparticulate amorphous molybdenum sulfide catalyst.

  6. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology.

    PubMed

    Li, Jingsi; Wang, Huan; Chen, Xiangfei; Yin, Zuowei; Shi, Yuechun; Lu, Yanqing; Dai, Yitang; Zhu, Hongliang

    2009-03-30

    In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology. PMID:19333287

  7. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Zhang, Xinliang; Liu, Deming; Huang, Dexiu

    2006-10-01

    An ultrafast all-optical logic NOR gate based on a semiconductor optical amplifier (SOA) and a fiber delay interferometer (FDI) is presented. For high-speed input return-to-zero (RZ) signal, nonreturn-to-zero (NRZ) switching windows which satisfy Boolean NOR operation can be formed by properly choosing the delay time and the phase shift of FDI. 40Gb/s NOR operation has been demonstrated successfully with low control optical power. The factors that degrade the NOR operation have been discussed.

  8. Noble metal-free hydrogen-evolving photocathodes based on small molecule organic semiconductors.

    PubMed

    Morozan, A; Bourgeteau, T; Tondelier, D; Geffroy, B; Jousselme, B; Artero, V

    2016-09-01

    Organic semiconductors have great potential for producing hydrogen in a sustainable and economically-viable manner because they rely on readily available materials with highly tunable properties. We demonstrate here the relevance of heterojunctions to the construction of H2-evolving photocathodes, exclusively based on earth-abundant elements. Boron subnaphthalocyanine chloride proved a very promising acceptor in that perspective. It absorbs a part of the solar spectrum complementary to α-sexithiophene as a donor, thus generating large photocurrents and providing a record onset potential for light-driven H2 evolution under acidic aqueous conditions using a nanoparticulate amorphous molybdenum sulfide catalyst. PMID:27455142

  9. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  10. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1995-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  11. High speed all-optical data processing in fast semiconductor and optical fiber based devices

    NASA Astrophysics Data System (ADS)

    Sun, Hongzhi

    Future generations of communication systems demand ultra high speed data processing and switching components. Conventional electrical parts have reached their bottleneck both speed-wise and efficiency-wise. The idea of manipulating high speed data in optical domain is gaining more popularity. In this PhD thesis work, we proposed and demonstrated various schemes of all-optical Boolean logic gate at data rate as high as 80Gb/s by using semiconductor optical amplifier (SOA), SOA Mach-Zehnder interferometer (SOA-MZI), highly nonlinear fiber (HNLF) and optical fiber based components. With the invention of quantum dot (QD) based semiconductor devices, speed limit of all optical data processing has a chance to boost up to 250Gb/s. We proposed and simulated QD-SOA based Boolean functions, and their application such as shift register and pseudorandom bit sequence generation (PRBS). Clock and data recovery of high speed data signals has been simulated and demonstrated by injection lock and phase lock loop techniques in a fiber and SOA ring and an optical-electrical (OE) feedback loop.

  12. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping.

    PubMed

    Beadling, Carol; Neff, Tanaya L; Heinrich, Michael C; Rhodes, Katherine; Thornton, Michael; Leamon, John; Andersen, Mark; Corless, Christopher L

    2013-03-01

    There is growing demand for routine identification of actionable mutations in clinical cancer specimens. Genotyping platforms must provide rapid turnaround times and work effectively with limited amounts of formalin-fixed, paraffin-embedded (FFPE) tissue specimens that often yield poor quality DNA. We describe semiconductor-based sequencing of DNA from FFPE specimens using a single-tube, multiplexed panel of 190 amplicons targeting 46 cancer genes. With just 10 ng of input DNA, average read depths of 2000× can be obtained in 48 hours, with >95% of the reads on target. A validation set of 45 FFPE tumor specimens containing 53 point mutations previously identified with a mass spectrometry-based genotyping platform, along with 19 indels ranging from 4 to 63 bp, was used to evaluate assay performance. With a mutant allele ratio cutoff of 8%, we were able to achieve 100% sensitivity (95% CI = 97.3% to 100.0%) and 95.1% specificity (95% CI = 91.8% to 98.0%) of point mutation detection. All indels were visible by manual inspection of aligned reads; 6/9 indels ≤12 bp long were detected by the variant caller software either exactly or as mismatched nucleotides within the indel region. The rapid turnaround time and low input DNA requirements make the multiplex PCR and semiconductor-based sequencing approach a viable option for mutation detection in a clinical laboratory. PMID:23274167

  13. A new metal-organic hybrid material with intrinsic resistance-based bistability: monitoring in situ room temperature switching behavior

    SciTech Connect

    Zhang, Zhongyue; Zhao, Hanhua; Matsushita, Michio M.; Awaga, Kunio; Dunbar, Kim R.

    2014-08-06

    Two new silver containing materials with TCNQ derivatives were prepared by electrocrystallization. Synchrotron radiation diffraction studies were conducted to determine the structures of the new phases which exhibit unprecedented high room temperature conductivity. The I–V characteristics reveal a room-temperature switching behaviour and memory effect based on intrinsic negative differential resistance (NDR). EPR spectroscopic measurements performed under an applied electric field indicate a g-tensor shift that is correlated to the amplitude of current.

  14. Gate-control efficiency and interface state density evaluated from capacitance-frequency-temperature mapping for GaN-based metal-insulator-semiconductor devices

    SciTech Connect

    Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu

    2014-11-14

    We present an analysis method for GaN-based metal-insulator-semiconductor (MIS) devices by using capacitance-frequency-temperature (C-f-T) mapping to evaluate the gate-control efficiency and the interface state density, both exhibiting correlations with the linear-region intrinsic transconductance. The effectiveness of the method was exemplified by application to AlN/AlGaN/GaN MIS devices to elucidate the properties of AlN-AlGaN interfaces depending on their formation processes. Using the C-f-T mapping, we extract the gate-bias-dependent activation energy with its derivative giving the gate-control efficiency, from which we evaluate the AlN-AlGaN interface state density through the Lehovec equivalent circuit in the DC limit. It is shown that the gate-control efficiency and the interface state density have correlations with the linear-region intrinsic transconductance, all depending on the interface formation processes. In addition, we give characterization of the AlN-AlGaN interfaces by using X-ray photoelectron spectroscopy, in relation with the results of the analysis.

  15. Imitation learning based on an intrinsic motivation mechanism for efficient coding

    PubMed Central

    Triesch, Jochen

    2013-01-01

    A hypothesis regarding the development of imitation learning is presented that is rooted in intrinsic motivations. It is derived from a recently proposed form of intrinsically motivated learning (IML) for efficient coding in active perception, wherein an agent learns to perform actions with its sense organs to facilitate efficient encoding of the sensory data. To this end, actions of the sense organs that improve the encoding of the sensory data trigger an internally generated reinforcement signal. Here it is argued that the same IML mechanism might also support the development of imitation when general actions beyond those of the sense organs are considered: The learner first observes a tutor performing a behavior and learns a model of the the behavior's sensory consequences. The learner then acts itself and receives an internally generated reinforcement signal reflecting how well the sensory consequences of its own behavior are encoded by the sensory model. Actions that are more similar to those of the tutor will lead to sensory signals that are easier to encode and produce a higher reinforcement signal. Through this, the learner's behavior is progressively tuned to make the sensory consequences of its actions match the learned sensory model. I discuss this mechanism in the context of human language acquisition and bird song learning where similar ideas have been proposed. The suggested mechanism also offers an account for the development of mirror neurons and makes a number of predictions. Overall, it establishes a connection between principles of efficient coding, intrinsic motivations and imitation. PMID:24204350

  16. Web-based interactive educational software introducing semiconductor laser dynamics: Sound of Lasers (SOL)

    NASA Astrophysics Data System (ADS)

    Consoli, Antonio; Sanchez, Jorge R.; Horche, Paloma R.; Esquivias, Ignacio

    2014-07-01

    presented. The proposed tool is addressed to the students of optical communication courses, encouraging self consolidation of the subjects learned in lectures. The semiconductor laser model is based on the well known rate equations for the carrier density, photon density and optical phase. The direct modulation of the laser is considered with input parameters which can be selected by the user. Different options for the waveform, amplitude and frequency of the injected current are available, together with the bias point. Simulation results are plotted for carrier density and output power versus time. Instantaneous frequency variations of the laser output are numerically shifted to the audible frequency range and sent to the computer loudspeakers. This results in an intuitive description of the "chirp" phenomenon due to amplitude-phase coupling, typical of directly modulated semiconductor lasers. In this way, the student can actually listen to the time resolved spectral content of the laser output. By changing the laser parameters and/or the modulation parameters, consequent variation of the laser output can be appreciated in intuitive manner. The proposed educational tool has been previously implemented by the same authors with locally executable software. In the present manuscript, we extend our previous work to a web based platform, offering improved distribution and allowing its use to the wide audience of the web.

  17. Cyclopentadithiophene-Based Organic Semiconductors: Effect of Fluorinated Substituents on Electrochemical and Charge Transport Properties

    SciTech Connect

    Reddy, J. Sreedhar; Kale, Tejaswini; Balaji, Ganapathy; Chandrasekaran, A.; Thayumanavan, S.

    2011-03-17

    Thiophene-based semiconductors are often hole conductors that have been converted to electron-transporting materials by incorporation of electron-withdrawing groups at terminal positions, such as fluorinated substituents. This conversion of an otherwise p-type material to n-type material is often attributed to the lowering of the lowest unoccupied molecular orbital (LUMO) energy level due to the increased electron affinity in the molecule. Yet, it is not clear if lowering of LUMO energy level is a sufficient condition for yielding n-type material. Herein, we report small-molecule semiconductors based on cyclopentadithiophene (CPD), which can be orthogonally functionalized at two different positions, which allows us to tune the frontier orbital energy levels. We find that simply lowering the LUMO energy level, without inclusion of fluoro groups, does not result in conversion of the otherwise p-type material to n-type material, whereas incorporation of fluorinated substituents does. This indicates that charge transport behavior is not an exclusive function of the frontier orbital energy levels.

  18. Multianalyte biosensor based on pH-sensitive ZnO electrolyte-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Haur Kao, Chyuan; Chen, Hsiang; Ling Lee, Ming; Chun Liu, Che; Ueng, Herng-Yih; Cheng Chu, Yu; Jie Chen, Yu; Ming Chang, Kow

    2014-05-01

    Multianalyte electrolyte-insulator-semiconductor (EIS) sensors with a ZnO sensing membrane annealed on silicon substrate for use in pH sensing were fabricated. Material analyses were conducted using X-ray diffraction and atomic force microscopy to identify optimal treatment conditions. Sensing performance for various ions of Na+, K+, urea, and glucose was also tested. Results indicate that an EIS sensor with a ZnO membrane annealed at 600 °C exhibited good performance with high sensitivity and a low drift rate compared with all other reported ZnO-based pH sensors. Furthermore, based on well-established pH sensing properties, pH-ion-sensitive field-effect transistor sensors have also been developed for use in detecting urea and glucose ions. ZnO-based EIS sensors show promise for future industrial biosensing applications.

  19. Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures

    SciTech Connect

    Haur Kao, Chyuan; Chun Liu, Che; Ueng, Herng-Yih; Chen, Hsiang Cheng Chu, Yu; Jie Chen, Yu; Ling Lee, Ming; Ming Chang, Kow

    2014-05-14

    Multianalyte electrolyte–insulator–semiconductor (EIS) sensors with a ZnO sensing membrane annealed on silicon substrate for use in pH sensing were fabricated. Material analyses were conducted using X-ray diffraction and atomic force microscopy to identify optimal treatment conditions. Sensing performance for various ions of Na{sup +}, K{sup +}, urea, and glucose was also tested. Results indicate that an EIS sensor with a ZnO membrane annealed at 600 °C exhibited good performance with high sensitivity and a low drift rate compared with all other reported ZnO-based pH sensors. Furthermore, based on well-established pH sensing properties, pH-ion-sensitive field-effect transistor sensors have also been developed for use in detecting urea and glucose ions. ZnO-based EIS sensors show promise for future industrial biosensing applications.

  20. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  1. Charge carrier coherence and Hall effect in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  2. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  3. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    DOE PAGESBeta

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; Hybertsen, Mark S.

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulkmore » heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.« less

  4. Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection.

    PubMed

    Wang, Peng; Xiong, Jintian; Zhang, Tingting; Chen, Dalei; Xiang, Peng; Zheng, Jilin; Zhang, Yunshan; Li, Ruoming; Huang, Long; Pu, Tao; Chen, Xiangfei

    2015-08-10

    A frequency tunable optoelectronic oscillator based on a directly modulated distributed-feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. Through optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency can enable the loop oscillation with a RF threshold gain of less than 20 dB. The DFB laser is a commercial semiconductor laser with a package of 10 GHz, and its packaging limitation can be overcome by optical injection. In our scheme, neither a high-speed external modulator nor an electrical bandpass filter is required, making the system simple and low-cost. Microwave signals with a frequency tuning range from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers. The phase noise of the generated 9.75 GHz microwave signal is measured to be -104.8 dBc/Hz @ 10 kHz frequency offset. PMID:26367899

  5. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    SciTech Connect

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; Hybertsen, Mark S.

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulk heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.

  6. Silicon photonics WDM interconnects based on resonant ring modulators and semiconductor mode locked laser

    NASA Astrophysics Data System (ADS)

    Müller, J.; Hauck, J.; Shen, B.; Romero-García, S.; Islamova, E.; Sharif Azadeh, S.; Joshi, S.; Chimot, N.; Moscoso-Mártir, A.; Merget, F.; Lelarge, F.; Witzens, J.

    2015-03-01

    We demonstrate wavelength domain multiplexed (WDM) data transmission with a data rate of 14 Gbps based on optical carrier generation with a single-section semiconductor mode-locked laser (SS-MLL) and modulation with a Silicon Photonics (SiP) resonant ring modulator (RRM). 18 channels are sequentially measured, whereas the best recorded eye diagrams feature signal quality factors (Q-factors) above 7. While optical re-amplification was necessary to maintain the link budgets and therefore system measurements were performed with an erbium doped fiber amplifier (EDFA), preliminary characterization done with a semiconductor optical amplifier (SOA) indicates compatibility with the latter pending the integration of an additional optical filter to select a subset of carriers and prevent SOA saturation. A systematic analysis of the relative intensity noise (RIN) of isolated comb lines and of signal Q-factors indicates that the link is primarily limited by amplified spontaneous emission (ASE) from the EDFA rather than laser RIN. Measured RIN for single comb components is below -120 dBc/Hz in the range from 7 MHz to 4 GHz and drops to the shot noise level at higher frequencies.

  7. Semiconductor up-converter based on cascade carrier transport for infrared detection/imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Hao, Zhi-Biao; Luo, Yi; Kang, Jian-Bin; Wang, Lai; Xiong, Bing; Sun, Chang-Zheng; Wang, Jian; Han, Yan-Jun; Li, Hong-Tao; Wang, Lu; Wang, Wen-Xin; Chen, Hong

    2015-09-01

    The next generation infrared (IR) detection and imaging technology calls for very large-scale IR sensitive chips with non-compromised performance. IR up-converters based on mature III-V semiconductors are thought to be quite promising candidates. However, the up-converters and the corresponding up-conversion systems so far substantially fall behind traditional IR detectors in terms of device performance due to the more serious trade-off between responsivity and dark current. In this article, a cascade infrared up-converter (CIUP) is proposed. By employing cascade carrier transport, IR responsivity can be enhanced while dark current remains in fairly low level. For the fabricated 4-μm InGaAs/AlGaAs CIUP under 3.3 V at 78 K, the up-conversion efficiency of the system is 2.1 mW/W under 2.1 μW mid-infrared input. Both the up-converter and the up-conversion system are under background-limited infrared performance regime below 120 K. Taking shot noise as the main source of system noise, the CIUP system displays a higher detectivity than previous semiconductor up-converters at similar wavelengths, and thus possesses greater potential for future large-scale IR detection and imaging applications.

  8. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors.

    PubMed

    Vitiello, Miriam S; Coquillat, Dominique; Viti, Leonardo; Ercolani, Daniele; Teppe, Frederic; Pitanti, Alessandro; Beltram, Fabio; Sorba, Lucia; Knap, Wojciech; Tredicucci, Alessandro

    2012-01-11

    The growth of semiconductor nanowires (NWs) has recently opened new paths to silicon integration of device families such as light-emitting diodes, high-efficiency photovoltaics, or high-responsivity photodetectors. It is also offering a wealth of new approaches for the development of a future generation of nanoelectronic devices. Here we demonstrate that semiconductor nanowires can also be used as building blocks for the realization of high-sensitivity terahertz detectors based on a 1D field-effect transistor configuration. In order to take advantage of the low effective mass and high mobilities achievable in III-V compounds, we have used InAs nanowires, grown by vapor-phase epitaxy, and properly doped with selenium to control the charge density and to optimize source-drain and contact resistance. The detection mechanism exploits the nonlinearity of the transfer characteristics: the terahertz radiation field is fed at the gate-source electrodes with wide band antennas, and the rectified signal is then read at the output in the form of a DC drain voltage. Significant responsivity values (>1 V/W) at 0.3 THz have been obtained with noise equivalent powers (NEP) < 2 × 10(-9) W/(Hz)(1/2) at room temperature. The large existing margins for technology improvements, the scalability to higher frequencies, and the possibility of realizing multipixel arrays, make these devices highly competitive as a future solution for terahertz detection. PMID:22149118

  9. Size limitations and gain optimization in semiconductor-optical-amplifier-based optical space switches

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Huang, Dexiu; Liu, Deming

    2002-08-01

    The cascadability of Semiconductor optical amplifier (SOA) gates and the size limitations for several kinds of switch architectures based on SOA's are studied theoretically. The analysis shows that the sizes of matrix-vector switches are severely limited owing to the splitting losses, waveguide losses and coupling losses. However for distributed gain matrix-vector switch and Benes switch, the accumulation of amplified spontaneous emission (ASE) noise and non-ideal extinction ratio also greatly influence the maximal sizes of switches. The calculation results also reveal that the gain optimum strategy for switches based on SOA's, which derived from steady state analysis, will not be optimum when non-ideal extinction ratio and dynamical gain saturation is considered

  10. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier

    PubMed Central

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing. PMID:26813252

  11. An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Juillard, A.; Jin, Y.

    2016-07-01

    We present the design and noise performance of a fully cryogenic (T=4 K) high-electron mobility transistor (HEMT)-based charge amplifier for readout of sub-kelvin semiconductor radiation detectors. The amplifier is being developed for use in direct detection dark matter searches such as the cryogenic dark matter search and will allow these experiments to probe weakly interacting massive particle masses below 10 GeV/c^2 while retaining background discrimination. The amplifier dissipates ≈ 1 mW of power and provides an open loop voltage gain of several hundreds. The measured noise performance is better than that of JFET-based charge amplifiers and is dominated by the noise of the input HEMT. An optimal filter calculation using the measured closed loop noise and typical detector characteristics predicts a charge resolution of σ _q=106 eV (35 electrons) for leakage currents below 4 × 10^{-15} A.

  12. Diode-Laser Pumped Far-Infrared Local Oscillator Based on Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Kolokolov, K.; Li, J.; Ning, C. Z.; Larrabee, D. C.; Tang, J.; Khodaparast, G.; Kono, J.; Sasa, S.; Inoue, M.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The contents include: 1) Tetrahertz Field: A Technology Gap; 2) Existing THZ Sources and Shortcomings; 3) Applications of A THZ Laser; 4) Previous Optical Pumped LW Generations; 5) Optically Pumped Sb based Intersubband Generation Whys; 6) InGaAs/InP/AlAsSb QWs; 7) Raman Enhanced Optical Gain; 8) Pump Intensity Dependence of THZ Gain; 9) Pump-Probe Interaction Induced Raman Shift; 10) THZ Laser Gain in InGaAs/InP/AlAsSb QWs; 11) Diode-Laser Pumped Difference Frequency Generation (InGaAs/InP/AlAsSb QWs); 12) 6.1 Angstrom Semiconductor Quantum Wells; 13) InAs/GaSb/AlSb Nanostructures; 14) InAs/AlSb Double QWs: DFG Scheme; 15) Sb-Based Triple QWs: Laser Scheme; and 16) Exciton State Pumped THZ Generation. This paper is presented in viewgraph form.

  13. Theoretical analysis of an optoelectronic oscillator based on a directly modulated semiconductor laser

    NASA Astrophysics Data System (ADS)

    Cho, Jun-Hyung; Heo, Seo Weon; Sung, Hyuk-Kee

    2016-05-01

    We numerically simulated the performance of an optoelectronic oscillator (OEO) based on a directly modulated (DM) semiconductor laser. The standard coupled rate equations were used to describe the DM-OEO modulation process. A rate-equation-based analysis is a means of analyzing OEO performance that is a variation of the method used to assess standard OEOs that employ external modulators. We modeled an OEO with an open-loop response and calculated the oscillation threshold gain and amplitude of the DM-OEO as functions of the DC bias current. By using this method, we were able to optimize OEO operation conditions for a given laser DC bias level in both gain- and amplitude-limited operating environments.

  14. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier

    NASA Astrophysics Data System (ADS)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  15. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier.

    PubMed

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing. PMID:26813252

  16. Chemical composition, crystal structure, and their relationships with the intrinsic properties of spinel-type crystals based on bond valences.

    PubMed

    Liu, Xiao; Wang, Hao; Lavina, Barbara; Tu, Bingtian; Wang, Weimin; Fu, Zhengyi

    2014-06-16

    Spinel-type crystals may possess complex and versatile chemical composition and crystal structure, which leads to difficulty in constructing relationships among the chemical composition, crystal structure, and intrinsic properties. In this work, we develop new empirical methods based on bond valences to estimate the intrinsic properties, namely, compressibility and thermal expansion of complex spinel-type crystals. The composition-weighted average of bond force constants in tetrahedral and octahedral coordination polyhedra is derived as a function of the composition-weighted average of bond valences, which can be calculated according to the experimental chemical composition and crystal structural parameters. We discuss the coupled effects of tetrahedral and octahedral frameworks on the aforementioned intrinsic properties. The bulk modulus could be quantitatively calculated from the composition-weighted average of bond force constants in tetrahedral and octahedral coordination polyhedra. In contrast, a quantitative estimation of the thermal expansion coefficient could be obtained from the composition-weighted average of bond force constants in octahedral coordination polyhedra. These empirical methods have been validated by the results obtained for a new complex quaternary spinel-type oxynitride Mg0.268Al2.577O3.733N0.267 as well as MgAl2O4 and Al2.85O3.45N0.55 from the literature. Further, these empirical methods have the potential to be extensively applied in other types of complex crystals. PMID:24871452

  17. Machine Learning Classification of Cirrhotic Patients with and without Minimal Hepatic Encephalopathy Based on Regional Homogeneity of Intrinsic Brain Activity

    PubMed Central

    Liu, Jun; Sun, Tao; Shen, Qun-Tai

    2016-01-01

    Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients. PMID:26978777

  18. Intrinsic motivation factors based on the self-determinant theory for regular breast cancer screening.

    PubMed

    Jung, Su Mi; Jo, Heui-Sug

    2014-01-01

    The purpose of this study was to identify factors of intrinsic motivation that affect regular breast cancer screening and contribute to development of a program for strategies to improve effective breast cancer screening. Subjects were residing in South Korea Gangwon-Province and were female over 40 and under 69 years of age. For the investigation, the Intrinsic Motivation Inventory (IMI) was modified to the situation of cancer screening and was used to survey 905 inhabitants. Multinominal logistic regression analyses were conducted for regular breast cancer screening (RS), one-time breast cancer screening (OS) and non-breast cancer screening (NS). For statistical analysis, IBM SPSS 20.0 was utilized. The determinant factors between RS and NS were "perceived effort and choice" and "stress and strain" - internal motivations related to regular breast cancer screening. Also, determinant factors between RS and OS are "age" and "perceived effort and choice" for internal motivation related to cancer screening. To increase regular screening, strategies that address individual perceived effort and choice are recommended. PMID:25556433

  19. SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions

    PubMed Central

    Davey, Norman E.; Cowan, Joanne L.; Shields, Denis C.; Gibson, Toby J.; Coldwell, Mark J.; Edwards, Richard J.

    2012-01-01

    Large portions of higher eukaryotic proteomes are intrinsically disordered, and abundant evidence suggests that these unstructured regions of proteins are rich in regulatory interaction interfaces. A major class of disordered interaction interfaces are the compact and degenerate modules known as short linear motifs (SLiMs). As a result of the difficulties associated with the experimental identification and validation of SLiMs, our understanding of these modules is limited, advocating the use of computational methods to focus experimental discovery. This article evaluates the use of evolutionary conservation as a discriminatory technique for motif discovery. A statistical framework is introduced to assess the significance of relatively conserved residues, quantifying the likelihood a residue will have a particular level of conservation given the conservation of the surrounding residues. The framework is expanded to assess the significance of groupings of conserved residues, a metric that forms the basis of SLiMPrints (short linear motif fingerprints), a de novo motif discovery tool. SLiMPrints identifies relatively overconstrained proximal groupings of residues within intrinsically disordered regions, indicative of putatively functional motifs. Finally, the human proteome is analysed to create a set of highly conserved putative motif instances, including a novel site on translation initiation factor eIF2A that may regulate translation through binding of eIF4E. PMID:22977176

  20. Metal-semiconductor-metal ultraviolet photodetectors based on gallium nitride grown by atomic layer deposition at low temperatures

    NASA Astrophysics Data System (ADS)

    Tekcan, Burak; Ozgit-Akgun, Cagla; Bolat, Sami; Biyikli, Necmi; Okyay, Ali Kemal

    2014-10-01

    Proof-of-concept, first metal-semiconductor-metal ultraviolet photodetectors based on nanocrystalline gallium nitride (GaN) layers grown by low-temperature hollow-cathode plasma-assisted atomic layer deposition are demonstrated. Electrical and optical characteristics of the fabricated devices are investigated. Dark current values as low as 14 pA at a 30 V reverse bias are obtained. Fabricated devices exhibit a 15× UV/VIS rejection ratio based on photoresponsivity values at 200 nm (UV) and 390 nm (VIS) wavelengths. These devices can offer a promising alternative for flexible optoelectronics and the complementary metal oxide semiconductor integration of such devices.

  1. III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report.

    SciTech Connect

    Kurtz, Steven Ross; Hargett, Terry W.; Serkland, Darwin Keith; Waldrip, Karen Elizabeth; Modine, Normand Arthur; Klem, John Frederick; Jones, Eric Daniel; Cich, Michael Joseph; Allerman, Andrew Alan; Peake, Gregory Merwin

    2003-12-01

    The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.

  2. Magnetic fields and the technology challenges they pose to beam-based equipment: a semiconductor perspective

    NASA Astrophysics Data System (ADS)

    Esqueda, Vincent; Montoya, Julian A.

    2005-08-01

    As semiconductor devices shrink in size to accommodate faster processing speeds, the need for higher resolution beam-based metrology equipment and beam-based writing equipment will increase. The electron and ion beams used within these types of equipment are sensitive to very small variations in magnetic force applied to the beam. This phenomenon results from changes in Alternating Current (AC) and Direct Current (DC) magnetic flux density at the beam column which causes deflections of the beam that can impact equipment performance. Currently the most sensitive beam-based microscope manufacturers require an ambient magnetic field environment that does not have variations that exceed 0.2 milli-Gauss (mG). Studies have shown that such low levels of magnetic flux density can be extremely difficult to achieve. As examples, scissor lifts, vehicles, metal chairs, and doors moving in time and space under typical use conditions can create distortions in the Earth's magnetic field that can exceed 0.2 mG at the beam column. In addition it is known that changes in the Earth's magnetic field caused by solar flares, earthquakes, and variations in the Earth's core itself all cause changes in the magnetic field that can exceed 0.2 mG. This paper will provide the reader with the basic understanding of the emerging problem, will discuss the environmental and facility level challenges associated in meeting such stringent magnetic field environments, will discuss some of the mitigation techniques used to address the problem, and will close by discussing needs for further research in this area to assure semiconductor and nanotechnology industries are pre-positioned for even more stringent magnetic field environmental requirements.

  3. A self-biased neutron detector based on an SiC semiconductor for a harsh environment.

    PubMed

    Ha, Jang Ho; Kang, Sang Mook; Park, Se Hwan; Kim, Han Soo; Lee, Nam Ho; Song, Tae-Yung

    2009-01-01

    Neutron detector based on radiation-hard semiconductor materials like SiC, diamond and AlN has recently emerged as an attractive device for an in-core reactor neutron flux monitoring, a spent fuel characterization, and a home land security application. For the purpose of field measurement activity, a radiation detector having a low-power consumption, a mechanical stability and a radiation hardness is required. Our research was focused on the development of a radiation-resistive neutron semiconductor detector based on a wide band-gap SiC semiconductor. And also it will be operated at a zero-biased voltage using a strong internal electric field. The charge collection efficiency (CCE) was over 80% when the biased voltage was zero. When the biased voltage was applied above 20V, the charge collection efficiency reached 100%. PMID:19362006

  4. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Optical velocimeter based on a semiconductor laser

    NASA Astrophysics Data System (ADS)

    Belousov, P. Ya; Dubnishchev, Yu N.; Meledin, V. G.

    1988-03-01

    It is shown that optical velocimeters using diffraction beam splitters are not critically sensitive to the stability of the emission wavelength of a semiconductor laser. A functional scheme of a semiconductor laser source with systems for stabilization of the temperature and pump current is described. The technical characteristics are given of a semiconductor-laser velocimeter for the determination of the velocity and length of rolling stock.

  5. Peculiarities of Determining the Dopant Concentration in the Near-Surface Layer of a Semiconductor by Measuring the Admittance of MIS Structures Based on P-Hg0.78Cd0.22Te Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-06-01

    Peculiarities of determining the concentration and distribution profile of dopant in the near-surface layer of a semiconductor by measuring the admittance of MIS structures based on p-Hg0.78Cd0.22Te grown by molecular beam epitaxy are studied. A technique is proposed for the determining the concentration of dopant based on the measurement of the admittance of MIS structures in the frequency range of 50 kHz - 1 MHz. It is shown that in this frequency range, the capacitance-voltage characteristics of MIS structures based on p-Hg0.78Cd0.22Te with a near-surface graded-gap layer have a high- frequency behavior with respect to the recharge time of surface states located near the Fermi level of intrinsic semiconductor. The distribution profile of dopant in the nearsurface layer of the semiconductor is calculated. It is shown that in p-Hg0.78Cd0.22Te with a near-surface graded-gap layer, the dopant concentration has the lowest value near the interface with the insulator.

  6. Assessment of the intrinsic uncertainty of the k0-based NAA

    NASA Astrophysics Data System (ADS)

    Bučar, Tinkara; Smodiš, Borut

    2006-08-01

    This paper addresses the intrinsic uncertainty of k0 neutron activation analysis (NAA) by evaluating the partial uncertainties of the nuclear parameters and parameters given by the irradiation conditions. Uncertainty propagation factors are determined from the basic equations of the k0-NAA and the combined uncertainties are calculated using a software package specially developed for this purpose. The nuclear parameter values and respective uncertainties are taken from an IUPAC database. The uncertainties are calculated for specific conditions given at the TRIGA Mark II reactor of the Jožef Stefan Institute, for all reactions where data is available. On average, neutron reaction-specific values in the range of 1-2% were obtained for 44 elements. For 23 elements, some data are missing in the database, so the values should be obtained elsewhere. The developed approach is generally applicable to other neutron flux conditions.

  7. KMAD: knowledge-based multiple sequence alignment for intrinsically disordered proteins

    PubMed Central

    Lange, Joanna; Wyrwicz, Lucjan S.; Vriend, Gert

    2016-01-01

    Summary: Intrinsically disordered proteins (IDPs) lack tertiary structure and thus differ from globular proteins in terms of their sequence–structure–function relations. IDPs have lower sequence conservation, different types of active sites and a different distribution of functionally important regions, which altogether make their multiple sequence alignment (MSA) difficult. The KMAD MSA software has been written specifically for the alignment and annotation of IDPs. It augments the substitution matrix with knowledge about post-translational modifications, functional domains and short linear motifs. Results: MSAs produced with KMAD describe well-conserved features among IDPs, tend to agree well with biological intuition, and are a good basis for designing new experiments to shed light on this large, understudied class of proteins. Availability and implementation: KMAD web server is accessible at http://www.cmbi.ru.nl/kmad/. A standalone version is freely available. Contact: vriend@cmbi.ru.nl PMID:26568635

  8. A semiconductor opening switch based generator with pulse repetitive frequency of 4 MHz.

    PubMed

    Wang, Gang; Su, Jiancang; Ding, Zhenjie; Yuan, Xuelin; Pan, Yafeng

    2013-12-01

    A MHz repetitive and nanosecond pulsed power generator based on the semiconductor opening switch (SOS) is developed, in which the pulse compression unit utilizes several Radio Frequency (RF) MOSFETs and a saturable Linear Transformer Driver (LTD). The RF MOSFETs are employed to obtain the forward pumping current pulses with the duration of tens of nanoseconds; the saturable LTD is used to raise the pulse voltage, to compress the pulse width and to pump SOS reversely. The SOS assembly cuts off the reverse current in a few nanoseconds, leading to a narrow output pulse on an external load. The experimental results show that the amplitude of the output pulse on a 106 Ω resistive load is about 3.8 kV and the width is 2 ns. Due to the repetitive ability of the RF MOSFETs, the generator can operate at a repetitive frequency of higher than 4 MHz in burst mode. PMID:24387463

  9. Metal-semiconductor-metal UV photodetector based on Ga doped ZnO/graphene interface

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Noh, Youngwook; Polat, Kinyas; Kemal Okyay, Ali; Lee, Dongjin

    2015-12-01

    Fabrication and characterization of metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) based on Ga doped ZnO (ZnO:Ga)/graphene is presented in this work. A low dark current of 8.68 nA was demonstrated at a bias of 1 V and a large photo to dark contrast ratio of more than four orders of magnitude was observed. MSM PD exhibited a room temperature responsivity of 48.37 A/W at wavelength of 350 nm and UV-to-visible rejection ratio of about three orders of magnitude. A large photo-to-dark contrast and UV-to-visible rejection ratio suggests the enhancement in the PD performance which is attributed to the existence of a surface plasmon effect at the interface of the ZnO:Ga and underlying graphene layer.

