Science.gov

Sample records for invar alloys tochechnye

  1. Copper-rich invar by mechanical alloying

    NASA Astrophysics Data System (ADS)

    O'Donnell, K.; Qi, Qinian; Ilyushin, A. S.; Coey, J. M. D.

    1993-05-01

    An fcc alloy of composition Fe 64Cu 26Cr 7Ni 3 with a0 = 0.362 nm and an average crystalline size of 5 nm was produced by high-energy ball milling iron and copper powder in a stainless-steel container. The average number of electrons per atom is 8.7. The Curie temperature of the alloy is 410 K and the room-temperature magnetization is 48 JT -1 kg -1. The Mössbauer spectrum at 15 K shows a broad distribution of hyperfine field with an average of 15.6 T, which indicates coexistence of high and low moment states for iron. The alloy decomposes exothermically at 775 K to yield a mixture of bcc and fcc phases, but 50% of the iron remains in the fcc form with a low moment.

  2. Moessbauer and SANS Studies of Anti-Invar Fe-Ni-C Alloy under Magnetic Field

    SciTech Connect

    Nadutov, V. M.; Kosintsev, S. G.; Svystunov, Ye. O.; Garamus, V. M.; Willumeit, R.; Eckerlebe, H.; Ericsson, T.; Annersten, H.

    2010-07-13

    Anti-Invar effect in the f.c.c.-Fe-25.3%Ni-C alloy was revealed, i.e., enhanced thermal expansion coefficient (TEC)({approx}20x10{sup -6} K{sup -1}) which was accompanied by almost temperature-insensitive behavior in a temperature range of 122-525 K that was considerably expanded to the low temperature range due to alloying with carbon. The Moessbauer and small-angle neutron scattering (SANS) experiments with the varying temperature and in an external magnetic field of 1.5-5 T have revealed an existence of inhomogeneous magnetic order in anti-Invar alloy below and above the magnetic transition point. The anti-Invar behavior correlates with the thermally induced change in the magnetic order and interspin interaction.

  3. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Choi, S. G.; Choi, W. K.; Yang, B. Y.; Lee, E. S.

    2014-09-01

    In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis.

  4. Two magnetic states of iron atoms in Invar Fe-Ni alloys and positron annihilation

    NASA Astrophysics Data System (ADS)

    Sedov, V. L.; Tsigel'nik, O. A.

    1999-11-01

    The temperature dependence of angular correlation annihilation radiation (ACAR) in Invar Fe-Ni alloys is investigated. It is found that the ACAR distribution in the Curie temperature region TC depends on temperature. This effect is created only by those positrons that are trapped by vacancies. The effect is enhanced if the positrons trapped by vacancy-hydrogen complexes. The ACAR distribution is changed due to enhanced interaction of these positrons with 3d electrons. A simple interpretation of this phenomenon can be given on the basis of the model of two magnetic states of Fe atoms in Invar alloys. According to this model the enhancement of the electron-positron correlation interaction in the TC region occurs as a result of the convergence of the energy levels εHS and εLS corresponding to the high-spin (HS) and low-spin (LS) states of Fe atoms.

  5. Wall profile developments in through-mask electrochemical micromachining of invar alloy films

    SciTech Connect

    Kwon, G.J.; Sun, H.Y.; Sohn, H.J.

    1995-09-01

    The through-mask electrochemical micromachining of invar (Fe-36Ni) alloy film in 4M NaCl solution was carried out. Wall profile change during electrochemical etching was simulated using the boundary element method with assumptions of negligible concentration variation in the bulk solution and kinetic resistance at the electrode surface. The shape evolution with time was predicted and agreed well with the experimental values for small aspect ratio.

  6. Analysis of Microstructure and Properties of Cemented Carbide and Invar Alloy Weldment

    NASA Astrophysics Data System (ADS)

    Xu, P. Q.; Zhao, X. J.

    2010-03-01

    Multi-phase composite microstructure was designed in a Ni42C0.6Mn3.5Nb3Fe50.9 invar alloy which was welded to WC-Co cemented carbide. The multi-component composition (Ni42C0.6Mn3.5Nb3Fe50.9) was chosen such that on welding of the cemented carbide to invar alloy the nonequilibrium interface reactions were suppressed. The microstructures of Ni42C0.6Mn3.5Nb3Fe50.9 invar alloy and the dissimilar materials (WC-Co and Ni42C0.6Mn3.5Nb3Fe50.9) welded joint were characterized with SEM and EDS analysis, and phase was done using x-rays diffractometer. The hardness profile is determined using micro-hardness measurements. Sound metallurgical bond and smooth hardness transition from 420HV0.2 to 870HV0.2 near interface were obtained without groove and filler materials.

  7. Invar and Elinvar type amorphous Fe-Cr-B alloys with high corrosion resistance

    NASA Technical Reports Server (NTRS)

    Kikuci, M.; Fukamichi, K.; Masumoto, T.

    1987-01-01

    Amorphous (Fe(1-x)Cr(x))85B15 alloys (x = 0 to 0.15) were prepared from the melts by rapid quenching using a single roller techinque, and their Invar and Elinvar characteristics and corrosion resistance were investigated. With an increase in chromium content the Curie temperature and the saturation magnetic moment per iron atom decreased monotonically, while the crystallization temperature incresed gradually. The thermal expansion coefficient alpha around room temperature became slightly larger with increasing chromium content. Nevertheless, these amorphous alloys exhibited excellent Invar characteristics below the Curie temperature. The value of Young's modulus increased remarkably in a relatively low magnetic field and then saturated at a field of about 80 kA/m, showing a large delta E effect. Its value as well as a longitudinal linear magnetostriction became smaller with an increase in chromium content. The temperature coefficient of Young's modulus changed from postive to negative, and the temperature range showing the Elinvar characteristics became narrower with chromium content. The temperature coefficient of delay time determined from the values of alpha and e was very small. The corrosion resistance of these alloys was extremely improved by chromium addition.

  8. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  9. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  10. The enhanced range of temperature for coefficient of low thermal expansion, electrical and thermal conductivities of Cu substituted Fe-Ni invar alloys

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Ziya, A. B.; Ibrahim, A.; Atiq, S.; Ahmad, N.; Bashir, F.

    2016-03-01

    Six alloys of Fe65Ni35-x Cu x (x = 0, 0.2, 0.6, 1, 1.4, 1.8 at.%) have been prepared by conventional arc-melting technique and characterized by utilizing high temperature x-ray diffraction (HTXRD) technique at a range from room temperature to 773 K for determination of phase, lattice parameter (a), coefficient of thermal expansion (α(T)), mean square amplitude of vibration (\\bar{{u}2}), characteristic Debye temperature (ΘD), electrical resistivity (ρ) and thermal conductivity (κ). The studies showed that these alloys form face centered cubic structure (fcc) throughout the investigated temperature range. The values of α(T) were found to be comparable to those for conventional Fe-Ni invar alloys but have increased temperature span to a significant extent. The mean square amplitude of vibration (\\bar{{u}2}) and Debye temperature were found to remain almost unchanged in the invar temperature range, whereas the electrical and thermal conductivity were found to improve.

  11. Enhancement of Curie Temperature (T c) and Magnetization of Fe-Ni Invar alloy Through Cu Substitution and with He+2 Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Khan, Sajjad Ahmad; Ziya, Amer Bashir; Ibrahim, Ather; Atiq, Shabbar; Usman, Muhammad; Ahmad, Naseeb; Shakeel, Muhammad

    2016-04-01

    The magnetic properties of ternary Fe-Ni-Cu invar alloys are affected by ion irradiation, which goes on increasing with increasing ion fluence (Φ), and by increasing Cu content. In the present study, the ions used are He+2 with 2 MeV energy and with 1 × 1013 cm-2, 1 × 1014 cm-2, 5 × 1014 cm-2, 1 × 1015 cm-2 and 5 × 1015 cm-2 fluence (dose) for irradiation purpose. The face centered cubic structure of the alloy was investigated after ion irradiation using x-ray diffraction (XRD) and found unchanged. However, the peaks become broader with increasing ion dose. Additionally, the lattice fluctuations were observed in XRD study. Curie temperature (T c) is also increased after irradiation. Many factors are considered here for the reason for increasing T c, such as the stopping of incident ions, atomic mixing effect at micro scale level owing to ion irradiation, which might change local concentration and ordering already reported in diffuse scattering, and as a result the Fe-Fe interatomic distance and the Fe-Fe coupling are changed. A comparative study shows that the effect of irradiation on T c and magnetization with increasing ion fluence is more distinctive than the addition of Cu.

  12. Ultra high purity, dimensionally stable INVAR 36

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M. (Inventor); Lane, Marc S. (Inventor); Hsieh, Cheng H. (Inventor); Odonnell, Timothy P. (Inventor)

    1995-01-01

    An INVAR 36 material having long-term dimensional stability is produced by sintering a blend of powders of nickel and iron under pressure in an inert atmosphere to form an alloy containing less than 0.01 parts of carbon and less than 0.1 part aggregate and preferably 0.01 part individually of Mn, Si, P, S and Al impurities. The sintered alloy is heat treated and slowly and uniformly cooled to form a material having a coefficient of thermal expansion of less than 1 ppm/C and a temporal stability of less than 1 ppm/year.

  13. Ultra high purity, dimensionally stable INVAR 36

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M. (Inventor); Lane, Marc S. (Inventor); Odonnell, Timothy P. (Inventor); Hsieh, Cheng H. (Inventor)

    1994-01-01

    An INVAR 36 material having long-term dimensional stability is produced by sintering a blend of powders of nickel and iron under pressure in an inert atmosphere to form an alloy containing less than 0.01 parts of carbon and less than 0.1 part aggregate and preferably 0.01 part individually of Mn, Si, P, S and Al impurities. The sintered alloy is heat treated and slowly and uniformly cooled to form a material having a coefficient of thermal expansion of less than 1 ppm/C and a temporal stability of less than 1 ppm/year.

  14. Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt

    NASA Astrophysics Data System (ADS)

    Sax, C. R.; Schönfeld, B.; Ruban, A. V.

    2015-08-01

    Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.

  15. Effect of external magnetic field on valence-electron structures of Fe and Ni in Invar, Permalloy and the other Fe-Ni alloys by using Kβ-to-Kα X-ray intensity ratios.

    PubMed

    Alım, Bünyamin; Han, İbrahim; Demir, Lütfü

    2016-06-01

    The effect of external magnetic field on the valence-electron structures of Fe and Ni in various Fe-Ni alloy compositions was investigated by using X-ray fluorescence spectroscopy. Firstly, Kβ-to-Kα X-ray intensity ratios of Fe and Ni in Invar (Fe0.64Ni0.36), Permalloy (Fe0.20Ni0.80) and FexNi1-x (x=0, 0.40, 0.52, 0.55, 0.61, and 1) alloys were measured without any magnetic field and under 0.5 and 1T external magnetic fields, separately. Later, the valence-electron structures of Fe and Ni in both pure form and alloys were obtained by comparison of measured X-ray intensity ratios with the results of multi-configurations Dirac-Fock (MCDF) calculations. The results obtained for valence-electron structures of Fe and Ni in various Fe-Ni alloys were evaluated in terms of magnetic field effect, delocalization and/or charge transfer phenomena. The results have shown that valence electron structure of Fe and Ni in Fe-Ni alloys are dependent on both external magnetic field and concentration of alloy elements. PMID:26974486

  16. Critical femtosecond laser parameters for the fabrication of optimal reflecting diffraction gratings on Invar36

    NASA Astrophysics Data System (ADS)

    Mohammad Hossein, Goudarzi; Meng-Jyun, Lin; Ji-Bin, Horng; Jeng-Ywan, Jeng

    2016-06-01

    This paper discusses the effect of femtosecond laser parameters on Invar36, and the efficiency of reflecting diffraction gratings on the alloy. Several gratings were made with different laser parameters in two regimes: constant repetition rates and constant average laser power on the Invar surface. The efficiency of diffraction gratings is measured in an off-plane configuration by determining the power of diffracted points. With the constant average power technique, an increase in laser influence decreased the ablation depth of lines and increased the line widths. The discoloration of line edges from increasing the laser influence more than 0.57 J /cm2 decreased the grating efficiency by over 49%. It was also found that increasing the repetition rate enhanced the grating efficiency and increasing the average power decreased the efficiency. In addition, the ablation threshold of Invar is 0.122 J /cm2 when the number of pulses (NOP) equals 389.

  17. Chemical-milling solution for invar alloy

    NASA Technical Reports Server (NTRS)

    Batiuk, W.

    1980-01-01

    Excellent surface finishes and tolerances are achieved using two formulations. Solution A gives finish of 3.17 micrometers after milling at 57 to 63 deg C. Constituents of A are: Hydrofluoric acid (70%), 5,8 oz/gal; nitric acid (40-42) degrees Baume), 40 oz/gal. Alternative solution gives 2.16 micrometer finish, and differs from A by addition of 7% phosphoric acid. Formulations eliminate channeling at root fillets, dishing, island formation, and overhangs.

  18. Bonded Invar Clip Removal Using Foil Heaters

    NASA Technical Reports Server (NTRS)

    Pontius, James T.; Tuttle, James G.

    2009-01-01

    A new process uses local heating and temperature monitoring to soften the adhesive under Invar clips enough that they can be removed without damaging the composite underneath or other nearby bonds. Two 1x1 in. (approx.2.5x2.5 cm), 10-W/sq in. (approx.1.6-W/sq cm), 80-ohm resistive foil Kapton foil heaters, with pressure-sensitive acrylic adhesive backing, are wired in parallel to a 50-V, 1-A limited power supply. At 1 A, 40 W are applied to the heater pair. The temperature is monitored in the clip radius and inside the tube, using a dual thermocouple readout. Several layers of aluminum foil are used to speed the heat up, allowing clips to be removed in less than five minutes. The very local heating via the foil heaters allows good access for clip removal and protects all underlying and adjacent materials.

  19. Dimensional stability of high-purity Invar 36

    NASA Astrophysics Data System (ADS)

    Sokolowski, Witold M.; Jacobs, Stephen F.; Lane, Marc S.; O'Donnell, Timothy P.; Hsieh, Cheng

    1993-12-01

    High performance requirements for the Imaging Science Subsystem/Narrow Angle Camera (NAC) instrument on the NASA/Jet Propulsion Laboratory (JPL) Cassini spacecraft impose very stringent demands for dimensional stability of metering rods in the camera's athermalizing system. Invar 36 was chosen as a baseline material because it possibly could meet these requirements through high purity control and appropriate thermomechanical processes. A powder metallurgy process appears to be the manufacturing method to ensure high purity and cleanliness of this material. Therefore, a powder metallurgy manufacturer was contacted and high purity (HP) Invar 36 was produced per JPL engineering requirements. Several heat treatments were established and heat treated HP Invar 36 samples were evaluated. Coefficient of thermal expansion (CTE), thermal hysteresis and temporal stability test results are reported here. The test results indicate that JPL has succeeded in obtaining possibly the most dimensionally stable (lowest CTE plus lowest temporal change) Invar 36 material ever produced. CTE < 1 ppm/ degree(s)C are reported here along with temporal stability < 1 ppm/year. These dimensional stability properties will meet the requirements for metering rods on the NAC.

  20. Nickel-plated invar mirrors for synchrotron radiation beam lines

    NASA Astrophysics Data System (ADS)

    Howells, Malcolm R.; Burt, P.; Cambie, Daniela; Duarte, Robert M.; Franck, A.; Irick, Steven C.; MacDowell, Alastair A.; MacGill, D.; Paquin, R.; Plate, David W.

    2002-12-01

    We report the experience of the Advanced Light Source group in designing and building a series of nine electroless nickel-plated invar mirrors. The first four mirrors constructed appeared initially to be good but later it became evident that the nickel plating on all nine had been done improperly. The problem first appeared as blister-like defects about half a micron high and one to three centimeters wide. The cause turned out to be local separation of the plating from the substrate. In this paper we discuss the technical issues involved in building mirrors from invar and in preparing for and applying the needed electroless nickel coatings. We describe the studies that we carried out to evaluate the questions of adhesion, stress and polishability and report broad success in remanufacturing four of the mirrors. At time of writing one of the four has met specification showing good figure (0.8 μr rms) and finish (6 Å rms).

  1. Analysis of Formation and Interfacial WC Dissolution Behavior of WC-Co/Invar Laser-TIG Welded Joints

    NASA Astrophysics Data System (ADS)

    Xu, P. Q.; Ren, J. W.; Zhang, P. L.; Gong, H. Y.; Yang, S. L.

    2013-02-01

    During the valve fabrication, hard metal is welded to stainless steel or invar alloy for sealing purposes because of its good heat resistance operating at 500 °C. However, WC (tungsten carbide) dissolution in weld pool softens the hard metal and decreases mechanical properties near the hard metal/weld interface. In order to analyze the WC dissolution in welded joint, joining of hard metal and invar alloy was carried out using laser-tungsten inert gas hybrid welding method. Microstructures of the weld region, chemical composition were investigated using optical microscope, scanning electron microscopy, and EDAX, respectively. Mechanical properties such as microhardness and four-point bend strength test were performed. Larger and smaller WC dissolution and WC dissolution through transition layer based on thermo-dynamics were discussed. The results thus indicate that WC dissolution led to cellular microstructure, columnar crystal, and transition layer under the effect of laser beam and tungsten arc. WC dissolution was affected by metal ions Fe+, Ni+, Co+ exchange in W-M-C system, and WC grain growth was driven by forces caused by laser beam and tungsten arc in larger WC, smaller WC, and liquid Fe, Ni systems.

  2. "Invar"-like behavior in compressed Fe7C3 with implication for deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Liu, J.; Li, J.; Ikuta, D.

    2014-12-01

    Iron carbide Fe7C3 has recently emerged as a leading candidate component of the inner core because it is likely the first phase to solidify from a liquid containing iron and a small amount of carbon, and previous studies suggest that it provides a good match for the density of the inner core under relevant conditions. Pressure-induced magnetic transitions have been observed in Fe7C3 (Chen et al., 2012). The pressure of the ferromagnetic to paramagnetic transition remains controversial and its effect on equation of state (EoS) is unclear, thus introducing uncertainties in estimating the density of Fe7C3 under inner core pressures. Here we report the lattice parameters and unit cell volume of hexagonal Fe7C3 at 300 K and up to 70 GPa, obtained through synchrotron x-ray diffraction measurements using a diamond anvil cell. The experiments used fine powder of Fe7C3 that was synthesized in the multi-anvil apparatus at the University of Michigan. The sample was embedded in neon pressure medium together with Au powder and ruby spheres as additional pressure markers. We observed significant softening at 5~8 GPa, similar to the reported "invar"-like behavior in Fe-Ni alloy (Dubrovinsky et al., 2001). For comparison, the compression curve of iron in the same loading turned out to be smooth as expected, which confirms that the abnormal behavior in Fe7C3 compression curve is due to its own property change and not an artifact. The new data allow us to establish the equation-of-state (EoS) of Fe7C3 and then estimate the density of Fe7C3 at inner core conditions. References: Chen, B., Gao, L.L., Lavina, B., Dera, P., Alp, E.E., Zhao, J.Y., Li, J., 2012. Magneto-elastic coupling in compressed Fe7C3 supports carbon in Earth's inner core. Geophys Res Lett 39. Dubrovinsky, L., Dubrovinskaia, N., Abrikosov, I.A., Vennstrom, M., Westman, F., Carlson, S., van Schilfgaarde, M., Johansson, B., 2001. Pressure-induced invar effect in Fe-Ni alloys. Phys Rev Lett 86, 4851-4854.

  3. The Invar tensor package: Differential invariants of Riemann

    NASA Astrophysics Data System (ADS)

    Martín-García, J. M.; Yllanes, D.; Portugal, R.

    2008-10-01

    The long standing problem of the relations among the scalar invariants of the Riemann tensor is computationally solved for all 6ṡ10 objects with up to 12 derivatives of the metric. This covers cases ranging from products of up to 6 undifferentiated Riemann tensors to cases with up to 10 covariant derivatives of a single Riemann. We extend our computer algebra system Invar to produce within seconds a canonical form for any of those objects in terms of a basis. The process is as follows: (1) an invariant is converted in real time into a canonical form with respect to the permutation symmetries of the Riemann tensor; (2) Invar reads a database of more than 6ṡ10 relations and applies those coming from the cyclic symmetry of the Riemann tensor; (3) then applies the relations coming from the Bianchi identity, (4) the relations coming from commutations of covariant derivatives, (5) the dimensionally-dependent identities for dimension 4, and finally (6) simplifies invariants that can be expressed as product of dual invariants. Invar runs on top of the tensor computer algebra systems xTensor (for Mathematica) and Canon (for Maple). Program summaryProgram title:Invar Tensor Package v2.0 Catalogue identifier:ADZK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZK_v2_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:3 243 249 No. of bytes in distributed program, including test data, etc.:939 Distribution format:tar.gz Programming language:Mathematica and Maple Computer:Any computer running Mathematica versions 5.0 to 6.0 or Maple versions 9 and 11 Operating system:Linux, Unix, Windows XP, MacOS RAM:100 Mb Word size:64 or 32 bits Supplementary material:The new database of relations is much larger than that for the previous version and therefore has not been included in

  4. Dimensional stability of fused silica, Invar, and several ultralow thermal expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.; Norton, M. A.

    1976-01-01

    A method is developed for testing the long-term dimensional stability of an iodine-stabilized He-Ne laser, using a technique whereby thermal expansion coefficients are measured by forming a Fabry-Perot etalon from the sample and monitoring the optical resonant frequencies with tunable sidebands impressed on a laser beam from a frequency-stabilized He-Ne laser. A change of 1 ppm over a 3-yr period on the part of fused silica dimensions and the differential thermal expansion of Invar LR-35 and Super Invar materials are noted. The method is of interest for the metrology of extremely stable structures such as telescopes and optical resonators.

  5. Effect of current compliance and voltage sweep rate on the resistive switching of HfO{sub 2}/ITO/Invar structure as measured by conductive atomic force microscopy

    SciTech Connect

    Wu, You-Lin Liao, Chun-Wei; Ling, Jing-Jenn

    2014-06-16

    The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

  6. Algorithm for recognition and measurement position of pitches on invar scale with submicron accuracy

    NASA Astrophysics Data System (ADS)

    Lashmanov, Oleg; Korotaev, Valery

    2015-05-01

    High precision optical encoders are used for many high end computerized numerical control machines. Main requirement for such systems are accuracy and time of measurement, therefore image processing are often performed by FPGA or DSP. This article will describe image processing algorithm for detecting and measuring pitch position on invar scale, which can be easily implemented on specified target hardware. The paper proposed to use a one-dimensional approach for pitch recognition and measure its position on the image. This algorithm is well suited for implementation on FPGA and DSP and provide accuracy 0.07 pixel.

  7. Magnetic Compton scattering studies of the Invar alloy Fe{sub 3}Pt

    SciTech Connect

    Yahnke, C.J.; Srajer, G.; Haeffner, D.R.; Mills, D.M.; Assoufid, L.

    1995-02-01

    The magnetic Compton profiles (MCP) for both ordered and disordered Fe{sub 3}Pt samples have been measured above and below their Curie temperature. These measurements show that the average moment per atom at room temperature is 2.8{sub {mu}{sub B}} {plus_minus} 0.1{sub {mu}{sub B}} for disordered Fe{sub 3}Pt and 1.8{sub {mu}{sub B}} {plus_minus} 0.1{sub {mu}{sub B}} for ordered Fe{sub 3}Pt., At temperatures above {Tc}, we measured a substantial reduction in the moment (0.6{sub {mu}{sub B}} {plus_minus} 0.1{sub {mu}{sub B}} for disordered Fe{sub 3}Pt and 0.6{sub {mu}{sub B}} {plus_minus} 0.1{sub {mu}{sub B}} for ordered Fe{sub 3}Pt) and a change in the shape of the MCP. These results indicate a decrease of the d-like moment on the Fe atoms in the disordered phase. The MCP for the ordered phase shows a change in the total moment, yet the momentum distribution is substantially different and cannot be described by this analysis.

  8. A summary of tests on Invar welded with 308L and 8N12 welding rods

    NASA Technical Reports Server (NTRS)

    Cox, J. W.

    1981-01-01

    The cost and difficulty in obtaining Invarod, the recommended welding rod to weld Invar, nessitated the investigation of substituting more readily available rods that would meet the cryogenic design criteria for the National Transonic Facility (NTF). Two weld rods, 308L and 8N12, were chosen as promising candidates. Four welded specimen plates were made; two plates for each type of weld rod. One plate from each of the 308L and 8N12 weldings was thermally cycled 50 times between 366 K and 89 K while the two remaining plates were not thermally cycled. Specimens were machined from all four plates for three types of tests: tensile, charpy impact, and guided-bend. The methods in making the specimen plates, conduction of the tests, test results, and conclusions leading to the selection of a weld rod are presented.

  9. Magnetic Compton scattering studies of the Invar effect in Fe{sub 3}Pt

    SciTech Connect

    Yahnke, C.J.; Srajer, G.; Haeffner, D.R.; Mills, D.M.; Assoufid, L.

    1995-09-01

    The authors have measured the magnetic Compton profile (MCP) or ordered and disordered Fe{sub 3}Pt samples both above and below their Curie temperature. From these measurements, they have determined the average moment per atom at room temperature to be 2.81{micro}{sub B} {+-} 0.04{micro}{sub B} for disordered Fe{sub 3}Pt and 1.78{micro}{sub B} {+-} 0.05{micro}{sub B} for ordered Fe{sub 3}Pt. At temperatures above {Tc}, they measured a substantial reduction in the moment (0.60{micro}{sub B} {+-} 0.10{micro}{sub B} for disordered Fe{sub 3}Pt and 0.64{micro}{sub B} {+-} 0.13{micro}{sub B} for ordered Fe{sub 3}Pt) and a change in the shape of the MCP. This suggests that the mechanism behind the Invar effect in Fe{sub 3}Pt can be described by a high-spin to low-spin magnetic phase transition. The experimental MCPs for both ordered and disordered Fe{sub 3}Pt are analyzed within the framework of the Wises 2{gamma} model.

  10. Can the Kern-ME5000 Mekometer Replace Invar Measurements? Results of Test Measurements with Three Machines

    SciTech Connect

    Copeland-Davis, T.W.; /SLAC

    2005-08-12

    The use of the Kern Me5000 as a ''stand alone'' instrument is restricted to a minimum measurement distance of approximately 20m (Kern internal ''low range'' program), with 2 display readout to the nearest 100{micro}m. Using an external program, it is possible to extend both, the display resolution to 10{micro}m, 2nd the range down to distances well below 20m. This paper attempts to explain Kern's reasoning behind the original limitation of approximately 20m, and presents the results from testing three Mekometer Me5000 instruments. Their similarities, differences, and accuracies are assessed for distances below 25m providing a comparison against the use of invar wires.

