Science.gov

Sample records for invasive ant communities

  1. Carbohydrate supply limits invasion of natural communities by Argentine ants.

    PubMed

    Rowles, Alexei D; Silverman, Jules

    2009-08-01

    The ability of species to invade new habitats is often limited by various biotic and physical factors or interactions between the two. Invasive ants, frequently associated with human activities, flourish in disturbed urban and agricultural environments. However, their ability to invade and establish in natural habitats is more variable. This is particularly so for the invasive Argentine ant (Linepithema humile). While biotic resistance and low soil moisture limits their invasion of natural habitats in some instances, the effect of food availability has been poorly explored. We conducted field experiments to determine if resource availability limits the spread and persistence of Argentine ants in remnant natural forest in North Carolina. Replicated transects paired with and without sucrose solution feeding stations were run from invaded urban edges into forest remnants and compared over time using baits and direct counts at feeding stations. Repeated under different timing regimes in 2006 and 2007, access to sucrose increased local Argentine ant abundances (1.6-2.5 fold) and facilitated their progression into the forest up to 73 +/- 21% of 50-m transects. Resource removal caused an expected decrease in Argentine ant densities in 2006, in conjunction with their retreat to the urban/forest boundary. However, in 2007, Argentine ant numbers unexpectedly continued to increase in the absence of sugar stations, possibly through access to alternative resources or conditions not available the previous year such as honeydew-excreting Hemiptera. Our results showed that supplementing carbohydrate supply facilitates invasion of natural habitat by Argentine ants. This is particularly evident where Argentine ants continued to thrive following sugar station removal. PMID:19452171

  2. [Influences of Solenopsis invicta buren invasion on the native ant communities in different habitats in Guangdong].

    PubMed

    Wu, Bi-qiu; Lu, Yong-yue; Zeng, Ling; Liang, Guang-wen

    2008-01-01

    By using pitfall and bait traps, an investigation was made on the diversity and similarity of ant communities in the areas infested and un-infested with Solenopsis invicta Buren in Shenzhen of Guangdong. The results showed that under the invasion of S. invicta, the ant species number in lawn and wasteland reduced obviously, with a decrease of 6 in lawn and 3 in wasteland, and the native dominant ant species in lichee orchard, especially in wasteland and lawn, were replaced by S. invicta. With the infestation of S. invicta, the diversity and evenness of ant communities in wasteland and lawn decreased but the predominance increased obviously, while it was in adverse in lichee orchard. The similarity coefficients of the ant communities between S. invicta infested and un-infested lichee orchard, wasteland and lawn were 0.6316, 0.5882 and 0.2941, respectively. PMID:18419088

  3. Abiotic factors control invasion by Argentine ants at the community scale.

    PubMed

    Menke, Sean B; Holway, David A

    2006-03-01

    1. A prominent and unresolved question in ecology concerns why communities differ in their susceptibility to invasion. While studies often emphasize biotic resistance, it is less widely appreciated how the physical environment affects community vulnerability to invasion. 2. In this study we performed field experiments to test how abiotic variation directly and indirectly influences the extent to which Linepithema humile Mayr (Argentine ants) invade seasonally dry environments in southern California. 3. In controlled and replicated experiments involving drip irrigation, we demonstrate (i) that elevated levels of soil moisture increased both the abundance of Argentine ants and their ability to invade native ant communities and (ii) that cessation of irrigation caused declines in the abundance of Argentine ants and led to their withdrawal from previously occupied areas. 4. Because drip irrigation stimulated plant growth, in an additional experiment we manipulated both soil moisture and plant cover to assess the direct vs. indirect effects of added water on the abundance of L. humile. 5. Local abundance of Argentine ants increased in irrigated plots but was 38% higher in irrigated plots with plants compared to irrigated plots where plant growth was suppressed. The results of this experiment thus argue for a direct role of soil moisture in influencing Argentine ant abundance but suggest that that the indirect effects of added water may also be important. 6. Our study illustrates more generally that fine-scale variation in the physical environment can control whether communities become invaded by non-native species and suggests that an understanding of community susceptibility to invasion will be improved by a better appreciation of interactions between the biotic and abiotic environment. PMID:16637990

  4. Density-Dependent Effects of an Invasive Ant on a Ground-Dwelling Arthropod Community.

    PubMed

    Cooling, M; Sim, D A; Lester, P J

    2015-02-01

    It is frequently assumed that an invasive species that is ecologically or economically damaging in one region, will typically be so in other environments. The Argentine ant Linepithema humile (Mayr) is listed among the world's worst invaders. It commonly displaces resident ant species where it occurs at high population densities, and may also reduce densities of other ground-dwelling arthropods. We investigated the effect of varying Argentine ant abundance on resident ant and nonant arthropod species richness and abundance in seven cities across its range in New Zealand. Pitfall traps were used to compare an invaded and uninvaded site in each city. Invaded sites were selected based on natural varying abundance of Argentine ant populations. Argentine ant density had a significant negative effect on epigaeic ant abundance and species richness, but hypogaeic ant abundance and species richness was unaffected. We observed a significant decrease in Diplopoda abundance with increasing Argentine ant abundance, while Coleoptera abundance increased. The effect on Amphipoda and Isopoda depended strongly on climate. The severity of the impact on negatively affected taxa was reduced in areas where Argentine ant densities were low. Surprisingly, Argentine ants had no effect on the abundance of the other arthropod taxa examined. Morphospecies richness for all nonant arthropod taxa was unaffected by Argentine ant abundance. Species that are established as invasive in one location therefore cannot be assumed to be invasive in other locations based on presence alone. Appropriate management decisions should reflect this knowledge. PMID:26308805

  5. The Ants Go Marching Millions by Millions: Invasive Ant Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...

  6. The ants go marching millions by millions: invasive ant research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive ants are a worldwide problem that is expanding both geographically and in intensity. Population explosions of invasive ants can overrun landscapes and inundate structures. Pest management professionals are often the first responders to complaints about invading ants. This session will fo...

  7. Raves & rants about invasive crazy ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crazy ants” is a name that refers to various species of ants that are characterized by erratic, scurrying, or running, behavior when disturbed. Two of these species, the yellow crazy ant and the Caribbean or Rasberry [sic] crazy ant, are invasive with extremely large populations that inundate lands...

  8. The Argentine ant: challenges in managing an invasive unicolonial pest.

    PubMed

    Silverman, Jules; Brightwell, Robert John

    2008-01-01

    The Argentine ant, Linepithema humile, has invaded urban, agricultural, and natural habitats worldwide, causing economic damage and disrupting ecosystem processes. Introduced populations of L. humile and those of many other invasive ants tend to be unicolonial, forming expansive, multiqueened supercolonies that dominate native ant communities and challenge control practices in managed habitats. Argentine ant management typically entails the application of residual insecticide liquids, granules, or baits to only a portion of the colony, resulting in fairly rapid reinfestation. We suggest that prevailing control methodologies are incomplete and not compatible with the behavior, nesting habits, and population structure of this ant, and therefore, more aggressive management strategies are required. Successful eradication efforts against other invasive unicolonial ant species can provide useful insights for local-scale L. humile eradication. PMID:17877449

  9. Experimental evidence that human impacts drive fire ant invasions and ecological change

    PubMed Central

    King, Joshua R.; Tschinkel, Walter R.

    2008-01-01

    Biological invasions are often closely associated with human impacts and it is difficult to determine whether either or both are responsible for the negative impacts on native communities. Here, we show that human activity, not biological invasion, is the primary driver of negative effects on native communities and of the process of invasion itself. In a large-scale experiment, we combined additions of the exotic fire ant, Solenopsis invicta, with 2 disturbance treatments, mowing and plowing, in a fully crossed factorial design. Results indicate that plowing, in the absence of fire ants, greatly diminished total native ant abundance and diversity, whereas fire ants, even in the absence of disturbance, diminished some, but not all, native ant abundance and diversity. Transplanted fire ant colonies were favored by disturbance. In the absence of disturbance and on their own, fire ants do not invade the forest habitats of native ants. Our results demonstrate that fire ants are “passengers” rather than “drivers” of ecological change. We propose that fire ants may be representative of other invasive species that would be better described as disturbance specialists. Current pest management and conservation strategies should be reassessed to better account for the central role of human impacts in the process of biological invasion. PMID:19064909

  10. Dispersal Polymorphisms in Invasive Fire Ants.

    PubMed

    Helms, Jackson A; Godfrey, Aaron

    2016-01-01

    In the Found or Fly (FoF) hypothesis ant queens experience reproduction-dispersal tradeoffs such that queens with heavier abdomens are better at founding colonies but are worse flyers. We tested predictions of FoF in two globally invasive fire ants, Solenopsis geminata (Fabricius, 1804) and S. invicta (Buren, 1972). Colonies of these species may produce two different monogyne queen types-claustral queens with heavy abdomens that found colonies independently, and parasitic queens with small abdomens that enter conspecific nests. Claustral and parasitic queens were similarly sized, but the abdomens of claustral queens weighed twice as much as those of their parasitic counterparts. Their heavier abdomens adversely impacted morphological predictors of flight ability, resulting in 32-38% lower flight muscle ratios, 55-63% higher wing loading, and 32-33% higher abdomen drag. In lab experiments maximum flight durations in claustral S. invicta queens decreased by about 18 minutes for every milligram of abdomen mass. Combining our results into a simple fitness tradeoff model, we calculated that an average parasitic S. invicta queen could produce only 1/3 as many worker offspring as a claustral queen, but could fly 4 times as long and have a 17- to 36-fold larger potential colonization area. Investigations of dispersal polymorphisms and their associated tradeoffs promises to shed light on range expansions in invasive species, the evolution of alternative reproductive strategies, and the selective forces driving the recurrent evolution of parasitism in ants. PMID:27082115

  11. Dispersal Polymorphisms in Invasive Fire Ants

    PubMed Central

    Helms, Jackson A.; Godfrey, Aaron

    2016-01-01

    In the Found or Fly (FoF) hypothesis ant queens experience reproduction-dispersal tradeoffs such that queens with heavier abdomens are better at founding colonies but are worse flyers. We tested predictions of FoF in two globally invasive fire ants, Solenopsis geminata (Fabricius, 1804) and S. invicta (Buren, 1972). Colonies of these species may produce two different monogyne queen types—claustral queens with heavy abdomens that found colonies independently, and parasitic queens with small abdomens that enter conspecific nests. Claustral and parasitic queens were similarly sized, but the abdomens of claustral queens weighed twice as much as those of their parasitic counterparts. Their heavier abdomens adversely impacted morphological predictors of flight ability, resulting in 32–38% lower flight muscle ratios, 55–63% higher wing loading, and 32–33% higher abdomen drag. In lab experiments maximum flight durations in claustral S. invicta queens decreased by about 18 minutes for every milligram of abdomen mass. Combining our results into a simple fitness tradeoff model, we calculated that an average parasitic S. invicta queen could produce only 1/3 as many worker offspring as a claustral queen, but could fly 4 times as long and have a 17- to 36-fold larger potential colonization area. Investigations of dispersal polymorphisms and their associated tradeoffs promises to shed light on range expansions in invasive species, the evolution of alternative reproductive strategies, and the selective forces driving the recurrent evolution of parasitism in ants. PMID:27082115

  12. Detrimental effects of highly efficient interference competition: invasive Argentine ants outcompete native ants at toxic baits.

    PubMed

    Buczkowski, Grzegorz; Bennett, Gary W

    2008-06-01

    The Argentine ant (Linepithema humile) is an invasive species that disrupts the balance of natural ecosystems by displacing indigenous ant species throughout its introduced range. Previous studies that examined the mechanisms by which Argentine ants attain ecological dominance showed that superior interference and exploitation competition are key to the successful displacement of native ant species. The objective of this research was to test the hypothesis that effective interference competition by Argentine ants may also be detrimental to the survival of Argentine ant colonies where Argentine ants and native ants compete at toxic baits used to slow the spread of Argentine ants. To study this hypothesis, we examined the competitive interactions between Argentine ants and native odorous house ants, Tapinoma sessile, in the presence and absence of toxic baits. Results showed that Argentine ants aggressively outcompete T. sessile from toxic baits through efficient interference competition and monopolize bait resources. This has severe negative consequences for the survival of Argentine ants as colonies succumb to the toxic effects of the bait. In turn, T. sessile avoid areas occupied by Argentine ants, give up baits, and consequently suffer minimal mortality. Our results provide experimental evidence that highly efficient interference competition may have negative consequences for Argentine ants in areas where toxic baits are used and may provide a basis for designing innovative management programs for Argentine ants. Such programs would have the double benefit of selectively eliminating the invasive species while simultaneously protecting native ants from the toxic effects of baits. PMID:18559180

  13. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    USGS Publications Warehouse

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  14. Argentine ant invasion associated with loblolly pines in the southeastern United States: minimal impacts but seasonally sustained.

    PubMed

    Rowles, Alexei D; Silverman, Jules

    2010-08-01

    Invasive ants are notorious for directly displacing native ant species. Although such impacts are associated with Argentine ant invasions (Linepithema humile) worldwide, impacts within natural habitat are less widely reported, particularly those affecting arboreal ant communities. Argentine ants were detected in North Carolina mixed pine-hardwood forest for the first time but were localized on and around loblolly pines (Pinus taeda), probably because of association with honeydew-producing Hemiptera. We explored the potential impacts of L. humile on arboreal and ground-foraging native ant species by comparing interspersed loblolly pines invaded and uninvaded by Argentine ants. Impacts on native ants were assessed monthly over 1 yr by counting ants in foraging trails on pine trunks and in surrounding plots using a concentric arrangement of pitfall traps at 1, 2, and 3 m from the base of each tree. Of floristics and habitat variables, higher soil moisture in invaded plots was the only difference between plot types, increasing confidence that any ant community differences were caused by Argentine ants. Overall patterns of impact were weak. Composition differed significantly between Argentine ant invaded and uninvaded trunks and pitfalls but was driven only by the presence of Argentine ants rather than any resulting compositional change in native ant species. Native ant abundance and richness were similarly unaffected by L. humile. However, the abundance of individual ant species was more variable. Although numbers of the arboreal Crematogaster ashmeadi (Myrmicinae) declined on and around invaded pines, epigeic Aphaenogaster rudis (Myrmicinae) remained the most abundant species in all plots. Argentine ant densities peaked in late summer and fall, therefore overlapping with most native ants. Unexpected was their continued presence during even the coldest months. We provide evidence that Argentine ants can invade and persist in native North Carolina forests, probably

  15. An invasive slug exploits an ant-seed dispersal mutualism.

    PubMed

    Meadley Dunphy, Shannon A; Prior, Kirsten M; Frederickson, Megan E

    2016-05-01

    Plant-animal mutualisms, such as seed dispersal, are often vulnerable to disruption by invasive species. Here, we show for the first time how a non-ant invasive species negatively affects seed dispersal by ants. We examined the effects of several animal species that co-occur in a temperate deciduous forest-including native and invasive seed-dispersing ants (Aphaenogaster rudis and Myrmica rubra, respectively), an invasive slug (Arion subfuscus), and native rodents-on a native myrmecochorous plant, Asarum canadense. We experimentally manipulated ant, slug, and rodent access to seed depots and measured seed removal. We also video-recorded depots to determine which other taxa interact with seeds. We found that A. rudis was the main disperser of seeds and that A. subfuscus consumed elaiosomes without dispersing seeds. Rodent visitation was rare, and rodent exclusion had no significant effect on seed or elaiosome removal. We then used data obtained from laboratory and field mesocosm experiments to determine how elaiosome robbing by A. subfuscus affects seed dispersal by A. rudis and M. rubra. We found that elaiosome robbing by slugs reduced seed dispersal by ants, especially in mesocosms with A. rudis, which picks up seeds more slowly than M. rubra. Taken together, our results show that elaiosome robbing by an invasive slug reduces seed dispersal by ants, suggesting that invasive slugs can have profound negative effects on seed dispersal mutualisms. PMID:26830293

  16. Mutualism between co-introduced species facilitates invasion and alters plant community structure

    PubMed Central

    Prior, Kirsten M.; Robinson, Jennifer M.; Meadley Dunphy, Shannon A.; Frederickson, Megan E.

    2015-01-01

    Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species (‘invasional meltdown’) if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change. PMID:25540283

  17. Mutualism between co-introduced species facilitates invasion and alters plant community structure.

    PubMed

    Prior, Kirsten M; Robinson, Jennifer M; Meadley Dunphy, Shannon A; Frederickson, Megan E

    2015-02-01

    Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species ('invasional meltdown') if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change. PMID:25540283

  18. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants

    PubMed Central

    Barbieri, Rafael F.; Lester, Philip J.; Miller, Alexander S.; Ryan, Ken G.

    2013-01-01

    Neurotoxic pesticides, such as neonicotinoids, negatively affect the cognitive capacity and fitness of non-target species, and could also modify interspecific interactions. We tested whether sublethal contamination with neonicotinoid could affect foraging, colony fitness and the outcome of behavioural interactions between a native (Monomorium antarcticum) and an invasive ant species (Linepithema humile). The foraging behaviour of both ants was not affected by neonicotinoid exposure. Colonies of the invasive species exposed to the neonicotinoid produced significantly fewer brood. In interspecific confrontations, individuals of the native species exposed to the neonicotinoid lowered their aggression towards the invasive species, although their survival probability was not affected. Exposed individuals of the invasive species interacting with non-exposed native ants displayed increased aggression and had their survival probability reduced. Non-exposed individuals of the invasive species were less aggressive but more likely to survive when interacting with exposed native ants. These results suggest that non-target exposure of invaders to neonicotinoids could either increase or decrease the probability of survival according to the exposure status of the native species. Given that, in any community, different species have different food preferences, and thus different exposure to pesticides, non-target exposure could potentially change the dynamics of communities and influence invasion success. PMID:24266038

  19. Survey of invasive ants at Hakalau Forest National Wildlife Refuge

    USGS Publications Warehouse

    Peck, Robert W.; Banko, Paul C.

    2011-01-01

    We conducted a survey for invasive ants at Hakalau Forest National Wildlife Refuge, Hawai‘i Island, during 2009–2010 to evaluate potential threats to native arthropod communities and food webs. The focal area of the survey was the upper portion of the Hakalau Unit of the refuge, where native forest was being restored in abandoned cattle pastures. This area, between 1575 and 1940 m elevations, contained much alien kikuyu grass (Pennisetum clandestinum), but koa (Acacia koa) trees and other native species that were planted in the past 20 years were rapidly filling in the pasture. We surveyed for ants at predetermined points along roads, fences, and corridors of planted koa. Sampling methods primarily consisted of hand searching and pitfall traps, but bait cards were used additionally in some instances. Our results indicated that a single species, Cardiocondyla kagutsuchi, was widespread across the upper portion of the refuge. Cardiocondyla kagutsuchi seemed absent, or at least rare, in areas of tall, dense grass. Due to the undulating topography of the area, however, the dense grass cover was interspersed with outcroppings of exposed, gravelly soil. Presumably due to warming by the sun, many of the outcropped habitats supported colonies of C. kagutsuchi. We did not detect ants in the old-growth forest below the abandoned pastures, presumably because microhabitat conditions under the forest canopy were unsuitable. Although ecological impacts of C. kagutsuchi have not been reported, they may be limited by the small size of the ant, the relatively small size of colonies, and the apparent preference of the ant for disturbed areas that are dominated by alien species. Notably, our survey of Keanakolu-Mana Road between the Observatory Road (John A. Burns Way) and the town of Waimea detected a population of Argentine ants (Linepithema humile) approximately 5.1 km north of the Maulua Section of the refuge. We also surveyed for ants on the Kona Forest Unit of the refuge

  20. Interaction complexity matters: disentangling services and disservices of ant communities driving yield in tropical agroecosystems

    PubMed Central

    Wielgoss, Arno; Tscharntke, Teja; Rumede, Alfianus; Fiala, Brigitte; Seidel, Hannes; Shahabuddin, Saleh; Clough, Yann

    2014-01-01

    Owing to complex direct and indirect effects, impacts of higher trophic levels on plants is poorly understood. In tropical agroecosystems, ants interact with crop mutualists and antagonists, but little is known about how this integrates into the final ecosystem service, crop yield. We combined ant exclusion and introduction of invasive and native-dominant species in cacao agroecosystems to test whether (i) ant exclusion reduces yield, (ii) dominant species maximize certain intermediate ecosystem services (e.g. control of specific pests) rather than yield, which depends on several, cascading intermediate services and (iii) even, species-rich ant communities result in highest yields. Ants provided services, including reduced leaf herbivory and fruit pest damage and indirect pollination facilitation, but also disservices, such as increased mealybug density, phytopathogen dissemination and indirect pest damage enhancement. Yields were highest with unmanipulated, species-rich, even communities, whereas ant exclusion decreased yield by 27%. Introduction of an invasive-dominant ant decreased species density and evenness and resulted in 34% lower yields, whereas introduction of a non-invasive-dominant species resulted in similar species density and yields as in the unmanipulated control. Species traits and ant community structure affect services and disservices for agriculture in surprisingly complex ways, with species-rich and even communities promoting highest yield. PMID:24307667

  1. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen.

    PubMed

    Sébastien, Alexandra; Lester, Philip J; Hall, Richard J; Wang, Jing; Moore, Nicole E; Gruber, Monica A M

    2015-09-01

    When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader. PMID:26562935

  2. Discovery–dominance trade-off among widespread invasive ant species

    PubMed Central

    Bertelsmeier, Cleo; Avril, Amaury; Blight, Olivier; Jourdan, Hervé; Courchamp, Franck

    2015-01-01

    Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery–dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species’ capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery–dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions. PMID:26257879

  3. Discovery-dominance trade-off among widespread invasive ant species.

    PubMed

    Bertelsmeier, Cleo; Avril, Amaury; Blight, Olivier; Jourdan, Hervé; Courchamp, Franck

    2015-07-01

    Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery-dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species' capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery-dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions. PMID:26257879

  4. Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile).