  10. Vacuum Violet Photo-Response of AlGaN-Based Metal-Semiconductor-Metal Photodetectors

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Lu, Hai; Chen, Dun-Jun; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Dou; Li, Liang

    2013-11-01

    Al0.5Ga0.5 N-based metal-semiconductor-metal photodetectors (PDs) with a large device area of 5 × 5 mm2 are fabricated on a sapphire substrate, which are tested for vacuum ultraviolet light detection by using a synchrotron radiation source. The PD exhibits low dark current of less than 1 pA under 30 V bias and a spectral cutoff around 260 nm, corresponding to the energy bandgap of Al0.5Ga0.5N. A peak photo-responsivity of 14.68 mA/W at 250 nm with a rejection ratio (250/360 nm) of more than four orders of magnitude is obtained under 30 V bias. For wavelength less than 170 nm, the photoresponsivity of the PD is found to increase as wavelength decreases, which is likely caused by the enhanced photoemission effect.

  11. Synchronized 4 × 12 GHz hybrid harmonically mode-locked semiconductor laser based on AWG.

    PubMed

    Liu, S; Lu, D; Zhang, R; Zhao, L; Wang, W; Broeke, R; Ji, C

    2016-05-01

    We report a monolithically integrated synchronized four wavelength channel mode-locked semiconductor laser chip based on arrayed waveguide grating and fabricated in the InP material system. Device fabrication was completed in a multiproject wafer foundry run on the Joint European Platform for Photonic Integration of Components and Circuits. The integrated photonic chip demonstrated 5th harmonic electrical hybrid mode-locking operation with four 400 GHz spacing wavelength channels and synchronized to a 12.7 GHz RF clock, for nearly transform-limited optical pulse trains from a single output waveguide. A low timing jitter of 0.349 ps, and RF frequency locking range of ~50 MHz were also achieved. PMID:27137587

  12. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  13. Electrical Characteristics and Interface Properties of III Nitride-Based Metal-Insulator-Semiconductor Structure

    SciTech Connect

    Mahyuddin, A.; Hassan, Z.; Yusof, Y.; Cheong, K. Y.

    2010-07-07

    In this work, III-Nitride based metal-insulator-semiconductor (MIS) structure has been studied using AlN/GaN heterostructures on Si (111) with AlN buffer layer grown by plasma-assisted molecular beam epitaxy (MBE). The structural and electrical characteristics of the films were studied through high resolution x-ray diffraction (HRXRD), capacitance-voltage (C-V) and current-voltage (I-V) measurements. The value of flat-band voltage was -0.7 V. A total fixed oxide charge density of 2.73x10{sup 11} cm{sup -2} was estimated. Terman's method was used to obtain the density of interface state in the MIS structure. The analysis showed low interface state density values of 3.66x10{sup 11} cm{sup -2} eV{sup -1}.

  14. Ballistic thermal transport properties at low temperatures in semiconductor nanowires-based heterojunctions

    NASA Astrophysics Data System (ADS)

    Yu, Xia; Xie, Zhong-Xiang; Liu, Jun-Hun; Chen, Qiao; Li, Ke-Min; Zhang, Yong

    2016-04-01

    In this paper, we study ballistic thermal transport properties at low temperatures in semiconductor nanowires-based heterojunctions under hard-wall boundary conditions (HWBCs) and stress-free boundary conditions (SFBCs). Here, the numerical calculations for the asymmetric heterojunction (ASHJ) and symmetric heterojunction (SHJ) are done. When SFBCs are employed, the transmission coefficient exhibits different behaviors between ASHJ and SHJ especially at low frequency, but when HWBCs are employed, the transmission coefficient displays similar smooth platforms in both heterojunctions. In low temperature limit, the quantized thermal conductance can be observed in SHJ under SFBCs regardless of the structural details. However, this quantization cannot be observed in ASHJ under SFBCs, and the thermal conductance is strongly sensitive to the transverse width ratio rather than the slant angle. With increasing the transverse width ratio, the thermal conductance in both heterojunctions gradually increases especially, and such the increasing degree is more evident at higher temperatures. A brief analysis of these results is given.

  15. Proton Conduction in a Phosphonate-Based Metal-Organic Framework Mediated by Intrinsic "Free Diffusion inside a Sphere".

    PubMed

    Pili, Simona; Argent, Stephen P; Morris, Christopher G; Rought, Peter; García-Sakai, Victoria; Silverwood, Ian P; Easun, Timothy L; Li, Ming; Warren, Mark R; Murray, Claire A; Tang, Chiu C; Yang, Sihai; Schröder, Martin

    2016-05-25

    Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal-organic framework (MOF) material, MFM-500(Ni). QENS suggests that the proton conductivity (4.5 × 10(-4) S/cm at 98% relative humidity and 25 °C) of MFM-500(Ni) is mediated by intrinsic "free diffusion inside a sphere", representing the first example of such a mechanism observed in MOFs. PMID:27182787

  16. A new strategy for sequential assignment of intrinsically unstructured proteins based on 15N single isotope labelling

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Ahuja, Puneet; Gerard, Melanie; Wieruszeski, Jean-Michel; Lippens, Guy

    2013-11-01

    We describe a new efficient strategy for the sequential assignment of amide resonances of a conventional 15N-1H HSQC spectrum of intrinsically unfolded proteins, based on composite NOESY-TOCSY and TOCSY-NOESY mixing times. These composite mixing times lead to a Hα-proton mediated unidirectional transfer of amide to amide proton. We have implemented the composite mixing times in an HSQC-NOESY-HSQC manner to obtain directional connectivity between amides of neighbouring residues. We experimentally determine the optimal mixing times for both transfer schemes, and demonstrate its use in the assignment for both a fragment of the neuronal tau protein and for α-synuclein.

  17. Intrinsically safe laser-based system for continuous measurement of low-frequency vibration of mine shaft installations

    NASA Astrophysics Data System (ADS)

    Szade, Adam; Passia, Henryk; Lipowczan, Adam; Bochenek, Wojciech

    1998-06-01

    Proper condition of the mine shaft equipment is of vital importance both in view of production and safety. In some cases, this state can be adversely by the changing geological conditions in the shaft surroundings so that special precautions are necessary for reliable operation of the shaft. In the paper, an intrinsically-safe measuring system, approved for gassy mine use, based on the laser vibration sensor has been presented including its construction and operational characteristics. Examples of application have also been given related to measurements of low-frequency vibration events and of displacements both in the surface and underground parts of the shafts.

  18. Methods of reducing low frequency cabin noise and sonically induced stresses, based on the intrinsic structural tuning concept

    NASA Technical Reports Server (NTRS)

    Sengupta, G.

    1977-01-01

    Control of low frequency interior noise has been difficult in all commercial and general aviation aircraft, since the existing sound attenuation techniques are less effective at these frequencies. Therefore low frequency cabin noise and sonically induced stresses can be reduced mainly by a proper design of the fuselage structure. For this purpose, a concept based on intrinsic tuning and damping of fuselage structural elements has been under development at Boeing for the past three years. This paper describes the results of some laboratory and field tests that were conducted for evaluation of the concept.

  19. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryota; Katoh, Ryuzi

    2016-05-01

    We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.

  20. Mechanism of electronic-excitation transfer in organic light-emitting devices based on semiconductor quantum dots

    SciTech Connect

    Vitukhnovskii, A. G. Vashchenko, A. A.; Lebedev, V. S.; Vasiliev, R. B.; Brunkov, P. N.; Bychkovskii, D. N.

    2013-07-15

    The results of an experimental study of organic light-emitting diodes (LEDs) with luminescent layers based on two types of CdSe/CdS semiconductor quantum dots (QDs) with an average CdSe core diameter of 3 and 5 nm and a characteristic CdS shell thickness of 0.5 nm are presented. The dependences of the LED efficiency on the QD concentration are determined. The experimental data are used to determine the mechanism of electronic-excitation transfer from the organic matrix to the semiconductor QDs. Ways of optimizing the design of the LEDs in order to improve their efficiency are suggested on this basis.

  1. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees. PMID:19340174

  2. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.

    PubMed

    Baeg, Kang-Jun; Caironi, Mario; Noh, Yong-Young

    2013-08-21

    For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge

  3. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    SciTech Connect

    Goyal, Amit

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  4. Low dielectric constant-based organic field-effect transistors and metal-insulator-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Ukah, Ndubuisi Benjamin

    This thesis describes a study of PFB and pentacene-based organic field-effect transistors (OFET) and metal-insulator-semiconductor (MIS) capacitors with low dielectric constant (k) poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP) and cross-linked PVP (c-PVP) gate dielectrics. A physical method -- matrix assisted pulsed laser evaporation (MAPLE) -- of fabricating all-polymer field-effect transistors and MIS capacitors that circumvents inherent polymer dissolution and solvent-selectivity problems, is demonstrated. Pentacene-based OFETs incorporating PMMA and PVP gate dielectrics usually have high operating voltages related to the thickness of the dielectric layer. Reduced PMMA layer thickness (≤ 70 nm) was obtained by dissolving the PMMA in propylene carbonate (PC). The resulting pentacene-based transistors exhibited very low operating voltage (below -3 V), minimal hysteresis in their transfer characteristics, and decent electrical performance. Also low voltage (within -2 V) operation using thin (≤ 80 nm) low-k and hydrophilic PVP and c-PVP dielectric layers obtained via dissolution in high dipole moment and high-k solvents -- PC and dimethyl sulfoxide (DMSO), is demonstrated to be a robust means of achieving improved electrical characteristics and high operational stability in OFETs incorporating PVP and c-PVP dielectrics.

  5. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors

    PubMed Central

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-01-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities. PMID:27194128

  6. Performance of MEMS-based gas distribution and control systems for semiconductor processing

    NASA Astrophysics Data System (ADS)

    Henning, Albert K.; Fitch, John; Harris, James M.; Arkilic, Errol B.; Cozad, Brad A.; Dehan, Ben

    1998-09-01

    The advent of microelectromechanical systems has enabled dramatic changes in diverse technological areas. In terms of control and distribution of liquids and gases (microfluidics), MEMS-based devices offer opportunities to achieve increased performance, and higher levels of functional integration, at lower cost, with decreased size and increased reliability. This work focuses on recent research and development of high-purity gags distribution and control systems for semiconductor processing. These systems include the following components, based upon both normally-open and normally-closed microvalves: pressure- based mass flow controllers; vacuum leak-rate shut-off valves; and pressure regulators. Advanced packaging techniques enable these components to be integrated into gas sticks and panels which have small size, corrosion-resistant wetted materials, small dead volumes, and minimal particle generation. Principles of operation of components and panels, and performance data at both the component and system level, will be presented. The potential for 10X size reduction (linear dimension), 2X product yield improvement (through increased reliability, improved flow accuracy and repeatability, and contamination reduction), and 5X reduction in process gas consumption, will also be addressed. Particular emphasis on characterization and verification of flow measurements in mass flow controllers (versus NIST standards), and the flow models used in designing and characterizing these systems, will be made.

  7. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors.

    PubMed

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-01-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities. PMID:27194128

  8. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors

    NASA Astrophysics Data System (ADS)

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-05-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities.

  9. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    SciTech Connect

    Nevedomskiy, V. N. Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-12-15

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.

  10. What if the Electrical Conductivity of Graphene Is Significantly Deteriorated for the Graphene-Semiconductor Composite-Based Photocatalysis?

    PubMed

    Weng, Bo; Xu, Yi-Jun

    2015-12-23

    The extraordinary electrical conductivity of graphene has been widely regarded as the bible in literature to explain the activity enhancement of graphene-semiconductor composite photocatalysts. However, from the viewpoint of an entire composite-based artificial photosynthetic system, the significant matter of photocatalytic performance of graphene-semiconductor composite system is not just a simple and only issue of excellent electrical conductivity of graphene. Herein, the intentional design of melamine resin monomers functionalized three-dimensional (3D) graphene (donated as MRGO) with significantly deteriorated electrical conductivity enables us to independently focus on studying the geometry effect of MRGO on the photocatalytic performance of graphene-semiconductor composite. By coupling semiconductor CdS with graphene, including MRGO and reduced graphene oxide (RGO), it was found that the CdS-MRGO composites exhibit much higher visible light photoactivity than CdS-RGO composites although the electrical conductivity of MRGO is remarkably much lower than that of RGO. The comparison characterizations evidence that such photoactivity enhancement is predominantly attributed to the restacking-inhibited 3D architectural morphology of MRGO, by which the synergistic effects of boosted separation and transportation of photogenerated charge carriers and increased adsorption capacity can be achieved. Our work highlights that the significant matter of photocatalytic performance of graphene-semiconductor composite is not a simple issue on how to harness the electrical conductivity of graphene but the rational ensemble design of graphene-semiconductor composite, which includes the integrative optimization of geometrical and electrical factors of individual component and the interface composition. PMID:26624808

  11. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    SciTech Connect

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  12. The intrinsic periodic fluctuation of forest: a theoretical model based on diffusion equation

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Lin, G., Sr.

    2015-12-01

    Most forest dynamic models predict the stable state of size structure as well as the total basal area and biomass in mature forest, the variation of forest stands are mainly driven by environmental factors after the equilibrium has been reached. However, although the predicted power-law size-frequency distribution does exist in analysis of many forest inventory data sets, the estimated distribution exponents are always shifting between -2 and -4, and has a positive correlation with the mean value of DBH. This regular pattern can not be explained by the effects of stochastic disturbances on forest stands. Here, we adopted the partial differential equation (PDE) approach to deduce the systematic behavior of an ideal forest, by solving the diffusion equation under the restricted condition of invariable resource occupation, a periodic solution was gotten to meet the variable performance of forest size structure while the former models with stable performance were just a special case of the periodic solution when the fluctuation frequency equals zero. In our results, the number of individuals in each size class was the function of individual growth rate(G), mortality(M), size(D) and time(T), by borrowing the conclusion of allometric theory on these parameters, the results perfectly reflected the observed "exponent-mean DBH" relationship and also gave a logically complete description to the time varying form of forest size-frequency distribution. Our model implies that the total biomass of a forest can never reach a stable equilibrium state even in the absence of disturbances and climate regime shift, we propose the idea of intrinsic fluctuation property of forest and hope to provide a new perspective on forest dynamics and carbon cycle research.

  13. Semiconductor detectors with proximity signal readout

    SciTech Connect

    Asztalos, Stephen J.

    2014-01-30

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need.

  14. Characterization of a novel intrinsic luminescent room-temperature ionic liquid based on [P6,6,6,14 ][ANS].

    PubMed

    Delgado, Joana M; Raymundo, Anabela; Vilarigues, Márcia; Branco, Luís C; Laia, César A T

    2015-01-01

    Intrinsically luminescent room-temperature ionic liquids (RTILs) can be prepared by combining a luminescent anion (more common) or cation with appropriate counter ions, rendering new luminescent soft materials. These RTILs are still new, and many of their photochemical properties are not well known. A novel intrinsic luminescent RTIL based on the 8-anilinonaphthalene-1-sulfonate ([ANS]) anion combined with the trihexyltetradecylphosphonium ([P6,6,6,14 ]) cation was prepared and characterized by spectroscopic techniques. Detailed photophysical studies highlight the influence of the ionic liquid environment on the ANS fluorescence, which together with rheological and (1) H NMR experiments illustrate the effects of both the viscosity and electrostatic interactions between the ions. This material is liquid at room temperature and possesses a glass transition temperature (Tg ) of 230.4 K. The fluorescence is not highly sensitive to factors such as temperature, but owing to its high viscosity, dynamic Stokes shift measurements reveal very slow components for the IL relaxation. PMID:25124894

  15. Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action.

    PubMed

    Rico, Andreu; Van den Brink, Paul J

    2015-08-01

    In the present study, the authors evaluated the vulnerability of aquatic invertebrates to insecticides based on their intrinsic sensitivity and their population-level recovery potential. The relative sensitivity of invertebrates to 5 different classes of insecticides was calculated at the genus, family, and order levels using the acute toxicity data available in the US Environmental Protection Agency ECOTOX database. Biological trait information was linked to the calculated relative sensitivity to evaluate correlations between traits and sensitivity and to calculate a vulnerability index, which combines intrinsic sensitivity and traits describing the recovery potential of populations partially exposed to insecticides (e.g., voltinism, flying strength, occurrence in drift). The analysis shows that the relative sensitivity of arthropods depends on the insecticide mode of action. Traits such as degree of sclerotization, size, and respiration type showed good correlation to sensitivity and can be used to make predictions for invertebrate taxa without a priori sensitivity knowledge. The vulnerability analysis revealed that some of the Ephemeroptera, Plecoptera, and Trichoptera taxa were vulnerable to all insecticide classes and indicated that particular gastropod and bivalve species were potentially vulnerable. Microcrustaceans (e.g., daphnids, copepods) showed low potential vulnerability, particularly in lentic ecosystems. The methods described in the present study can be used for the selection of focal species to be included as part of ecological scenarios and higher tier risk assessments. PMID:25854193

  16. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion.

    PubMed

    Nowotny, Janusz; Alim, Mohammad Abdul; Bak, Tadeusz; Idris, Mohammad Asri; Ionescu, Mihail; Prince, Kathryn; Sahdan, Mohd Zainizan; Sopian, Kamaruzzaman; Mat Teridi, Mohd Asri; Sigmund, Wolfgang

    2015-12-01

    This tutorial review considers defect chemistry of TiO2 and its solid solutions as well as defect-related properties associated with solar-to-chemical energy conversion, such as Fermi level, bandgap, charge transport and surface active sites. Defect disorder is discussed in terms of defect reactions and the related charge compensation. Defect equilibria are used in derivation of defect diagrams showing the effect of oxygen activity and temperature on the concentration of both ionic and electronic defects. These defect diagrams may be used for imposition of desired semiconducting properties that are needed to maximize the performance of TiO2-based photoelectrodes for the generation of solar hydrogen fuel using photo electrochemical cells (PECs) and photocatalysts for water purification. The performance of the TiO2-based semiconductors is considered in terms of the key performance-related properties (KPPs) that are defect related. It is shown that defect engineering may be applied for optimization of the KPPs in order to achieve optimum performance. PMID:26446476

  17. A 6 GW nanosecond solid-state generator based on semiconductor opening switch

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Pedos, M. S.; Rukin, S. N.; Timoshenkov, S. P.; Tsyranov, S. N.

    2015-11-01

    In this paper, a nanosecond all solid-state generator providing peak power of up to 6 GW, output voltage of 500-900 kV, pulse length (full width at half maximum) of ˜7 ns across external loads of 40-100 Ω, and pulse repetition frequency up to 1 kHz in burst operation mode is described. The output pulse is generated by a semiconductor opening switch (SOS). A new SOS pumping circuit based on a double forming line (DFL) is proposed and its implementation described. As compared with a lumped capacitors-based pumping circuit, the DFL allows minimization of the inductance and stray capacitance of the reverse pumping circuit, and thus, an increase in the SOS cutoff current amplitude and generator output peak power as a whole. The pumping circuit provides a reverse current increasing through the SOS up to 14 kA within ˜12 ns. The SOS cuts off the current in ˜2 ns; the current cutoff rate reaches 7 kA/ns. The SOS braking power (the product of peak voltage and cutoff current) for an external load above 100 Ω is 13 GW.

  18. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting.

    PubMed

    Ran, Jingrun; Zhang, Jun; Yu, Jiaguo; Jaroniec, Mietek; Qiao, Shi Zhang

    2014-11-21

    Photocatalytic water splitting represents a promising strategy for clean, low-cost, and environmental-friendly production of H2 by utilizing solar energy. There are three crucial steps for the photocatalytic water splitting reaction: solar light harvesting, charge separation and transportation, and the catalytic H2 and O2 evolution reactions. While significant achievement has been made in optimizing the first two steps in the photocatalytic process, much less efforts have been put into improving the efficiency of the third step, which demands the utilization of cocatalysts. To date, cocatalysts based on rare and expensive noble metals are still required for achieving reasonable activity in most semiconductor-based photocatalytic systems, which seriously restricts their large-scale application. Therefore, seeking cheap, earth-abundant and high-performance cocatalysts is indispensable to achieve cost-effective and highly efficient photocatalytic water splitting. This review for the first time summarizes all the developed earth-abundant cocatalysts for photocatalytic H2- and O2-production half reactions as well as overall water splitting. The roles and functional mechanism of the cocatalysts are discussed in detail. Finally, this review is concluded with a summary, and remarks on some challenges and perspectives in this emerging area of research. PMID:24429542

  19. 2-Aminopyrimidine-silver(I) based organic semiconductors: Electronic structure and optical response

    NASA Astrophysics Data System (ADS)

    Riefer, A.; Rauls, E.; Schmidt, W. G.; Eberhard, J.; Stoll, I.; Mattay, J.

    2012-04-01

    Calculations based on (occupation constrained) density functional theory using local as well as hybrid functionals to describe the electron-electron exchange and correlation are combined with many-body perturbation theory in order to determine and rationalize the electronic and optical excitation properties of 2-aminopyrimidine-silver(I) based organic semiconductors and their parent molecules. Large quasiparticle shifts and exciton binding energies of about 4 eV are found in the aminopyrimidine molecules. Both the quasiparticle blueshift and the excitonic redshift are reduced upon crystal formation. They cancel each other partially and thus allow for a meaningful description of the molecular and crystal optical response within the independent-particle approximation. We find a surprisingly strong influence of local-field effects as well as resonant-nonresonant coupling terms in the electron-hole Hamiltonian on the optical properties. The calculations reproduce well measured data and allow for identifying chemical trends with respect to the organic building blocks of the crystals.

  20. High voltage trapping effects in GaN-based metal-insulator-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Meneghesso, Gaudenzio; Meneghini, Matteo; Silvestri, Riccardo; Vanmeerbeek, Piet; Moens, Peter; Zanoni, Enrico

    2016-01-01

    This paper presents an analysis of the high voltage trapping processes that take place in high-electron mobility transistors based on GaN, with a metal-insulator-semiconductor (MIS) structure. The study is based on combined pulsed and transient measurements, carried out with trapping voltages in the range from 50 to 500 V. The results indicate that: (i) dynamic Ron is maximum for trapping voltages between 200 and 300 V, and decreases for higher voltage levels; (ii) Ron-transient measurements reveal the presence of a dominant trap with activation energy Ea1 = 0.93 eV and of a second trap with activation energy equal to Ea2 = 0.61 eV; (iii) the deep level transient spectroscopy (DLTS) signal associated to trap Ea1 is completely suppressed for high trapping voltages (VDS = 500 V). The results are interpreted by considering that the trap Ea1 is located in the buffer, and originates from CN defects. The exposure to high drain voltages may favor the depletion of such traps, due to a field-assisted de-trapping process or to the presence of vertical leakage paths.

  1. Semiconductor-based sequencing of genome-wide DNA methylation states.

    PubMed

    Corley, Michael J; Zhang, Wei; Zheng, Xin; Lum-Jones, Annette; Maunakea, Alika K

    2015-01-01

    Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we developed a MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is low cost, rapid, and scalable. We applied this protocol to demonstrate MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450 BeadChip array, and accurately identifies sites of differential DNA methylation. Furthermore, we applied an integrative approach to further investigate and confirm the role of DNA methylation in alternative splicing and to profile 5mC and 5hmC variants of DNA methylation in normal human brain tissue that is localized over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions. PMID:25602802

  2. Feature analysis and classification of manufacturing signatures based on semiconductor wafermaps

    SciTech Connect

    Tobin, K.W.; Gleason, S.S.; Karnowski, T.P.; Cohen, S.L.

    1997-02-01

    Automated tools for semiconductor wafer defect analysis are becoming more necessary as device densities and wafer sizes continue to increase. Trends towards larger wafer formats and smaller critical dimensions have caused an exponential increase in the volume of defect data which must be analyzed and stored. To accommodate these changing factors, automatic analysis tools are required that can efficiently and robustly process the increasing amounts of data, and thus quickly characterize manufacturing processes and accelerate yield learning. During the first year of this cooperative research project between SEMATECH and the Oak Ridge National Laboratory, a robust methodology for segmenting signature events prior to feature analysis and classification was developed. Based on the results of this segmentation procedure, a feature measurement strategy has been designed based on interviews with process engineers coupled with the analysis of approximately 1500 electronic wafermap files. In this paper, the authors represent an automated procedure to rank and select relevant features for use with a fuzzy pair-wise classifier and give examples of the efficacy of the approach taken. Results of the feature selection process are given for two uniquely different types of class data to demonstrate a general improvement in classifier performance.

  3. Stabilization of Ferromagnetic States by Electron Doping in ZnO-Based Diluted Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2001-03-01

    In order to investigate functionality of ZnO as a diluted magnetic semiconductor (DMS), we had studied the magnetism in ZnO doped with 3d transition metal atoms (TM) and showed that it was also a candidate for a new functional magnetic material [1]. In this paper, we develop our previous work and give detailed materials design with ZnO-based DMS based on ab initio calculations. The electronic structure of a TM-doped ZnO was calculated within the local density approximation by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation. Total energies of Zn_1-xTM^\\uparrow_xO and Zn_1-xTM^\\uparrow_x/2TM^downarrow_x/2O, where up and down arrows mean the directions of respective atomic magnetic moments, were compared and appearance of the ferromagnetism was discussed. Effects of carrier doping to these systems were also considered. It was found that their magnetic states were controllable by changing the carrier density. In particular, ferromagnetic states were stabilized by electron doping in the case of Fe, Co or Ni doped ZnO. From the point of practical applications, it is favorable feature to realize high Curie temperature ferromagnet, because n-type ZnO is easily available. [1] K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39 (2000) L555.

  4. Semiconductor lasers for space sensor applications

    NASA Technical Reports Server (NTRS)

    Katz, Joseph

    1988-01-01

    Despite their intrinsic power limitations, semiconductor laser diodes are essential for laser-based spaceborne sensor systems covering a wide spectral range, fulfilling such roles as pumping and injection-locking. They may also be used as direct sources in shorter-range operations. AlGaAs laser arrays have been developed for 810-nm band pumping in Nd:YAG lasers otherwise emitting at 1.064 nm. Additional roles include their use as low-power injection seeds, locking a solid-state laser into a specific desired wavelength.

  5. Continuously tunable Yb:KYW femtosecond oscillator based on a tunable highly dispersive semiconductor mirror.

    PubMed

    Wnuk, P; Wasylczyk, P; Zinkiewicz, Ł; Dems, M; Hejduk, K; Regiński, K; Wójcik-Jedlińska, A; Jasik, A

    2014-07-28

    The optimized nonuniform growth process was used to achieve spatially dependent reflectivity and dispersions characteristics in a highly dispersive semiconductor mirror. The mirror, together with a semiconductor saturable absorber mirror (SESAM), was used to demonstrate a tunable femtosecond Yb:KYW oscillator. In the passive modelocking regime the laser could be continuously tuned over 3.5 nm spectral band around 1032 nm with high resolution, maintaining the average output power above 140 mW. PMID:25089448

  6. Materials design of dilute magnetic semiconductors based on the control of spinodal decomposition

    NASA Astrophysics Data System (ADS)

    Sato, Kazunori

    2010-03-01

    Recently, spinodal decomposition phenomena attract much attention in the fabrication of dilute magnetic semiconductors (DMS). Many experimental results indicate that the magnetic properties of DMS are strongly affected by the occurrence of spinodal decomposition [1], thus people are now interested in controlling the magnetic properties of DMS by tuning the spinodal decomposition. In this talk, I will discuss spinodal decomposition in DMS based on the first-principles calculation. The electronic structure of DMS is calculated by using the Korringa-Kohn-Rostoker coherent potential approximation method. Based on the calculated mixing energy I will discuss phase diagrams of DMS systems and their chemical trends. By using the calculated chemical pair interactions between magnetic impurities in DMS, the self-organization of nano-structures in DMS of the nano-structures are simulated by using the Monte Carlo method. The simulation results indicate that we can control super-paramagnetic blocking temperature by optimizing the size of the nano-structures by changing the crystal growth condition [2]. Next, I will propose co-doping method to control solubility limit of magnetic impurities in DMS. From the total energy calculations, it is shown that the solubility of magnetic impurities is strongly enhanced under the existence of interstitial donors [2]. However, due to the compensation of holes by the co-dopants, the ferromagnetism is suppressed. Based on the kinetic Monte Carlo simulations, we propose low temperature annealing method to remove interstitial co-dopants for recovering the ferromagnetism. By combining the co-doping and the low temperature annealing, we can fabricate DMS with high concentration of magnetic impurities which should show high-Tc. This work is based on the collaboration with H. Fujii, L. Bergqvist, P. H. Dederichs and H. Katayama-Yoshida.[4pt] [1] A. Bonanni, Semicond. Sci. Technol. 22 (2007) R41.[0pt] [2] K. Sato et al., Rev. Mod. Phys. Phys

  7. New efficient vanishing point detection from a single road image based on intrinsic line orientation and color texture properties

    NASA Astrophysics Data System (ADS)

    Lu, Xiqun

    2012-03-01

    Detecting the vanishing point from a single road image is a challenging problem because there is very limited information in the input image that can help the computer to deduce the genuine location of vanishing point. Besides, the cluttered ambient environment in a real road image sometimes will hinder rather than assist the detection. Learning both the advantages and the limitations of current edge-based and texture-based approaches motivates us to propose a new vanishing point detection method that exploits the intrinsic geometric line structures and color texture properties of general roads. Our approach integrates the efficiency of line segments of edge-based methods, and the orientation coherence concept that is frequently applied in texture-based methods, which can be of great help to improve the accuracy of selecting the right line segments for vanishing point detection. The proposed method has been implemented and tested on over 1000 various road images. These road images exhibit large variations in color, texture, illumination condition, and ambient environment. The experimental results demonstrate that this new method is both efficient and effective in detecting vanishing point when compared to the state-of-the-art edge-based and texture-based methods.

  8. Electromagnetic metamaterial-inspired band gap and perfect transmission in semiconductor and graphene-based electronic and photonic structures

    NASA Astrophysics Data System (ADS)

    Mahdy, M. R. C.; Al Sayem, Ayed; Shahriar, Arif; Shawon, Jubayer; Al-Quaderi, Golam Dastegir; Jahangir, Ifat; Matin, M. A.

    2016-04-01

    In this article, at first we propose a unified and compact classification of single negative electromagnetic metamaterial-based perfect transmission unit cells. The classes are named as: type-A, -B and -C unit cells. Then based on the classification, we have extended these ideas in semiconductor and graphene regimes. For type-A: Based on the idea of electromagnetic Spatial Average Single Negative bandgap, novel bandgap structures have been proposed for electron transmission in semiconductor heterostructures. For type-B: with dielectric-graphene-dielectric structure, almost all angle transparency is achieved for both polarizations of electromagnetic wave in the terahertz frequency range instead of the conventional transparency in the microwave frequency range. Finally the application of the gated dielectric-graphene-dielectric has been demonstrated for the modulation and switching purpose.

  9. Intrinsic Polarization and Tunable Color of Electroluminescence from Organic Single Crystal-based Light-Emitting Devices

    PubMed Central

    Ding, Ran; Feng, Jing; Zhou, Wei; Zhang, Xu-Lin; Fang, Hong-Hua; Yang, Tong; Wang, Hai-Yu; Hotta, Shu; Sun, Hong-Bo

    2015-01-01

    A single crystal-based organic light-emitting device (OLED) with intrinsically polarized and color-tunable electroluminescence (EL) has been demonstrated without any subsequent treatment. The polarization ratio of 5:1 for the transversal-electric (TE) and transversal-magnetic (TM) polarization at the emission peak of 575 nm, and 4.7:1 for the TM to TE polarization at the emission peak of 635 nm, respectively, have been obtained. The emitting color is tunable between yellow, yellow-green and orange by changing the polarization angle. The polarized EL and the polarization-induced color tunability can be attributed to the anisotropic microcavity formed by the BP3T crystal with uniaxial alignment of the molecules. PMID:26207723

  10. Intrinsic Polarization and Tunable Color of Electroluminescence from Organic Single Crystal-based Light-Emitting Devices.

    PubMed

    Ding, Ran; Feng, Jing; Zhou, Wei; Zhang, Xu-Lin; Fang, Hong-Hua; Yang, Tong; Wang, Hai-Yu; Hotta, Shu; Sun, Hong-Bo

    2015-01-01

    A single crystal-based organic light-emitting device (OLED) with intrinsically polarized and color-tunable electroluminescence (EL) has been demonstrated without any subsequent treatment. The polarization ratio of 5:1 for the transversal-electric (TE) and transversal-magnetic (TM) polarization at the emission peak of 575 nm, and 4.7:1 for the TM to TE polarization at the emission peak of 635 nm, respectively, have been obtained. The emitting color is tunable between yellow, yellow-green and orange by changing the polarization angle. The polarized EL and the polarization-induced color tunability can be attributed to the anisotropic microcavity formed by the BP3T crystal with uniaxial alignment of the molecules. PMID:26207723

  11. Multi-immunosensors based on electrolite-insulator-semiconductor structures for determination of some herbicides

    NASA Astrophysics Data System (ADS)

    Starodub, Nickolaj F.; Starodub, Valentyna M.; Krivenchuk, Vladimir E.; Shapovalenko, Valentyna F.

    2002-02-01

    New type of the multi-immune sensor was elaborated. It is based on electrolyte-insulator-semiconductors structures and intended for determination of such herbicides as simazine, atrazine and 2,4-D. The specific antibodies were immobilized on nitrocellulose disks, which were placed in measuring cells. The analysis was fulfilled by sequential saturation of antibodies, left unbound after their exposure to native herbicide in investigated sample, with labelled herbicide. If horse radish peroxidase (HRP) was used as label the sensitivity of this multi-immune sensor was about 5 and 1.25 (mu) g/L for simazine and 2,4-D, respectively. At the changing of HRP by (beta) -glucose oxidase the sensitivity of analysis of these herbicides increased approximately in 5 times. The linear plots of the registered concentrations were in the range of 1,0-150,0 and 0,25-150,0 ng/mL for simazine and 2,4-D respectively. It was recommended to use the developed immune sensor for wide screening of herbicides in environment. The ways for increasing of its sensitivity were proposed.