  11. A theoretical study of the electronic structure of Invar Fe*3Pt and related materials

    SciTech Connect

    Zuo, Zhiqi

    1997-01-10

    The Full Potential Linear Augmented Plane Wave (FPLAPW or FLAPW) method is used for a spin-polarized band calculation for ordered Fe{sub 3}Pt. As major purpose, the momentum distributions of the spin-polarized electrons are calculated and compared with results from a magnetic Compton scattering measurement. To get related information, the electronic behavior is also analyzed by examining the partial densities of states and the spatial electron distributions; the role of alloying effects is then explored by studying the electrons in some related alloys: Fe{sub 3}Ni, Fe{sub 3}Pd, Ni{sub 3}Pt and Co{sub 3}Pt.

  12. Strain glass transition in a multifunctional β-type Ti alloy

    PubMed Central

    Wang, Yu; Gao, Jinghui; Wu, Haijun; Yang, Sen; Ding, Xiangdong; Wang, Dong; Ren, Xiaobing; Wang, Yunzhi; Song, Xiaoping; Gao, Jianrong

    2014-01-01

    Recently, a class of multifunctional Ti alloys called GUM metals attracts tremendous attentions for their superior mechanical behaviors (high strength, high ductility and superelasticity) and novel physical properties (Invar effect, Elinvar effect and low modulus). The Invar and Elinvar effects are known to originate from structural or magnetic transitions, but none of these transitions were found in the GUM metals. This challenges our fundamental understanding of their physical properties. In this study, we show that the typical GUM metal Ti-23Nb-0.7Ta-2Zr-1.2O (at%) alloy undergoes a strain glass transition, where martensitic nano-domains are frozen gradually over a broad temperature range by random point defects. These nano-domains develop strong texture after cold rolling, which causes the lattice elongation in the rolling direction associated with the transition upon cooling and leads to its Invar effect. Moreover, its Elinvar effect and low modulus can also be explained by the nano-domain structure of strain glass. PMID:24500779

  13. Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism.

    PubMed

    Saito, Takashi; Furuta, Tadahiko; Hwang, Jung-Hwan; Kuramoto, Shigeru; Nishino, Kazuaki; Suzuki, Nobuaki; Chen, Rong; Yamada, Akira; Ito, Kazuhiko; Seno, Yoshiki; Nonaka, Takamasa; Ikehata, Hideaki; Nagasako, Naoyuki; Iwamoto, Chihiro; Ikuhara, Yuuichi; Sakuma, Taketo

    2003-04-18

    We describe a group of alloys that exhibit "super" properties, such as ultralow elastic modulus, ultrahigh strength, super elasticity, and super plasticity, at room temperature and that show Elinvar and Invar behavior. These "super" properties are attributable to a dislocation-free plastic deformation mechanism. In cold-worked alloys, this mechanism forms elastic strain fields of hierarchical structure that range in size from the nanometer scale to several tens of micrometers. The resultant elastic strain energy leads to a number of enhanced material properties. PMID:12702870

  14. Magnetic circular x-ray dichroisms of Fe-Ni alloys at K edge.

    SciTech Connect

    Freeman, A. J.; Gofron, K. J.; Kimball, C. W.; Lee, P. L.; Montano, P. A.; Rao, F.; Wang, X.

    1997-04-03

    Magnetic Circular X-ray Dichroism (MCXD) studies at K edges of Fe-Ni alloys reveal changes of the MCXD signal with composition and crystal structure. We observe that the signal at the invar composition is of comparable strength as other compositions. Moreover, the edge position is strongly dependent on lattice constant. First principles calculations demonstrate that the shape and strength of the signal strongly depends on the crystal orientation, composition, and lattice constant. We find direct relation between the MCXD signal and the p DOS. We find that the MCXD at K edge probes the magnetism due to itinerant electrons.

  15. Pressure dependence on the remanent magnetization of Fe-Ni alloys and Ni metal

    NASA Astrophysics Data System (ADS)

    Wei, Qingguo; Gilder, Stuart Alan; Maier, Bernd

    2014-10-01

    We measured the acquisition of magnetic remanence of iron-nickel alloys (Fe64Ni36, Fe58Ni42, and Fe50Ni50) and pure Ni under pressures up to 23 GPa at room temperature. Magnetization decreases markedly for Fe64Ni36 between 5 and 7 GPa yet remains ferromagnetic until at least 16 GPa. Magnetization rises by a factor of 2-3 for the other compositions during compression to the highest applied pressures. Immediately upon decompression, magnetic remanence increases for all Fe-Ni alloys while magnetic coercivity remains fairly constant at relatively low values (5-20 mT). The amount of magnetization gained upon complete decompression correlates with the maximum pressure experienced by the sample. Martensitic effects best explain the increase in remanence rather than grain-size reduction, as the creation of single domain sized grains would raise the coercivity. The magnetic remanence of low Ni Invar alloys increases faster with pressure than for other body-centered-cubic compositions due to the higher magnetostriction of the low Ni Invar metals. Thermal demagnetization spectra of Fe64Ni36 measured after pressure release broaden as a function of peak pressure, with a systematic decrease in Curie temperature. Irreversible strain accumulation from the martensitic transition likely explains the broadening of the Curie temperature spectra, consistent with our x-ray diffraction analyses.

  16. Pressure Dependence on the Remanent Magnetization of Fe-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Gilder, S. A.; Wei, Q.; Maier, B.

    2014-12-01

    We measured the acquisition of magnetic remanence of iron-nickel alloys under pressures up to 23 GPa at room temperature. Experiments on pure iron using different pressure transmission media reveal a higher remanent magnetization at 21.5 GPa than at initial conditions, which could be attributed to a distorted hexagonal closed packed phase grown during the martensitic transition. Upon both compression and decompression, the remanent magnetization of the body centered cubic phases increase several times over initial conditions while the coercivity of remanence remains mostly invariant with pressure. Similar behavior is observed for the face centered cubic phases, where magnetization rises by a factor of 2-3 during compression to the highest applied pressures. Immediately upon decompression, magnetic remanence increases while magnetic coercivity remains fairly constant at relatively low values (5-20 mT). One exception is for the invar composition Fe64Ni36, where magnetization decreases markedly between 5 and 7 GPa. Martensitic effects best explain the increase in remanence rather than grain-size reduction, as the creation of single domain sized grains would raise the coercivity. The magnetic remanence of low Ni invar alloys increases faster with pressure than for other body centered cubic compositions due to the higher magnetostriction of the low Ni invar metals. Thermal demagnetization spectra of Fe64Ni36 measured after pressure cycling broaden as a function of peak pressure, with a systematic decrease in Curie temperature. Irreversible strain accumulation from the martensitic transition likely explains the broadening of the Curie temperature spectra, consistent with our X-ray diffraction analyses.

  17. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    SciTech Connect

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  18. Lattice anharmonicity and thermal properties of strongly correlated Fe1- x Co x Si alloys

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Nogovitsyna, T. A.; Filanovich, A. N.

    2015-10-01

    The temperature dependences of the thermal and elastic properties of strongly correlated metal alloys Fe1- x Co x Si ( x = 0.1, 0.3, 0.5) with different atomic chiralities have been calculated in the framework of the self-consistent thermodynamic model taking into account the influence of lattice anharmonicity. The lattice contributions to the heat capacity and thermal expansion coefficient of the alloys have been determined using the experimental data. It has been demonstrated that the invar effect in the thermal expansion of the lattice observed in the magnetically ordered region of Fe0.7Co0.3Si and Fe0.5Co0.5Si is not related to the lattice anharmonicity, even though its appearance correlates with variations in the atomic chirality.

  19. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  20. Dynamic and quasi-static mechanical properties of iron-nickel alloy honeycomb

    NASA Astrophysics Data System (ADS)

    Clark, Justin L.

    Several metal honeycombs, termed Linear Cellular Alloys (LCAs), were fabricated via a paste extrusion process and thermal treatment. Two Fe-Ni based alloy compositions were evaluated. Maraging steel and Super Invar were chosen for their compatibility with the process and the wide range of properties they afforded. Cell wall material was characterized and compared to wrought alloy specifications. The bulk alloy was found to compare well with the more conventionally produced wrought product when porosity was taken into account. The presence of extrusion defects and raw material impurities were shown to degrade properties with respect to wrought alloys. The performance of LCAs was investigated for several alloys and cell morphologies. The results showed that out-of-plane properties exceeded model predictions and in-plane properties fell short due to missing cell walls and similar defects. Strength was shown to outperform several existing cellular metals by as much as an order of magnitude in some instances. Energy absorption of these materials was shown to exceed 150 J/cc at strains of 50% for high strength alloys. Finally, the suitability of LCAs as an energetic capsule was investigated. The investigation found that the LCAs added significant static strength and as much as three to five times improvement in the dynamic strength of the system. More importantly, it was shown that the pressures achieved with the LCA capsule were significantly higher than the energetic material could achieve alone. High pressures, approaching 3 GPa, coupled with the fragmentation of the capsule during impact increased the likelihood of initiation and propagation of the energetic reaction. This multi-functional aspect of the LCA makes it a suitable capsule material.

  1. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  2. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  3. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  4. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  5. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  6. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  7. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  8. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  9. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  10. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  11. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  12. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  13. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  14. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  15. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  16. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  17. High strength alloys

    SciTech Connect

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  18. High strength alloys

    SciTech Connect

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J; John, Randy Carl; Kim, Dong Sub

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  19. Spark alloying of an AL9 alloy by hard alloys

    NASA Astrophysics Data System (ADS)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.

    2015-08-01

    The phase compositions of spark coatings of Kh12M steel with a VT1-0 (titanium) alloy and T15K6 and T30K4 hard alloys are studied. It is shown that the TiC titanium carbide forms in all cases and tungsten carbide decomposes with the formation of tungsten in a coating. These processes are intensified by increasing time, capacitance, and frequency. The surface hardness, the sample weight, and the white layer thickness increase monotonically.

  20. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  1. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  2. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  3. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  4. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  5. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  6. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  7. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  8. Rechargeable sodium alloy anode

    SciTech Connect

    Jow, T.R.

    1988-06-28

    A secondary battery is described comprising: (a) an anode which comprises an alloy of sodium and one or metals selected from the group consisting of tin, lead antimony, bismuth, selenium and tellerium, (b) an electrolyte comprising one or more organic solvents and one or more sodium salts dissolved therein forming dissolved sodium cations in solution; and (c) a cathode; the sodium cations from the electrolyte alloying with the one or more metals of the alloy in the anode during the charging of the battery and sodium in the alloy disoloving in the electrolyte during the discharging of the battery.

  9. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  10. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  11. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  12. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  13. Surface composition of alloys

    NASA Astrophysics Data System (ADS)

    Sachtler, W. M. H.

    1984-11-01

    In equilibrium, the composition of the surface of an alloy will, in general, differ from that of the bulk. The broken-bond model is applicable to alloys with atoms of virtually equal size. If the heat of alloy formation is zero, the component of lower heat of atomization is found enriched in the surface. If both partners have equal heats of sublimination, the surface of a diluted alloy is enriched with the minority component. Size effects can enhance or weaken the electronic effects. In general, lattice strain can be relaxed by precipitating atoms of deviating size on the surface. Two-phase alloys are described by the "cherry model", i.e. one alloy phase, the "kernel" is surrounded by another alloy, the "flesh", and the surface of the outer phase, the "skin" displays a deviating surface composition as in monophasic alloys. In the presence of molecules capable of forming chemical bonds with individual metal atoms, "chemisorption induced surface segregation" can be observed at low temperatures, i.e. the surface becomes enriched with the metal forming the stronger chemisorption bonds.

  14. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  15. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  16. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  17. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  18. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  19. Alloys in energy development

    SciTech Connect

    Frost, B.R.T.

    1984-02-01

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems.

  20. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  1. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  2. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  3. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  4. Alloy Selection System

    SciTech Connect

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  5. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  6. Correlation between diffusion barriers and alloying energy in binary alloys.

    PubMed

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan E L; Schiøtz, Jakob

    2016-01-28

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells. Using density functional theory calculations, we show that there is a correlation between the alloying energy of an alloy, and the diffusion barriers of the minority component. Alloys with a negative alloying energy may show improved long term stability, despite the fact that there is typically a greater thermodynamic driving force towards dissolution of the solute metal over alloying. In addition to Pt, we find that this trend also appears to hold for alloys based on Al and Pd. PMID:26750475

  7. Hot Microfissuring in Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Nunes, A.

    1984-01-01

    Experiments in intergranular cracking of nickel alloy near solidus temperature discussed in contractor report. Purpose of investigation development of schedule for welding, casting, forging, or other processing of alloy without causing microfissuring.

  8. Tantalum and tantalum alloy tubing

    SciTech Connect

    Not Available

    1981-01-01

    The specification includes ordering information, manufacture, chemical requirements, tension testing, flare test, ultrasonic test, hydrostatic test, pneumatic proof test, dimensions and tolerances, finish, packaging, marking, inspection, and certification. The specification covers tantalum and tantalum alloy tubing of the following types: Alloy 400 (unalloyed tantalum) and Alloy 401 (tantalum-10% tungsten). (JMT)

  9. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  10. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  11. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  12. Noble alloys in dentistry.

    PubMed

    Gettleman, L

    1991-04-01

    Noble metals used for dental castings continue to consist of alloys of gold, palladium, and silver (not a noble metal), with smaller amounts of iridium, ruthenium, and platinum. The majority are used as a backing for ceramic baking, with the rest used as inlays, onlays, and unveneered crowns. Base metal alloys, principally made of nickel, chromium, and beryllium have gained widespread usage, especially in the United States, due to their lower cost and higher mechanical properties. The current literature, for the most part, cites the use of noble alloys as controls for trials of alternative materials. Direct gold (gold foil) still retains a following and a number of new patents were founded. PMID:1777669

  13. Boron addition to alloys

    SciTech Connect

    Coad, B. C.

    1985-08-20

    A process for addition of boron to an alloy which involves forming a melt of the alloy and a reactive metal, selected from the group consisting of aluminum, titanium, zirconium and mixtures thereof to the melt, maintaining the resulting reactive mixture in the molten state and reacting the boric oxide with the reactive metal to convert at least a portion of the boric oxide to boron which dissolves in the resulting melt, and to convert at least portion of the reactive metal to the reactive metal oxide, which oxide remains with the resulting melt, and pouring the resulting melt into a gas stream to form a first atomized powder which is subsequently remelted with further addition of boric oxide, re-atomized, and thus reprocessed to convert essentially all the reactive metal to metal oxide to produce a powdered alloy containing specified amounts of boron.

  14. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  15. A sourcebook of titanium alloy superconductivity

    NASA Astrophysics Data System (ADS)

    Collings, E. W.

    1983-09-01

    The development, properties, and applications of Ti-based superconducting alloys are presented in a handbook based on an extensive review of published investigations. The literature is compiled and characterized in a table arranged by alloy, and individual chapters are devoted to unalloyed Ti; Ti-V binary alloys; binary Ti-Cr, Ti-Mn, Ti-Fe, Ti-Co, and Ti-Ni alloys; binary alloys of Ti with the 4d and 5d transition elements; ternary alloys of Ti with simple and transition metals; Ti-Nb binary alloys; Ti-Nb alloys with small amounts of B, C, N, or O; ternary alloys of Ti-Nb with simple metals; Soviet technical alloys; Ti-Zr-Nb alloys; other Ti-Nb-transition-metal alloys; Ti-Nb-based quaternary alloys; and amorphous Ti-alloy superconductors. Tables, graphs, diagrams, and micrographs are provided.

  16. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  17. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  18. Alloyed coatings for dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Wermuth, F. R.; Stetson, A. R.

    1971-01-01

    Processing techniques were developed for applying several diffusion barriers to TD-Ni and TD-NiCr. Barrier coated specimens of both substrates were clad with Ni-Cr-Al and Fe-Cr-Al alloys and diffusion annealed in argon. Measurement of the aluminum distribution after annealing showed that, of the readily applicable diffusion barriers, a slurry applied tungsten barrier most effectively inhibited the diffusion of aluminum from the Ni-Cr-Al clad into the TD-alloy substrates. No barrier effectively limited interdiffusion of the Fe-Cr-Al clad with the substrates. A duplex process was then developed for applying Ni-Cr-Al coating compositions to the tungsten barrier coated substrates. A Ni-(16 to 32)Cr-3Si modifier was applied by slurry spraying and firing in vacuum, and was then aluminized by a fusion slurry process. Cyclic oxidation tests at 2300 F resulted in early coating failure due to inadequate edge coverage and areas of coating porosity. EMP analysis showed that oxidation had consumed 70 to 80 percent of the aluminum in the coating in less than 50 hours.

  19. Fracture of iron aluminide alloys

    SciTech Connect

    Alexander, D.J.; Sikka, V.K.

    1992-08-01

    Five heats of iron aluminide alloys have been prepared, and their impact fracture properties compared to FA-129 iron aluminide. The first was a simple ternary alloy of iron, aluminum, and chromium to match the FA-129 composition. The second was similar but with additions of zirconium and carbon. The third alloy had zirconium, carbon, niobium and molybdenum. Two heats were produced produced with reduced aluminum contents so that a disordered body-centered cubic structure would be present. The impact properties, microstructures, and fractography of these alloys were compared to FA-129. The ductile-to-brittle transition temperatures of all of the Fe{sub 3}Al alloys were similar, but the simple ternary alloy had a much higher upper-shelf energy. The reduced aluminum alloys had lower transition temperatures. The microstructures were, in general, coarse and anisotropic. The fracture processes were dominated by second-phase particles.

  20. Fracture of iron aluminide alloys

    SciTech Connect

    Alexander, D.J.; Sikka, V.K.

    1992-01-01

    Five heats of iron aluminide alloys have been prepared, and their impact fracture properties compared to FA-129 iron aluminide. The first was a simple ternary alloy of iron, aluminum, and chromium to match the FA-129 composition. The second was similar but with additions of zirconium and carbon. The third alloy had zirconium, carbon, niobium and molybdenum. Two heats were produced produced with reduced aluminum contents so that a disordered body-centered cubic structure would be present. The impact properties, microstructures, and fractography of these alloys were compared to FA-129. The ductile-to-brittle transition temperatures of all of the Fe{sub 3}Al alloys were similar, but the simple ternary alloy had a much higher upper-shelf energy. The reduced aluminum alloys had lower transition temperatures. The microstructures were, in general, coarse and anisotropic. The fracture processes were dominated by second-phase particles.

  1. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  2. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  3. Annealing strained alloy 718

    NASA Technical Reports Server (NTRS)

    Morrison, T. J.

    1976-01-01

    Report shows that grain coarsening in Alloy 718 can result in greatly reduced resistance to weld-heat-produced zone fissuring, especially when final grain size is ASTM 2. Tensile tests and metallographic examination of bend test specimens provide necessary data.

  4. Superplasticity in aluminum alloys

    SciTech Connect

    Nieh, T. G.

    1997-12-01

    We have characterized in the Al-Mg system the microstructure and mechanical properties of a cold-rolled Al-6Mg-0.3Sc alloy. The alloy exhibited superplasticity at relatively high strain rates (about 10-2 s-1). At a strain rate of 10-2 s-1 there exists a wide temperature range (475-520`C) within which the tensile elongation is over 1000%. There also exists a wide strain rate range (10-3 - 10-1 s-1) within which the tensile elongation is over 500%. The presence of Sc in the alloy results in a uniform distribution of fine coherent Al3SC precipitates which effectively pin grain and subgrain boundaries during static and continuous recrystallization. As a result, the alloy retains its fine grain size (about 7 micron), even after extensive superplastic deformation (>1000%). During deformation, dislocations Mg with a high Schmidt factor slip across subgrains but are trapped by subgrain boundaries, as a result of the strong pining of Al3Sc. This process leads to the conversion of low-angled subgrain boundaries to high-angled grain boundaries and the subsequent grain boundary sliding, which produces superelasticity. A model is proposed to describe grain boundary sliding accommodated by dislocation glide across grains with a uniform distribution of coherent precipitates. The model predictions is consistent with experimental observations.

  5. Eutectic-Alloy Morphology

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.; Poit, W. J.

    1985-01-01

    Deviation in controlled-rod eutectic morphology anticipated for diffusion only crystal growth characterized at low solidification velocities. Naturally induced, gravity-related convective instabilities result in nonalined irregularly dispersed fibers or platelets. Lower solidification limit for controlled growth Bi/Mn alloys is 1 centimeter/ hour.

  6. Weldable ductile molybdenum alloy development

    SciTech Connect

    Cockeram, B. V.; Ohriner, Evan Keith; Byun, Thak Sang; Schneibel, Joachim H; Miller, Michael K; Snead, Lance Lewis

    2008-01-01

    Molybdenum and its alloys are attractive structural materials for high-temperature applications. However, various practical issues have limited its use. One concern relates to the loss of ductility occurring in the heat-affected weld zone caused by segregation of oxygen to grain boundaries. In this study, a series of arc melted molybdenum alloys have been produced containing controlled additions of B, C, Zr, and Al. These alloys were characterized with respect to their tensile properties, smooth bend properties, and impact energy for both the base metal and welds. These alloys were compared with a very high purity low carbon arc cast molybdenum reference. For discussion purposes the alloys produced are separated into two categories: Mo Al B alloys, and Mo Zr B alloys. The properties of Mo Zr B alloy welds containing higher carbon levels exhibited slight improvement over unalloyed molybdenum, though the base-metal properties for all Mo Zr B alloys were somewhat inconsistent with properties better, or worse, than unalloyed molybdenum. A Mo Al B alloy exhibited the best DBTT values for welds, and the base metal properties were comparable to or slightly better than unalloyed molybdenum. The Mo Al B alloy contained a low volume fraction of second-phase particles, with segregation of boron and carbon to grain boundaries believed to displace oxygen resulting in improved weld properties. The volume fractions of second-phase particles are higher for the Mo Zr B alloys, and these alloys were prone to brittle fracture. It is also noted that these Mo Zr B alloys exhibited segregation of zirconium, boron and carbon to the grain boundaries.

  7. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  8. Investigation of hierarchical structure formation in ceramics with invar effect

    NASA Astrophysics Data System (ADS)

    Dedova, Elena S.; Shadrin, Vladimir S.; Shutilova, Ekaterina S.; Kulkov, Sergei N.

    2015-10-01

    The structure, phase composition and thermal properties of (Al2O3-20 wt % ZrO2)-ZrW2O8 ceramic composites obtained using nanosized, finely dispersed and coarse-grained initial powders were investigated. On the polished surface of composites homogeneously distributed white particles were observed. The chemical composition of the particles was determined. The phase composition of the composites was represented with corundum, monoclinic ZrO2 and two modifications of ZrW2O8 (tetragonal and cubic) regardless of initial powders morphology. Crystal structure parameters of the material obtained were determined. Linear thermal expansion coefficient values of the composites were determined and compared with those calculated using the mixture rule. The experimental data correlated well with the calculated values of CTE for Al2O3-20 wt % ZrO2 ceramics. The difference in thermal expansion values for composites obtained using initial components with different morphology may be attributed to phase transformations, features of hierarchical structures, internal stresses due to thermal expansion mismatch, which contribute significantly to thermal expansion of the ceramic composites.

  9. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  10. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  11. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  12. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  13. Magnesium-lithium casting alloys

    NASA Technical Reports Server (NTRS)

    Latenko, V. P.; Silchenko, T. V.; Tikhonov, V. A.; Maltsev, V. P.; Korablin, V. P.

    1974-01-01

    The strength properties of magnesium-lithium alloys at room, low, and high temperatures are investigated. It is found that the alloys may have practical application at ambient temperatures up to 100 C, that negative temperatures have a favorable influence on the alloy strength, and that cyclic temperature variations have practically no effect on the strength characteristics. The influence of chemical coatings on corrosion resistance of the MgLi alloys is examined. Several facilities based on pressure casting machines, low-pressure casting machines, and magnetodynamic pumps were designed for producing MgLi alloy castings. Results were obtained for MgLi alloys reinforced with fibers having a volumetric content of 15%.

  14. New alloys for pressure vessels and piping

    SciTech Connect

    Prager, M.; Cantzler, C. )

    1990-01-01

    This book describes new alloys for pressure vessels and piping applications. Topics include: Cr-Mo-Si alloys, HAZ liquation cracking in lean 316 stainless steels, copper bearing stainless steels, and Ni-Cr-W-Mo alloys.

  15. Materials data handbook, aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Sessler, J.; Weiss, V.

    1967-01-01

    Materials data handbook on aluminum alloy 7075 includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures, and other pertinent engineering information required for the design and fabrication of components and equipment utilizing this alloy.

  16. Alloy Interface Interdiffusion Modeled

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Garces, Jorge E.; Abel, Phillip B.

    2003-01-01

    With renewed interest in developing nuclear-powered deep space probes, attention will return to improving the metallurgical processing of potential nuclear fuels so that they remain dimensionally stable over the years required for a successful mission. Previous work on fuel alloys at the NASA Glenn Research Center was primarily empirical, with virtually no continuing research. Even when empirical studies are exacting, they often fail to provide enough insight to guide future research efforts. In addition, from a fundamental theoretical standpoint, the actinide metals (which include materials used for nuclear fuels) pose a severe challenge to modern electronic-structure theory. Recent advances in quantum approximate atomistic modeling, coupled with first-principles derivation of needed input parameters, can help researchers develop new alloys for nuclear propulsion.

  17. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  18. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  19. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  20. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  1. Duct and cladding alloy

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  2. Duct and cladding alloy

    SciTech Connect

    Korenko, M.K.

    1983-03-22

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700/sup 0/ C consists essentially of 35-45% nick 5-14% chromi 8-3.2% molybden 3-1.0% silic 2-1.0% mangane 0-0.1% zirconiu 0-3.5% titani 0-2.0% alumin 02-0.1% car 0-0.01% boro and the balance iron.

  3. Lead alloys past present future

    SciTech Connect

    Bagshaw, N.E.

    1995-03-01

    The most critical non-active component in the lead acid battery is the grid of substrate. A review of the work on and grid alloys in the period 1960-1993 has been carried out by by the Advanced Lead-Acid Consortium, (ALABC), and, in this paper, the results are analyzed in relation to the effort expended in different alloy systems. Lead-antimony alloys and the effects on them of additions of arsenic, tin, and grain-refining elements (selenium, sulfur, copper), together with lead-calcium alloys and the effect on them of tin additions have received the greatest attention in the past.