    PubMed

    Smith, Christopher D; Zimin, Aleksey; Holt, Carson; Abouheif, Ehab; Benton, Richard; Cash, Elizabeth; Croset, Vincent; Currie, Cameron R; Elhaik, Eran; Elsik, Christine G; Fave, Marie-Julie; Fernandes, Vilaiwan; Gadau, Jürgen; Gibson, Joshua D; Graur, Dan; Grubbs, Kirk J; Hagen, Darren E; Helmkampf, Martin; Holley, Jo-Anne; Hu, Hao; Viniegra, Ana Sofia Ibarraran; Johnson, Brian R; Johnson, Reed M; Khila, Abderrahman; Kim, Jay W; Laird, Joseph; Mathis, Kaitlyn A; Moeller, Joseph A; Muñoz-Torres, Monica C; Murphy, Marguerite C; Nakamura, Rin; Nigam, Surabhi; Overson, Rick P; Placek, Jennifer E; Rajakumar, Rajendhran; Reese, Justin T; Robertson, Hugh M; Smith, Chris R; Suarez, Andrew V; Suen, Garret; Suhr, Elissa L; Tao, Shu; Torres, Candice W; van Wilgenburg, Ellen; Viljakainen, Lumi; Walden, Kimberly K O; Wild, Alexander L; Yandell, Mark; Yorke, James A; Tsutsui, Neil D

    2011-04-01

    Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism. PMID:21282631

  5. Testing the effects of ant invasions on non-ant arthropods with high-resolution taxonomic data.

    PubMed

    Hanna, Cause; Naughton, Ida; Boser, Christina; Holway, David

    2015-10-01

    Invasions give rise to a wide range of ecological effects. Many invasions proceed without noticeable impacts on the resident biota, whereas others shift species composition and even alter ecosystem function. Ant invasions generate a broad spectrum of ecological effects, but controversy surrounds the extent of these impacts, especially with regard to how other arthropods are affected. This uncertainty in part results from the widespread use of low-resolution taxonomic data, which can mask the presence of other introduced species and make it difficult to isolate the effects of ant invasions on native species. Here, we use high-resolution taxonomic data to examine the effects of Argentine ant invasions on arthropods on Santa Cruz Island, California. We sampled arthropods in eight pairs of invaded and uninvaded plots and then collaborated with taxonomic experts to identify taxa in four focal groups: spiders, bark lice, beetles, and ants. Spiders, bark lice, and beetles made up ~40% of the 9868 non-ant arthropod individuals sampled; the majority of focal group arthropods were putatively native taxa. Although our results indicate strong negative effects of the Argentine ant on native ants, as is well documented, invaded and uninvaded plots did not differ with respect to the richness, abundance, or species composition of spiders, bark lice, and beetles. One common, introduced species of bark louse was more common in uninvaded plots than in invaded plots, and including this species into our analyses changed the relationship between bark louse richness vs. L. humile abundance from no relationship to a significant negative relationship. This case illustrates how failure to differentiate native and introduced taxa can lead to erroneous conclusions about the effects of ant invasions. Our results caution against unqualified assertions about the effects of ant invasions on non-ant arthropods, and more generally demonstrate that accurate assessments of invasion impacts depend on

  6. Field evaluations of the efficacy of Distance Plus on invasive ant species in northern Australia.

    PubMed

    Webb, Garry A; Hoffmann, Benjamin D

    2013-08-01

    The efficacy of Distance Plus Ant Bait, containing the insect growth regulator pyriproxyfen, was tested in the field against two invasive ant species in northern Australia: African big-headed ant (Pheidole megacephala (F.)) and yellow crazy ant (Anoplolepis gracilipes (Fr. Smith)). Results were also gained for a third pest species, Singapore ant (Monomorium destructor (Jerdon)), from one trial focused primarily on P. megacephala. Five studies were conducted throughout northern Australia, each with different protocols, but common to all was the broad-scale dispersal of Distance Plus, coupled with long-term monitoring of ant population levels. Additionally, a laboratory trial was conducted to assess if there was a direct toxic effect by the bait on A. gracilipes workers, and ant community data were collected at some sites in the A. gracilipes trial to assess nontarget impacts and subsequent ecological recovery. All three species were greatly affected by the treatments. The abundance of P. megacephala declined dramatically in all trials, and by the final assessment for each study, very few ants remained, with those remaining being attributable to edge effects from neighboring untreated properties. At both sites that it occurred, M. destructor was initially at least codominant with P. megacephala, but by the final assessment, only three M. destructor individuals were present at one lure at one site, and only a single individual at the other site. Abundance of A. gracilipes fell, on average, to 31% of control levels by 91 d and then slowly recovered, with subsequent treatments only providing slightly greater control. No direct toxic effect on workers was found in the laboratory trial, indicating that population declines of A. gracilipes were typical bait-related declines resulting from reduced worker replacement. Nontarget impacts of the bait could not be distinguished from the negative competitive impacts ofA. gracilipes, but there was a noticeable absence of some key

  7. Ant-plant mutualisms should be viewed as symbiotic communities

    PubMed Central

    Bouamer, Salah; Morand, Serge; Selosse, Marc-André

    2009-01-01

    Ant-plants provide food and nesting space (domatia) for ants that protect them against herbivores. These mutualisms are often very specific and are usually considered as bipartite, or tripartite when ants use hemipterans as trophobionts. However, fungi growing inside domatia have been recorded by a few authors. Here we report on their occurrence on additional ant-plants from Africa, Asia and South America. We demonstrated the symbiotic nature of the relationship between the plant, the ant and the fungus in the model plant Leonardoxa africana africana and its mutualistic ant Petalomyrmex phylax. Moreover, data suggest the ant-fungus relationship is mutualistic. Here we discuss the most probable role of the fungus and the potential implications on the understanding of nutritional ecology of ant-plant symbioses. The fungus is also associated with the presence of nematodes and bacteria. Many ant-plant symbioses previously considered to be bipartite will soon likely prove to be multipartite symbiotic communities. PMID:19816123

  8. Distribution of invasive ants and methods for their control in Hawai'i Volcanoes National Park

    USGS Publications Warehouse

    Peck, Robert W.; Banko, Paul C.; Snook, Kirsten; Euaparadorn, Melody

    2013-01-01

    The first invasive ants were detected in Hawai`i Volcanoes National Park (HAVO) more than 80 years ago. Ecological impacts of these ants are largely unknown, but studies in Hawai`i and elsewhere increasingly show that invasive ants can reduce abundance and diversity of native arthropod communities as well as disrupt pollination and food webs. Prior to the present study, knowledge of ant distributions in HAVO has primarily been restricted to road- and trail-side surveys of the Kīlauea and Mauna Loa Strip sections of the park. Due to the risks that ants pose to HAVO resources, understanding their distributions and identifying tools to eradicate or control populations of the most aggressive species is an important objective of park managers. We mapped ant distributions in two of the most intensively managed sections of the park, Mauna Loa Strip and Kahuku. We also tested the efficacy of baits to control the Argentine ant (Linepithema humile) and the big-headed ant (Pheidole megacephala), two of the most aggressive and ecologically destructive species in Hawai`i. Efficacy testing of formicidal bait was designed to provide park managers with options for eradicating small populations or controlling populations that occur at levels beyond which they can be eradicated. Within the Mauna Loa Strip and Kahuku sections of HAVO we conducted systematic surveys of ant distributions at 1625 stations covering nearly 200 km of roads, fences, and transects between August 2008 and April 2010. Overall, 15 ant species were collected in the two areas, with 12 being found on Mauna Loa Strip and 11 at Kahuku. Cardiocondyla kagutsuchi was most widespread at both sites, ranging in elevation from 920 to 2014 m, and was the only species found above 1530 m. Argentine ants and big-headed ants were also found in both areas, but their distributions did not overlap. Surveys of Argentine ants identified areas of infestation covering 560 ha at Mauna Loa Strip and 585 ha at Kahuku. At both sites

  9. Targeted Research to Improve Invasive Species Management: Yellow Crazy Ant Anoplolepis gracilipes in Samoa

    PubMed Central

    Hoffmann, Benjamin D.; Auina, Saronna; Stanley, Margaret C.

    2014-01-01

    Lack of biological knowledge of invasive species is recognised as a major factor contributing to eradication failure. Management needs to be informed by a site-specific understanding of the invasion system. Here, we describe targeted research designed to inform the potential eradication of the invasive yellow crazy ant Anoplolepis gracilipes on Nu’utele island, Samoa. First, we assessed the ant’s impacts on invertebrate biodiversity by comparing invertebrate communities between infested and uninfested sites. Second, we investigated the timing of production of sexuals and seasonal variation of worker abundance and nest density. Third, we investigated whether an association existed between A. gracilipes and carbohydrate sources. Within the infested area there were few other ants larger than A. gracilipes, as well as fewer spiders and crabs, indicating that A. gracilipes is indeed a significant conservation concern. The timing of male reproduction appears to be consistent with places elsewhere in the world, but queen reproduction was outside of the known reproductive period for this species in the region, indicating that the timing of treatment regimes used elsewhere are not appropriate for Samoa. Worker abundance and nest density were among the highest recorded in the world, being greater in May than in October. These abundance and nest density data form baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. The number of plants and insects capable of providing a carbohydrate supply to ants were greatest where A. gracilipes was present, but it is not clear if this association is causal. Regardless, indirectly controlling ant abundance by controlling carbohydrate supply appears to be promising avenue for research. The type of targeted, site-specific research such as that described here should be an integral part of any eradication program for invasive species to design knowledge-based treatment protocols and

  10. Chemical Defense by the Native Winter Ant (Prenolepis imparis) against the Invasive Argentine Ant (Linepithema humile)

    PubMed Central

    Kauhanen, Peter G.; Fitzgerald, Katherine; Sturgis, Shelby J.; Chen, Jimmy; Dijamco, Cheri A.; Basurto, Kimberly N.; Gordon, Deborah M.

    2011-01-01

    The invasive Argentine ant (Linepithema humile) is established worldwide and displaces native ant species. In northern California, however, the native winter ant (Prenolepis imparis) persists in invaded areas. We found that in aggressive interactions between the two species, P. imparis employs a potent defensive secretion. Field observations were conducted at P. imparis nest sites both in the presence and absence of L. humile. These observations suggested and laboratory assays confirmed that P. imparis workers are more likely to secrete when outnumbered by L. humile. Workers of P. imparis were also more likely to secrete near their nest entrances than when foraging on trees. One-on-one laboratory trials showed that the P. imparis secretion is highly lethal to L. humile, causing 79% mortality. The nonpolar fraction of the secretion was chemically analyzed with gas chromatography/mass spectrometry, and found to be composed of long-chain and cyclic hydrocarbons. Chemical analysis of dissected P. imparis workers showed that the nonpolar fraction is derived from the Dufour's gland. Based on these conclusions, we hypothesize that this chemical defense may help P. imparis to resist displacement by L. humile. PMID:21526231

  11. Disruption of a protective ant-plant mutualism by an invasive ant increases elephant damage to savanna trees.

    PubMed

    Riginos, Corinna; Karande, Megan A; Rubenstein, Daniel I; Palmer, Todd M

    2015-03-01

    Invasive species can indirectly affect ecosystem processes via the disruption of mutualisms. The mutualism between the whistling thorn acacia (Acacia drepanolobium) and four species of symbiotic ants is an ecologically important one; ants strongly defend trees against elephants, which can otherwise have dramatic impacts on tree cover. In Laikipia, Kenya, the invasive big-headed ant (Pheidole megacephala) has established itself at numerous locations within the last 10-15 years. In invaded areas on five properties, we found that three species of symbiotic Crematogaster ants were virtually extirpated, whereas Tetraponera penzigi co-occurred with P. megacephala. T. penzigi appears to persist because of its nonaggressive behavior; in a whole-tree translocation experiment, Crematogaster defended host trees against P. megacephala, but were extirpated from trees within hours. In contrast, T. penzigi retreated into domatia and withstood invading ants for >30 days. In the field, the loss of defensive Crematogaster ants in invaded areas led to a five- to sevenfold increase in the number of trees catastrophically damaged by elephants compared to uninvaded areas. In savannas, tree cover drives many ecosystem processes and provides essential forage for many large mammal species; thus, the invasion of big-headed ants may strongly alter the dynamics and diversity of East Africa's whistling thorn savannas by disrupting this system's keystone acaciaant mutualism. PMID:26236862

  12. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. PMID:27038576

  13. ANT COMMUNITIES AND LIVESTOCK GRAZING IN THE GREAT BASIN, USA

    EPA Science Inventory

    The objectives of this study were to determine if metrics for ant species assemblages can be used as indicators of rangeland condition, and to determine the influence of vegetation and ground cover variables, factors often influenced by livestock grazing, on ant communities. The ...

  14. Recovery of ground ant (Hymenoptera: Formicidae) communities six years after a major environmental disaster.

    PubMed

    Luque, G M; Reyes-López, J; Fernández-Haeger, J

    2007-04-01

    The recovery of ant communities at the Guadiamar River bank (southwest Spain) was studied across 5 yr, after an environmental disaster caused by the spill of toxic sludge over the river caused by a mine accident. Three affected and three control sites were sampled from 2000 to 2004 using pitfall traps. The last year of study, a more exhaustive sampling was conducted at the affected area (eight sampling sites). Additionally, four adjacent study sites not affected by the toxic spill were also studied. Ants showed clear responses to the restoration of the area. Mean ant species richness in spillage affected sites showed a significant increase over the 5 yr. Moreover, multivariate analysis showed distinct changes of ant community composition of the affected area over the years that were not observed in control sites. Six years after the disaster, one half of the species recorded in control sites were also present in the affected area, with only one species exclusive to this area, Cardiocondyla mauritanica Forel (tramp species). However, not only habitat specialist species but also some generalist and conspicuous species within the river basin are not present along the affected area, including species of the genera Camponotus, Messor, Cataglyphis, and Aphaenogaster. This study shows an incipient recovery of ant communities 6 yr after a major environmental disturbance, highlighting the absence of any invasive ant species in the restored area. PMID:17445368

  15. Commercial agrochemical applications in vineyards do not influence ant communities.

    PubMed

    Chong, Chee Seng; Hoffmann, Ary A; Thomson, Linda J

    2007-12-01

    Ants have been widely used as bioindicators for various terrestrial monitoring and assessment programs but are seldom considered in evaluation of nontarget pesticide effect. Much chemical assessment has been biased toward laboratory and bioassay testing for control of specific pest ant species. Several field studies that did explore the nontarget impacts of pesticides on ants have reported contradictory findings. To address the impact of chemical applications on ants, we tested the response of epigeal ant assemblages and community structure to three pesticide gradients (cumulative International Organization for Biological and Integrated Control toxicity rating, chlorpyrifos use rate, and sulfur use rate) in 19 vineyards. Ordination analyses using nonmetric multidimensional scaling detected community structures at species and genus levels, but the structures were not explained by any pesticide variables. There was no consistent pattern in species and genus percentage complementarities and ant assemblages along pesticide gradients. In contrast, ant community structure was influenced by the presence of shelterbelts near the sampling area. Reasons for the resilience of ants to pesticides are given and assessment at the colony level instead of workers abundance is suggested. The presence of Linepithema humile (Mayr) is emphasized. PMID:18284765

  16. Invasion Biology on Your Campus: Investigating the Red Imported Fire Ant in the Southeastern United States.

    ERIC Educational Resources Information Center

    Forys, Elizabeth A.; Kelly, William B.; Ward, David T.

    2003-01-01

    Describes a laboratory activity on invasion biology to improve students' cognitive skills as well as manual skills. Requires students to develop hypotheses in which a common invasive species will succeed. Focuses on the red imported fire ant in the Southeastern United States, which is a non-native invasive species. (Contains 17 references.) (YDS)

  17. Evidence of Niche Shift and Global Invasion Potential of the Tawny Crazy Ant, Nylanderia Fulva

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of an invasive species’ niche shift between native and introduced ranges, along with potential distribution maps, can provide valuable information about its invasive potential. The tawny crazy ant, Nylanderia fulva, is a rapidly emerging and economically important invasive species in the so...

  18. USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH

    SciTech Connect

    Wike, L; Doug Martin, D; Michael Paller, M; Eric Nelson, E

    2007-01-12

    Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here. This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.

  19. Disentangling the Diversity of Arboreal Ant Communities in Tropical Forest Trees

    PubMed Central

    Klimes, Petr; Fibich, Pavel; Idigel, Cliffson; Rimandai, Maling

    2015-01-01

    Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities. PMID:25714831

  20. Searching for baits with insect growth regulating effects on an invasive crazy ant, Nylanderia pubens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nylanderia pubens is an invasive ant that is currently plaguing parts of Florida and Texas with extremely high populations that dominate landscapes. It is hypothesized that insect growth regulating (IGR) ant baits would be distributed more efficiently among multiple colonies of N. pubens than fast...

  1. A novel interference behaviour: invasive wasps remove ants from resources and drop them from a height

    PubMed Central

    Grangier, Julien; Lester, Philip J.

    2011-01-01

    This study reports a novel form of interference behaviour between the invasive wasp Vespula vulgaris and the New Zealand native ant Prolasius advenus. By videotaping interactions at bait stations, we found that wasps commonly remove ant competitors from food resources by picking up the workers in their mandibles, flying backward and dropping them unharmed some distance from the food. Both the frequency and the efficiency of the wasp behaviour significantly increased with the abundance of ant competitors. Ant removals were the most common interference events initiated by wasps when ants were numerous, while intraspecific conflicts among wasps were prominent when few ants were present. The ‘ant-dropping’ behaviour emphasizes how asymmetry in body sizes between competitors can lead to a pronounced form of interference, related to asymmetric locomotion modes. PMID:21450726

  2. A novel interference behaviour: invasive wasps remove ants from resources and drop them from a height.

    PubMed

    Grangier, Julien; Lester, Philip J

    2011-10-23

    This study reports a novel form of interference behaviour between the invasive wasp Vespula vulgaris and the New Zealand native ant Prolasius advenus. By videotaping interactions at bait stations, we found that wasps commonly remove ant competitors from food resources by picking up the workers in their mandibles, flying backward and dropping them unharmed some distance from the food. Both the frequency and the efficiency of the wasp behaviour significantly increased with the abundance of ant competitors. Ant removals were the most common interference events initiated by wasps when ants were numerous, while intraspecific conflicts among wasps were prominent when few ants were present. The 'ant-dropping' behaviour emphasizes how asymmetry in body sizes between competitors can lead to a pronounced form of interference, related to asymmetric locomotion modes. PMID:21450726

  3. Effect of an invasive ant and its chemical control on a threatened endemic Seychelles millipede.

    PubMed

    Lawrence, James M; Samways, Michael J; Henwood, Jock; Kelly, Janine

    2011-06-01

    The impact of invasive species on island faunas can be of major local consequence, while their control is an important part of island ecosystem restoration. Among these invasive species are ants, of which some have a disruptive impact on indigenous arthropod populations. Here, we study the impact of the invasive African big-headed ant, Pheidole megacephala, on a small Seychelles island, Cousine, and assess the impact of this ant, and its chemical control, using the commercially available hydramethylnon-based bait, Siege, on the endemic keystone Seychelles giant millipede species, Sechelleptus seychellarum. We found no significant correlations in landscape-scale spatial overlap and abundance between the ant and the millipede. Furthermore, the ant did not attack healthy millipedes, but fed only on dying and dead individuals. The chemical defences of the millipede protected it from ant predation. Ingestion of the bait at standard concentration had no obvious impact on the millipede. The most significant threat to the Seychelles giant millipede in terms of P. megacephala invasion is from possible catastrophic shifts in ecosystem function through ant hemipteran mutualisms which can lead to tree mortality, resulting in alteration of the millipede's habitat. PMID:21340553

  4. Competition can lead to unexpected patterns in tropical ant communities

    NASA Astrophysics Data System (ADS)

    Ellwood, M. D. Farnon; Blüthgen, Nico; Fayle, Tom M.; Foster, William A.; Menzel, Florian

    2016-08-01

    Ecological communities are structured by competitive, predatory, mutualistic and parasitic interactions combined with chance events. Separating deterministic from stochastic processes is possible, but finding statistical evidence for specific biological interactions is challenging. We attempt to solve this problem for ant communities nesting in epiphytic bird's nest ferns (Asplenium nidus) in Borneo's lowland rainforest. By recording the frequencies with which each and every single ant species occurred together, we were able to test statistically for patterns associated with interspecific competition. We found evidence for competition, but the resulting co-occurrence pattern was the opposite of what we expected. Rather than detecting species segregation-the classical hallmark of competition-we found species aggregation. Moreover, our approach of testing individual pairwise interactions mostly revealed spatially positive rather than negative associations. Significant negative interactions were only detected among large ants, and among species of the subfamily Ponerinae. Remarkably, the results from this study, and from a corroborating analysis of ant communities known to be structured by competition, suggest that competition within the ants leads to species aggregation rather than segregation. We believe this unexpected result is linked with the displacement of species following asymmetric competition. We conclude that analysing co-occurrence frequencies across complete species assemblages, separately for each species, and for each unique pairwise combination of species, represents a subtle yet powerful way of detecting structure and compartmentalisation in ecological communities.

  5. New fungal pathogens of the red ant, Myrmica rubra, from the UK and implications for ant invasions in the USA.

    PubMed

    Evans, Harry C; Groden, Eleanor; Bischoff, Joseph F

    2010-01-01

    The red ant, Myrmica rubra, is an increasingly invasive pest species in north-eastern USA, where it is known as the European fire ant. During surveys for natural enemies in part of its native range in the UK, three previously unreported fungal pathogens developed on ants when incubated in the laboratory. These are described and illustrated: Paraisaria myrmicarum sp. nov., Hirsutella stilbelliformis var. myrmicarum var. nov., and Hirsutella subramanianii var. myrmicarum var. nov. Based on analyses of the protein coding region EF-1α and LSU rDNA, all three described taxa are shown to be affiliated with the hypocrealean family Ophiocordycipitaceae. The implications for the management of M. rubra in its exotic North American range using classical biological control are discussed. PMID:20943156

  6. Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health

    SciTech Connect

    Wike, L

    2005-06-01

    Measurement of ecosystem health is a very important but often difficult and sometimes fractious topic for applied ecologists. It is important because it can provide information about effects of various external influences like chemical, nuclear, and physical disturbance, and invasive species. Ecosystem health is also a measure of the rate or trajectory of degradation or recovery of systems that are currently suffering impact or those where restoration or remediation have taken place. Further, ecosystem health is the single best indicator of the quality of long term environmental stewardship because it not only provides a baseline condition, but also the means for future comparison and evaluation. Ecosystem health is difficult to measure because there are a nearly infinite number of variables and uncertainty as to which suites of variables are truly indicative of ecosystem condition. It would be impossible and prohibitively expensive to measure all those variables, or even all the ones that were certain to be valid indicators. Measurement of ecosystem health can also be a fractious topic for applied ecologists because there are a myriad of opinions as to which variables are the most important, most easily measured, most robust, and so forth. What is required is an integrative means of evaluating ecosystem health. All ecosystems are dynamic and undergo change either stochastically, intrinsically, or in response to external influences. The basic assumption about change induced by exogenous antropogenic influences is that it is directional and measurable. Historically measurements of surrogate parameters have been used in an attempt to quantify these changes, for example extensive water chemistry data in aquatic systems. This was the case until the 1980's when the Index of Biotic Integrity (IBI) (Karr et al. 1986), was developed. This system collects an array of metrics and fish community data within a stream ecosystem and develops a score or rating for the relative

  7. Finding needles (or ants) in haystacks: predicting locations of invasive organisms to inform eradication and containment.

    PubMed

    Schmidt, Daniel; Spring, Daniel; Mac Nally, Ralph; Thomson, James R; Brook, Barry W; Cacho, Oscar; McKenzie, Michael

    2010-07-01

    To eradicate or effectively contain a biological invasion, all or most reproductive individuals of the invasion must be found and destroyed. To help find individual invading organisms, predictions of probable locations can be made with statistical models. We estimated spread dynamics based on time-series data and then used model-derived predictions of probable locations of individuals. We considered one of the largest data sets available for an eradication program: the campaign to eradicate the red imported fire ant (Solenopsis invicta) from around Brisbane, Australia. After estimating within-site growth (local growth) and intersite dispersal (saltatory spread) of fire ant nests, we modeled probabilities of fire ant presence for >600000 1-ha sites, including uncertainties about fire ant population and spatial dynamics. Such a high level of spatial detail is required to assist surveillance efforts but is difficult to incorporate into common modeling methods because of high computational costs. More than twice as many fire ant nests would have been found in 2008 using predictions made with our method rather than those made with the method currently used in the study region. Our method is suited to considering invasions in which a large area is occupied by the invader at low density. Improved predictions of such invasions can dramatically reduce the area that needs to be searched to find the majority of individuals, assisting containment efforts and potentially making eradication a realistic goal for many invasions previously thought to be ineradicable. PMID:20666245

  8. Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association.

    PubMed

    Lachaud, Jean-Paul; Klompen, Hans; Pérez-Lachaud, Gabriela

    2016-01-01

    Mites are frequent ant symbionts, yet the exact nature of their interactions with their hosts is poorly known. Generally, myrmecophilous mites show adaptations for dispersal through phoresis, but species that lack such an adaptation may have evolved unusual specialized relationships with their hosts. The immature stages of Macrodinychus multispinosus develop as ectoparasitoids of pupae of the invasive ant Paratrechina longicornis. Feeding stages show regressed locomotor appendages. These mites complete their development on a single host, sucking all of its body content and therefore killing it. Locally high proportions of parasitized host pupae suggest that M. multispinosus could serve as a biological control agent. This is the ninth species of Macrodinychus reported as ant parasite, and the third known as parasitoid of invasive ants, confirming a unique habit in the evolution of mite feeding strategies and suggesting that the entire genus might be parasitic on ants. Several mites' characteristics, such as their protective morphology, possible viviparity, lack of a specialized stage for phoretic dispersal, and low host specificity, combined with both the general low aggressiveness of invasive P. longicornis towards other ants and its possible susceptibility to generalist ectoparasites would account for the host shift in native macrodinychid mites. PMID:27444515

  9. Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association

    PubMed Central

    Lachaud, Jean-Paul; Klompen, Hans; Pérez-Lachaud, Gabriela

    2016-01-01

    Mites are frequent ant symbionts, yet the exact nature of their interactions with their hosts is poorly known. Generally, myrmecophilous mites show adaptations for dispersal through phoresis, but species that lack such an adaptation may have evolved unusual specialized relationships with their hosts. The immature stages of Macrodinychus multispinosus develop as ectoparasitoids of pupae of the invasive ant Paratrechina longicornis. Feeding stages show regressed locomotor appendages. These mites complete their development on a single host, sucking all of its body content and therefore killing it. Locally high proportions of parasitized host pupae suggest that M. multispinosus could serve as a biological control agent. This is the ninth species of Macrodinychus reported as ant parasite, and the third known as parasitoid of invasive ants, confirming a unique habit in the evolution of mite feeding strategies and suggesting that the entire genus might be parasitic on ants. Several mites’ characteristics, such as their protective morphology, possible viviparity, lack of a specialized stage for phoretic dispersal, and low host specificity, combined with both the general low aggressiveness of invasive P. longicornis towards other ants and its possible susceptibility to generalist ectoparasites would account for the host shift in native macrodinychid mites. PMID:27444515

  10. Are invasive fire ants kept in check by native aerial insectivores?

    PubMed

    Helms, Jackson A; Godfrey, Aaron P; Ames, Tayna; Bridge, Eli S

    2016-05-01

    Aerial predator-prey interactions may impact populations of many terrestrial species. Here, we use altitude loggers to study aerial foraging in a native insectivore, the purple martin (Progne subis), in the southern USA. Purple martins fed primarily on mating queens and males of the invasive red imported fire ant (Solenopsis invicta), and doubled their foraging efficiency by doing so. Across the USA, purple martins likely eat billions of fire ant queens each year, potentially impacting the spread of this species. Alternatively, predation on fire ants may help sustain populations of purple martins and other aerial insectivores. PMID:27194285

  11. LIVESTOCK GRAZING EFFECTS ON ANT COMMUNITIES IN THE EASTERN MOJAVE DESERT, USA

    EPA Science Inventory

    The effects of livestock grazing on composition and structure of ant communities were examined in the eastern Mojave Desert, USA for the purpose of evaluating ant communities as potential indicators of rangeland condition. Metrics for ant communities, vegetation, and other groun...