  12. Photocapacitive light sensor based on metal-YMnO3-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Bogusz, A.; Choudhary, O. S.; Skorupa, I.; Bürger, D.; Lawerenz, A.; Lei, Y.; Zeng, H.; Abendroth, B.; Stöcker, H.; Schmidt, O. G.; Schmidt, H.

    2016-02-01

    Technology of light sensors, due to the wide range of applications, is a dynamically developing branch of both science and industry. This work presents concept of photodetectors based on a metal-ferroelectric-insulator-semiconductor, a structure which has not been thoroughly explored in the field of photodetectors. Functionality of the presented light sensor exploits the effects of photocapacitive phenomena, ferroelectric polarization, and charge trapping. This is accomplished by an interplay between polarization alignment, subsequent charge distribution, and charge trapping processes under given illumination condition and gate voltage. Change of capacitance serves as a read out parameter indicating the wavelength and intensity of the illuminating light. The operational principle of the proposed photocapacitive light sensor is demonstrated in terms of capacitance-voltage and capacitance-time characteristics of an Al/YMnO3/SiNx/p-Si structure exposed to green, red, and near infrared light. Obtained results are discussed in terms of optical properties of YMnO3 and SiNx layers contributing to the performance of photodetectors. Presented concept of light sensing might serve as the basis for the development of more advanced photodetectors.

  13. All-solid-state repetitive semiconductor opening switch-based short pulse generator

    NASA Astrophysics Data System (ADS)

    Ding, Zhenjie; Hao, Qingsong; Hu, Long; Su, Jiancang; Liu, Guozhi

    2009-09-01

    The operating characteristics of a semiconductor opening switch (SOS) are determined by its pumping circuit parameters. SOS is still able to cut off the current when pumping current duration falls to the order of tens of nanoseconds and a short pulse forms simultaneously in the output load. An all-solid-state repetitive SOS-based short pulse generator (SPG100) with a three-level magnetic pulse compression unit was successfully constructed. The generator adopts magnetic pulse compression unit with metallic glass and ferrite cores, which compresses a 600 V, 10 μs primary pulse into short pulse with forward pumping current of 825 A, 60 ns and reverse pumping current of 1.3 kA, 30 ns. The current is sent to SOS in which the reverse pumping current is interrupted. The generator is capable of providing a pulse with the voltage of 120 kV and duration of 5-6 ns while output load being 125 Ω. The highest repetition rate is up to 1 kHz.

  14. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    PubMed

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation. PMID:27168177

  15. Vibronic properties of organic semiconductors based on phthalocyanine complexes with asymmetrically distributed electron density

    SciTech Connect

    Belogorokhov, I. A.; Martishov, M. N.; Mamichev, D. A.; Dronov, M. A.; Pushkarev, V. E.; Ryabchikov, Yu. V.; Forsh, P. A.; Tomilova, L. G.; Khokhlov, D. R.

    2010-06-15

    This study is concerned with the optical properties of organic semiconductors based on lanthanide (III) biphthalocyanine and triphthalocyanine complexes with asymmetrically distributed electron density. The {sup Cl}PcLu{sup tBu}Pc biphthalocyanine and {sup Cl}PcEu{sup Bu}PcLu{sup Bu}Pc triphthalocyanine solid films ({sup Cl}Pc = 2, 3, 9, 10, 16, 17, 23, 24-octachlorophthalocyaninate, {sup tBu}Pc = 2(3), 9(10), 16(17), 23(24)-tetra- tretbutylphthalocyani-nate, {sup Bu}Pc = 2, 3, 9, 10, 16, 17, 23, 24-octabutylphthalo cyaninate) are fabricated, and their transmittance spectra in the middle infrared region are studied. Analysis of the transmittance spectra shows that the addition of complexity to phthalocyanine molecules yields some changes in the spectra. Specifically, the isoindole group can exhibit vibronic properties in the form of four absorption lines in the range 1400-1450 cm{sup -1}. New absorption lines that may be due to chlorine-carbon bonds are observed in the far-infrared region.

  16. Varied pore organization in mesostructured semiconductors based on the [SnSe4](4-) anion.

    PubMed

    Trikalitis, P N; Rangan, K K; Bakas, T; Kanatzidis, M G

    2001-04-01

    Open framework metal chalcogenide solids, with pore sizes in the nano- and mesoscale, are of potentially broad technological and fundamental interest in research areas ranging from optoelectronics to the physics of quantum confinement. Although there have been significant advances in the design and synthesis of mesostructured silicas, the construction of their non-oxidic analogues still remains a challenge. Here we describe a synthetic strategy that allows the preparation of a large class of mesoporous materials based on supramolecular assembly of tetrahedral Zintl anions [SnSe4]4- with transition metals in the presence of cetylpyridinium (CP) surfactant molecules. These mesostructured semiconducting selenide materials are of the general formulae (CP)4-2xMxSnSe4 (where 1.0 < x < 1.3; M=Mn, Fe, Co, Zn, Cd, Hg). The resulting materials are open framework chalcogenides and form mesophases with uniform pore size (with spacings between 35 and 40 A). The pore arrangement depends on the synthetic conditions and metal used, and include disordered wormhole, hexagonal and even cubic phases. All compounds are medium bandgap semiconductors (varying between 1.4 and 2.5 eV). We expect that such semiconducting porous networks could be used for optoelectronic, photosynthetic and photocatalytic applications. PMID:11287949

  17. PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS

    SciTech Connect

    J. RUBIN; L. SIVILS; A. BUSNAINA

    1999-07-01

    The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

  18. Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes

    NASA Astrophysics Data System (ADS)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal–semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  19. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    PubMed Central

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-01-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis. PMID:27404510

  20. All-solid-state repetitive semiconductor opening switch-based short pulse generator.

    PubMed

    Ding, Zhenjie; Hao, Qingsong; Hu, Long; Su, Jiancang; Liu, Guozhi

    2009-09-01

    The operating characteristics of a semiconductor opening switch (SOS) are determined by its pumping circuit parameters. SOS is still able to cut off the current when pumping current duration falls to the order of tens of nanoseconds and a short pulse forms simultaneously in the output load. An all-solid-state repetitive SOS-based short pulse generator (SPG100) with a three-level magnetic pulse compression unit was successfully constructed. The generator adopts magnetic pulse compression unit with metallic glass and ferrite cores, which compresses a 600 V, 10 mus primary pulse into short pulse with forward pumping current of 825 A, 60 ns and reverse pumping current of 1.3 kA, 30 ns. The current is sent to SOS in which the reverse pumping current is interrupted. The generator is capable of providing a pulse with the voltage of 120 kV and duration of 5-6 ns while output load being 125 Omega. The highest repetition rate is up to 1 kHz. PMID:19791935

  1. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting.

    PubMed

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-01-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis. PMID:27404510

  2. Experimental characterization of a metal-oxide-semiconductor field-effect transistor-based Coulter counter.

    PubMed

    Sridhar, Manoj; Xu, Dongyan; Kang, Yuejun; Hmelo, Anthony B; Feldman, Leonard C; Li, Dongqing; Li, Deyu

    2008-05-15

    We report the detailed characterization of an ultrasensitive microfluidic device used to detect the translocation of small particles through a sensing microchannel. The device connects a fluidic circuit to the gate of a metal-oxide-semiconductor field-effect transistor (MOSFET) and detects particles by monitoring the MOSFET drain current modulation instead of the modulation in the ionic current through the sensing channel. The minimum volume ratio of the particle to the sensing channel detected is 0.006%, which is about ten times smaller than the lowest detected volume ratio previously reported in the literature. This volume ratio is detected at a noise level of about 0.6% of the baseline MOSFET drain current, clearly showing the amplification effects from the fluidic circuits and the MOSFETs. We characterize the device sensitivity as a function of the MOSFET gate potential and show that its sensitivity is higher when the MOSFET is operating below its threshold gate voltage than when it is operating above the threshold voltage. In addition, we demonstrate that the device sensitivity linearly increases with the applied electrical bias across the fluidic circuit. Finally, we show that polystyrene beads and glass beads with similar sizes can be distinguished from each other based on their different translocation times, and the size distribution of microbeads can be obtained with accuracy comparable to that of direct scanning electron microscopy measurements. PMID:19479001

  3. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver R.; Seidler, Gerald T.

    2015-08-01

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2-6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ˜20% quantum efficiency at 2.6 keV with ˜190 eV resolution and a 100 kHz maximum detection rate. The detector platform's useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  4. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers.

    PubMed

    Hoidn, Oliver R; Seidler, Gerald T

    2015-08-01

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2-6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform's useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry. PMID:26329247

  5. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    SciTech Connect

    Hoidn, Oliver R.; Seidler, Gerald T.

    2015-08-15

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  6. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    PubMed

    Bertolini, Francesca; Ghionda, Marco Ciro; D'Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures. PMID:25923709

  7. A Next Generation Semiconductor Based Sequencing Approach for the Identification of Meat Species in DNA Mixtures

    PubMed Central

    Bertolini, Francesca; Ghionda, Marco Ciro; D’Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures. PMID:25923709

  8. Intrinsic Functional Connectivity of Amygdala-Based Networks in Adolescent Generalized Anxiety Disorder

    ERIC Educational Resources Information Center

    Roy, Amy K.; Fudge, Julie L.; Kelly, Clare; Perry, Justin S. A.; Daniele, Teresa; Carlisi, Christina; Benson, Brenda; Castellanos, F. Xavier; Milham, Michael P.; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Generalized anxiety disorder (GAD) typically begins during adolescence and can persist into adulthood. The pathophysiological mechanisms underlying this disorder remain unclear. Recent evidence from resting state functional magnetic resonance imaging (R-fMRI) studies in adults suggests disruptions in amygdala-based circuitry; the…

  9. SIMULATION OF INTRINSIC BIOREMEDIATION PROCESSES AT WURTSMITH AIR FORCE BASE, MICHIGAN

    EPA Science Inventory

    In October, 1988, a KC-135 aircraft crashed at Wurtsmith Air Force base (AFB), Oscoda, Michigan during an attempted landing. Approximately 3000 gallons of jet fuel (JP-4) were spilled onto the ground, with a large portion of the fuel entering the subsurface. Previous investigat...

  10. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators.

    PubMed

    Shintake, Jun; Rosset, Samuel; Schubert, Bryan; Floreano, Dario; Shea, Herbert

    2016-01-13

    A highly versatile soft gripper that can handle an unprecedented range of object types is developed based on a new design of dielectric elastomer actuators employing an interdigitated electrode geometry, simultaneously maximizing both electroadhesion and electrostatic actuation while incorporating self-sensing. The multifunctionality of the actuator leads to a highly integrated, lightweight, fast, soft gripper with simplified structure and control. PMID:26551665

  11. Magneto-optical properties of semiconductor-based superlattices having GaAs with MnAs nanoclusters

    NASA Astrophysics Data System (ADS)

    Shimizu, H.; Tanaka, M.

    2001-06-01

    We have fabricated semiconductor-based magnetic superlattices (SLs) containing GaAs:MnAs granular material in which MnAs nanoclusters are embedded in GaAs, and have characterized their structural, optical, and magneto-optical properties. SLs consisting of GaAs:MnAs and AlAs are shown to have good crystalline quality and excellent compatibility with nonmagnetic GaAs/AlAs heterostructures. The optical transmission properties were improved in the SLs, while keeping the strong magneto-optical properties of GaAs:MnAs. We used these magnetic SLs in a semiconductor-based magnetic microcavity as the central magnetic layer, and its optical transmission was found to have improved compared with our previous multilayer structures.

  12. Rhombohedral cubic semiconductor materials on trigonal substrate with single crystal properties and devices based on such materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.

  13. Temperature Dependence of Density, Viscosity and Electrical Conductivity for Hg-Based II-VI Semiconductor Melts

    NASA Technical Reports Server (NTRS)

    Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.

  14. Magneto-optical properties of semiconductor-based superlattices having GaAs with MnAs nanoclusters

    SciTech Connect

    Shimizu, H.; Tanaka, M.

    2001-06-01

    We have fabricated semiconductor-based magnetic superlattices (SLs) containing GaAs:MnAs granular material in which MnAs nanoclusters are embedded in GaAs, and have characterized their structural, optical, and magneto-optical properties. SLs consisting of GaAs:MnAs and AlAs are shown to have good crystalline quality and excellent compatibility with nonmagnetic GaAs/AlAs heterostructures. The optical transmission properties were improved in the SLs, while keeping the strong magneto-optical properties of GaAs:MnAs. We used these magnetic SLs in a semiconductor-based magnetic microcavity as the central magnetic layer, and its optical transmission was found to have improved compared with our previous multilayer structures. {copyright} 2001 American Institute of Physics.

  15. Recent advances in the development of yellow-orange GaInNAs-based semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Leinonen, T.; Korpijärvi, V.-M.; Härkönen, A.; Guina, M.

    2012-03-01

    We review recent results concerning the development of dilute nitride based semiconductor disk lasers. We have demonstrated over 7.4 W of output power at the second harmonic wavelength (around 590 nm) using a β-BBO crystal. Over 10 W has been demonstrated at ~1.2 μm, and multi-watt output power has been achieved at 589 nm with narrow linewidth (δν < 20 MHz).

  16. Features of the spectral dependences of transmittance of organic semiconductors based on tert-butyl substituted lutetium phthalocyanine molecules

    SciTech Connect

    Belogorokhov, I. A.; Tikhonov, E. V.; Dronov, M. A.; Belogorokhova, L. I.; Ryabchikov, Yu. V.; Tomilova, L. G.; Khokhlov, D. R.

    2011-11-15

    Vibronic properties of organic semiconductors based on tert-butyl substituted phthalocyanine lutetium diphthalocyanine molecules are studied by IR and Raman spectroscopy. It is shown that substitution of several carbon atoms in initial phthalocyanine (Pc) ligands with {sup 13}C isotope atoms causes a spectral shift in the main absorption lines attributed to benzene, isoindol, and peripheral C-H groups. A comparison of spectral characteristics showed that the shift can vary from 3 to 1 cm{sup -1}.

  17. Semiconductor adsorption sensors based on nanosized Pt/SnO2 materials and their sensitivity to methane

    NASA Astrophysics Data System (ADS)

    Fedorenko, G. V.; Oleksenko, L. P.; Maksymovych, N. P.; Matushko, I. P.

    2015-12-01

    The effect of platinum additives on the sensitivity of sensors based on nanosized tin oxide to methane is investigated. It is shown that addition of Pt increases a sensor's sensitivity to CH4. It is found that the dependences of electrical resistance and sensor sensitivity on the concentration of the impregnating solutions of H2[PtCl6] are extremal, which is explained from the point of view of heterogeneous catalysis concepts of the functioning of semiconductor adsorption sensors.

  18. B-DNA structure is intrinsically polymorphic: even at the level of base pair positions

    SciTech Connect

    Maehigashi, Tatsuya; Hsiao, Chiaolong; Woods, Kristen Kruger; Moulaei, Tinoush; Hud, Nicholas V.; Williams, Loren Dean

    2012-10-23

    Increasingly exact measurement of single crystal X-ray diffraction data offers detailed characterization of DNA conformation, hydration and electrostatics. However, instead of providing a more clear and unambiguous image of DNA, highly accurate diffraction data reveal polymorphism of the DNA atomic positions and conformation and hydration. Here we describe an accurate X-ray structure of B-DNA, painstakingly fit to a multistate model that contains multiple competing positions of most of the backbone and of entire base pairs. Two of ten base-pairs of CCAGGCCTGG are in multiple states distinguished primarily by differences in slide. Similarly, all the surrounding ions are seen to fractionally occupy discrete competing and overlapping sites. And finally, the vast majority of water molecules show strong evidence of multiple competing sites. Conventional resolution appears to give a false sense of homogeneity in conformation and interactions of DNA. In addition, conventional resolution yields an average structure that is not accurate, in that it is different from any of the multiple discrete structures observed at high resolution. Because base pair positional heterogeneity has not always been incorporated into model-building, even some high and ultrahigh-resolution structures of DNA do not indicate the full extent of conformational polymorphism.

  19. The Relational-Behavior Model: The Relationship between Intrinsic Motivational Instruction and Extrinsic Motivation in Psychologically Based Instruction

    ERIC Educational Resources Information Center

    Chandler, Donald S., Jr.

    2008-01-01

    This pilot study examined the relational-behavior model (RBM) as a method of intrinsic motivational instruction in psychology courses. Among a sample of 33 college students enrolled in two undergraduate psychology courses, a Spearman rho analysis revealed a significant relationship between the intrinsic motivational factors (e.g. student/class…

  20. Intrinsic n

    SciTech Connect

    Zhang, S. B.; Wei, S.-H.; Zunger, Alex

    2001-02-15

    ZnO typifies a class of materials that can be doped via native defects in only one way: either n type or p type. We explain this asymmetry in ZnO via a study of its intrinsic defect physics, including Zn{sub O}, Zn{sub i}, V{sub O}, O{sub i}, and V{sub Zn} and n-type impurity dopants, Al and F. We find that ZnO is n type at Zn-rich conditions. This is because (i) the Zn interstitial, Zn{sub i}, is a shallow donor, supplying electrons; (ii) its formation enthalpy is low for both Zn-rich and O-rich conditions, so this defect is abundant; and (iii) the native defects that could compensate the n-type doping effect of Zn{sub i} (interstitial O, O{sub i}, and Zn vacancy, V{sub Zn}), have high formation enthalpies for Zn-rich conditions, so these ''electron killers'' are not abundant. We find that ZnO cannot be doped p type via native defects (O{sub i},V{sub Zn}) despite the fact that they are shallow (i.e., supplying holes at room temperature). This is because at both Zn-rich and O-rich conditions, the defects that could compensate p-type doping (V{sub O},Zn{sub i},Zn{sub O}) have low formation enthalpies so these ''hole killers'' form readily. Furthermore, we identify electron-hole radiative recombination at the V{sub O} center as the source of the green luminescence. In contrast, a large structural relaxation of the same center upon double hole capture leads to slow electron-hole recombination (either radiative or nonradiative) responsible for the slow decay of photoconductivity.

  1. Intrinsic frequency doubling in an MgO-based spin torque oscillator.

    SciTech Connect

    Muduli, P. K.; Heinonen, O. G.; Akerman, J.

    2011-01-01

    We show that the frequency of a magnetic tunnel junction (MTJ)-based spin torque oscillator (STO) can be doubled and the first harmonic entirely suppressed by orienting the free and fixed layer magnetizations in an antiparallel (AP) state. The angular dependence of the harmonics allows us to extract the free layer precession angle, which follows a parabolic decrease from a maximum of 20{sup o} in the AP state to about 10{sup o} at 25{sup o} of misalignment. Frequency-doubling provides both a promising way for increasing the frequency of MTJ-STOs and a means for high-rate frequency shift keying using only a small magnetic field.

  2. Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering

    PubMed Central

    2014-01-01

    Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030

  3. Fermion unification model based on the intrinsic SU(8) symmetry of a generalized Dirac equation

    NASA Astrophysics Data System (ADS)

    Marsch, Eckart; Narita, Yasuhito

    2015-10-01

    A natural generalization of the original Dirac spinor into a multi-component spinor is achieved, which corresponds to the single lepton and the three quarks of the first family of the standard model of elementary particle physics. Different fermions result from similarity transformations of the Dirac equation, but apparently there can be no more fermions according to the maximal multiplicity revealed in this study. Rotations in the fermion state space are achieved by the unitary generators of the U(1) and the SU(3) groups, corresponding to quantum electrodynamics (QED based on electric charge) and chromodynamics (QCD based on colour charge). In addition to hypercharge the dual degree of freedom of hyperspin emerges, which occurs due to the duplicity implied by the two related (Weyl and Dirac) representations of the Dirac equation. This yields the SU(2) symmetry of the weak interaction, which can be married to U(1) to generate the unified electroweak interaction as in the standard model. Therefore, the symmetry group encompassing all the three groups mentioned above is SU(8), which can accommodate and unify the observed eight basic stable fermions.

  4. Intrinsic Motivation and Engagement as "Active Ingredients" in Garden-Based Education: Examining Models and Measures Derived from Self-Determination Theory

    ERIC Educational Resources Information Center

    Skinner, Ellen A.; Chi, Una

    2012-01-01

    Building on self-determination theory, this study presents a model of intrinsic motivation and engagement as "active ingredients" in garden-based education. The model was used to create reliable and valid measures of key constructs, and to guide the empirical exploration of motivational processes in garden-based learning. Teacher- and…

  5. Study of self-compliance behaviors and internal filament characteristics in intrinsic SiOx-based resistive switching memory

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Zhou, Fei; Chen, Ying-Chen; Lee, Jack C.

    2016-01-01

    Self-compliance characteristics and reliability optimization are investigated in intrinsic unipolar silicon oxide (SiOx)-based resistive switching (RS) memory using TiW/SiOx/TiW device structures. The program window (difference between SET voltage and RESET voltage) is dependent on external series resistance, demonstrating that the SET process is due to a voltage-triggered mechanism. The program window has been optimized for program/erase disturbance immunity and reliability for circuit-level applications. The SET and RESET transitions have also been characterized using a dynamic conductivity method, which distinguishes the self-compliance behavior due to an internal series resistance effect (filament) in SiOx-based RS memory. By using a conceptual "filament/resistive gap (GAP)" model of the conductive filament and a proton exchange model with appropriate assumptions, the internal filament resistance and GAP resistance can be estimated for high- and low-resistance states (HRS and LRS), and are found to be independent of external series resistance. Our experimental results not only provide insights into potential reliability issues but also help to clarify the switching mechanisms and device operating characteristics of SiOx-based RS memory.

  6. Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization

    PubMed Central

    Baumann, Bernhard; Baumann, Stefan O.; Konegger, Thomas; Pircher, Michael; Götzinger, Erich; Schlanitz, Ferdinand; Schütze, Christopher; Sattmann, Harald; Litschauer, Marco; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K.

    2012-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT. In addition to imaging based on tissue reflectivity, PS-OCT also enables depth-resolved mapping of sample polarization properties such as phase-retardation, birefringent axis orientation, Stokes vectors, and degree of polarization uniformity (DOPU). In this study, PS-OCT was used to investigate the polarization properties of melanin. In-vitro measurements in samples with varying melanin concentrations revealed polarization scrambling, i.e. depolarization of backscattered light. Polarization scrambling in the PS-OCT images was more pronounced for higher melanin concentrations and correlated with the concentration of the melanin granules in the phantoms. Moreover, in-vivo PS-OCT was performed in the retinas of normal subjects and individuals with albinism. Unlike in the normal eye, polarization scrambling in the retinal pigment epithelium (RPE) was less pronounced or even not observable in PS-OCT images of albinos. These results indicate that the depolarizing appearance of pigmented structures like, for instance, the RPE is likely to be caused by the melanin granules contained in these cells. PMID:22808437

  7. Raman scattering in organic semiconductors based on erbium biphthalocyanine molecules and chlorine-containing europium-lutetium triphthalocyanine molecules

    SciTech Connect

    Belogorokhov, I. A.; Mamichev, D. A.; Dronov, M. A.; Pushkarev, V. E.; Tomilova, L. G.; Khokhlov, D. R.

    2010-08-15

    The Raman spectra of semiconductor structures based on erbium biphthalocyanine molecules and chlorine-substituted europium-lutetium triphthalocyanine molecules are studied on excitation with Ar{sup +} laser radiation at the wavelength 514 nm. The data on the spectral position of Raman intensity peaks related to vibronic states of the basic molecular groups forming the semiconductor are obtained. Raman lines irrelevant to the known vibronic states of the basic phthalocyanine molecular groups are observed in the ranges 100-500 and 500-900 cm{sup -1}. It is shown that, in the spectra of triphthalocyanine, some lines are structurally complex and shifted with respect to the characteristic lines of molecular groups by several inverse centimeters.

  8. Development of A Semiconductor Laser Based High Temperature Fine Thermal Energy Source in an Optical Fiber Tip for Clinical Applications

    NASA Astrophysics Data System (ADS)

    Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Yamaguchi, Shigeru

    2013-05-01

    A new technique for generating high temperatures on the surface of an optical fiber is developed for medical applications using lower-power semiconductor lasers with output powers lower than 10 W. Using a power level of 4-6 W semiconductor laser with a pulse duration of 180 ms at a wavelength of 980 nm, a laser-coupled fiber tip was once processed to contain a certain amount of Ti with a depth of 100 µm from the tip surface so that the laser energy could be efficiently absorbed to be transferred to thermal energy. With consecutive laser pulse irradiation, the tip processed fiber (TP fiber) served as a reproducible fine heat source whose temperature was measured to be in excess 3100 K based on two-color thermometry. Processing of ceramic and niobium plate, which are hardly ablated with direct low power (6 W) irradiation, was successfully demonstrated by contacting the TP fiber excited with the same power.

  9. The physical origin of dispersion in accumulation in InGaAs based metal oxide semiconductor gate stacks

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-05-01

    Dispersion in accumulation is a widely observed phenomenon in technologically important InGaAs gate stacks. Two principal different interface defects were proposed as the physical origin of this phenomenon—disorder induced gap states and border traps. While the gap states are located at the semiconductor side of the interface, the border traps are related to the dielectric side. The study of Al2O3, HfO2, and an intermediate composition of HfxAlyO deposited on InGaAs enabled us to find a correlation between the dispersion and the dielectric/InGaAs band offset. At the same time, no change in the dispersion was observed after applying an effective pre-deposition treatment which results in significant reduction of the interface states. Both observations prove that border traps are the physical origin of the dispersion in accumulation in InGaAs based metal-oxide-semiconductor gate stacks.

  10. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors.

    PubMed

    Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min

    2014-10-20

    In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication. PMID:25607316

  11. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization

    PubMed Central

    2014-01-01

    Background Fractal geometry has been the basis for the development of a diagnosis of preneoplastic and neoplastic cells that clears up the undetermination of the atypical squamous cells of undetermined significance (ASCUS). Methods Pictures of 40 cervix cytology samples diagnosed with conventional parameters were taken. A blind study was developed in which the clinic diagnosis of 10 normal cells, 10 ASCUS, 10 L-SIL and 10 H-SIL was masked. Cellular nucleus and cytoplasm were evaluated in the generalized Box-Counting space, calculating the fractal dimension and number of spaces occupied by the frontier of each object. Further, number of pixels occupied by surface of each object was calculated. Later, the mathematical features of the measures were studied to establish differences or equalities useful for diagnostic application. Finally, the sensibility, specificity, negative likelihood ratio and diagnostic concordance with Kappa coefficient were calculated. Results Simultaneous measures of the nuclear surface and the subtraction between the boundaries of cytoplasm and nucleus, lead to differentiate normality, L-SIL and H-SIL. Normality shows values less than or equal to 735 in nucleus surface and values greater or equal to 161 in cytoplasm-nucleus subtraction. L-SIL cells exhibit a nucleus surface with values greater than or equal to 972 and a subtraction between nucleus-cytoplasm higher to 130. L-SIL cells show cytoplasm-nucleus values less than 120. The rank between 120–130 in cytoplasm-nucleus subtraction corresponds to evolution between L-SIL and H-SIL. Sensibility and specificity values were 100%, the negative likelihood ratio was zero and Kappa coefficient was equal to 1. Conclusions A new diagnostic methodology of clinic applicability was developed based on fractal and euclidean geometry, which is useful for evaluation of cervix cytology. PMID:24742118

  12. Coherent tools for physics-based simulation and characterization of noise in semiconductor devices oriented to nonlinear microwave circuit CAD

    NASA Astrophysics Data System (ADS)

    Riah, Zoheir; Sommet, Raphael; Nallatamby, Jean C.; Prigent, Michel; Obregon, Juan

    2004-05-01

    We present in this paper a set of coherent tools for noise characterization and physics-based analysis of noise in semiconductor devices. This noise toolbox relies on a low frequency noise measurement setup with special high current capabilities thanks to an accurate and original calibration. It relies also on a simulation tool based on the drift diffusion equations and the linear perturbation theory, associated with the Green's function technique. This physics-based noise simulator has been implemented successfully in the Scilab environment and is specifically dedicated to HBTs. Some results are given and compared to those existing in the literature.

  13. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability.

    PubMed

    Bandodkar, Amay J; Jeerapan, Itthipon; You, Jung-Min; Nuñez-Flores, Rogelio; Wang, Joseph

    2016-01-13

    We present the first example of an all-printed, inexpensive, highly stretchable CNT-based electrochemical sensor and biofuel cell array. The synergistic effect of utilizing specially tailored screen printable stretchable inks that combine the attractive electrical and mechanical properties of CNTs with the elastomeric properties of polyurethane as a binder along with a judiciously designed free-standing serpentine pattern enables the printed device to possess two degrees of stretchability. Owing to these synergistic design and nanomaterial-based ink effects, the device withstands extremely large levels of strains (up to 500% strain) with negligible effect on its structural integrity and performance. This represents the highest stretchability offered by a printed device reported to date. Extensive electrochemical characterization of the printed device reveal that repeated stretching, torsional twisting, and indenting stress has negligible impact on its electrochemical properties. The wide-range applicability of this platform to realize highly stretchable CNT-based electrochemical sensors and biofuel cells has been demonstrated by fabricating and characterizing potentiometric ammonium sensor, amperometric enzyme-based glucose sensor, enzymatic glucose biofuel cell, and self-powered biosensor. Highly stretchable printable multianalyte sensor, multifuel biofuel cell, or any combination thereof can thus be realized using the printed CNT array. Such combination of intrinsically stretchable printed nanomaterial-based electrodes and strain-enduring design patterns holds considerable promise for creating an attractive class of inexpensive multifunctional, highly stretchable printed devices that satisfy the requirements of diverse healthcare and energy fields wherein resilience toward extreme mechanical deformations is mandatory. PMID:26694819

  14. Electric Conduction in Semiconductors: A Pedagogical Model Based on the Monte Carlo Method

    ERIC Educational Resources Information Center

    Capizzo, M. C.; Sperandeo-Mineo, R. M.; Zarcone, M.

    2008-01-01

    We present a pedagogic approach aimed at modelling electric conduction in semiconductors in order to describe and explain some macroscopic properties, such as the characteristic behaviour of resistance as a function of temperature. A simple model of the band structure is adopted for the generation of electron-hole pairs as well as for the carrier…

  15. A lysinated thiophene-based semiconductor as a multifunctional neural bioorganic interface.

    PubMed

    Bonetti, Simone; Pistone, Assunta; Brucale, Marco; Karges, Saskia; Favaretto, Laura; Zambianchi, Massimo; Posati, Tamara; Sagnella, Anna; Caprini, Marco; Toffanin, Stefano; Zamboni, Roberto; Camaioni, Nadia; Muccini, Michele; Melucci, Manuela; Benfenati, Valentina

    2015-06-01

    Lysinated molecular organic semiconductors are introduced as valuable multifunctional platforms for neural cells growth and interfacing. Cast films of quaterthiophene (T4) semiconductor covalently modified with lysine-end moieties (T4Lys) are fabricated and their stability, morphology, optical/electrical, and biocompatibility properties are characterized. T4Lys films exhibit fluorescence and electronic transport as generally observed for unsubstituted oligothiophenes combined to humidity-activated ionic conduction promoted by the charged lysine-end moieties. The Lys insertion in T4 enables adhesion of primary culture of rat dorsal root ganglion (DRG), which is not achievable by plating cells on T4. Notably, on T4Lys, the number on adhering neurons/area is higher and displays a twofold longer neurite length than neurons plated on glass coated with poly-l-lysine. Finally, by whole-cell patch-clamp, it is shown that the biofunctionality of neurons cultured on T4Lys is preserved. The present study introduces an innovative concept for organic material neural interface that combines optical and iono-electronic functionalities with improved biocompatibility and neuron affinity promoted by Lys linkage and the softness of organic semiconductors. Lysinated organic semiconductors could set the scene for the fabrication of simplified bioorganic devices geometry for cells bidirectional communication or optoelectronic control of neural cells biofunctionality. PMID:25721438

  16. Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Lin, Tianran; Zhong, Liangshuang; Guo, Liangqia; Fu, Fengfu; Chen, Guonan

    2014-09-01

    Molybdenum disulfide (MoS2) has attracted increasing research interest recently due to its unique physical, optical and electrical properties, correlated with its 2D ultrathin atomic-layered structure. Until now, however, great efforts have focused on its applications such as lithium ion batteries, transistors, and hydrogen evolution reactions. Herein, for the first time, MoS2 nanosheets are discovered to possess an intrinsic peroxidase-like activity and can catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce a color reaction. The catalytic activity follows the typical Michaelis-Menten kinetics and is dependent on temperature, pH, H2O2 concentration, and reaction time. Based on this finding, a highly sensitive and selective colorimetric method for H2O2 and glucose detection is developed and applied to detect glucose in serum samples. Moreover, a simple, inexpensive, instrument-free and portable test kit for the visual detection of glucose in normal and diabetic serum samples is constructed by utilizing agarose hydrogel as a visual detection platform.Molybdenum disulfide (MoS2) has attracted increasing research interest recently due to its unique physical, optical and electrical properties, correlated with its 2D ultrathin atomic-layered structure. Until now, however, great efforts have focused on its applications such as lithium ion batteries, transistors, and hydrogen evolution reactions. Herein, for the first time, MoS2 nanosheets are discovered to possess an intrinsic peroxidase-like activity and can catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce a color reaction. The catalytic activity follows the typical Michaelis-Menten kinetics and is dependent on temperature, pH, H2O2 concentration, and reaction time. Based on this finding, a highly sensitive and selective colorimetric method for H2O2 and glucose detection is developed and applied to detect glucose in serum samples. Moreover, a simple, inexpensive

  17. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.