  4. Directional Solidification of Monotectic Alloys

    NASA Technical Reports Server (NTRS)

    Hellawell, A.

    1983-01-01

    Cooling at certain rates produced fibrous composite structures. Alloy samples melted in alumina or graphite crucibles under argon and then chillcast into 33-mm-diameter rods or sucked directly into 3-mm-bore alumina or silica tubes. Alloying not automatic with immiscible components of different densities and widely different melting points.

  5. Directional Solidification Of Monotectic Alloys

    NASA Technical Reports Server (NTRS)

    Dhindaw, B. K.; Stefanescu, D. M.; Singh, A. K.; Curreri, P. A.

    1990-01-01

    Conditions promoting formation of aligned fibers sought. Report describes experiments in directional solidification of Cu/Pb and Bi/Ga monotectic alloys. Study motivated by need to understand physical mechanism governing formation of rodlike or fiberlike aligned structures in solidifying alloy and to determine process conditions favoring such structures.

  6. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  7. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  8. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  9. Equivalent crystal theory of alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.

  10. Mo-Si alloy development

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  11. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  12. Normal evaporation of binary alloys

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1972-01-01

    In the study of normal evaporation, it is assumed that the evaporating alloy is homogeneous, that the vapor is instantly removed, and that the alloy follows Raoult's law. The differential equation of normal evaporation relating the evaporating time to the final solute concentration is given and solved for several important special cases. Uses of the derived equations are exemplified with a Ni-Al alloy and some binary iron alloys. The accuracy of the predicted results are checked by analyses of actual experimental data on Fe-Ni and Ni-Cr alloys evaporated at 1600 C, and also on the vacuum purification of beryllium. These analyses suggest that the normal evaporation equations presented here give satisfactory results that are accurate to within an order of magnitude of the correct values, even for some highly concentrated solutions. Limited diffusion and the resultant surface solute depletion or enrichment appear important in the extension of this normal evaporation approach.

  13. New magnetic alloys.

    PubMed

    Chin, G Y

    1980-05-23

    Three notable new developments in magnetic alloys are highlighted. These include rare earth-cobalt permanent magnets with maximum energy products up to 240 kilojoules per cubic meter; chromium-cobalt-iron permanent magnets that have magnetic properties similar to those of the Alnicos, but contain only about half as much cobalt and are sufficiently ductile to be cold-formable; and high-induction grain-oriented silicon steels that exhibit 20 percent less core loss as transformer core materials than conventional oriented grades. PMID:17772813

  14. Wedlable nickel aluminide alloy

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  15. Thermomechanical treatment of alloys

    DOEpatents

    Bates, John F.; Brager, Howard R.; Paxton, Michael M.

    1983-01-01

    An article of an alloy of AISI 316 stainless steel is reduced in size to predetermined dimensions by cold working in repeated steps. Before the last reduction step the article is annealed by heating within a temperature range, specifically between 1010.degree. C. and 1038.degree. C. for a time interval between 90 and 60 seconds depending on the actual temperature. By this treatment the swelling under neutron bombardment by epithermal neutrons is reduced while substantial recrystallization does not occur in actual use for a time interval of at least of the order of 5000 hours.

  16. Stable palladium alloys for diffusion of hydrogen

    NASA Technical Reports Server (NTRS)

    Patapoff, M.

    1973-01-01

    Literature search on hydrogen absorption effect on palladium alloys revealed existence of alloy compositions in which alpha--beta transition does not take place. Survey conclusions: 40 percent gold alloy of palladium should be used in place of palladium; alloy must be free of interstitial impurities; and metallic surfaces of tube must be clean.

  17. Stress Corrosion Cracking of Certain Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  18. [Prosthetic dental alloys. 1].

    PubMed

    Quintero Engelmbright, M A

    1990-11-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements. PMID:2132464

  19. [Prosthetic dental alloys (2)].

    PubMed

    Quintero Englembright, M A

    1990-12-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements. PMID:2132470

  20. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  1. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  2. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  3. Fatigue of die cast zinc alloys

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appeared to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.

  4. New Amorphous Silicon Alloy Systems

    NASA Astrophysics Data System (ADS)

    Kapur, Mridula N.

    1990-01-01

    The properties of hydrogenated amorphous silicon (a-Si:H) have been modified by alloying with Al, Ga and S respectively. The Al and Ga alloys are in effect quaternary alloys as they were fabricated in a carbon-rich discharge. The alloys were prepared by the plasma assisted chemical vapor deposition (PACVD) method. This method has several advantages, the major one being the relatively low defect densities of the resulting materials. The PACVD system used to grow the alloy films was designed and constructed in the laboratory. It was first tested with known (a-Si:H and a-Si:As:H) materials. Thus, it was established that device quality alloy films could be grown with the home-made PACVD setup. The chemical composition of the alloys was characterized by secondary ion mass spectrometry (SIMS), and electron probe microanalysis (EPMA). The homogeneous nature of hydrogen distribution in the alloys was established by SIMS depth profile analysis. A quantitative analysis of the bulk elemental content was carried out by EPMA. The analysis indicated that the alloying element was incorporated in the films more efficiently at low input gas concentrations than at the higher concentrations. A topological model was proposed to explain the observed behavior. The optical energy gap of the alloys could be varied in the 0.90 to 1.92 eV range. The Al and Ga alloys were low band gap materials, whereas alloying with S had the effect of widening the energy gap. It was observed that although the Si-Al and Si-Ga alloys contained significant amounts of C and H, the magnitude of the energy gap was determined by the metallic component. The various trends in optical properties could be related to the binding characteristics of the respective alloy systems. A quantitative explanation of the results was provided by White's tight binding model. The dark conductivity-temperature dependence of the alloys was examined. A linear dependence was observed for the Al and Ga systems. Electronic conduction in

  5. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  6. Heat storage in alloy transformations

    NASA Astrophysics Data System (ADS)

    Birchenall, C. E.

    1980-04-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  7. Dendritic Alloy Solidification Experiment (DASE)

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; Karma, A.; Steinbach, I.; deGroh, H. C., III

    2001-01-01

    A space experiment, and supporting ground-based research, is proposed to study the microstructural evolution in free dendritic growth from a supercooled melt of the transparent model alloy succinonitrile-acetone (SCN-ACE). The research is relevant to equiaxed solidification of metal alloy castings. The microgravity experiment will establish a benchmark for testing of equiaxed dendritic growth theories, scaling laws, and models in the presence of purely diffusive, coupled heat and solute transport, without the complicating influences of melt convection. The specific objectives are to: determine the selection of the dendrite tip operating state, i.e. the growth velocity and tip radius, for free dendritic growth of succinonitrile-acetone alloys; determine the growth morphology and sidebranching behavior for freely grown alloy dendrites; determine the effects of the thermal/solutal interactions in the growth of an assemblage of equiaxed alloy crystals; determine the effects of melt convection on the free growth of alloy dendrites; measure the surface tension anisotropy strength of succinon itrile -acetone alloys establish a theoretical and modeling framework for the experiments. Microgravity experiments on equiaxed dendritic growth of alloy dendrites have not been performed in the past. The proposed experiment builds on the Isothermal Dendritic Growth Experiment (IDGE) of Glicksman and coworkers, which focused on the steady growth of a single crystal from pure supercooled melts (succinonitrile and pivalic acid). It also extends the Equiaxed Dendritic Solidification Experiment (EDSE) of the present investigators, which is concerned with the interactions and transients arising in the growth of an assemblage of equiaxed crystals (succinonitrile). However, these experiments with pure substances are not able to address the issues related to coupled heat and solute transport in growth of alloy dendrites.

  8. Dissimilar friction welding of titanium alloys to alloy 718

    SciTech Connect

    Kuo, M.; Albright, C.E.; Baeslack, W.A. III

    1994-12-31

    The design of advanced, high-performance gas-turbine engines will require the utilization of elevated-temperature titanium-based materials, including conventional alloys, titanium aluminides, and titanium metal-matrix composites. The most efficient utilization of these materials in the engine compressor section would be achieved by directly joining these materials to existing nickel-base superalloys, such as Alloy 718. To date, the dissimilar welding of titanium alloys to nickel-based alloys has not been common practice because intermetallic compounds form in the weld and cause embrittlement. Special welding techniques must be developed to inhibit this compound formation and to provide high strength welds. In this investigation, a friction welding process was developed for joining titanium alloys (Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V) to nickel-based superalloy Alloy 718. An interlayer system comprised of copper and niobium sheet layers was employed as a diffusion barrier and weld deformation enhancer. A postweld heat treatment (PWHT, 700{degrees}C for 20 min in vacuum) under axial pressure (Ksi) was used to improve the joint strength consistency. The following conclusions can be drawn from this investigation: (1) A friction welding technique has been developed for joining titanium alloys (Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V) to Alloy 718 using an interlayer system of niobium and copper. Joint strengths averaging approximately 50 Ksi were achieved. (2) Deformation was concentrated in the interlayers, especially the copper interlayer, during friction welding. Increased reduction in length (RIL) during friction welding resulted in a decrease in the interlayer thicknesses. (3) The EDS results showed that the niobium and copper interlayers prevent interdiffusion between the two parent metals, producing formation of detrimental phases.

  9. Dislocation Formation in Alloys

    NASA Astrophysics Data System (ADS)

    Minami, Akihiko; Onuki, Akira

    2006-05-01

    An interaction between dislocations and phase transitions is studied by a phase field model both in two and three dimensional systems. Our theory is a simple extension of the traditional linear elastic theory, and the elastic energy is a periodic function of local strains which is reflecting the periodicity of crystals. We find that the dislocations are spontaneously formed by quenching. Dislocations are formed from the interface of binary alloys, and slips are preferentially gliding into the soft metals. In three dimensional systems, formation of dislocations under applied strain is studied in two phase state. We find that the dislocation loops are created from the surface of hard metals. We also studied the phase separation above the coexisting temperature which is called as the Cottrell atmosphere. Clouds of metals cannot catch up with the motion of dislocations at highly strained state.

  10. Alloyed steel wastes utilization

    SciTech Connect

    Sokol, I.V.

    1995-12-31

    Alloyed steel chips and swarf formed during metal processing are looked upon as additional raw materials in metallurgical production. This paper presents some new methods for steel waste chips and swarf cleaning. One of them is swarf and steel chips cleaning in tetrachloroethylene with ultrasonic assistance and solvent regeneration. Thermal cleaning of waste chips and swarf provides off gas products utilization. The catalyst influence of the metal surface on the thermal decomposition of liquid hydrocarbons during the cleaning process has been studied. It has been determined that the efficiency of this metal waste cleaning technique depends on the storage time of the swarf. The waste chips and swarf cleaning procedures have been proven to be economically advantageous and environmentally appropriate.

  11. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  12. Metallic alloy stability studies

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1983-01-01

    The dimensional stability of candidate cryogenic wind tunnel model materials was investigated. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

  13. Smart interfacial bonding alloys

    SciTech Connect

    R. Q. Hwang; J. C. Hamilton; J. E. Houston

    1999-04-01

    The goal of this LDRD was to explore the use of the newly discovered strain-stabilized 2-D interfacial alloys as smart interface bonding alloys (SIBA). These materials will be used as templates for the heteroepitaxial growth of metallic thin films. SIBA are formed by two metallic components which mix at an interface to relieve strain and prevent dislocations from forming in subsequent thin film growth. The composition of the SIBA is determined locally by the amount of strain, and therefore can react smartly to areas of the highest strain to relieve dislocations. In this way, SIBA can be used to tailor the dislocation structure of thin films. This project included growth, characterization and modeling of films grown using SIBA templates. Characterization will include atomic imaging of the dislocations structure, measurement of the mechanical properties of the film using interface force microscopy (IFM) and the nanoindenter, and measurement of the electronic structure of the SIBA with synchrotron photoemission. Resistance of films to sulfidation and oxidation will also be examined. The Paragon parallel processing computer will be used to calculate the structure of the SIBA and thin films in order to develop ability to predict and tailor SIBA and thin film behavior. This work will lead to the possible development of a new class of thin film materials with properties tailored by varying the composition of the SIBA, serving as a buffer layer to relieve the strain between the substrate and the thin film. Such films will have improved mechanical and corrosion resistance allowing application as protective barriers for weapons applications. They will also exhibit enhanced electrical conductivity and reduced electromigration making them particularly suitable for application as interconnects and other electronic needs.

  14. Tritium Production from Palladium Alloys

    SciTech Connect

    Claytor, T.N.; Schwab, M.J.; Thoma, D.J.; Teter, D.F.; Tuggle, D.G.

    1998-04-19

    A number of palladium alloys have been loaded with deuterium or hydrogen under low energy bombardment in a system that allows the continuous measurement of tritium. Long run times (up to 200 h) result in an integration of the tritium and this, coupled with the high intrinsic sensitivity of the system ({approximately}0.1 nCi/l), enables the significance of the tritium measurement to be many sigma (>10). We will show the difference in tritium generation rates between batches of palladium alloys (Rh, Co, Cu, Cr, Ni, Be, B, Li, Hf, Hg and Fe) of various concentrations to illustrate that tritium generation rate is dependent on alloy type as well as within a specific alloy, dependent on concentration.

  15. Technical Seminar "Shape Memory Alloys"

    NASA Video Gallery

    Shape memory alloys are a unique group of materials that remember their original shape and return to that shape after being strained. How could the aerospace, automotive, and energy exploration ind...

  16. Superplastic forming of alloy 718

    SciTech Connect

    Smith, G.D.; Flower, H.L. )

    1994-04-01

    Inconel Alloy 718 (UNS N07718) is now available in a fine-grained, controlled composition modification that can be super-plastically formed. The new superplastic forming (SPF) capability allows the manufacture of large, complex, and detailed parts, which improves integrity by reducing the need for joining. Furthermore, it allows designers to fabricate components having higher strength, fatigue resistance, and temperature capability than parts made of aluminum or titanium alloys.

  17. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  18. Castable hot corrosion resistant alloy

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A. (Inventor); Holt, William H. (Inventor)

    1988-01-01

    Some 10 wt percent nickel is added to an Fe-base alloy which has a ferrite microstructure to improve the high temperature castability and crack resistance while about 0.2 wt percent zirconium is added for improved high temperatur cyclic oxidation and corrosion resistance. The basic material is a high temperature FeCrAl heater alloy, and the addition provides a material suitable for burner rig nozzles.

  19. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  20. Microstructural studies on Alloy 693

    NASA Astrophysics Data System (ADS)

    Halder, R.; Dutta, R. S.; Sengupta, P.; Samajdar, I.; Dey, G. K.

    2014-10-01

    Superalloy 693, is a newly identified ‘high-temperature corrosion resistant alloy’. Present study focuses on microstructure and mechanical properties of the alloy prepared by double ‘vacuum melting’ route. In general, the alloy contains ordered Ni3Al precipitates distributed within austenitic matrix. M6C primary carbide, M23C6 type secondary carbide and NbC particles are also found to be present. Heat treatment of the alloy at 1373 K for 30 min followed by water quenching (WQ) brings about a microstructure that is free from secondary carbides and Ni3Al type precipitates but contains primary carbides. Tensile property of Alloy 693 materials was measured with as received and solution annealed (1323 K, 60 min, WQ) and (1373 K, 30 min, WQ) conditions. Yield strength, ultimate tensile strength (UTS) and hardness of the alloy are found to drop with annealing. It is noted that in annealed condition, considerable cold working of the alloy can be performed.

  1. Ni{sub 3}Al aluminide alloys

    SciTech Connect

    Liu, C.T.

    1993-10-01

    This paper provides a brief review of the recent progress in research and development of Ni{sub 3}Al and its alloys. Emphasis has been placed on understanding low ductility and brittle fracture of Ni{sub 3}Al alloys at ambient and elevated temperatures. Recent studies have resulted in identifying both intrinsic and extrinsic factors governing the fracture behavior of Ni{sub 3}Al alloys. Parallel efforts on alloy design using physical metallurgy principles have led to properties for structural use. Industrial interest in these alloys is high, and examples of industrial involvement in processing and utilization of these alloys are briefly mentioned.

  2. Choosing An Alloy For Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    Report describes study of chemical compositions and microstructures of alloys for automotive Stirling engines. Engines offer advantages of high efficiency, low pollution, low noise, and ability to use variety of fuels. Twenty alloys evaluated for resistance to corrosion permeation by hydrogen, and high temperature. Iron-based alloys considered primary candidates because of low cost. Nickel-based alloys second choice in case suitable iron-based alloy could not be found. Cobalt-based alloy included for comparison but not candidate, because it is expensive strategic material.

  3. Kinetics of aluminum lithium alloys

    NASA Astrophysics Data System (ADS)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  4. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  5. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  6. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  7. Lightweight magnesium-lithium alloys show promise

    NASA Technical Reports Server (NTRS)

    Adams, W. T.; Cataldo, C. E.

    1964-01-01

    Evaluation tests show that magnesium-lithium alloys are lighter and more ductile than other magnesium alloys. They are being used for packaging, housings, containers, where light weight is more important than strength.

  8. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  9. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  10. Oxidation of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  11. Fatigue behavior of titanium alloys

    SciTech Connect

    Boyer, R.R.; Eylon, D.; Luetjering, G.

    1999-07-01

    This symposium was international in nature, with leaders in the fields of fatigue technology and the metallurgy of titanium from the US, Europe and Asia. It covered basic research, development, applications and modeling--life predictions and design of both fatigue crack initiation and propagation of titanium alloys. There were presentations on the full range of titanium alloy systems, from commercially pure and {alpha}-alloys, {alpha}/{beta}- and {beta}-alloys to the gamma titanium aluminides. The effects of processing/heat treatment/microstructure on the fatigue properties were discussed, and models proposed to correlate the microstructures to the observed fatigue performance. Test environments reported on included hard vacuum (and the effect of vacuum level), vacuums with partial pressures of miscellaneous gases, lab air and aqueous media. A session was devoted to the effects of environment and fatigue enhancement via surface treatments using techniques such as shot peening and roller burnishing. The effects of dwell on both S-N and crack growth rate behavior were covered. It was a very comprehensive symposium with presentations from academia, government laboratories and industry, with industrial participants ranging from the petroleum industry to medical and aerospace interests. This book has been separated into four sections, representing the technology areas covered in various sessions, namely Mechanisms of Fatigue crack Initiation and Propagation of Conventional Alloys, Fatigue in Intermetallics, Environmental and Surface Aspects of Fatigue, and Application, Life Prediction and Design. Separate abstracts were prepared for most papers in this volume.

  12. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  13. Oxidation Behavior of Glassy Alloys

    NASA Technical Reports Server (NTRS)

    Yurek, G.

    1985-01-01

    The oxidation behavior of high temperature glassy alloys produced by rapid solidification processing is investigated and the effects of processing and composition on oxidation behavior is studied. Glassy Ta-44.5at%Ir, Ta-40at%Ir-10at%B and Nb-45at%Ir oxidized rapidly at 700 to 800 C at an oxygen partial pressure of .001 atm. The alloys were embrittled during the oxidation process. No apparent oxidation or embrittlement of the Ta-Ir alloy occurred after oxidation for 4h at 500 C at an oxygen partial pressure of .001 atm. Embrittlement occurred, however, after 100h of exposure under the latter conditions. Alloy embrittlement is associated with the partial or full conversion of the metallic glass to a mixture of crystalline beta-Ta2O5 and metallic iridium. Hot compaction of glassy alloys of this type must be limited to relatively low temperatures (approx. 500 C) and short times at the low temperatures unless extremely low oxygen partial pressures can be achieved during the compaction process.

  14. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  15. Self-disintegrating Raney metal alloys

    DOEpatents

    Oden, Laurance L.; Russell, James H.

    1979-01-01

    A method of preparing a Raney metal alloy which is capable of self-disintegrating when contacted with water vapor. The self-disintegrating property is imparted to the alloy by incorporating into the alloy from 0.4 to 0.8 weight percent carbon. The alloy is useful in forming powder which can be converted to a Raney metal catalyst with increased surface area and catalytic activity.

  16. Zinc alloy enhances strength and creep resistance

    SciTech Connect

    Machler, M.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  17. Caldron For High-Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Geringer, Henry J.

    1989-01-01

    Induction-heated caldron melts high-temperature alloys. Prevents sort of contamination of melts occurring during arc melting in ceramic crucibles. Liquefies 200 grams of solid metal components of alloy like niobium aluminum and makes alloy homogeneous in less than 3 minutes. Plugged sleeve constitutes main body of caldron. Coolant flows through sleeve to prevent it from melting. Mandrel-wound induction coils adjusted to tune source of power. Also serves as mold for casting alloys into such shapes as bars.

  18. HEAT TREATED U-Nb ALLOYS

    DOEpatents

    McGeary, R.K.; Justusson, W.M.

    1959-11-24

    A fuel element for a nuclear reactor is described comprising an alloy containing uranium and from 7 to 20 wt.% niobium, the alloy being substantially in the gamma phase and having been produced by working an ingot of the alloy into the desired shape, homogenizing it by annealing it at a temperature in the gamma phase field, and quenching it to retain the gamma phase structure of the alloy.

  19. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, Michael L.; Goodwin, Gene M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  20. Ductile aluminide alloys for high temperature applications

    SciTech Connect

    Liu, C.T.; Stiegler, J.O.

    1986-09-16

    An alloy is described consisting essentially of sufficient nickel and aluminum to form Ni/sub 3/A1, an amount of boron sufficient to promote ductility in the alloy and 0.3 to 1.5 atomic percent of an element selected from the group consisting of hafnium and zirconium. The alloy further including 6 to 12 atomic percent iron.

  1. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  2. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  3. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  4. ALLOY FOR USE IN NUCLEAR FISSION

    DOEpatents

    Spedding, F.A.; Wilhelm, H.A.

    1958-03-11

    This patent relates to an alloy composition capable of functioning as a solid homogeneous reactor fuel. The alloy consists of a beryllium moderator, together with at least 0.7% of U/sup 235/, and up to 50% thorium to give increased workability to the alloy.

  5. Improved thermal treatment of aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  6. Materials data handbook, aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Sessler, J.; Weiss, V.

    1969-01-01

    Comprehensive compilation of technical data on aluminum alloy 6061 is presented in handbook form. The text includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent information required for the design and fabrication of components and equipment utilizing this alloy.

  7. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOEpatents

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  8. Solidification morphologies in monotectic alloys

    NASA Astrophysics Data System (ADS)

    Wang, F.; Choudhury, A.; Nestler, B.

    2012-01-01

    We model the Fe-Sn system by using a higher order polynomial to describe the free energy of the liquid, and study three different aspects in morphological evolution in the monotectic alloy. Firstly, phase separation, in which case the liquid decomposes into two, is investigated inside of the spinodal decomposition region. Secondly, we study the core-shell morphology in the Fe-Sn alloy, which arises by spinodal decomposition in 2D. Finally, stable lamellar and unstable droplet morphologies in directional solidication are investigated.

  9. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    DOEpatents

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  10. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  11. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples. PMID:18669265

  12. Moving Dislocations in Disordered Alloys.

    SciTech Connect

    Marian, J; Caro, A

    2006-11-18

    Using atomistic simulations of dislocation motion in Ni and Ni-Au alloys we report a detailed study of the mobility function as a function of stress, temperature and alloy composition. We analyze the results in terms of analytic models of phonon radiation and their selection rules for phonon excitation. We find a remarkable agreement between the location of the cusps in the {sigma}-v relation and the velocity of waves propagating in the direction of dislocation motion. We identify and characterize three regimes of dissipation whose boundaries are essentially determined by the direction of motion of the dislocation, rather than by its screw or edge character.

  13. Method for calculating alloy energetics

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Smith, John R.

    1992-01-01

    A semiempirical method for the computation of alloy energies is introduced. It is based on the equivalent-crystal theory of defect-formation energies in elemental solids. The method is both simple and accurate. Heats of formation as a function of composition are computed for some binary alloys of Cu, Ni, Al, Ag, Pd, Pt, and Au using the heats of solution in the dilute limit as experimental input. The separation of heats into strain and chemical components helps in understanding the energetics. In addition, lattice-parameter contractions seen in solid solutions of Ag and Au are accurately predicted. Good agreement with experiment is obtained in all cases.

  14. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  15. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  16. Alloy softening in binary iron solid solutions

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  17. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  18. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  19. Stress corrosion of high strength aluminum alloys.

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Brummer, S. B.

    1972-01-01

    An investigation has been carried out to examine the relationship of the observed chemical and mechanical properties of Al-Cu and Al-Zn-Mg alloys to the stress corrosion mechanisms which dominate in each case. Two high purity alloys and analogous commercial alloys were selected. Fundamental differences between the behavior of Al-Cu and of Al-Zn-Mg alloys were observed. These differences in the corrosion behavior of the two types of alloys are augmented by substantial differences in their mechanical behavior. The relative cleavage energy of the grain boundaries is of particular importance.

  20. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  1. Semiempirical Analysis of Surface Alloy Formation

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Ibanez-Meier, Rodrigo

    1995-01-01

    The BFS method for alloys is applied to the study of surface alloy formation. This method was previously used to examine the experimental STM observation of surface alloying of Au on Ni(110) for low Au coverages by means of a numerical simulation. In this work, we extend the study to include other cases of surface alloying for immiscible as well as miscible metals. All binary combinations of Ni, Au, Cu, and Al are considered and the simulation results are compared to experiment when data is available. The driving mechanisms of surface alloy formation are then discussed in terms of the BFS method and the available results.

  2. Alloy softening in binary iron solid solutions

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An experimental study was conducted to determine whether alloy softening in Fe alloys is dependent on electron concentration and to provide a direct comparison of alloy softening and hardening in several binary Fe alloy systems having the same processing history. Alloy additions to Fe included the elements in the Periods 4-6 and the Groups IV-VIII with the exception of technetium. A total of 19 alloy systems was investigated, and hardness testing was the primary means of evaluation. Testing was carried out at four temperatures over a homologous temperature range of 0.043-0.227 times the absolute melting temperature of unalloyed Fe. Major conclusions are that the atomic radius ratio of solute-to-Fe is the key factor in controlling low-temperature hardness of the binary Fe alloys and that alloy softening rates at 77 K and alloy hardening rates at 411 K are correlated with this atomic radius ratio for 15 of the binary alloy systems. Mechanisms of alloy softening and hardening are proposed.