  12. Ants mediate the structure of phytotelm communities in an ant-garden bromeliad.

    PubMed

    Céréghino, Régis; Leroy, Céline; Dejean, Alain; Corbara, Bruno

    2010-05-01

    The main theories explaining the biological diversity of rain forests often confer a limited understanding of the contribution of interspecific interactions to the observed patterns. We show how two-species mutualisms can affect much larger segments of the invertebrate community in tropical rain forests. Aechmea mertensii (Bromeliaceae) is both a phytotelm (plant-held water) and an ant-garden epiphyte. We studied the influence of its associated ant species (Pachycondyla goeldii and Camponotus femoratus) on the physical characteristics of the plants, and, subsequently, on the diversity of the invertebrate communities that inhabit their tanks. As dispersal agents for the bromeliads, P. goeldii and C. femoratus influence the shape and size of the bromeliad by determining the location of the seedling, from exposed to partially shaded areas. By coexisting on a local scale, the two ant species generate a gradient of habitat conditions in terms of available resources (space and food) for aquatic invertebrates, the diversity of the invertebrate communities increasing with greater volumes of water and fine detritus. Two-species mutualisms are widespread in nature, but their influence on the diversity of entire communities remains largely unexplored. Because macroinvertebrates constitute an important part of animal production in all ecosystem types, further investigations should address the functional implications of such indirect effects. PMID:20503886

  13. Canopy vegetation influences ant (Hymenoptera: Formicidae) communities in headwater stream riparian zones of central Appalachia.

    PubMed

    Johnson, Jonathan T; Adkins, Joshua K; Rieske, Lynne K

    2014-01-01

    In the eastern United States, eastern hemlock Tusga canadensis (L.) Carriere forests are threatened by the invasive hemlock woolly adelgid, Adelges tsugae, a pest that is causing widespread hemlock mortality. Eastern hemlock is an essential component of forested communities. Adelgid-induced hemlock mortality is causing a shift in forest composition and structure, altering ecosystem function and thereby influencing the arthropod community. Using pitfall traps at three sites, we monitored ground-dwelling arthropods at 30-d intervals in hemlock-dominated and deciduous-dominated forests in central Appalachia over 2 yr. Here, we focus on the ant community (Hymenoptera: Formicidae) collected in the summer months. Ants form a ubiquitous and integral component of the invertebrate community, functioning at various trophic levels as predators, herbivores, and omnivores, and fulfilling important roles in forest ecosystems. We found no difference in overall ant abundance between hemlock-dominated and deciduous-dominated forests but did detect significant differences in the genera Prenolepis between forest types (P < 0.01) and Aphaenogaster across study locations (P = 0.02). Three genera were unique to deciduous forests; one was unique to hemlock forests. Not surprisingly, total formicids and several genera demonstrated temporal differences in abundance, with greater numbers captured in July than in August. As hemlock woolly adelgid-induced mortality of eastern hemlock becomes more pervasive, changes in forest composition and structure are imminent, accompanied by shifts in hemlock associates. PMID:25528753

  14. Global invasion history of the Fire Ant Solenopsis invicta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fire ant Solenopsis invicta is a serious agricultural, ecological, and public health pest that was inadvertently introduced into the southern USA almost a century ago and into California and other regions of the world more recently. An assessment of genetic variation at a diverse set of molecula...

  15. Global invasion history of the tropical fire ant: a stowaway on the first global trade routes.

    PubMed

    Gotzek, Dietrich; Axen, Heather J; Suarez, Andrew V; Helms Cahan, Sara; Shoemaker, DeWayne

    2015-01-01

    Biological invasions are largely thought to be contemporary, having recently increased sharply in the wake of globalization. However, human commerce had already become global by the mid-16th century when the Spanish connected the New World with Europe and Asia via their Manila galleon and West Indies trade routes. We use genetic data to trace the global invasion of one of the world's most widespread and invasive pest ants, the tropical fire ant, Solenopsis geminata. Our results reveal a pattern of introduction of Old World populations that is highly consistent with historical trading routes suggesting that Spanish trade introduced the tropical fire ant to Asia in the 16th century. We identify southwestern Mexico as the most likely source for the invasive populations, which is consistent with the use of Acapulco as the major Spanish port on the Pacific Ocean. From there, the Spanish galleons brought silver to Manila, which served as a hub for trade with China. The genetic data document a corresponding spread of S. geminata from Mexico via Manila to Taiwan and from there, throughout the Old World. Our descriptions of the worldwide spread of S. geminata represent a rare documented case of a biological invasion of a highly invasive and globally distributed pest species due to the earliest stages of global commerce. PMID:25496038

  16. Honeydew-producing hemipterans in Florida associated with Nylanderia fulva (Hymenoptera: Formicidae), an invasive crazy ant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nylanderia fulva (Mayr) (Formicidae) is an invasive pest ant that has been reported in Florida, Texas, Louisiana and Mississippi. Workers tend various honeydew producing hemipterans in Florida landscapes and natural areas. We sought to understand the seasonal foraging activities of N. fulva and its ...

  17. Predicting future coexistence in a North American ant community

    PubMed Central

    Bewick, Sharon; Stuble, Katharine L; Lessard, Jean-Phillipe; Dunn, Robert R; Adler, Frederick R; Sanders, Nathan J

    2014-01-01

    Global climate change will remodel ecological communities worldwide. However, as a consequence of biotic interactions, communities may respond to climate change in idiosyncratic ways. This makes predictive models that incorporate biotic interactions necessary. We show how such models can be constructed based on empirical studies in combination with predictions or assumptions regarding the abiotic consequences of climate change. Specifically, we consider a well-studied ant community in North America. First, we use historical data to parameterize a basic model for species coexistence. Using this model, we determine the importance of various factors, including thermal niches, food discovery rates, and food removal rates, to historical species coexistence. We then extend the model to predict how the community will restructure in response to several climate-related changes, such as increased temperature, shifts in species phenology, and altered resource availability. Interestingly, our mechanistic model suggests that increased temperature and shifts in species phenology can have contrasting effects. Nevertheless, for almost all scenarios considered, we find that the most subordinate ant species suffers most as a result of climate change. More generally, our analysis shows that community composition can respond to climate warming in nonintuitive ways. For example, in the context of a community, it is not necessarily the most heat-sensitive species that are most at risk. Our results demonstrate how models that account for niche partitioning and interspecific trade-offs among species can be used to predict the likely idiosyncratic responses of local communities to climate change. PMID:24963378

  18. The native ant, Tapinoma melanocephalum, improves the survival of an invasive mealybug, Phenacoccus solenopsis, by defending it from parasitoids

    PubMed Central

    Feng, Dong-Dong; Michaud, J.P.; Li, Pan; Zhou, Zhong-Shi; Xu, Zai-Fu

    2015-01-01

    Mutualistic ants can protect their partners from natural enemies in nature. Aenasius bambawalei is an important parasitoid of the the invasive mealybug Phenacoccus solenopsis. We hypothesized that mutualism between native ants and mealybugs would favor survival of mealybugs. To test this, we examined effects of tending by the native mutualistic ant Tapinoma melanocephalum on growth of P. solenopsis colonies on Chinese hibiscus, Hibiscus rosa-sinensis, in a field setting. Ant workers with access to honeydew of mealybugs lived much longer than those provisioned only with water in the laboratory, and number of ant workers foraging increased significantly with growth of mealybug colonies in the field. In later observations, there were significant differences in densities of mealybugs between ant-tended and -excluded treatments. Survival rate of mealybugs experiencing parasitoid attack was significantly higher on ant-tended plants than on ant-excluded plants. When the parasitoid was excluded, there was no difference in survival rate of mealybugs between ant-tended and -excluded plants. In most cases, ants directly attacked the parasitoid, causing the parasitoid to take evasive action. We conclude that native ants such as T. melanocephalum have the potential to facilitate invasion and spread of P. solenopsis in China by providing them with protection from parasitoids. PMID:26503138

  19. The native ant, Tapinoma melanocephalum, improves the survival of an invasive mealybug, Phenacoccus solenopsis, by defending it from parasitoids.

    PubMed

    Feng, Dong-Dong; Michaud, J P; Li, Pan; Zhou, Zhong-Shi; Xu, Zai-Fu

    2015-01-01

    Mutualistic ants can protect their partners from natural enemies in nature. Aenasius bambawalei is an important parasitoid of the the invasive mealybug Phenacoccus solenopsis. We hypothesized that mutualism between native ants and mealybugs would favor survival of mealybugs. To test this, we examined effects of tending by the native mutualistic ant Tapinoma melanocephalum on growth of P. solenopsis colonies on Chinese hibiscus, Hibiscus rosa-sinensis, in a field setting. Ant workers with access to honeydew of mealybugs lived much longer than those provisioned only with water in the laboratory, and number of ant workers foraging increased significantly with growth of mealybug colonies in the field. In later observations, there were significant differences in densities of mealybugs between ant-tended and -excluded treatments. Survival rate of mealybugs experiencing parasitoid attack was significantly higher on ant-tended plants than on ant-excluded plants. When the parasitoid was excluded, there was no difference in survival rate of mealybugs between ant-tended and -excluded plants. In most cases, ants directly attacked the parasitoid, causing the parasitoid to take evasive action. We conclude that native ants such as T. melanocephalum have the potential to facilitate invasion and spread of P. solenopsis in China by providing them with protection from parasitoids. PMID:26503138

  20. Influences on the structure of suburban ant (Hymenoptera: Formicidae) communities and the abundance of Tapinoma sessile.

    PubMed

    Toennisson, T A; Sanders, N J; Klingeman, W E; Vail, K M

    2011-12-01

    Urbanization can alter the organization of ant communities and affect populations of urban pest ants. In this study, we sampled ant communities in urban and suburban yards to understand the habitat factors that shape these communities and influence the abundance of a common pest species, Tapinoma sessile (Say). We used pitfall traps to sample ant communities and a combination of pitfall traps and baiting to collect T. sessile at 24 sites in Knoxville, TN. In total, we collected 46 ant species. Ant species richness ranged from seven to 24 species per yard. Ant species richness tended to be lowest near houses, whereas T. sessile abundance was highest near houses. The best predictors of ant species richness in yards were canopy cover and presence of leaf litter: ant species richness peaked at mid-levels of canopy cover and was negatively correlated with the presence of leaf litter. Tapinoma sessile abundance increased with presence of logs, boards, or landscaping timbers and leaf litter in yards. Our results indicate that ant communities and the abundance of particular pest species in these urban and suburban landscapes are shaped by many of the same factors that structure ant communities in less anthropogenically disturbed environments. PMID:22217754

  1. The impacts of invaders: basal and acute stress glucocorticoid profiles and immune function in native lizards threatened by invasive ants.

    PubMed

    Graham, Sean P; Freidenfelds, Nicole A; McCormick, Gail L; Langkilde, Tracy

    2012-05-01

    As anthropogenic stressors increase exponentially in the coming decades, native vertebrates will likely face increasing threats from these novel challenges. The success or failure of the primary physiological mediator of these stressors--the HPA axis--will likely involve numerous and chaotic outcomes. Among the most challenging of these new threats are invasive species. These have the capacity to simultaneously challenge the HPA axis and the immune system as they are often associated with, or the cause of, emerging infectious diseases, and energetic tradeoffs with the HPA response can have immunosuppressive effects. To determine the effects of invasive species on the vertebrate GC response to a novel stressor, and on immunity, we examined the effects of invasive fire ants on native lizards, comparing lizards from sites with long histories with fire ants to those outside the invasion zone. We demonstrated higher baseline and acute stress (captive restraint) CORT levels in lizards from within fire ant invaded areas; females are more strongly affected than males, suggesting context-specific effects of invasion. We found no effect of fire ant invasion on the immune parameters we measured (complement bacterial lysis and antibody hemagglutination) with the exception of ectoparasite infestation. Mites were far less prevalent on lizards within fire ant invaded sites, suggesting fire ants may actually benefit lizards in this regard. This study suggests that invasive species may impose physiological stress on native vertebrates, but that the consequences of this stress may be complicated and unpredictable. PMID:22226759

  2. Inter- and intraspecific aggression in the invasive longlegged ant (Hymenoptera: Formicidae).

    PubMed

    Chong, Kim-Fung; Lee, Chow-Yang

    2010-10-01

    The longlegged ant, Anoplolepis gracilipes (Fr. Smith) (Hymenoptera: Formicidae), is a highly invasive species that can aggressively displace other ant species. We conducted laboratory assays to examine interspecies aggression of A. gracilipes versus 15 sympatric ant species found in the urban environment and disturbed habitat in Malaysia: Monomorium pharaonis (L.), Monomorium floricola (Jerdon), Monomorium orientale Mayr, Monomorium destructor (Jerdon), Pheidole parva Mayr, Crematogaster sp., Solenopsis geminata (F.), Tapinoma indicum (Forel), Tapinoma melanocephalum (F.), Technomyrmnex butteli Forel, Dolichoderus thoracicus (Smith), Paratrechina longicornis (Latrielle), Oecophylla smaragdina (F), Camponotus sp., and Tetraponera rufonigra (Jerdon). A. gracilipes showed aggressive behavior toward all opponent species, except the smallest M. orientale. Opponent species size (body size, head width, and mandible width) was significantly correlated with A. gracilipes aggression level and mortality rate. We also found a significant positive relationship between A. gracilipes aggression level and the mortality of the opponent species. The results suggest that invasive populations of A. gracilipes would have the greatest impact on larger ant species. In addition, we examined the intraspecific aggression of A. gracilipes. We found that A. gracilipes from different localities in Malaysia showed intraspecific aggression toward one another. This finding differs from the results of studies conducted in Christmas Island earlier. Differences in the genetic variability among populations may explain these differing results. PMID:21061979

  3. Field Control of the Invasive Ant Wasmannia auropunctata (Hymenoptera: Formicidae) in a Tropical Fruit Orchard in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The little fire ant (LFA), Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae) is an invasive ant that forms supercolonies when it successfully invades new areas. LFA was first reported in Hawaii in 1999 and has since invaded a variety of agricultural sites including nurseries, tropical fruit f...

  4. Metatranscriptomics and pyrosequencing facilitate discovery of potential viral natural enemies of the invasive Caribbean crazy ant, Nylanderia pubens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. ...

  5. Ant community change across a ground vegetation gradient in north Florida's longleaf pine flatwoods

    PubMed Central

    Lubertazzi, David; Tschinkel, Walter R.

    2003-01-01

    Ant communities in longleaf pine habitats are poorly known and hence the naturally occurring ant assemblages of a large portion of southeastern North America are not well understood. This study examined the diverse ant community found in the longleaf pine flatwoods of north Florida and tested how ant diversity changes along a herbaceous ground cover gradient. Restoring the ground cover to its original floral composition is an important focus of longleaf pine conservation and hence it is important to understand how native faunal communities vary with ground cover variation. Using 4 sampling methods, we characterized the ant community and analyzed its within-habitat variation among 12 study sites. We found the highest plot species richness (55 species) and within-habitat species richness (72 species) ever recorded for North American ants. The ants formed three distinct communities. The low-diversity arboreal and subterranean assemblages varied little across forest stands while the diversity of the species-rich ground foraging ant community was negatively correlated with percent herbaceous cover. The imported fire ant, Solenopsis invicta (monogyne form), was unexpectedly found to be abundant in high herbaceous cover sites. Floral restoration of the pine flatwoods, which is increasing the proportion of herbaceous cover, is likely to cause an increase in the abundance of the imported fire ant. Abbreviation: ANF Apalachicola National Forest PMID:15841237

  6. Plant community associations of two invasive thistles

    PubMed Central

    Rauschert, Emily S.J.; Shea, Katriona; Goslee, Sarah

    2015-01-01

    In order to combat the growing problems associated with biological invasions, many researchers have focused on identifying which communities are most vulnerable to invasion by exotic species. However, once established, invasive species can significantly change the composition of the communities that they invade. The first step to disentangling the direction of causality is to discern whether a relationship with other vegetation exists at all. Carduus nutans and C. acanthoides are similar invasive thistles, which have caused substantial economic damage worldwide. We assessed the associations between the thistles and the standing flora in four sites in central Pennsylvania in which they co-occur. After sampling nearly 2000 plots of 1 m2, we used partial Mantel tests to assess the differences in vegetation between thistle and non-thistle plots after accounting for location, and non-metric multidimensional scaling to visualize differences among plots and sites. We found significant differences in community composition in plots with and without Carduus thistles. The non-native species Sisymbrium officinale and Coronilla varia were consistently associated with the presence of Carduus thistles. Several species were associated with areas that were free of Carduus thistles, including an important non-native pasture species (Trifolium repens). We found no evidence for differences in composition between plots with C. nutans versus C. acanthoides, suggesting that they have similar associations with the vegetation community. We conclude that even at the within-field scale, areas invaded by Carduus thistles have different vegetation associations than uninvaded areas, allowing us to target future research about the role of vegetation structure in resisting and responding to invasion. PMID:26038126

  7. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of natural enemies during colonization is a prominent hypothesis explaining enhanced performance of invasive species in introduced areas. Numerous studies have tested this enemy release hypothesis in a wide range of taxa but few studies have focused on invasive ants. We conducted extensive surv...

  8. Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen

    2013-08-01

    Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

  9. Density-Dependent Benefits in Ant-Hemipteran Mutualism? The Case of the Ghost Ant Tapinoma melanocephalum (Hymenoptera: Formicidae) and the Invasive Mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae)

    PubMed Central

    Zhou, Aiming; Kuang, Beiqing; Gao, Yingrui; Liang, Guangwen

    2015-01-01

    Although density-dependent benefits to hemipterans from ant tending have been measured many times, few studies have focused on integrated effects such as interactions between ant tending, natural enemy density, and hemipteran density. In this study, we tested whether the invasive mealybug Phenacoccus solenopsis is affected by tending by ghost ants (Tapinoma melanocephalum), the presence of parasitoids, mealybug density, parasitoid density and interactions among these factors. Our results showed that mealybug colony growth rate and percentage parasitism were significantly affected by ant tending, parasitoid presence, and initial mealybug density separately. However, there were no interactions among the independent factors. There were also no significant interactions between ant tending and parasitoid density on either mealybug colony growth rate or percentage parasitism. Mealybug colony growth rate showed a negative linear relationship with initial mealybug density but a positive linear relationship with the level of ant tending. These results suggest that benefits to mealybugs are density-independent and are affected by ant tending level. PMID:25886510

  10. Bacterial community composition and diversity in an ancestral ant fungus symbiosis.

    PubMed

    Kellner, Katrin; Ishak, Heather D; Linksvayer, Timothy A; Mueller, Ulrich G

    2015-07-01

    Fungus-farming ants (Hymenoptera: Formicidae, Attini) exhibit some of the most complex microbial symbioses because both macroscopic partners (ants and fungus) are associated with a rich community of microorganisms. The ant and fungal microbiomes are thought to serve important beneficial nutritional and defensive roles in these symbioses. While most recent research has investigated the bacterial communities in the higher attines (e.g. the leaf-cutter ant genera Atta and Acromyrmex), which are often associated with antibiotic-producing Actinobacteria, very little is known about the microbial communities in basal lineages, labeled as 'lower attines', which retain the ancestral traits of smaller and more simple societies. In this study, we used 16S amplicon pyrosequencing to characterize bacterial communities of the lower attine ant Mycocepurus smithii among seven sampling sites in central Panama. We discovered that ant and fungus garden-associated microbiota were distinct from surrounding soil, but unlike the situation in the derived fungus-gardening ants, which show distinct ant and fungal microbiomes, microbial community structure of the ants and their fungi were similar. Another surprising finding was that the abundance of actinomycete bacteria was low and instead, these symbioses were characterized by an abundance of Lactobacillus and Pantoea bacteria. Furthermore, our data indicate that Lactobacillus strains are acquired from the environment rather than acquired vertically. PMID:26113689

  11. A New (Old), Invasive Ant in the Hardwood Forests of Eastern North America and Its Potentially Widespread Impacts

    PubMed Central

    Guénard, Benoit; Dunn, Robert R.

    2010-01-01

    Biological invasions represent a serious threat for the conservation of biodiversity in many ecosystems. While many social insect species and in particular ant species have been introduced outside their native ranges, few species have been successful at invading temperate forests. In this study, we document for the first time the relationship between the abundance of the introduced ant, Pachycondyla chinensis, in mature forests of North Carolina and the composition, abundance and diversity of native ant species using both a matched pair approach and generalized linear models. Where present, P. chinensis was more abundant than all native species combined. The diversity and abundance of native ants in general and many individual species were negatively associated with the presence and abundance of P. chinensis. These patterns held regardless of our statistical approach and across spatial scales. Interestingly, while the majority of ant species was strongly and negatively correlated with the abundance and presence of P. chinensis, a small subset of ant species larger than P. chinensis was either as abundant or even more abundant in invaded than in uninvaded sites. The large geographic range of this ant species combined with its apparent impact on native species make it likely to have cascading consequences on eastern forests in years to come, effects mediated by the specifics of its life history which is very different from those of other invasive ants. The apparent ecological impacts of P. chinensis are in addition to public health concerns associated with this species due to its sometimes, deadly sting. PMID:20657769

  12. An ant colony based algorithm for overlapping community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di

    2015-06-01

    Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.

  13. Ant community structure during forest succession in a subtropical forest in South-East China

    NASA Astrophysics Data System (ADS)

    Staab, Michael; Schuldt, Andreas; Assmann, Thorsten; Bruelheide, Helge; Klein, Alexandra-Maria

    2014-11-01

    Understanding how communities respond to environmental gradients is critical to predict responses of species to changing habitat conditions such as in regenerating secondary habitats after human land use. In this study, ground-living ants were sampled with pitfall traps in 27 plots in a heterogeneous and diverse subtropical forest to test if and how a broad set of environmental variables including elevation, successional age, and tree species richness influence ant diversity and community composition. In total, 13,441 ant individuals belonging to 71 species were found. Ant abundance was unrelated to all environmental variables. Rarefied ant species richness was negatively related to elevation, and Shannon diversity decreased with shrub cover. There was considerable variation in ant species amongst plots, associated with elevation, successional age, and variables related to succession such as shrub cover. It is shown that younger secondary forests may support a species-rich and diverse community of ants in subtropical forests even though the species composition between younger and older forests is markedly different. These findings confirm the conservation value of secondary subtropical forests, which is critical because subtropical forests have been heavily exploited by human activities globally. However, the findings also confirm that old-growth forest should have priority in conservation as it supports a distinct ant community. Our study identifies a set of ant species which are associated with successional age and may thus potentially assist local conservation planning.

  14. Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest.

    PubMed

    Cuautle, M; Vergara, C H; Badano, E I

    2016-04-01

    Ants have been used to assess land use conversion, because they reflect environmental change, and their response to these changes have been useful in the identification of bioindicators. We evaluated ant diversity and composition associated to different land use change in a temperate forest (above 2000 m asl) in Mexico. The study was carried out in "Flor del Bosque" Park a vegetation mosaic of native Oak Forests and introduced Eucalyptus and grasslands. Species richness, dominance and diversity rarefaction curves, based on ant morphospecies and functional groups, were constructed and compared among the three vegetation types, for the rainy and the dry seasons of 2008-2009. Jaccard and Sorensen incidence-based indices were calculated to obtain similarity values among all the habitats. The Oak Forest was a rich dominant community, both in species and functional groups; the Eucalyptus plantation was diverse with low dominance. The most seasonality habitat was the grassland, with low species and high functional group diversity during the dry seasons, but the reverse pattern during the wet season. The Oak Forest was more similar to the Eucalyptus plantation than to the grassland, particularly during the dry season. Oak Forests are dominated by Cold Climate Specialists, specifically Prenolepis imparis (Say). The Eucalyptus and the grassland are characterized by generalized Myrmicinae, as Pheidole spp. and Monomorium ebenium (Forel). The conservation of the native Oak Forest is primordial for the maintenance of Cold Climate Specialist ant communities. The microclimatic conditions in this forest, probably, prevented the invasion by opportunistic species. PMID:26696090

  15. [Coexistence mechanism of ant community in lac plantation under habitat heterogeneity].

    PubMed

    Wang, Si-ming; Chen, You-qing; Lu, Zhi-xing; Liu, Chun-ju; Guo, Zu-xue

    2010-10-01

    In order to reveal the coexistence mechanism of ant community in lac plantation, an investigation was made on the ant community composition and the ability of ant species in discovering and holding food resources in a lac plantation in Yayi Town of Mojiang County, Yunnan Province, with the relationships between ant body size and its ability of finding food under habitat heterogeneity probed. There were six dominant ant species in the plantation, i. e., Tetraponera allaborans (Walker), Crematogaster macaoensis Wheeler, Crematogasterferrarii Emery, Dolichoderus thoracicus (Smith), Polyrhachis proxima Roger, and Camponotus parius Emery. The hind leg length (y) of the six ant species increased allometrically with their head width (x), and the regression equation was y = 0.56 + 1.02x + 5.97x2 - 10.85x3. Different ant species had significant differences in their actual and relative frequency in discovering food resources in different habitats, but habitat type had no significant effects on the actual frequency in holding food resources by the ant species. The ant species with bigger head width and bigger body size index could discover more food resources in simple habitat. In contrast, the ant species with smaller head width, shorter hind leg length, and smaller body size index could discover more food resources in complex habitat. The heterogeneity of habitat caused the coexistence of ants: the smaller ant species lived in complex habitat, while the larger ones lived in simple habitat. In addition, numerically dominant ant species were unable to possess all resources, and thereby, could provide the opportunity to other ant species for resources acquisition, making the species coexistence come true. PMID:21328961

  16. Behavioral plasticity mediates asymmetric competition between invasive wasps and native ants

    PubMed Central

    Grangier, Julien; Lester, Philip J.