    PubMed

    Imtiaz, Qasim; Kurlov, Alexey; Rupp, Jennifer Lilia Marguerite; Müller, Christoph Rüdiger

    2015-06-22

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging thermochemical CO2 capture cycles that allow the capture of CO2 with a small energy penalty. Here, the development of suitable oxygen carrier materials is a key aspect to transfer these promising concepts to practical installations. CuO is an attractive material for CLC and CLOU because of its high oxygen-storage capacity (20 wt %), fast reaction kinetics, and high equilibrium partial pressure of oxygen at typical operating temperatures (850-1000 °C). However, despite its promising characteristics, its low Tammann temperature requires the development of new strategies to phase-stabilize CuO-based oxygen carriers. In this work, we report a strategy based on stabilization by co-precipitated ceria (CeO2-x ), which allowed us to increase the oxygen capacity, coke resistance, and redox stability of CuO-based oxygen carriers substantially. The performance of the new oxygen carriers was evaluated in detail and compared to the current state-of-the-art materials, that is, Al2 O3 -stabilized CuO with similar CuO loadings. We also demonstrate that the higher intrinsic oxygen uptake, release, and mobility in CeO2-x -stabilized CuO leads to a three times higher carbon deposition resistance compared to that of Al2 O3 -stabilized CuO. Moreover, we report a high cyclic stability without phase intermixing for CeO2-x -supported CuO. This was accompanied by a lower reduction temperature compared to state-of-the-art Al2 O3 -supported CuO. As a result of its high resistance towards carbon deposition and fast oxygen uncoupling kinetics, CeO2-x -stabilized CuO is identified as a very promising material for CLC- and CLOU-based CO2 capture architectures. PMID:25916240

  18. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Chen, Yaohui; Ohman, Filip; Mørk, Jesper

    2009-02-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We demonstrate approximately 120 degrees phase delay as well as approximately 170 degrees phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based on an analytical perturbative approach is presented. PMID:19188968

  19. A New Polymer Nanoprobe Based on Chemiluminescence Resonance Energy Transfer for Ultrasensitive Imaging of Intrinsic Superoxide Anion in Mice.

    PubMed

    Li, Ping; Liu, Lu; Xiao, Haibin; Zhang, Wei; Wang, Lulin; Tang, Bo

    2016-03-01

    Despite significant developments in optical imaging of superoxide anion (O2(•-)) as the preliminary reactive oxygen species, novel visualizing strategies that offer ultrahigh sensitivity are still imperative. This is mainly because intrinsic concentrations of O2(•-) are extremely low in living systems. Herein, we present the rational design and construction of a new polymer nanoprobe PCLA-O2(•-) for detecting O2(•-) based on chemiluminescence (CL) resonance energy transfer without an external excitation source. Structurally, PCLA-O2(•-) contains two moieties linked covalently, namely imidazopyrazinone that is capable of CL triggered by O2(•-) as the energy donor and conjugated polymers with light-amplifying property as the energy acceptor. Experiment results demonstrate that PCLA-O2(•-) exhibits ultrahigh sensitivity at the picomole level, dramatically prolonged luminescence time, specificity, and excellent biocompatibility. Without exogenous stimulation, this probe for the first time in situ visualizes O2(•-) level differences between normal and tumor tissues of mice. These exceptional features ensure that PCLA-O2(•-) as a self-luminescing probe is an alternative in vivo imaging approach for ultralow level O2(•-). PMID:26908223

  20. Numerical simulation of millisecond laser-induced damage in silicon-based positive-intrinsic-negative photodiode.

    PubMed

    Li, Zewen; Wang, Xi; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2012-05-10

    An axisymmetric mathematical model was established for millisecond-pulsed Nd:YAG laser heating of silicon-based positive-intrinsic-negative photodiode. The transient temperature fields were obtained by using the finite element method. The temperature dependences of the material parameters and the absorption coefficient were taken into account in the calculation. The results indicate that the optical absorption coefficient and the thermal conductivity are the two key factors for the temperature evolution. The diffusion of boron in the liquid phase and the introduction of deep-level defects in the depletion region of the photodiode were the two reasons for the millisecond laser-induced electrical degradation of the photodiode. The morphological damage threshold and electrical degradation threshold of the photodiode were obtained numerically. Meanwhile, the influence of the antireflection coating, the doping concentration, and the junction depth were also considered. The results show that the morphological damage threshold decreases with adding an antireflection coating, the increase of the doping concentration, and junction depth. The electrical degradation threshold increases only with the junction depth. PMID:22614501

  1. Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup.

    PubMed

    Rodríguez-Villarreal, Angeles Ivón; Tarn, Mark D; Madden, Leigh A; Lutz, Julia B; Greenman, John; Samitier, Josep; Pamme, Nicole

    2011-04-01

    The continuous flow focussing and manipulation of particles and cells are important factors in microfluidic applications for performing accurate and reproducible procedures downstream. Many particle focussing methods require complex setups or channel designs that can limit the process and its applications. Here, we present diamagnetic repulsion as a simple means of focussing objects in continuous flow, based only on their intrinsic properties without the requirement of any label. Diamagnetic polystyrene particles were suspended in a paramagnetic medium and pumped through a capillary between a pair of permanent magnets, whereupon the particles were repelled by each magnet into the central axis of the capillary, thus achieving focussing. By investigating this effect, we found that the focussing was greatly enhanced with (i) increased magnetic susceptibility of the medium, (ii) reduced flow rate of the suspension, (iii) increased particle size, and (iv) increased residence time in the magnetic field. Furthermore, we applied diamagnetic repulsion to the flow focussing of living, label-free HaCaT cells. PMID:21186390

  2. Inelastic Scattering in STEM for Studying Structural and Electronic Properties of Chalcogenide-Based Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gunawan, Aloysius Andhika

    Transmission electron microscopy (TEM) relies upon elastic and inelastic scattering signals to perform imaging and analysis of materials. TEM images typically contain contributions from both types of scattering. The ability to separate the contributions from elastic and inelastic processes individually through energy filter or electron energy loss spectroscopy (EELS) allows unique analysis that is otherwise unachievable. Two prominent types of inelastic scattering probed by EELS, namely plasmon and core-loss excitations, are useful for elucidating structural and electronic properties of chalcogenide-based semiconductor nanocrystals. The elastic scattering, however, is still a critical part of the analysis and used in conjunction with the separated inelastic scattering signals. The capability of TEM operated in scanning mode (STEM) to perform localized atomic length scale analysis also permits the understanding of the nanocrystals unattainable by other techniques. Despite the pivotal role of inelastic scatterings, their contributions for STEM imaging, particularly high-angle annular dark field STEM (HAADF-STEM), are not completely understood. This is not surprising since it is currently impossible to experimentally separate the inelastic signals contributing to HAADF-STEM images although images obtained under bright-field TEM mode can be analyzed separately from their scattering contributions using energy-filtering devices. In order to circumvent such problem, analysis based on simulation was done. The existing TEM image simulation algorithm called Multislice method, however, only accounts for elastic scattering. The existing Multislice algorithm was modified to incorporate (bulk or volume) plasmon inelastic scattering. The results were verified based on data from convergent-beam electron diffraction (CBED), electron energy loss spectroscopy (EELS), and HAADF-STEM imaging as well as comparison to experimental data. Dopant atoms are crucial factors which control

  3. Development of a numerical framework for studying intrinsic parameter of a micro-lens-based optical detector

    NASA Astrophysics Data System (ADS)

    Paar, Steffen; Jiang, Xiaoming; Semmler, Wolfhard; Peter, Jörg

    2012-10-01

    In order to validate and to optimize the imaging capabilities of a micro-lens-array (MLA) based optical detector dedicated for preclinical in-vivo small animal imaging applications a numeric investigation framework is developed. The framework is laid-out to study the following MLA detector parameters: micro-lens diameter (D) and focal length (f), as well as sensor pixel size (A). Two mathematical models are implemented for light modeling: line-based and cone-based ray projections. Since the MLA detector requires mathematical postprocessing, specifically inverse mapping for image formation, the framework is fully integrated into such approach. MLA detector designs have been studied within valid parameter ranges yielding sub-millimeter spatial resolution for in vivo imaging of mice for detector-object-distances (t) up to 50 mm. In summary, there is a non-linear dependency of the detector's spatial resolution, scaling with D and f, for any respective t. On the other hand, detector efficiency is strongly dependent on f. Regardless of mathematical postprocessing the following set of intrinsic detector parameters had been found optimal for the intended application: D = 0.336 mm, f = 4.0 mm, A = 0.048 mm. When mathematical postprocessing is involved, particularly three-dimensional surface recognition, increasing f (cf. decreasing D) yields solid angles of the incoming rays closer to 90° and, thus, will decrease spatial depth information from the elementary images. Hence, a setup with D not larger than 0.5 mm and f between 2.0 mm and 3.0 mm is recommended.

  4. Numerical simulation of temperature field and thermal stress field in silicon-based positive-intrinsic-negative photodiode irradiated by multipulsed millisecond laser

    NASA Astrophysics Data System (ADS)

    Wei, Zhi; Jin, Guangyong; Tan, Yong; Zhao, Hongyu

    2015-10-01

    Laser induced morphological damage have been observed in silicon-based positive-intrinsic-negative photodiode. This paper adopted the methods of the theoretical calculation and finite element numerical simulation to model, then solved the temperature field and thermal stress field in silicon-based positive-intrinsic-negative photodiode irradiated by multipulsed millisecond laser, and researched the features and laws of the temperature field and thermal stress field. As for the thermal-mechanical problem of multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode, based on Fourier heat conduction and thermoelasticity theories, we established a two-dimensional axisymmetric mathematical model .Then adopted finite element method to simulate the transient temperature field and thermal stress field. The temperature dependences of the material parameters and the absorption coefficient were taken into account in the calculation. The results indicated that there was the heat accumulation effect when multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode. The morphological damage threshold were obtained numerically. The evolution of temperature at the central point of the top surface, the temperature distribution along the radial direction in the end of laser irradiation and the temperature distribution along the axial direction in the end of laser irradiation were considered. Meanwhile, the radial stress, hoop stress, axial stress on the top surface and the R=500μm axis were also considered. The results showed that the morphological damage threshold decreased with the increased of the pulse number. The results of this study have reference significance of researching the thermal and thermal stress effect evolution's features when multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode, then revealing the mechanism of interactions between millisecond laser and

  5. Compound semiconductor native oxide-based technologies for optical and electrical devices grown on gallium arsenide substrates using MOCVD

    NASA Astrophysics Data System (ADS)

    Holmes, Adrian Lawrence

    1999-11-01

    The beginning of the modern microelectronics industry can be traced back to an invention made in 1947 when Bardeen and Brattain created the first semiconductor switch, called a transistor. Several other important discoveries followed; however, two of the more significant were (i) the development of the first planar process using silicon dioxide (SiO2) as a mask for diffusions into silicon by Frosch in 1955, and (ii) the subsequent integration of several transistors in tiny circuits by Kilby in 1958. Due to the superior quality of the SiO2-silicon interface, Si-based metal-oxide-semiconductor (MOS) transistors have primarily been used in integrated circuits. Until recently, compound semiconductors did not have a native oxide of sufficient quality to create similar MOS transistors. In 1990, research performed by Professor Holonyak and his group at the University of Illinois at Urbana-Champaign has led to a high-quality, stable, and insulating native oxide created from aluminum-containing compound semiconductor alloys. This study investigates native oxide films that are formed by the thermal oxidation of AlAs and InAlP epitaxial layers grown lattice-matched on GaAs substrates using metalorganic chemical vapor deposition (MOCVD). The primary goal is to evaluate how these native oxides can help form novel device structures and transistors. To qualify the material properties of these native oxide films, we have used several characterization techniques including photoluminescence, cross-sectional scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Additionally, we have performed leakage current and capacitance-voltage measurements to evaluate the electrical characteristics of the native oxide-semiconductor interface. The kinetics of the thermal oxidation process for both the surface oxidation of InAlP and lateral oxidation of AlAs are studied and contrasted. Aided by this knowledge, we have created a sealed

  6. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    SciTech Connect

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caraco, Corradina; Aloj, Luigi; Lastoria, Secondo

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter

  7. Experimental and theoretical investigation of semiconductor optical amplifier (SOA)-based all-optical wavelength converters

    NASA Astrophysics Data System (ADS)

    Dailey, James M.

    Use of fiber-optical networks has increased along with the growing demand for higher data throughputs. As data bandwidths increase, physical switching technologies must also scale accordingly. Optical-electrical-optical (OEO) switching technologies are widely utilized, where incoming optical signals are converted into and processed as electrical signals before conversion back into the optical domain. However, issues such as speed, cost, and power consumption have driven interest in the development of all-optical techniques, where data remains in the optical domain while being processed. Semiconductor optical amplifiers (SOAs) have shown great promise for realizing all-optical technologies. Our work begins with the experimental characterization of SOAs, and we discuss the use of a time-resolved spectroscopy technique. We present a detailed analysis clarifying measurement requirements, though we conclude that this simple technique provides insufficient resolution for characterizing high-speed optical systems. We discuss the measurement theory for spectrograms, which provide high signal-to-noise ratios, excellent temporal resolution, and are sensitive to phase dynamics. We apply the spectrogram measurement to the characterization of an SOA. We develop a system of rate equations for modeling SOA dynamics, beginning with a detailed density matrix analysis providing expressions for gain and chirp without invoking the linewidth-enhancement factor. In accordance with the measurement results, we include a carrier temperature rate calculation in order to capture ultrafast dynamics. The traveling wave partial differential equations are solved so that both forward and reverse propagating signals are accurately modeled, and the results show good agreement with the spectrogram measurement. We identify the free-carrier plasma and the asymmetrical broadening terms in the real and imaginary parts of the refractive index as driving factors in the relatively larger ultrafast response

  8. Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light

    PubMed Central

    Zhang, Da; Yang, Jinhu; Bao, Song; Wu, Qingsheng; Wang, Qigang

    2013-01-01

    Since ancient times, people have used photosynthesized wood, bamboo, and cotton as building and clothing materials. The advantages of photo polymerization include the mild and easy process. However, the direct use of available sunlight for the preparation of materials is still a challenge due to its rather dilute intensity. Here, we show that semiconductor nanoparticles can be used for initiating monomer polymerization under sunlight and for cross-linking to form nanocomposite hydrogels with the aid of clay nanosheets. Hydrogels are an emerging multifunctional platform because they can be easily prepared using solar energy, retain semiconductor nanoparticle properties after immobilization, exhibit excellent mechanical strength (maximum compressive strength of 4.153 MPa and tensile strength 1.535 MPa) and high elasticity (maximum elongation of 2784%), and enable recyclable photodegradation of pollutants. This work suggests that functional nanoparticles can be immobilized in hydrogels for their collective application after combining their mechanical and physiochemical properties. PMID:23466566

  9. Semiconductor laser self-mixing micro-vibration measuring technology based on Hilbert transform

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Xia, Wei

    2016-06-01

    A signal-processing synthesizing Wavelet transform and Hilbert transform is employed to measurement of uniform or non-uniform vibrations in self-mixing interferometer on semiconductor laser diode with quantum well. Background noise and fringe inclination are solved by decomposing effect, fringe counting is adopted to automatic determine decomposing level, a couple of exact quadrature signals are produced by Hilbert transform to extract vibration. The tempting potential of real-time measuring micro vibration with high accuracy and wide dynamic response bandwidth using proposed method is proven by both simulation and experiment. Advantages and error sources are presented as well. Main features of proposed semiconductor laser self-mixing interferometer are constant current supply, high resolution, simplest optical path and much higher tolerance to feedback level than existing self-mixing interferometers, which is competitive for non-contact vibration measurement.

  10. Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light.

    PubMed

    Zhang, Da; Yang, Jinhu; Bao, Song; Wu, Qingsheng; Wang, Qigang

    2013-01-01

    Since ancient times, people have used photosynthesized wood, bamboo, and cotton as building and clothing materials. The advantages of photo polymerization include the mild and easy process. However, the direct use of available sunlight for the preparation of materials is still a challenge due to its rather dilute intensity. Here, we show that semiconductor nanoparticles can be used for initiating monomer polymerization under sunlight and for cross-linking to form nanocomposite hydrogels with the aid of clay nanosheets. Hydrogels are an emerging multifunctional platform because they can be easily prepared using solar energy, retain semiconductor nanoparticle properties after immobilization, exhibit excellent mechanical strength (maximum compressive strength of 4.153 MPa and tensile strength 1.535 MPa) and high elasticity (maximum elongation of 2784%), and enable recyclable photodegradation of pollutants. This work suggests that functional nanoparticles can be immobilized in hydrogels for their collective application after combining their mechanical and physiochemical properties. PMID:23466566

  11. Device Concepts Based on Spin-dependent Transmission in Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Ting, David Z. - Y.; Cartoixa, X.

    2004-01-01

    We examine zero-magnetic-field spin-dependent transmission in nonmagnetic semiconductor heterostructures with structural inversion asymmetry (SIA) and bulk inversion asymmetry (BIA), and report spin devices concepts that exploit their properties. Our modeling results show that several design strategies could be used to achieve high spin filtering efficiencies. The current spin polarization of these devices is electrically controllable, and potentially amenable to highspeed spin modulation, and could be integrated in optoelectronic devices for added functionality.

  12. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-01

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  13. Significantly elevated dielectric permittivity of Si-based semiconductor/polymer 2-2 composites induced by high polarity polymers

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Gong, Honghong; Xie, Yunchuan; Wei, Xiaoyong; Zhang, Zhicheng

    2016-02-01

    To disclose the essential influence of polymer polarity on dielectric properties of polymer composites filled with semiconductive fillers, a series of Si-based semiconductor/polymer 2-2 composites in a series model was fabricated. The dielectric permittivity of composites is highly dependant on the polarity of polymer layers as well as the electron mobility in Si-based semiconductive sheets. The huge dielectric permittivity achieved in Si-based semiconductive sheets after being coated with high polarity polymer layers is inferred to originate from the strong induction of high polarity polymers. The increased mobility of the electrons in Si-based semiconductive sheets coated by high polarity polymer layers should be responsible for the significantly enhanced dielectric properties of composites. This could be facilely achieved by either increasing the polarity of polymer layers or reducing the percolative electric field of Si-based semiconductive sheets. The most promising 2-2 dielectric composite was found to be made of α-SiC with strong electron mobility and poly(vinyl alcohol) (PVA) with high polarity, and its highest permittivity was obtained as 372 at 100 Hz although the permittivity of α-SiC and PVA is 3-5 and 15, respectively. This work may help in the fabrication of high dielectric constant (high-k) composites by tailoring the induction effect of high polarity polymers to semiconductors.

  14. Resistance transition assisted geometry enhanced magnetoresistance in semiconductors

    SciTech Connect

    Luo, Zhaochu; Zhang, Xiaozhong

    2015-05-07

    Magnetoresistance (MR) reported in some non-magnetic semiconductors (particularly silicon) has triggered considerable interest owing to the large magnitude of the effect. Here, we showed that MR in lightly doped n-Si can be significantly enhanced by introducing two diodes and proper design of the carrier path [Wan, Nature 477, 304 (2011)]. We designed a geometrical enhanced magnetoresistance (GEMR) device whose room-temperature MR ratio reaching 30% at 0.065 T and 20 000% at 1.2 T, respectively, approaching the performance of commercial MR devices. The mechanism of this GEMR is: the diodes help to define a high resistive state (HRS) and a low resistive state (LRS) in device by their openness and closeness, respectively. The ratio of apparent resistance between HRS and LRS is determined by geometry of silicon wafer and electrodes. Magnetic field could induce a transition from LRS to HRS by reshaping potential and current distribution among silicon wafer, resulting in a giant enhancement of intrinsic MR. We expect that this GEMR could be also realized in other semiconductors. The combination of high sensitivity to low magnetic fields and large high-field response should make this device concept attractive to the magnetic field sensing industry. Moreover, because this MR device is based on a conventional silicon/semiconductor platform, it should be possible to integrate this MR device with existing silicon/semiconductor devices and so aid the development of silicon/semiconductor-based magnetoelectronics. Also combining MR devices and semiconducting devices in a single Si/semiconductor chip may lead to some novel devices with hybrid function, such as electric-magnetic-photonic properties. Our work demonstrates that the charge property of semiconductor can be used in the magnetic sensing industry, where the spin properties of magnetic materials play a role traditionally.

  15. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  16. Semiconductor P-I-N detector

    SciTech Connect

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  17. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.

    PubMed

    Beard, Matthew C; Luther, Joseph M; Semonin, Octavi E; Nozik, Arthur J

    2013-06-18

    Improving the primary photoconversion process in a photovoltaiccell by utilizing the excess energy that is otherwise lost as heat can lead to an increase in the overall power conversion efficiency (PCE). Semiconductor nanocrystals (NCs) with at least one dimension small enough to produce quantum confinement effects provide new ways of controlling energy flow not achievable in thin film or bulk semiconductors. Researchers have developed various strategies to incorporate these novel structures into suitable solar conversion systems. Some of these methods could increase the PCE past the Shockley-Queisser (SQ) limit of ∼33%, making them viable "third generation photovoltaic" (TGPV) cell architectures. Surpassing the SQ limit for single junction solar cells presents both a scientific and a technological challenge, and the use of semiconductor NCs to enhance the primary photoconversion process offers a promising potential solution. The NCs are synthesized via solution phase chemical reactions producing stable colloidal solutions, where the reaction conditions can be modified to produce a variety of shapes, compositions, and structures. The confinement of the semiconductor NC in one dimension produces quantum films, wells, or discs. Two-dimensional confinement leads to quantum wires or rods (QRs), and quantum dots (QDs) are three-dimensionally confined NCs. The process of multiple exciton generation (MEG) converts a high-energy photon into multiple electron-hole pairs. Although many studies have demonstrated that MEG is enhanced in QDs compared with bulk semiconductors, these studies have either used ultrafast spectroscopy to measure the photon-to-exciton quantum yields (QYs) or theoretical calculations. Implementing MEG in a working solar cell has been an ongoing challenge. In this Account, we discuss the status of MEG research and strategies towards implementing MEG in working solar cells. Recently we showed an external quantum efficiency for photocurrent of greater

  18. Semiconductor processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The primary thrust of the semiconductor processing is outlined. The purpose is to (1) advance the theoretical basis for bulk growth of elemental and compound semiconductors in single crystal form, and (2) to develop a new experimental approaches by which semiconductor matrices with significantly improved crystalline and chemical perfection can be obtained. The most advanced approaches to silicon crystal growth is studied. The projected research expansion, directed toward the capability of growth of 4 inch diameter silicon crystals was implemented. Both intra and interdepartmental programs are established in the areas of process metallurgy, heat transfer, mass transfer, and systems control. Solutal convection in melt growth systems is also studied.

  19. An upstream reach-extender for 10Gb/s PON applications based on an optimized semiconductor amplifier cascade.

    PubMed

    Porto, Stefano; Antony, Cleitus; Ossieur, Peter; Townsend, Paul D

    2012-01-01

    We present a reach-extender for the upstream transmission path of 10Gb/s passive optical networks based on an optimised cascade of two semiconductor optical amplifiers (SOAs). Through careful optimisation of the bias current of the second stage SOA, over 19dB input dynamic range and up to 12dB compression of the output dynamic range were achieved without any dynamic control. A reach of 70km and split up to 32 were demonstrated experimentally using an ac-coupled, continuous-mode receiver with a reduced 56ns ac-coupling constant. PMID:22274342

  20. Ground-based research of crystal growth of II-VI compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Su, Ching-Hua; Sha, Yi-Gao; Zhou, W.; Dudley, M.; Liu, Hao-Chieh; Brebrick, R. F.; Wang, J. C.

    1994-01-01

    Ground-based investigation of the crystal growth of II-VI semiconductor compounds, including CdTe, CdS, ZnTe, and ZnSe, by physical vapor transport in closed ampoules was performed. The crystal growth experimental process and supporting activities--preparation and heat treatment of starting materials, vapor partial pressure measurements, and transport rate measurements are reported. The results of crystal characterization, including microscopy, microstructure, optical transmission photoluminescence, synchrotron radiation topography, and chemical analysis by spark source mass spectrography, are also discussed.

  1. Effect of Electron-Beam Irradiation on Organic Semiconductor and Its Application for Transistor-Based Dosimeters.

    PubMed

    Kim, Jae Joon; Ha, Jun Mok; Lee, Hyeok Moo; Raza, Hamid Saeed; Park, Ji Won; Cho, Sung Oh

    2016-08-01

    The effects of electron-beam irradiation on the organic semiconductor rubrene and its application as a dosimeter was investigated. Through the measurements of photoluminescence and the ultraviolet photoelectron spectroscopy, we found that electron-beam irradiation induces n-doping of rubrene. Additionally, we fabricated rubrene thin-film transistors with pristine and irradiated rubrene, and discovered that the decrease in transistor properties originated from the irradiation of rubrene and that the threshold voltages are shifted to the opposite directions as the irradiated layers. Finally, a highly sensitive and air-stable electron dosimeter was fabricated based on a rubrene transistor. PMID:27399874

  2. Application of semiconductor optical amplifier for mobile radio communications networks based on radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Andreev, Vladimir A.; Burdin, Vladimir A.; Volkov, Kirill A.; Dashkov, Michael V.; Bukashkin, Sergei A.; Buzov, Alexander L.; Procopiev, Vladimir I.; Zharkov, Alexander D.

    2016-03-01

    The analysis of semiconductor optical amplifier applications in Radio-over-Fiber systems of telecommunication networks is given. In such systems semiconductor optical amplifier can be used for either amplification, modulation or detection, and also as an universal device.

  3. GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

    PubMed

    Chaqmaqchee, Faten Adel Ismail; Mazzucato, Simone; Oduncuoglu, Murat; Balkan, Naci; Sun, Yun; Gunes, Mustafa; Hugues, Maxime; Hopkinson, Mark

    2011-01-01

    Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained. PMID:21711630

  4. GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation

    PubMed Central

    2011-01-01

    Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained. PMID:21711630

  5. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    PubMed

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process. PMID:27427689

  6. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Kim, Junghwan; Miyokawa, Norihiko; Ide, Keisuke; Toda, Yoshitake; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-01

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  7. Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier.

    PubMed

    Wilson, A C; Sharpe, J C; McKenzie, C R; Manson, P J; Warrington, D M

    1998-07-20

    The output of a grating-stabilized external-cavity diode laser was injected into a semiconductor tapered amplifier in a master-oscillator power amplifier configuration, producing as much as 500 mW of power with narrow linewidth. The additional linewidth that is due to the tapered amplifier is much smaller than the typical linewidth of grating-stabilized laser diodes. To demonstrate the usefulness of the narrow linewidth and high output power, we used the system to perform Doppler-free two-photon spectroscopy with rubidium. PMID:18285950

  8. Facing the Sunrise: Cultural Worldview Underlying Intrinsic-Based Encoding of Absolute Frames of Reference in Aymara

    ERIC Educational Resources Information Center

    Nunez, Rafael E.; Cornejo, Carlos

    2012-01-01

    The Aymara of the Andes use absolute (cardinal) frames of reference for describing the relative position of ordinary objects. However, rather than encoding them in available absolute lexemes, they do it in lexemes that are intrinsic to the body: "nayra" ("front") and "qhipa" ("back"), denoting east and west, respectively. Why? We use different but…

  9. BRIDGE21--Exploring the Potential to Foster Intrinsic Student Motivation through a Team-Based, Technology-Mediated Learning Model

    ERIC Educational Resources Information Center

    Lawlor, John; Marshall, Kevin; Tangney, Brendan

    2016-01-01

    It is generally accepted that intrinsic student motivation is a critical requirement for effective learning but formal learning in school places a huge reliance on extrinsic motivation to focus the learner. This reliance on extrinsic motivation is driven by the pressure on formal schooling to "deliver to the test." The experience of the…

  10. Doping semiconductor nanocrystals.

    PubMed

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  11. Bio-photosensors based on monolithic integration of light sensitive proteins with semiconductor devices and integrated circuits

    NASA Astrophysics Data System (ADS)

    Xu, Jian

    This Ph.D. work is aimed to study the integration of a suitably engineered protein, bacteriorhodopsin (BR), with semiconductor optoelectronic devices and circuits. A detailed study was carried out on the coupling mechanism at the protein-semiconductor interface. It was found that electrophoretic deposition of dried protein membranes is best suited for reliable integration with semiconductor devices. In the course of this study, the photoelectric response time was directly measured by a femtosecond electro-optic sampling technique. The measured transient response time of 4.5 picosecond, gives valuable information in the photocycle and kinetic processes associated with the photoisomerization. A highly sensitive bio-photosensor was designed and demonstrated, for the first time, based on the monolithic integration of bacteriorhodopsin and GaAs/AlGaAs modulation doped field effect transistors (MODFET). In this device, the small photovoltage generated by the protein is applied to the gate of the transistor embedded underneath, and therefore amplified and transformed into a large current signal. A light responsivity of 3.8 A/W was measured. Following this, double stage high gain MODFET-based transimpedance amplifier circuits were designed and monolithically integrated with the BR/FET bio-photosensors. The integrated bio-photoreceiver circuit exhibits a high responsivity of 175 V/W. The photoresponse was measured to be linear within several orders of magnitudes of the peak intensity of the light pulses. Unlike most semiconductor photodetectors, this bio-photosensor exhibits high sensitivity to change in incident light intensities, which is the essence of motion and edge detection. Polarization sensitive detection with the bio-photosensors was also demonstrated. This was achieved by photochemically modifying the molecular arrangement of the protein molecules inside the protein membrane. In addition, a dual focus electro-optic micro-Fresnel lens was developed for an

  12. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  13. Intrinsic SiOx-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Zhou, Fei; Lee, Jack C.

    2014-07-01

    Multilevel programing and charge transport characteristics of intrinsic SiOx-based resistive switching memory are investigated using TaN/SiOx/n++Si (MIS) and TiW/SiOx/TiW (MIM) device structures. Current transport characteristics of high- and low-resistance states (HRS and LRS) are studied in both device structures during multilevel operation. Analysis of device thermal response demonstrates that the effective electron energy barrier is strongly dependent on the resistance of the programed state, with estimates of 0.1 eV in the LRS and 0.6 eV in the HRS. Linear data fitting and conductance analyses indicate Poole-Frenkel emission or hopping conductance in the low-voltage region, whereas Fowler-Nordheim (F-N) or trap-assisted tunneling (TAT) is indicated at moderate voltage. Characterizations using hopping transport lead to hopping distance estimates of ˜1 nm in the LRS for both device structures. Relative permittivity values (ɛr) were extracted using the Poole-Frenkel formulism and estimates of local filament temperature, where ɛr values were ˜80 in the LRS and ˜4 in the HRS, suggesting a strongly polarized medium in the LRS. The onset of F-N tunneling or TAT corresponds to an observed "overshoot" in the I-V response with an estimated threshold of 1.6 ± 0.2 V, in good agreement with reported electro-luminescence results for LRS devices. Resistive switching is discussed in terms of electrochemical reactions between common SiO2 defects, and specific defect energy levels are assigned to the dominant transitions in the I-V response. The overshoot response in the LRS is consistent with TAT through either the Eγ' oxygen vacancy or the hydrogen bridge defect, both of which are reported to have an effective bandgap of 1.7 eV. The SET threshold at ˜2.5 V is modeled as hydrogen release from the (Si-H)2 defect to generate the hydrogen bridge, and the RESET transition is modeled as an electrochemical reaction that re-forms (SiH)2. The results provide further insights

  14. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  15. Atmospheric CO2 remote sensing system based on high brightness semiconductor lasers and single photon counting detection

    NASA Astrophysics Data System (ADS)

    Pérez-Serrano, Antonio; Vilera, Maria Fernanda; Esquivias, Ignacio; Faugeron, Mickael; Krakowski, Michel; van Dijk, Frédéric; Kochem, Gerd; Traub, Martin; Adamiec, Pawel; Barbero, Juan; Ai, Xiao; Rarity, John G.; Quatrevalet, Mathieu; Ehret, Gerhard

    2015-10-01

    We propose an integrated path differential absorption lidar system based on all-semiconductor laser sources and single photon counting detection for column-averaged measurements of atmospheric CO2. The Random Modulated Continuous Wave (RM-CW) approach has been selected as the best suited to semiconductor lasers. In a RM-CW lidar, a pseudo random sequence is sent to the atmosphere and the received signal reflected from the target is correlated with the original sequence in order to retrieve the path length. The transmitter design is based on two monolithic Master Oscillator Power Amplifiers (MOPAs), providing the on-line and off-line wavelengths close to the selected absorption line around 1.57 µm. Each MOPA consists of a frequency stabilized distributed feedback master oscillator, a bent modulator section, and a tapered amplifier. This design allows the emitters to deliver high power and high quality laser beams with good spectral properties. An output power above 400 mW with a SMSR higher than 45 dB and modulation capability have been demonstrated. On the side of the receiver, our theoretical and experimental results indicate that the major noise contribution comes from the ambient light and detector noise. For this reason narrow band optical filters are required in the envisioned space-borne applications. In this contribution, we present the latest progresses regarding the design, modeling and characterization of the transmitter, the receiver, the frequency stabilization unit and the complete system.

  16. Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms.

    PubMed

    Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Santos, Susana I C O; Artigas, David; Loza-Alvarez, Pablo

    2011-01-01

    We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laser-VECSELs), to be used for nonlinear microscopy. The SDL is modelocked using a quantum-dot semiconductor saturable absorber mirror (SESAM), delivering an average output power of 287 mW, with 1.5 ps pulses at 500 MHz and a central wavelength of 965 nm. Specifically, despite the fact of having long pulses and high repetition rates, we demonstrate the potential of this laser for Two-Photon Excited Fluorescence (TPEF) imaging of in vivo Caenorhabditis elegans (C. elegans) expressing Green Fluorescent Protein (GFP) in a set of neuronal processes and cell bodies. Efficient TPEF imaging is achieved due to the fact that this wavelength matches the peak of the two-photon action cross section of this widely used fluorescent marker. The SDL extended versatility is shown by presenting Second Harmonic Generation images of pharynx, uterus, body wall muscles and its potential to be used to excite other different commercial dyes. Importantly this non-expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices. PMID:21483599

  17. Apparatus for investigating metalorganic chemical vapor deposition-grown semiconductors with ultrahigh-vacuum based techniques

    NASA Astrophysics Data System (ADS)

    Hannappel, T.; Visbeck, S.; Töben, L.; Willig, F.