  3. Influence of Chemical Composition of Mg Alloys on Surface Alloying by Diffusion Coating

    NASA Astrophysics Data System (ADS)

    Hirmke, J.; Zhang, M.-X.; St John, D. H.

    2012-05-01

    A recently developed technique of surface alloying by diffusion-coating has been used to produce coatings on Mg alloys with various Al and Zn contents. The experimental results show that both Al and Zn solutes in the alloy promote the diffusion of alloying elements through grain refinement of the substrate alloys and through reduction of diffusion active energy because of the reduction of melting temperature of the alloys. Therefore, the efficiency of surface alloying increases by diffusion coating. Thick, dense, uniform, and continuous layers of intermetallic compounds, which consist of a τ-phase layer and a β-phase layer, can be produced on the surface of various Mg alloys. The intermetallic compound layers not only have microhardness values that are 4 to 6 times higher than the substrate but also provide effective protection of the Mg alloys from corrosion in 5 pct NaCl solution at room temperature.

  4. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  5. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  6. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  7. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  8. [Fatigue properties of dental alloys. 12% Au-Pd-Ag alloy and type III gold alloy].

    PubMed

    Kato, H

    1989-12-01

    Usually the mechanical properties of dental alloys are determined from the values obtained through static tests of their tensile strength, hardness, etc. Generally, high tensile strength and ductility are preferred. However, when small stresses within proportional limits are applied repeatedly (even though not amounting to destructive forces in static tests), they may cause rupture in the alloy or, at least, cause it to lose its original mechanical properties. This phenomenon is called metal fatigue. It is estimated that the intraoral stress loads received by dental restorations during mastication or during insertion and removal of appliances are repeated more than 3 x 10(5) times/year. From this standpoint, it may be more appropriate to estimate the fracture strength of such dental alloys based on the fatigue properties of the restorative materials used for clasps, bars, and fixed bridges. For this reason, it is necessary to obtain data through fatigue tests on the fatigue strength and the fatigue endurance limits of dental alloys, and it is important to find a correlation between these data and the static data on tensile strengths and ductility obtained by tensile tests. Two alloys are used in these experiments. Both wrought specimens and cast specimens of 12% Au-Pd-Ag and Type III gold alloy were prepared for the fatigue tests. The size of the rectangular wrought specimens was 3 x 4 x 110 mm. The 12% Au-Pd-Ag alloy was heated to 800 degrees C for 15 minutes, quenched, and reheated to 400 degrees C for 20 minutes and quenched again according to the manufacturer's instructions for heat treatment. The Type III gold alloy was heated to 700 degrees C for 10 minutes, quenched, and reheated to 350 degrees C for 20 minutes and quenched again. The cylindrical cast specimens were 60 mm long and 2 mm in diameter. They were invested by conventional methods and cast in a centrifugal casting machine, Thermotrol Model 2500. The four point bending test for the wrought specimen

  9. Introduction to hydrogen in alloys

    SciTech Connect

    Westlake, D.G.

    1980-01-01

    Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: (1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, (2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, (3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, (4) H trapping in alloys of Group V metals and its effect on the terminal solubility for H (TSH), (5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and (6) H-impurity complexes in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented.

  10. Recent developments in light alloys

    NASA Technical Reports Server (NTRS)

    Woodward, R W

    1920-01-01

    This report is intended to cover the progress that has been made in both the manufacture and utility of light alloys in the United States since the first part of 1919. Duralumin is extensively discussed both as to manufacture and durability.

  11. Gold color in dental alloys.

    PubMed

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed. PMID:9524484

  12. Structural Properties of Mismatched Alloys

    NASA Astrophysics Data System (ADS)

    Mousseau, Normand

    The problem of understanding the local structure of disordered alloys has been around for a long time. In this thesis, I look more specifically at the effect of size-mismatch disorder in binary alloys under many forms: metallic and semiconductor alloys, bulk and surfaces, two and three dimensional systems. I have studied the limitations of a central-force model (CFM) and an embedded-atom potential (EAM) in describing the local structure of binary metallic alloys composed of Ag, Au, Cu, Ni, Pd, or Pt. Although an analytical model developed using the CFM explains qualitatively well the experimental and numerical results, in many cases, it is important to add electronic density effects through a more sophisticated potential like EAM in order to agree quantitatively with experiment. I have also looked at amorphous and crystalline silicon-germanium alloys. It turns out that the effect of size-mismatch is the same on a crystalline and an amorphous lattice. In the latter case, it can be seen as a perturbation of the much larger disorder due to the amorphisation process. However, the analytical predictions differ, for both the crystalline and amorphous alloys, from the experimental results. If one is to believe the data, there is only one possible explanation for this inconsistency: large amounts of hydrogen are present in the samples used for the measurements. Since the data analysis of EXAFS results is not always straightforward, I have proposed some experiments that could shed light on this problem. One of these experiments would be to look at the (111) surface of a Si-Ge alloy with a scanning tunneling microscope. I also present in this thesis the theoretical predictions for the height distribution at the surface as well as some more general structural information about the relaxation in the network as one goes away from the surface. Finally, I have studied the effect of size -mismatch in a purely two dimensional lattice, looking for mismatch-driven phase transitions

  13. CORROSION OF HIGH-TEMPERATURE ALLOYS

    SciTech Connect

    John P. Hurley; John P. Kay

    1999-10-01

    Five alloys were tested in the presence of water vapor and water vapor with HCl for 1000 hours using simulated combustion gas. Samples were removed at intervals during each test and measured for determination of corrosion rates. One sample of each alloy was examined with a SEM after the completion of each test. Cumulative corrosion depths were similar for the superstainless alloys. Corrosion for Alloy TP310 roughly doubled. Corrosion for the enhanced stainless alloys changed dramatically with the addition of chlorine. Corrosion for Alloy RA85H increased threefold, whereas Alloy TP347HFG showed an eightfold increase. SEM examination of the alloys revealed that water vapor alone allowed the formation of chromium oxide protective layers on the superstainless alloys. The enhanced stainless alloys underwent more corrosion due to greater attack of sulfur. Iron-rich oxide layers were more likely to form, which do not provide protection from further corrosion. The addition of chlorine further increased the corrosion because of its ability to diffuse through the oxide layers and react with iron. This resulted in a broken, discontinuous, and loose oxide layer that offered less protection. Niobium, although added to aid in creep strength, was found to be detrimental to corrosion resistance. The niobium tended to be concentrated in nodules and was easily attacked through sulfidation, providing conduits for further corrosion deep into the alloy. The alloys that displayed the best corrosion resistance were those which could produce chromium oxide protective layers. The predicted microstructure of all alloys except Alloy HR3C is the same and provided no further information relating to corrosion resistance. No correlation can be found relating corrosion resistance to the quantity of minor austenite-or ferrite-stabilizing elements. Also, there does not appear to be a correlation between corrosion resistance and the Cr:Ni ratio of the alloy. These alloys were tested for their

  14. INCOLOY alloy 803, a cost effective alloy for high temperature service

    SciTech Connect

    Ganesan, P.; Plyburn, J.A.; Tassen, C.S.

    1995-12-31

    INCOLOY alloy 800 was the first of the 800 series of alloys invented by Inco Alloys International in the 1940`s. Because of its excellent oxidation and carburization resistance as well as high temperature creep strength, alloy 800 found uses for many applications such as heat treating hardware, petrochemical processing, home appliances, food processing, industrial heating, super-heater and re-heater tubing and soon became the workhorse material for the chemical processing industries. Alloy 803 has superior resistance to oxidation and carburization without sacrificing mechanical properties. In this paper the history of alloy 800 with introductions of alloys 800H and 800HT and the differences in properties and chemical compositions among them will be described. The development of alloy 803 for petrochemical applications is also covered. The performance of alloy 803 in cyclic oxidation, carburization and sulfidation tests will be presented and compared with several alloys including alloy HPM. The mechanical properties of alloy 803 including room temperature and high temperature tensile data and stress rupture and creep strengths up to 1,093 C (2,000 F) will be presented. The choice of available filler metals and welding electrodes to join alloy 803, using gas metal arc welding and shielded metal arc welding processes, will also be presented.

  15. Method of producing superplastic alloys and superplastic alloys produced by the method

    NASA Technical Reports Server (NTRS)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  16. Alloy substantially free of dendrites and method of forming the same

    DOEpatents

    de Figueredo, Anacleto M.; Apelian, Diran; Findon, Matt M.; Saddock, Nicholas

    2009-04-07

    Described herein are alloys substantially free of dendrites. A method includes forming an alloy substantially free of dendrites. A superheated alloy is cooled to form a nucleated alloy. The temperature of the nucleated alloy is controlled to prevent the nuclei from melting. The nucleated alloy is mixed to distribute the nuclei throughout the alloy. The nucleated alloy is cooled with nuclei distributed throughout.

  17. First principles theory of disordered alloys and alloy phase stability

    SciTech Connect

    Stocks, G.M.; Nicholson, D.M.C.; Shelton, W.A.

    1993-06-05

    These lecture notes review the LDA-KKR-CPA method for treating the electronic structure and energetics of random alloys and the MF-CF and GPM theories of ordering and phase stability built on the LDA- KKR-CPA description of the disordered phase. Section 2 lays out the basic LDA-KKR-CPA theory of random alloys and some applications. Section 3 reviews the progress made in understanding specific ordering phenomena in binary solid solutions base on the MF-CF and GPM theories of ordering and phase stability. Examples are Fermi surface nesting, band filling, off diagonal randomness, charge transfer, size difference or local strain fluctuations, magnetic effects; in each case, an attempt is made to link the ordering and the underlying electronic structure of the disordered phase. Section 4 reviews calculations of electronic structure of {beta}-phase Ni{sub c}Al{sub 1-c} alloys using a version of the LDA-KKR-CPA codes generalized to complex lattices.

  18. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    SciTech Connect

    Kad, Bimal; Dryepondt, Sebastien N; Jones, Andy R.; Vito, Cedro III; Tatlock, Gordon J; Pint, Bruce A; Tortorelli, Peter F; Rawls, Patricia A.

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  19. Status of Testing and Characterization of CMS Alloy 617 and Alloy 230

    SciTech Connect

    Ren, Weiju; Santella, Michael L; Battiste, Rick; Terry, Totemeier; Denis, Clark

    2006-08-01

    Status and progress in testing and characterizing CMS Alloy 617 and Alloy 230 tasks in FY06 at ORNL and INL are described. ORNL research has focused on CMS Alloy 617 development and creep and tensile properties of both alloys. In addition to refurbishing facilities to conduct tests, a significant amount of creep and tensile data on Alloy 230, worth several years of research funds and time, has been located and collected from private enterprise. INL research has focused on the creep-fatigue behavior of standard chemistry Alloy 617 base metal and fusion weldments. Creep-fatigue tests have been performed in air, vacuum, and purified Ar environments at 800 and 1000 C. Initial characterization and high-temperature joining work has also been performed on Alloy 230 and CCA Alloy 617 in preparation for creep-fatigue testing.

  20. BAs-GaAs Semiconductor Alloys as a Photovoltaic Alternative to Nitride Alloys

    SciTech Connect

    Hart, G. L. W.; Zunger, A.

    2000-01-01

    Nitrogen alloyed III-V semiconductor compounds have been intensely studied in recent years due to unusual effects caused by nitrogen alloying. These effects are exploited in band gap engineering for specific applications such as solar cells and blue lasers.

  1. Preparation of TiMn alloy by mechanical alloying and spark plasma sintering for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Weidmann, A.; Nebe, B. J.; Burkel, E.

    2009-01-01

    TiMn alloy was prepared by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS) technique for exploration of biomedical applications. The microstructures, mechanical properties and cytotoxicity of the TiMn alloys were investigated in comparison with the pure Ti and Mn metals. Ti8Mn and Ti12Mn alloys with high relative density (99%) were prepared by mechanical alloying for 60 h and SPS at 700 °C for 5 min. The doping of Mn in Ti has decreased the transformation temperature from α to β phase, increased the relative density and enhanced the hardness of the Ti metal significantly. The Ti8Mn alloys showed 86% cell viability which was comparable to that of the pure Ti (93%). The Mn can be used as a good alloying element for biomedical Ti metal, and the Ti8Mn alloy could have a potential use as bone substitutes and dental implants.

  2. Corrosion behavior of Alloy 690 and Alloy 693 in simulated nuclear high level waste medium

    NASA Astrophysics Data System (ADS)

    Samantaroy, Pradeep Kumar; Suresh, Girija; Paul, Ranita; Kamachi Mudali, U.; Raj, Baldev

    2011-11-01

    Nickel based alloys are candidate materials for the storage of high level waste (HLW) generated from reprocessing of spent nuclear fuel. In the present investigation Alloy 690 and Alloy 693 are assessed by potentiodynamic anodic polarization technique for their corrosion behavior in 3 M HNO 3, 3 M HNO 3 containing simulated HLW and in chloride medium. Both the alloys were found to possess good corrosion resistance in both the media at ambient condition. Microstructural examination was carried out by SEM for both the alloys after electrolytic etching. Compositional analysis of the passive film formed on the alloys in 3 M HNO 3 and 3 M HNO 3 with HLW was carried out by XPS. The surface of Alloy 690 and Alloy 693, both consists of a thin layer of oxide of Ni, Cr, and Fe under passivation in both the media. The results of investigation are presented in the paper.

  3. Corrosion behavior and fatigue of alloy 625, alloy 33 and alloy 31 under conditions of decouplers in automotive exhaust systems

    SciTech Connect

    Agarwal, D.C.; Kloewer, J.; Koehler, M.; Kolb-Telieps, A.

    1998-12-31

    The alloys 625, 31, 33 and in some tests the newly developed alloy 626Si have been investigated with respect to their mechanical properties and their corrosion resistance against alkali salts containing chlorides at temperatures of 550 C, 65O C, 7OO C and 750 C. Concerning strength in the sensitized condition, all alloys are suitable as decoupler materials. The mechanical properties of alloys 625, 626Si and probably 31 indicate adequate manufacturing possibilities of bellows. All alloys investigated suffer accelerated corrosion in the presence of alkali salt containing chlorides at temperatures ranging from 550 C to 750 C. At 750 C alloy 626Si shows the lowest corrosion rate. At 75O C, 7OO C and 650 C no difference between the solution annealed and the sensitized specimens was found. At 55O C, however, the corrosion rate of the alloys 625 and 33 increased significantly, when the material was sensitized prior to corrosion testing. Alloy 31 does not suffer significant corrosion attack at 55O C both in the solution annealed and in the sensitized condition, thus making it a potential cost effective alternative to the more expensive alloy 625 for decoupler applications.

  4. A lightweight shape-memory magnesium alloy.

    PubMed

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries. PMID:27463668

  5. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, Chain T.

    1998-01-01

    Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.

  6. Nickel aluminide alloy suitable for structural applications

    DOEpatents

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  7. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  8. A lightweight shape-memory magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-01

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)–, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at –150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  9. Directionally solidified eutectic alloy gamma-beta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1977-01-01

    A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.

  10. Alloy Effects on the Gas Nitriding Process

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  11. Machinability of hypereutectic silicon-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Akasawa, T.

    1999-08-01

    The machinability of high-silicon aluminum alloys made by a P/M process and by casting was compared. The cutting test was conducted by turning on lathes with the use of cemented carbide tools. The tool wear by machining the P/M alloy was far smaller than the tool wear by machining the cast alloy. The roughness of the machined surface of the P/M alloy is far better than that of the cast alloy, and the turning speed did not affect it greatly at higher speeds. The P/M alloy produced long chips, so the disposal can cause trouble. The size effect of silicon grains on the machinability is discussed.

  12. Wetting behavior of alternative solder alloys

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  13. Copper and nickel adherently electroplated on titanium alloy

    NASA Technical Reports Server (NTRS)

    Brown, E. E.

    1967-01-01

    Anodic treatment of titanium alloy enables electroplating of tightly adherent coatings of copper and nickel on the alloy. The alloy is treated in a solution of hydrofluoric and acetic acids, followed by the electroplating process.

  14. Magnesium-lithium alloys developed for low temperature use

    NASA Technical Reports Server (NTRS)

    Dunkerley, F. J.; Leavenworth, H. W., Jr.

    1967-01-01

    Three new magnesium-lithium alloys have been developed for application at cryogenic temperatures. These lightweight alloys have approximately doubled the tensile and yield strengths at room temperature of previously described magnesium-lithium alloys.

  15. [Microbial corrosion of dental alloy].

    PubMed

    Li, Lele; Liu, Li

    2004-10-01

    There is a very complicated electrolytical environment in oral cavity with plenty of microorganisms existing there. Various forms of corrosion would develop when metallic prosthesis functions in mouth. One important corrosive form is microbial corrosion. The metabolic products, including organic acid and inorganic acid, will affect the pH of the surface or interface of metallic prosthesis and make a change in composition of the medium, thus influencing the electron-chemical reaction and promoting the development of corrosion. The problem of develpoment of microbial corrosion on dental alloy in the oral environment lies in the primary condition that the bacteria adhere to the surface of alloy and form a relatively independent environment that promotes corrosion. PMID:15553877

  16. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  17. Cleavage mechanism in vanadium alloys

    SciTech Connect

    Odette, G.R.; Donahue, E.; Lucas, G.E.

    1997-12-31

    The effect specimen geometry, loading rate and irradiation on the ductile-to-brittle transition in a V-4Ti-4Cr alloy were evaluated and modeled. Confocal microscopy-fracture reconstruction and SEM were used to characterize the sequence-of-events leading to cleavage, as well as the CTOD at fracture initiation. This alloy undergoes normal stress-controlled transgranular cleavage below a transition temperature that depends primarily on the tensile properties and constraint. Thus an equivalent yield stress model is in good agreement with observed effects of loading rate and irradiation hardening. Predicted effects of specimen geometry based on a critical stress-area criteria and FEM simulations of crack tip fields were also found to be in agreement with experiment. Some interesting characteristics of the fracture process are also described.

  18. Heat storage in alloy transformations

    NASA Astrophysics Data System (ADS)

    Birchenall, C. E.

    1980-03-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  19. High toughness-high strength iron alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  20. The oxidation and corrosion of ODS alloys

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  1. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  2. Modeling Asymmetric Rolling Process of Mg alloys

    SciTech Connect

    Cho, Jaehyung; Kim, Hyung-Wuk; Kang, Suk-Bong

    2010-06-15

    Asymmetric deformation during rolling can arise in various ways: difference in the radii, speeds, frictions of the top and bottom rolls. Asymmetric warm rolling processes of magnesium alloys were modeled using a lagrangian incremental approach. A constitutive equation representing flow behaviors of AZ31 magnesium alloys during warm deformation was implemented to the modeling. Various roll speed ratios were introduced to investigate deformation behaviors of the magnesium alloys. Bending and texturing of the strips were examined.

  3. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  4. Itinerant antiferromagnetism of TiAl alloys

    NASA Astrophysics Data System (ADS)

    Petrişor, T.; Pop, I.; Giurgiu, A.; Farbaş, N.

    1986-06-01

    Magnetic susceptibility measurements of TiAl alloys are reported. Aluminium, by alloying, acts on the Néel temperature of pure titanium giving rise to a complicated phase diagram. A theoretical model, based on the itinerant antiferromagnetism model of chromium is proposed in order to explain the magnetic phase diagram of TiAl alloys. The experimental and theoretical magnetic phase diagram are in good agreement.

  5. Alloy nanoparticle synthesis using ionizing radiation

    DOEpatents

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  6. Properties and microstructures for dual alloy combinations of three superalloys with alloy 901

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Dual alloy combinations have potential for use in aircraft engine components such as turbine disks where a wide range of stress and temperature regimes exists during operation. Such alloy combinations may directly result in the conservation of elements which are costly or not available domestically. Preferably, a uniform heat treatment yielding good properties for both alloys should be used. Dual alloy combinations of iron rich Alloy 901 with nickel base superalloys Rene 95, Astroloy, or MERL 76 were not isostatically pressed from prealloyed powders. Individual alloys, alloy mixtures, and layered alloy combinations were given the heat treatments specified for their use in turbine disks or appropriate for Alloy 901. Selected specimens were overaged for 1500 hr at 650 C. Metallographic examinations revealed the absence of phases not originally present in either alloy of a combination. Mechanical tests showed adequate properties in combinations of Rene 95 or Astroloy with Alloy 901 when given the Alloy 901 heat treatment. Combinations with MERL 76 had better properties when given the MERL 76 heat treatment. The results indicate that these combinations are promising candidates for use in turbine disks.

  7. Spark alloying of VK8 and T15K6 hard alloys

    NASA Astrophysics Data System (ADS)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.; Pleshchev, V. P.

    2015-08-01

    A method is developed to restore the service properties of VK hard alloy plates using preliminary carburizing followed by spark alloying with a VT1-0 alloy. The phase composition is studied as a function of the spark treatment time.

  8. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1991-01-01

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  9. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.

    1991-12-03

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.

  10. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1990-01-01

    Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  11. Alloy NASA-HR-1

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  12. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  13. Microbial corrosion of aluminum alloy.

    PubMed

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors. PMID:10592801

  14. Mechanical properties of iron-aluminum alloys

    SciTech Connect

    Alexander, D.J.; Sikka, V.K.

    1993-07-01

    Tensile and impact tests have been conducted on specimens for a series of five heats of iron-aluminum alloys. These results have been compared to data for the iron aluminide alloy FA-129. The first of the new alloys was a simple ternary alloy with iron, aluminum, and chromium contents that matched the FA-129 composition. The second was similar but with additions of zirconium and carbon. Three heats were produced with reduced aluminum contents so that a disordered body-centered cubic structure would be present. Additions of titanium or yttrium were included. The ductile-to brittle transition temperatures of all of the Fe{sub 3}Al alloys were similar, but the simple ternary alloy had a much higher upper-shelf energy levels than the Fe{sub 3}Al type alloys. The reduced aluminum alloy with the yttrium addition showed excellent tensile properties, with a room temperature total elongation of over 40%, and a very high upper-shelf energy level. Despite the high tensile ductility at room temperature, the transition temperature of the yttrium-containing alloy was still about 150{degrees}C, compared to approximately 300{degrees}C for FA-129.

  15. Surface alloying of silicon into aluminum substrate.

    SciTech Connect

    Xu, Z.

    1998-10-28

    Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

  16. Corrosion of austenitic alloys in aerated brines

    SciTech Connect

    Heidersbach, R.; Shi, A.; Sharp, S.

    1999-11-01

    This report discusses the results of corrosion exposures of three austenitic alloys--3l6L stainless steel, UNS N10276, and UNS N08367. Coupons of these alloys were suspended in a series of brines used for processing in the pharmaceutical industry. The effects of surface finish and welding processes on the corrosion behavior of these alloys were determined. The 316L coupons experienced corrosion in several environments, but the other alloys were unaffected during the one-month exposures of this investigation. Electropolishing the surfaces improved corrosion resistance.

  17. Transient oxidation of multiphase Ni-Cr base alloys

    SciTech Connect

    Baran, G.; Meraner, M.; Farrell, P.

    1988-06-01

    Four commercially available Ni-Cr-based alloys used with porcelain enamels were studied. Major alloying elements were Al, Be, Si, B, Nb, and Mo. All alloys were multiphase. During heat treatments simulating enameling conditions, phase changes occurred in most alloys and were detected using hardness testing, differential thermal analysis (DTA), and microscopy. Oxidation of these alloys at 1000/degrees/C for 10 min produced an oxide layer consisting principally of chromium oxide, but the oxide morphology varied with each alloy depending on the alloy microstructure. Controlling alloy microstructure while keeping the overall composition unchanged may be a means of preventing wrinkled poorly adherent scales from forming.

  18. Irradiation-assisted stress corrosion cracking in HTH Alloy X-750 and Alloy 625

    SciTech Connect

    Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z.; Burke, M.G.

    1995-12-31

    In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water to determine the irradiation-assisted stress corrosion cracking (IASCC) behavior of HTH Alloy X-750 and direct-aged Alloy 625. New data confirm previous results showing that high irradiation levels reduce SCC resistance in Alloy X-750. Heat-to-heat variability correlates with boron content, with low boron heats showing improved IASCC properties. Alloy 625 is resistant to IASCC, as no cracking was observed in any Alloy 625 specimens. Microstructural, microchemical and deformation studies were performed to characterize the mechanisms responsible for IASCC in Alloy X-750 and the lack of an effect in Alloy 625. The mechanisms under investigation are: boron transmutation effects, radiation-induced changes in microstructure and deformation characteristics, and radiation-induced segregation. Irradiation of Alloy X-750 caused significant strengthening and ductility loss that was associated with the formation of cavities and dislocation loops. High irradiation levels did not cause significant segregation of alloying or trace elements in Alloy X-750. Irradiation of Alloy 625 resulted in the formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to the loops and precipitates was apparently offset by a partial dissolution of {gamma}{double_prime} precipitates, as Alloy 625 showed no irradiation-induced strengthening or ductility loss. In the nonirradiated condition, an IASCC susceptible HTH heat containing 28 ppm B showed grain boundary segregation of boron, whereas a nonsusceptible HTH heat containing 2 ppm B and Alloy 625 with 20 ppm B did not show significant boron segregation. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in Alloy X-750, and the absence of these two effects results in the superior IASCC resistance displayed by Alloy 625.

  19. Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles

    PubMed Central

    Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2015-01-01

    Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg calculated from first-principles calculations based on density functional theory (DFT) by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1]. PMID:26702419

  20. Mechanically alloyed Ni-base alloys for heat-resistant applications

    SciTech Connect

    Wilson, R.K.; Fischer, J.J.

    1995-12-31

    INCONEL alloys MA 754 and MA 758 are nickel-base oxide dispersion-strengthened (ODS) alloys made by mechanical alloying (MA). Commercial use of Ma Ni-base alloys to date has been predominantly in aerospace applications of alloy MA 754 as turbine engine vanes. Both alloys are suitable for industrial heat treating components and other heat resistant alloy applications. Field trials and commercial experience in such applications of MA alloys are being gained while high temperature property characterization and new product form development continue. Hot isostatic pressing (HIP) is the standard consolidation method for billets from which large bar and plate are produced for industrial applications of MA. This paper describes production of standard mill shapes from HIP billets, and it presents information on current and potential uses of MA alloys in applications such as: skid rails for use in high temperature walking beam furnaces, heat treating furnace components, components for handling molten glass, and furnace tubes. The paper includes comparison of the properties obtained in alloy MA 754 (20% Cr) and alloy MA 758 (30% Cr).

  1. Role of alloying elements in adhesive transfer and friction of copper-base alloys

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.