    2012-01-01

    One of the most successful invasive species is the common wasp, Vespula vulgaris. We recently reported how foragers of this species have adopted previously unknown interference behavior when competing for food with native ants. Picking their opponents up in their mandibles, flying backward and dropping them some distance away from the disputed resource, wasps were shown to efficiently deal with a yet aggressive competitor and to modulate this behavior according to circumstances. Here we further discuss the nature and functioning of this unusual strategy. We first highlight the questions this interaction raises regarding the competitive advantages offered by asymmetries in body size and flight ability. Then, we argue that this study system illustrates the important role of behavioral plasticity in biological invasions; not only in the success of invaders but also in the ability of native species to coexist with these invaders. PMID:22808314

  17. Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species

    NASA Astrophysics Data System (ADS)

    Errard, Christine; Delabie, Jacques; Jourdan, Hervé; Hefetz, Abraham

    2005-07-01

    Unicoloniality emerges as a feature that characterizes successful invasive species. Its underlying mechanism is reduced intraspecific aggression while keeping interspecific competitiveness. To that effect, we present here a comparative behavioural and chemical study of the invasive ant Wasmannia auropunctata in parts of its native and introduced ranges. We tested the hypothesis that introduced populations (New Caledonia archipelago) have reduced intraspecific aggression relative to native populations (e.g., Ilhéus area, Brazil) and that this correlates with reduced variability in cuticular hydrocarbons (CHCs). As predicted, there was high intraspecific aggression in the Brazilian populations, but no intraspecific aggression among the New Caledonian populations. However, New Caledonian worker W. auropunctata remained highly aggressive towards ants of other invasive species. The chemical data corresponded with the behaviour. While CHCs of ants from the regions of Brazil diverged, the profiles of ants from various localities in New Caledonia showed high uniformity. We suggest that in New Caledonia W. auropunctata appears to behave as a single supercolony, whereas in its native range it acts as a multicolonial species. The uniformity of recognition cues in the New Caledonia ants may reflect a process whereby recognition alleles became fixed in the population, but may also be the consequence of a single introduction event and subsequent aggressive invasion of the ecosystem. Chemical uniformity coupled with low intraspecific but high interspecific aggression, lend credence to the latter hypothesis.

  18. Diversity of Eastern North American Ant Communities along Environmental Gradients

    PubMed Central

    Del Toro, Israel

    2013-01-01

    Studies of species diversity patterns across regional environmental gradients seldom consider the impact of habitat type on within-site (alpha) and between-site (beta) diversity. This study is designed to identify the influence of habitat type across geographic and environmental space, on local patterns of species richness and regional turnover patterns of ant diversity in the northeastern United States. Specifically, I aim to 1) compare local species richness in paired open and forested transects and identify the environmental variables that best correlate with richness; and 2) document patterns of beta diversity throughout the region in both open and forested habitat. I systematically sampled ants at 67 sites from May to August 2010, spanning 10 degrees of latitude, and 1000 meters of elevation. Patterns of alpha and beta diversity across the region and along environmental gradients differed between forested and open habitats. Local species richness was higher in the low elevation and warmest sites and was always higher in open habitat than in forest habitat transects. Richness decreased as temperature decreased or elevation increased. Forested transects show strong patterns of decreasing dissimilarity in species composition between sites along the temperature gradient but open habitat transects did not. Maximum temperature of the warmest month better predicted species richness than either latitude or elevation. I find that using environmental variables as key predictors of richness yields more biologically relevant results, and produces simpler macroecological models than commonly used models which use only latitude and elevation as predictors of richness and diversity patterns. This study contributes to the understanding of mechanisms that structure the communities of important terrestrial arthropods which are likely to be influenced by climatic change. PMID:23874479

  19. A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior.

    PubMed

    Klein, Antonia; Schrader, Lukas; Gil, Rosario; Manzano-Marín, Alejandro; Flórez, Laura; Wheeler, David; Werren, John H; Latorre, Amparo; Heinze, Jürgen; Kaltenpoth, Martin; Moya, Andrés; Oettler, Jan

    2016-02-01

    The evolution of eukaryotic organisms is often strongly influenced by microbial symbionts that confer novel traits to their hosts. Here we describe the intracellular Enterobacteriaceae symbiont of the invasive ant Cardiocondyla obscurior, 'Candidatus Westeberhardia cardiocondylae'. Upon metamorphosis, Westeberhardia is found in gut-associated bacteriomes that deteriorate following eclosion. Only queens maintain Westeberhardia in the ovarian nurse cells from where the symbionts are transmitted to late-stage oocytes during nurse cell depletion. Functional analyses of the streamlined genome of Westeberhardia (533 kb, 23.41% GC content) indicate that neither vitamins nor essential amino acids are provided for the host. However, the genome encodes for an almost complete shikimate pathway leading to 4-hydroxyphenylpyruvate, which could be converted into tyrosine by the host. Taken together with increasing titers of Westeberhardia during pupal stage, this suggests a contribution of Westeberhardia to cuticle formation. Despite a widespread occurrence of Westeberhardia across host populations, one ant lineage was found to be naturally symbiont-free, pointing to the loss of an otherwise prevalent endosymbiont. This study yields insights into a novel intracellular mutualist that could play a role in the invasive success of C. obscurior. PMID:26172209

  20. Morphological and Chemical Characterization of the Invasive Ants in Hives of Apis mellifera scutellata Lepeletier (Hymenoptera: Apidae).

    PubMed

    Simoes, M R; Giannotti, E; Tofolo, V C; Pizano, M A; Firmino, E L B; Antonialli-Junior, W F; Andrade, L H C; Lima, S M

    2016-02-01

    Apiculture in Brazil is quite profitable and has great potential for expansion because of the favorable climate and abundancy of plant diversity. However, the occurrence of pests, diseases, and parasites hinders the growth and profitability of beekeeping. In the interior of the state of São Paulo, apiaries are attacked by ants, especially the species Camponotus atriceps (Smith) (Hymenoptera: Formicidae), which use the substances produced by Apis mellifera scutellata (Lepeletier) (Hymenoptera: Apidae), like honey, wax, pollen, and offspring as a source of nourishment for the adult and immature ants, and kill or expel the adult bees during the invasion. This study aimed to understand the invasion of C. atriceps in hives of A. m. scutellata. The individuals were classified into castes and subcastes according to morphometric analyses, and their cuticular chemical compounds were identified using Photoacoustic Fourier transform infrared spectroscopy (FTIR-PAS). The morphometric analyses were able to classify the individuals into reproductive castes (queen and gynes), workers (minor and small ants), and the soldier subcaste (medium and major ants). Identification of cuticular hydrocarbons of these individuals revealed that the eight beehives were invaded by only three colonies of C. atriceps; one of the colonies invaded only one beehive, and the other two colonies underwent a process called sociotomy and were responsible for the invasion of the other seven beehives. The lack of preventive measures and the nocturnal behavior of the ants favored the invasion and attack on the bees. PMID:26563402

  1. Evidence of niche shift and global invasion potential of the Tawny Crazy ant, Nylanderia fulva.

    PubMed

    Kumar, Sunil; LeBrun, Edward G; Stohlgren, Thomas J; Stabach, Jared A; McDonald, Danny L; Oi, David H; LaPolla, John S

    2015-10-01

    Analysis of an invasive species' niche shift between native and introduced ranges, along with potential distribution maps, can provide valuable information about its invasive potential. The tawny crazy ant, Nylanderia fulva, is a rapidly emerging and economically important invasive species in the southern United States. It is originally from east-central South America and has also invaded Colombia and the Caribbean Islands. Our objectives were to generate a global potential distribution map for N. fulva, identify important climatic drivers associated with its current distribution, and test whether N. fulva's realized climatic niche has shifted across its invasive range. We used MaxEnt niche model to map the potential distribution of N. fulva using its native and invaded range occurrences and climatic variables. We used principal component analysis methods for investigating potential shifts in the realized climatic niche of N. fulva during invasion. We found strong evidence for a shift in the realized climatic niche of N. fulva across its invasive range. Our models predicted potentially suitable habitat for N. fulva in the United States and other parts of the world. Our analyses suggest that the majority of observed occurrences of N. fulva in the United States represent stabilizing populations. Mean diurnal range in temperature, degree days at ≥10°C, and precipitation of driest quarter were the most important variables associated with N. fulva distribution. The climatic niche expansion demonstrated in our study may suggest significant plasticity in the ability of N. fulva to survive in areas with diverse temperature ranges shown by its tolerance for environmental conditions in the southern United States, Caribbean Islands, and Colombia. The risk maps produced in this study can be useful in preventing N. fulva's future spread, and in managing and monitoring currently infested areas. PMID:26668728

  2. Do long-lived ants affect soil microbial communities?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to test the hypothesis that desert ant species that build nests that remain viable at a particular point in space for more than a decade produce soil conditions that enhance microbial biomass and functional diversity. We studied the effects of a seed-harvester ant, Pogonomyrm...

  3. Studying the Complex Communities of Ants and Their Symbionts Using Ecological Network Analysis.

    PubMed

    Ivens, Aniek B F; von Beeren, Christoph; Blüthgen, Nico; Kronauer, Daniel J C

    2016-01-01

    Ant colonies provide well-protected and resource-rich environments for a plethora of symbionts. Historically, most studies of ants and their symbionts have had a narrow taxonomic scope, often focusing on a single ant or symbiont species. Here we discuss the prospects of studying these assemblies in a community ecology context using the framework of ecological network analysis. We introduce three basic network metrics that we consider particularly relevant for improving our knowledge of ant-symbiont communities: interaction specificity, network modularity, and phylogenetic signal. We then discuss army ant symbionts as examples of large and primarily parasitic communities, and symbiotic sternorrhynchans as examples of generally smaller and primarily mutualistic communities in the context of these network analyses. We argue that this approach will provide new and complementary insights into the evolutionary and ecological dynamics between ants and their many associates, and will facilitate comparisons across different ant-symbiont assemblages as well as across different types of ecological networks. PMID:26982442

  4. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests

    PubMed Central

    Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632

  5. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests.

    PubMed

    Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632

  6. Ant predation on an invasive herbivore: Can an extrafloral nectar-producing plant provide associational resistance to Opuntia individuals?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The legume Chamaecrista fasciculata attracts ants to its extrafloral nectar (EFN) which can lead to reduced herbivory and increased fecundity for the plant. In Florida, Opuntia stricta and O. humifusa, hosts of the invasive moth Cactoblastis cactorum, are often found growing in close association wit...

  7. Population genetics reveals multiple introductions and subsequent cross-province movements of the invasive fire ant Solenopsis invicta in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We characterized patterns of genetic variation in populations of the invasive fire ant Solenopsis invicta in China using both mitochondrial DNA sequences and nuclear DNA microsatellites. All study samples, which were collected from 17 sites across the current infested range in China, were assigned t...

  8. The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion

    USGS Publications Warehouse

    Krushelnycky, P.D.; Joe, S.M.; Medeiros, A.C.; Daehler, C.C.; Loope, L.L.

    2005-01-01

    Analysis of long-term patterns of invasion can reveal the importance of abiotic factors in influencing invasion dynamics, and can help predict future patterns of spread. In the case of the invasive Argentine ant (Linepithema humile), most prior studies have investigated this species' limitations in hot and dry climates. However, spatial and temporal patterns of spread involving two ant populations over the course of 30 years at a high elevation site in Hawaii suggest that cold and wet conditions have influenced both the ant's distribution and its rate of invasion. In Haleakala National Park on Maui, we found that a population invading at lower elevation is limited by increasing rainfall and presumably by associated decreasing temperatures. A second, higher elevation population has spread outward in all directions, but rates of spread in different directions appear to have been strongly influenced by differences in elevation and temperature. Patterns of foraging activity were strongly tied to soil temperatures, supporting the hypothesis that variation in temperature can influence rates of spread. Based on past patterns of spread, we predicted a total potential range that covers nearly 50% of the park and 75% of the park's subalpine habitats. We compared this rough estimate with point predictions derived from a degree-day model for Argentine ant colony reproduction, and found that the two independent predictions match closely when soil temperatures are used in the model. The cold, wet conditions that have influenced Argentine ant invasion at this site are likely to be influential at other locations in this species' current and future worldwide distribution. ?? 2005 Blackwell Publishing Ltd.

  9. ANTS AS BIOLOGICAL INDICATORS FOR MONITORING CHANGES IN ARID ENVIRONMENTS: LESSONS FOR MONITORING PROTECTED AREAS

    EPA Science Inventory

    The responses of ant communities to structural change (removal of an invasive were studied in a replicated experiment in a Chihuahuan Desert grassland. The results from sampling of ant communities by pit-fall trapping were validated by mapping ant colonies on the experimental plo...

  10. ANTS AS BIOLOGICAL INDICATORS FOR MONITORING CHANGES IN ARID ENVIRONMENTS: LESSONS FOR MONITORING PROTECTED AREAS

    EPA Science Inventory

    The responses of ant communities to structural change (removal of an invasive
    were studied in a replicated experiment in a Chihuahuan Desert grassland. The
    results from sampling of ant communities by pit-fall trapping were validated by
    mapping ant colonies on the expe...

  11. Cultural differences in ant-dipping tool length between neighbouring chimpanzee communities at Kalinzu, Uganda.

    PubMed

    Koops, Kathelijne; Schöning, Caspar; Isaji, Mina; Hashimoto, Chie

    2015-01-01

    Cultural variation has been identified in a growing number of animal species ranging from primates to cetaceans. The principal method used to establish the presence of culture in wild populations is the method of exclusion. This method is problematic, since it cannot rule out the influence of genetics and ecology in geographically distant populations. A new approach to the study of culture compares neighbouring groups belonging to the same population. We applied this new approach by comparing ant-dipping tool length between two neighbouring communities of chimpanzees (Pan troglodytes schweinfurthii) in the Kalinzu Forest, Uganda. Ant-dipping tool length varies across chimpanzee study sites in relation to army ant species (Dorylus spp.) and dipping location (nest vs. trail). We compared the availability of army ant species and dipping tool length between the two communities. M-group tools were significantly longer than S-group tools, despite identical army ant target species availabilities. Moreover, tool length in S-group was shorter than at all other sites where chimpanzees prey on epigaeic ants at nests. Considering the lack of ecological differences between the two communities, the tool length difference appears to be cultural. Our findings highlight how cultural knowledge can generate small-scale cultural diversification in neighbouring chimpanzee communities. PMID:26198006

  12. Cultural differences in ant-dipping tool length between neighbouring chimpanzee communities at Kalinzu, Uganda

    PubMed Central

    Koops, Kathelijne; Schöning, Caspar; Isaji, Mina; Hashimoto, Chie

    2015-01-01

    Cultural variation has been identified in a growing number of animal species ranging from primates to cetaceans. The principal method used to establish the presence of culture in wild populations is the method of exclusion. This method is problematic, since it cannot rule out the influence of genetics and ecology in geographically distant populations. A new approach to the study of culture compares neighbouring groups belonging to the same population. We applied this new approach by comparing ant-dipping tool length between two neighbouring communities of chimpanzees (Pan troglodytes schweinfurthii) in the Kalinzu Forest, Uganda. Ant-dipping tool length varies across chimpanzee study sites in relation to army ant species (Dorylus spp.) and dipping location (nest vs. trail). We compared the availability of army ant species and dipping tool length between the two communities. M-group tools were significantly longer than S-group tools, despite identical army ant target species availabilities. Moreover, tool length in S-group was shorter than at all other sites where chimpanzees prey on epigaeic ants at nests. Considering the lack of ecological differences between the two communities, the tool length difference appears to be cultural. Our findings highlight how cultural knowledge can generate small-scale cultural diversification in neighbouring chimpanzee communities. PMID:26198006

  13. Spatial Distribution of Dominant Arboreal Ants in a Malagasy Coastal Rainforest: Gaps and Presence of an Invasive Species

    PubMed Central

    Dejean, Alain; Fisher, Brian L.; Corbara, Bruno; Rarevohitra, Raymond; Randrianaivo, Richard; Rajemison, Balsama; Leponce, Maurice

    2010-01-01

    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species—a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant

  14. Spatial distribution of dominant arboreal ants in a malagasy coastal rainforest: gaps and presence of an invasive species.

    PubMed

    Dejean, Alain; Fisher, Brian L; Corbara, Bruno; Rarevohitra, Raymond; Randrianaivo, Richard; Rajemison, Balsama; Leponce, Maurice

    2010-01-01

    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species-a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal

  15. The Effects of Restoration Age and Prescribed Burns on Grassland Ant Community Structure.

    PubMed

    Menke, Sean B; Gaulke, Emilee; Hamel, Allison; Vachter, Nicole

    2015-10-01

    North American grassland environments are endangered as a result of degradation and conversion for agriculture and housing. Efforts to manage and restore grasslands have traditionally focused on monitoring plant communities to determine restoration success, but the incorporation of animal communities may provide important benchmarks of ecosystem function and restoration. Ants play many roles in maintaining ecosystem health in temperate grasslands, but relatively little is known about how ant communities respond to restoration. We studied the role that restoration age and prescribed burns have on ant communities in two types of Illinois grasslands, prairies and savannas, and identify indicator species of restoration success. Grassland environments included remnants and restorations that varied in age from newly restored sites, to sites that have been under restoration for >15 yr. We demonstrate that prairie and savanna ant communities are distinct, but respond to restoration in a similar manner. Three distinct prairie ant assemblages were identified based on the age of restoration of a site-sites <3 yr old, sites that have been under restoration >5 yr, and remnant prairies. Four distinct savanna ant assemblages were identified based on the age of restoration of a site-sites <3 yr old, sites 5-15 yr old, sites >15 yr old, and remnant savanna environments. After accounting for restoration age, time since last burn in both prairie and savannas does not explain community composition or species richness. Several ant species in both prairies and savannas have predictable changes in incidence that indicate their suitability for use as indicator species. PMID:26314012

  16. Seasonal Dynamics of Ant Community Structure in the Moroccan Argan Forest

    PubMed Central

    Keroumi, Abderrahim El; Naamani, Khalid; Soummane, Hassna; Dahbi, Abdallah

    2012-01-01

    In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems. PMID:23421815

  17. Field suppression of the invasive ant Wasmannia auropunctata (Hymenoptera: Formicidae) in a tropical fruit orchard in Hawaii.

    PubMed

    Souza, Evann; Follett, Peter A; Price, Don K; Stacy, Elizabeth A

    2008-08-01

    The little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae), is an invasive ant that forms supercolonies when it successfully invades new areas. W. auropunctata was first reported in Hawaii in 1999, and it has since invaded a variety of agricultural sites, including nurseries, orchards, and pastures. Amdro (hydramethylnon; in bait stations), Esteem (pyriproxyfen; broadcast bait), and Conserve (spinosad; ground spray) were tested for their efficacy against W. auropunctata in a rambutan, Nephelium lappaceum L. and mangosteen, Garcinia mangostana L., orchard by making treatments every 2 wk for 16 wk. Relative estimates of ant numbers in plots was determined by transect sampling using peanut butter-baited sticks. Significant treatment effects were observed on weeks 13-17, with reductions in ant counts occurring in the Amdro and Esteem treatments. During this period, the reduction in ant numbers from pretreatment counts averaged 47.1 and 92.5% in the Amdro and Esteem plots, respectively, whereas ant numbers in the untreated control plots increased by 185.9% compared with pretreatment counts. Conserve did not cause a reduction in ant counts as applied in our experiment. No plots for any of the treatments achieved 100% reduction. Pseudococcidae were counted on branch terminals at 4-wk intervals. The two predominant species, Nipaecoccus nipae (Maskell) and Nipaecoccus viridis (Newstead) were significantly lower in the Amdro and Esteem treatments on week 16 compared with controls. Many W. auropunctata were found nesting in protected sites in the orchard trees, which may have compromised the ground-based control methods. Absolute density estimates from shallow core samples taken from the orchard floor indicated the W. auropunctata supercolony exceeded 244 million ants and 22.7 kg wet weight per ha. PMID:18767711

  18. Ant-caterpillar antagonism at the community level: interhabitat variation of tritrophic interactions in a neotropical savanna.

    PubMed

    Sendoya, Sebastián F; Oliveira, Paulo S

    2015-03-01

    Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and

  19. Differential ant exclusion from canopies shows contrasting top-down effects on community structure.

    PubMed

    Mestre, Laia; Piñol, J; Barrientos, J A; Espadaler, X

    2016-01-01

    Predators have far-reaching effects on communities by triggering top-down trophic cascades that influence ecosystem functioning. Omnivory and intraguild interactions between predators give rise to reticulate food webs and may either strengthen or dampen trophic cascades depending on context. Disentangling the effects of multiple predator species is therefore crucial for predicting the influence of predators on community structure. We focused on ants as dominant generalist predators in arthropod communities and set up a differential ant exclusion from canopies to examine its effects on assemblage species composition and densities of five arthropod groups (psocopterans, aphids, spiders, heteropterans and beetles). We coupled a glue band with tubes allowing only the ant Lasius grandis to reach the canopies to isolate its effect from the rest of crawling predators (ants, earwigs) and compared it against a full exclusion and a control. L. grandis alone had widespread effects on assemblage species composition, with contrasting species-specific responses within groups, where some species affected by L. grandis presence were not further affected by the presence of the whole crawling predator assemblage, and vice versa. Overall, L. grandis caused two- to threefold decreases of generalist predators and a threefold increase of aphids. However, it lacked further top-down effects on primary consumers, which only emerged when all crawling predators were present. This differential exclusion demonstrates the distinctive and widespread intraguild effects on community structure of a single ant species that contrast with the top-down effects exerted by the whole crawling predator assemblage. PMID:26376660

  20. Indirect effects of a fungal entomopathogen, Lecanicillium lecanii (Hypocreales: Clavicipitaceae), on a coffee agroecosystem ant community.

    PubMed

    Macdonald, A J; Jackson, D; Zemenick, K

    2013-08-01

    Fungal entomopathogens are widely distributed across natural and managed systems, with numerous host species and likely a wide range of community impacts. While the potential for fungal pathogens to provide biological control has been explored in some detail, less is known about their community interactions. Here we investigate the effects of fungal epizootics of the entomopathogen Lecanicillium lecanii (Zimmerman) on a keystone mutualism between Azteca instabilis (F. Smith), a dominant arboreal ant, and the green coffee scale (Coccus viridis Green), as well as broader impacts on a coffee agroecosystem ant community. We hypothesized that seasonal epizootics cause shifts in the foraging ranges of A. instabilis as the ants adapt to the loss of the resource. We further hypothesized that the magnitude of these shifts depends on the availability of alternate resources located in neighboring shade trees. To test these hypotheses, we induced an epizootic in experimental sites, which were compared with control sites. Surveys of ant activity were undertaken pre- and post-epizootic. We found a decrease in foraging activity of A. instabilis and increase in activity of other ant species in the experimental sites post-epizootic. The decrease in abundance of A. instabilis foragers was greater on plants in which an epizootic was induced than in other plants. This relationship was modified by shade tree density where higher shade tree density was associated with larger decreases in A. intabilis foraging activity in coffee plants. These results demonstrate the potential for fungal entomopathogens to influence the structure and diversity of ecological communities. PMID:23905728

  1. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    PubMed

    Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-04-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850

  2. Analysis of the bacterial communities associated with two ant-plant symbioses.

    PubMed

    Seipke, Ryan F; Barke, Jörg; Heavens, Darren; Yu, Douglas W; Hutchings, Matthew I

    2013-04-01

    Insect fungiculture is practiced by ants, termites, beetles, and gall midges and it has been suggested to be widespread among plant-ants. Some of the insects engaged in fungiculture, including attine ants and bark beetles, are known to use symbiotic antibiotic-producing actinobacteria to protect themselves and their fungal cultivars against infection. In this study, we analyze the bacterial communities on the cuticles of the plant-ant genera Allomerus and Tetraponera using deep sequencing of 16S rRNA. Allomerus ants cultivate fungus as a building material to strengthen traps for prey, while Tetraponera ants cultivate fungus as a food source. We report that Allomerus and Tetraponera microbiomes contain >75% Proteobacteria and remarkably the bacterial phyla that dominate their cuticular microbiomes are very similar despite their geographic separation (South America and Africa, respectively). Notably, antibiotic-producing actinomycete bacteria represent a tiny fraction of the cuticular microbiomes of both Allomerus and Tetraponera spp. and instead they are dominated by γ-proteobacteria Erwinia and Serratia spp. Both these phyla are known to contain antibiotic-producing species which might therefore play a protective role in these ant-plant systems. PMID:23417898

  3. Precision control of an invasive ant on an ecologically sensitive tropical island: a principle with wide applicability.