    2004-05-01

    An apparatus is described here in detail for the transfer of a sample from a metalorganic chemical vapor deposition (MOCVD) reactor to an ultrahigh-vacuum (UHV) chamber without introducing any contamination. The surface of the sample does not change during transfer as is borne out by the identical reflectance difference (RD) spectrum measured first in the MOCVD reactor, i.e., in situ, and afterwards again in the UHV chamber. Making use of the earlier apparatus a semiconductor can be grown in the MOCVD reactor and can afterwards be investigated with any desired tool of surface science, in particular also those that require UHV. All the data collected in UHV can be identified with the RD spectrum measured already in the MOCVD reactor. Several examples are presented here for data collection in UHV on III-V semiconductors grown in the MOCVD reactor. They illustrate the ease and reliability of the here described apparatus for contamination-free sample transfer. Signals are presented in particular for the genuine MOCVD-grown P-rich seemingly (2×1)/(2×2)InP(100) reconstructed surface that until now can only be investigated in UHV if one makes use of the sample transfer system described in this article.

  18. Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission infrared detectors

    NASA Astrophysics Data System (ADS)

    Lao, Y. F.; Perera, A. G. U.; Wang, H. L.; Zhao, J. H.; Jin, Y. J.; Zhang, D. H.

    2016-03-01

    Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in infrared. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave infrared (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3-5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ0, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μm in the spectral response of p-type GaAs/AlGaAs detectors. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ0 is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ0. This implies the promise of using GaMnAs to develop MWIR IPE detectors. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.

  19. Study of Fused Thiophene Based Organic Semiconductors and Interfacial Self-Assembled Monolayer (SAM) for Thin-Film Transistor (TFT) Application

    NASA Astrophysics Data System (ADS)

    Youn, Jangdae

    , the role of a thiol SAM on top of the gold electrode is investigated in terms of semiconductor film structure and OTFT performance in the bottom-contact/ bottom-gate TFT structure by using one of the most successful small molecule based n-type organic semiconductors, α,ω-diperfluorohexylquarterthiophene (DFH-4T) and N,N' bis(n-octyl)-dicyanoperylene-3,4:9,10-bis(dicarb-oximide) (PDI-8CN2). The study of semiconductor film morphogy shows that the semiconductor molecules at the gold/SAM/semiconductor interface are aligned normal to the substrate, facilitating charge transport at the interfacial region. As a result, contact resistance was minimized, and the OTFT device performance was improved. When it comes to semiconductor-dielectric interface, it is important because the charge transport layer of the OTFTs is formed within several monolayers of semiconductor films right above the gate dielectric. The physical and chemical nature of the dielectric surface significantly influences charge flow. For example, the surface of a SiO2 dielectric contains a large number of SiOH functional groups in air. After depositing semiconductor material on top of the SiO2 surface, those SiOH functional groups play a role of charge traps. One of the most effective ways of circumventing this problem is to introduce organic self-assembled monolayers (SAMs) on the SiO 2 dielectric surface. The SAMs in the semiconductor-dielectric interface not only minimize the charge traps but also improve the crystallinity of top semiconductor layers. Furthermore, the improvement of the semiconductor film microstructure depends on the structure of the SAM. When the SAM is disorganized, the size and density of crystalline domains in the semiconductor film decline. Meanwhile, the domain size and population density of crystalline domains expand when the SAM is tightly packed and vertically aligned. In this thesis, a humidity control method of fabricating high quality octadecyltrichlorosilane (OTS) SAM on SiO2

  20. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts.

    PubMed

    Trotochaud, Lena; Mills, Thomas J; Boettcher, Shannon W

    2013-03-21

    The optical properties of electrocatalysts are important for photoelectrochemical water splitting because colored catalysts on the surface of semiconductor photoelectrodes parasitically absorb photons and lower the system efficiency. We present a model that describes the coupling of colored oxygen evolution reaction (OER) electrocatalyst thin films with semiconductor photoelectrodes. We use this model to define an "optocatalytic" efficiency (Φo-c) based on experimental optical and electrokinetic data collected in basic solution. Because transition-metal oxides, hydroxides, and oxyhydroxides often exhibit electrochromism, in situ spectroelectrochemistry is used to quantify the optical absorption of active NiOx, CoOx, NiCoOx, Ni0.9Fe0.1Ox, and IrOx catalyst films at OER potentials. For the highest-activity Ni0.9Fe0.1Ox catalyst, Φo-c is maximized (0.64) for a thickness of ∼0.4 nm (∼2 monolayers). This work quantitatively shows that ultrathin catalyst films are appropriate to optimize the performance of water-splitting photoelectrodes and thus assists in the design and study of efficient photoelectrochemical water-splitting devices. PMID:26291358

  1. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers.

    SciTech Connect

    Klimov, Victor I.; Koleske, Daniel David; Hoffbauer, Mark A.; Akhadov, Elshan A.; Werder, Donald J.; Mueller, Alexander H.; Petruska, Melissa A.; Achermann, Marc

    2005-06-01

    Numerous technologies including solid-state lighting, displays, and traffic signals can benefit from efficient, color-selectable light sources that are driven electrically. Semiconductor nanocrystals are attractive types of chromophores that combine size-controlled emission colors and high emission efficiencies with excellent photostability and chemical flexibility. Applications of nanocrystals in light-emitting technologies, however, have been significantly hindered by difficulties in achieving direct electrical injection of carriers. Here we report the first successful demonstration of electroluminescence from an all-inorganic, nanocrystal-based architecture in which semiconductor nanocrystals are incorporated into a p-n junction formed from GaN injection layers. The critical step in the fabrication of these nanocrystal/GaN hybrid structures is the use of a novel deposition technique, energetic neutral atom beam lithography/epitaxy, that allows for the encapsulation of nanocrystals within a GaN matrix without adversely affecting either the nanocrystal integrity or its luminescence properties. We demonstrate electroluminescence (injection efficiencies of at least 1%) in both single- and two-color regimes using structures comprising either a single monolayer or a bilayer of nanocrystals.

  2. Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions

    NASA Astrophysics Data System (ADS)

    Cho, Minkyu; Seo, Jung-Hun; Park, Dong-Wook; Zhou, Weidong; Ma, Zhenqiang

    2016-06-01

    Metal-oxide-semiconductor (MOS) device is the basic building block for field effect transistors (FET). The majority of thin-film transistors (TFTs) are FETs. When MOSFET are mechanically bent, the MOS structure will be inevitably subject to mechanical strain. In this paper, flexible MOS devices using single crystalline Silicon (Si) and Germanium (Ge) nanomembranes (NM) with SiO2, SiO, and Al2O3 dielectric layers are fabricated on a plastic substrate. The relationships between semiconductor nanomembranes and various oxide materials are carefully investigated under tensile/compressive strain. The flatband voltage, threshold voltage, and effective charge density in various MOS combinations revealed that Si NM-SiO2 configuration shows the best interface charge behavior, while Ge NM-Al2O3 shows the worst. This investigation of flexible MOS devices can help us understand the impact of charges in the active region of the flexible TFTs and capacitance changes under the tensile/compressive strains on the change in electrical characteristics in flexible NM based TFTs.

  3. One- and two-photon pumped soft lithographed DFB laser systems based on semiconductor core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Todescato, F.; Fortunati, I.; Gardin, S.; Signorini, R.; Bozio, R.; Jasieniak, J. J.; Martucci, A.; Della Giustina, G.; Brusatin, G.; Guglielmi, M.

    2010-02-01

    In the last years inorganic semiconductor (particularly CdSe and CdS) quantum dots (QDs) have received great attention for their important optical properties. The possibility to tune the emission wavelength, together with their high fluorescence quantum efficiency and photostability, can be exploited in photonic and optoelectronic technological applications. The design of DFB devices, based on QDs as active optical material, leads to the realization of compact laser systems. In this work we explore the use of an inorganic/organic hybrid material composed of CdSe-ZnS semiconductor quantum dots doped into a zirconia sol-gel matrix for optical gain applications. Through the use of soft lithography on a sol-gel germania-silica hybrid, large scale distributed feedback gratings can be created. Used in conjunction with the CdSe-ZnS/ZrO2 hybrids, these gratings can act as microcavities and allow for the realization of true lasing action. The lasing properties within these devices are characterized in the femtosecond regime by both one- and two-photon excitation. From experimental data the value of the optical gain of the core-shell quantum dot samples has been estimated. Moreover, one- and two-photon lasing threshold and stability are reported.

  4. The application of semiconductor based UV sources for the detection and classification of biological material

    NASA Astrophysics Data System (ADS)

    Kaliszewski, Miron; Włodarski, Maksymilian; Bombalska, Aneta; Kwaśny, Mirosław; Mularczyk-Oliwa, Monika; Młyńczak, Jarosław; Kopczyński, Krzysztof

    2013-01-01

    Fluorescence analysis of dry samples of biological origin like pollens, fungi, flours and proteins was presented. In the laboratory study presentenced here two fluorescence methods using semiconductor light sources were applied. Firstly, laser induced fluorescence emission (LIF) spectra of the samples were recorded under 266 and 375 nm excitation. The second technique covered fluorescence decay (FD) at 280 and 340 nm excitation. Hierarchical Cluster Analysis (HCA) of acquired spectra and decays was performed. Both LIF and FD showed that single wavelength excitation 266 and 280 nm, respectively allow distinguishing of pollens from other samples. Combining data of both excitation wavelengths, for LIF and FD, respectively, resulted in substantial improvement of data classification for groups according to the samples origin.

  5. Spin polarized state filter based on semiconductor–dielectric–iron–semiconductor multi-nanolayer device

    SciTech Connect

    Makarov, Vladimir I.; Khmelinskii, Igor

    2015-04-15

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Presently we report spin-polarized state transport in semiconductor–dielectric–iron–semiconductor (SDIS) four-nanolayer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-nanolayer devices. The theoretical model developed earlier is extended and used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment is also performed. The model predicts an exchange spectrum comprising a series of peaks, with the spectral structure determined by several factors, discussed in the paper.

  6. Band gap narrowing in zinc oxide-based semiconductor thin films

    SciTech Connect

    Kumar, Jitendra E-mail: akrsri@gmail.com; Kumar Srivastava, Amit E-mail: akrsri@gmail.com

    2014-04-07

    A simple expression is proposed for the band gap narrowing (or shrinkage) in semiconductors using optical absorption measurements of spin coated 1 at. % Ga-doped ZnO (with additional 0–1.5 at. % zinc species) thin films as ΔE{sub BGN} = Bn{sup 1/3} [1 − (n{sub c}/n){sup 1/3}], where B is the fitting parameter, n is carrier concentration, and n{sub c} is the critical density required for shrinkage onset. Its uniqueness lies in not only describing variation of ΔE{sub BGN} correctly but also allowing deduction of n{sub c} automatically for several M-doped ZnO (M: Ga, Al, In, B, Mo) systems. The physical significance of the term [1 − (n{sub c}/n){sup 1/3}] is discussed in terms of carrier separation.

  7. A Semiconductor Chip-Based Next Generation Sequencing Procedure for the Main Pulmonary Hypertension Genes.

    PubMed

    Gómez, Juan; Reguero, Julian R; Alvarez, Celso; Junquera, Manuel R; Arango, Ana; Morís, César; Coto, Eliecer

    2015-08-01

    The aim of this study was to characterize the mutational spectrum of pulmonary hypertension (PH) patients through a next generation sequencing platform. In a total of 22 patients, the BMPR2, SMAD9, CAV1, KCNK3, and EIF2AK4 genes were sequenced with semiconductor chips and the ion torrent personal genome machine. We found six putative mutations in SMAD (p.R263Q), BMPR2 (p.S301P, p.T493I), CAV1 (p.V155I), and EIF2AK4 (p.L489P, p.P1115L) in five patients. One patient was compound heterozygous for BMPR2 + SMAD mutations, and one patient was homozygous for EIF2AK4 p.P1115L. The reported procedure would facilitate the rapid mutational screening of large cohorts of PH patients. PMID:25917481

  8. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Ling; Yang, Chih-Feng; Agarwal, Vinay; Kim, Taehoon; Sonkusale, Sameer; Busnaina, Ahmed; Chen, Michelle; Dokmeci, Mehmet R.

    2010-03-01

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to ~ 300% and ~ 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications.

  9. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry.

    PubMed

    Chen, Chia-Ling; Yang, Chih-Feng; Agarwal, Vinay; Kim, Taehoon; Sonkusale, Sameer; Busnaina, Ahmed; Chen, Michelle; Dokmeci, Mehmet R

    2010-03-01

    We present integration of single-stranded DNA (ss-DNA)-decorated single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry as nanoscale chemical sensors. SWNTs were assembled onto CMOS circuitry via a low voltage dielectrophoretic (DEP) process. Besides, bare SWNTs are reported to be sensitive to various chemicals, and functionalization of SWNTs with biomolecular complexes further enhances the sensing specificity and sensitivity. After decorating ss-DNA on SWNTs, we have found that the sensing response of the gas sensor was enhanced (up to approximately 300% and approximately 250% for methanol vapor and isopropanol alcohol vapor, respectively) compared with bare SWNTs. The SWNTs coupled with ss-DNA and their integration on CMOS circuitry demonstrates a step towards realizing ultra-sensitive electronic nose applications. PMID:20139486

  10. Selection of modes in transverse-mode waveguides for semiconductor lasers based on asymmetric heterostructures

    SciTech Connect

    Slipchenko, S. O. Bondarev, A. D.; Vinokurov, D. A.; Nikolaev, D. N.; Fetisova, N. V.; Sokolova, Z. N.; Pikhtin, N. A.; Tarasov, I. S.

    2009-01-15

    Asymmetric Al{sub 0.3}Ga{sub 0.7}As/GaAs/InGaAs heterostructures with a broadened waveguide produced by the method of MOCVD epitaxy are studied. It is established that the precision shift of the active region to one of the cladding layers ensures the generation of the chosen mode of high order in the transverse broadened waveguide. It is experimentally established that this shift brings about an increase in internal optical losses and a decrease in the internal quantum efficiency of stimulated emission. It is shown experimentally that the shift of the active region to the n-type cladding layer governs the sublinear form of the power-current characteristic for semiconductor lasers; in the case of a shift of the active region towards the p-type cladding layer, the laser diodes demonstrated a linear dependence of optical power on the pump current in the entire range of pump currents.

  11. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.

    PubMed

    Kang, Seung-Kyun; Park, Gayoung; Kim, Kyungmin; Hwang, Suk-Won; Cheng, Huanyu; Shin, Jiho; Chung, Sangjin; Kim, Minjin; Yin, Lan; Lee, Jeong Chul; Lee, Kyung-Mi; Rogers, John A

    2015-05-01

    Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems. PMID:25867894

  12. Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts

    SciTech Connect

    Reece, SY; Hamel, JA; Sung, K; Jarvi, TD; Esswein, AJ; Pijpers, JJH; Nocera, DG

    2011-11-03

    We describe the development of solar water-splitting cells comprising earth-abundant elements that operate in near-neutral pH conditions, both with and without connecting wires. The cells consist of a triple junction, amorphous silicon photovoltaic interfaced to hydrogen- and oxygen-evolving catalysts made from an alloy of earth-abundant metals and a cobalt|borate catalyst, respectively. The devices described here carry out the solar-driven water-splitting reaction at efficiencies of 4.7% for a wired configuration and 2.5% for a wireless configuration when illuminated with 1 sun (100 milliwatts per square centimeter) of air mass 1.5 simulated sunlight. Fuel-forming catalysts interfaced with light-harvesting semiconductors afford a pathway to direct solar-to-fuels conversion that captures many of the basic functional elements of a leaf.

  13. Optical Properties of Planar Nanostructures Based on Semiconductor Quantum Dots and Plasmonic Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bakanov, A. G.; Toropov, N. A.; Vartanyan, T. A.

    2016-03-01

    The optical properties of a composite material consisting of a thin polymer film, which is activated by semiconductor CdSe/ZnS quantum dots (QDs) and silver nanoparticles, on a transparent dielectric substrate have been investigated. It is revealed that the presence of silver nanoparticles leads to an increase in the QD absorption (by a factor of 4) and in the fluorescence intensity (by a factor of 10), whereas the fluorescence time drops by a factor of about 10. Excitation of the composite medium by a pulsed laser is found to result in narrowing of the fluorescence band and a sublinear dependence of its intensity on the pulse energy. In the absence of silver nanoparticles, the fluorescence spectrum of QDs is independent of the excitation-pulse energy density, and the fluorescence intensity depends linearly on the pulse energy in the entire range of energy densities, up to 75 mJ/cm2.

  14. Photoluminescence in semiconductor structures based on butyl-substituted erbium phthalocyanine complexes

    SciTech Connect

    Belogorokhov, I. A. Ryabchikov, Yu. V.; Tikhonov, E. V.; Pushkarev, V. E.; Breusova, M. O.; Tomilova, L. G.; Khokhlov, D. R.

    2008-03-15

    The study is concerned with the luminescence properties of ensembles of semiconductor structures containing organic phthalocyanine molecules with erbium ions as complexing agents. The photoluminescence spectra of the structures of the type of erbium monophthalocyanine, bisphthalocyanine, and triphthalocyanine are recorded. The photoluminescence peaks are detected at the wavelengths 888, 760, and 708 nm (and photon energies 1.4, 1.6, and 1.75 eV) corresponding to electronic transitions within the organic complexes. It is found that, when a metal complexing agent is introduced into the molecular structure of the ligand, the 708 nm luminescence peak becomes unobservable. It is shown that, in the bisphthalocyanine samples, the photoluminescence signal corresponding to transitions from the 4F{sub 9/2} level of erbium ions is enhanced.

  15. Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires.

    PubMed

    Yang, Qing; Wu, Yuanpeng; Liu, Ying; Pan, Caofeng; Wang, Zhong Lin

    2014-02-21

    The piezo-phototronic effect, a three way coupling effect of piezoelectric, semiconductor and photonic properties in non-central symmetric semiconductor materials, utilizing the piezo-potential as a "gate" voltage to tune the charge transport/generation/recombination and modulate the performance of optoelectronic devices, has formed a new field and attracted lots of interest recently. The mechanism was verified in various optoelectronic devices such as light emitting diodes (LEDs), photodetectors and solar cells etc. The fast development and dramatic increasing interest in the piezo-phototronic field not only demonstrate the way the piezo-phototronic effects work, but also indicate the strong need for further research in the physical mechanism and potential applications. Furthermore, it is important to distinguish the contribution of the piezo-phototronic effect from other factors induced by external strain such as piezoresistance, band shifting or contact area change, which also affect the carrier behaviour and device performance. In this perspective, we review our recent progress on piezo-phototronics and especially focus on pointing out the features of piezo-phototronic effect in four aspects: I-V characteristics; c-axis orientation; influence of illumination; and modulation of carrier behaviour. Finally we proposed several criteria for describing the contribution made by the piezo-phototronic effect to the performance of optoelectronic devices. This systematic analysis and comparison will not only help give an in-depth understanding of the piezo-phototronic effect, but also work as guide for the design of devices in related areas. PMID:24402437

  16. Dilute magnetic semiconductors based on wide bandgap SiO 2 with and without transition metal elements

    NASA Astrophysics Data System (ADS)

    Dinh, Van An; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2005-10-01

    Material designs based on the first principle calculations of electronic structures are proposed for α-quartz SiO 2-based dilute magnetic semiconductors. The incorporation of transition metals (TMs) into Si sites and of the non-TM atoms into O sites are treated for various concentrations. At temperatures higher than room temperature, most of the TM-doped SiO 2 have no magnetism, yet Si 1- xMn xO 2 might achieve the ferromagnetism. The substitution of O by non-TM atoms as C or N also induces the magnetism in the host. However, while the N's substitution induces the ferromagnetism, C's substitution causes an anti-ferromagnetic behavior in the host material SiO 2.

  17. Low voltage tunneling magnetoresistance in CuCrO{sub 2}-based semiconductor heterojunctions at room temperature

    SciTech Connect

    Li, X. R.; Han, M. J.; Shan, C.; Hu, Z. G. Zhu, Z. Q.; Chu, J. H.; Wu, J. D.

    2014-12-14

    CuCrO{sub 2}-based heterojunction diodes with rectifying characteristics have been fabricated by combining p-type Mg-doped CuCrO{sub 2} and n-type Al-doped ZnO. It was found that the current for the heterojunction in low bias voltage region is dominated by the trap-assisted tunneling mechanism. Positive magnetoresistance (MR) effect for the heterojunction can be observed at room temperature due to the tunneling-induced antiparallel spin polarization near the heterostructure interface. The MR effect becomes enhanced with the magnetic field, and shows the maximum at a bias voltage around 0.5 V. The phenomena indicate that the CuCrO{sub 2}-based heterojunction is a promising candidate for low-power semiconductor spintronic devices.

  18. Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Jun; Agarwal, Ajay; Buddharaju, Kavitha D.; Singh, Navab; Gao, Zhiqiang

    2007-06-01

    Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide- semiconductor-compatible silicon nanowires (SiNWs) with crown ethers covalently immobilized on their surface are presented. A densely packed organic monolayer terminated with amine groups is introduced to the SiNW surface via hydrosilylation. Amine-modified crown ethers, acting as sensing elements, are then immobilized onto the SiNWs through a cross-linking reaction with the monolayer. The crown ether-functionalized SiNWs recognize Na+ and K+ according to their complexation ability to the crown ethers. The SiNW sensors are highly selective and capable of achieving an ultralow detection limit down to 50nM, over three orders of magnitude lower than that of conventional crown ether-based ion-selective electrodes.

  19. A Furan-Thiophene-Based Quinoidal Compound: A New Class of Solution-Processable High-Performance n-Type Organic Semiconductor.

    PubMed

    Xiong, Yu; Tao, Jingwei; Wang, Ruihao; Qiao, Xiaolan; Yang, Xiaodi; Wang, Deliang; Wu, Hongzhuo; Li, Hongxiang

    2016-07-01

    The furan-thiophene-based quinoidal organic semiconductor, TFT-CN, is designed and synthesized. TFT-CN displays a high electron mobility of 7.7 cm(2) V(-1) s(-1) , two orders of magnitude higher than the corresponding thiophene-based derivative. PMID:27167524

  20. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  1. The Narrow-Band Model and Semi-Conductor Theory

    ERIC Educational Resources Information Center

    Tanner, B. K.

    1976-01-01

    Applies the narrow-band model to the instruction of intrinsic and extrinsic semiconductors along with the phenomenon of compensation. Advocates the model for undergraduate instruction due to its intuitive appeal and mathematical simplicity. (CP)

  2. Low-noise, low repetition rate, semiconductor-based mode-locked laser source suitable for high bandwidth photonic analog-digital conversion.

    PubMed

    Mandridis, Dimitrios; Ozdur, Ibrahim; Quinlan, Franklyn; Akbulut, Mehmetcan; Plant, Jason J; Juodawlkis, Paul W; Delfyett, Peter J

    2010-05-20

    A semiconductor-based mode-locked laser source with low repetition rate, ultralow amplitude, and phase noise is introduced. A harmonically mode-locked semiconductor-based ring laser is time demultiplexed at a frequency equal to the cavity fundamental frequency (80MHz), resulting in a low repetition rate pulse train having ultralow amplitude and phase noise, properties usually attributed to multigigahertz repetition rate lasers. The effect of time demultiplexing on the phase noise of harmonically mode-locked lasers is analyzed and experimentally verified. PMID:20490247

  3. Geometric intrinsic symmetries

    SciTech Connect

    Gozdz, A. Szulerecka, A.; Pedrak, A.

    2013-08-15

    The problem of geometric symmetries in the intrinsic frame of a many-body system (nucleus) is considered. An importance of symmetrization group notion is discussed. Ageneral structure of the intrinsic symmetry group structure is determined.

  4. Ferromagnets based on diamond-like semiconductors GaSb, InSb, Ge, and Si supersaturated with manganese or iron impurities during laser-plasma deposition

    SciTech Connect

    Demidov, E. S. Podol'skii, V. V.; Lesnikov, V. P.; Sapozhnikov, M. V.; Druzhnov, D. M.; Gusev, S. N.; Gribkov, B. A.; Filatov, D. O.; Stepanova, Yu. S.; Levchuk, S. A.

    2008-01-15

    Properties of thin (30-100 nm) layers of diluted magnetic semiconductors based on diamond-like compounds III-V (InSb and GaSb) and elemental semiconductors Ge and Si doped with 3d impurities of manganese and iron up to 15% were measured and discussed. The layers were grown by laser-plasma deposition onto heated single-crystal gallium arsenide or sapphire substrates. The ferromagnetism of layers with the Curie temperature up to 500 K appeared in observations of the ferromagnetic resonance, anomalous Hall effect, and magneto-optic Kerr effect. The carrier mobility of diluted magnetic semiconductors is a hundred times larger than that of the previously known highest temperature magnetic semiconductors, i.e., copper and chromium chalcogenides. The difference between changes in the magnetization with temperature in diluted semiconductors based on III-V, Ge, and Si was discussed. A complex structure of the ferromagnetic resonance spectrum in Si:Mn/GaAs was observed. The results of magnetic-force microscopy showed a weak correlation between the surface relief and magnetic inhomogeneity, which suggests that the ferromagnetism is caused by the 3d-impurity solid solution, rather than ferromagnetic phase inclusions.

  5. Experimental investigation, modeling, and simulations for MEMS-based gas sensor used for monitoring process chambers in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Jafri, Ijaz H.; DiMeo, Frank, Jr.; Neuner, Jeffrey W.; DiMascio, Sue; Marchetti, James

    2001-04-01

    There is a growing demand from the semiconductor industry for multi-component gas sensing for advanced process control applications. Microelectromechanical systems (MEMS) based integrated gas sensors present several advantages for this application such as ease of array fabrication, small size, and unique thermal manipulation capabilities. MEMS based gas sensors that are produced using a standard CMOS (Complimentary Metal Oxide Semiconductor) process have the additional advantages of being readily realized by commercial foundries and amenable to the inclusion of on-chip electronics. In order to speed the design and optimization of such integrated gas sensors, a commercial software package IntelliSuiteTM was used to model the coupled thermo-electro-mechanical responses of devices known as microhotplates. Models were built based on the GDSII formatted mask layout, process sequences, and layer thicknesses. During these simulations, key parameters such as device design and structure were investigated, as well as their effect on the resultant device temperature distribution and mechanical deflection. Detailed analyses were conducted to study the resonance modes for different sensor configurations, such as fixed-end and springboard arrangements. These analyses also included a study of the effect of absorbed material on device natural frequency. The modeling results from this study predict that the first three resonant frequency modes for these devices are in the 612 to 1530 kHz range for an all pinned device, and 134 to 676 kHz for a springboard arrangement. Furthermore, the modeling suggests that the resonant frequencies will decrease linearly as a function of increasing absorbed mass, as expected for a simple spring model. The change in resonant frequency due to mass absorption is higher for an all-pinned arrangement, compared to a springboard arrangement, with the second and third (twisting mode) showing the largest change. Thermo-electro-mechanical simulations were

  6. Process for producing chalcogenide semiconductors

    DOEpatents

    Noufi, R.; Chen, Y.W.

    1985-04-30

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  7. Process for producing chalcogenide semiconductors

    DOEpatents

    Noufi, Rommel; Chen, Yih-Wen

    1987-01-01

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  8. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yu, Xuezhe; Li, Lixia; Wang, Hailong; Xiao, Jiaxing; Shen, Chao; Pan, Dong; Zhao, Jianhua

    2016-05-01

    For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by optimizing the surface oxide, vertically aligned GaAs NWs with a high yield are obtained at Ts = 620 °C. Then a two-temperature procedure is adopted to preserve Ga droplets at lower Ts, which leads to an extension of Ts down to 500 °C for GaAs NWs. Based on this procedure, systematic morphological and structural studies for Ga-catalyzed GaAs NWs in the largest Ts range could be presented. Then within the same growth scheme, for the first time, we demonstrate Ga-catalyzed GaAs/GaSb heterostructure NWs. These GaSb NWs are axially grown on the GaAs NW sections and are pure zinc-blende single crystals. Compositional measurements confirm that the catalyst particles indeed mainly consist of Ga and GaSb sections are of high purity but with a minor composition of As. In the end, we present GaAsSb NW growth with a tunable Sb composition. Our results provide useful information for the controllable synthesis of multi-compositional Ga-catalyzed III-V semiconductor NWs on Si for heterogeneous integration.For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by

  9. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Cheng, Qijin; Zhong, Jinxiang; Cai, Weiwei; Zhang, Zifeng; Wu, Zhengyun; Zhang, Fengyan

    2014-02-01

    High quality ZnO nanowires (NWs) were grown on a graphene layer by a hydrothermal method. The ZnO NWs revealed higher uniform surface morphology and better structural properties than ZnO NWs grown on SiO2/Si substrate. A low dark current metal-semiconductor-metal photodetector based on ZnO NWs with Au Schottky contact has also been fabricated. The photodetector displays a low dark current of 1.53 nA at 1 V bias and a large UV-to-visible rejection ratio (up to four orders), which are significantly improved compared to conventional ZnO NW photodetectors. The improvement in UV detection performance is attributed to the existence of a surface plasmon at the interface of the ZnO and the graphene.

  10. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer.

    PubMed

    Xu, Qiang; Cheng, Qijin; Zhong, Jinxiang; Cai, Weiwei; Zhang, Zifeng; Wu, Zhengyun; Zhang, Fengyan

    2014-02-01

    High quality ZnO nanowires (NWs) were grown on a graphene layer by a hydrothermal method. The ZnO NWs revealed higher uniform surface morphology and better structural properties than ZnO NWs grown on SiO2/Si substrate. A low dark current metal-semiconductor-metal photodetector based on ZnO NWs with Au Schottky contact has also been fabricated. The photodetector displays a low dark current of 1.53 nA at 1 V bias and a large UV-to-visible rejection ratio (up to four orders), which are significantly improved compared to conventional ZnO NW photodetectors. The improvement in UV detection performance is attributed to the existence of a surface plasmon at the interface of the ZnO and the graphene. PMID:24407201

  11. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy.

    PubMed

    Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard

    2014-07-28

    We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2. PMID:25089414

  12. Analysis of message extraction in optical chaos communications based on injection-locking synchronization of semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Murakami, Atsushi; Shore, K. Alan

    2006-10-01

    In this paper, we employ a simple theory based on driven damped oscillators to clarify the physical basis for message extraction in optical chaos communications using injection-locked semiconductor lasers. The receiver laser is optically driven by injection from the transmitter laser. We have numerically investigated the response characteristics of the receiver when it is driven by periodic (message) and chaotic (carrier) signals. It is thereby revealed that the response of the receiver laser in the two cases is quite different. For the periodic drive, the receiver exhibits a response depending on the signal frequency, while the chaotic drive provides a frequency-independent synchronous response to the receiver laser. CPF can be clearly understood in the difference between the periodic and chaotic drives. Message extraction using CPF is also examined, and the validity of our theoretical explanation for the physical mechanism underlying CPF is thus verified.

  13. Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser.

    PubMed

    Xiong, Jintian; Wang, Rong; Fang, Tao; Pu, Tao; Chen, Dalei; Lu, Lin; Xiang, Peng; Zheng, Jilin; Zhao, Jiyong

    2013-10-15

    A novel scheme to realize a low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser is proposed and experimentally demonstrated. In the proposed scheme, neither an external modulator nor an electrical filter is used, and no more than 25 dB of the electrical loop gain is required due to the high modulation efficiency of the relaxation oscillation frequency of the DFB laser. Microwave signals with frequency coarsely tuned from 3.77 to 8.75 GHz are generated by changing the bias current and operation temperature of the DFB laser. The single sideband phase noise of the generated 6.97 GHz microwave signal is measured to be -103.6 dBc/Hz at 10 kHz offset. PMID:24321940

  14. GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistor Fabricated with Novel Wet Etching

    NASA Astrophysics Data System (ADS)

    Kodama, Masahito; Sugimoto, Masahiro; Hayashi, Eiko; Soejima, Narumasa; Ishiguro, Osamu; Kanechika, Masakazu; Itoh, Kenji; Ueda, Hiroyuki; Uesugi, Tsutomu; Kachi, Tetsu

    2008-02-01

    A novel method for fabricating trench structures on GaN was developed. A smooth non-polar (1100) plane was obtained by wet etching using tetramethylammonium hydroxide (TMAH) as the etchant. A U-shape trench with the (1100) plane side walls was formed with dry etching and the TMAH wet etching. A U-shape trench gate metal oxide semiconductor field-effect transistor (MOSFET) was also fabricated using the novel etching technology. This device has the excellent normally-off operation of drain current-gate voltage characteristics with the threshold voltage of 10 V. The drain breakdown voltage of 180 V was obtained. The results indicate that the trench gate structure can be applied to GaN-based transistors.

  15. Experimental demonstration of polarization encoding quantum key distribution system based on intrinsically stable polarization-modulated units.