  2. Effect of alloying on the phase composition of titanium carbonitride-titanium nickelide alloys

    NASA Astrophysics Data System (ADS)

    Askarova, L. Kh.; Grigorov, I. G.; Ermakov, A. N.; Zainulin, Yu. G.; Nikitina, E. V.

    2015-08-01

    X-ray diffraction, electron microprobe analysis, electron microscopy, and chemical analysis are used to study the effect of alloying with zirconium, niobium, vanadium, and molybdenum on the phase composition of titanium carbonitride-titanium nickel cermets. It is shown that two-phase alloys containing alloyed titanium carbonitride and titanium nickelide can only be produced by alloying with zirconium. The addition of niobium, molybdenum, and vanadium leads to the formation of a third phase, namely, Nb z Ni, Mo(Ti,C), or V4Ni, in the alloy. A correlation between the phase composition of the alloys and the ratio of the energies of formation of titanium carbides and the carbides of alloying elements is found.

  3. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  4. Magnetic properties of metastable Fe Pd alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Yabe, Hiromasa; O'Handley, Robert C.; Kuji, Toshiro

    2007-03-01

    Metastable Fe-Pd powder samples with various Pd content were synthesized by mechanical alloying. Their fundamental properties, i.e., structure, magnetization and coercive fore are discussed. The saturation magnetizations of the metastable Fe-Pd powders gradually decreases with increasing Pd content. The coercive forces observed in as-milled samples are all less than 40 Oe. However, some of the heat-treated samples, notably, Pd content around 55 at% with L1 0 structure, shows Hc up to 1589 Oe.

  5. Bonding titanium to Rene 41 alloy

    NASA Technical Reports Server (NTRS)

    Scott, R. W.

    1972-01-01

    Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor.

  6. Lead alloys: past, present and future

    NASA Astrophysics Data System (ADS)

    Bagshaw, N. E.

    The most critical non-active component in the lead/acid battery is the grid or substrate. A review of the work on grids and grid alloys in the period 1960-1993 has been carried out by the Advanced Lead-Acid Battery Consortium and, in this paper, the results are analyzed in relation to the effort expended on different alloy systems. Lead-antimony alloys and the effects on them of additions of arsenic, tin, and grain-refining elements (selenium, sulfur, copper), together with lead-calcium alloys and the effect on them of tin additions, have received the greatest attention in the past. Proposals are made for future studies. Possible evolutionary developments include the addition of silver and higher amounts of tin to lead-calcium alloys, more detailed investigations of lead-strontium and lead-lithium alloys containing tin and/or silver, and further work on very-low-antimony alloys. More speculative projects are very rapidly cooled alloys, the use of aluminium as grids or spines, plastic/lead-coated copper negative grids, corrosion-resistant coatings of lead compounds on the grids and, finally, a substrate for a bipolar plate that is based on conductive inorganic compounds.

  7. Castable nickel aluminide alloys for structural applications

    DOEpatents

    Liu, Chain T.

    1992-01-01

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition.

  8. Imprinting bulk amorphous alloy at room temperature

    DOE PAGESBeta

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  9. Superconductivity in zirconium-rhodium alloys

    NASA Technical Reports Server (NTRS)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  10. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    DOEpatents

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  11. Heat storage in alloy transformations. Final report

    SciTech Connect

    Birchenall, C E; Gueceri, S I; Farkas, D; Labdon, M B; Nagaswami, N; Pregger, B

    1981-03-01

    A study conducted to determine the feasibility of using metal alloys as thermal energy storage media is described. The study had the following major elements: (1) the identification of congruently transforming alloys and thermochemical property measurements, (2) the development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients, (3) the development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase-change materials, and (4) the identification of materials that could be used to contain the metal alloys. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases have been determined. A new method employing x-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data that are obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase-change media. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide has been identified as a promising containment material and surface-coated iron alloys were considered.

  12. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  13. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  14. Iron titanium manganase alloy hydrogen storage

    DOEpatents

    Reilly, James J.; Wiswall, Jr., Richard H.

    1979-01-01

    A three component alloy capable of reversible sorption of hydrogen having the chemical formula TiFe.sub.1-x Mn.sub.x where x is in the range of about 0.02 to 0.5 and the method of storing hydrogen using said alloy.

  15. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  16. Progress in High-Entropy Alloys

    SciTech Connect

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  17. Precipitation of dispersoids in aluminum alloys

    SciTech Connect

    Last, H.R.

    1991-01-01

    The influence of alloy composition and preheat treatment on the precipitation of the metastable Al{sub 3}Zr, {beta}{prime}, phase in ternary alloys and the subsequent recrystallization behavior was investigated. The ternary alloys contained zirconium and one of the following elements: copper, manganese, zinc, or silicon. Diffusion couples were constructed and the values for the interdiffusion coefficient for several elements in aluminum were calculated. The calculated values for the interdiffusion coefficients were used in a finite difference model for the prediction of the homogenization of an as-cast microstructure during preheating. {beta}{prime} was observed to precipitate on defects such as dislocations and low-angle boundaries when a critical solute level in all ternary alloys was reached. The critical solute level was system dependent. Homogeneous nucleation of {beta}{prime} occurred in Al-Si-Zr alloys. In Al-Zn-Zr alloys the shape of the {beta}{prime} deviated from its usual spherical shape to a cube shape when the zinc level exceeds approximately 4 wt. %. When compared to other alloying element additions, small amounts of silicon (between 0.25 and 0.5 wt %) had the greatest influence on not only the recrystallization behavior of the alloy, but also the precipitation of {beta}{prime}.

  18. Dopant precipitation in silicon-germanium alloys.

    NASA Technical Reports Server (NTRS)

    Raag, V.

    1972-01-01

    The model commonly used to describe dopant precipitation in silicon-germanium alloys is discussed. The results of an experimental program are fit to the model in order to determine the long-term behavior of the thermoelectric properties of the n-type 80 at. % Si/20 at. % Ge alloy. Thermoelectric property projections to twelve years of operating time are given.

  19. Alloys of clathrate allotropes for rechargeable batteries

    SciTech Connect

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  20. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  1. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  2. Reinforcing aluminum alloys with high strength fibers

    NASA Technical Reports Server (NTRS)

    Kolpashnikov, A. I.; Manuylov, V. F.; Chukhin, B. D.; Shiryayev, Y. V.; Shurygin, A. S.

    1982-01-01

    A study is made of the possibility of reinforcing aluminum and aluminum based alloys with fibers made of high strength steel wire. The method of introducing the fibers is described in detail. Additional strengthening by reinforcement of the high alloy system Al - An - Mg was investigated.

  3. Heats of formation of bcc binary alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Smith, John R.

    1991-01-01

    The method of Bozzolo, Ferrante and Smith is applied for the calculation of alloy energies for bcc elements. The heat of formation of several alloys is computed with the help of the Connolly-Williams method within the tetrahedron approximation. The dependence of the results on the choice of different sets of ordered structures is discussed.

  4. Machining of uranium and uranium alloys

    SciTech Connect

    Morris, T.O.

    1981-12-14

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures.

  5. Study of stress corrosion in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Brummer, S. B.

    1967-01-01

    Mechanism of the stress corrosion cracking of high-strength aluminum alloys was investigated using electrochemical, mechanical, and electron microscopic techniques. The feasibility of detecting stress corrosion damage in fabricated aluminum alloy parts by nondestructive testing was investigated using ultrasonic surface waves and eddy currents.

  6. Braze alloys for high temperature service

    NASA Technical Reports Server (NTRS)

    Lindberg, R. A.; Mckisson, R. L.; Erwin, G., Jr.

    1973-01-01

    Two groups of refractory metal compositions have been developed that are very useful as high temperature brazing alloys for sealing between ceramic and metal parts. Each group consists of various compositions of three selected refractory metals which, when combined, have characteristics required of good braze alloys.

  7. ALLOY FOR FUEL OF NEUTRONIC REACTORS

    DOEpatents

    Bloomster, C.H.; Katayama, Y.B.

    1963-04-23

    This patent deals with an aluminum alloy suitable as nuclear fuel and consisting mainly of from 1 to 10 wt% of plutonium, from 2 to 3.5 wt% of nickel, the balance being aluminum. The alloy may also contain from 0.9 to 1.1 wt% of silicon and up to 0.7% of iron. (AEC)

  8. Weldable aluminum alloy has improved mechanical properties

    NASA Technical Reports Server (NTRS)

    Westerlund, R. W.

    1966-01-01

    Weldable aluminum alloy has good resistance to stress-corrosion cracking, shows unchanged strength and formability after storage at room temperature, and can be pre-aged, stretched, and aged. Since toxic fumes of cadmium oxide are evolved when the new alloy is welded, adequate ventilation must be provided.

  9. LEB tuner made out of titanium alloy

    SciTech Connect

    Goren, Y.; Campbell, B.

    1991-09-01

    A proposed design of a closed shell tuner for the LEB cavity is presented. The tuner is made out of Ti alloy which has a high electrical resistivity as well as very good mechanical strength. Using this alloy results in a substantial reduction in the eddy current heating as well as allowing for faster frequency control. 9 figs.

  10. Castable nickel aluminide alloys for structural applications

    DOEpatents

    Liu, C.T.

    1992-04-28

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition. 4 figs.

  11. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  12. Enthalpies of a binary alloy during solidification

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Nandapurkar, P.

    1988-01-01

    The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.

  13. A Study of Tungsten-Technetium Alloys

    NASA Technical Reports Server (NTRS)

    Maltz, J. W.

    1965-01-01

    Technetium is a sister element to rhenium and has many properties that are similar to rhenium. It is predicted that technetium will have about the same effects on tungsten as rhenium in regard to increase in workability, lowered ductile to brittle transition temperature, and improved ductility. The objectives of the current work are to recover technetium from fission product wastes at Hanford Atomic Products Operation and reduce to purified metal; prepare W-Tc alloys containing up to 50 atomic% Tc; fabricate the alloy ingots to sheet stock, assessing the effect of technetium on workability; and perform metallurgical and mechanical properties evaluation of the fabricated alloys. Previous reports have described the separation and purification of 800 g of technetium metal powder, melting of technetium and W-Tc alloys, and some initial observation of the alloy material.

  14. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  15. The interaction of hydrogen with metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Montano, J. W.

    1991-01-01

    Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.

  16. Twinning-mediated formability in Mg alloys

    PubMed Central

    Suh, Byeong-Chan; Kim, Jae H.; Hwang, Ji Hyun; Shim, Myeong-Shik; Kim, Nack J.

    2016-01-01

    Mg alloys are promising candidates for automotive applications due to their low density and high specific strength. However, their widespread applications have not been realized mainly because of poor formability at room temperature, arising from limited number of active deformation systems and strong basal texture. It has been recently shown that Mg-Zn-Ca alloys have excellent stretch formability, which has been ascribed to their weak basal texture. However, the distribution of basal poles is orthotropic, which might result in anisotropy during deformation and have adverse effect on formability. Here, we show that tension twinning is mainly responsible for enhanced formability of Mg-Zn-Ca alloys. We found that tension twinning is quite active during both uniaxial deformation and biaxial deformation of Mg-Zn-Ca alloy even under the stress conditions unfavourable for the formation of tensile twins. Our results provide new insights into the development of Mg alloys having high formability. PMID:26926655

  17. Development of chromium-tungsten alloys

    SciTech Connect

    Dogan, Omer N.; Alman, David E.; Hawk, Jeffrey A.

    2004-03-01

    Cr alloys containing 0-30 weight % W were investigated for their high temperature strength and oxidation resistance. These experimental alloys are intended for use in elevated temperature applications. Alloys were melted in a water-cooled, copper-hearth arc furnace. Microstructure of the alloys was studied using X-ray diffraction, scanning electron microscopy, and light microscopy. Meyer and Vickers hardness tests were utilized for measuring room temperature strength. A hot hardness tester with a spherical ruby indenter was used to study the strength of these materials between 800ºC and 1200ºC. A parabolic relationship was observed between load and indent size at all temperatures. On the other hand, decrease in hardness of the alloys with temperature was linear up to 1200ºC.

  18. Modelling Thermodynamics of Alloys for Fusion Application

    SciTech Connect

    Caro, A; Sadigh, B; Turchi, P A; Caro, M; Lopasso, E; Crowson, D

    2006-01-26

    This research has two main objectives: (1) On one side is the development of computational tools to evaluate alloy properties, using the information contained in thermodynamic functions to improve the ability of classic potentials to account for complex alloy behavior. (2) On the other hand, to apply the tools so developed to predict properties of alloys under irradiation. Atomistic simulations of alloys at the empirical level face the challenge of correctly modeling basic thermodynamic properties. In this work we develop a methodology to generalize many-body classic potentials to incorporate complex formation energy curves. Application to Fe-Cr allows us to predict the implications of the ab initio results of formation energy on the phase diagram of this alloy.

  19. Twinning-mediated formability in Mg alloys

    NASA Astrophysics Data System (ADS)

    Suh, Byeong-Chan; Kim, Jae H.; Hwang, Ji Hyun; Shim, Myeong-Shik; Kim, Nack J.

    2016-03-01

    Mg alloys are promising candidates for automotive applications due to their low density and high specific strength. However, their widespread applications have not been realized mainly because of poor formability at room temperature, arising from limited number of active deformation systems and strong basal texture. It has been recently shown that Mg-Zn-Ca alloys have excellent stretch formability, which has been ascribed to their weak basal texture. However, the distribution of basal poles is orthotropic, which might result in anisotropy during deformation and have adverse effect on formability. Here, we show that tension twinning is mainly responsible for enhanced formability of Mg-Zn-Ca alloys. We found that tension twinning is quite active during both uniaxial deformation and biaxial deformation of Mg-Zn-Ca alloy even under the stress conditions unfavourable for the formation of tensile twins. Our results provide new insights into the development of Mg alloys having high formability.

  20. Phonon Entropy of Alloying in Dilute Vanadium Alloys

    NASA Astrophysics Data System (ADS)

    Delaire, Olivier; Swan-Wood, Tabitha; Kresch, Max; Fultz, Brent

    2005-03-01

    We investigate the entropic effects associated with changes in the phonon modes of vanadium upon dilute substitutional alloying. Using inelastic neutron scattering, we have measured the phonon DOS and the phonon entropy of mixing in V - 6%X, with X a transition metal impurity. We study trends for impurities across the d-series and down several columns of the periodic table. We show that for Ni, Pd and Pt impurities, the phonon entropy of alloying is large and negative, and in the case of Pt it results in a negative total entropy of mixing for 6% impurities. A Born-von Karman model was used to invert the experimental DOS curves and showed that the phonon stiffening down this column is associated with an increases in 1NN longitudinal inter-atomic force-constants. The changes in the phonon DOS for impurities across the 3d series are also correlated with the previously measured changes in the superconducting temperature Tc. Ab-initio DFT simulations were used to compute the effect of impurities on the electronic and phonon properties of vanadium, and are compared to the experimental results. This work was supported by DOE through the BES Grant DE-FG03-0346055 and BES-MS, W-31-109-ENG-38.

  1. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  2. Hydrogen resistant alloy - NASA 23

    NASA Technical Reports Server (NTRS)

    Mcpherson, William B. (Inventor); Kuruvilla, A. K. (Inventor)

    1994-01-01

    The invention is a high-strength metal alloy that resists hydrogen embrittlement consisting essentially of thirty-seven (37) percent by weight of iron, thirty-two (32) percent by weight of nickel, fifteen (15) percent by weight of cobalt, ten (10) percent by weight of chromium, three (3) percent by weight of niobium, two-and-one-half (2.5) percent by weight of titanium, fifteen hundredths (0.15) percent by weight of aluminum, and an amount of carbon that does not exceed four hundredths (0.04) percent by weight.

  3. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  4. Plating on stainless steel alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1981-09-11

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate.

  5. Properties of test metal ceramic titanium alloys.

    PubMed

    Akagi, K; Okamoto, Y; Matsuura, T; Horibe, T

    1992-09-01

    Four test alloys were prepared using a high frequency centrifugal casting machine and a ceramic crucible for the development of titanium bonding alloys that can be cast in the ordinary atmosphere. Of these alloys, 10.06% Ti, 78.79% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir could be cast by the conventional high frequency centrifugal method; however, 89.18% Ti, 8.75% Ni, 1.03% Pd, 0.28% Sn and 89.81% Ti, 8.15% Ni, 1.01% Pd, 0.18% Sn, 0.67% Ir could be cast only by the argon are melting method. The alloys 10.06% Ti, 78.95% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed excellent physical and mechanical properties and bonding strengths, surpassing those of the commercial alloys TPW and Unimetal. Concerning the elution of component elements, the amounts of titanium eluted from these alloys were far smaller than those from pure titanium or a Ti-6Al-4V alloy, and nickel elution, which has become an issue in relation to metal allergy, was almost nil in contrast to Unimetal (Ni-Cr alloy). The alloy 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed properties that indicated its favorable use as an alloy for the bonding of dental porcelain. PMID:1432762

  6. Thermal stability of high temperature structural alloys

    SciTech Connect

    Jordan, C.E.; Rasefske, R.K.; Castagna, A.

    1999-03-01

    High temperature structural alloys were evaluated for suitability for long term operation at elevated temperatures. The effect of elevated temperature exposure on the microstructure and mechanical properties of a number of alloys was characterized. Fe-based alloys (330 stainless steel, 800H, and mechanically alloyed MA 956), and Ni-based alloys (Hastelloy X, Haynes 230, Alloy 718, and mechanically alloyed MA 758) were evaluated for room temperature tensile and impact toughness properties after exposure at 750 C for 10,000 hours. Of the Fe-based alloys evaluated, 330 stainless steel and 800H showed secondary carbide (M{sub 23}C{sub 6}) precipitation and a corresponding reduction in ductility and toughness as compared to the as-received condition. Within the group of Ni-based alloys tested, Alloy 718 showed the most dramatic structure change as it formed delta phase during 10,000 hours of exposure at 750 C with significant reductions in strength, ductility, and toughness. Haynes 230 and Hastelloy X showed significant M{sub 23}C{sub 6} carbide precipitation and a resulting reduction in ductility and toughness. Haynes 230 was also evaluated after 10,000 hours of exposure at 850, 950, and 1050 C. For the 750--950 C exposures the M{sub 23}C{sub 6} carbides in Haynes 230 coarsened. This resulted in large reductions in impact strength and ductility for the 750, 850 and 950 C specimens. The 1050 C exposure specimens showed the resolution of M{sub 23}C{sub 6} secondary carbides, and mechanical properties similar to the as-received solution annealed condition.

  7. Comparison of Three Primary Surface Recuperator Alloys

    SciTech Connect

    Matthews, Wendy; More, Karren Leslie; Walker, Larry R

    2010-01-01

    Extensive work performed by Capstone Turbine Corporation, Oak Ridge National Laboratory, and various others has shown that the traditional primary surface recuperator alloy, type 347 stainless steel, is unsuitable for applications above 650 C ({approx}1200 F). Numerous studies have shown that the presence of water vapor greatly accelerates the oxidation rate of type 347 stainless steel at temperatures above 650 C ({approx}1200 F). Water vapor is present as a product of combustion in the microturbine exhaust, making it necessary to find replacement alloys for type 347 stainless steel that will meet the long life requirements of microturbine primary surface recuperators. It has been well established over the past few years that alloys with higher chromium and nickel contents than type 347 stainless steel have much greater oxidation resistance in the microturbine environment. One such alloy that has replaced type 347 stainless steel in primary surface recuperators is Haynes Alloy HR-120 (Haynes and HR-120 are trademarks of Haynes International, Inc.), a solid-solution-strengthened alloy with nominally 33 wt % Fe, 37 wt % Ni and 25 wt % Cr. Unfortunately, while HR-120 is significantly more oxidation resistant in the microturbine environment, it is also a much more expensive alloy. In the interest of cost reduction, other candidate primary surface recuperator alloys are being investigated as possible alternatives to type 347 stainless steel. An initial rainbow recuperator test has been performed at Capstone to compare the oxidation resistance of type 347 stainless steel, HR-120, and the Allegheny Ludlum austenitic alloy AL 20-25+Nb (AL 20-25+Nb is a trademark of ATI Properties, Inc. and is licensed to Allegheny Ludlum Corporation). Evaluation of surface oxide scale formation and associated alloy depletion and other compositional changes has been carried out at Oak Ridge National Laboratory. The results of this initial rainbow test will be presented and discussed in this

  8. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration.

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    Determination of the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. A modified microhardness test unit permitted hardness determinations at homologous temperatures ranging from 0.02 to 0.15, where alloy softening normally occurs in bcc alloys. Results showed that alloy softening was produced by those elements having an excess of s + d electrons compared to Mo while those elements having an equal number or fewer s + d electrons than Mo failed to produce alloy softening. The magnitude of the softening and the amount of solute element at the hardness minimum diminished rapidly with increasing test temperature. At solute concentrations where alloy softening was observed, the temperature sensitivity of hardness was lowered. For solute elements having an excess of s + d electrons or fewer s + d electrons than Mo, alloy softening and alloy hardening can be correlated with the difference in number of s + d electrons of the solute element and Mo.

  9. NiAl alloys for structural uses

    NASA Technical Reports Server (NTRS)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  10. Elastic moduli of nanocrystalline binary Al alloys with Fe, Co, Ti, Mg and Pb alloying elements

    NASA Astrophysics Data System (ADS)

    Babicheva, Rita I.; Bachurin, Dmitry V.; Dmitriev, Sergey V.; Zhang, Ying; Kok, Shaw Wei; Bai, Lichun; Zhou, Kun

    2016-05-01

    The paper studies the elastic moduli of nanocrystalline (NC) Al and NC binary Al-X alloys (X is Fe, Co, Ti, Mg or Pb) by using molecular dynamics simulations. X atoms in the alloys are either segregated to grain boundaries (GBs) or distributed randomly as in disordered solid solution. At 0 K, the rigidity of the alloys increases with decrease in atomic radii of the alloying elements. An addition of Fe, Co or Ti to the NC Al leads to increase in the Young's E and shear μ moduli, while an alloying with Pb decreases them. The elastic moduli of the alloys depend on a distribution of the alloying elements. The alloys with the random distribution of Fe or Ti demonstrate larger E and μ than those for the corresponding alloys with GB segregations, while the rigidity of the Al-Co alloy is higher for the case of the GB segregations. The moduli E and μ for polycrystalline aggregates of Al and Al-X alloys with randomly distributed X atoms are estimated based on the elastic constants of corresponding single-crystals according to the Voigt-Reuss-Hill approximation, which neglects the contribution of GBs to the rigidity. The results show that GBs in NC materials noticeably reduce their rigidity. Furthermore, the temperature dependence of μ for the NC Al-X alloys is analyzed. Only the Al-Co alloy with GB segregations shows the decrease in μ to the lowest extent in the temperature range of 0-600 K in comparison with the NC pure Al.

  11. Development of Metallic Sensory Alloys

    NASA Technical Reports Server (NTRS)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  12. Diffusion of boron in alloys

    SciTech Connect

    Wang, W.; Zhang, S; He, X.

    1995-04-01

    By means of particle tracking autoradiography (PTA), the diffusion coefficients of boron between 900 and 1,200 C were measured in 04MnNbB steel, 25MnTiB steel, Ni-B, Fe-30%Ni-B and Fe-3%Si-B alloys, and the frequency factor D{sub 0} and activation energy Q were obtained respectively. The experiment results indicated that there was an obvious difference between the present result and the result obtained by Busby (in 1953). It was found that the boron diffusivity in {gamma}-Fe increased as Ni was added. The diffusivity of boron in Fe-3%Si-B alloy with b.c.c. structure was much slower than one obtained by Busby in {alpha}-Fe (1954), which, however, was much faster than the results obtained in {gamma}-Fe (with f.c.c. structure). Based on the present data of boron diffusion coefficients, the mechanism of segregation of boron to grain boundaries is discussed.

  13. Environmentally Assisted Cracking of Nickel Alloys - A Review

    SciTech Connect

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  14. The effect of alloy composition on the mechanism of stress corrosion cracking of titanium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Boyd, J. D.; Williams, D. N.; Wood, R. A.; Jaffee, R. I.

    1972-01-01

    The effects of alloy composition on the aqueous stress corrosion of titanium alloys were studied with emphasis on determining the interrelations among composition, phase structure, and deformation and fracture properties of the alpha phase in alpha-beta alloys. Accomplishments summarized include the effects of alloy composition on susceptibility, and metallurgical mechanisms of stress-corrosion cracking.

  15. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  16. Lead-calcium alloy development: quality improvement

    NASA Astrophysics Data System (ADS)

    Caillerie, J.-L.; Albert, L.

    In the 1980s, most of the European lead producers and battery manufacturers had an interest in the lead-calcium alloys developed in the North American market. Fifteen years later, the alloy is used in most of the automotive and industrial batteries produced in Europe. During this development period, the composition of lead-calcium alloy has been improved. Physical metallurgy and electrochemistry research carried out by the lead industry has established the composition of the lead-calcium for negative grids. Metaleurop, as a lead producer, initiated in 1975 the production of lead-calcium alloys for sealed lead/acid batteries and was quickly convinced of the necessity to improve the performance of the alloy by further fundamental research (in 1980) and supporting customers' efforts. The parameters involved in the production battery plates are well specified. The composition of the alloy is dependent on the equipment used to cast the alloy. Improving the hardness by increasing the calcium content over 0.10 wt.% may not be the solution when melting and cooling conditions should als be adapted. The addition of aluminium to prevent calcium oxidation is efficient, its level being linked to the remelting and casting conditions.

  17. Effect of neutron irradiation on vanadium alloys

    SciTech Connect

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  18. Warm formability of aluminum-magnesium alloys

    SciTech Connect

    Taleff, E.M.; Henshall, G.A.; Lesuer, D.R.; Nieh, T.G.

    1994-05-27

    Manufacturers have become increasingly interested in near-net-shape forming of aluminum alloys as a means to reduce production costs and the weight of aircraft and automotive structures. To achieve the ductilities required for this process, we have examined extended ductility of Al-Mg alloys in the warm forming, or Class I creep, regime. We have studied a high-purity, binary alloy of Al-2.8Mg and ternary alloys of Al-xMg-0.5Mn with Mg concentrations from 1.0 to 6.6 wt. %. Tensile tests, including strain rates-change tests, have been performed with these materials at temperatures of 300 and 400C over a range 10{sup {minus}4} to 2 {times} 10{sup {minus}2} s{sup {minus}1}. A maximum tensile failure strain of 325% for the binary alloy and a maximum of 125% in the ternary alloys have been measured. The experimental results have been used to evaluate the effects of solute concentration, microstructure, temperature, and strain rate on flow stress ({sigma}), elongation to failure (e{sub f}), and strain-rate sensitivity (m) of these alloys.