    PubMed

    Gaigher, R; Samways, M J; Jolliffe, K G; Jolliffe, S

    2012-07-01

    Effective management of invasive ants is an important priority for many conservation programs but can be difficult to achieve, especially within ecologically sensitive habitats. This study assesses the efficacy and nontarget risk of a precision ant baiting method aiming to reduce a population of the invasive big-headed ant Pheidole megacephala on a tropical island of great conservation value. Area-wide application of a formicidal bait, delivered in bait stations, resulted in the rapid decline of 8 ha of P. megacephala. Effective suppression remained throughout the succeeding 11-month monitoring period. We detected no negative effects of baiting on nontarget arthropods. Indeed, species richness of nontarget ants and abundance of other soil-surface arthropods increased significantly after P. megacephala suppression. This bait station method minimized bait exposure to nontarget organisms and was cost effective and adaptable to target species density. However, it was only effective over short distances and required thorough bait placement. This method would therefore be most appropriate for localized P. megacephala infestations where the prevention of nontarget impacts is essential. The methodology used here would be applicable to other sensitive tropical environments. PMID:22908700

  4. North American Invasion of the Tawny Crazy Ant (Nylanderia fulva) Is Enabled by Pheromonal Synergism from Two Separate Glands.

    PubMed

    Zhang, Qing-He; McDonald, Danny L; Hoover, Doreen R; Aldrich, Jeffrey R; Schneidmiller, Rodney G

    2015-09-01

    A new invader, the "tawny crazy ant", Nylanderia fulva (Hymenoptera: Formicidae; Formicinae), is displacing the red imported fire ant, Solenopsis invicta (Formicidae: Myrmicinae), in the southern U.S., likely through its superior chemical arsenal and communication. Alone, formic acid is unattractive, but this venom (= poison) acid powerfully synergizes attraction of tawny crazy ants to volatiles from the Dufour's gland secretion of N. fulva workers, including the two major components, undecane and 2-tridecanone. The unexpected pheromonal synergism between the Dufour's gland and the venom gland appears to be another key factor, in addition to previously known defensive and detoxification semiochemical features, for the successful invasion and domination of N. fulva in the southern U.S. This synergism is an efficient mechanism enabling N. fulva workers to outcompete Solenopsis and other ant species for food and territory. From a practical standpoint, judicious point-source release formulation of tawny crazy ant volatiles may be pivotal for enhanced attract-and-kill management of this pest. PMID:26315627

  5. Habitat alteration increases invasive fire ant abundance to the detriment of amphibians and reptiles

    USGS Publications Warehouse

    Todd, B.D.; Rothermel, B.B.; Reed, R.N.; Luhring, T.M.; Schlatter, K.; Trenkamp, L.; Gibbons, J.W.

    2008-01-01

    Altered habitats have been suggested to facilitate red imported fire ant (Solenopsis invicta) colonization and dispersal, possibly compounding effects of habitat alteration on native wildlife. In this study, we compared colonization intensity of wood cover boards by S. invicta among four forest management treatments in South Carolina, USA: an unharvested control (>30 years old); a partially thinned stand; a clearcut with coarse woody debris retained; and a clearcut with coarse woody debris removed. Additionally, we compared dehydration rates and survival of recently metamorphosed salamanders (marbled salamanders, Ambystoma opacum, and mole salamanders, A. talpoideum) among treatments. We found that the number of wood cover boards colonized by S. invicta differed significantly among treatments, being lowest in the unharvested forest treatments and increasing with the degree of habitat alteration. Salamanders that were maintained in experimental field enclosures to study water loss were unexpectedly subjected to high levels of S. invicta predation that differed among forest treatments. All known predation by S. invicta was restricted to salamanders in clearcuts. The amount of vegetative ground cover was inversely related to the likelihood of S. invicta predation of salamanders. Our results show that S. invicta abundance increases with habitat disturbance and that this increased abundance has negative consequences for amphibians that remain in altered habitats. Our findings also suggest that the presence of invasive S. invicta may compromise the utility of cover boards and other techniques commonly used in herpetological studies in the Southeast. ?? 2007 Springer Science+Business Media B.V.

  6. The GÉANT network: addressing current and future needs of the HEP community

    NASA Astrophysics Data System (ADS)

    Capone, Vincenzo; Usman, Mian

    2015-12-01

    The GÉANT infrastructure is the backbone that serves the scientific communities in Europe for their data movement needs and their access to international research and education networks. Using the extensive fibre footprint and infrastructure in Europe the GÉANT network delivers a portfolio of services aimed to best fit the specific needs of the users, including Authentication and Authorization Infrastructure, end-to-end performance monitoring, advanced network services (dynamic circuits, L2-L3VPN, MD-VPN). This talk will outline the factors that help the GÉANT network to respond to the needs of the High Energy Physics community, both in Europe and worldwide. The Pan-European network provides the connectivity between 40 European national research and education networks. In addition, GÉANT also connects the European NRENs to the R&E networks in other world region and has reach to over 110 NREN worldwide, making GÉANT the best connected Research and Education network, with its multiple intercontinental links to different continents e.g. North and South America, Africa and Asia-Pacific. The High Energy Physics computational needs have always had (and will keep having) a leading role among the scientific user groups of the GÉANT network: the LHCONE overlay network has been built, in collaboration with the other big world REN, specifically to address the peculiar needs of the LHC data movement. Recently, as a result of a series of coordinated efforts, the LHCONE network has been expanded to the Asia-Pacific area, and is going to include some of the main regional R&E network in the area. The LHC community is not the only one that is actively using a distributed computing model (hence the need for a high-performance network); new communities are arising, as BELLE II. GÉANT is deeply involved also with the BELLE II Experiment, to provide full support to their distributed computing model, along with a perfSONAR-based network monitoring system. GÉANT has also

  7. Experimental evidence that dispersal drives ant community assembly in human-altered ecosystems.

    PubMed

    King, Joshua R; Tschinkel, Walter R

    2016-01-01

    A key shortcoming in our understanding of exotic species' success is that it is not known how post-introduction dispersal contributes to the success of exotic species and the reassembly of invaded communities. Exotic and native species face poorly understood competition-colonization trade-offs in heterogeneous landscapes of natural and anthropogenic habitats. We conducted three experiments that tested how ant queen behavior during dispersal affects community composition. Using experimental plots, we tested whether (1) different types of habitat disturbance and (2) different sizes of habitat disturbance affected the abundance of newly mated queens landing in the plots. The three most abundant species captured were the exotic fire ant Solenopsis invicta, and the native species Brachymyrmex depilis, and S. pergandei, respectively. When queens were considered collectively, more queens landed in plowed, sand-added, and roadside plots than in control or mow plots, in other words, in the more heavily disturbed plots. We also tested (3) the effect of habitat manipulations on the survival of newly mated fire ant queens (Solenopsis invicta). Soil disturbance (tilling), lack of shade, and removal (poisoning) of the ant community resulted in the greatest fire ant colony survivorship. Collectively, experiments revealed that both exotic and native newly mated ant queens select open, human-altered ecosystems for founding new colonies. The selection of such habitats by fire ant queens leads to their successful colony founding and ultimately to their dominance in those habitats. Selection of disturbed habitats is therefore advantageous for exotic species but is an ecological trap for native species because they do not often succeed in founding colonies in these habitats. PMID:27008792

  8. Ant community composition across a gradient of disturbed military landscapes at Fort Benning, Georgia

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2008-01-01

    Military training, soil texture, and ground cover influence ant communities at Fort Benning, a military installation in west-central Georgia. We sampled 81,237 ground-dwelling ants (47 species in 20 genera) with pitfall traps at 40 sites on a continuum from nearly pristine forest to highly disturbed training areas. We also measured 15 environmental variables related to vegetation and soil. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and more compact soils with shallower A-horizons than comparable undisturbed sites. Pheidole bicarinata, Dorymyrmex smithi, and Pogonomyrmex badius dominated the most highly disturbed sites. Competitively submissive myrmicines, such as Aphaenogaster and Crematogaster, and formicines, such as Camponotus and Formica, were abundant in the undisturbed sites. Solenopsis invicta occurred in all but the least disturbed sites. Ant community composition was a useful indicator of disturbance at Fort Benning.

  9. Estimation of the number of founders of an invasive pest insect population: the fire ant Solenopsis invicta in the USA

    PubMed Central

    Ross, Kenneth G; Shoemaker, D. DeWayne

    2008-01-01

    Determination of the number of founders responsible for the establishment of invasive populations is important for developing biologically based management practices, predicting the invasive potential of species, and making inferences about ecological and evolutionary processes. The fire ant Solenopsis invicta is a major invasive pest insect first introduced into the USA from its native South American range in the mid-1930s. We use data from diverse genetic markers surveyed in the source population and the USA to estimate the number of founders of this introduced population. Data from different classes of nuclear markers (microsatellites, allozymes, sex-determination locus) and mitochondrial DNA are largely congruent in suggesting that 9–20 unrelated mated queens comprised the initial founder group to colonize the USA at Mobile, Alabama. Estimates of founder group size based on expanded samples from throughout the southern USA were marginally higher than this, consistent with the hypothesis of one or more secondary introductions of the ant into the USA. The rapid spread and massive population build-up of introduced S. invicta occurred despite the loss of substantial genetic variation associated with the relatively small invasive propagule size, a pattern especially surprising in light of the substantial genetic load imposed by the loss of variation at the sex-determination locus. PMID:18577505

  10. Ecosystem-Wide Morphological Structure of Leaf-Litter Ant Communities along a Tropical Latitudinal Gradient

    PubMed Central

    Silva, Rogério R.; Brandão, Carlos Roberto F.

    2014-01-01

    General principles that shape community structure can be described based on a functional trait approach grounded on predictive models; increased attention has been paid to factors accounting for the functional diversity of species assemblages and its association with species richness along environmental gradients. We analyze here the interaction between leaf-litter ant species richness, the local communities' morphological structure and fundamental niche within the context of a northeast-southeast latitudinal gradient in one of the world's most species-rich ecosystems, the Atlantic Forest, representing 2,700 km of tropical rainforest along almost 20o of latitude in eastern Brazil. Our results are consistent with an ecosystem-wide pattern in communities' structure, with relatively high species turnover but functionally analogous leaf-litter ant communities' organization. Our results suggest directional shifts in the morphological space along the environmental gradient from overdispersed to aggregated (from North to South), suggesting that primary productivity and environmental heterogeneity (altitude, temperature and precipitation in the case) determine the distribution of traits and regulate the assembly rules, shaping local leaf-litter ant communities. Contrary to the expected and most common pattern along latitudinal gradients, the Atlantic Forest leaf litter ant communities show an inverse pattern in richness, that is, richer communities in higher than in lower latitudes. The morphological specialization of communities showed more morphologically distinct communities at low latitudes and species redundancy at high latitudes. We claim that an inverse latitudinal gradient in primary productivity and environmental heterogeneity across the Atlantic forest may affect morphological diversity and species richness, enhancing species coexistence mechanisms, and producing thus the observed patterns. We suggest that a functional framework based on flexible enough traits

  11. Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient.

    PubMed

    Silva, Rogério R; Brandão, Carlos Roberto F

    2014-01-01

    General principles that shape community structure can be described based on a functional trait approach grounded on predictive models; increased attention has been paid to factors accounting for the functional diversity of species assemblages and its association with species richness along environmental gradients. We analyze here the interaction between leaf-litter ant species richness, the local communities' morphological structure and fundamental niche within the context of a northeast-southeast latitudinal gradient in one of the world's most species-rich ecosystems, the Atlantic Forest, representing 2,700 km of tropical rainforest along almost 20° of latitude in eastern Brazil. Our results are consistent with an ecosystem-wide pattern in communities' structure, with relatively high species turnover but functionally analogous leaf-litter ant communities' organization. Our results suggest directional shifts in the morphological space along the environmental gradient from overdispersed to aggregated (from North to South), suggesting that primary productivity and environmental heterogeneity (altitude, temperature and precipitation in the case) determine the distribution of traits and regulate the assembly rules, shaping local leaf-litter ant communities. Contrary to the expected and most common pattern along latitudinal gradients, the Atlantic Forest leaf litter ant communities show an inverse pattern in richness, that is, richer communities in higher than in lower latitudes. The morphological specialization of communities showed more morphologically distinct communities at low latitudes and species redundancy at high latitudes. We claim that an inverse latitudinal gradient in primary productivity and environmental heterogeneity across the Atlantic forest may affect morphological diversity and species richness, enhancing species coexistence mechanisms, and producing thus the observed patterns. We suggest that a functional framework based on flexible enough traits

  12. Workers select mates for queens: a possible mechanism of gene flow restriction between supercolonies of the invasive Argentine ant

    NASA Astrophysics Data System (ADS)

    Sunamura, Eiriki; Hoshizaki, Sugihiko; Sakamoto, Hironori; Fujii, Takeshi; Nishisue, Koji; Suzuki, Shun; Terayama, Mamoru; Ishikawa, Yukio; Tatsuki, Sadahiro

    2011-05-01

    Some invasive ants form large networks of mutually non-aggressive nests, i.e., supercolonies. The Argentine ant Linepithema humile forms much larger supercolonies in introduced ranges than in its native range. In both cases, it has been shown that little gene flow occurs between supercolonies of this species, though the mechanism of gene flow restriction is unknown. In this species, queens do not undertake nuptial flight, and males have to travel to foreign nests and cope with workers before gaining access to alien queens. In this study, we hypothesized that male Argentine ants receive interference from workers of alien supercolonies. To test this hypothesis, we conducted behavioral and chemical experiments using ants from two supercolonies in Japan. Workers attacked males from alien supercolonies but not those from their own supercolonies. The level of aggression against alien males was similar to that against alien workers. The frequency of severe aggression against alien males increased as the number of recipient workers increased. Cuticular hydrocarbon profiles, which serve as cues for nestmate recognition, of workers and males from the same supercolony were very similar. Workers are likely to distinguish alien males from males of their own supercolony using the profiles. It is predicted that males are subject to considerable aggression from workers when they intrude into the nests of alien supercolonies. This may be a mechanism underlying the restricted gene flow between supercolonies of Argentine ants. The Argentine ant may possess a distinctive reproductive system, where workers participate in selecting mates for their queens. We argue that the aggression of workers against alien males is a novel form of reproductive interference.

  13. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens

    SciTech Connect

    Aylward, Frank O.; Burnum, Kristin E.; Scott, Jarrod J.; Suen, Garret; Tringe, Susannah G.; Adams, Sandra M.; Barry, Kerrie W.; Nicora, Carrie D.; Piehowski, Paul D.; Purvine, Samuel O.; Starrett, Gabriel J.; Goodwin, Lynne A.; Smith, Richard D.; Lipton, Mary S.; Currie, Cameron R.

    2012-09-01

    Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant Neotropical herbivores cultivate symbiotic fungus gardens on massive quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers in mature Atta colonies. Here we use metagenomic, and metaproteomic techniques to characterize the bacterial diversity and overall physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that, in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter, and Escherichia. We show that these bacterial communities possess genes commonly associated with lignocellulose degradation, and likely participate in the processing of plant biomass. Additionally, we demonstrate that bacteria in these environments encode a diverse suite of biosynthetic pathways, and that they may enrich the nitrogen-poor forage of the ants with B-vitamins, amino acids, and proteins. These results are consistent with the hypothesis that fungus gardens are highly-specialized fungus-bacteria communities that efficiently convert plant material into usable energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities to the ecology and evolution of herbivorous metazoans.

  14. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0

    PubMed Central

    Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-01-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT’s unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the “symbiotic layout” of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850

  15. Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    DOE PAGESBeta

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; DeLisi, Charles; Segre, Daniel; Hu, Zhenjun

    2016-04-15

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  16. Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens

    PubMed Central

    Aylward, Frank O; Burnum, Kristin E; Scott, Jarrod J; Suen, Garret; Tringe, Susannah G; Adams, Sandra M; Barry, Kerrie W; Nicora, Carrie D; Piehowski, Paul D; Purvine, Samuel O; Starrett, Gabriel J; Goodwin, Lynne A; Smith, Richard D; Lipton, Mary S; Currie, Cameron R

    2012-01-01

    Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans. PMID:22378535

  17. Tank bromeliads as natural microcosms: a facultative association with ants influences the aquatic invertebrate community structure.

    PubMed

    Talaga, Stanislas; Dézerald, Olivier; Carteron, Alexis; Petitclerc, Frédéric; Leroy, Céline; Céréghino, Régis; Dejean, Alain

    2015-10-01

    Many tank bromeliads have facultative relationships with ants as is the case in French Guiana between Aechmea aquilega (Salib.) Griseb. and the trap-jaw ant, Odontomachus haematodus Linnaeus. Using a redundancy analysis, we determined that the presence of O. haematodus colonies is accompanied by a greater quantity of fine particulate organic matter in the water likely due to their wastes. This increase in nutrient availability is significantly correlated with an increase in the abundance of some detritivorous taxa, suggesting a positive bottom-up influence on the aquatic macroinvertebrate communities living in the A. aquilega wells. On the other hand, the abundance of top predators is negatively affected by a lower number of available wells due to ant constructions for nesting, releasing a top-down pressure that could also favor lower trophic levels. PMID:26302833

  18. Propagule pressure and colony social organization are associated with the successful invasion and rapid range expansion of fire ants in China.

    PubMed

    Yang, Chin-Cheng; Ascunce, Marina S; Luo, Li-Zhi; Shao, Jing-Guo; Shih, Cheng-Jen; Shoemaker, DeWayne

    2012-02-01

    We characterized patterns of genetic variation in populations of the fire ant Solenopsis invicta in China using mitochondrial DNA sequences and nuclear microsatellite loci to test predictions as to how propagule pressure and subsequent dispersal following establishment jointly shape the invasion success of this ant in this recently invaded area. Fire ants in Wuchuan (Guangdong Province) are genetically differentiated from those found in other large infested areas of China. The immediate source of ants in Wuchuan appears to be somewhere near Texas, which ranks first among the southern USA infested states in the exportation of goods to China. Most colonies from spatially distant, outlying areas in China are genetically similar to one another and appear to share a common source (Wuchuan, Guangdong Province), suggesting that long-distance jump dispersal has been a prevalent means of recent spread of fire ants in China. Furthermore, most colonies at outlier sites are of the polygyne social form (featuring multiple egg-laying queens per nest), reinforcing the important role of this social form in the successful invasion of new areas and subsequent range expansion following invasion. Several analyses consistently revealed characteristic signatures of genetic bottlenecks for S. invicta populations in China. The results of this study highlight the invasive potential of this pest ant, suggest that the magnitude of international trade may serve as a predictor of propagule pressure and indicate that rates and patterns of subsequent range expansion are partly determined by the interplay between species traits and the trade and transportation networks. PMID:22181975

  19. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community.

    PubMed

    Blüthgen, Nico; Gebauer, Gerhard; Fiedler, Konrad

    2003-11-01

    For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (delta(15)N and delta(13)C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 per thousand in delta(15)N and 6.8 per thousand in delta(13)C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in delta(15)N between ants was not correlated with plant delta(15)N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' delta(15)N were consistent with the trophic level predicted by natural feeding observations, but not their delta(13)C. Low delta(15)N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants (Oecophylla smaragdina) had significantly lower delta(15)N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and

  20. Effects of harvester ant (Messor spp.) activity on soil properties and microbial communities in a Negev Desert ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvester ants (Messor spp.) function as an essential link between aboveground resources and belowground biota such as the microbial community. We examined changes in soil microbial biomass and functional diversity resulting from harvester ant (Messor spp.) activity in the Negev Desert, Israel. Abi...

  1. SEASONAL AND DIURNAL ACTIVITY PATTERNS IN ANT (HYMENOPTERA: FORMICIDAE) COMMUNITIES IN A VEGETATION TRANSITION REGION OF SOUTHEASTERN NEW MEXICO

    EPA Science Inventory

    The densities of active ant colonies were estimated in three habitats: creosotebush shrubland, grassland, and shinnery-oak mesquite dunes. Diurnal foraging patterns were studied at bait boards. Species richness of ant communities in this transitional region (8-12 species) was co...

  2. Effects of temporally persistent ant nests of soil protozoan communities and the abundance of morphological types of amoeba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared soil protozoan communities near ant nests with soil protozoans in reference soils 5m from the edge of any mounds. We sampled three species of Chihuahuan Desert ants that construct nests that persist for more than a decade: a seed harvester, Pogonomymex rugosus, a liquid feeding honey-po...

  3. Seed Selection by the Harvester Ant Pogonomyrmex rugosus (Hymenoptera: Formicidae) in Coastal Sage Scrub: Interactions With Invasive Plant Species.

    PubMed

    Briggs, C M; Redak, R A

    2016-08-01

    Harvester ants can be the dominant seed predators on plants by collecting and eating seeds and are known to influence plant communities. Harvester ants are abundant in coastal sage scrub (CSS), and CSS is frequently invaded by several exotic plant species. This study used observations of foraging and cafeteria-style experiments to test for seed species selection by the harvester ant Pogonomyrmex rugosus Emery (Hymenoptera: Formicidae) in CSS. Analysis of foraging behavior showed that P. rugosus carried seeds of exotic Erodium cicutarium (L.) and exotic Brassica tournefortii (Gouan) on 85 and 15% of return trips to the nest (respectively), and only a very few ants carried the native seeds found within the study areas. When compared with the availability of seeds in the field, P. rugosus selected exotic E. cicutarium and avoided both native Encelia farinosa (Torrey & A. Gray) and exotic B. tournefortii. Foraging by P. rugosus had no major effect on the seed bank in the field. Cafeteria-style experiments confirmed that P. rugosus selected E. cicutarium over other available seeds. Native Eriogonum fasciculatum (Bentham) seeds were even less selected than E. farinosa and B. tournefortii. PMID:27257121

  4. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community.

    PubMed

    Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Yanoviak, Stephen P; Kay, Adam

    2015-03-01

    The Thermal Adaptation Hypothesis posits that the warmer, aseasonal tropics generates populations with higher and narrower thermal limits. It has largely been tested among populations across latitudes. However, considerable thermal heterogeneity exists within ecosystems: across 31 trees in a Panama rainforest, surfaces exposed to sun were 8 °C warmer and varied more in temperature than surfaces in the litter below. Tiny ectotherms are confined to surfaces and are variously submerged in these superheated boundary layer environments. We quantified the surface CTmin and CTmax s (surface temperatures at which individuals grew torpid and lost motor control, respectively) of 88 ant species from this forest; they ranged in average mass from 0.01 to 57 mg. Larger ants had broader thermal tolerances. Then, for 26 of these species we again tested body CTmax s using a thermal dry bath to eliminate boundary layer effects: body size correlations observed previously disappeared. In both experiments, consistent with Thermal Adaptation, CTmax s of canopy ants averaged 3.5-5 °C higher than populations that nested in the shade of the understory. We impaled thermocouples in taxidermy mounts to further quantify the factors shaping operative temperatures for four ant species representing the top third (1-30 mg) of the size distribution. Extrapolations suggest the smallest 2/3rds of species reach thermal equilibrium in <10s. Moreover, the large ants that walk above the convective superheated surface air also showed more net heating by solar radiation, with operative temperatures up to 4 °C higher than surrounding air. The thermal environments of this Panama rainforest generate a range of CTmax subsuming 74% of those previously recorded for ant populations worldwide. The Thermal Adaptation Hypothesis can be a powerful tool in predicting diversity of thermal limits within communities. Boundary layer temperatures are likely key to predicting the future of Earth's tiny terrestrial

  5. Antagonistic Interactions between the African Weaver Ant Oecophylla longinoda and the Parasitoid Anagyrus pseudococci Potentially Limits Suppression of the Invasive Mealybug Rastrococcus iceryoides.

    PubMed

    Tanga, Chrysantus M; Ekesi, Sunday; Govender, Prem; Nderitu, Peterson W; Mohamed, Samira A

    2015-01-01

    The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter's infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid Anagyrus pseudococci Girault were assessed under laboratory conditions. The percentage of parasitism of R. iceryoides by A. pseudococci was significantly higher on "ant-excluded" treatments (86.6% ± 1.27%) compared to "ant-tended" treatments (51.4% ± 4.13%). The low female-biased sex-ratio observed in the "ant-tended" treatment can be attributed to ants' interference during the oviposition phase, which disrupted parasitoids' ability to fertilize eggs. The mean foraging time, host handling time and number of successful oviposition in "ant-excluded" treatment were significantly higher compared to "ant-tended" treatments. When ant workers were allowed access to sterilized sand grains, mummified and unmummified R. iceryoides, they selectively removed the mummified mealybugs, indicating that they recognized the mummies as potential foods (1.2 ± 0.46 to 7.8 ± 1.17 mummies at 10 min intervals for 2 h). Percentage emergence from mummified R. iceryoides removed by the ants was significantly lower compared to emergence from mummies not exposed to ants. Although, host seeking parasitoids frequently evaded attacks, some were killed by the foraging ant workers (2.0 ± 0.38 to 6.0 ± 0.88 at 10 min intervals for 2 h). These results suggest for the first time that the presence of O. longinoda has a detrimental effect on the abundance, reproductive success and possibly oviposition strategy of female parasitoids, which might be a delimiting factor in field conditions if both natural enemies are to be recommended for use within the same agro-ecosystem. PMID:26703741

  6. Impact of forest seral stage on use of ant communities for rapid assessment of terrestrial ecosystem health.

    PubMed

    Wike, Lynn D; Martin, F Douglas; Paller, Michael H; Nelson, Eric A

    2010-01-01

    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests. PMID:20673195

  7. Impact of Forest Seral Stage on use of Ant Communities for Rapid Assessment of Terrestrial Ecosystem Health

    PubMed Central

    Wike, Lynn D.; Martin, F. Douglas; Paller, Michael H.; Nelson, Eric A.