    PubMed

    Wang, Jindong; Qin, Xiaojuan; Jiang, Yinzhu; Wang, Xiaojing; Chen, Liwei; Zhao, Feng; Wei, Zhengjun; Zhang, Zhiming

    2016-04-18

    A proof-of-principle demonstration of a one-way polarization encoding quantum key distribution (QKD) system is demonstrated. This approach can automatically compensate for birefringence and phase drift. This is achieved by constructing intrinsically stable polarization-modulated units (PMUs) to perform the encoding and decoding, which can be used with four-state protocol, six-state protocol, and the measurement-device-independent (MDI) scheme. A polarization extinction ratio of about 30 dB was maintained for several hours over a 50 km optical fiber without any adjustments to our setup, which evidences its potential for use in practical applications. PMID:27137268

  16. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    PubMed Central

    Liu, Ning; Hui, Juan; Sun, Cunqiang; Dong, Junhang; Zhang, Luzheng; Xiao, Hai

    2006-01-01

    A fiber optic intrinsic Fabry-Perot interferometric (IFPI) chemical sensor was developed by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolite synthesized on the cleaved endface of a single mode fiber. The sensor operated by monitoring the optical thickness changes of the zeolite thin film caused by the adsorption of organic molecules into the zeolite channels. The optical thickness of the zeolite thin film was measured by white light interferometry. Using methanol, 2-propanol, and toluene as the model chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolved organics in water with high sensitivity.

  17. Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers

    NASA Astrophysics Data System (ADS)

    Imai, Shinichi; Matsuki, Kazuto; Kikuiri, Nobutaka; Takayama, Katsuhiko; Iwase, Osamu; Urata, Yoshiharu; Shinozaki, Tatsuya; Wada, Yoshio; Wada, Satoshi

    2010-02-01

    Highly reliable DUV light sources are required for semiconductor applications such as a photomask inspection. The mask inspection for the advanced devices requires the UV lightning wavelength beyond 200 nm. By use of dual fiber lasers as fundamental light sources and the multi-wavelength conversion we have constructed a light source of 198nm with more than 100 mW. The first laser is Yb doped fiber laser with the wavelength of 1064 nm; the second is Er doped fiber laser with 1560 nm. To obtain the robustness and to simplify the configuration, the fundamental lights are run in the pulsed operation and all wavelength conversions are made in single-pass scheme. The PRFs of more than 2 MHz are chosen as an alternative of a CW light source; such a high PRF light is equivalent to CW light for inspection cameras. The light source is operated described as follows. Automatic weekly maintenance within an hour is done if it is required; automatic monthly maintenance within 4 hours is done on fixed date per month; manufacturer's maintenance is done every 6 month. Now this 198 nm light sources are equipped in the leading edge photomask inspection machines.

  18. Nitride-Based UV Metal-Insulator-Semiconductor Photodetector with Liquid-Phase-Deposition Oxide

    NASA Astrophysics Data System (ADS)

    Hwang, J. D.; Yang, Gwo Huei; Yang, Yuan Yi; Yao, Pin Cuan

    2005-11-01

    A low-temperature (30-40°C), low-cost and reliable method of liquid phase deposition (LPD) has been employed to grow SiO2 layers on GaN. The LPD process uses a supersaturated acid aqueous solution of hydrofluosilicic (H2SiF6) as a source liquid and an aqueous solution of boric acid (H3BO3) as a deposition rate controller. In this study, the LPD SiO2 was prepared at 40°C with concentrations of H2SiF6 and H3BO3 at 0.2 and 0.01 M, respectively. The minimum interface-trap density, Dit, of a metal-insulator-semiconductor (MIS) capacitor with a structure of Al/20 nm LPD-SiO2/n-GaN was estimated to be 8.4× 1011 cm-2 V-1. Furthermore, a MIS photodetector with a 10-nm-thick LPD-SiO2 layer has been fabricated successfully. The dark current density was as low as 4.41× 10-6 A/cm2 for an applied field of 4 MV/cm. A maximum responsivity of 0.112 A/W was observed for incident ultraviolet light of 366 nm with an intensity of 4.15 mW/cm2. Defect-assisted tunneling was invoked to explain these results.

  19. Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint

    SciTech Connect

    Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

    2012-06-01

    State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

  20. Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals.

    PubMed

    Palui, Goutam; Na, Hyon Bin; Mattoussi, Hedi

    2012-02-01

    We have developed a new set of multifunctional multidentate OligoPEG ligands, each containing a central oligomer on which were laterally grafted several short poly(ethylene glycol) (PEG) moieties appended with either thioctic acid (TA) or terminally reactive groups. Reduction of the TAs (e.g., in the presence of NaBH(4)) provides dihydrolipoic acid (DHLA)-appended oligomers. Here the insertion of PEG segments in the ligand structure promotes water solubility and reduces nonspecific interactions, while TA and DHLA groups provide multidentate anchoring onto Au nanoparticles (AuNPs) and ZnS-overcoated semiconductor quantum dots (QDs), respectively. The synthetic route involves simple coupling chemistry using N,N-dicylohexylcarbodiimide (DCC). Water-soluble QDs and AuNPs capped with these ligands were prepared via cap exchange. As prepared, the nanocrystals dispersions were aggregation-free, homogeneous, and stable for extended periods of time over pH ranging from 2 to 14 and in the presence of excess electrolyte (2 M NaCl). The new OligoPEG ligands also allow easy integration of tunable functional and reactive groups within their structures (e.g., azide or amine), which imparts surface functionalities to the nanocrystals and opens up the possibility of bioconjugation with specific biological molecules. The improved colloidal stability combined with reactivity offer the possibility of using the nanocrystals as biological probes in an array of complex and biologically relevant media. PMID:22201293

  1. Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-02-01

    Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.

  2. Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok

    2011-07-01

    The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.

  3. Simulation of plasma based semiconductor processing using block structured locally refined grids

    SciTech Connect

    Wake, D.D.

    1998-01-01

    We have described a new numerical method for plasma simulation. Calculations have been presented which show that the method is accurate and suggest the regimes in which the method provides savings in CPU time and memory requirements. A steady state simulation of a four centimeter domain was modeled with sheath scale (150 microns) resolution using only 40 grid points. Simulations of semiconductor processing equipment have been performed which imply the usefulness of the method for engineering applications. It is the author`s opinion that these accomplishments represent a significant contribution to plasma simulation and the efficient numerical solution of certain systems of non-linear partial differential equations. More work needs to be done, however, for the algorithm to be of practical use in an engineering environment. Despite our success at avoiding the dielectric relaxation timestep restrictions the algorithm is still conditionally stable and requires timesteps which are relatively small. This represents a prohibitive runtime for steady state solutions on high resolution grids. Current research suggests that these limitations may be overcome and the use of much larger timesteps will be possible.

  4. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    PubMed

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication. PMID:21369207

  5. Tunable and switchable multi-wavelength fiber laser based on semiconductor optical amplifier and twin-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Kim, Bongkyun; Han, Jihee; Chung, Youngjoo

    2012-02-01

    Multi-wavelength fiber lasers have attracted a lot of interest, recently, because of their potential applications in wavelength-division-multiplexing (WDM) systems, optical fiber sensing, and fiber-optics instruments, due to their numerous advantages such as multiple wavelength operation, low cost, and compatibility with the fiber optic systems. Semiconductor optical amplifier (SOA)-based multi-wavelength fiber lasers exhibit stable operation because of the SOA has the property of primarily inhomogeneous broadening and thus can support simultaneous oscillation of multiple lasing wavelengths. In this letter, we propose and experimentally demonstrate a switchable multi-wavelength fiber laser employing a semiconductor optical amplifier and twin-core photonic crystal fiber (TC-PCF) based in-line interferometer comb filter. The fabricated two cores are not symmetric due to the associated fiber fabrication process such as nonuniform heat gradient in furnace and asymmetric microstructure expansion during the gas pressurization which results in different silica strut thickness and core size. The induced asymmetry between two cores considerably alters the linear power transfer, by seriously reducing it. These nominal twin cores form effective two optical paths and associated effective refractive index difference. The in-fiber comb filter is effectively constructed by splicing a section of TC-PCF between two single mode fibers (SMFs). The proposed laser can be designed to operate in stable multi-wavelength lasing states by adjusting the states of the polarization controller (PC). The lasing modes are switched by varying the state of PC and the change is reversible. In addition, we demonstrate a tunable multi-wavelength fiber laser operation by applying temperature changes to TC-PCF in the multi-channel filter.

  6. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy.

    PubMed

    Yu, Xuezhe; Li, Lixia; Wang, Hailong; Xiao, Jiaxing; Shen, Chao; Pan, Dong; Zhao, Jianhua

    2016-05-19

    For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by optimizing the surface oxide, vertically aligned GaAs NWs with a high yield are obtained at Ts = 620 °C. Then a two-temperature procedure is adopted to preserve Ga droplets at lower Ts, which leads to an extension of Ts down to 500 °C for GaAs NWs. Based on this procedure, systematic morphological and structural studies for Ga-catalyzed GaAs NWs in the largest Ts range could be presented. Then within the same growth scheme, for the first time, we demonstrate Ga-catalyzed GaAs/GaSb heterostructure NWs. These GaSb NWs are axially grown on the GaAs NW sections and are pure zinc-blende single crystals. Compositional measurements confirm that the catalyst particles indeed mainly consist of Ga and GaSb sections are of high purity but with a minor composition of As. In the end, we present GaAsSb NW growth with a tunable Sb composition. Our results provide useful information for the controllable synthesis of multi-compositional Ga-catalyzed III-V semiconductor NWs on Si for heterogeneous integration. PMID:27194599

  7. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  8. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  9. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  10. Who wants to work in a rural health post? The role of intrinsic motivation, rural background and faith-based institutions in Ethiopia and Rwanda

    PubMed Central

    Serneels, Pieter; Montalvo, Jose G; Lievens, Tomas; Butera, Jean Damascene; Kidanu, Aklilu

    2010-01-01

    Abstract Objective To understand the factors influencing health workers’ choice to work in rural areas as a basis for designing policies to redress geographic imbalances in health worker distribution. Methods A cohort survey of 412 nursing and medical students in Rwanda provided unique contingent valuation data. Using these data, we performed a regression analysis to examine the determinants of future health workers’ willingness to work in rural areas as measured by rural reservation wages. These data were also combined with those from an identical survey in Ethiopia to enable a two-country analysis. Findings Health workers with higher intrinsic motivation – measured as the importance attached to helping the poor – as well as those who had grown up in a rural area and Adventists who had participated in a local bonding scheme were all significantly more willing to work in a rural area. The main result for intrinsic motivation in Rwanda was strikingly similar to the result obtained for Ethiopia and Rwanda combined. Conclusion Intrinsic motivation and rural origin play an important role in health workers’ decisions to work in a rural area, in addition to economic incentives, while faith-based institutions can also influence the decision. PMID:20461138

  11. Joint amplitude and frequency demodulation analysis based on intrinsic time-scale decomposition for planetary gearbox fault diagnosis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Lin, Xuefeng; Zuo, Ming J.

    2016-05-01

    Planetary gearbox vibration signals feature complex modulations, thus leading to intricate sideband structure and resulting in difficulty in fault characteristic frequency identification. Intrinsic time-scale decomposition has unique merits, such as high adaptability to changes in signals, low computational complexity, good capability to suppress mode mixing and to preserve temporal information of transients, and excellent suitability for mono-component decomposition of complex multi-component signals. In order to address the issue with planetary gearbox fault diagnosis due to the multiple modulation sources, a joint amplitude and frequency demodulation analysis method is proposed, by exploiting the merits of intrinsic time-scale decomposition. The signal is firstly decomposed into a series of mono-component proper rotational components. Then the one with its instantaneous frequency fluctuating around the gear meshing frequency or its harmonics is selected as the sensitive component. Next, Fourier transformation is applied to the instantaneous amplitude and instantaneous frequency of the sensitive component to obtain the amplitude and frequency demodulated spectra respectively. Finally, a planetary gearbox fault is diagnosed by matching the peaks in the amplitude and frequency demodulated spectra with the theoretical gear fault characteristic frequencies. The proposed method is illustrated by a numerical simulated signal, and further validated by lab experimental signals of a planetary gearbox. The localized faults of sun, planet and ring gears are diagnosed, showing the effectiveness of the method.

  12. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGESBeta

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  13. Wide-Bandgap Semiconductors

    SciTech Connect

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  14. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  15. High-power ({gt}0.9 W cw) diffraction-limited semiconductor laser based on a fiber Bragg grating external cavity

    SciTech Connect

    Cornwell, D.M. , Jr.; Thomas, H.J.

    1997-02-01

    We have developed a high-power ({gt}0.9 W cw) diffraction-limited semiconductor laser based on a tapered semiconductor optical amplifier using a fiber Bragg grating in an external cavity configuration. Frequency-selective feedback from the fiber grating is injected into the amplifier via direct butt coupling through a single mode fiber, resulting in a spectrally stable and narrow ({lt}0.3 nm) high-power laser for solid-state laser pumping, laser remote sensing, and optical communications. {copyright} {ital 1997 American Institute of Physics.}

  16. Predicting intrinsic brain activity.

    PubMed

    Craddock, R Cameron; Milham, Michael P; LaConte, Stephen M

    2013-11-15

    Multivariate supervised learning methods exhibit a remarkable ability to decode externally driven sensory, behavioral, and cognitive states from functional neuroimaging data. Although they are typically applied to task-based analyses, supervised learning methods are equally applicable to intrinsic effective and functional connectivity analyses. The obtained models of connectivity incorporate the multivariate interactions between all brain regions simultaneously, which will result in a more accurate representation of the connectome than the ones available with standard bivariate methods. Additionally the models can be applied to decode or predict the time series of intrinsic brain activity of a region from an independent dataset. The obtained prediction accuracy provides a measure of the integration between a brain region and other regions in its network, as well as a method for evaluating acquisition and preprocessing pipelines for resting state fMRI data. This article describes a method for learning multivariate models of connectivity. The method is applied in the non-parametric prediction accuracy, influence, and reproducibility-resampling (NPAIRS) framework, to study the regional variation of prediction accuracy and reproducibility (Strother et al., 2002). The resulting spatial distribution of these metrics is consistent with the functional hierarchy proposed by Mesulam (1998). Additionally we illustrate the utility of the multivariate regression connectivity modeling method for optimizing experimental parameters and assessing the quality of functional neuroimaging data. PMID:23707580

  17. A portable and wide energy range semiconductor-based neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Hoshor, C. B.; Oakes, T. M.; Myers, E. R.; Rogers, B. J.; Currie, J. E.; Young, S. M.; Crow, J. A.; Scott, P. R.; Miller, W. H.; Bellinger, S. L.; Sobering, T. J.; Fronk, R. G.; Shultis, J. K.; McGregor, D. S.; Caruso, A. N.

    2015-12-01

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation-either bare or obscured by neutron moderating and/or absorbing material(s)-in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  18. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  19. Chemically Derivatized Semiconductor Photoelectrodes.

    ERIC Educational Resources Information Center

    Wrighton, Mark S.

    1983-01-01

    Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…

  20. Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin

    2013-03-01

    Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.

  1. Semiconductor films on flexible iridium substrates

    DOEpatents

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  2. High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation.

    PubMed

    Fan, Li; Xia, Guangqiong; Chen, Jianjun; Tang, Xi; Liang, Qing; Wu, Zhengmao

    2016-08-01

    Based on an optically injected semiconductor laser (OISL) operating at period-one (P1) nonlinear dynamical state, high-purity millimeter-wave generation at 60 GHz band is experimentally demonstrated via 1/4 and 1/9 subharmonic microwave modulation (the order of subharmonic is with respect to the frequency fc of the acquired 60 GHz band millimeter-wave but not the fundamental frequency f0 of P1 oscillation). Optical injection is firstly used to drive a semiconductor laser into P1 state. For the OISL operates at P1 state with a fundamental frequency f0 = 49.43 GHz, by introducing 1/4 subharmonic modulation with a modulation frequency of fm = 15.32 GHz, a 60 GHz band millimeter-wave with central frequency fc = 61.28 GHz ( = 4fm) is experimentally generated, whose linewidth is below 1.6 kHz and SSB phase noise at offset frequency 10 kHz is about -96 dBc/Hz. For fm is varied between 13.58 GHz and 16.49 GHz, fc can be tuned from 54.32 GHz to 65.96 GHz under matched modulation power Pm. Moreover, for the OISL operates at P1 state with f0 = 45.02 GHz, a higher order subharmonic modulation (1/9) is introduced into the OISL for obtaining high-purity 60 GHz band microwave signal. With (fm, Pm) = (7.23 GHz, 13.00 dBm), a microwave signal at 65.07 GHz ( = 9fm) with a linewidth below 1.6 kHz and a SSB phase noise less than -98 dBc/Hz is experimentally generated. Also, the central frequency fc can be tuned in a certain range through adjusting fm and selecting matched Pm. PMID:27505789

  3. Surface wave tomography with USArray based on phase front tracking and amplitude mapping: isotropic, anisotropic, and intrinsic attenuation structures

    NASA Astrophysics Data System (ADS)

    Lin, F.; Ritzwoller, M. H.

    2011-12-01

    The deployment of the EarthScope/USArray Transportable Array has promoted new and better ways to utilize the dense array configuration and to resolve higher resolution crustal and upper mantle structures beneath the US. Here, we present a local inversion method for surface wave that utilizes the USArray first to determine the surface wave wavefield empirically and then to directly measure the surface wave propagation characteristics such as isotropic velocity, azimuthal anisotropy, and intrinsic attenuation by solving the 2D Helmholtz wave equation. The method starts with single event analysis, where for each period and earthquake all measurements across the array are aggregated to determine maps of phase travel time and amplitude on a fine spatial grid, which essentially describes the surface wave wavefield. The solution of the 2D wave equation contains real and imaginary parts, which are relevant to velocity and attenuation measurements, respectively. For the real part, directionally dependent phase velocities at each location are estimated from the gradient of phase travel time along with the Laplacian of amplitude. For the imaginary part, on the other hand, intrinsic attenuation at each location is estimated from the dot product of the gradients of phase travel time and amplitude along with the Laplacian of phase travel time. In both cases, the terms that contain the gradient operator are directly related to traditional ray theoretic approaches (e.g., eikonal equation for velocity measurement) whereas the terms involving the Laplacian operator provide corrections for off-ray sensitivity. In principle, by applying the correction terms, finite frequency effects such as wave interference, wavefront healing, and backward scattering are accounted for in phase velocity measurements and focus/defocusing is accounted for in attenuation measurements. We apply the method to Rayleigh wave measurements between 30 and 100 sec period from more than 700 earthquakes and all

  4. Diode having trenches in a semiconductor region

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  5. Semiconductor devices having a recessed electrode structure

    SciTech Connect

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  6. Materials and device design with III-V and II-VI compound-based diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, Hiroshi; Sato, Kazunori

    2002-03-01

    Since the discovery of the carrier induced ferromagnetism in (In, Mn)As and (Ga, Mn)As, diluted magnetic semiconductors (DMS) have been of much interest from the industrial viewpoint because of their potentiality as a new functional material (spintronics). In this paper, the magnetism in DMS is investigated based on the first principles calculations, and materials and device design with the DMS is proposed toward the spintronics. The electronic structure is calculated by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation based on the local spin density approximation. We calculate the electronic structure of ferromagnetic and spin-glass DMS, and total energy difference between them is calculated to estimate whether the ferromagnetic state is stable or not. It is shown that V-, Cr- and Mn-doped III-V compounds, V- and Cr-doped II-VI compounds and Fe-, Co- and Ni-doped ZnO are promising candidates for a high-Curie temperature ferromagnet. A chemical trend in the ferromagnetism is well understood based on the double exchange mechanism [1]. Based upon this material design, some prototypes of the spintronics devices, such as a spin-FET, a photo-induced-magnetic memory and a coherent-spin-infection device, are proposed. [1] K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39 (2000) L555, 40 (2001) L334, L485 and L651.

  7. Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities.

    PubMed

    Sartuqui, Javier; Gravina, A Noel; Rial, Ramón; Benedini, Luciano A; Yahia, L'Hocine; Ruso, Juan M; Messina, Paula V

    2016-09-01

    Intrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated. It was found that the scaffold microstructure, their inherent surface roughness, and the compression strength of the gelatin scaffolds can be modulated by the effect of the cross-linking agent and, essentially, by mimicking the nano-scale size of hydroxyapatite in natural bone. A clear effect of bioactive hydroxyapatite nano-rods on the scaffolds skills can be appreciated and it is greater than the effect of the cross-linking agent, offering a huge perspective for the upcoming progress of bone implant technology. PMID:27220014

  8. Probing the intrinsic failure mechanism of fluorinated amorphous carbon film based on the first-principles calculations

    PubMed Central

    Zhang, Ren-hui; Wang, Li-ping; Lu, Zhi-bin

    2015-01-01

    Fluorinated amorphous carbon films exhibit superlow friction under vacuum, but are prone to catastrophic failure. Thus far, the intrinsic failure mechanism remains unclear. A prevailing view is that the failure of amorphous carbon film results from the plastic deformation of substrates or strong adhesion between two contacted surfaces. In this paper, using first-principles and molecular dynamics methodology, combining with compressive stress-strain relation, we firstly demonstrate that the plastic deformation induces graphitization resulting in strong adhesion between two contacted surfaces under vacuum, which directly corresponds to the cause of the failure of the films. In addition, sliding contact experiments are conducted to study tribological properties of iron and fluorinated amorphous carbon surfaces under vacuum. The results show that the failure of the film is directly attributed to strong adhesion resulting from high degree of graphitization of the film, which are consistent with the calculated results. PMID:25803202

  9. Contribution of intrinsic motoneuron properties to discharge hysteresis and its estimation based on paired motor unit recordings: a simulation study.

    PubMed

    Powers, Randall K; Heckman, C J

    2015-07-01

    Motoneuron activity is strongly influenced by the activation of persistent inward currents (PICs) mediated by voltage-gated sodium and calcium channels. However, the amount of PIC contribution to the activation of human motoneurons can only be estimated indirectly. Simultaneous recordings of pairs of motor units have been used to provide an estimate of the PIC contribution by using the firing rate of the lower threshold unit to provide an estimate of the common synaptic drive to both units, and the difference in firing rate (ΔF) of this lower threshold unit at recruitment and de-recruitment of the higher threshold unit to estimate the PIC contribution to activation of the higher threshold unit. It has recently been suggested that a number of factors other than PIC can contribute to ΔF values, including mechanisms underlying spike frequency adaptation and spike threshold accommodation. In the present study, we used a set of compartmental models representing a sample of 20 motoneurons with a range of thresholds to investigate how several different intrinsic motoneuron properties can potentially contribute to variations in ΔF values. We drove the models with linearly increasing and decreasing noisy conductance commands of different rate of rise and duration and determined the influence of different intrinsic mechanisms on discharge hysteresis (the difference in excitatory drive at recruitment and de-recruitment) and ΔF. Our results indicate that, although other factors can contribute, variations in discharge hysteresis and ΔF values primarily reflect the contribution of dendritic PICs to motoneuron activation. PMID:25904704

  10. The Intrinsically Disordered Regions of the Drosophila melanogaster Hox Protein Ultrabithorax Select Interacting Proteins Based on Partner Topology

    PubMed Central

    Hsiao, Hao-Ching; Gonzalez, Kim L.; Catanese, Daniel J.; Jordy, Kristopher E.; Matthews, Kathleen S.; Bondos, Sarah E.

    2014-01-01

    Interactions between structured proteins require a complementary topology and surface chemistry to form sufficient contacts for stable binding. However, approximately one third of protein interactions are estimated to involve intrinsically disordered regions of proteins. The dynamic nature of disordered regions before and, in some cases, after binding calls into question the role of partner topology in forming protein interactions. To understand how intrinsically disordered proteins identify the correct interacting partner proteins, we evaluated interactions formed by the Drosophila melanogaster Hox transcription factor Ultrabithorax (Ubx), which contains both structured and disordered regions. Ubx binding proteins are enriched in specific folds: 23 of its 39 partners include one of 7 folds, out of the 1195 folds recognized by SCOP. For the proteins harboring the two most populated folds, DNA-RNA binding 3-helical bundles and α-α superhelices, the regions of the partner proteins that exhibit these preferred folds are sufficient for Ubx binding. Three disorder-containing regions in Ubx are required to bind these partners. These regions are either alternatively spliced or multiply phosphorylated, providing a mechanism for cellular processes to regulate Ubx-partner interactions. Indeed, partner topology correlates with the ability of individual partner proteins to bind Ubx spliceoforms. Partners bind different disordered regions within Ubx to varying extents, creating the potential for competition between partners and cooperative binding by partners. The ability of partners to bind regions of Ubx that activate transcription and regulate DNA binding provides a mechanism for partners to modulate transcription regulation by Ubx, and suggests that one role of disorder in Ubx is to coordinate multiple molecular functions in response to tissue-specific cues. PMID:25286318

  11. Intrinsic Josephson junctions in the iron-based multi-band superconductor (V2Sr4O6)Fe2As2

    NASA Astrophysics Data System (ADS)

    Moll, Philip J. W.; Zhu, Xiyu; Cheng, Peng; Wen, Hai-Hu; Batlogg, Bertram

    2014-09-01

    In layered superconductors, Josephson junctions may be formed within the unit cell as a result of sufficiently low inter-layer coupling. These intrinsic Josephson junction (iJJ) systems have attracted considerable interest for their application potential in quantum computing as well as efficient sources of THz radiation, closing the famous `THz gap'. So far, iJJ have been demonstrated in single-band, copper-based high-Tc superconductors, mainly in Bi-Sr-Ca-Cu-O (refs , , ). Here we report clear experimental evidence for iJJ behaviour in the iron-based superconductor (V2Sr4O6)Fe2As2. The intrinsic junctions are identified by periodic oscillations of the flux-flow voltage on increasing a well-aligned in-plane magnetic field. The periodicity is explained by commensurability effects between the Josephson vortex lattice and the crystal structure, which is a hallmark signature of Josephson vortices confined into iJJ stacks. This finding adds the pnictide (V2Sr4O6)Fe2As2 to the copper-based iJJ materials of interest for Josephson junction applications. In particular, novel devices based on multi-band Josephson coupling may be realized.

  12. Proton Conduction in a Phosphonate-Based Metal–Organic Framework Mediated by Intrinsic “Free Diffusion inside a Sphere”

    PubMed Central

    2016-01-01

    Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal–organic framework (MOF) material, MFM-500(Ni). QENS suggests that the proton conductivity (4.5 × 10–4 S/cm at 98% relative humidity and 25 °C) of MFM-500(Ni) is mediated by intrinsic “free diffusion inside a sphere”, representing the first example of such a mechanism observed in MOFs. PMID:27182787

  13. Physics with isotopically controlled semiconductors

    SciTech Connect

    Haller, E. E.

    2010-07-15

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  14. CdSe Nanowire-Based Flexible Devices: Schottky Diodes, Metal-Semiconductor Field-Effect Transistors, and Inverters.

    PubMed

    Jin, Weifeng; Zhang, Kun; Gao, Zhiwei; Li, Yanping; Yao, Li; Wang, Yilun; Dai, Lun

    2015-06-24

    Novel CdSe nanowire (NW)-based flexible devices, including Schottky diodes, metal-semiconductor field-effect transistors (MESFETs), and inverters, have been fabricated and investigated. The turn-on voltage of a typical Schottky diode is about 0.7 V, and the rectification ratio is larger than 1 × 10(7). The threshold voltage, on/off current ratio, subthreshold swing, and peak transconductance of a typical MESFET are about -0.3 V, 4 × 10(5), 78 mV/dec, and 2.7 μS, respectively. The inverter, constructed with two MESFETs, exhibits clear inverting behavior with the gain to be about 28, 34, and 38, at the supply voltages (V(DD)) of 3, 5, and 7 V, respectively. The inverter also shows good dynamic behavior. The rising and falling times of the output signals are about 0.18 and 0.09 ms, respectively, under 1000 Hz square wave signals input. The performances of the flexible devices are stable and reliable under different bending conditions. Our work demonstrates these flexible NW-based Schottky diodes, MESFETs, and inverters are promising candidate components for future portable transparent nanoelectronic devices. PMID:26061530

  15. Photocathodes based on semiconductor superlattices for streak tubes for IR region of 0.9-1.0 um

    NASA Astrophysics Data System (ADS)

    Nolle, Eduard L.

    1995-05-01

    A possibility of temporal analysis of picosecond light pulses in the IR region with the help of photocathodes based on semiconductor superlattices (SL) of type I (InP/InGaAs) with Schottky barrier is discussed. A new principle of avalanche photoelectron emission from such an SL at interband absorption of light is suggested. The principle is based on the electrons free length path increasing in a SL with narrow quantum wells under high electric field applied to the SL. The idea makes it possible to develop a new device - avalanche photocathode with internal amplification for the IR region of 0.9-2 micrometers and temporal resolution better than 30 ps. It is proposed to use doped as well as undoped SL as basis for photocathodes sensitive to the IR radiation in the range of up to 10 micrometers . The photoemission from such structures is caused by the intersubband absorption of light in quantum wells. The use of undoped SL greatly reduced the thermoemission current of the photocathode but requires additional excitation of the SL by light pulses with energy approximately corresponding to the band gap of the narrow band gap material of the SL. The temporal resolution of such photocathodes is supposed to be less than 30 ps. The conditions for the avalanche photoelectron emission obtaining are determined, and the SL parameters which meet the requirement of maximum quantum efficiency of the photocathode are calculated.

  16. A Three-Stage Inverter-Based Stacked Power Amplifier in 65 nm Complementary Metal Oxide Semiconductor Process

    NASA Astrophysics Data System (ADS)

    Kiumarsi, Hamid; Mizuochi, Yutaka; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2012-02-01

    A three-stage inverter-based stacked power amplifier (PA) in complementary metal oxide semiconductor (CMOS) process is proposed to overcome low breakdown voltage problem of scaled CMOS technologies. Unlike previous reported stacked PAs which radio frequency choke (RFC) was inevitable, we proposed stacked nMOS and pMOS transistors which effectively eliminates use of RFC. By properly setting self-biased circuits' and transistors' parameters, output impedance could reach up to 50 Ω which together with not employing the RFC makes this topology very appealing for the scalable PA realization. As a proof of concept, a three-stage PA using 65 nm CMOS technology is implemented. With a 6 V power supply for the third stage, the fabricated PA shows a small-signal gain of 36 dB, a saturated output power of 16 dBm and a maximum power added efficiency of 10% at 1 GHz. Using a 7.5 V of power supply, saturated output power reaches 18 dBm. To the best of our knowledge, this is the first reported inverter-based stacked PA.

  17. A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq

    NASA Astrophysics Data System (ADS)

    Al-Abadi, Alaa M.; Al-Shamma'a, Ayser M.; Aljabbari, Mukdad H.

    2014-08-01

    In this study, intrinsic groundwater vulnerability for the shallow aquifer in northeastern Missan governorate, south of Iraq is evaluated using commonly used DRASTIC model in framework of GIS environment. Preparation of DRASTIC parameters is attained through gathering data from different sources including field survey, geological and meteorological data, a digital elevation model DEM of the study area, archival database, and published research. The different data used to build DRASTIC model are arranged in a geospatial database using spatial analyst extension of ArcGIS 10.2 software. The obtained results related to the vulnerability to general contaminants show that the study area is characterized by two vulnerability zones: low and moderate. Ninety-four percentage (94 %) of the study area has a low class of groundwater vulnerability to contamination, whereas a total of (6 %) of the study area has moderate vulnerability. The pesticides DRASTIC index map shows that the study area is also characterized by two zones of vulnerability: low and moderate. The DRASTIC map of this version clearly shows that small percentage (13 %) of the study area has low vulnerability to contamination, and most parts have moderate vulnerability (about 87 %). The final results indicate that the aquifer system in the interested area is relatively protected from contamination on the groundwater surface. To mitigate the contamination risks in the moderate vulnerability zones, a protective measure must be put before exploiting the aquifer and before comprehensive agricultural activities begin in the area.

  18. A Radio-Based Search finds no evidence for intrinsically weak TGFs in the Fermi GBM Data

    NASA Astrophysics Data System (ADS)

    Briggs, Michael; Omar, Kareem

    2016-04-01

    We analyze gamma-ray data from the Fermi Gamma-ray Burst Monitor (GBM) around the times of VLF radio sferics. The gamma-ray photons are time-aligned to the times of radio sferics, with correction for the light travel time to Fermi, and accumulated. Gamma-ray photons from TGFs already known from the standard GBM TGF offline search are excluded from the accumulation. We use sferic signals from both the World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN). No excess signal is found in the accumulation of the gamma-ray data for sferics within 400 km of the Fermi nadir. However, an excess of gamma-rays is found in the co-aligned signal for sferics between 400 and 800 km of the Fermi nadir. Our interpretation of this distance-dependent non-detection / detection pattern is that the standard GBM offline search for TGFs is missing some TGFs that are weak at Fermi due to distance from Fermi and that there is no evidence for a population of TGFs that are intrinsically fainter than the threshold of the search.

  19. Long-term stability of underground operated CZT detectors based on the analysis of intrinsic 113Cd β--decay

    NASA Astrophysics Data System (ADS)

    Ebert, J.; Gößling, C.; Gehre, D.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Kröninger, K.; Nitsch, C.; Oldorf, C.; Quante, T.; Rajek, S.; Rebber, H.; Rohatsch, K.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Timm, J.; Wonsak, B.; Zatschler, S.; Zuber, K.

    2016-06-01

    The COBRA collaboration operates a demonstrator setup at the underground facility Laboratori Nazionali del Gran Sasso (LNGS, located in Italy) to prove the technological capabilities of this concept for the search for neutrinoless double beta-decay. The setup consists of 64 (1×1×1) cm3 Cadmium-Zinc-Telluride (CZT) detectors in Coplanar-Grid (CPG) configuration. One purpose of this demonstrator is to test if reliable long-term operation of CZT-CPG detectors in such a setup is possible. The demonstrator has been operated under ultra low-background conditions for more than three years and collected data corresponding to a total exposure of 218 kg days. The presented study focuses on the long-term stability of CZT detectors by analyzing the intrinsic, fourfold forbidden non-unique 113Cd single beta-decay. It can be shown that CZT detectors can be operated stably for long periods of time and that the 113Cd single beta-decay can be used as an internal monitor of the detector performance during the runtime of the experiment.

  20. Semiconductor Cubing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Through Goddard Space Flight Center and Jet Propulsion Laboratory Small Business Innovation Research contracts, Irvine Sensors developed a three-dimensional memory system for a spaceborne data recorder and other applications for NASA. From these contracts, the company created the Memory Short Stack product, a patented technology for stacking integrated circuits that offers higher processing speeds and levels of integration, and lower power requirements. The product is a three-dimensional semiconductor package in which dozens of integrated circuits are stacked upon each other to form a cube. The technology is being used in various computer and telecommunications applications.