  19. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  20. Hydrogen and deuterium diffusion in vanadium alloys

    SciTech Connect

    Herro, H.M.

    1982-01-01

    Hydrogen and deuterium diffusion coefficients were measured between 473 and 230 K in alloys of vanadium containing titanium or niobium. Boltzmann-Matano techniques allowed the measurement of the hydrogen concentration dependence of the diffusion coefficient. In addition, one of these techniques permitted a determination of the terminal hydrogen solid solubility which was greatly increased by alloying. Both the hydrogen and deuterium diffusion coefficients were found to decrease with hydrogen isotope concentration in all alloys at all temperatures. The effect of niobium additions was to markedly reduce the rate of hydrogen migration to a minimum in the 75 at. pct. Nb alloy. The rate of hydrogen migration decreased with titanium concentration up to 30 at. pct. Ti, the highest concentration examined in that alloy system. The diffusion coefficients exhibited an Arrhenius temperature dependence and the resulting diffusion activation energy and D/sub o/ values both increased with titanium and with niobium concentration to a maximum of 75 at. pct. Nb. Deuterium diffusion activation energies were larger than corresponding hydrogen values in all alloys. The diffusion behavior found in these alloys is not well represented by current local deep trapping models.

  1. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1987-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  2. Electroslag remelting of a vanadium alloy

    SciTech Connect

    Nafziger, R.H.; Smolik, G.R.; Carmack, W.J.

    1996-12-31

    The Bureau of Mines, in cooperation with the Idaho National Engineering Laboratory, has electroslag melted a V-5Ti-5Cr alloy using a fused CaF{sub 2} flux. The alloy is a candidate for use in future fusion reactors. One objective of this research was to evaluate the feasibility of the electroslag melting process in separating simulated radioactive isotopes from the V alloy to demonstrate recyclability. Small amounts of Ca, Y, and Mn were added as surrogates for radioactive isotopes. Results showed that this vanadium alloy can be electroslag melted satisfactorily. The impurities added intentionally were removed or decreased successfully. Among the major alloying constituents, Cr was retained but there were some Ti losses. The latter may be controlled with process refinements. This research suggests that the electroslag melting process could be a suitable method for recycling V alloys after use in future fusion reactors, or for processing other reactive metal alloys with more immediate applications. 3 refs., 1 fig., 5 tabs.

  3. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  4. Alloys based on NiAl for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vedula, K. M.; Pathare, V.; Aslanidis, I.; Titran, R. H.

    1984-01-01

    The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

  5. Impurity control and corrosion resistance of magnesium-aluminum alloy

    SciTech Connect

    Liu, M.; Song, GuangLing

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  6. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-01-01

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials. PMID:23771512

  7. Development of oxide dispersion strengthened turbine blade alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Merrick, H. F.; Curwick, L. R. R.; Kim, Y. G.

    1977-01-01

    There were three nickel-base alloys containing up to 18 wt. % of refractory metal examined initially for oxide dispersion strengthening. To provide greater processing freedom, however, a leaner alloy was finally selected. This base alloy, alloy D, contained 0.05C/15Cr / 2Mo/4W/2Ta/4.5Al/2.Ti/015Zr/0.01-B/Bal. Ni. Following alloy selection, the effect of extrusion, heat treatment, and oxide volume fraction and size on microstructure and properties were examined. The optimum structure was achieved in zone annealed alloy D which contained 2.5 vol. % of 35 mm Y2O3 and which was extruded 16:1 at 1038 C.

  8. Stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  9. Hydrogen solubility in inhomogeneous Pd alloys

    SciTech Connect

    Flanagan, T.B.; Wang, D.; Clewley, J.D.

    1998-12-31

    As-cast, arc-melted Pd-Ni alloys are inhomogeneous and the H{sub 2} isotherms for these differ from their homogeneous counterparts in the two phase, (dilute + hydride), regions but not in the dilute phase regions. Pd-Ni alloys, which become inhomogeneous via a ternary (Pd + Ni + H) equilibrium phase change, have H{sub 2} isotherms which differ from those of the homogeneous alloy in both the two-phase and the dilute phase regions. These results are discussed with respect to the expected type of inhomogeneities.

  10. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  11. Beta titanium: a new orthodontic alloy.

    PubMed

    Burstone, C J; Goldberg, A J

    1980-02-01

    Historically, few alloys have been used in the fabrication of orthodontic appliances. This article reviews the gold-based, stainless steel, chrome-cobalt-nickel, and nitinol alloys, as well as beta titanium, a new material for orthodontics. Mechanical properties and manipulative characteristics are summarized to develop a basis for the selection of the proper alloy for a given clinical situation. The beta titanium wire has a unique balance of low stiffness, high springback, formability, and weldability which indicates its use in a wide range of clinical applications. A number of such applications are described. PMID:6928342

  12. Gas-Alloy Interactions at Elevated Temperatures

    SciTech Connect

    Arroyave, Raymundo; Gao, Michael

    2012-11-07

    The understanding of the stability of metals and alloys against oxidation and other detrimental reactions, to the catalysis of important chemical reactions and the minimization of defects associated with processing and synthesis have one thing in common: At the most fundamental level, all these scientific/engineering problems involve interactions between metals and alloys (in the solid or liquid state) and gaseous atmospheres at elevated temperatures. In this special issue, we have collected a series of articles that illustrate the application of different theoretical, computational, and experimental techniques to investigate gas-alloy interactions.

  13. Cocrystals and alloys of nitazoxanide: enhanced pharmacokinetics.

    PubMed

    Suresh, Kuthuru; Mannava, M K Chaitanya; Nangia, Ashwini

    2016-03-01

    Two isomorphous cocrystals of nitazoxanide (NTZ) with p-aminosalicylic acid (PASA) and p-aminobenzoic acid (PABA) as well as their alloys were prepared by slurry and grinding techniques. The cocrystals exhibit faster dissolution rates and higher pharmacokinetic properties compared to the reference drug, and surprisingly the cocrystal alloy NTZ-PABA : NTZ-PASA (0.75 : 0.25) exhibited 4 fold higher bioavailability of NTZ in Sprague Dawley rats. This study opens the opportunity for cocrystal alloys as improved medicines. PMID:26911515

  14. Thermodynamics and Structure of Plutonium Alloys

    SciTech Connect

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  15. Melting of iron-aluminide alloys

    SciTech Connect

    Sikka, V.K.

    1990-01-01

    The melting of Fe{sub 3}Al-based alloys at the Oak Ridge National Laboratory (ORNL) and commercial vendors is described. The melting processes evaluated includes are melting, air-induction melting (AIM), vacuum-induction melting (VIM), and electroslag remelting (ESR). The quality of the ingots studied are base on internal soundness and the surface finish obtained. The ingots were analyzed for recovery of various elements during melting. The impurity levels observed in the alloys by various melting processes were compared. Recommendations are made for viable processes for commercial melting of these alloys. 1 ref., 5 figs., 3 tabs.

  16. New alloys to conserve critical elements

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  17. Graded coatings for metallic implant alloys

    SciTech Connect

    Saiz, Eduardo; Tomsia, Antoni P.; Fujino, Shigeru; Gomez-Vega, Jose M.

    2002-08-01

    Graded glass and glass-hydroxyapatite coatings on Ti-based and Co-Cr alloys have been prepared using a simple enameling technique. The composition of the glasses has been tailored to match the thermal expansion of the alloys. By controlling the firing time, and temperature, it has been possible to control the reactivity between the glass and the alloy and to fabricate coatings (25 to 150 mu m thick) with excellent adhesion to the substrate, resistant to corrosion and able to precipitate hydroxyapatite during in vitro tests in simulated body fluid.

  18. Discussion on the Alloying Element Partition and Growth Kinetics of Proeutectoid Ferrite in Fe-C-Mn-X Alloys

    NASA Astrophysics Data System (ADS)

    Wei, R.; Enomoto, M.

    2011-12-01

    Experimental data on alloying element partition and growth kinetics of proeutectoid ferrite in quaternary Fe-C-Mn-Si, Ni, and Co alloys were reanalyzed using an approximate method, which permits a quick evaluation of alloy partitioning to be made. The method yielded results in good agreement with DICTRA and is applicable to Fe-C base multicomponent alloys. Differences of the predicted local condition at the α/ γ boundary from those previously presented in the alloys are noted.

  19. Procurement and Initial Characterization of Alloy 230 and CMS Alloy 617

    SciTech Connect

    Terry C. Totemeier; Wejiu Ren

    2006-05-01

    Material for initial testing of alloy 230 and a controlled-chemistry variant of alloy 617 has been procured in the form of plates. ¾-inch thick alloy 230 plate was commercially procured from Haynes International, and 2-inch thick CCA 617, an existing controlled-chemistry variant of alloy 617, was obtained from Alstom Power through the ultra-supercritical fossil energy program. This report describes the procurement of these plates and their characteristics in terms of vendor-supplied chemistry and mechanical properties. Further detailed characterization tests are planned for this fiscal year, and this report will be updated in September 2006 to include the results of these tests.

  20. Method for homogenizing alloys susceptible to the formation of carbide stringers and alloys prepared thereby

    DOEpatents

    Braski, David N.; Leitnaker, James M.

    1980-01-01

    A novel fabrication procedure prevents or eliminates the reprecipitation of segregated metal carbides such as stringers in Ti-modified Hastelloy N and stainless steels to provide a novel alloy having carbides uniformly dispersed throughout the matrix. The fabrication procedure is applicable to other alloys prone to the formation of carbide stringers. The process comprises first annealing the alloy at a temperature above the single phase temperature for sufficient time to completely dissolve carbides and then annealing the single phase alloy for an additional time to prevent the formation of carbide stringers upon subsequent aging or thermomechanical treatment.

  1. Composite growth in hypermonotectic alloys

    NASA Astrophysics Data System (ADS)

    Grugel, R. N.

    1991-06-01

    The feasibility of solidifying uniformly aligned composites from alloys of hypermonotectic composition was investigated through the use of organic analogues and a directional solidification temperature gradient stage. Previously demonstrated macrostructurally detrimental effects due to coalescence and/or preferential wetting (or lack of) by the excess LII phase have been taken advantage of by the inclusion of constrained fibers aligned parallel to the growth direction. Upon passing through the miscibility gap, L II droplets are shown to attach and grow along the fibers prior to the monotectic reaction, resulting in a uniform composite. The results of different fiber materials in combination with “wetting” and “nonwetting” miscibility gap systems are presented and discussed in reference to processing in a microgravity environment.

  2. Residual Resistivity of Dilute Alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    The residual resistivity for 156 dilute alloys of 19 hosts of different groups of the periodic table has been studied on the basis of the single parametric model potential formalism. Ashcroft's empty core model (EMC) potential is explored for the first time with five different local field correction functions, viz, Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) to investigate the effect of the exchange and correlation on the aforesaid properties. The comparison of the presently computed outcomes with the available theoretical and experimental data is highly encouraging. The investigation of residual resistivity is found to be quite sensitive to the selection of local field correction function, showing a significant variation with the change in the function.

  3. Silver-hafnium braze alloy

    DOEpatents

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  4. Incology alloy 908 data handbook

    SciTech Connect

    Toma, L.S.; Steeves, M.M.; Reed, R.P.

    1994-03-01

    This handbook is a compilation of all available properties of Incoloy alloy 908 as of March, 1994. Data included in this paper cover mechanical, elastic, thermal and magnetic characteristics. The mechanical properties include tensile, fracture toughness, fatigue, and stress-rupture for both the base metal and related weld filler metals. Elastic properties listed are Young`s, shear and bulk moduli and Poisson`s ratio. Thermal expansion, thermal conductivity and specific heat and magnetization are also reported. Data presented are summarized in the main body and presented in detail in the supplements. Areas of ongoing research are briefly described, and topics for future research are suggested. The data have been compiled to assist in the design of large-scale superconducting magnets for fusion reactors.

  5. Environmental Studies on Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Brindley, William J.; Bartolotta, Paul A.; Smialek, James L.; Brady, Michael P.

    2005-01-01

    Titanium aluminides are attractive alternatives to superalloys in moderate temperature applications (600 to 850 C) by virtue of their high strength-to-density ratio (high specific strength). These alloys are also more ductile than competing intermetallic systems. However, most Ti-based alloys tend to degrade through interstitial embrittlement and rapid oxidation during exposure to elevated temperatures. Therefore, their environmental behavior must be thoroughly investigated before they can be developed further. The goals of titanium aluminide environmental studies at the NASA Lewis Research Center are twofold: characterize the degradation mechanisms for advanced structural alloys and determine what means are available to minimize degradation. The studies to date have covered the alpha 2 (Ti3Al), orthorhombic (Ti2AlNb), and gamma (TiAl) classes of alloys.

  6. Phase transformations in ternary monotectic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gröbner, Joachim; Schmid-Fetzer, Rainer

    2005-09-01

    Monotectic aluminum alloys are of interest for the development of new alloys for technological applications such as self-lubricating bearings. In contrast to the well-known binary phase diagrams, many of the ternary systems are not well established. Moreover, in a ternary monotectic alloy one may encounter the four-phase equilibrium L‧+L″+solid1+solid2, whereas in a binary system only a three-phase equilibrium L‧+L″+solid1 is possible. This opens a window for generating entirely new monotectic microstructures. The basis for such developments is the knowledge of the ternary phase diagrams and the conditions under which such four-phase reactions or different extensions of the binary monotectic reactions may form. This work presents a systematic classification of monotectic ternary aluminum alloys, illustrated by real systems. The study employs thermodynamic calculations of the ternary phase diagrams.

  7. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  8. Solid solution lithium alloy cermet anodes

    DOEpatents

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  9. Vertical solidification of dendritic binary alloys

    NASA Technical Reports Server (NTRS)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  10. Stress-corrosion cracking of titanium alloys.

    NASA Technical Reports Server (NTRS)

    Blackburn, M. J.; Feeney, J. A.; Beck, T. R.

    1973-01-01

    In the light of research material published up to May 1970, the current understanding of the experimental variables involved in the stress-corrosion cracking (SCC) behavior of titanium and its alloys is reviewed. Following a brief summary of the metallurgy and electrochemistry of titanium alloys, the mechanical, electrochemical, and metallurgical parameters influencing SCC behavior are explored with emphasis on crack growth kinetics. Macro- and microfeatures of fractures are examined, and it is shown that many transgranular SCC failures exhibit morphological and crystallographic features similar to mechanical cleavage failures. Current SCC models are reviewed with respect to their ability to explain the observed SCC behavior of titanium and its alloys. Possible methods for eliminating or minimizing stress corrosion hazards in titanium or titanium alloy components are described.

  11. Aluminum-lithium alloys in helicopters

    SciTech Connect

    Smith, A.F.

    1997-10-01

    Aluminium-lithium alloys are widely applied on the EH101 helicopter, designed and built jointly by GKN Westland Helicopters of England and Agusta S.p.A. of Italy. With the exception of the powder metallurgy alloy AA 5091, all the current commercially available aluminum-lithium alloys are produced by direct-chill casting, and require a precipitation-aging heat treatment to achieve the required properties. In aluminum-lithium alloys containing greater than 1.3% (by weight) of lithium, the intermetallic phase {delta}{prime}-Al{sub 3}Li precipitates upon natural or artificial aging, but the associated strengthening effect is insufficient to meet the medium or high strength levels usually required (the damage tolerant temper in AA 8090 is an exception).

  12. Fatigue crack propagation in aerospace aluminum alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Piascik, R. S.; Dicus, D. L.; Newman, J. C., Jr.

    1990-01-01

    This paper reviews fracture mechanics based, damage tolerant characterizations and predictions of fatigue crack growth in aerospace aluminum alloys. The results of laboratory experimentation and modeling are summarized in the areas of: (1) fatigue crack closure, (2) the wide range crack growth rate response of conventional aluminum alloys, (3) the fatigue behavior of advanced monolithic aluminum alloys and metal matrix composites, (4) the short crack problem, (5) environmental fatigue, and (6) variable amplitude loading. Remaining uncertainties and necessary research are identified. This work provides a foundation for the development of fatigue resistant alloys and composites, next generation life prediction codes for new structural designs and extreme environments, and to counter the problem of aging components.

  13. Modeling wear of cast Ti alloys

    PubMed Central

    Chan, Kwai S.; Koike, Marie; Okabe, Toru

    2007-01-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic–plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an α, α+β or β microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability. PMID:17224314

  14. Segregation and convection in dendritic alloys

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.

    1990-01-01

    Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.

  15. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  16. Printability of alloys for additive manufacturing

    DOE PAGESBeta

    Mukherjee, T.; Zuback, J. S.; De, A.; DebRoy, T.

    2016-01-22

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is usedmore » to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. Here, the findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.« less

  17. Printability of alloys for additive manufacturing.

    PubMed

    Mukherjee, T; Zuback, J S; De, A; DebRoy, T

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts. PMID:26796864

  18. Synthesis of alloys with controlled phase structure

    DOEpatents

    Guthrie, S.E.; Thomas, G.J.; Bauer, W.; Yang, N.Y.C.

    1999-04-20

    A method is described for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures {approx_equal}300 C and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures {approx_equal}300 C thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds. 4 figs.

  19. Synthesis of alloys with controlled phase structure

    DOEpatents

    Guthrie, Stephen Everett; Thomas, George John; Bauer, Walter; Yang, Nancy Yuan Chi

    1999-04-20

    A method for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures .apprxeq.300 C. and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures .apprxeq.300 C. thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds.

  20. Metal dusting of nickel-containing alloys

    SciTech Connect

    Baker, B.A.; Smith, G.D.

    1998-12-31

    Metal dusting is a catastrophic form of carburization which leads to pitting and grooves as the affected metal disintegrates into a mixture of powdery carbon, metallic particles, and possibly oxides and carbides. This high temperature carburization mode is not yet well understood and while relatively infrequent, can be economically disastrous when it does occur in large and complex chemical and petrochemical process streams. References in the literature show that all classes of heat resistant alloys are prone to metal dusting, given the necessary and specific environmental conditions. These same references describe the environments that plague nickel-containing alloys and are used as the basis for postulation on the probable corrosion mechanisms responsible for metal dusting. Using alloy 800 and other nickel-containing alloys and metal dusting atmospheres, an effort is made to examine the steps in the metal dusting process and the temperature ranges over which metal dusting occurs.

  1. Printability of alloys for additive manufacturing

    PubMed Central

    Mukherjee, T.; Zuback, J. S.; De, A.; DebRoy, T.

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts. PMID:26796864

  2. Plastic instability in omega forming alloy systems

    NASA Astrophysics Data System (ADS)

    Banerjee, S.

    2006-11-01

    The plastic flow behaviour of two ω forming systems namely ordered Nb-40Ti-15Al and metastable Zr-Nb alloys has been studied over a range of strain rate and temperature to establish the domain of serrated flow or Protevin-Le Chatelier (PLC) effect. The observed features of serrated flow in these alloys are strikingly similar to that observed during PLC effect of solid solution alloys. Samples deformed in the serrated flow regime have been studied at different levels of magnification using light, scanning electron and transmission electron microscopy. A very characteristic feature of deformation in these alloys has been the presence precipitate free channels, microbands and deformation bands. The proposed mechanism of serrated flow involves creation of soft channels formed by shearing of ω-particles and dynamic restoration of ω-particles within the soft channel resulting in pinning of dislocation. It appears that this is the characteristic feature of deformation of ω forming system exhibiting PLC effect.

  3. Printability of alloys for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Zuback, J. S.; de, A.; Debroy, T.

    2016-01-01

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.

  4. Phases in lanthanum-nickel-aluminum alloys

    SciTech Connect

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  5. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  6. HEAT TREATED U-Mo ALLOY

    DOEpatents

    McGeary, R.K.; Justusson, W.M.

    1960-02-23

    A reactor fuel element comprising a gamma-phase alloy consisting of 11 to 16 wt.% of molyhdenum and the balance uranium, annealed between 350 and 525 deg C and quenched to preserve the gamma phase, is reported.

  7. Thermal barrier coating for alloy systems

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Dinwiddie, Ralph B.

    2000-01-01

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  8. Corrosion of nickel-base alloys

    SciTech Connect

    Scarberry, R.C.

    1985-01-01

    The volume consists of three tutorial lectures and 18 contributed papers. The three tutorial lectures provide state-of-the-art background on the physical metallurgy of nickel-base alloys as it relates to corrosion. Also featured are the mechanisms and applications of these alloys and an insight into the corrosion testing techniques. The three tutorial lecture papers will help acquaint newcomers to this family of alloys with a thorough overview. The contributed papers are categorized into four major topics: general corrosion, stress corrosion cracking, fatigue and localized corrosion. Each topic is key-noted by one invited lecture followed by several contributed papers. The papers in the general corrosion section are wide ranging and cover the aspects of material selection, development of galvanic series in corrosive environments, corrosion resistance characteristics, hydrogen permeation and hydrogen embrittlement of nickel and some nickel-base alloys.

  9. Electrodeposited gels prepared from protein alloys

    PubMed Central

    Lin, Yinan; Wang, Siran; Chen, Ying; Wang, Qianrui; Burke, Kelly A; Spedden, Elise M; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2015-01-01

    Aim Silk-tropoelastin alloys, composed of recombinant human tropoelastin and regenerated Bombyx mori silk fibroin, are an emerging, versatile class of biomaterials endowed with tunable combinations of physical and biological properties. Electrodeposition of these alloys provides a programmable means to assemble functional gels with both spatial and temporal controllability. Materials & methods Tropoelastin-modified silk was prepared by enzymatic coupling between tyrosine residues. Hydrogel coatings were electrodeposited using two wire electrodes. Results & discussion Mechanical characterization and in vitro cell culture revealed enhanced adhesive capability and cellular response of these alloy gels as compared with electrogelled silk alone. Conclusion These electro-depositable silk-tropoelastin alloys constitute a suitable coating material for nanoparticle-based drug carriers and offer a novel opportunity for on-demand encapsulation/release of nanomedicine. PMID:25816881

  10. Oxidation of alloys for advanced steam turbines

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  11. Measurement Of Composition In Transparent Model Alloy

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Perry, Gretchen L.; Curreri, Peter A.

    1989-01-01

    Variation of FTIR technique developed to enable study of growth of cells of different solid phase in unidirectional solidification of these organic mixtures, which serve as transparent anologs of opaque monotectic metal alloys. Study of organic analogs expected to contribute to understanding of formation of aligned rods and particles in directional solidification of metal alloys. Advantage of technique is redistribution of material caused by solidification determined after fact, to very fine scale.

  12. Alloys For Corrosive, Hydrogen-Rich Environments

    NASA Technical Reports Server (NTRS)

    Mcpherson, William B.; Bhat, Biliyar N.; Chen, Po-Shou; Kuruvilla, A. K.; Panda, Binayak

    1993-01-01

    "NASA-23" denotes class of alloys resisting both embrittlement by hydrogen and corrosion. Weldable and castable and formed by such standard processes as rolling, forging, and wire drawing. Heat-treated to obtain desired combinations of strength and ductility in ranges of 100 to 180 kpsi yield strength, 120 to 200 kpsi ultimate tensile strength, and 10 to 30 percent elongation at break. Used in place of most common aerospace structural alloy, Inconel(R) 718.

  13. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  14. Lightweight Protective Coatings For Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  15. Oxidation of advanced steam turbine alloys

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  16. Self-Organized Growth of Alloy Superlattices

    SciTech Connect

    Chason, E.; Floro, J.A.; Follstaedt, D.M.; Lagally, M.G.; Liu, F.; Tersoff, J.; Venezuela, P.

    1998-10-19

    We predict theoretically and demonstrate experimentally the spontaneous formation of a superlattice during crystal growth. When a strained alloy grows by "step flow", the steps at the surface form periodic bunches. The resulting modulated strain biases the incorporation of the respective alloy components at different steps in the bunch, leading to the formation of a superlattice. X-ray diffraction and electron microscopy for SiGe grown on Si give clear evidence for such spontaneous superlattice formation.

  17. Metal alloy coatings and methods for applying

    DOEpatents

    Merz, Martin D.; Knoll, Robert W.

    1991-01-01

    A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.

  18. Novel Directional Solidification Processing of Hypermonotectic Alloys

    NASA Technical Reports Server (NTRS)

    Kaukler, William; Fedoseyev, Alex

    2002-01-01

    A model has been developed that determines the size of Liquid (sub 11) droplets generated during application of ultrasonic energy (as a function of amplitude) to immiscible alloys. The initial results are in accordance with experimental results based on Succinonitrile - Glycerol "alloys" and pure tin dispersions. Future work will take into account the importance of other effects, e.g., thermo-vibrational convection, sound attenuation, viscosity variations, and compositional changes.

  19. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  20. Manufacturing development of low activation vanadium alloys

    SciTech Connect

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  1. Internal gettering by metal alloy clusters

    DOEpatents

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  2. Processing of Iridium and Iridium Alloys

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    Iridium and its alloys have been considered to be difficult to fabricate due to their high melting temperatures, limited ductility, sensitivity to impurity content, and chemical properties. The variety of processing methods used for iridium and its alloys are reviewed, including purification, melting, forming, joining, and powder metallurgy techniques. Also included are coating and forming by the methods of electroplating, chemical and physical vapor deposition, and melt particle deposition.

  3. Making Thin Laminae Of Frozen Alloy Slurries

    NASA Technical Reports Server (NTRS)

    Ghosh, A. K.; Holmes, L. M.; Houston, R. B.; Ecer, G. M.

    1992-01-01

    In new technique, primary objective to develop method to distribute uniformly-thin powder-metal-alloy layers between alternate fiber layers prior to consolidation. Involves use of sheets of frozen alloy powder. These laminae, interspersed with fiber mats, used to make metal/fiber composites. In addition to aerospace applications, this technique, appropriately modified, has potential in the manufacture of future automobile engines or components including molded ceramics.

  4. Evaluation of advanced austenitic alloys relative to alloy design criteria for steam service

    SciTech Connect

    Swindeman, R.W.; Maziasz, P.J.