    2010-01-01

    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests. PMID:20673195

  8. Designing Invasion Resistant Plant Communities: The Role of Plant Functional Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishing and maintaining weed-resistant plant communities is a central goal of sustainable invasive plant management programs. Plant community characteristics that improve invasion resistance, however, are poorly understood. Here we synthesize data from multiple studies and show traits related ...

  9. Antagonistic Interactions between the African Weaver Ant Oecophylla longinoda and the Parasitoid Anagyrus pseudococci Potentially Limits Suppression of the Invasive Mealybug Rastrococcus iceryoides

    PubMed Central

    Tanga, Chrysantus M.; Ekesi, Sunday; Govender, Prem; Nderitu, Peterson W.; Mohamed, Samira A.

    2015-01-01

    The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter’s infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid Anagyrus pseudococci Girault were assessed under laboratory conditions. The percentage of parasitism of R. iceryoides by A. pseudococci was significantly higher on “ant-excluded” treatments (86.6% ± 1.27%) compared to “ant-tended” treatments (51.4% ± 4.13%). The low female-biased sex-ratio observed in the “ant-tended” treatment can be attributed to ants’ interference during the oviposition phase, which disrupted parasitoids’ ability to fertilize eggs. The mean foraging time, host handling time and number of successful oviposition in “ant-excluded” treatment were significantly higher compared to “ant-tended” treatments. When ant workers were allowed access to sterilized sand grains, mummified and unmummified R. iceryoides, they selectively removed the mummified mealybugs, indicating that they recognized the mummies as potential foods (1.2 ± 0.46 to 7.8 ± 1.17 mummies at 10 min intervals for 2 h). Percentage emergence from mummified R. iceryoides removed by the ants was significantly lower compared to emergence from mummies not exposed to ants. Although, host seeking parasitoids frequently evaded attacks, some were killed by the foraging ant workers (2.0 ± 0.38 to 6.0 ± 0.88 at 10 min intervals for 2 h). These results suggest for the first time that the presence of O. longinoda has a detrimental effect on the abundance, reproductive success and possibly oviposition strategy of female parasitoids, which might be a delimiting factor in field conditions if both natural enemies are to be recommended for use within the same agro-ecosystem. PMID:26703741

  10. The effects of food presentation and microhabitat upon resource monopoly in a ground-foraging ant (Hymenoptera: Formicidae) community.

    PubMed

    McGlynn, T P; Kirksey, S E

    2000-01-01

    In Neotropical wet forests several species of omnivorous, resource-defending ants, live and forage in close proximity to one another. Although the forest floor is heterogeneous in microhabitat and food quantity, little is known about the impact of microhabitat and food variation upon resource monopoly among ants. We investigated how food type and microhabitat influence food monopoly in resource-defending ants in old-growth tropical wet forest in the Caribbean lowlands of Costa Rica. We measured several microhabitat characteristics at 66 points in a 0.5 hectare plot, and baited each point with two categories of tuna bait. These baits were presented in "split" and "clumped" arrangements. We measured the frequency of bait monopoly by a single species, as well as the number of recruited ant foragers at a bait. Out of five common species, two (Wasmannia auropunctata and Pheidole simonsi) more frequently monopolized one bait type over the other, and one (P. simonsi) recruited more ants to the split baits. We then considered the recruitment response by all ant species in the community. We found that the frequency of monopoly, sharing, and the absence of ants at a given point in the rainforest differed with bait type. The frequency of monopoly was associated with microhabitat type in two out of eight microhabitat variables (leaf litter depth and palms); variation in two other types (canopy tree distance and leafcutter ant trails) was associated with changes in forager number. In at least two ant species, food presentation affected monopoly at baits; among all resource-defending ants, the microhabitats where ants foraged for food and the type of food located determined in part the frequency of monopoly and the number of foragers at the food item. These results suggest that the location and presentation of food items determines in part which ant species will utilize the resource. PMID:11354970

  11. Characterization of the Microbial Communities in the Ant Lion Euroleon coreanus (Okamoto) (Neuroptera: Myrmeleontidae).

    PubMed

    Liu, J N; Wang, T H; Jia, Q Y; Gao, X H; Wan, H; Sun, W Y; Yang, X L; Bao, R; Liu, J Z; Yu, Z J

    2016-08-01

    Euroleon coreanus (Okamoto) is widely distributed in China, and the larval stage can be treated as traditional Chinese medicine. However, the host-bacterium relationship remains unexplored, as there is a lack of knowledge on the microbial community of ant lions. Hence, in the current study, we explored the microbial community of the larval ant lion E. coreanus using Illumina MiSeq sequencing. Results indicated that a total of 10 phyla, 126 genera, and 145 species were characterized from the second instars of E. coreanus, and most of the microbes were classified in the phylum Proteobacteria. Cronobacter muytjensii was the most abundant species characterized in the whole body and gut of E. coreanus, and the unclassified species in the genera Brevundimonas and Lactobacillus were relatively more abundant in the head and carcass. In addition, no Wolbachia-like bacteria were detected, whereas bacteria like Francisella tularensis subsp. Holarctica OSU18 and unclassified Rickettsiella were first identified in ant lion E. coreanus. PMID:27021349

  12. Symbiotic mutualism with a community of opportunistic ants: protection, competition, and ant occupancy of the myrmecophyte Barteria nigritana (Passifloraceae)

    NASA Astrophysics Data System (ADS)

    Djiéto-Lordon, Champlain; Dejean, Alain; Gibernau, Marc; Hossaert-McKey, Martine; McKey, Doyle

    2004-10-01

    Barteria nigritana is a myrmecophyte tree of Lower Guinea coastal vegetation. Unlike the more specialised B. fistulosa, which harbours a single host-specific mutualistic ant, B. nigritana is associated with several opportunistic ants. Such symbiotic, yet opportunistic, ant-plant associations have been little studied. On 113 clumps of B. nigritana, we censused ant associates and herbivores and compared herbivory on plants occupied by different ants. In addition to these correlative data, protection conferred by different ant species was compared by herbivore-placement experiments. Identity of ant associate changed predictably over plant ontogeny. Pheidole megacephala was restricted to very small plants; saplings were occupied by either Oecophylla longinoda or Crematogaster sp., and the latter species was the sole occupant of larger trees. Damage by caterpillars of the nymphalid butterfly Acraea zetes accounted for much of the herbivory to leaves. Ant species differed in the protection provided to hosts. While P. megacephala provided no significant protection, plants occupied by O. longinoda and Crematogaster sp. suffered less damage than did unoccupied plants or those occupied by P. megacephala. Furthermore, O. longinoda provided more effective protection than did Crematogaster sp. Herbivore-placement experiments confirmed these results. Workers of O. longinoda killed or removed all larval instars of A. zetes. Crematogaster preyed on only the two first larval instars, and P. megacephala preyed mainly on eggs, only rarely attacking the two first larval instars. Opportunistic ants provided significant protection to this relatively unspecialised myrmecophyte. The usual associate of mature trees was not the species that provided most protection.

  13. Distribution of Endosymbiotic Reproductive Manipulators Reflects Invasion Process and Not Reproductive System Polymorphism in the Little Fire Ant Wasmannia auropunctata

    PubMed Central

    Rey, Olivier; Estoup, Arnaud; Facon, Benoit; Loiseau, Anne; Aebi, Alexandre; Duron, Olivier; Vavre, Fabrice; Foucaud, Julien

    2013-01-01

    Endosymbiotic reproductive manipulators may have drastic effects on the ecological and evolutionary dynamics of their hosts. The prevalence of these endosymbionts reflects both their ability to manipulate their hosts and the history of the host populations. The little fire ant Wasmannia auropunctata displays a polymorphism in both its reproductive system (sexual versus clonal populations) and the invasive status of its populations (associated to a habitat shift). We first screened for the presence of a diverse array of reproductive parasites in sexual and clonal populations of W. auropunctata, as a means to investigate the role of endosymbionts in reproductive phenotypes. Wolbachia was the only symbiont found and we then focused on its worldwide distribution and diversity in natural populations of W. auropunctata. Using a multilocus scheme, we further characterized the Wolbachia strains present in these populations. We found that almost all the native sexual populations and only a few clonal populations are infected by Wolbachia. The presence of similar Wolbachia strains in both sexual and clonal populations indicates that they are probably not the cause of the reproductive system polymorphism. The observed pattern seems rather associated to the invasion process of W. auropunctata. In particular, the observed loss of Wolbachia in clonal populations, that recurrently emerged from sexual populations, likely resulted from natural heat treatment and/or relaxed selection during the shift in habitat associated to the invasion process. PMID:23505512

  14. Riparian reserves within oil palm plantations conserve logged forest leaf litter ant communities and maintain associated scavenging rates

    PubMed Central

    Gray, Claudia L; Lewis, Owen T; Chung, Arthur Y C; Fayle, Tom M

    2015-01-01

    The expansion of oil palm plantations at the expense of tropical forests is causing declines in many species and altering ecosystem functions. Maintaining forest-dependent species and processes in these landscapes may therefore limit the negative impacts of this economically important industry. Protecting riparian vegetation may be one such opportunity; forest buffer strips are commonly protected for hydrological reasons, but can also conserve functionally important taxa and the processes they support. We surveyed leaf litter ant communities within oil palm-dominated landscapes in Sabah, Malaysia, using protein baits. As the scavenging activity of ants influences important ecological characteristics such as nutrient cycling and soil structure, we quantified species-specific rates of bait removal to examine how this process may change across land uses and establish which changes in community structure underlie observed shifts in activity. Riparian reserves had similar ant species richness, community composition and scavenging rates to nearby continuous logged forest. Reserve width and vegetation structure did not affect ant species richness significantly. However, the number of foraging individuals decreased with increasing reserve width, and scavenging rate increased with vegetation complexity. Oil palm ant communities were characterized by significantly lower species richness than logged forest and riparian reserves and also by altered community composition and reduced scavenging rates. Reduced scavenging activity in oil palm was not explained by a reduction in ant species richness, nor by replacement of forest ant species by those with lower per species scavenging rates. There was also no significant effect of land use on the scavenging activity of the forest species that persisted in oil palm. Rather, changes in scavenging activity were best explained by a reduction in the mean rate of bait removal per individual ant across all species in the community

  15. Molecular approach to describing a seed-based food web: the post-dispersal granivore community of an invasive plant

    PubMed Central

    Lundgren, Jonathan G; Saska, Pavel; Honěk, Alois

    2013-01-01

    Communities of post-dispersal granivores can shape the density and dispersion of exotic plants and invasive weeds, yet plant ecologists have a limited perception of the relative trophic linkages between a seed species and members of its granivore community. Dandelion seeds marked with Rabbit IgG were disseminated into replicated plots in the recipient habitat (South Dakota) and the native range (Czech Republic). Arthropods were collected in pitfall traps, and their guts were searched for the protein marker using enzyme-linked immunosorbent assay (ELISA). Seed dishes were placed in each plot, and dandelion seed removal rates were measured. The entire experiment was repeated five times over the dandelion flowering period. Gut analysis revealed that approximately 22% of specimens tested positive for the seed marker. A more diverse granivore community had trophic linkages to seeds than has been previously realized under field conditions. This community included taxa such as isopods, millipedes, weevils, rove beetles, and caterpillars, in addition to the traditionally recognized ants, crickets, and carabid beetles. Rarefaction and Chao analysis estimated approximately 16 and 27 species in the granivore communities of the Czech Republic and South Dakota, respectively. Synthesis: Generalist granivore communities are diverse and polyphagous, and are clearly important as a form of biotic resistance to invasive and weedy plants. These granivore communities can be managed to limit population growth of these pests. PMID:23789074

  16. High temperature and temperature variation undermine future disease susceptibility in a population of the invasive garden ant Lasius neglectus.

    PubMed

    Pamminger, Tobias; Steier, Thomas; Tragust, Simon

    2016-06-01

    Environmental temperature and temperature variation can have strong effects on the outcome of host-parasite interactions. Whilst such effects have been reported for different host systems, long-term consequences of pre-infection temperatures on host susceptibility and immunity remain understudied. Here, we show that experiencing both a biologically relevant increase in temperature and temperature variation undermines future disease susceptibility of the invasive garden ant Lasius neglectus when challenged with a pathogen under a constant temperature regime. In light of the economic and ecological importance of many social insects, our results emphasise the necessity to take the hosts' temperature history into account when studying host-parasite interactions under both natural and laboratory conditions, especially in the face of global change. PMID:27206570

  17. High temperature and temperature variation undermine future disease susceptibility in a population of the invasive garden ant Lasius neglectus

    NASA Astrophysics Data System (ADS)

    Pamminger, Tobias; Steier, Thomas; Tragust, Simon

    2016-06-01

    Environmental temperature and temperature variation can have strong effects on the outcome of host-parasite interactions. Whilst such effects have been reported for different host systems, long-term consequences of pre-infection temperatures on host susceptibility and immunity remain understudied. Here, we show that experiencing both a biologically relevant increase in temperature and temperature variation undermines future disease susceptibility of the invasive garden ant Lasius neglectus when challenged with a pathogen under a constant temperature regime. In light of the economic and ecological importance of many social insects, our results emphasise the necessity to take the hosts' temperature history into account when studying host-parasite interactions under both natural and laboratory conditions, especially in the face of global change.

  18. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  19. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants.

    PubMed

    Schoenian, Ilka; Spiteller, Michael; Ghaste, Manoj; Wirth, Rainer; Herz, Hubert; Spiteller, Dieter

    2011-02-01

    Leaf-cutting ants cultivate the fungus Leucoagaricus gongylophorus, which serves as a major food source. This symbiosis is threatened by microbial pathogens that can severely infect L. gongylophorus. Microbial symbionts of leaf-cutting ants, mainly Pseudonocardia and Streptomyces, support the ants in defending their fungus gardens against infections by supplying antimicrobial and antifungal compounds. The ecological role of microorganisms in the nests of leaf-cutting ants can only be addressed in detail if their secondary metabolites are known. Here, we use an approach for the rapid identification of established bioactive compounds from microorganisms in ecological contexts by combining phylogenetic data, database searches, and liquid chromatography electrospray ionisation high resolution mass spectrometry (LC-ESI-HR-MS) screening. Antimycins A(1)-A(4), valinomycins, and actinomycins were identified in this manner from Streptomyces symbionts of leaf-cutting ants. Matrix-assisted laser desorption ionization (MALDI) imaging revealed the distribution of valinomycin directly on the integument of Acromyrmex echinatior workers. Valinomycins and actinomycins were also directly identified in samples from the waste of A. echinatior and A. niger leaf-cutting ants, suggesting that the compounds exert their antimicrobial and antifungal potential in the nests of leaf-cutting ants. Strong synergistic effects of the secondary meta-bolites produced by ant-associated Streptomyces were observed in the agar diffusion assay against Escovopsis weberi. Actinomycins strongly inhibit soil bacteria as well as other Streptomyces and Pseudonocardia symbionts. The antifungal antimycins are not only active against pathogenic fungi but also the garden fungus L. gongylophorus itself. In conclusion, secondary metabolites of microbial symbionts of leaf-cutting ants contribute to shaping the microbial communities within the nests of leaf-cutting ants. PMID:21245311

  20. Effect of irradiation on queen survivorship and reproduction in the invasive fire ant Solenopsis invicta,(Hymenoptera: Formicidae) and a generic phytosanitary irradiation dose for ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants are common hitchhiker pests on traded agricultural commodities that could be controlled by postharvest irradiation treatment. We studied radiation tolerance in queens of the red imported fire ant Solenopsis invicta Buren to determine the dose sufficient for its control. Virgin or fertile queens...

  1. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae).

    PubMed

    He, Hong; Wei, Cong; Wheeler, Diana E

    2014-09-01

    Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1-3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health. PMID:24748441

  2. Putative Native Source of the Invasive Fire Ant Solenopsis invicta in the U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ecological and evolutionary dynamics of newly introduced invasive species can best be understood by identifying the source population(s) from which they originated, as many species vary behaviorally, morphologically, and genetically across their native landscapes. We attempt to identify the sour...

  3. [Response of the ant community to attributes of fragments and vegetation in a northeastern Atlantic Rain Forest area, Brazil].

    PubMed

    Gomes, Juliana P; Iannuzzi, Luciana; Leal, Inara R

    2010-01-01

    The objective of this study was to determine the effects of forest fragmentation on ant richness in a landscape of Atlantic Forest in Northeast Brazil. More specifically, the ant richness was related to the attributes of fragments (area and distance from the fragment central point to the edge), landscape (forest cover surrounding the fragments), and tree community (plant density, richness, and percentage of shade tolerant species). The surveys were carried out in 19 fragments located in Alagoas State from October 2007 to March 2008. Samples were collected through a 300 m transect established in the center of each fragment, where 30 1-m² leaf litter samples were collected at 10 m intervals. A total of 146 ant species was collected, which belonged to 42 genera, 24 tribes and nine subfamilies. The attributes of fragments and landscape did not influence ant richness. On the other hand, tree density explained ca. 23% of ant richness. In relation to functional groups, both density and richness of trees explained the richness of general myrmicines (the whole model explained ca. 42% of the variation in this group) and percentage of shade tolerant trees explained the richness of specialist predator ants (30% for the whole model). These results indicate that ant fauna is more influenced by vegetation integrity than by fragment size, distance to edge or forest cover surrounding fragments. PMID:21271055

  4. Medusahead: available soil N and microbial communities in native and invasive soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand why medusahead (Taeniatherum caput-medusae) is invasive, we quantified soil N availability and characterized soil microbial communities between native and invasive populations. No consistent differences in soil N mineralization potentials were noted between native medusahead sit...

  5. Evolutionary history of the little fire ant Wasmannia auropunctata before global invasion: inferring dispersal patterns, niche requirements and past and present distribution within its native range.

    PubMed

    Chifflet, L; Rodriguero, M S; Calcaterra, L A; Rey, O; Dinghi, P A; Baccaro, F B; Souza, J L P; Follett, P; Confalonieri, V A

    2016-04-01

    The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. Therefore, phylogeographic studies of invasive species within their native ranges are useful to understand invasion biology in an evolutionary context. Here we integrated classical and Bayesian phylogeographic methods using mitochondrial and nuclear DNA markers with a palaeodistribution modelling approach, to infer the phylogeographic history of the invasive ant Wasmannia auropunctata across its native distribution in South America. We discuss our results in the context of the recent establishment of this mostly tropical species in the Mediterranean region. Our Bayesian phylogeographic analysis suggests that the common ancestor of the two main clades of W. auropunctata occurred in central Brazil during the Pliocene. Clade A would have differentiated northward and clade B southward, followed by a secondary contact beginning about 380,000 years ago in central South America. There were differences in the most suitable habitats among clades when considering three distinct climatic periods, suggesting that genetic differentiation was accompanied by changes in niche requirements, clade A being a tropical lineage and clade B a subtropical and temperate lineage. Only clade B reached more southern latitudes, with a colder climate than that of northern South America. This is concordant with the adaptation of this originally tropical ant species to temperate climates prior to its successful establishment in the Mediterranean region. This study highlights the usefulness of exploring the evolutionary history of invasive species within their native ranges to better understand biological invasions. PMID:26780687

  6. Earthworm invasion as the driving force behind plant invasion and community change in northeastern North American forests.

    PubMed

    Nuzzo, Victoria A; Maerz, John C; Blossey, Bernd

    2009-08-01

    Identification of factors that drive changes in plant community structure and contribute to decline and endangerment of native plant species is essential to the development of appropriate management strategies. Introduced species are assumed to be driving causes of shifts in native plant communities, but unequivocal evidence supporting this view is frequently lacking. We measured native vegetation, non-native earthworm biomass, and leaf-litter volume in 15 forests in the presence and absence of 3 non-native plant species (Microstegium vimineum, Alliaria petiolata, Berberis thunbergii) to assess the general impact of non-native plant and earthworm invasions on native plant communities in northeastern United States. Non-native plant cover was positively correlated with total native plant cover and non-native earthworm biomass. Earthworm biomass was negatively associated with cover of native woody and most herbaceous plants and with litter volume. Graminoid cover was positively associated with non-native earthworm biomass and non-native plant cover. These earthworm-associated responses were detected at all sites despite differences in earthworm species and abundance, composition of the native plant community, identity of invasive plant species, and geographic region. These patterns suggest earthworm invasion, rather than non-native plant invasion, is the driving force behind changes in forest plant communities in northeastern North America, including declines in native plant species, and earthworm invasions appear to facilitate plant invasions in these forests. Thus, a focus on management of invasive plant species may be insufficient to protect northeastern forest understory species. PMID:19236448

  7. Biodiversity Assessment in Incomplete Inventories: Leaf Litter Ant Communities in Several Types of Bornean Rain Forest

    PubMed Central

    Pfeiffer, Martin; Mezger, Dirk

    2012-01-01

    Biodiversity assessment of tropical taxa is hampered by their tremendous richness, which leads to large numbers of singletons and incomplete inventories in survey studies. Species estimators can be used for assessment of alpha diversity, but calculation of beta diversity is hampered by pseudo-turnover of species in undersampled plots. To assess the impact of unseen species, we investigated different methods, including an unbiased estimator of Shannon beta diversity that was compared to biased calculations. We studied alpha and beta diversity of a diverse ground ant assemblage from the Southeast Asian island of Borneo in different types of tropical forest: diperocarp forest, alluvial forest, limestone forest and heath forests. Forests varied in plant composition, geology, flooding regimes and other environmental parameters. We tested whether forest types differed in species composition and if species turnover was a function of the distance between plots at different spatial scales. As pseudo-turnover may bias beta diversity we hypothesized a large effect of unseen species reducing beta diversity. We sampled 206 ant species (25% singletons) from ten subfamilies and 55 genera. Diversity partitioning among the four forest types revealed that whereas alpha species richness and alpha Shannon diversity were significantly smaller than expected, beta-diversity for both measurements was significantly higher than expected by chance. This result was confirmed when we used the unbiased estimation of Shannon diversity: while alpha diversity was much higher, beta diversity differed only slightly from biased calculations. Beta diversity as measured with the Chao-Sørensen or Morisita-Horn Index correlated with distance between transects and between sample points, indicating a distance decay of similarity between communities. We conclude that habitat heterogeneity has a high influence on ant diversity and species turnover in tropical sites and that unseen species may have only

  8. Integrating physiology, population dynamics and climate to make multi-scale predictions for the spread of an invasive insect: the Argentine ant at Haleakala National Park, Hawaii

    USGS Publications Warehouse

    Hartley, Stephen; Krushelnycky, Paul D.; Lester, Philip J.

    2010-01-01

    Mechanistic models for predicting species’ distribution patterns present particular advantages and challenges relative to models developed from statistical correlations between distribution and climate. They can be especially useful for predicting the range of invasive species whose distribution has not yet reached equilibrium. Here, we illustrate how a physiological model of development for the invasive Argentine ant can be connected to differences in micro-site suitability, population dynamics and climatic gradients; processes operating at quite different spatial scales. Our study is located in the subalpine shrubland of Haleakala National Park, Hawaii, where the spread of Argentine ants Linepithema humile has been documented for the past twenty-five years. We report four main results. First, at a microsite level, the accumulation of degree-days recorded in potential ant nest sites under bare ground or rocks was significantly greater than under a groundcover of grassy vegetation. Second, annual degree-days measured where population boundaries have not expanded (456-521 degree-days), were just above the developmental requirements identified from earlier laboratory studies (445 degree-days above 15.98C). Third, rates of population expansion showed a strong linear relationship with annual degree-days. Finally, an empirical relationship between soil degree-days and climate variables mapped at a broader scale predicts the potential for future range expansion of Argentine ants at Haleakala, particularly to the west of the lower colony and the east of the upper colony. Variation in the availability of suitable microsites, driven by changes in vegetation cover and ultimately climate, provide a hierarchical understanding of the distribution of Argentine ants close to their cold-wet limit of climatic tolerances. We conclude that the integration of physiology, population dynamics and climate mapping holds much promise for making more robust predictions about

  9. Community ecology of invasions: direct and indirect effects of multiple invasive species on aquatic communities.

    PubMed

    Preston, Daniel L; Henderson, Jeremy S; Johnson, Pieter T J

    2012-06-01

    With many ecosystems now supporting multiple nonnative species from different trophic levels, it can be challenging to disentangle the net effects of invaders within a community context. Here, we combined wetland surveys with a mesocosm experiment to examine the individual and combined effects of nonnative fish predators and nonnative bullfrogs on aquatic communities. Among 139 wetlands, nonnative fish (bass, sunfish, and mosquitofish) negatively influenced the probability of occupancy of Pacific treefrogs (Pseudacris regilla), but neither invader correlated strongly with occupancy by California newts (Taricha torosa), western toads (Anaxyrus boreas), or California red-legged frogs (Rana draytonii). In mesocosms, mosquitofish dramatically reduced the abundance of zooplankton and palatable amphibian larvae (P. regilla and T. torosa), leading to increases in nutrient concentrations and phytoplankton (through loss of zooplankton), and rapid growth of unpalatable toad larvae (through competitive release). Bullfrog larvae reduced the growth of native anurans but had no effect on survival. Despite strong effects on natives, invaders did not negatively influence one another, and their combined effects were additive. Our results highlight how the net effects of multiple nonnative species depend on the trophic level of each invader, the form and magnitude of invader interactions, and the traits of native community members. PMID:22834365

  10. Bacterial Invasion Dynamics in Zebrafish Gut Microbial Communities

    NASA Astrophysics Data System (ADS)

    Logan, Savannah; Jemielita, Matthew; Wiles, Travis; Schlomann, Brandon; Hammer, Brian; Guillemin, Karen; Parthasarathy, Raghuveer

    Microbial communities residing in the vertebrate intestine play an important role in host development and health. These communities must be in part shaped by interactions between microbial species as they compete for resources in a physically constrained system. To better understand these interactions, we use light sheet microscopy and zebrafish as a model organism to image established gut microbial communities as they are invaded by robustly-colonizing challengers. We demonstrate that features of the challenger, including motility and spatial distribution, impact success in invasion and in outcompeting the original community. We also show that physical characteristics of the host, such as the motility of the gut, play important roles in mediating inter-species competition. Finally, we examine the influence of the contact-dependent type VI secretion system (T6SS), which is used by specific bacteria to cause cell lysis by injecting toxic effector proteins into competitors. Our findings provide insights into the determinants of microbial success in the complex ecosystems found in the gut.