  1. Continuous Monitoring of Electrical Activity of Pancreatic β-Cells Using Semiconductor-Based Biosensing Devices

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Sugimoto, Haruyo

    2011-02-01

    The electrical activity of rat pancreatic β-cells caused by introduction of glucose was directly and noninvasively detected using a cell-based field-effect transistor (FET). Rat pancreatic β-cells were adhered to the gate sensing surface of the cell-based FET. The principle of cell-based FETs is based on the detection of charge density changes such as pH variation at the interface between the cell membrane and the gate surface. The gate surface potential of pancreatic β-cell-based FET increased continuously after introduction of glucose at a high concentration of 10 mg/ml. This result indicates that the electrical activity of β-cells was successfully monitored on the basis of pH changes, i.e., increase in the concentration of hydrogen ions, at the cell/gate interface using the pancreatic β-cell-based FET. We assume that the pH variation based on hydrogen ion accumulation at the cell/gate interface was induced by activation of respiration accompanied by insulin secretion process following glucose addition. The platform based on the field-effect devices is suitable for application in a real-time, noninvasive, and label-free detection system for cell functional analyses.

  2. Metal insulator semiconductor solar cell devices based on a Cu{sub 2}O substrate utilizing h-BN as an insulating and passivating layer

    SciTech Connect

    Ergen, Onur; Gibb, Ashley; Vazquez-Mena, Oscar; Zettl, Alex; Regan, William Raymond

    2015-03-09

    We demonstrate cuprous oxide (Cu{sub 2}O) based metal insulator semiconductor Schottky (MIS-Schottky) solar cells with efficiency exceeding 3%. A unique direct growth technique is employed in the fabrication, and hexagonal boron nitride (h-BN) serves simultaneously as a passivation and insulation layer on the active Cu{sub 2}O layer. The devices are the most efficient of any Cu{sub 2}O based MIS-Schottky solar cells reported to date.

  3. The prediction of hole mobility in organic semiconductors and its calibration based on the grain-boundary effect.

    PubMed

    Park, Jin Woo; Lee, Kyu Il; Choi, Youn-Suk; Kim, Jung-Hwa; Jeong, Daun; Kwon, Young-Nam; Park, Jong-Bong; Ahn, Ho Young; Park, Jeong-Il; Lee, Hyo Sug; Shin, Jaikwang

    2016-08-01

    A new reliable computational model to predict the hole mobility of poly-crystalline organic semiconductors in thin films was developed. Site energy differences and transfer integrals in crystalline morphologies of organic molecules were obtained from quantum chemical calculations, in which periodic boundary conditions were efficiently applied to capture the interactions with the surrounding molecules in the crystalline organic layer. Then the parameters were employed in kinetic Monte Carlo (kMC) simulations to estimate the carrier mobility. Carrier transport in multiple directions has been considered in the kMC simulation to mimic poly-crystalline characteristics under thin-film conditions. Furthermore, the calculated mobility was corrected using a calibration equation based on microscopy images of the thin films to take the effect of grain boundaries into account. As a result, good agreement was observed between the predicted and measured hole mobility values for 21 molecular species: the coefficient of determination (R(2)) was estimated to be 0.83 and the mean absolute error was 1.32 cm(2) V(-1) s(-1). This numerical approach can be applied to any molecules for which crystal structures are available and will provide a rapid and precise way of predicting device performance. PMID:27425259

  4. Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xinglin; Wang, Zhiqiang; Zhan, Li; Hu, Pan; Chen, Liang

    2015-12-01

    We demonstrate a widely wavelength-tunable actively mode-locked fiber laser based on semiconductor optical amplifier. Beneficiating from the actively mode-locking operation and the wavelength-tunable characteristics of a Fabry-Perot filter, different harmonic mode-locking orders, from the fundamental mode-locking order (18.9 MHz) to the 520th order (9.832 GHz), can be easily achieved. The spectral bandwidth corresponding to the fundamental repetition rate is 0.12 nm with the pulse duration of 9.8 ns, leading to the TBP value of 146, which is about 460 times the transform-limited value for soliton pulse. The highest repetition rate of the mode-locked pulses we obtained is 9.832 GHz, with a signal-to-noise ratio up to 50 dB. The theoretical transform-limited pulse duration is 21 ps. Meanwhile, the central wavelength can be continuously tuned over 43.4 nm range (1522.8-1566.2 nm). The higher repetition rate and the widely tuning wavelength range make the fiber laser to own great potential and promising prospects in areas such as optical communication and photonic analog-to-digital conversion (ADC).

  5. S+C+L broadband source based on semiconductor optical amplifiers and erbium-doped fiber for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Carrion, L.; Beitel, D.; Lee, K. L.; Jain, A.; Chen, L. R.; Maciejko, R.; Nirmalathas, A.

    2007-06-01

    Broadband sources (BBSs) are commonly used in a wide range of applications in optical communication systems and biophotonics. They are particularly useful tools for Optical Coherence Tomography (OCT), which is a biomedical imaging technique that uses low-coherence light sources. In order to obtain high image quality, we have developed a novel, spectrally-flat S+C+L band source with > 120 nm bandwidth and more than 4 mW output power based on two cascaded semiconductor optical amplifiers (SOA) mixed with an Erbium-doped fiber (EDF) amplifier. Bandwidth and output power improvements are achieved by modifying the former configuration and mixing the EDF with the first SOA before amplification in the second SOA. This configuration results in bandwidth and output power enhancements of up to 146 nm and 8 mW, respectively. The source was then tested in an OCT system. It gives a 10 μm FWHM, low sidelobe OCT autocorrelation trace. Images and OCT autocorrelation traces were compared for the two aforementioned (which two; you mentioned one?) configurations. Images of miscellaneous samples made with the BBS show an image aspect and sharpness that is comparable with more expensive sources such as Ti:Sapphire lasers.

  6. Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Holm, Jesper; Pedersen, Christian; Andersen, Peter Eskil; Erbert, Götz; Sumpf, Bernd; Petersen, Paul Michael

    2005-12-26

    A high-power narrow-linewidth laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The external cavity laser system uses a new tapered amplifier with a super-large optical-cavity (SLOC) design that leads to improved performance of the external cavity diode lasers. The laser system is tunable over a 29 nm range centered at 802 nm. As high as 1.95 W output power is obtained at 803.84 nm, and an output power above 1.5 W is achieved from 793 to 812 nm at operating current of 3.0 A. The emission linewidth is below 0.004 nm and the beam quality factor M2 is below 1.3 over the 29 nm tunable range. As an example of application, the laser system is used as a pump source for the generation of 405 nm blue light by single-pass frequency doubling in a periodically poled KTiOPO4. An output power of 24 mW at 405 nm, corresponding to a conversion efficiency of 0.83%/W is attained. PMID:19503273

  7. HfO2-based InP n-channel metal-oxide-semiconductor field-effect transistors and metal-oxide-semiconductor capacitors using a germanium interfacial passivation layer

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Sub; Ok, I.; Zhang, M.; Zhu, F.; Park, S.; Yum, J.; Zhao, H.; Lee, Jack C.; Majhi, Prashant

    2008-09-01

    In this letter, we present our experimental results of HfO2-based n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) and metal-oxide-semiconductor capacitors (MOSCAPs) on indium phosphide (InP) substrates using a thin germanium (Ge) interfacial passivation layer (IPL). We found that MOSCAPs on n-InP substrates showed good C-V characteristics such as a small capacitance equivalent thickness (14Å ), a small frequency dispersion (<10% and <200mV), and a low dielectric leakage current (˜5×10-4A/cm2 at Vg=1.5V), whereas MOSCAPs on p-InP exhibited poor characteristics, implying severe Fermi level pinning. It was also found that InP was more vulnerable to a high temperature process such that C-V curves showed a characteristic "bump" and inversion capacitance at relatively high frequencies. From n-channel MOSFETs on a semi-insulating InP substrate using Ge IPL, HfO2, and TaN gate electrodes, excellent electrical characteristics such as a large transconductance (9.3mS /mm) and large drain currents (12.3mA/mm at Vd=2V and Vg=Vth+2V) were achieved, which are comparable to other works.

  8. Spin-Photon Entanglement in Semiconductor Quantum Dots: Towards Solid-State-Based Quantum Repeaters

    NASA Astrophysics Data System (ADS)

    De Greve, Kristiaan; Yamamoto, Yoshihisa

    `In this chapter, we introduced and analyze techniques that allow truly secure secret key sharing over long distances, using public, open channels, where the laws of quantum mechanics ensure the security of the long distance key sharing - an idea generally referred to as the essence of a quantum repeater. We describe several proof-of-principle experiments where technology based on self-assembled quantum dots is used as the backbone of a future quantum repeater.'

  9. Magnetic, structural and optical properties of Mn-based and Cr-based diluted magnetic semiconductors and alloys

    NASA Astrophysics Data System (ADS)

    Alsaad, A.

    2009-03-01

    We have implemented supercell approach by using local spin density functional theory for Mn-doped GaN, Mn-doped ScN and the linear muffin-tin orbital method to predict the structural and magnetic properties of these novel diluted magnetic semiconductors and their GaxMn1-xN and ScxMn1-xN alloys. The global energy minimum of MnN is obtained for zinc-blende structure. If the compound is compressed by 6 % the energy minimum corresponds to the NaCl structure in disagreement with the experimentally observed a slightly tetragonally distorted rocksalt structure, known as ? phase. The rocksalt structure of CrN at about 8 % lattice expansion becomes stable in the ferromagnetic (FM) state and has a global minimum energy at a lattice constant of 3.9 å. We have observed an isostructural phase transition for ScxMn1-xN alloys from zince-blende phase to hexagonal phase that occurs at a hydrostatic pressure of 17.5 GPa. Moreover, the structural and optical properties of single crystal CrN/ScN superlattices and Cr1-xScxN alloys are studied in details. We report an isostructural phase transition from wurtzite (w-CrN) to hexagonal (h-ScN) at a hydrostatic pressure of 21 GPa. We have also used first-principles methods to study the electronic, optical and magnetic properties of MnN and MnAs compounds in the hypothetical cubic zinc-blende phase, a phase in which the two MnN and MnAs binaries have the same local environment as that they have in GaMnN and GaMnAs alloys. We show that MnN exhibits antiferromagnetic (AFM) ground state and MnAs adopts ferromagnetic (FM) ground state.

  10. Ion-beam amorphization of semiconductors: A physical model based on the amorphous pocket population

    SciTech Connect

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Barbolla, J.; Srinivasan, M.P.

    2005-08-15

    We introduce a model for damage accumulation up to amorphization, based on the ion-implant damage structures commonly known as amorphous pockets. The model is able to reproduce the silicon amorphous-crystalline transition temperature for C, Si, and Ge ion implants. Its use as an analysis tool reveals an unexpected bimodal distribution of the defect population around a characteristic size, which is larger for heavier ions. The defect population is split in both size and composition, with small, pure interstitial and vacancy clusters below the characteristic size, and amorphous pockets with a balanced mixture of interstitials and vacancies beyond that size.

  11. Study of the properties of silicon-based semiconductor converters for betavoltaic cells

    SciTech Connect

    Polikarpov, M. A.; Yakimov, E. B.

    2015-06-15

    Silicon p-i-n diodes are studied in a scanning electron microscope under conditions simulating the β-radiation from a radioactive Ni{sup 63} source with an activity of 10 mCi/cm{sup 2}. The attainable parameters of β-voltaic cells with a source of this kind and a silicon-based converter of β-particle energy to electric current are estimated. It is shown that the power of elements of this kind can reach values of ∼10 nW/cm{sup 2} even for a cell with an area of one centimeter, which is rather close to the calculated value.

  12. Highly Effective Polarized Electron Sources Based on Strained Semiconductor Superlattice with Distributed Bragg Reflector

    SciTech Connect

    Gerchikov, L. G.; Kuz'michev, V. V.; Mamaev, Yu. A.; Vasiliev, D. A.; Yashin, Yu. P.; Aulenbacher, K.; Clendenin, J. E.; Maruyama, T.; Mikhrin, V. S.; Ustinov, V. M.; Vasiliev, A. P.; Zhukov, A. E.; Roberts, J. S.

    2008-02-06

    Resonance enhancement of the quantum efficiency of new polarized electron photocathodes based on a short-period strained superlattice structures is reported. The superlattice is a part of an integrated Fabry-Perot optical cavity. We demonstrate that the Fabry-Perot resonator enhances the quantum efficiency by the order of magnitude in the wavelength region of the main polarization maximum. The high structural quality implied by these results points to the very promising application of these photocathodes for spin-polarized electron sources.

  13. Highly Effective Polarized Electron Sources Based on Strained Semiconductor Superlattice with Distributed Bragg Reflector

    SciTech Connect

    Gerchikov, L.G.; Aulenbacher, K.; Clendenin, J.E.; Kuz'michev, V.V.; Mamaev, Yu.A.; Maruyama, T.; Mikhrin, V.S.; Roberts, J.S.; Utstinov, V.M.; Vasiliev, D.A.; Vasiliev, A.P.; Yashin, Yu.P.; Zhukov, A.E.; /St. Petersburg Polytechnic Inst. /Mainz U., Inst. Kernphys. /SLAC /Ioffe Phys. Tech. Inst. /Sheffield U.

    2007-11-28

    Resonance enhancement of the quantum efficiency of new polarized electron photocathodes based on a short-period strained superlattice structures is reported. The superlattice is a part of an integrated Fabry-Perot optical cavity. We demonstrate that the Fabry-Perot resonator enhances the quantum efficiency by the order of magnitude in the wavelength region of the main polarization maximum. The high structural quality implied by these results points to the very promising application of these photocathodes for spin-polarized electron sources.

  14. Operating principles of vertical transistors based on monolayer two-dimensional semiconductor heterojunctions

    SciTech Connect

    Lam, Kai Tak; Seol, Gyungseon; Guo, Jing

    2014-07-07

    A vertical transistor based on a double gated, atomically thin heterojunction is theoretically examined. Both p-type and n-type transistor operations can be conveniently achieved by using one of the two gates as the switching gate. The transistor shows excellent saturation of output I-V characteristics due to drain-induced depletion and lack of tunneling barrier layers. The subthreshold slope could be below the thermionic limit due to band filtering as the switching mechanism. The atomically thin vertical PN heterojunction can be electrostatically modulated from a type II heterojunction to a broken bandgap alignment, which is preferred for maximizing the on-current.

  15. Effects of degradation on the performance of a triphenylene based liquid crystal organic semiconductor

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Patrick, Michael S.; Peters, Kyle; Paul, Sanjoy; Ellman, Brett; Matthews, Rachael; Pentzer, Emily; Twieg, Robert J.; Singer, Kenneth D.

    2015-09-01

    We report on time-of-flight (TOF) hole mobility measurements in an aged discotic columnar liquid crystal, Hexakis(pentyloxy)triphenylene (HAT5). The experimental data was fit to an interfacial trapping model based on Van de Walle's approximations. The theory accurately reproduces the TOF transients of delayed charge release near the optically excited material/electrode interface. Interfacial trapping appears only in the aged materials, but the bulk mobility is the same as that of the pristine material. We also discuss preliminary results of TOF photocurrent transients of HAT5 exposed to ozone.

  16. Recombination Parameters for Antimonide-Based Semiconductors using RF Photoreflection Techniques

    SciTech Connect

    R.J. Kumar; J.M. Borrego; P.S. Dutta; R.J. Gutmann; C.A. Wang; R.U. Martinelli; G. Nichols

    2002-10-10

    RF photoreflection measurements and PC-1D simulations have been used to evaluate bulk and surface recombination parameters in antimonide-based materials. PC-1D is used to simulate the photoconductivity response of antimonide-based substrates and doubly-capped epitaxial layers and also to determine how to extract the recombination parameters using experimental results. Excellent agreement has been obtained with a first-order model and test structure simulation when Shockley-Reed-Hall (SRH) recombination is the bulk recombination process. When radiative, Auger and surface recombination are included, the simulation results show good agreement with the model. RF photoreflection measurements and simulations using PC-1D are compatible with a radiative recombination coefficient (B) of approximately 5 x 10{sup -11} cm{sup 3}/s, Auger coefficient (C) {approx} 1.0 x 10{sup -28} cm{sup 6}/s and surface recombination velocity (SRV) {approx} 600 cm/s for 0.50-0.55 eV doubly-capped InGaAsSb material with GaSb capping layers using the experimentally determined active layer doping of 2 x 10{sup 17} cm{sup -3}. Photon recycling, neglected in the analysis and simulations presented, will affect the extracted recombination parameters to some extent.

  17. Materials Science and Technology, Volume 4, Electronic Structure and Properties of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schröter, Wolfgang

    1996-12-01

    This volume spans the field of semiconductor physics, with particular emphasis on concepts relevant to semiconductor technology. From the Contents: Lannoo: Band Theory Applied to Semiconductors. Ulbrich: Optical Properties and Charge Transport. Watkins: Intrinsic Point Defects in Semiconductors. Feichtinger: Deep Centers in Semiconductors. Gösele/Tan: Equilibria, Nonequilibria, Diffusion, and Precipitation. Alexander/Teichler: Dislocations. Thibault/Rouvière/Bourret: Grain Boundaries in Semiconductors. Ourmazd/Hull/Tung: Interfaces. Chang: The Hall Effect in Quantum Wires. Street/Winer: Material Properties of Hydrogenated Amorphous Silicon. Schröter/Seibt/Gilles: High-Temperature Properties of 3d Transition Elements in Silicon.

  18. Pyroelectric photodetector based on ferroelectric crystal-semiconductor thin film heterostructure

    NASA Astrophysics Data System (ADS)

    Poghosyan, Armen; Aghamalyan, N. R.; Guo, R.; Hovsepyan, R. K.; Vardanyan, E. S.

    2010-08-01

    Very important advantage of ZnO thin films is an opportunity of use in the composite heterostructures opening opportunities for development of ZnO-based optoelectronics devices. In this work we report the preparation of ferroelectric crystal - ZnO thin film heterostructures by vacuum deposition method and creation of new type of pyroelectric photodetector. The ferroelectric field effect transistor has been prepared using ZnO:Li films as transistor channel and LiNbO3 and TGS crystals as pyroelectric sensitive element. The photoelectric properties (currents ratio, charge carriers mobility, ampere-watt sensitivity in IR diapason, NEP sensitivity, and photocurrent kinetics) of prepared heterostructures were investigated and first samples of novel pyroelectric photodetector with high sensitivity and detectability were prepared.

  19. Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films

    NASA Astrophysics Data System (ADS)

    Hendaoui, Ali; Émond, Nicolas; Chaker, Mohamed; Haddad, Émile

    2013-02-01

    This paper describes a VO2-based smart structure with an emittance that increases with the temperature. A large tunability of the spectral emittance, which can be as high as 0.90, was achieved. The transition of the total emittance with the temperature was fully reversible according to a hysteresis cycle, with a transition temperature of 66.5 °C. The total emittance of the device was found to be 0.22 and 0.71 at 25 °C and 100 °C, respectively. This emittance performance and the structure simplicity are promising for the next generation of energy-efficient cost-effective passive thermal control systems of spacecrafts.

  20. Trends and techniques for space base electronics. [mathematical models, ion implantation, and semiconductors

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.; Mahmood, Q.; Trotter, J. D.

    1978-01-01

    A system was developed for depositing aluminum and aluminum alloys by the D.C. sputtering technique. This system which was designed for a high level of cleanliness and ion monitoring the deposition parameters during film preparation is ready for studying the deposition and annealing parameters upon double level metal preparation. The finite element method was studied for use in the computer modeling of two dimensional MOS transistor structures. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions typical of those used at MSFC. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients. Data are given showing both two dimensional effects and the evolution of the junction depth, sheet resistance and integrated dose with redistribution time.

  1. Multiple access interference rejection in OCDMA using a two-photon absorption based semiconductor device

    NASA Astrophysics Data System (ADS)

    Dexter, K. J.; Reid, D. A.; Maguire, P. J.; Barry, L. P.; Tian, Chun; Ibsen, Morten; Petropoulos, Periklis; Richardson, David J.

    2009-04-01

    An experimental demonstration of a two-channel OCDMA system with detection performed using standard linear detection or a TPA-based nonlinear detector is presented. These results show an improvement in the extinction ratio of the decoded signal by ˜5 dB using TPA detection. A simulation model of the TPA detector used during the experiments was created and used in a four-channel OCDMA system simulation using both linear and nonlinear detection methods. The simulation results show that error-free performance is achievable for a 4-user system using the nonlinear TPA detector while the OCDMA system employing linear detection is severely limited by the effects of noise generated by adjacent optical channels (multiple access interference).

  2. Amplicon-based semiconductor sequencing of human exomes: performance evaluation and optimization strategies.

    PubMed

    Damiati, E; Borsani, G; Giacopuzzi, Edoardo

    2016-05-01

    The Ion Proton platform allows to perform whole exome sequencing (WES) at low cost, providing rapid turnaround time and great flexibility. Products for WES on Ion Proton system include the AmpliSeq Exome kit and the recently introduced HiQ sequencing chemistry. Here, we used gold standard variants from GIAB consortium to assess the performances in variants identification, characterize the erroneous calls and develop a filtering strategy to reduce false positives. The AmpliSeq Exome kit captures a large fraction of bases (>94 %) in human CDS, ClinVar genes and ACMG genes, but with 2,041 (7 %), 449 (13 %) and 11 (19 %) genes not fully represented, respectively. Overall, 515 protein coding genes contain hard-to-sequence regions, including 90 genes from ClinVar. Performance in variants detection was maximum at mean coverage >120×, while at 90× and 70× we measured a loss of variants of 3.2 and 4.5 %, respectively. WES using HiQ chemistry showed ~71/97.5 % sensitivity, ~37/2 % FDR and ~0.66/0.98 F1 score for indels and SNPs, respectively. The proposed low, medium or high-stringency filters reduced the amount of false positives by 10.2, 21.2 and 40.4 % for indels and 21.2, 41.9 and 68.2 % for SNP, respectively. Amplicon-based WES on Ion Proton platform using HiQ chemistry emerged as a competitive approach, with improved accuracy in variants identification. False-positive variants remain an issue for the Ion Torrent technology, but our filtering strategy can be applied to reduce erroneous variants. PMID:27003585

  3. CaTiO.sub.3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.

  4. Highly versatile nanohydrogel platform based on riboflavin-polysaccharide derivatives useful in the development of intrinsically fluorescent and cytocompatible drug carriers.

    PubMed

    Di Meo, Chiara; Montanari, Elita; Manzi, Lucio; Villani, Claudio; Coviello, Tommasina; Matricardi, Pietro

    2015-01-22

    In this work we describe a new nanohydrogel platform, based on polysaccharides modified with the hydrophobic and fluorescent molecule riboflavin tetrabutyrate, which leads to innovative structures useful for drug delivery applications. Hyaluronic acid and pullulan were chosen as representative of anionic and neutral polysaccharides, respectively, and the bromohexyl derivative of riboflavin tetrabutyrate was chemically linked to these polymer chains. Because of such derivatization, polymer chains were able to self-assemble in aqueous environment thus forming nanohydrogels, with mean diameters of about 312 and 210 nm, for hyaluronan and pullulan, respectively. These new nanohydrogels showed low polydispersity index, and negative ζ-potential. Moreover, the nanohydrogels, which can be easily loaded with model drugs, showed long-term stability in water and physiological conditions and excellent cytocompatibility. All these properties allow to consider these intrinsically fluorescent nanohydrogels suitable for the formulation of innovative drug dosage forms. PMID:25439925

  5. Charge carrier mobilities in organic semiconductor crystals based on the spectral overlap.

    PubMed

    Stehr, Vera; Fink, Reinhold F; Deibel, Carsten; Engels, Bernd

    2016-09-01

    The prediction of substance-related charge-transport properties is important for the tayloring of new materials for organic devices, such as organic solar cells. Assuming a hopping process, the Marcus theory is frequently used to model charge transport. Here another approach, which is already widely used for exciton transport, is adapted to charge transport. It is based on the spectral overlap of the vibrational donor and acceptor spectra. As the Marcus theory it is derived from Fermi's Golden rule, however, it contains less approximations, as the molecular vibrations are treated quantum mechanically. In contrast, the Marcus theory reduces all vibrational degrees of freedom to one and treats its influence classically. The approach is tested on different acenes and predicts most of the experimentally available hole mobilities in these materials within a factor of 2. This represents a significant improvement to values obtained from Marcus theory which is qualitatively correct but frequently overestimates the mobilities by factors up to 10. Furthermore, the charge-transport properties of two derivatives of perylene bisimide are investigated. © 2016 Wiley Periodicals, Inc. PMID:27371816

  6. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    PubMed

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-01

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light. PMID:26293387

  7. Induction of intrinsic and extrinsic apoptosis through oxidative stress in drug-resistant cancer by a newly synthesized Schiff base copper chelate.

    PubMed

    Banerjee, Kaushik; Basu, Soumya; Das, Satyajit; Sinha, Abhinaba; Biswas, Manas Kumar; Choudhuri, Soumitra Kumar

    2016-04-01

    Multidrug resistance (MDR) in cancer represents a variety of strategies employed by tumor cells to evade the beneficial cytotoxic effects of structurally different anticancer drugs and thus confers impediments to the successful treatment of cancers. Efflux of drugs by MDR protein-1, functional P-glycoprotein and elevated level of reduced glutathione confer resistance to cell death or apoptosis and thus provide a possible therapeutic target for overcoming MDR in cancer. Previously, we reported that a Schiff base ligand, potassium-N-(2-hydroxy 3-methoxy-benzaldehyde)-alaninate (PHMBA) overcomes MDR in both in vivo and in vitro by targeting intrinsic apoptotic/necrotic pathway through induction of reactive oxygen species (ROS). The present study describes the synthesis and spectroscopic characterization of a copper chelate of Schiff base, viz., copper (II)-N-(2-hydroxy-3-methoxy-benzaldehyde)-alaninate (CuPHMBA) and the underlying mechanism of cell death induced by CuPHMBA in vitro. CuPHMBA kills both the drug-resistant and sensitive cell types irrespective of their drug resistance phenotype. The cell death induced by CuPHMBA follows apoptotic pathway and moreover, the cell death is associated with intrinsic mitochondrial and extrinsic receptor-mediated pathways. Oxidative stress plays a pivotal role in the process as proved by the fact that antioxidant enzyme; polyethylene glycol conjugated-catalase completely blocked CuPHMBA-induced ROS generation and abrogated cell death. To summarize, the present work provides a compelling rationale for the future clinical use of CuPHMBA, a redox active copper chelate in the treatment of cancer patients, irrespective of their drug-resistance status. PMID:26733073

  8. Oxide-based method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.

    2000-01-01

    A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  9. (GaMn)As: GaAs-based III?V diluted magnetic semiconductors grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Tanaka, M.; Nishinaga, T.; Shimada, H.; Tsuchiya, H.; Otuka, Y.

    1997-05-01

    We have grown novel III-V diluted magnetic semiconductors, (Ga 1 - xMn x)As, on GaAs substrates by low-temperature molecular beam epitaxy using strong nonequilibrium growth conditions. When the Mn concentration x is relatively low (≲0.08), homogeneous alloy semiconductors, GaMnAs, are grown with zincblende structure and slightly larger lattice constants than that of GaAs, whereas inhomogeneous structures with zincblende GaMnAs (or GaAs) plus hexagonal MnAs are formed when x is relatively high. Magnetization measurements indicate that the homogeneous GaMnAs films have ferromagnetic ordering at low temperature.

  10. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  11. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  12. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  13. Theoretical study of the noble metals on semiconductor surfaces and Ti-base shape memory alloys

    SciTech Connect

    Ding, Yungui

    1994-07-27

    The electronic and structural properties of the ({radical}3 {times} {radical}3) R30{degrees} Ag/Si(111) and ({radical}3 {times} {radical}3) R30{degrees} Au/Si(111) surfaces are investigated using first principles total energy calculations. We have tested almost all experimentally proposed structural models for both surfaces and found the energetically most favorable model for each of them. The lowest energy model structure of the ({radical}3 {times} {radical}3) R30{degrees} Ag/Si(111) surface consists of a top layer of Ag atoms arranged as ``honeycomb-chained-trimers`` lying above a distorted ``missing top layer`` Si(111) substrate. The coverage of Ag is 1 monolayer (ML). We find that the honeycomb structure observed in STM images arise from the electronic charge densities of an empty surface band near the Fermi level. The electronic density of states of this model gives a ``pseudo-gap`` around the Fermi level, which is consistent with experimental results. The lowest energy model for the ({radical}3 {times} {radical}3) R30{degrees} Au/Si(111) surface is a conjugate honeycomb-chained-trimer (CHCT-1) configuration which consists of a top layer of trimers formed by 1 ML Au atoms lying above a ``missing top layer`` Si(111) substrate with a honeycomb-chained-trimer structure for its first layer. The structures of Au and Ag are in fact quite similar and belong to the same class of structural models. However, small variation in the structural details gives rise to quite different observed STM images, as revealed in the theoretical calculations. The electronic charge density from bands around the Fermi level for the ({radical}3 {times} {radical}3) R30{degrees}, Au/Si(111) surface also gives a good description of the images observed in STM experiments. First principles calculations are performed to study the electronic and structural properties of a series of Ti-base binary alloys TiFe, TiNi, TiPd, TiMo, and TiAu in the B2 structure.

  14. High-power ultralow-noise semiconductor external cavity lasers based on low-confinement optical waveguide gain media

    NASA Astrophysics Data System (ADS)

    Juodawlkis, Paul W.; Loh, William; O'Donnell, Frederick J.; Brattain, Michael A.; Plant, Jason J.

    2010-02-01

    For the past several years, we have been developing a new class of high-power, low-noise semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. The key characteristics of the SCOW design are (i) large (> 5 x 5 μm), symmetric, fundamental-transverse-mode operation attained through a combination of coupledmode filtering and low index-contrast, (ii) very low optical confinement factor (Γ ~ 0.3-0.5%), and (iii) low excessoptical loss (αi ~ 0.5 cm-1). The large transverse mode and low confinement factor enables SCOW lasers (SCOWLs) and amplifiers (SCOWAs) having Watt-class output power. The low confinement factor also dictates that the waveguide length be very large (0.5-1 cm) to achieve useful gain, which provides the benefits of small ohmic and thermal resistance. In this paper, we review the operating principles and performance of the SCOW gain medium, and detail its use in 1550-nm single-frequency SCOW external cavity lasers (SCOWECLs). The SCOWECL consists of a doublepass, curved-channel InGaAlAs quantum-well SCOWA and a narrowband (2.5 GHz) fiber Bragg grating (FBG) external cavity. We investigate the impact of the cavity Q on SCOWECL performance by varying the FBG reflectivity. We show that a bench-top SCOWECL having a FBG reflectivity of R = 10% (R = 20%) has a maximum output power of 450 mW (400 mW), linewidth of 52 kHz (28 kHz), and RIN at 2-MHz offset frequency of -155 dB/Hz (-165 dB/Hz).

  15. Effect of the active region thickness on characteristics of semiconductor lasers based on asymmetric AlGaAs/GaAs/InGaAs heterostructures with broadened waveguide

    SciTech Connect

    Vinokurov, D. A. Vasilyeva, V. V.; Kapitonov, V. A.; Lyutetskiy, A. V.; Nikolaev, D. N.; Pikhtin, N. A.; Slipchenko, S. O.; Stankevich, A. L.; Shamakhov, V. V.; Fetisova, N. V.; Tarasov, I. S.

    2010-02-15

    The effect of the active region thickness on the basic characteristics of high-power semiconductor lasers based on AlGaAs/GaAs/InGaAs asymmetric separate-confinement heterostructures grown by MOCVD epitaxy has been studied. It is shown that the threshold current, temperature sensitivity of the threshold current density, internal quantum efficiency of stimulated emission, and differential quantum efficiency are improved as the active region thickness increases. It is demonstrated that the maximum attainable optical emission power of a semiconductor laser and the internal quantum efficiency of photoluminescence are the most sensitive to defect formation in the heterostructure and become lower as the critical thickness of the strained In{sub x}Ga{sub 1-x} As layer in the active region is exceeded.

  16. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication. PMID:24105542

  17. Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits.

    PubMed

    Frenzel, Heiko; Lajn, Alexander; von Wenckstern, Holger; Lorenz, Michael; Schein, Friedrich; Zhang, Zhipeng; Grundmann, Marius

    2010-12-14

    Metal-semiconductor field-effect transistors (MESFETs) are widely known from opaque high-speed GaAs or high-power SiC and GaN technology. For the emerging field of transparent electronics, only metal-insulator-semiconductor field-effect transistors (MISFETs) were considered so far. This article reviews the progress of high-performance MESFETs in oxide electronics and reflects the recent advances of this technique towards transparent MESFET circuitry. We discuss design prospects as well as limitations regarding device performance, reliability and stability. The presented ZnO-based MESFETs and inverters have superior properties compared to MISFETs, i.e., high channel mobilities and on/off-ratios, high gain, and low uncertainty level at comparatively low operating voltages. This makes them a promising approach for future low-cost transparent electronics. PMID:20878625

  18. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  19. Intrinsic Josephson Junctions in the iron-based multi-band superconductor (V2Sr4O6)Fe2As2

    NASA Astrophysics Data System (ADS)

    Moll, Philip; Zhu, Xiyu; Cheng, Peng; Wen, Hai-Hu; Bertram, Batlogg

    2014-03-01

    We have observed clear experimental evidence for intrinsic Josephson junction (iJJ) behavior in the iron-based superconductor (V2Sr4O6)Fe2As2 (Tc ~ 20 K). The iJJs are identified by periodic oscillations of the flux flow voltage for out-of-plane (c-axis) currents upon increasing a well aligned in-plane magnetic field. Their periodicity is well explained by commensurability effects between the Josephson vortex lattice and the crystal structure, which is a hallmark signature of Josephson vortices confined into iJJ stacks. Essential for reliable c-axis transport measurements on the available microcrystals are Focused Ion Beam microstructuring and contacting techniques. The insulating temperature behavior of ρc indicates S-I-S type junctions. This finding adds (V2Sr4O6)Fe2As2 as the first iron-based, multi-band superconductor to the copper-based iJJ materials of interest for Josephson junction applications, and in particular novel devices based on multi-band Josephson coupling may be realized.