    1991-06-01

    The results are summarized for a task within a six-year activity to evaluate advanced austenitic alloys for heat recovery systems. Commercial, near-commercial, and development alloys were evaluated relative to criteria for metallurgical stability, fabricability, weldability, mechanical properties, and corrosion in fireside and steamside environments. Alloys that were given special attention in the study were 800HT{reg sign}, NF709{reg sign}, HR3C{reg sign}, and a group of 20/25% chromium-30% nickel-iron alloys identified as HT- UPS (high-temperature, ultrafine-precipitation strengthened) alloys. Excellent metallurgical stability and creep strength were observed in the NF709 and HR3C steels that contained niobium and nitrogen. One group of HT-UPS alloys was strengthened by solution treating to temperatures above 1150{degrees}C and subsequent cold or warm working. Test data to beyond 35,000 h were collected. The ability to clad some of the alloys for improved fireside corrosion resistance was demonstrated. Weldability of the alloys was a concern. Hot cracking and heat-affected-zone (HAZ) liquation cracking were potential problems in the HR3C stainless steel and HT-UPS alloys, and the use of dissimilar metal filler wire was required. By the reduction of phosphorous content and selection of either a nickel-base filler metal or alloy 556 filler metal, weldments were produced with minimum HAZ cracking. The major issues related to the development of the advanced alloys were identified and methods to resolve the issues suggested. 56 refs., 19 figs., 8 tabs.

  5. Durability Assessment of TiAl Alloys

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.

    2008-01-01

    The durability of TiAl is a prime concern for the implementation of TiAl into aerospace engines. Two durability issues, the effect of high temperature exposure on mechanical properties and impact resistance, have been investigated and the results are summarized in this paper. Exposure to elevated temperatures has been shown to be detrimental to the room temperature ductility of gamma alloys with the most likely mechanisms being the ingress of interstitials from the surface. Fluorine ion implantation has been shown to improve the oxidation resistance of gamma alloys, and ideally it could also improve the environmental embrittlement of high Nb content TiAl alloys. The effect of F ion implantation on the surface oxidation and embrittlement of a third generation, high Nb content TiAl alloy (Ti-45Al-5Nb-B-C) were investigated. Additionally, the ballistic impact resistance of a variety of gamma alloys, including Ti-48Al-2Cr- 2Nb, Ti-47Al-2Cr-2Nb, ABB-2, ABB-23, NCG359E, 95A and Ti-45Al-5Nb-B-C was accessed. Differences in the ballistic impact properties of the various alloys will be discussed, particularly with respect to their manufacturing process, microstructure, and tensile properties.

  6. Capacity retention in hydrogen storage alloys

    NASA Technical Reports Server (NTRS)

    Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.

    1992-01-01

    Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.

  7. Initial cytotoxicity of novel titanium alloys.

    PubMed

    Koike, M; Lockwood, P E; Wataha, J C; Okabe, T

    2007-11-01

    We assessed the biological response to several novel titanium alloys that have promising physical properties for biomedical applications. Four commercial titanium alloys [Super-TIX(R) 800, Super-TIX(R) 51AF, TIMETAL(R) 21SRx, and Ti-6Al-4V (ASTM grade 5)] and three experimental titanium alloys [Ti-13Cr-3Cu, Ti-1.5Si and Ti-1.5Si-5Cu] were tested. Specimens (n = 6; 5.0 x 5.0 x 3.0 mm(3)) were cast in a centrifugal casting machine using a MgO-based investment and polished to 600 grit, removing 250 mum from each surface. Commercially pure titanium (CP Ti: ASTM grade 2) and Teflon (polytetrafluoroethylene) were used as positive controls. The specimens were cleaned and disinfected, and then each cleaned specimen was placed in direct contact with Balb/c 3T3 fibroblasts for 72 h. The cytotoxicity [succinic dehydrogenase (SDH) activity] of the extracts was assessed using the MTT method. Cytotoxicity of the metals tested was not statistically different compared to the CP Ti and Teflon controls (p > 0.05). These novel titanium alloys pose cytotoxic risks no greater than many other commonly used alloys, including commercially pure titanium. The promising short-term biocompatibility of these Ti alloys is probably due to their excellent corrosion resistance under static conditions, even in biological environments. PMID:17385227

  8. Development of Advanced Alloys using Fullerenes

    NASA Technical Reports Server (NTRS)

    Sims, J.; Wasz, M.; O'Brien, J.; Callahan, D. L.; Barrera, E. V.

    1994-01-01

    Development of advanced alloys using fullerenes is currently underway to produce materials for use in the extravehicular mobility unit (EMU). These materials will be directed toward commercial usages as they are continually developed. Fullerenes (of which the most common is C(sub 60)) are lightweight, nanometer size, hollow molecules of carbon which can be dispersed in conventional alloy systems to enhance strength and reduce weight. In this research, fullerene interaction with aluminum is investigated and a fullerene-reinforced aluminum alloy is being developed for possible use on the EMU. The samples were manufactured using standard commercial approaches including powder metallurgy and casting. Alloys have been processed having 1.3, 4.0 and 8.0 volume fractions of fullerenes. It has been observed that fullerene dispersion is related to the processing approach and that they are stable for the processing conditions used in this research. Emphasis will be given to differential thermal analysis and wavelength dispersive analysis of the processed alloys. These two techniques are particularly useful in determining the condition of the fullerenes during and after processing. Some discussion will be given as to electrical properties of fullerene-reinforced materials. Although the aluminum and other advanced alloys with fullerenes are being developed for NASA and the EMU, the properties of these materials will be of interest for commercial applications where specific Dual-Use will be given.

  9. Advances in iridium alloy processing in 1987

    SciTech Connect

    Heestand, R.L.; Ohriner, E.K.; Roche, T.K.

    1988-08-01

    A new process for the production of DOP-26 iridium alloy blanks is being evaluated and optimized. The alloy is prepared by electron-beam (EB) melting of Ir-0.3% W powder compacts followed by doping with aluminum and thorium by arc melting. Drop-cast alloy rod segments are EB welded to produce an electrode that is consumable arc melted to produce an ingot for extrusion and subsequent rolling. Initial results showed rejections for ultrasonic indications of alloy blanks produced by this process to be very low. Subsequently, some ingots have exhibited delaminations in the sheet, leading to rejection rates similar to that obtained in the standard process. The increase in delaminations is related to near-surface porosity in the consumable arc-melted ingot. A number of modifications to the arc-melting process and plans for further experimental work are described. In addition, the tensile properties of the DOP-26 iridium alloys have been measured over a range of test temperatures and strain rates. A laboratory evaluation of alternative cleaning procedures indicates that electrolytic dissolution of DOP-26 iridium alloy in an HCl solution is a potential substitute to the KCN process now in use. 7 refs., 13 figs., 6 tabs.

  10. Hydrogen storage systems from waste Mg alloys

    NASA Astrophysics Data System (ADS)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  11. Composition control in laser surface alloying

    NASA Astrophysics Data System (ADS)

    Chande, T.; Mazumder, J.

    1983-06-01

    Laser surface alloying, a process of growing interest for local surface modification, relies upon a suitable composition and microstructure for satisfactory on-the-job performance. This paper reports the results of an initial systematic study of laser surface alloying nickel onto AISI 1020 steel substrates using a statistical experimental design technique. The objective was to relate processing conditions to dimensions, solute content, and microstructural refinement of the laser alloyed zones. Solute content was of principal concern as it is the single most important factor affecting the properties of laser surface alloys. The effects of varying the laser power, beam diameter, and speed on the width, depth, nickel content, and fluctuations in nickel content are reported. Interactions between process parameters are discussed, the reproducibility assessed, contour plots for solute content drawn. Dimensionless plots are developed that relate average solute content and microstructural refinement to process parameters. Previously published data for alloying chromium into 1018 steels are shown to contain similar trends. It is felt that such an approach would facilitate selection of processing conditions to obtain reproducibly the compositions and microstructures necessary for gainful utilization of laser surface alloys.

  12. Crystallization of amorphous Zr-Be alloys

    NASA Astrophysics Data System (ADS)

    Golovkova, E. A.; Surkov, A. V.; Syrykh, G. F.

    2015-02-01

    The thermal stability and structure of binary amorphous Zr100 - x Be x alloys have been studied using differential scanning calorimetry and neutron diffraction over a wide concentration range (30 ≤ x ≤ 65). The amorphous alloys have been prepared by rapid quenching from melt. The studied amorphous system involves the composition range around the eutectic composition with boundary phases α-Zr and ZrBe2. It has been found that the crystallization of alloys with low beryllium contents ("hypoeutectic" alloys with x ≤ 40) proceeds in two stages. Neutron diffraction has demonstrated that, at the first stage, α-Zr crystallizes and the remaining amorphous phase is enriched to the eutectic composition; at the second stage, the alloy crystallizes in the α-Zr and ZrBe2 phases. At higher beryllium contents ("hypereutectic" alloys), one phase transition of the amorphous phase to a mixture of the α-Zr and ZrBe2 phases has been observed. The concentration dependences of the crystallization temperature and activation energy have been revealed.

  13. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    SciTech Connect

    Sikka, V.K.

    1992-01-28

    This patent describes a method for improving the room temperature ductility and high temperature strength of iron aluminide intermetallic alloys. It comprises: thermomechanically working of the alloys ; heating the alloys; and rapidly cooling the alloys.

  14. Cryogenic Properties of a New Tough-Strong Iron Alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1977-01-01

    A program was undertaken to develop an iron-base alloy having a fracture toughness of 220 MPa. m superscript 1/2 with a corresponding yield stress of 1.4 GPa (200 ksi) at-196 C. An Fe-12Ni alloy was selected as the base alloy. Factors considered included reactive metal additions, effects of interstitial impurities, strengthening mechanisms, and weldability. The goals were met in an Fe-12Ni-0.5Al alloy strengthened by thermomechanical processing or by precipitate strengthening with 2 percent Cu. The alloy is weldable with the weld metal and heat affected zone in the postweld annealed condition having toughness equivalent to the base alloy.

  15. Comparison of the Oxidation Rates of Some New Copper Alloys

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. Thomas; Humphrey, Donald L.

    2002-01-01

    Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700 C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.

  16. An Analysis of Selected Properties of ZA Alloys

    NASA Astrophysics Data System (ADS)

    Gervais, E.; Barnhurst, R. J.; Loong, C. A.

    1985-11-01

    Zinc-aluminum (ZA) alloys are a relatively new family of zinc foundry alloys having superior melting and casting characteristics and attractive mechanical properties. The ZA-8 and ZA-12 alloys are moderate to high strength materials while ZA-27 is a high-strength alloy. All can be sand cast, permanent molded and pressure die cast. An extensive characterization program is being implemented to develop appropriate and reliable engineering data for designers. Property development in all aspects of ZA metallurgy is welladvanced. The data available on selected physical and mechanical properties of ZA alloys is compared here with the properties of traditional casting alloys.

  17. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  18. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  19. The effect of alloy composition on radiation-induced segregation in FeCrNi alloys

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Was, G. S.; Kenik, E. A.

    1997-04-01

    The effect of alloy composition on radiation-induced segregation (RIS) was investigated in austenitic iron-base and nickel-base alloys using proton irradiation. Specifically, RIS was studied by irradiation of Ni18Cr, Ni18Cr9Fe, and Fe20Cr9Ni over a dose range of 0 to 1.0 dpa and a temperature range of 200 to 500°C. Grain boundary composition was measured using Auger electron spectroscopy and scanning transmission electron microscopy with energy dispersive X-ray spectroscopy. Measurements from this study along with measurements from Fe16Cr24Ni, Fe20Cr24Ni, Fe24Cr24Ni, and Fe24Cr19Ni alloys irradiated with protons confirm that RIS is strongly dependent on the alloy composition. Trends in segregation behavior in Fe-base alloys are consistent with high temperature diffusion measurements, indicating that a vacancy mechanism is the most likely primary driving force for RIS in austenitic steels. The migration energy for Cr is shown to be larger than the migration energy of Fe. Segregation measurements in Ni-base alloys are not consistent with high temperature diffusion measurements, indicating that ordering forces may be significant in the segregation process. Comparison of model calculations to measured RIS data indicate that Fe, Cr, and Ni diffusivities are composition dependent. This dependence on alloy composition limits the predictive ability of simple models because of the need for separate diffusion parameters for every alloy composition.

  20. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    PubMed Central

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; VanLeeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-01-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications. PMID:26134420

  1. Irradiation assisted stress corrosion cracking of HTH Alloy X-750 and Alloy 625

    SciTech Connect

    Mills, W.J.; Lebo, M.R.; Bajaj, R.; Kearns, J.J.; Hoffman, R.C.; Korinko, J.J.

    1994-06-01

    In-reactor testing of bolt-loaded precracked compact tension specimens was performed in 360{degree}C water to determine effect of irradiation on the SCC behavior of HTH Alloy X-750 and direct aged Alloy 625. Out-of-flux and autoclave control specimens provided baseline data. Primary test variables were stress intensity factor, fluence, chemistry, processing history, prestrain. Results for the first series of experiments were presented at a previous conference. Data from two more recent experiments are compared with previous results; they confirm that high irradiation levels significantly reduce SCC resistance in HTH Alloy X-750. Heat-to-heat differences in IASCC were related to differences in boron content, with low boron heats showing improved SCC resistance. The in-reactor SCC performance of Alloy 625 was superior to that for Alloy X-750, as no cracking was observed in any Alloy 625 specimens even though they were tested at very high K{sub 1} and fluence levels. A preliminary SCC usage model developed for Alloy X-750 indicates that in-reactor creep processes, which relax stresses but also increase crack tip strain rates, and radiolysis effects accelerate SCC. Hence, in-reactor SCC damage under high flux conditions may be more severe than that associated with postirradiation tests. In addition, preliminary mechanism studies were performed to determine the cause of IASCC In Alloy X-750.

  2. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  3. Materials data handbooks prepared for aluminum alloys 2014, 2219, and 5456, and stainless steel alloy 301

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Materials data handbooks summarize all presently known properties of commercially available structural aluminum alloys 2014, 2219, and 5456 and structural stainless steel alloy 301. The information includes physical and mechanical property data and design data presented in tables, illustrations, and text.

  4. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys.

    PubMed

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A; Wang, William Y; VanLeeuwen, Brian K; Liu, Xuan L; Kecskes, Laszlo J; Dickey, Elizabeth C; Liu, Zi-Kui

    2015-01-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications. PMID:26134420

  5. Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui

    2015-07-01

    Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.

  6. Bond strength of gold alloys laser welded to cobalt-chromium alloy.

    PubMed

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892

  7. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    PubMed Central

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892

  8. High strength cast aluminum alloy development

    NASA Astrophysics Data System (ADS)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  9. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  10. Investigation of crystallization of a mechanically alloyed Sm-Fe alloy

    SciTech Connect

    Lue, M.Q.; Wang, K.Y.; Miao, W.F.; Song, Q.H.; Sun, W.S.; Wei, W.D.; Wang, L.B. )

    1992-06-15

    The crystallization of a mechanically alloyed Sm-Fe alloy was investigated. The results show that the Sm-Fe alloy prepared by mechanical alloying consists of amorphous Sm-Fe phase and crystalline {alpha}-Fe phase. The composition of the alloy is inhomogeneous, i.e., the surface of the as-milled powder is relatively poor in iron. The crystallization process involves the long-range diffusion of iron atoms and solid state reaction. After proper crystallization, the as-milled powder transforms into a Sm{sub 2}Fe{sub 17} phase completely; no distinguishable crystalline {alpha}-Fe phase can be found. A metastable phase, which may be a Sm{sub 2}Fe{sub 17} phase with the structure of hexagonal Th{sub 2}Ni{sub 17} type, appears during the crystallization process.

  11. Alloy and structural optimization of a directionally solidified lamellar eutectic alloy

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1976-01-01

    Mechanical property characterization tests of a directionally solidified Ni-20 percent Cb-2.5 percent Al-6 percent Cr cellular eutectic turbine blade alloy demonstrated excellent long time creep stability and indicated intermediate temperature transverse tensile ductility and shear strength to be somewhat low for turbine blade applications. Alloy and structural optimization significantly improves these off-axis properties with no loss of longitudinal creep strength or stability. The optimized alloy-structure combination is a carbon modified Ni-20.1 percent Cb-2.5 percent Al-6.0 percent Cr-0.06 percent C composition processed under conditions producing plane front solidification and a fully-lamellar microstructure. With current processing technology, this alloy exhibits a creep-rupture advantage of 39 C over the best available nickel base superalloy, directionally solidified MAR M200+ Hf. While improved by about 20 percent, shear strength of the optimized alloy remains well below typical superalloy values.

  12. Alloy development for irradiation performance. Quarterly progress report for period ending December 31, 1980

    SciTech Connect

    Not Available

    1981-04-01

    Progress is reported in eight sections: analysis and evaluation studies, test matrices and test methods development, Path A Alloy Development (austenitic stainless steels), Path C Alloy Development (Ti and V alloys), Path D Alloy Development (Fe alloys), Path E Alloy Development (ferritic steels), irradiation experiments and materials inventory, and materials compatibility and hydrogen permeation studies. (DLC)

  13. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  14. Modification of the titanium alloy surface in electroexplosive alloying with boron carbide and subsequent electron-beam treatment

    SciTech Connect

    Gromov, Victor E. Budovskikh, Evgeniy A. Bashchenko, Lyudmila P. Kobzareva, Tatyana Yu. Semin, Alexander P.; Ivanov, Yurii F.; Wang, Xinli

    2015-10-27

    The modification of the VT6 titanium alloy surface in electroexplosion alloying with plasma being formed in titanium foil with a weighed powder of boron carbide with subsequent irradiation by a pulsed electron beam has been carried out. An electroexplosive alloying zone of a thickness up to 50 μm with a gradient structure is found to form. The subsequent electron-beam treatment of the alloying zone results in smoothing of the alloying surface and is accompanied by the formation of the multilayer structure with alternating layers of various alloying degree at a depth of 30 μm.

  15. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    NASA Astrophysics Data System (ADS)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  16. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    SciTech Connect

    Robinson, J.S.; Redington, W.

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  17. Dislocation dynamics in SiGe alloys

    NASA Astrophysics Data System (ADS)

    Yonenaga, I.

    2013-11-01

    The dislocation velocities and mechanical strength of bulk crystals of SixGe1-x alloys grown by the Czochralski method have been investigated by the etch pit technique and compressive deformation tests, respectively. Velocity of dislocations in the SiGe alloys of the composition range 0.004 < x < 0.08 decreases monotonically with an increase in Si content at temperature 450-700°C and under stress 3-24MPa. In contrast, velocity of dislocations in the composition range 0.92 < x < 1 first increases, then decreases and again increases with a decrease in Si content at temperature 750-850°C and under stress 3-30MPa. The velocity of dislocations was quantitatively evaluated as functions of stress and temperature. Stress-strain behaviour in the yield region of the SiGe alloys of composition 0 < x < 0.4 is similar to that of Ge at temperatures lower than about 600°C. However, the yield stress becomes temperature-insensitive at high temperatures and increases with increasing Si content. The stress-strain curves of the SiGe alloys of composition 0.95 < x < 1 are similar to those of pure Si at temperatures 800-1000°C and the yield stress increases with decreasing Si content down to x = 0.95. The yield stress of the SiGe alloys is dependent on the composition, being proportional to x(1-x), showing a maximum around x ≈ 0.5. Built-in stress fields related to local fluctuation of the alloy composition and the dynamic development of a solute atmosphere around the dislocations, may suppress the activities of dislocations and lead to the hardening of SiGe alloys.

  18. High strength and corrosion resistant alloys weld overlays for oil patch applications

    SciTech Connect

    Hibner, E.L.; Maligas, M.N.; Vicic, J.C.

    1995-10-01

    Corrosion resistant alloys (CRAs) are specified for oilfield applications where severe environments cause general corrosion, pitting, crevice corrosion, chloride stress corrosion cracking and more importantly sulfide stress cracking. Historically, alloy 625 (UNS N06625) weld overlay has successfully been used in severely corrosive environments. Alloy 686 (UNS N06686) and alloy 725 (UNS N07725) have recently been evaluated as replacement materials for alloy 625. Alloy 686, because of it`s high alloying content, exhibits superior corrosion resistance to alloy 625. And, alloy 725 is a highly corrosion resistant alloy capable of being age hardened to 0.2% yield strengths of above 827 MPa (120 ksi) Mechanical properties and Slow Strain Rate test results for the alloy 686 and alloy 725 weld overlays are discussed relative to alloy 625, alloy C-22 (UNS N06622) and alloy 59 (UNS N06059) weld overlays.

  19. Amorphous silicon-tellurium alloys

    NASA Astrophysics Data System (ADS)

    Shufflebotham, P. K.; Card, H. C.; Kao, K. C.; Thanailakis, A.

    1986-09-01

    Amorphous silicon-tellurium alloy thin films were fabricated by coevaporation over the composition range of 0-82 at. % Te. The electronic and optical properties of these films were systematically investigated over this same range of composition. The optical gap of these films was found to decrease monotonically with increasing Te content. Conduction near room temperature was due to extended state conduction, while variable range hopping dominated below 250 K. The incorporation of Te in concentrations of less than 1 at. % was found to produce an increase in the density of localized states at the Fermi level and a decrease in the activation energy. This was attributed to the Te being incorporated as a substitutional, fourfold coordinated, double donor in a-Si. At approximately 60 at. % Te, a decrease in the density of localized states at the Fermi level, and an increase in the activation energy and photoresponse was indicated. This was attributed to the possible formation of a less defective a-Si:Te compound.

  20. Corrosion performance of a nickel-molybdenum-chromium alloy: Effects of aging, alloying elements, and electrolyte composition

    SciTech Connect

    Rebak, R.B.; Srivastava, S.K.

    1999-04-01

    General and stress corrosion cracking (SCC) behaviors of a Ni-Mo-Cr alloy were assessed in the mill-annealed and aged conditions. Performance of this Ni-25% Mo-8% Cr alloy (alloy 242 [proposed UNS N10242]) was compared to the performance of a Ni-Mo alloy (alloy B-3 [UNS N10675]) and a Ni-Cr-Mo alloy (C-2000 [UNS N06200]). Results showed the general corrosion rate of alloy 242 in reducing acids was slightly higher than that of alloy B-3. However, in mildly oxidizing conditions, the corrosion rate of alloy 242 was lower than that of alloy B-3. Effects of electrolyte and alloy composition on the general corrosion rate were studied. After aging at 650 C (1,200 F) for 24 h, the corrosion rate of alloy 242 increased slightly, particularly in strongly reducing conditions. Alloy 242 was resistant to SCC but was prone to hydrogen-induced cracking, especially in the aged condition.

  1. PDTI metal alloy as a hydrogen or hydrocarbon sensitive metal

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W. (Inventor)

    1996-01-01

    A hydrogen sensitive metal alloy contains palladium and titanium to provide a larger change in electrical resistance when exposed to the presence of hydrogen. The alloy can be used for improved hydrogen detection.

  2. Molding procedure for casting a variety of alloys

    NASA Technical Reports Server (NTRS)

    Fontes, M. J.; Kourtides, D.; Leibfritz, E. R.

    1970-01-01

    General procedure and molding sand composition for preparing molds usable for casting variety of alloys are developed. Molds are prepared from mixture of sand, sodium silicate binder, and organic liquid ester. Castings of radiographic quality are produced from various alloys.

  3. Oxide dispersion hardened mechanically alloyed materials for high temperatures

    NASA Technical Reports Server (NTRS)

    Benjamin, J. S.; Strassburg, F. W.

    1982-01-01

    The procedure of mechanical alloying makes it possible to obtain, with the aid of powder-metallurgy techniques, alloys that consist of a metallic matrix in which very fine oxide particles are dispersed. Mechanically alloyed compound powders can be used for making either forged or hot-rolled semifinished products. For these products, dispersion strengthening and precipitation hardening has been combined. At high temperatures, the strength characteristics of the alloy are determined by both dispersion hardening and by precipitation hardening processes. The effect produced by each process is independent of that due to the other. Attention is given to the principle of mechanical alloying developed by Benjamin (1970, 1976), the strength characteristics of mechanically alloyed materials, the corrosion resistance of mechanically alloyed material at high temperatures, and the preparation and characteristics of the alloy MA 6000 E.

  4. A rapid stress-corrosion test for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Helfrich, W. J.

    1968-01-01

    Stressed alloy specimens are immersed in a salt-dichromate solution at 60 degrees C. Because of the minimal general corrosion of these alloys in this solution, stress corrosion failures are detected by low-power microscopic examination.

  5. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal... “Class II Special Controls Guidance Document: Dental Noble Metal Alloys.” The devices are exempt from...

  6. Recent progress on gas tungsten arc welding of vanadium alloys

    SciTech Connect

    King, J.F.; Grossbeck, M.L.; Goodwin, G.M.; Alexander, D.J.

    1997-04-01

    This is a progress report on a continuing research project to acquire a fundamental understanding of the metallurgical processes in the welding of vanadium alloys. It also has the goal of developing techniques for welding structural vanadium alloys. The alloy V-4Cr-4Ti is used as a representative alloy of the group; it is also the prime candidate vanadium alloy for the U.S. Fusion Program at the present time. However, other alloys of this class were used in the research as necessary. The present work focuses on recent findings of hydrogen embrittlement found in vanadium alloy welds. It was concluded that the atmosphere in the inert gas glove box was insufficient for welding 6mm thick vanadium alloy plates.

  7. The Origin of the Name "Onion's Fusible Alloy"

    ERIC Educational Resources Information Center

    Jensen, William B.

    2010-01-01

    In response to a reader query, this article traces the history of fusible alloys, including Newton's metal, D'Arcet's metal, Rose's metal, Onion's fusible alloy, and Wood's metal. (Contains 1 table and 1 figure.)

  8. Dendrite coherency during equiaxed solidification in binary aluminum alloys

    SciTech Connect

    Chai, G.; Baeckerud, L.; Roelland, T.; Arnberg, L.

    1995-04-01

    Dendrite coherency, or dendrite impingement, is important to the formation of the solidification structure and castability of alloys. Dendrite coherency in the systems Al-xMn, Al-xCu, Al-xFe, and Al-xSi (x = 0 to 5 wt pct) has been studied by continuous torque measurement in solidifying samples. The fraction solid at the dendrite coherency point, fs*, varies with the alloy system and the solute concentration in the alloy, from 18 to 56 pct for the present alloys investigated. An increase in solute concentration decreases the coherency fraction solid, fs*. An alloy system with a large slope of the liquidus line has a high coherency fraction solid. A theoretical approach has been developed to account for the effects of the alloy system and solute concentration on the dendrite coherency in the alloy. The grain sizes of the alloys were evaluated using the parameters at coherency point.

  9. Bismuth alloy potting seals aluminum connector in cryogenic application

    NASA Technical Reports Server (NTRS)

    Flower, J. F.; Stafford, R. L.