  11. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health

    PubMed Central

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity–invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  12. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health.

    PubMed

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity-invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  13. Predicting community structure of ground-foraging ant assemblages with Markov models of behavioral dominance.

    PubMed

    Wittman, Sarah E; Gotelli, Nicholas J

    2011-05-01

    Although interference competition is a conspicuous component of many animal communities, it is still uncertain whether the competitive ability of a species determines its relative abundance and patterns of association with other species. We used replicated arena tests to quantify behavioral dominance of eight common species of co-occurring ground-foraging ants in the Siskiyou Mountains of southern Oregon. We found that behavior recorded in laboratory assays was an accurate representation of a colony's ability to monopolize resources in the field. We used interaction frequencies from the behavioral tests to estimate transition probabilities in a simple Markov chain model to predict patterns of relative abundance in a metacommunity that is dominated by behavioral interactions. We also tested whether behavioral interactions between each pair of species could be used to predict patterns of species co-occurrence. We found that the Markov model did not accurately predict patterns of observed relative abundance on either the local or the regional scale. However, we did detect a significant negative correlation at the local scale in which behaviorally dominant species occupied relatively few baits. Pairwise behavioral data also did not predict species co-occurrence in any site. Although interference competition is a conspicuous process in ant communities, our results suggest that it may not contribute much to patterns of relative abundance and species co-occurrence in the system studied here. However, the negative correlation between behavioral dominance and bait occupancy at the local scale suggests that competition-colonization trade-offs may be important in resource acquisition and persistence of behaviorally subordinate species. PMID:20978797

  14. Two invasive acacia species secure generalist pollinators in invaded communities

    NASA Astrophysics Data System (ADS)

    Montesinos, Daniel; Castro, Sílvia; Rodríguez-Echeverría, Susana

    2016-07-01

    Exotic entomophilous plants need to establish effective pollinator interactions in order to succeed after being introduced into a new community, particularly if they are obligatory outbreeders. By establishing these novel interactions in the new non-native range, invasive plants are hypothesised to drive changes in the composition and functioning of the native pollinator community, with potential impacts on the pollination biology of native co-flowering plants. We used two different sites in Portugal, each invaded by a different acacia species, to assess whether two native Australian trees, Acacia dealbata and Acacia longifolia, were able to recruit pollinators in Portugal, and whether the pollinator community visiting acacia trees differed from the pollinator communities interacting with native co-flowering plants. Our results indicate that in the invaded range of Portugal both acacia species were able to establish novel mutualistic interactions, predominantly with generalist pollinators. For each of the two studied sites, only two other co-occurring native plant species presented partially overlapping phenologies. We observed significant differences in pollinator richness and visitation rates among native and non-native plant species, although the study of β diversity indicated that only the native plant Lithodora fruticosa presented a differentiated set of pollinator species. Acacias experienced a large number of visits by numerous pollinator species, but massive acacia flowering resulted in flower visitation rates frequently lower than those of the native co-flowering species. We conclude that the establishment of mutualisms in Portugal likely contributes to the effective and profuse production of acacia seeds in Portugal. Despite the massive flowering of A. dealbata and A. longifolia, native plant species attained similar or higher visitation rates than acacias.

  15. Alaska Melilotus invasions: Distribution, origin, and susceptibility of plant communities

    USGS Publications Warehouse

    Conn, J.S.; Beattie, K.L.; Shephard, M.A.; Carlson, M.L.; Lapina, I.; Hebert, M.; Gronquist, R.; Densmore, R.; Rasy, M.

    2008-01-01

    Melilotus alba and M. officinalis were introduced to Alaska in 1913 as potential forage crops. These species have become naturalized and are now invading large, exotic plant-free regions of Alaska. We determined distributions of M. alba and M. officinalis in Alaska from surveys conducted each summer from 2002 to 2005. Melilotus alba and M. officinalis occurred at 721 and 205 sites, respectively (39,756 total sites surveyed). The northward limit for M. alba and M. officinalis was 67.15??N and 64.87??N, respectively. Both species were strictly associated with soil disturbance. Melilotus alba extended no farther than 15 m from road edges except where M. alba on roadsides met river floodplains and dispersed downriver (Matanuska and Nenana Rivers). Melilotus has now reached the Tanana River, a tributary of the Yukon River. Populations on floodplains were most extensive on braided sections. On the Nenana River, soil characteristics did not differ between where M. alba was growing versus similar areas where it had not yet reached. The pH of river soils (7.9-8.3) was higher than highway soils (7.3). Upland taiga plant communities grow on acid soils which may protect them from invasion by Melilotus, which prefer alkaline soils; however, early succession communities on river floodplains are susceptible because soils are alkaline. ?? 2008 Regents of the University of Colorado.

  16. Long-term field trial to control the invasive Argentine ant (Hymenoptera: Formicidae) with synthetic trail pheromone.

    PubMed

    Nishisue, K; Sunamura, E; Tanaka, Y; Sakamoto, H; Suzuki, S; Fukumoto, T; Terayama, M; Tatsuki, S

    2010-10-01

    Previous short-term experiments showed that trail following behavior of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae), can be disrupted by a high concentration of synthetic trail pheromone component (Z)-9-hexadecenal. In this study, a long-term field trial was conducted in 100-m2 plots of house gardens in an urban area of Japan to see whether the control effect on Argentine ants can be obtained by permeating synthetic trail pheromone from dispensers. The dispensers were placed in the experimental plots during the ant's active season (April-November) for 2 yr with monthly renewal. To estimate Argentine ant population density, foraging activity of Argentine ants in the study plots was monitored by monthly bait surveys. Throughout the study period, Argentine ant foraging activity was suppressed in the presence of the dispensers, presumably via trail forming inhibition. In contrast, the level of foraging activity was not different between treatment and no-treatment plots when the dispensers were temporarily removed, suggesting that treatment with pheromone dispensers did not suppress Argentine ant density in the treatment plots. Population decline may be expected with larger-scale treatment that covers a significant portion of the ant colony or with improvement in the potency of the disruptant. PMID:21061980

  17. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China.

    PubMed

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  18. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-05-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community.

  19. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    PubMed Central

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-01-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community. PMID:27241173

  20. Ecosystem engineers modulate exotic invasions in riparian plant communities

    NASA Astrophysics Data System (ADS)

    Corenblit, D.; Tabacchi, E.; Steiger, J.; Gonzales, E.; Planty-Tabacchi, A. M.

    2012-04-01

    The relationship between biodiversity and invasibility of exotic plant species within different environments and at different spatial scales is still being discussed amongst scientists. In this study, patterns of native and exotic plant species richness and cover were examined in relation with ecosystem engineer effects of pioneer vegetation within the active tract of the Mediterranean gravel bed river Tech, South France. The floristic composition was characterized according to two distinct vegetation types corresponding to two habitats with contrasted conditions: (i) open and exposed alluvial bars dominated by herbaceous communities and (ii) islands and river margins partly stabilized by ecosystem engineer plants, disconnected from annual hydrogeomorphic disturbances, and covered by woody vegetation. A significant positive correlation between exotic and native plant species richness and cover was observed for the herbaceous and the woody types, indicating that both native and exotic richness benefit from the prevailing environmental conditions. However, significant differences in native and exotic specific richness and cover were found between these two vegetation types. Higher values of total species richness and Shannon diversity of native and exotic species were attained within the herbaceous vegetation type compared to the woody type. These differences may be related to changes in local exposure to hydrogeomorphic disturbances driven by engineer plant species, and to vegetation succession. A lower exotic cover within the woody vegetation type compared to the herbaceous type suggested an increase of resistance to invasion by exotic species during the biogeomorphic succession. The engineer effects of woody vegetation resulted in a decrease of alpha (α) diversity at patch scale but, in parallel, caused an increase in gamma (γ) diversity at the scale of the studied river segment. Our study corroborates recent investigations that support the theory of biotic

  1. Maintaining diversity in an ant community: modeling, extending, and testing the dominance-discovery trade-off.

    PubMed

    Adler, F R; LeBrun, E G; Feener, D H

    2007-03-01

    Ant communities often consist of many species with apparently similar niches. We present a mathematical model of the dominance-discovery trade-off, the trade-off between the abilities to find and to control resources, showing that it can in principle facilitate the coexistence of large numbers of species. Baiting studies of dominance and discovery abilities in an ant community from the Chiricahua Mountains of Arizona indicate that real communities fail to fit the assumptions of the simple model in several ways: (1) dominance depends on the size of the food resource; (2) for some ants, dominance depends on the presence or absence of specialist parasitoids; (3) pairwise dominance is not an all-or-nothing trait; and (4) a consistent negative relationship between pairwise differences in per capita discovery rates and dominance can be detected for only one bait type. Extended models incorporating these factors successfully predict the coexistence of five of the six most abundant members of this community but fail to accurately predict their relative abundances. Sensitivity analysis indicates that each complicating factor enhances the extent of coexistence. PMID:17230402

  2. Changes in soil bacterial communities induced by the invasive plant Pennisetum setaceum in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Caballero, Gema; Caravaca, Fuensanta; del Mar Alguacil, María; Fernández-López, Manuel; José Fernández-González, Antonio; García-Orenes, Fuensanta; Roldán, Antonio

    2016-04-01

    Invasive alien species are considered as a global threat being among the main causes of biodiversity loss. Plant invasions have been extensively studied from different disciplines with the purpose of identifying predictor traits of invasiveness and finding solutions. However, less is known about the implication of the rhizosphere microbiota in these processes, even when it is well known the importance of the interaction between plant rhizosphere and microbial communities. The objective of this study was to determine whether native and invasive plants support different bacterial communities in their rhizospheres and whether there are bacterial indicator species that might be contributing to the invasion process of these ecosystems. We carried out a study in five independent locations under Mediterranean semiarid conditions, where the native Hyparrhenia hirta is being displaced by Pennisetum setaceum, an aggressive invasive Poaceae and soil bacterial communities were amplified and 454-pyrosequenced. Changes in the composition and structure of the bacterial communities, owing to the invasive status of the plant, were detected when the richness and alpha-diversity estimators were calculated as well as when we analyzed the PCoA axes scores. The Indicator Species Analysis results showed a higher number of indicators for invaded communities at all studied taxonomic levels. In conclusion, the effect of the invasiveness and its interaction with the soil location has promoted shifts in the rhizosphere bacterial communities which might be facilitating the invader success in these ecosystems.

  3. Mechanisms of competitive displacement of native ant fauna by invading Myrmica rubra (Hymenoptera: Formicidae) populations.

    PubMed

    Garnas, Jeffrey; Groden, Eleanor; Drummond, Francis A

    2014-12-01

    Exotic ants have become invasive in many regions around the world, with variable ecological impacts. Postinvasion, native ant communities are often found to be depauperate, though the causes of this apparent lack of coexistence are rarely well known. Myrmica rubra (L.), a Palearctic Myrmecine ant, is currently expanding its range as an invasive in North America. This aggressive ant forms dense, patchy local infestations and appears to aggressively displace native ant fauna. We measured behavioral interactions and rates of recruitment in experimental field assays pitting native foragers against captive colonies of M. rubra at tuna-jelly or aphid baits in uninfested areas of Mt. Desert Island, ME. Behavioral interactions were idiosyncratic with respect to the native opponent, but M. rubra generally showed significantly higher levels of recruitment, aggression, and displacement of native foragers. As with other invasive ant species shown to have broken the "dominance-discovery trade-off," M. rubra was consistently faster to discover baits and disproportionately displaced native foragers, providing a plausible proximate mechanism for native ant exclusion. Finally, we surveyed ant recruitment at baits for 24 h in August 2004 at four sites with varying M. rubra abundance but found little evidence of temporal niche partitioning. Taken together, these results indicate competitive superiority by M. rubra with respect to native ant communities of the northeastern North America and suggest direct aggression and competitive exclusion at food resources can lead to local native displacement. PMID:25268214

  4. The relation between circadian asynchrony, functional redundancy, and trophic performance in tropical ant communities.

    PubMed

    Houadria, Mickal; Blüthgen, Nico; Salas-Lopez, Alex; Schmitt, Mona-Isabel; Arndt, Johanna; Schneider, Eric; Orivel, Jérôme; Menzel, Florian

    2016-01-01

    The diversity-stability relationship has been under intense scrutiny for the past decades, and temporal asynchrony is recognized as an important aspect of ecosystem stability. In contrast to relatively well-studied interannual and seasonal asynchrony, few studies investigate the role of circadian cycles for ecosystem stability. Here, we studied multifunctional redundancy of diurnal and nocturnal ant communities in four tropical rain forest sites. We analyzed how it was influenced by species richness, functional performance, and circadian asynchrony. In two neotropical sites, species richness and functional redundancy were lower at night. In contrast, these parameters did not differ in the two paleotropical sites we studied. Circadian asynchrony between species was pronounced in the neotropical sites, and increased circadian functional redundancy. In general, species richness positively affected functional redundancy, but the effect size depended on the temporal and spatial breadth of the species with highest functional performance. Our analysis shows that high levels of trophic performance were only reached through the presence of such high-performing species, but not by even contributions of multiple, less-efficient species. Thus, these species can increase current functional performance, but reduce overall functional redundancy. Our study highlights that diurnal and nocturnal ecosystem properties of the very same habitat can markedly differ in terms of species richness and functional redundancy. Consequently, like the need to study multiple ecosystem functions, multiple periods of the circadian cycle need to be assessed in order to fully understand the diversity-stability relationship in an ecosystem. PMID:27008791

  5. Invasion Is a Community Affair: Clandestine Followers in the Bacterial Community Associated to Green Algae, Caulerpa racemosa, Track the Invasion Source

    PubMed Central

    Aires, Tania; Serrão, Ester A.; Kendrick, Gary; Duarte, Carlos M.; Arnaud-Haond, Sophie

    2013-01-01

    Biological invasions rank amongst the most deleterious components of global change inducing alterations from genes to ecosystems. The genetic characteristics of introduced pools of individuals greatly influence the capacity of introduced species to establish and expand. The recently demonstrated heritability of microbial communities associated to individual genotypes of primary producers makes them a potentially essential element of the evolution and adaptability of their hosts. Here, we characterized the bacterial communities associated to native and non-native populations of the marine green macroalga Caulerparacemosa through pyrosequencing, and explored their potential role on the strikingly invasive trajectory of their host in the Mediterranean. The similarity of endophytic bacterial communities from the native Australian range and several Mediterranean locations confirmed the origin of invasion and revealed distinct communities associated to a second Mediterranean variety of C. racemosa long reported in the Mediterranean. Comparative analysis of these two groups demonstrated the stability of the composition of bacterial communities through the successive steps of introduction and invasion and suggested the vertical transmission of some major bacterial OTUs. Indirect inferences on the taxonomic identity and associated metabolism of bacterial lineages showed a striking consistency with sediment upheaval conditions associated to the expansion of their invasive host and to the decline of native species. These results demonstrate that bacterial communities can be an effective tracer of the origin of invasion and support their potential role in their eukaryotic host’s adaptation to new environments. They put forward the critical need to consider the 'meta-organism' encompassing both the host and associated micro-organisms, to unravel the origins, causes and mechanisms underlying biological invasions. PMID:23874625

  6. MONITORING CHANGES IN STRESSED ECOSYSTEMS USING SPATIAL PATTERNS OF ANT COMMUNITIES

    EPA Science Inventory

    We examined the feasibility of using changes in spatial patterns of ants-distribution on experimental plots as an indicator of response to environmental stress. We produced contour maps based on relative abundances of the three most common genera of ants based on pit-fall trap ca...

  7. A comparison of pitfall traps with bait traps for studying leaf litter ant communities.

    PubMed

    Wang, C; Strazanac, J; Butler, L

    2001-06-01

    A comparison of pitfall traps with bait traps for sampling leaf litter ants was studied in oak-dominated mixed forests during 1995-1997. A total of 31,732 ants were collected from pitfall traps and 54,694 ants were collected from bait traps. They belonged to four subfamilies, 17 genera, and 32 species. Bait traps caught 29 species, whereas pitfall traps caught 31 species. Bait traps attracted one species not found in pitfall traps, but missed three of the species collected with pitfall traps. Collections from the two sampling methods showed differences in species richness, relative abundance, diversity, and species accumulation curves. Pitfall traps caught significantly more ant species per plot than did bait traps. The ant species diversity obtained from pitfall traps was higher than that from bait traps. Bait traps took a much longer time to complete an estimate of species richness than did pitfall traps. Little information was added to pitfall trapping results by the bait trapping method. The results suggested that the pitfall trapping method is superior to the bait trapping method for leaf litter ant studies. Species accumulation curves showed that sampling of 2,192+/-532 ants from six plots by pitfall traps provided a good estimation of ant species richness under the conditions of this study. PMID:11425034

  8. Highly similar microbial communities are shared among related and trophically similar ant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants dominate many terrestrial ecosystems, yet we know little about their nutritional physiology and ecology. While traditionally viewed as predators and scavengers, recent isotopic studies revealed that many dominant ant species are functional herbivores. As with other insects with nitrogen-poor di...

  9. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand

    PubMed Central

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-01-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration “hot spots”, an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure. PMID:25505521

  10. Fungal communities in gardens of the leafcutter ant Atta cephalotes in forest and cabruca agrosystems of southern Bahia State (Brazil).

    PubMed

    Reis, Bárbara Monique dos Santos; Silva, Aline; Alvarez, Martín Roberto; Oliveira, Tássio Brito de; Rodrigues, Andre

    2015-12-01

    Leaf-cutting ants interact with several fungi in addition to the fungal symbiont they cultivate for food. Here, we assessed alien fungal communities in colonies of Atta cephalotes. Fungus garden fragments were sampled from colonies in the Atlantic Rainforest and in a cabruca agrosystem in the state of Bahia (Brazil) in two distinct periods to evaluate whether differences in nest habitat influence the diversity of fungi in the ant colonies. We recovered a total of 403 alien fungi isolates from 628 garden fragments. The prevalent taxa found in these samples were Escovopsis sp. (26 %), Escovopsioides nivea (24 %), and Trichoderma spirale (10.9 %). Fungal diversity was similar between the colonies sampled in both areas suggesting that ants focus on reducing loads of alien fungi in the fungus gardens instead of avoiding specific fungi. However, fungal taxa composition differed between colonies sampled in the two areas and between the sampling periods. These differences are likely explained by the availability of plant substrates available for foraging over habitats and periods. Ordination analysis further supported that sampling period was the main attribute for community structuring but also revealed that additional factors may explain the structuring of fungal communities in colonies of A. cephalotes. PMID:26615740

  11. Curvilinear Effects of Invasive Plants on Plant Diversity: Plant Community Invaded by Sphagneticola trilobata

    PubMed Central

    Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

  12. A two-part measure of degree of invasion for cross-community comparisons

    USGS Publications Warehouse

    Guo, Q.; Symstad, A.

    2008-01-01

    Invasibility is a critical feature of ecological communities, especially for management decisions. To date, invasibility has been measured in numerous ways. Although most researchers have used the richness (or number) of exotic species as a direct or indirect measure of community invasibility, others have used alternative measures such as the survival, density, or biomass of either a single or all exotic species. These different measures, even when obtained from the same communities, have produced inconsistent results and have made comparisons among communities difficult. Here, we propose a measure of the degree of invasion (DI) of a community as a surrogate for community invasibility. The measure is expressed as 2 independent components: exotic proportion of total species richness and exotic proportion of total species abundance (biomass or cover). By including richness and abundance, the measure reflects that the factors that control invasibility affect both of these components. Expressing exotic richness and abundance relative to the richness and abundance of all species in a community makes comparisons across communities of different sizes and resource availability possible and illustrates the importance of dominance of exotic species relative to natives, which is a primary management concern associated with exotic species.

  13. Changes in hardwood forest understory plant communities in response to European earthworm invasions.

    PubMed

    Hale, Cindy M; Frelich, Lee E; Reich, Peter B

    2006-07-01

    European earthworms are colonizing earthworm-free northern hardwood forests across North America. Leading edges of earthworm invasion provide an opportunity to investigate the response of understory plant communities to earthworm invasion and whether the species composition of the earthworm community influences that response. Four sugar maple-dominated forest sites with active earthworm invasions were identified in the Chippewa National Forest in north central Minnesota, USA. In each site, we established a 30 x 150 m sample grid that spanned a visible leading edge of earthworm invasion and sampled earthworm populations and understory vegetation over four years. Across leading edges of earthworm invasion, increasing total earthworm biomass was associated with decreasing diversity and abundance of herbaceous plants in two of four study sites, and the abundance and density of tree seedlings decreased in three of four study sites. Sample points with the most diverse earthworm species assemblage, independent of biomass, had the lowest plant diversity. Changes in understory plant community composition were most affected by increasing biomass of the earthworm species Lumbricus rubellus. Where L. rubellus was absent there was a diverse community of native herbaceous plants, but where L. rubellus biomass reached its maximum, the herbaceous-plant community was dominated by Carex pensylvanica and Arisaema triphyllum and, in some cases, was completely absent. Evidence from these forest sites suggests that earthworm invasion can lead to dramatic changes in the understory community and that the nature of these changes is influenced by the species composition of the invading earthworm community. PMID:16922315

  14. The long-term effects of invasive signal crayfish (Pacifastacus leniusculus) on instream macroinvertebrate communities.

    PubMed

    Mathers, Kate L; Chadd, Richard P; Dunbar, Michael J; Extence, Chris A; Reeds, Jake; Rice, Stephen P; Wood, Paul J

    2016-06-15

    Non-native species represent a significant threat to indigenous biodiversity and ecosystem functioning worldwide. It is widely acknowledged that invasive crayfish species may be instrumental in modifying benthic invertebrate community structure, but there is limited knowledge regarding the temporal and spatial extent of these effects within lotic ecosystems. This study investigates the long term changes to benthic macroinvertebrate community composition following the invasion of signal crayfish, Pacifastacus leniusculus, into English rivers. Data from long-term monitoring sites on 7 rivers invaded by crayfish and 7 rivers where signal crayfish were absent throughout the record (control sites) were used to examine how invertebrate community composition and populations of individual taxa changed as a result of invasion. Following the detection of non-native crayfish, significant shifts in invertebrate community composition were observed at invaded sites compared to control sites. This pattern was strongest during autumn months but was also evident during spring surveys. The observed shifts in community composition following invasion were associated with reductions in the occurrence of ubiquitous Hirudinea species (Glossiphonia complanata and Erpobdella octoculata), Gastropoda (Radix spp.), Ephemeroptera (Caenis spp.), and Trichoptera (Hydropsyche spp.); although variations in specific taxa affected were evident between regions and seasons. Changes in community structure were persistent over time with no evidence of recovery, suggesting that crayfish invasions represent significant perturbations leading to permanent changes in benthic communities. The results provide fundamental knowledge regarding non-native crayfish invasions of lotic ecosystems required for the development of future management strategies. PMID:26974569

  15. Exotic weevil invasion increases floral herbivore community density, function, and impact on a native plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumer communities are being re-arranged through unprecedented rates of human-mediated invasions and extinctions. Such changes in consumer composition and diversity potentially alter pressure and impact on resource populations. Although insect herbivore invasions are common, and exotic herbivores...

  16. Invasiveness does not predict impact: response of native land snail communities to plant invasions in riparian habitats.

    PubMed

    Horáčková, Jitka; Juřičková, Lucie; Šizling, Arnošt L; Jarošík, Vojtěch; Pyšek, Petr

    2014-01-01

    Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.× bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16-48% reduction in snail species numbers, and 29-90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities. PMID:25238059

  17. Invasiveness Does Not Predict Impact: Response of Native Land Snail Communities to Plant Invasions in Riparian Habitats

    PubMed Central

    Horáčková, Jitka; Juřičková, Lucie; Šizling, Arnošt L.; Pyšek, Petr

    2014-01-01

    Studies of plant invasions rarely address impacts on molluscs. By comparing pairs of invaded and corresponding uninvaded plots in 96 sites in floodplain forests, we examined effects of four invasive alien plants (Impatiens glandulifera, Fallopia japonica, F. sachalinensis, and F.×bohemica) in the Czech Republic on communities of land snails. The richness and abundance of living land snail species were recorded separately for all species, rare species listed on the national Red List, and small species with shell size below 5 mm. The significant impacts ranged from 16–48% reduction in snail species numbers, and 29–90% reduction in abundance. Small species were especially prone to reduction in species richness by all four invasive plant taxa. Rare snails were also negatively impacted by all plant invaders, both in terms of species richness or abundance. Overall, the impacts on snails were invader-specific, differing among plant taxa. The strong effect of I. glandulifera could be related to the post-invasion decrease in abundance of tall nitrophilous native plant species that are a nutrient-rich food source for snails in riparian habitats. Fallopia sachalinensis had the strongest negative impact of the three knotweeds, which reflects differences in their canopy structure, microhabitat humidity and litter decomposition. The ranking of Fallopia taxa according to the strength of impacts on snail communities differs from ranking by their invasiveness, known from previous studies. This indicates that invasiveness does not simply translate to impacts of invasion and needs to be borne in mind by conservation and management authorities. PMID:25238059

  18. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity

    PubMed Central

    Rodrigues, Richard R.; Pineda, Rosana P.; Barney, Jacob N.; Nilsen, Erik T.; Barrett, John E.; Williams, Mark A.