  20. A synaptic device built in one diode-one resistor (1D-1R) architecture with intrinsic SiOx-based resistive switching memory

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chang, Ting-Chang; Sze, Simon M.; Lee, Jack C.

    2016-04-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes to further minimize total synaptic power consumption due to sneak-path currents and demonstrate the capability for spike-induced synaptic behaviors, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation, long-term depression, and spike-timing dependent plasticity are demonstrated systemically with comprehensive investigation of spike waveform analyses and represent a potential application for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from the (SiH)2 defect to generate the hydrogenbridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with largescale complementary metal-oxide semiconductor manufacturing technology.

  1. Sub-100nm pattern transfer on compound semiconductor using sol-gel-based TiO2 resist

    NASA Astrophysics Data System (ADS)

    Liu, Boyang; Ho, Seng-Tiong

    2009-02-01

    The possibility to pattern III-V compound semiconductor with nanometer scale is of great interest to photonic, electronic and optoelectronic systems. Typical method for sub-micrometer compound semiconductor dry etching utilizes PMMA or other resist to transfer patterns to SiO2 as intermediate masks due to resist's low etching selectivity, especially for ultra-small features. This additional pattern transfer will inevitably increase the potential damage caused by plasma dry etching and the complexity of patterning process. Therefore, it is desirable to find an easier and more effective way to pattern compound semiconductor. In this paper, we report a new approach of direct pattern transfer using Ti(OBun)4 solgel derived TiO2 resist as mask. The optimal dose of TiO2 resist for e-beam lithography is ~220mC/cm2. Thermal stability study of spin-coated TiO2 shows a good performance as lithography resist even at 300°C, which will have wider applications than conventional resists. Post-annealings at different temperatures are performed to study temperature-dependence of patterned TiO2 resist as dry-etching mask. The etching selectivity of sample InP compound semiconductor to TiO2 resist is over 7:1. A variety of sub-100 dry etching patterns with good profile qualities have been obtained. The aspect ratio of etching patterns is over 20:1, and the smallest feature is as small as 20nm with over 600nm deep. This sol-gel derived TiO2 sipn-coatable nanolithography resist with high etching selectivity and high aspect ratio etching profile provides a novel and convenient way to directly pattern compound semiconductor material for various challenging nano sacle photonic, electronic and optoelectronic applications.

  2. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics.

    PubMed

    Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J

    2016-09-01

    Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472. PMID:27454336

  3. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  4. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  5. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  6. An all-fiber partial discharge monitoring system based on both intrinsic fiber optic interferometry sensor and fluorescent fiber

    NASA Astrophysics Data System (ADS)

    Yin, Zelin; Zhang, Ruirui; Tong, Jie; Chen, Xi

    2013-12-01

    Partial discharges (PDs) are an electrical phenomenon that occurs within a transformer whenever the voltage stress is sufficient to produce ionization in voids or inclusions within a solid dielectric, at conductor/dielectric interfaces, or in bubbles within liquid dielectrics such as oil; high-frequency transient current discharges will then appear repeatedly and will progressively deteriorate the insulation, ultimately leading to breakdown. Fiber sensor has great potential on the partial discharge detection in high-voltage equipment for its immunity to electromagnetic interference and it can take direct measurement in the high voltage equipment. The energy released in PDs produces a number of effects, resulting in flash, chemical and structural changes and electromagnetic emissions and so on. Acoustic PD detection is based on the mechanical pressure wave emitted from the discharge and fluorescent fiber PD detection is based on the emitted light produced by ionization, excitation and recombination processes during the discharge. Both of the two methods have the shortage of weak anti-interference capacity in the physical environment, like thunder or other sound source. In order to avoid the false report, an all-fiber combined PD detection system of the two methods is developed in this paper. In the system the fluorescent fiber PD sensor is considered as a reference signal, three F-P based PD detection sensors are used to both monitor the PD intensity and calculate the exact position of the discharge source. Considering the wave band of the F-P cavity and the fluorescent probe are quite different, the reflection spectrum of the F-P cavity is in the infrared region, however the fluorescent probe is about 600nm to 700nm, thus the F-P sensor and fluorescent fiber probe can be connected in one fiber and the reflection light can be detected by two different detectors without mutual interference. The all-fiber partial discharge monitoring system not only can detect the PDs

  7. Density functional theory based tight binding study on theoretical prediction of low-density nanoporous phases ZnO semiconductor materials

    NASA Astrophysics Data System (ADS)

    Tuoc, Vu Ngoc; Doan Huan, Tran; Viet Minh, Nguyen; Thi Thao, Nguyen

    2016-06-01

    Polymorphs or phases - different inorganic solids structures of the same composition usually have widely differing properties and applications, thereby synthesizing or predicting new classes of polymorphs for a certain compound is of great significance and has been gaining considerable interest. Herein, we perform a density functional theory based tight binding (DFTB) study on theoretical prediction of several new phases series of II-VI semiconductor material ZnO nanoporous phases from their bottom-up building blocks. Among these, three phases are reported for the first time, which could greatly expand the family of II- VI compound nanoporous phases. We also show that all these generally can be categorized similarly to the aluminosilicate zeolites inorganic open-framework materials. The hollow cage structure of the corresponding building block ZnkOk (k= 9, 12, 16) is well preserved in all of them, which leads to their low-density nanoporous and high flexibility. Additionally the electronic wide-energy gap of the individual ZnkOk is also retained. Our study reveals that they are all semiconductor materials with a large band gap. Further, this study is likely to be the common for II-VI semiconductor compounds and will be helpful for extending their range of properties and applications.

  8. Optical properties and structural phase transitions of lead-halide based inorganic-organic 3D and 2D perovskite semiconductors under high pressure

    NASA Astrophysics Data System (ADS)

    Matsuishi, K.; Ishihara, T.; Onari, S.; Chang, Y. H.; Park, C. H.

    2004-11-01

    Optical absorption, photoluminescence and Raman scattering of lead-halide based inorganic-organic perovskite semiconductors were measured under quasi-hydrostatic pressure at room temperature. For the 3D perovskite semiconductor, (CH3NH3)PbBr3, the free exciton photoluminescence band exhibits red-shifts with pressure, and jumps to a higher energy by 0.07 eV at 0.8 GPa, which is associated with a phase transition from a cubic to an orthorhombic structure confirmed by Raman scattering. Above the phase transition pressure, the exciton band shows blue-shifts with further increasing pressure, and eventually disappears above 4.7 GPa. The results are compared with those for the 2D perovskite semiconductor, (C4H9NH3)2PbI4. First principles pseudopotential calculations were performed to investigate changes in octahedral distortion and electronic band structures with pressure. The calculations have explained the origins of the intriguing changes in the electronic states with pressure in view of bonding characters between atomic orbitals in octahedra.

  9. Characteristic Behavior of ESR Linewidth in Cr-doped PbTe-based Diluted Magnetic Semiconductors in the Vicinity of Ferromagnetic Ordering Transition

    NASA Astrophysics Data System (ADS)

    Zvereva, E.; Savelieva, O.; Ibragimov, S.; Slyn'ko, E.; Slyn'ko, V.

    2011-12-01

    Here we report on magnetization (T = 1.8-400 K, B≤7 T) and X-band ESR study (f = 9.1-9.6 GHz, T = 90-450 K) for Pb1-yCryTe ferromagnetic semiconductor and two new PbTe-based semiconductors Pb1-x-ySnxCryTe and Pb1-x-yMgxCryTe in the vicinity of the transition to ferromagnetic state. It was found that these semiconductors demonstrate ferromagnetism at temperatures higher than room temperature. The Curie temperature TC varies in a wide range (150-390 K) depending on the matrix composition and chromium content. In the paramagnetic phase the ESR spectra show a single asymmetrical line of Dysonian shape due to skin effect, typical of conducting materials. Regardless of matrix composition the effective g-factor tends to the saturation value g = 2.08±0.02 and the linewidth is ΔB≈0.08 T at the highest temperature limit. Upon approaching TC from above g-factor slowly increases, while the linewidth falls approximately two times and passes through the minimum at T*≈1.2TC. In the vicinity of TC the ESR parameters show distinct anomalies, which were associated with presence of strong magnetic fluctuation at an onset of FM ordering.

  10. Composite Semiconductor Substrates

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar; Radhakrishnan, Gouri; Katz, Joseph; Koliwad, Kris

    1989-01-01

    Epitaxial structure of three semiconductor materials - silicon, gallium arsenide, and cadmium telluride - makes possible integrated monolithic focal-plane arrays of photodectors. Silicon layer contains charge-coupled devices, gallium arsenide layer contains other fast electronic circuitry, and cadmium telluride layer serves as base for array of mercury cadmium telluride infrared sensors. Technique effectively combines two well-established techniques; metalorganic chemical-vapor deposition (MOCVD) and molecular-beam epitaxy (MBE). Multilayer structure includes HgCdTe light sensors with Si readout devices and GaAs signal-processing circuits. CdTe layer provides base for building up HgCdTe layer.

  11. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric

    PubMed Central

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-01-01

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm2 V−1 s−1, on/off ratio of 103–104, switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays. PMID:26173436

  12. Intrinsic unfoldase/foldase activity of the chaperonin GroEL directly demonstrated using multinuclear relaxation-based NMR

    PubMed Central

    Libich, David S.; Tugarinov, Vitali; Clore, G. Marius

    2015-01-01

    The prototypical chaperonin GroEL assists protein folding through an ATP-dependent encapsulation mechanism. The details of how GroEL folds proteins remain elusive, particularly because encapsulation is not an absolute requirement for successful re/folding. Here we make use of a metastable model protein substrate, comprising a triple mutant of Fyn SH3, to directly demonstrate, by simultaneous analysis of three complementary NMR-based relaxation experiments (lifetime line broadening, dark state exchange saturation transfer, and Carr–Purcell–Meinboom–Gill relaxation dispersion), that apo GroEL accelerates the overall interconversion rate between the native state and a well-defined folding intermediate by about 20-fold, under conditions where the “invisible” GroEL-bound states have occupancies below 1%. This is largely achieved through a 500-fold acceleration in the folded-to-intermediate transition of the protein substrate. Catalysis is modulated by a kinetic deuterium isotope effect that reduces the overall interconversion rate between the GroEL-bound species by about 3-fold, indicative of a significant hydrophobic contribution. The location of the GroEL binding site on the folding intermediate, mapped from 15N, 1HN, and 13Cmethyl relaxation dispersion experiments, is composed of a prominent, surface-exposed hydrophobic patch. PMID:26124125

  13. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric

    NASA Astrophysics Data System (ADS)

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-07-01

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ~30 cm2 V-1 s-1, on/off ratio of 103-104, switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays.

  14. Intrinsic time quantum geometrodynamics

    NASA Astrophysics Data System (ADS)

    Ita, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai

    2015-08-01

    Quantum geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl curvature hypothesis, and thermodynamic and gravitational "arrows of time" point in the same direction. Ricci scalar potential corresponding to Einstein's general relativity emerges as a zero-point energy contribution. A new set of fundamental commutation relations without Planck's constant emerges from the unification of gravitation and quantum mechanics.

  15. Intrinsic selection biases of ground-based gravitational wave searches for high-mass black hole-black hole mergers

    SciTech Connect

    O'Shaughnessy, R.; Vaishnav, B.; Healy, J.; Shoemaker, D.

    2010-11-15

    The next generation of ground-based gravitational wave detectors may detect a few mergers of comparable-mass M{approx_equal}100-1000M{sub {center_dot}}[''intermediate-mass'' (IMBH)] spinning black holes. Black hole spin is known to have a significant impact on the orbit, merger signal, and post-merger ringdown of any binary with non-negligible spin. In particular, the detection volume for spinning binaries depends significantly on the component black hole spins. We provide a fit to the single-detector and isotropic-network detection volume versus (total) mass and arbitrary spin for equal-mass binaries. Our analysis assumes matched filtering to all significant available waveform power (up to l=6 available for fitting, but only l{<=}4 significant) estimated by an array of 64 numerical simulations with component spins as large as S{sub 1,2}/M{sup 2{<=}}0.8. We provide a spin-dependent estimate of our uncertainty, up to S{sub 1,2}/M{sup 2{<=}}1. For the initial (advanced) LIGO detector, our fits are reliable for M(set-membership sign)[100,500]M{sub {center_dot}} (M(set-membership sign)[100,1600]M{sub {center_dot}}). In the online version of this article, we also provide fits assuming incomplete information, such as the neglect of higher-order harmonics. We briefly discuss how a strong selection bias towards aligned spins influences the interpretation of future gravitational wave detections of IMBH-IMBH mergers.

  16. Photoluminescence-based measurement technique of surface recombination velocity for high efficiency silicon and compound semiconductor solar cells

    SciTech Connect

    Saitoh, T.; Nakagawa, T.; Yoh, K.; Hasegawa, H.

    1994-12-31

    This paper shows that the recently proposed photoluminescence surface state spectroscopy (PLS{sup 3}) technique allows an in-situ, contactless and non-destructive determination of the value of the effective surface recombination velocity (S) under sunlight illumination and the surface/interface state density (N{sub ss}) distributions. This technique is successfully applied to measurement of the values of S at variously passivated Si surfaces. A best value of 3,000 cm/s is obtained under 1 sun condition for thermal oxidation. S is greatly reduced under concentrated sunlight. N{sub ss} distributions at compound semiconductor surfaces and heterointerfaces are also characterized to optimize the fabrication process of compound semiconductor solar cells. Formation of Si interface control layer (ICL) between InGaAs and SiO{sub 2} greatly reduces the interface states. Growth interruption at AlGaAs/GaAs hetero-interface produces high density of interface states. InAlAs/InGaAs heterointerfaces are also investigated. These results indicate that the new PLS{sup 3} technique is useful for the characterization and optimization of the fabrication processes of the silicon and compound semiconductor solar cells.

  17. Predicting Intrinsic Motivation

    ERIC Educational Resources Information Center

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the extent to…

  18. Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner.

    PubMed

    Yao, Rutao; Ma, Tianyu; Shao, Yiping

    2008-08-21

    This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of (176)Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts-the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications. PMID:18670052

  19. Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner

    NASA Astrophysics Data System (ADS)

    Yao, Rutao; Ma, Tianyu; Shao, Yiping

    2008-08-01

    This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts—the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications.

  20. Engineering optical properties of semiconductor metafilm superabsorbers

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2016-04-01

    Light absorption in ultrathin layer of semiconductor has been considerable interests for many years due to its potential applications in various optical devices. In particular, there have been great efforts to engineer the optical properties of the film for the control of absorption spectrums. Whereas the isotropic thin films have intrinsic optical properties that are fixed by materials' properties, metafilm that are composed by deep subwavelength nano-building blocks provides significant flexibilities in controlling the optical properties of the designed effective layers. Here, we present the ultrathin semiconductor metafilm absorbers by arranging germanium (Ge) nanobeams in deep subwavelength scale. Resonant properties of high index semiconductor nanobeams play a key role in designing effective optical properties of the film. We demonstrate this in theory and experimental measurements to build a designing rule of efficient, controllable metafilm absorbers. The proposed strategy of engineering optical properties could open up wide range of applications from ultrathin photodetection and solar energy harvesting to the diverse flexible optoelectronics.

  1. Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser

    NASA Astrophysics Data System (ADS)

    Oiwa, Masaki; Minami, Shunsuke; Tsuji, Kenichiro; Onodera, Noriaki; Saruwatari, Masatoshi

    2010-01-01

    We propose and experimentally demonstrate the temporal-Talbot-effect (TTE)-based preprocessing for the pattern-effect reduction in the all-optical clock recovery using a semiconductor-optical-amplifier (SOA)-based fiber ring laser (SOA-FRL). The TTE-based preprocessing successfully reduced the pattern effects of the recovered clock pulses, so that the 10-GHz clear optical clock pulses were recovered from a 10-Gbit/s return-to-zero on-off keying (RZ-OOK) pseudo-random bit sequence (PRBS) optical signal. "Peak variation" and "Pattern-dependent intensity noise (PDIN)" were proposed and were utilized as parameters to quantitatively evaluate the pattern effects, from which recovered clock pulses suffer, in the temporal domain and the frequency domain, respectively. Peak variation was reduced from 77.2% to 36.2%, and PDIN was improved from -103 dBc/Hz to -110 dBc/Hz with the aid of the TTE-based preprocessing. Furthermore, we examined the tolerance of the proposed technique by intentionally deviating the input signal's bit-rate by ±190 Mbit/s (±2% of the bit-rate) from the optimum condition for the TTE. As compared with the PDIN value for the pulse train obtained by the direct injection of the non-processed signal into the SOA-FRL, the PDIN of the recovered clock pulses using the preprocessed signal indicated improvements over the entire measurement range of ±190 Mbit/s, which corresponds to the wavelength-dispersion deviation of ±56 ps/nm (±4% of the wavelength-dispersion applied to the input signal) from the optimum value.

  2. Intrinsic Fabry-Pérot cavity sensor based on chemical etching of a multimode graded index fiber spliced to a single mode fiber

    NASA Astrophysics Data System (ADS)

    Tafulo, Paula A. R.; Frazão, O.; Jorge, P. A. S.; Araújo, F. M.

    2010-09-01

    An intrinsic Fabry-Pérot cavity for high temperature and strain measurement is presented. The in-fibre cavity is formed by a chemical etched graded index optical fiber spliced to a single mode fiber. The intrinsic sensor obtained shows high sensitivity to strain (6.2 pm/μɛ) and rather low sensitivity to temperature (0.9 pm/°C), being suitable for applications as a strain gauge at high temperature.

  3. Semiconductor superlattice photodetectors

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Hess, K.; Coleman, J. J.; Leburton, J. P.

    1984-01-01

    A superlattice photomultiplier and a photodetector based on the real space transfer mechanism were studied. The wavelength for the first device is of the order of a micron or flexible corresponding to the bandgap absorption in a semiconductor. The wavelength for the second device is in the micron range (about 2 to 12 microns) corresponding to the energy of the conduction band edge discontinuity between an Al/(sub x)Ga(sub 1-x)As and GaAs interface. Both devices are described.

  4. High efficiency 160 Gb/s all-optical wavelength converter based on terahertz optical asymmetric demultiplexer with quantum dot semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Han, Huining; Zhang, Fangdi; Yang, Wei; Cai, Libo; Zhang, Min; Ye, Peida

    2007-11-01

    Proposed in this paper is a high efficient 160Gb/s all-optical wavelength converter based on terahertz optical asymmetric demultiplexer with quantum dot Semiconductor optical amplifier (QDSOA -TOAD). The performance of the wavelength converter under various operating conditions, such as different injected current densities, input pulse widths and input control pulse energies, is analyzed in terms of contrast ratio (CR) through numerical simulations. With the properly chosen parameters, a wavelength-converted signal with CR over 19.48 can be obtained.

  5. Accurate Ab Initio and Template-Based Prediction of Short Intrinsically-Disordered Regions by Bidirectional Recurrent Neural Networks Trained on Large-Scale Datasets

    PubMed Central

    Volpato, Viola; Alshomrani, Badr; Pollastri, Gianluca

    2015-01-01

    Intrinsically-disordered regions lack a well-defined 3D structure, but play key roles in determining the function of many proteins. Although predictors of disorder have been shown to achieve relatively high rates of correct classification of these segments, improvements over the the years have been slow, and accurate methods are needed that are capable of accommodating the ever-increasing amount of structurally-determined protein sequences to try to boost predictive performances. In this paper, we propose a predictor for short disordered regions based on bidirectional recurrent neural networks and tested by rigorous five-fold cross-validation on a large, non-redundant dataset collected from MobiDB, a new comprehensive source of protein disorder annotations. The system exploits sequence and structural information in the forms of frequency profiles, predicted secondary structure and solvent accessibility and direct disorder annotations from homologous protein structures (templates) deposited in the Protein Data Bank. The contributions of sequence, structure and homology information result in large improvements in predictive accuracy. Additionally, the large scale of the training set leads to low false positive rates, making our systems a robust and efficient way to address high-throughput disorder prediction. PMID:26307973

  6. Spin-dependent transport phenomena in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.

    Thin-film organic semiconductors transport can have an anomalously high sensitivity to low magnetic fields. Such a response is unexpected considering that thermal fluctuation energies are greater than the energy associated with the intrinsic spin of charge carriers at a modest magnetic field of 100 Oe by a factor of more than 104 at room temperature and is still greater by 102 even at liquid helium temperatures. Nevertheless, we report experimental characterization of (1) spin-dependent injection, detection and transport of spin-polarized current through organic semiconductors and (2) the influence of a magnetic field on the spin dynamics of recombination-limited transport. The first focus of this work was accomplished by fabricating basic spin-valve devices consisting of two magnetic layers spatially separated by a nonmagnetic organic semiconductor. The spin-valve effect is a change in electrical resistance due to the magnetizations of the magnetic layers changing from parallel to antiparallel alignment, or vice versa. The conductivities of the metallic contacts and that of the semiconductor differed by many orders of magnitude, which inhibited the injection of a spin-polarized current from the magnet into the nonmagnet. We successfully overcame the problem of conductivity mismatch by inserting ultra-thin tunnel barriers at the metal/semiconductor interfaces which aided in yielding a ˜20% spin-valve effect at liquid helium temperatures and the effect persisted up to 150 K. We built on this achievement by constructing spin valves where one of the metallic contacts was replaced by the organic-based magnetic semiconductor vanadium tetracyanoethylene (V[TCNE]2). At 10 K these devices produced the switching behavior of the spin-valve effect. The second focus of this work was the bulk magnetoresistance (MR) of small molecule, oligomer and polymer organic semiconductors in thin-film structures. At room temperature the resistance can change up to 8% at 100 Oe and 15% at

  7. Theory of extrinsic and intrinsic heterojunctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Ross, O.

    1980-01-01

    A careful analysis of an abrupt heterojunction consisting of two distinct semiconductors either intrinsic or extrinsic is presented. The calculations apply to a one-dimensional, nondegenerate structure. Taking into account all appropriate boundary conditions, it is shown that the intrinsic Fermi level shows a discontinuity at the interface between the two materials which leads to a discontinuity of the valence band edge equal to the difference in the band gap energies of the two materials. The conduction band edge stays continuous however. This result is independent of possible charged interface states and in sharp contrast to the Anderson model. The reasons for this discrepancy are discussed.

  8. Intrinsic Fabry-Perot interferometric fiber sensor based on ultra-short Bragg gratings for quasi-distributed strain and temperature measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zhuang

    The health monitoring of smart structures in civil engineering is becoming more and more important as in-situ structural monitoring would greatly reduce structure life-cycle costs and improve reliability. The distributed strain and temperature sensing is highly desired in large structures where strain and temperature at over thousand points need to be measured simultaneously. It is difficult to carry out this task using conventional electrical strain sensors. Fiber optic sensors provide an excellent opportunity to fulfill this need due to their capability to multiplex many sensors along a single fiber cable. Numerous research studies have been conducted in past decades to increase the number of sensors to be multiplexed in a distributed sensor network. This dissertation presents detailed research work on the analysis, design, fabrication, testing, and evaluation of an intrinsic Fabry-Perot fiber optic sensor for quasi-distributed strain and temperature measurements. The sensor is based on two ultra-short and broadband reflection fiber Bragg gratings. One distinct feature of this sensor is its ultra low optical insertion loss, which allows a significant increase in the sensor multiplexing capability. Using a simple integrated sensor interrogation unit and an optical spectrum based signal processing algorithm, many sensors can be interrogated along a single optical fiber with high accuracy, high resolution and large dynamic range. Based on the experimental results and theoretical analysis, it is expected that more than 500 sensors can be multiplexed with little crosstalk using a frequency-division multiplexing technology. With this research, it is possible to build an easy fabrication, robust, high sensitivity and quasi-distributed fiber optic sensor network that can be operated reliably even in harsh environments or extended structures. This research was supported in part by U.S. National Science Foundation under grant CMS-0427951.

  9. Exciton Transport in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Menke, Stephen Matthew

    Photovoltaic cells based on organic semiconductors are attractive for their use as a renewable energy source owing to their abundant feedstock and compatibility with low-cost coating techniques on flexible substrates. In contrast to photovoltaic cells based traditional inorganic semiconductors, photon absorption in an organic semiconductor results in the formation of a coulombically bound electron-hole pair, or exciton. The transport of excitons, consequently, is of critical importance as excitons mediate the interaction between charge and light in organic photovoltaic cells (OPVs). In this dissertation, a strong connection between the fundamental photophysical parameters that control nanoscopic exciton energy transfer and the mesoscopic exciton transport is established. With this connection in place, strategies for enhancing the typically short length scale for exciton diffusion (L D) can be developed. Dilution of the organic semiconductor boron subphthalocyanine chloride (SubPc) is found to increase the LD for SubPc by 50%. In turn, OPVs based on dilute layers of SubPc exhibit a 30% enhancement in power conversion efficiency. The enhancement in power conversion efficiency is realized via enhancements in LD, optimized optical spacing, and directed exciton transport at an exciton permeable interface. The role of spin, energetic disorder, and thermal activation on L D are also addressed. Organic semiconductors that exhibit thermally activated delayed fluorescence and efficient intersystem and reverse intersystem crossing highlight the balance between singlet and triplet exciton energy transfer and diffusion. Temperature dependent measurements for LD provide insight into the inhomogeneously broadened exciton density of states and the thermal nature of exciton energy transfer. Additional topics include energy-cascade OPV architectures and broadband, spectrally tunable photodetectors based on organic semiconductors.

  10. Many-body effects in semiconductor lasers

    SciTech Connect

    Chow, W.W.

    1995-03-01

    A microscopic theory, that is based on the coupled Maxwell-semiconductor-Bloch equations, is used to investigate the effects of many-body Coulomb interactions in semiconductor laser devices. This paper describes two examples where the many-body effects play important roles. Experimental data supporting the theoretical results are presented.

  11. Semiconductor sensor embedded microfluidic chip for protein biomarker detection using a bead-based immunoassay combined with deoxyribonucleic acid strand labeling.

    PubMed

    Lin, Yen-Heng; Peng, Po-Yu

    2015-04-15

    Two major issues need to be addressed in applying semiconductor biosensors to detecting proteins in immunoassays. First, the length of the antibody on the sensor surface surpasses the Debye lengths (approximately 1 nm, in normal ionic strength solution), preventing certain specifically bound proteins from being tightly attached to the sensor surface. Therefore, these proteins do not contribute to the sensor's surface potential change. Second, these proteins carry a small charge and can be easily affected by the pH of the surrounding solution. This study proposes a magnetic bead-based immunoassay using a secondary antibody to label negatively charged DNA fragments for signal amplification. An externally imposed magnetic force attaches the analyte tightly to the sensor surface, thereby effectively solving the problem of the analyte protein's distance to the sensor surface surpassing the Debye lengths. In addition, a normal ion intensity buffer can be used without dilution for the proposed method. Experiments revealed that the sensitivity can be improved by using a longer DNA fragment for labeling and smaller magnetic beads as solid support for the antibody. By using a 90 base pair DNA label, the signal was 15 times greater than that without labeling. In addition, by using a 120 nm magnetic bead, a minimum detection limit of 12.5 ng mL(-1) apolipoprotein A1 can be measured. Furthermore, this study integrates a semiconductor sensor with a microfluidic chip. With the help of microvalves and micromixers in the chip, the length of the mixing step for each immunoassay has been reduced from 1h to 20 min, and the sample volume has been reduced from 80 μL to 10 μL. In practice, a protein biomarker in a urinary bladder cancer patient's urine was successfully measured using this technique. This study provides a convenient and effective method to measure protein using a semiconductor sensor. PMID:25818137

  12. Reduced polarization decay due to carrier in-scattering in a semiconductor active medium

    SciTech Connect

    Hughes, S.; Knorr, A.; Koch, S.W.; Chow, W.W.

    1996-07-01

    The in-scattering processes, which reduce the decay of the active medium polarization, should be included in a consistent treatment of semiconductor laser gain. The in-scattering processes affect the laser gain by decreasing the influence of the high k-states, which contribute absorption to the spectrum. A theory, based on the semiconductor-Bloch equations with the effects of carrier-carrier scattering treated at the level of the quantum kinetic equations in the Markov limit, predicts gain spectra that do not exhibit absorption below the renormalized band gap, in agreement with experiment. When compared to gain calculations where the in-scattering contribution is neglected, the theory predicts markedly different properties for intrinsic laser parameters, such as peak gain, gain bandwidth, differential gain and carrier density at transparency, especially at low carrier densities.

  13. Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals?

    SciTech Connect

    Feng, Y. Lin, S.; Huang, S.; Shrestha, S.; Conibeer, G.

    2015-03-28

    Despite that Tauc plot extrapolation has been widely adopted for extracting bandgap energies of semiconductors, there is a lack of theoretical support for applying it to nanocrystals. In this paper, direct-allowed optical transitions in semiconductor nanocrystals have been formulated based on a purely theoretical approach. This result reveals a size-dependant transition of the power factor used in Tauc plot, increasing from one half used in the 3D bulk case to one in the 0D case. This size-dependant intermediate value of power factor allows a better extrapolation of measured absorption data. Being a material characterization technique, the generalized Tauc extrapolation gives a more reasonable and accurate acquisition of the intrinsic bandgap, while the unjustified purpose of extrapolating any elevated bandgap caused by quantum confinement is shown to be incorrect.

  14. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    NASA Astrophysics Data System (ADS)

    Tu, Nguyen Thanh; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2016-05-01

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga1-x,Fex)Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  15. Photoelectrosynthesis at semiconductor electrodes

    SciTech Connect

    Nozik, A. J.

    1980-12-01

    The general principles of photoelectrochemistry and photoelectrosynthesis are reviewed and some new developments in photoelectrosynthesis are discussed. Topics include energetics of semiconductor-electrolyte interfaces(band-edge unpinning); hot carrier injection at illuminated semiconductor-electrolyte junctions; derivatized semiconductor electrodes; particulate photoelectrochemical systems; layered compounds and other new materials; and dye sensitization. (WHK)

  16. Photorefractive Semiconductors and Applications

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Luke, Keung L.

    1993-01-01

    Photorefractive semiconductors are attractive for information processing, becuase of fast material response, compatibility with semiconductor lasers, and availability of cross polarization diffraction for enhancing signal-to-noise ration. This paper presents recent experimental results on information processing using photorefractive GaAs, InP and CdTe, including image processing with semiconductor lasers.

  17. Terahertz Optical Gain Based on Intersubband Transitions in Optically-Pumped Semiconductor Quantum Wells: Coherent Pumped-Probe Interactions

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.

  18. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor.

    PubMed

    Ah Lee, Seung; Ou, Xiaoze; Lee, J Eugene; Yang, Changhuei

    2013-06-01

    We demonstrate a silo-filter (SF) complementary metal-oxide semiconductor (CMOS) image sensor for a chip-scale fluorescence microscope. The extruded pixel design with metal walls between neighboring pixels guides fluorescence emission through the thick absorptive filter to the photodiode of a pixel. Our prototype device achieves 13 μm resolution over a wide field of view (4.8 mm × 4.4 mm). We demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration. PMID:23722754

  19. C-V measurements of micron diameter metal-oxide-semiconductor capacitors using a scanning-electron-microscope-based nanoprobe.

    PubMed

    Zheng, T; Jia, H; Wallace, R M; Gnade, B E

    2007-10-01

    The C-V electrical characterization of microstructures on a standard probe station is limited by the magnification of the imaging system and the precision of the probe manipulators. To overcome these limitations, we examine the combination of in situ electrical probing and a dual column scanning electron microscope/focused ion beam system. The imaging parameters and probing procedures are carefully chosen to reduce e-beam damage to the metal oxide semiconductor capacitor device under test. Estimation of shunt capacitance is critical when making femtofarad level measurements. C-V measurements of micron size metal-oxide-silicon capacitors are demonstrated. PMID:17979444

  20. Solvation of deoxynucleosides in aqueous mixtures of organic solvents probed through their intrinsic fluorescence: Implications for open base pair states in DNA

    NASA Astrophysics Data System (ADS)

    Ababneh, Anas Mohammad

    Because of the importance of solvation in the function of DNA, there is considerable interest in understanding the solvation network of its constituent components. This is of particular importance in connection with the closing of base pairs that have been disrupted as a result of structural fluctuations. Following the opening of a base pair, the open base is exposed to a heterogeneous environment which involves polar as well as nonpolar interactions. Toward the goal of understanding how the open bases interact with such a heterogeneous environment, we have studied the intrinsic fluorescence properties of the purine and pyrimidine nucleosides (dG, dA, dT, and dC) in organic solvents in the presence of small amounts of water. Exposure of the nucleoside to water was done by preparing solutions in three different ways: (i) "premixed" solution in which the nucleoside is dissolved in a water-organic solvent mixture, (ii) "carry its own water" solution in which the nucleoside is first dissolved in water and then diluted in the organic solvent, and (iii) "injected" solution in which water is added to a solution of the nucleoside in the organic solvent. The organic solvents used in the present study were: n-butanol, acetonitrile, methanol, n-propanol, isopropanol, and isobutanol. We find that for n-butanol and acetonitrile, which have a high degree of amphiphilicity and weak hydrogen bonding ability, respectively, the fluorescence spectral properties of the purines are found to depend on the sequence of the steps in which the aqueous mixture was formed. By contrast, no such dependence was observed in the other organic solvents. On the other hand, no such dependence was observed for the pyrimidines in any of the organic solvents used in the present study. These findings suggest that the final solvation network around the purines is dependent on the nature of the environment to which they were initially exposed. This would tend to present an impediment to the closing of