    1966-01-01

    Bismuth alloy potting seals feedthrough electrical connector for instrumentation within a pressurized vessel filled with cryogenic liquids. The seal combines the transformation of high-bismuth content alloys with the thermal contraction of an external aluminum tube.

  10. Amorphous Alloy Surpasses Steel and Titanium

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century. Welcome to the 3rd Revolution, otherwise known as the era of Liquidmetal(R) alloys, where metals behave similar to plastics but possess more than twice the strength of high performance titanium. Liquidmetal alloys were conceived in 1992, as a result of a project funded by the California Institute of Technology (CalTech), NASA, and the U.S. Department of Energy, to study the fundamentals of metallic alloys in an undercooled liquid state, for the development of new aerospace materials. Furthermore, NASA's Marshall Space Flight Center contributed to the development of the alloys by subjecting the materials to testing in its Electrostatic Levitator, a special instrument that is capable of suspending an object in midair so that researchers can heat and cool it in a containerless environment free from contaminants that could otherwise spoil the experiment.

  11. Vanadium alloys - overview and recent results

    NASA Astrophysics Data System (ADS)

    Muroga, T.; Nagasaka, T.; Abe, K.; Chernov, V. M.; Matsui, H.; Smith, D. L.; Xu, Z.-Y.; Zinkle, S. J.

    2002-12-01

    This paper reviews recent progress in research on vanadium alloys with emphasis on V-4Cr-4Ti as a reference composition. New high purity V-4Cr-4Ti ingots and products (NIFS-HEATs) were made. The improved purity of the alloys made a practical demonstration of enhanced feasibility of recycling as a method of handling after use in fusion reactors. Significant progress has been made in the understanding of physical metallurgy of V-4Cr-4Ti and effects of O, N and C on the alloy properties such as low and high temperature mechanical properties, welding properties and low temperature irradiation effects, by means of including the comparison of various large heats and model alloys with different impurity levels. The effects of other trace impurities on some of the properties are also discussed. Other current efforts to characterize V-4Cr-4Ti, to improve its properties and to explore advanced vanadium alloys are reviewed. Issues remaining for the future investigations are discussed.

  12. Microstructure Evolution of a Multifunctional Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Tian, Yu Xing; Hao, Yu Lin

    2016-03-01

    To optimize both mechanical and functional properties of multifunctional titanium alloys via grain refinement, an example of such alloys termed as Ti2448 is adopted to investigate its microstructure evolution and strain rate sensitivity by compression in the single β-phase field. The results show that flow stress and strain rate follow a bilinear relation, which is in sharp contrast with other metallic materials exhibiting a monotonic linearity. Below the critical strain of 1 s-1, the alloy has a normal strain rate sensitivity factor of 0.265. Above the critical value, its hardening rate is ultra-low with a factor of 0.03. Inspite of ultra-low hardening, the alloy is plastic stable under the tested conditions. With the aid of electron back-scattering diffraction and transmission electron microscopy analyses, microstructure evolution via several mechanisms such as dynamic recovery and recrystallization is evaluated by quantitative measurements of grain misorientation and its distribution, sub-grain formation, and localized grain refinement. These results are helpful to obtain the homogenous ultrafine-grained alloy by multi-step thermo-mechanical processing.

  13. Aerospace applications of beta titanium alloys

    NASA Astrophysics Data System (ADS)

    Boyer, Rodney R.

    1994-07-01

    Beta alloys are beginning to play a significant role in both military and commercial aircraft. Ti-10V-2Fe-3Al forgings, for example, play major roles in the McDonnell Douglas C-17 and the Boeing 777. The attractive properties of Beta-C are increasing the use of titanium, rather than steel, in aircraft springs. Ti-15V-3Cr-3Al-3Sn is subject to increasing usage primarily because of its strip producibility and formability. Beta-21S is gaining importance for high-temperature applications. New alloys such as β-CEZ, SP-700, and Timetal® LCB could become important because of advantageous costs, processing, and/or properties. In the past, the use of beta alloys has largely been driven by their superior properties and weight-savings potential. In the future, cost will become more important. As a result, a greater emphasis will be placed on lower cost alloys and/or taking advantage of the improved processing capabilities of these alloys to minimize final component costs.

  14. Modeling Selective Intergranular Oxidation of Binary Alloys

    SciTech Connect

    Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-07

    Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 µm ahead of grain boundary crack tips were documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (~100s of nm). We present a mathematical kinetics model that adapts Wagner’s model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al.

  15. Survey of Radiation Effects in Titanium Alloys

    SciTech Connect

    Mansur, Louis K

    2008-08-01

    Information on radiation effects in titanium alloys has been reviewed. Only sparse experimental data from fission reactor and charged particle irradiations is available, none of which is directly applicable to the SNS. Within this limited data it is found that although mechanical properties are substantially degraded, several Ti alloys may retain acceptable properties to low or moderate doses. Therefore, it is recommended that titanium alloys be examined further for application to the SNS target. Since information directly relevant to the SNS mercury target environment and irradiation conditions is not available, it is recommended that ORNL generate the necessary experimental data using a graded approach. The first testing would be for cavitation erosion resistance using two different test devices. If the material performs acceptably the next tests should be for long term mercury compatibility testing of the most promising alloys. Irradiation tests to anticipated SNS displacement doses followed by mechanical property measurements would be the last stage in determining whether the alloys should be considered for service in the SNS target module.

  16. A jumping shape memory alloy under heat.

    PubMed

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-01-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials. PMID:26880700

  17. Microstructure Evolution of a Multifunctional Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Tian, Yu Xing; Hao, Yu Lin

    2016-06-01

    To optimize both mechanical and functional properties of multifunctional titanium alloys via grain refinement, an example of such alloys termed as Ti2448 is adopted to investigate its microstructure evolution and strain rate sensitivity by compression in the single β-phase field. The results show that flow stress and strain rate follow a bilinear relation, which is in sharp contrast with other metallic materials exhibiting a monotonic linearity. Below the critical strain of 1 s-1, the alloy has a normal strain rate sensitivity factor of 0.265. Above the critical value, its hardening rate is ultra-low with a factor of 0.03. Inspite of ultra-low hardening, the alloy is plastic stable under the tested conditions. With the aid of electron back-scattering diffraction and transmission electron microscopy analyses, microstructure evolution via several mechanisms such as dynamic recovery and recrystallization is evaluated by quantitative measurements of grain misorientation and its distribution, sub-grain formation, and localized grain refinement. These results are helpful to obtain the homogenous ultrafine-grained alloy by multi-step thermo-mechanical processing.

  18. A jumping shape memory alloy under heat

    NASA Astrophysics Data System (ADS)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  19. [Superplastic forming of titanium alloy denture base].

    PubMed

    Okuno, O; Nakano, T; Hamanaka, H; Miura, I; Ito, M; Ai, M; Okada, M

    1989-03-01

    Ti-6Al-4V alloy has both excellent biocompatibility and superior mechanical properties. This Ti-6Al-4V can be deformed greatly and easily at the superplastic temperature of 800 degrees C to 900 degrees C. The superplastic forming of Ti-6Al-4V was made to apply to fabrication of denture base. Almost the same procedure as for dental casting mold was employed in producing the superplastic forming die by the improved phosphate bonded investment. In the pressure vessel of heat resistant alloy, Ti-6Al-4V plate was formed superplastically on the die by argon gas pressure at 850 degrees C. The fit of superplactic forming Ti-6Al-4V denture base was better than that of casting Co-Cr alloy denture bases. The Ti-6Al-4V alloy might react a little with the die. Because micro Vikers hardness of the cross-section did not go up too much near the surfaces. Even just after being formed, the surfaces were much smoother than that of Co-Cr alloy casting. The tensile strength and yield strength of superplastic forming Ti-6Al-4V were higher than those of Co-Cr castings. The elongation was about 10%. These results show that superplastic forming of Ti-6Al-4V would be suitable for a denture base. PMID:2603084

  20. Hydrogen interactions in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Scully, J. R.

    1991-01-01

    A program is described which seeks to develop an understanding of the effects of dissolved and trapped hydrogen on the mechanical properties of selected Al-Li-Cu-X alloys. A proposal is made to distinguish hydrogen (H2) induced EAC from aqueous dissolution controlled EAC, to correlate H2 induced EAC with mobile and trapped concentrations, and to identify significant trap sites and hydride phases (if any) through use of model alloys and phases. A literature review shows three experimental factors which have impeded progress in the area of H2 EAC for this class of alloys. These are as listed: (1) inter-subgranular fracture in Al-Li alloys when tested in the S-T orientation in air or vacuum make it difficult to readily detect H2 induced fracture based on straight forward changes in fractography; (2) the inherently low H2 diffusivity and solubility in Al alloys is further compounded by a native oxide which acts as a H2 permeation barrier; and (3) H2 effects are masked by dissolution assisted processes when mechanical testing is performed in aqueous solutions.

  1. A jumping shape memory alloy under heat

    PubMed Central

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-01-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials. PMID:26880700

  2. An approximate formula for recalescence in binary eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1993-01-01

    In alloys, solidification takes place along various paths which may be ascertained via phase diagrams; while there would be no single formula applicable to all alloys, an approximate formula for a specific solidification path would be useful in estimating the fraction of the solid formed during recalescence. A formulation is here presented of recalescence in binary eutectic alloys. This formula is applied to Ag-Cu alloys which are of interest in containerless solidification, due to their formation of supersaturated solutions.

  3. Microstructures and properties of aluminum die casting alloys

    SciTech Connect

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  4. Development of single crystal alloys for specific engine applications

    NASA Astrophysics Data System (ADS)

    Ford, D. A.; Arthey, R. P.

    1986-02-01

    A comprehensive family of alloys which meets the requirements of particular engine applications was developed. Alloy SRR is a high strength alloy to replace DS MM002 in applications where increased creep, tensile, and fatigue strength are required; RR2000 is designed for blades requiring low density or high impact resistance; RR2060 was developed as a nozzle guide vane alloy, with exceptional resistance to environmental attack and thermal fatigue.

  5. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  6. Corrosion potential for aluminum alloys measured by ASTM G 69

    SciTech Connect

    Burleigh, T.D. ); Bovard, F.S. ); Rennick, R.C.

    1993-08-01

    ASTM G 69, [open quotes]Standard Practice for Measurement of Corrosion Potentials of Aluminum Alloys[close quotes], is a useful method to discern the temper of a given aluminum alloy. Corrosion potentials (E[sub corr]) often can be used to differentiate between different alloys since copper or zinc in solid solution will cause significant differences in E[sub corr]. Measured E[sub corr] of various aluminum alloys and other non-aluminum metals were listed.

  7. Evaluation of Ti-Cr-Cu alloys for dental applications

    NASA Astrophysics Data System (ADS)

    Koike, Marie; Okabe, Toru; Itoh, Masayuki; Okuno, Osamu; Kimura, Kohei; Takeda, Osamu; Okabe, Toru H.

    2005-12-01

    This study examined the characteristics of as-cast Ti-Cr(7 19%)-Cu(3 7%) (all percentages in this article are mass%) alloys to evaluate their suitability for dental applications; studies on the alloy structures and mechanical properties, grindability, and corrosion behavior were included in the investigation. The alloys were centrifugally cast and bench-cooled in investment molds. The x-ray diffractometry of the as-cast alloys bench-cooled in the molds indicated the following phases: α+β+ω in the 7% Cr and 7% Cr+3% Cu; β+ω in the 13%Cr; and β in the 13%Cr+3% Cu through the 19%Cr+3% Cu alloys. The strengths of the binary β Ti-Cr and ternary β Ti-Cr-Cu alloys with 13 and 19% Cr were approximately two times higher than those of CP Ti. The alloy ductility was dependent on the chemical composition and thus, the microstructure. The 7% Cr alloys were extremely brittle and hard due to the ω phase, but the ductility was restored in the 13 and 19% Cr alloys. The hardness (HV) of the cast 13 and 19% Cr alloys was approximately 300 350 compared with a value of 200 for CP Ti. The grindability of the cast alloys was examined using a rotating SiC wheel at speeds (circumferential) of 500 and 1250 m/min. At the higher speed, the grindability of the 13 and 19% Cr alloys increased with the Cu content. The grindability of the 13% Cr alloy with 7% Cu was similar to that of CP Ti. Evaluation of the corrosion behavior in an artificial saliva revealed that the alloys are like many other titanium alloys within the normal intraoral oxidation potential. The wear resistance testing of these alloys also showed favorable results.

  8. The twin-roll casting of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Park, S. S.; Park, W.-J.; Kim, C. H.; You, B. S.; Kim, Nack J.

    2009-08-01

    Recently, technologies for twin-roll casting have been widely developed to efficiently fabricate the lightweight Mg alloy sheets that are quite attractive for numerous weight-sensitive applications. This paper reviews the recent progress in the twin-roll casting of Mg alloys, focusing on the processing aspects that have close relations to the solidification behavior of Mg alloy strips. In addition, recent attempts to develop new Mg alloys utilizing the metallurgical advantages attainable by this novel casting process are also presented.

  9. METHOD OF HEAT-TREATING URANIUM-SILICON ALLOYS

    DOEpatents

    Zegler, S.T.

    1959-08-01

    A process is presented for manufacturing uranium alloys of a high degree of dimensional stability and free from thermal expansion. The process involves incorporating 0.01 to 0.1% by weight silicon into uranium, rolling the alloy obtained at a temperature below 660 deg C, beta-heating the alloy to a temperature of between 660 and 770 deg C and quenching the alloy.

  10. Microstructure and Aging of Powder-Metallurgy Al Alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  11. Iron-titanium-mischmetal alloys for hydrogen storage

    DOEpatents

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  12. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  13. Shape-Memory-Alloy Actuator For Flight Controls

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  14. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    NASA Astrophysics Data System (ADS)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  15. [Casting of dental alloys with special reference to the bonding capacity of Ni-Cr alloys].

    PubMed

    Weber, H

    1979-07-01

    A short review on castability of dental alloys -- for which a definition is proposed -- reflects the different factors influencing the results of a casting. In this case solid sieves and plates are cast by use of one gold-base alloy (Type III) and two base metal alloys used for porcelain veneering. All three alloys filled the sieve pattern to a 100%, whereas they performed differently when cast as thin, solid squares. The most continuous results were achieved with a Ni-Cr-alloy whose melting temperature can be recognized since the ingots flow together when this point is reached. Since the plate pattern is most difficult to cast due to surface to bulk ratio it is assumed that a complete casting can only be achieved when the performance of the alloy is good and all required conditions match. Thus, this type of test seems to be suitable to determine the castability of a dental alloy. The sieve test should be used to investigate and to improve the influence of the different factors as for example burnout time and temperature of the mold and sprue size. PMID:380961

  16. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  17. Development and Processing Improvement of Aerospace Aluminum Alloys-Development of AL-Cu-Mg-Ag Alloy (2139)

    NASA Technical Reports Server (NTRS)

    Cho, Alex; Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report supplement in presentation format describes a comprehensive multi-tasked contract study to continue the development of the silver bearing alloy now registered as aluminum alloy 2139 by the Aluminum Association. Two commercial scale ingots were processed into nominal plate gauges of two, four and six inches, and were extensively characterized in terms of metallurgical and crystallographic structure, and resulting mechanical properties. This report includes comparisons of the property combinations for this alloy and 2XXX and 7XXX alloys more widely used in high performance applications. Alloy 2139 shows dramatic improvement in all combinations of properties, moreover, the properties of this alloy are retained in all gauge thicknesses, contrary to typical reductions observed in thicker gauges of the other alloys in the comparison. The advancements achieved in this study are expected to result in rapid, widespread use of this alloy in a broad range of ground based, aircraft, and spacecraft applications.

  18. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, J.E.; Goldman, A.I.; Anderson, I.E.; Ellis, T.W.; McCallum, R.W.; Sordelet, D.J.

    1995-07-18

    A method of making quasicrystalline alloy particulates is disclosed wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture. 3 figs.

  19. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mercury and alloy dispenser. 872.3080 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device with a spring-activated valve intended to measure...

  20. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mercury and alloy dispenser. 872.3080 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device with a spring-activated valve intended to measure...

  1. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mercury and alloy dispenser. 872.3080 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device with a spring-activated valve intended to measure...

  2. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mercury and alloy dispenser. 872.3080 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device with a spring-activated valve intended to measure...

  3. Corrosion of aluminum alloys by chlorinated hydrocarbon/methanol mixtures

    NASA Technical Reports Server (NTRS)

    De Forest, W. S.

    1967-01-01

    Laboratory investigations show that water-free mixtures of Freon MF /trichlorofluoromethane/ and methanol vigorously attack aluminum alloys which contain significant amounts of copper. Freon MF alone did not attack the aluminum alloys at room temperature. Pure methanol had only a slight corrosive effect on the alloy.

  4. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, Peter M.

    1987-01-01

    A method of treating cold-worked zirconium alloys to reduce large grain gth during thermal treatment at temperatures above the recrystallization temperature of the alloy comprising heating the cold-worked alloy between about 1300.degree.-1350.degree. F. for 1 to 3 hours prior to treatment above its recrystallization temperature.

  5. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  6. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  7. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  8. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  9. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  10. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mercury and alloy dispenser. 872.3080 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device with a spring-activated valve intended to measure...

  11. Alloy vapor deposition using ion plating and flash evaporation

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1971-01-01

    Method extends scope of ion plating technique to include deposition of alloy films without changing composition of plating alloy. Coatings flow with specimen material without chipping or peeling. Technique is most effective vacuum deposition method for depositing alloys for strong and lasting adherence.

  12. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, Jeffrey E.; Goldman, Alan I.; Anderson, Iver E.; Ellis, Timothy W.; McCallum, R. William; Sordelet, Daniel J.

    1995-07-18

    A method of making quasicrystalline alloy particulates wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture.

  13. Dimensional control of quasisingle crystals of aluminum alloy in production

    SciTech Connect

    Radchenko, A.I.; Karuskevich, M.V.; Naim, V.R.

    1995-01-01

    The article deals with a method of controlling the dimensions of quasisingle crystal grains of an aluminum alloy used instead of single crystal specimens in static fatigue tests with the object of substantiating a discrete probabilistic model of the fatigue of metals and alloys. We obtained a mathematical model of dimensional control of quasisingle crystals of the aluminum alloy.

  14. Nitriding of super alloys for enhancing physical properties

    DOEpatents

    Purohit, A.

    1984-06-25

    The invention teaches the improvement of certain super alloys by exposing the alloy to an atmosphere of elemental nitrogen at elevated temperatures in excess of 750/sup 0/C but less than 1150/sup 0/C for an extended duration, viz., by nitriding the surface of the alloy, to establish barrier nitrides of the order of 25 to 100 micrometers thickness. These barrier

  15. Ultra-light alloys and their utilization on aircraft

    NASA Technical Reports Server (NTRS)

    Portevin, A M; Defleury, R

    1924-01-01

    We will arbitrarily call alloys having a specific gravity of less than 2 "ultra-light", in order to distinguish them from "light" alloys with a specific gravity of 2 to 3. Thus far it has been possible to make ultra-light alloys only by employing a large proportion of magnesium.

  16. Investigation of joining techniques for advanced austenitic alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  17. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  18. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  19. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  20. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  1. Heat treatment study of aluminum casting alloy M45

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1967-01-01

    Study determines the heat treatment cycle of aluminum casting alloy M-45 which will increase the strength levels of the alloy while maintaining optimum stress corrosion resistance. Evidence indicates that present production castings are overaged too severely to take full advantage of the strength of the alloy.

  2. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2013-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  3. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  4. Powder metallurgy of vanadium and its alloys (review)

    SciTech Connect

    Radomysel'skii, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-10-01

    This article reviews the current powder metallurgy technology of vanadium and its alloys. Data are given on sintering, compacting, electrowinning and other current production techniques, as well as on the corrosion behavior and mechanical and physical properties of alloys produced by these different methods. The use of vanadium alloys as reactor and jet engine materials is also briefly discussed.

  5. Process for electroslag refining of uranium and uranium alloys

    DOEpatents

    Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

    1975-07-22

    A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

  6. Irradiation-induced microstructural changes in alloy X-750

    SciTech Connect

    Kenik, E.A.

    1997-04-01

    Alloy X-750 is a nickel base alloy that is often used in nuclear power systems for it`s excellent corrosion resistance and mechanical properties. The present study examines the microstructure and composition profiles in a heat of Alloy X-750 before and after neutron irradiation.

  7. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  8. Solidification processing of monotectic alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Frier, Nancy L.; Shiohara, Yuh; Russell, Kenneth C.

    1989-01-01

    Directionally solidified aluminum-indium alloys of the monotectic composition were found to form an in situ rod composite which obeys a lambda exp 2 R = constant relation. The experimental data shows good agreement with previously reported results. A theoretical boundary between cellular and dendritic growth conditions was derived and compared with experiments. The unique wetting characteristics of the monotectic alloys can be utilized to tailor the interface structure in metal matrix composites. Metal matrix composites with monotectic and hypermonotectic Al-In matrices were made by pressure infiltration, remelted and directionally solidified to observe the wetting characteristics of the alloys as well as the effect on structure of solidification in the constrained field of the fiber interstices. Models for monotectic growth are modified to take into account solidification in these constrained fields.

  9. Ultralow-fatigue shape memory alloy films

    NASA Astrophysics Data System (ADS)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-01

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle.

  10. Directionally solidified iron-base eutectic alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    Pseudobinary eutectic alloys with nominal compositions of Fe-25Ta-22Ni-10Cr and Fe-15.5Nb-14.5Ni-6.0Cr were directionally solidified at 0.5 centimeter per hour. Their microstructure consisted of the fcc, iron solid-solution, matrix phase reinforced by about 41-volume-percent, hcp, faceted Fe2Ta fibers and 41-volume-percent, hcp, Fe2Nb lamellae for the tantalum- and niobium-containing alloys, respectively. The microstructural stability under thermal cycling and the temperature dependence of tensile properties were investigated. These alloys showed low elevated-temperature strength and were not considered suitable for application in aircraft-gas-turbine blades although they may have applicability as vane materials.

  11. Irradiation creep of vanadium-base alloys

    SciTech Connect

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  12. Development of a carburizing stainless steel alloy

    SciTech Connect

    Wert, D.E. )

    1994-06-01

    A new carburizing stainless steel alloy that resists corrosion, heat, and fatigue has been developed for bearing and gear applications. Pyrowear 675 Stainless alloy is vacuum induction melted and vacuum arc remelted (VIM/VAR) for aircraft-quality cleanliness. Test results show that it has corrosion resistance similar to that of AISI Type 440-C stainless, and its rolling fatigue resistance is superior to that of AISI M50 (UNS K88165). In contrast to alloy gear steels and Type 440C, Pyrowear 675 maintains case hardness of HRC 60 at operating temperatures up to 200 C (400 F). Impact and fracture toughness are superior to that of other stainless bearing steels, which typically are relatively brittle and can break under severe service. Toughness is also comparable or superior to conventional noncorrosion-resistant carburizing bearing steels, such as SAE Types 8620 and 9310.

  13. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  14. Fe-based long range ordered alloys

    DOEpatents

    Liu, C.T.

    Malleable long range ordered alloys with high critical ordering temperatures exist in the V(Co,Fe)/sub 3/ and V(Co,Fe,Ni)/sub 3/ system. The composition comprising by weight 22 to 23% V, 35 to 50% Fe, 0 to 22% Co and 19 to 40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22 to 23% V, 35 to 45% Fe, 0 to 10% Co, 25 to 35% Ni; 22 to 23% V, 28 to 33% Ni and the remainder Fe; and 22 to 23% V, 19 to 22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  15. Fe-based long range ordered alloys

    DOEpatents

    Liu, Chain T; Inouye, Henry; Schaffhauser, Anthony C.

    1980-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Co,Fe).sub.3 and V(Co,Fe,Ni).sub.3 system having the composition comprising by weight 22-23% V, 35-50% Fe, 0-22% Co and 19-40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22-23% V, 35-45% Fe, 0-10% Co, 25-35% Ni; 22-23% V, 28-33% Ni and the remainder Fe; and 22-23% V, 19-22% Ni, 19-22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  16. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  17. Joining Techniques for Ferritic ODS Alloys

    SciTech Connect

    V.G. Krishnardula; V.G. Krishnardula; D.E. Clark; T.C. Totemeier

    2005-06-01

    This report presents results of research on advanced joining techniques for ferritic oxide-dispersion strengthened alloys MA956 and PM2000. The joining techniques studied were resistance pressure welding (also known as pressure forge welding), transient liquid phase bonding, and diffusion bonding. All techniques were shown to produce sound joints in fine-grained, unrecrystallized alloys. Post-bond heat treatment to produce a coarse-grained, recrystallized microstructure resulted in grain growth across the bondline for transient liquid phase and diffusion bonds, giving microstructures essentially identical to that of the parent alloy in the recrystallized condition. The effects of bond orientation, boron interlayer thickness, and bonding parameters are discussed for transient liquid phase and diffusion bonding. The report concludes with a brief discussion of ODS joining techniques and their applicability to GEN IV reactor systems.

  18. Hot tearing evaluation for aluminium alloys

    NASA Astrophysics Data System (ADS)

    Brůna, Marek

    2016-06-01

    Hot tearing during solidification of aluminium alloys castings can be a serious problem. This phenomenon is well known but still insufficiently investigated. Hot tearing occurs in form of irregular cracks in metal castings that develop during solidification and cooling. The cause of hot tearing is generally attributed to the development of thermally induced tensile stresses and strains in a casting as the molten metal contracts during solidification and solid state shrinkage. Submited paper consists of two parts. The first part introduces the reader to the phenomenon of hot tearing. The second part describes newly developed method for assessing hot tearing susceptibility of aluminium alloys, and also gives the results on hot tearing for various aluminium alloys.

  19. Hard Machinable Machining of Cobalt Super Alloys

    NASA Astrophysics Data System (ADS)

    Čep, Robert; Janásek, Adam; Petrů, Jana; Čepová, Lenka; Sadílek, Marek; Kratochvíl, Jiří

    2012-12-01

    The article deals with difficult-to-machine cobalt super alloys. The main aim is to test the basic properties of cobalt super alloys and propose suitable cutting materials and machining parameters under the designation 188 when machining. Although the development of technology in chipless machining such as moulding, precision casting and other manufacturing methods continues to advance, machining is still the leading choice for piece production, typical for energy and chemical engineering. Nowadays, super alloys are commonly used in turbine engines in regions that are subject to high temperatures, which require high strength, high temperature resistance, phase stability, as well as corrosion or oxidation resistance.

  20. High-strength iron aluminide alloys

    SciTech Connect

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.