    2015-01-01

    The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen

  19. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    PubMed

    Rodrigues, Richard R; Pineda, Rosana P; Barney, Jacob N; Nilsen, Erik T; Barrett, John E; Williams, Mark A

    2015-01-01

    The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen

  20. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus

    PubMed Central

    2010-01-01

    Background Attine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive. Results In order to test these possibilities we isolated bacteria from a geographically distinct population of A. octospinosus and identified a candicidin-producing Streptomyces species, which suggests that they are common mutualists of attine ants, most probably recruited from the environment. We also identified a Pseudonocardia species in the same ant colony that produces an unusual polyene antifungal, providing evidence for co-evolution of Pseudonocardia with A. octospinosus. Conclusions Our results show that a combination of co-evolution and environmental sampling results in the diversity of actinomycete symbionts and antibiotics associated with attine ants. PMID:20796277

  1. Odorous House Ants (Tapinoma sessile) as Back-Seat Drivers of Localized Ant Decline in Urban Habitats

    PubMed Central

    Salyer, Adam; Bennett, Gary W.; Buczkowski, Grzegorz A.

    2014-01-01

    Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban ‘invasion’. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a

  2. [Effects of environmental factors on the ant fauna of restinga community in Rio de Janeiro, Brazil].

    PubMed

    Vargas, André B; Mayhé-Nunes, Antônio J; Queiroz, Jarbas M; Souza, Guilherme O; Ramos, Elaine F

    2007-01-01

    The effects of environmental factors on the richness, diversity and abundance of ants were studied in the Restinga da Marambaia, south coast of Rio de Janeiro State, Brazil. The samples were taken using pitfall traps in August/2004 (winter) and March/2005 (summer) in three different vegetation types: (1) herbaceous ridge palmoid (homogeneous habitat); (2) shrub dune thicket and (3) ridge forest (heterogeneous habitats). At each habitat a range of environmental attributes was recorded: soil temperature and humidity, percentage of soil covering by litter and litter depth. Ninety-two ant species belonging to 36 genera and eight subfamilies were recorded. Density of ant species and abundance varied significantly between habitats and seasons; ant diversity varied only between habitats. Homogeneous habitat had lower ant species density, abundance and diversity than heterogeneous habitats. The two first variables were positively correlated with litter depth and both were higher in summer than in winter samples. There were more species of Ponerinae and Ectatomminae in heterogeneous than in the homogeneous habitat, whereas the Formicinae species were more abundant in the later. PMID:17420859

  3. MANAGING IMPORTED FIRE ANTS IN URBAN AREAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two species of imported fire ants (red imported fire ant, Solenopsis invicta, and black imported fire ant, Solenopsis richteri) and their sexually reproducing hybrid are invasive insects whose stings can cause serious medical problems. Imported fire ants interfere with outdoor activities and ha...

  4. Plant Community Responses to Simultaneous Changes in Temperature, Nitrogen Availability, and Invasion

    PubMed Central

    Gornish, Elise S.; Miller, Thomas E.

    2015-01-01

    Background Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking. Methods and Results In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community. Conclusions and Significance This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment. PMID:25879440

  5. The Importance of Using Multiple Approaches for Identifying Emerging Invasive Species: The Case of the Rasberry Crazy Ant in the United States

    PubMed Central

    Gotzek, Dietrich; Brady, Seán G.; Kallal, Robert J.; LaPolla, John S.

    2012-01-01

    In the past decade, Houston, Texas has been virtually overrun by an unidentified ant species, the sudden appearance and enormous population sizes and densities of which have received national media attention. The Rasberry Crazy Ant, as it has become known due to its uncertain species status, has since spread to neighboring states and is still a major concern to pest control officials. Previous attempts at identifying this species have resulted in widely different conclusions in regards to its native range, source, and biology. We identify this highly invasive pest species as Nylanderia fulva (Mayr) using morphometric data measured from 14 characters, molecular sequence data consisting of 4,669 aligned nucleotide sites from six independent loci and comparison with type specimens. This identification will allow for the study and control of this emerging pest species to proceed unencumbered by taxonomic uncertainty. We also show that N. fulva has a much wider distribution than previously thought and has most likely invaded all of the Gulf Coast states. PMID:23056657

  6. Benthic community responses to macroalgae invasions in seagrass beds: Diversity, isotopic niche and food web structure at community level

    NASA Astrophysics Data System (ADS)

    Deudero, S.; Box, A.; Vázquez-Luis, M.; Arroyo, N. L.

    2014-04-01

    Trophic paths between species are a useful tool for analysing the impact of species invasions of a biotic community. Species invasions produce changes at trophic level and diversity shifts by replacing native species with species of similar ecological niche. This study focused on the effects of macroalgal invasions on seagrass ecosystems. We conducted two - year bimonthly sampling of a pristine Posidonia oceanica seagrass meadow and dead matte colonized by three Caulerpa species bimonthly. The largest changes in faunal composition were found in meadows colonized by Caulerpa prolifera, where major differences in infaunal taxonomic distinctness were apparent. On the other hand, the infaunal community was quite similar between the two invasive Caulerpa species (Caulerpa taxifolia and Caulerpa racemosa). The isotopic niche based on the main trophic guilds established using stable isotope signatures at community level resulted in a highly compacted and 15N-enriched C. prolifera food web structure, indicating high overlap of food source utilization among faunal components, which is typical of degraded systems. Conversely, the P. oceanica ecosystem presented the most complex food web, while the influence of the 2 invasive species were similar. An attempt to reconstruct the food web at each vegetated habitat revealed high trophic linkages among the different trophic levels with a continuous transition among them by the various trophic guilds suggesting an adaptation response of the different organisms to the new habitat forming species.

  7. Investigating Effects of Invasive Species on Plant Community Structure

    ERIC Educational Resources Information Center

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  8. Musings on the management of Nylanderia fulva Crazy Ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nylanderia fulva is an invasive crazy ant that can inundate landscapes and structures. This invasive ant has been called the Caribbean crazy ant in Florida and the Rasberry [sic] crazy ant in Texas. The species was thought to be Nylanderia pubens or Nylanderia near pubens, in Florida and Texas, resp...

  9. Negative Effects of an Exotic Grass Invasion on Small-Mammal Communities

    PubMed Central

    Freeman, Eric D.; Sharp, Tiffanny R.; Larsen, Randy T.; Knight, Robert N.; Slater, Steven J.; McMillan, Brock R.

    2014-01-01

    Exotic invasive species can directly and indirectly influence natural ecological communities. Cheatgrass (Bromus tectorum) is non-native to the western United States and has invaded large areas of the Great Basin. Changes to the structure and composition of plant communities invaded by cheatgrass likely have effects at higher trophic levels. As a keystone guild in North American deserts, granivorous small mammals drive and maintain plant diversity. Our objective was to assess potential effects of invasion by cheatgrass on small-mammal communities. We sampled small-mammal and plant communities at 70 sites (Great Basin, Utah). We assessed abundance and diversity of the small-mammal community, diversity of the plant community, and the percentage of cheatgrass cover and shrub species. Abundance and diversity of the small-mammal community decreased with increasing abundance of cheatgrass. Similarly, cover of cheatgrass remained a significant predictor of small-mammal abundance even after accounting for the loss of the shrub layer and plant diversity, suggesting that there are direct and indirect effects of cheatgrass. The change in the small-mammal communities associated with invasion of cheatgrass likely has effects through higher and lower trophic levels and has the potential to cause major changes in ecosystem structure and function. PMID:25269073

  10. Negative effects of an exotic grass invasion on small-mammal communities.

    PubMed

    Freeman, Eric D; Sharp, Tiffanny R; Larsen, Randy T; Knight, Robert N; Slater, Steven J; McMillan, Brock R

    2014-01-01

    Exotic invasive species can directly and indirectly influence natural ecological communities. Cheatgrass (Bromus tectorum) is non-native to the western United States and has invaded large areas of the Great Basin. Changes to the structure and composition of plant communities invaded by cheatgrass likely have effects at higher trophic levels. As a keystone guild in North American deserts, granivorous small mammals drive and maintain plant diversity. Our objective was to assess potential effects of invasion by cheatgrass on small-mammal communities. We sampled small-mammal and plant communities at 70 sites (Great Basin, Utah). We assessed abundance and diversity of the small-mammal community, diversity of the plant community, and the percentage of cheatgrass cover and shrub species. Abundance and diversity of the small-mammal community decreased with increasing abundance of cheatgrass. Similarly, cover of cheatgrass remained a significant predictor of small-mammal abundance even after accounting for the loss of the shrub layer and plant diversity, suggesting that there are direct and indirect effects of cheatgrass. The change in the small-mammal communities associated with invasion of cheatgrass likely has effects through higher and lower trophic levels and has the potential to cause major changes in ecosystem structure and function. PMID:25269073

  11. Thermotolerance adaptation to human-modified habitats occurs in the native range of the invasive ant Wasmannia auropunctata before long-distance dispersal

    PubMed Central

    Foucaud, Julien; Rey, Olivier; Robert, Stéphanie; Crespin, Laurent; Orivel, Jérôme; Facon, Benoit; Loiseau, Anne; Jourdan, Hervé; Kenne, Martin; Masse, Paul Serge Mbenoun; Tindo, Maurice; Vonshak, Merav; Estoup, Arnaud

    2013-01-01

    Key evolutionary events associated with invasion success are traditionally thought to occur in the introduced, rather than the native range of species. In the invasive ant Wasmannia auropunctata, however, a shift in reproductive system has been demonstrated within the native range, from the sexual non-dominant populations of natural habitats to the clonal dominant populations of human-modified habitats. Because abiotic conditions of human- modified habitats are hotter and dryer, we performed lab experiments on workers from a set of native and introduced populations, to investigate whether these ecological and genetic transitions were accompanied by a change in thermotolerance and whether such changes occurred before establishment in the introduced range. Thermotolerance levels were higher in native populations from human-modified habitats than in native populations from natural habitats, but were similar in native and introduced populations from human-modified habitats. Differences in thermotolerance could not be accounted for by differences in body size. A scenario based on local adaptation in the native range before introduction in remote areas represents the most parsimonious hypothesis to account for the observed phenotypic pattern. These findings highlight the importance of human land use in explaining major contemporary evolutionary changes. PMID:23789036

  12. Invertebrate community composition differs between invasive herb alligator weed and native sedges

    NASA Astrophysics Data System (ADS)

    Bassett, Imogen E.; Paynter, Quentin; Beggs, Jacqueline R.

    2012-05-01

    Chemical and/or architectural differences between native and exotic plants may influence invertebrate community composition. According to the enemy release hypothesis, invasive weeds should host fewer and less specialised invertebrates than native vegetation. Invertebrate communities were compared on invasive Alternanthera philoxeroides (alligator weed) and native sedges (Isolepis prolifer and Schoenoplectus tabernaemontani) in a New Zealand lake. A. philoxeroides is more architecturally and chemically similar to I. prolifer than to S. tabernaemontani. Lower invertebrate abundance, richness and proportionally fewer specialists were predicted on A. philoxeroides compared to native sedges, but with greatest differences between A. philoxeroides and S. tabernaemontani. A. philoxeroides is more architecturally and chemically similar to I. prolifer than to S. tabernaemontani. Invertebrate abundance showed taxa-specific responses, rather than consistently lower abundance on A. philoxeroides. Nevertheless, as predicted, invertebrate fauna of A. philoxeroides was more similar to that of I. prolifer than to S. tabernaemontani. The prediction of a depauperate native fauna on A. philoxeroides received support from some but not all taxa. All vegetation types hosted generalist-dominated invertebrate communities with simple guild structures. The enemy release hypothesis thus had minimal ability to predict patterns in this system. Results suggest the extent of architectural and chemical differences between native and invasive vegetation may be useful in predicting the extent to which they will host different invertebrate communities. However, invertebrate ecology also affects whether invertebrate taxa respond positively or negatively to weed invasion. Thus, exotic vegetation may support distinct invertebrate communities despite similar overall invertebrate abundance to native vegetation.

  13. Global Invasion History of the Tropical Fire Ant, Solenopsis geminata: A Stowaway on the First Global Trade Routes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological invasions are largely thought to be contemporary, having recently increased sharply in the wake of globalization. However, human commerce had already become global in scope by the mid-16th century, when the Spanish connected the New World with Europe and Asia via their Manila galleon and ...

  14. Habitat fragmentation, tree diversity, and plant invasion interact to structure forest caterpillar communities.

    PubMed

    Stireman, John O; Devlin, Hilary; Doyle, Annie L

    2014-09-01

    Habitat fragmentation and invasive species are two of the most prominent threats to terrestrial ecosystems. Few studies have examined how these factors interact to influence the diversity of natural communities, particularly primary consumers. Here, we examined the effects of forest fragmentation and invasion of exotic honeysuckle (Lonicera maackii, Caprifoliaceae) on the abundance and diversity of the dominant forest herbivores: woody plant-feeding Lepidoptera. We systematically surveyed understory caterpillars along transects in 19 forest fragments over multiple years in southwestern Ohio and evaluated how fragment area, isolation, tree diversity, invasion by honeysuckle and interactions among these factors influence species richness, diversity and abundance. We found strong seasonal variation in caterpillar communities, which responded differently to fragmentation and invasion. Abundance and richness increased with fragment area, but these effects were mitigated by high levels of honeysuckle, tree diversity, landscape forest cover, and large recent changes in area. Honeysuckle infestation was generally associated with decreased caterpillar abundance and diversity, but these effects were strongly dependent on other fragment traits. Effects of honeysuckle on abundance were moderated when fragment area, landscape forest cover and tree diversity were high. In contrast, negative effects of honeysuckle invasion on caterpillar diversity were most pronounced in fragments with high tree diversity and large recent increases in area. Our results illustrate the complex interdependencies of habitat fragmentation, plant diversity and plant invasion in their effects on primary consumers and emphasize the need to consider these processes in concert to understand the consequences of anthropogenic habitat change for biodiversity. PMID:25015121

  15. Sampling and Complementarity Effects of Plant Diversity on Resource Use Increases the Invasion Resistance of Communities

    PubMed Central

    Zhu, Dan H.; Wang, Ping; Zhang, Wei Z.; Yuan, Yue; Li, Bin; Wang, Jiang

    2015-01-01

    Background Although plant diversity is postulated to resist invasion, studies have not provided consistent results, most of which were ascribed to the influences of other covariate environmental factors. Methodology/Principal Findings To explore the mechanisms by which plant diversity influences community invasibility, an experiment was conducted involving grassland sites varying in their species richness (one, two, four, eight, and sixteen species). Light interception efficiency and soil resources (total N, total P, and water content) were measured. The number of species, biomass, and the number of seedlings of the invading species decreased significantly with species richness. The presence of Patrinia scabiosaefolia Fisch. ex Trev. and Mosla dianthera (Buch.-Ham. ex Roxburgh) Maxim. significantly increased the resistance of the communities to invasion. A structural equation model showed that the richness of planted species had no direct and significant effect on invasion. Light interception efficiency had a negative effect on the invasion whereas soil water content had a positive effect. In monocultures, Antenoron filiforme (Thunb.) Rob. et Vaut. showed the highest light interception efficiency and P. scabiosaefolia recorded the lowest soil water content. With increased planted-species richness, a greater percentage of pots showed light use efficiency higher than that of A. filiforme and a lower soil water content than that in P. scabiosaefolia. Conclusions/Significance The results of this study suggest that plant diversity confers resistance to invasion, which is mainly ascribed to the sampling effect of particular species and the complementarity effect among species on resources use. PMID:26556713

  16. Honey Ants.

    ERIC Educational Resources Information Center

    Conway, John R.

    1984-01-01

    Provides background information on honey ants. These ants are found in dry or desert regions of North America, Africa, and Australia. Also provides a list of activities using local species of ants. (JN)

  17. Fire ant microsporidia acquired by parasitoid flies of fire ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microsporidium Kneallhazia (formerly Thelohania) solenopsae and parasitoid flies in the genus Pseudacteon are natural enemies of the invasive fire ant, Solenopsis invicta. Pseudacteon flies oviposit into adult fire ants, where maggots that eclose from eggs migrate to the ants’ head, pupate, and...

  18. Rodents balancing a variety of risks: invasive fire ants and indirect and direct indicators of predation risk.

    SciTech Connect

    Orrock, John, L.; Danielson, Brent, J.

    2004-06-08

    Oecologia (2004) 140: 662 - 667 We used foraging trays to compare how old field mice, Peromyscus polionotus, altered foraging in response to the presence of fire ants, Solenopsisinvicta, and in the presence of direct (predator urine) and indirect (sheltered or exposed micro habitat, moonlight, and precipitation) indicators of predation risk. Foraging reductions elicited by S. invicta were greater than reductions in response to well-documented indicators of risk (i.e., moonlit nights) and the presence of predator urine. The presence of S. invicta always led to reduced foraging, but the overall impact of S. invicta was dependent upon microhabitat and precipitation. When S. invicta was not present, foraging was greater in sheltered microhabitats compared to exposed microhabitats. S. invicta made sheltered microhabitats equivalent to more risky exposed microhabitats, and this effect was especially pronounced on nights without precipitation. The effect of S. invicta suggests that interactions with S. invicta may entail a potentially heavy cost or that presence of S. invicta may represent a more reliable indicator of imminent competition or predation compared to indirect cues of risk and predator urine. The presence of S. invicta led to reduced foraging under situations when foraging activity would otherwise be greatest (i.e., under vegetative cover), potentially reducing habitat quality for P. polionotus and the distribution of seeds consumed by rodents.

  19. Relationships between an invasive crab, habitat availability and intertidal community structure at biogeographic scales.

    PubMed

    Gribben, Paul E; Simpson, Michael; Wright, Jeffrey T

    2015-09-01

    At local scales, habitat availability influences interactions between native and invasive species. Habitat availability may also predict patterns in native communities and invasive species at biogeographic scales when both native and invasive species have specific habitat requirements. The New Zealand porcelain crab, Petrolisthes elongatus, has invaded intertidal rocky shores around Tasmania, Australia, where it is found in high densities (>1800 m(2)) under rocks. A hierarchical sampling approach was used to investigate 1) the relationship between habitat availability (rock cover) and the biomass and abundance of P. elongatus, and 2) the relationship between P. elongatus biomass and native communities at local and regional scales. Invertebrate communities and habitat availability were sampled at multiple sites in the north and south regions of Tasmania. P. elongatus biomass and abundance were positively correlated with rock cover and patterns were consistent at the biogeographic scale (between regions). P. elongatus biomass was positively correlated with native species richness, biomass and abundance highlighting their co-dependence on rock cover. However, multivariate analyses indicated a different native community structure with increasing P. elongatus biomass. Flat, strongly adhering gastropods (chitons and limpets) were positively correlated with P. elongatus biomass, whereas mobile gastropods and crabs were negatively correlated with P. elongatus biomass. Despite local scale variation, there were clear consistent relationships between habitat-availability and the biomass of P. elongatus, and between native communities and the biomass of P. elongatus suggesting that the relationships between native and invasive species may be predictable at large spatial scales. Moreover, the strong relationships between P. elongatus biomass and changes in native community structure suggest a greater understanding of its impact is needed so that appropriate

  20. Community Impacts of Prosopis juliflora Invasion: Biogeographic and Congeneric Comparisons

    PubMed Central

    Kaur, Rajwant; Gonzáles, Wilfredo L.; Llambi, Luis Daniel; Soriano, Pascual J.; Callaway, Ragan M.; Rout, Marnie E.; Gallaher, Timothy J.; Inderjit

    2012-01-01

    We coordinated biogeographical comparisons of the impacts of an exotic invasive tree in its native and non-native ranges with a congeneric comparison in the non-native range. Prosopis juliflora is taxonomically complicated and with P. pallida forms the P. juliflora complex. Thus we sampled P. juliflora in its native Venezuela, and also located two field sites in Peru, the native range of Prosopis pallida. Canopies of Prosopis juliflora, a native of the New World but an invader in many other regions, had facilitative effects on the diversity of other species in its native Venezuela, and P. pallida had both negative and positive effects depending on the year, (overall neutral effects) in its native Peru. However, in India and Hawaii, USA, where P. juliflora is an aggressive invader, canopy effects were consistently and strongly negative on species richness. Prosopis cineraria, a native to India, had much weaker effects on species richness in India than P. juliflora. We carried out multiple congeneric comparisons between P. juliflora and P. cineraria, and found that soil from the rhizosphere of P. juliflora had higher extractable phosphorus, soluble salts and total phenolics than P. cineraria rhizosphere soils. Experimentally applied P. juliflora litter caused far greater mortality of native Indian species than litter from P. cineraria. Prosopis juliflora leaf leachate had neutral to negative effects on root growth of three common crop species of north-west India whereas P. cineraria leaf leachate had positive effects. Prosopis juliflora leaf leachate also had higher concentrations of total phenolics and L-tryptophan than P. cineraria, suggesting a potential allelopathic mechanism for the congeneric differences. Our results also suggest the possibility of regional evolutionary trajectories among competitors and that recent mixing of species from different trajectories has the potential to disrupt evolved interactions among native species. PMID:22984595

  1. Community impacts of Prosopis juliflora invasion: biogeographic and congeneric comparisons.

    PubMed

    Kaur, Rajwant; Gonzáles, Wilfredo L; Llambi, Luis Daniel; Soriano, Pascual J; Callaway, Ragan M; Rout, Marnie E; Gallaher, Timothy J; Inderjit

    2012-01-01

    We coordinated biogeographical comparisons of the impacts of an exotic invasive tree in its native and non-native ranges with a congeneric comparison in the non-native range. Prosopis juliflora is taxonomically complicated and with P. pallida forms the P. juliflora complex. Thus we sampled P. juliflora in its native Venezuela, and also located two field sites in Peru, the native range of Prosopis pallida. Canopies of Prosopis juliflora, a native of the New World but an invader in many other regions, had facilitative effects on the diversity of other species in its native Venezuela, and P. pallida had both negative and positive effects depending on the year, (overall neutral effects) in its native Peru. However, in India and Hawaii, USA, where P. juliflora is an aggressive invader, canopy effects were consistently and strongly negative on species richness. Prosopis cineraria, a native to India, had much weaker effects on species richness in India than P. juliflora. We carried out multiple congeneric comparisons between P. juliflora and P. cineraria, and found that soil from the rhizosphere of P. juliflora had higher extractable phosphorus, soluble salts and total phenolics than P. cineraria rhizosphere soils. Experimentally applied P. juliflora litter caused far greater mortality of native Indian species than litter from P. cineraria. Prosopis juliflora leaf leachate had neutral to negative effects on root growth of three common crop species of north-west India whereas P. cineraria leaf leachate had positive effects. Prosopis juliflora leaf leachate also had higher concentrations of total phenolics and L-tryptophan than P. cineraria, suggesting a potential allelopathic mechanism for the congeneric differences. Our results also suggest the possibility of regional evolutionary trajectories among competitors and that recent mixing of species from different trajectories has the potential to disrupt evolved interactions among native species. PMID:22984595

  2. Integrating biology into invasive species management is a key principle for eradication success: the case of yellow crazy ant Anoplolepis gracilipes in northern Australia.

    PubMed

    Hoffmann, B D

    2015-04-01

    The lack of biological knowledge of many invasive species remains as one of the greatest impediments to their management. Here I detail targeted research into the biology of the yellow crazy ant Anoplolepis gracilipes within northern Australia and detail how such knowledge can be used to improve the management outcomes for this species. I quantified nest location and density in three habitats, worker activity over 24 h, infestation expansion rate, seasonal variation of worker abundance and the timing of production of sexuals. Nests were predominantly (up to 68%) located at the bases of large trees, indicating that search efforts should focus around tree bases. Nest density was one nest per 22, 7.1 and 6.3 m2 in the three habitats, respectively. These data form the baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. Most (60%) nests were underground, predominantly (89%) occurring in an open area rather than underneath a rock or log. Some seasonality was evident for nests within leaf litter, with most (83%) occurring during the 'wet season' (October-March). Of the underground nests, most were shallow, with 44% being less than 10 cm deep, and 67% being less than 20 cm deep. Such nest location and density information serves many management purposes, for improving detection, mapping and post-treatment assessments, and also provided strong evidence that carbohydrate supply was a major driver of A. gracilipes populations. Just over half of the nests (56%) contained queens. Of the 62 underground nests containing queens, most queens (80%) were located at the deepest chamber. When queens were present, most often (38%) only one queen was present, the most being 16. Queen number per nest was the lowest in July and August just prior to the emergence of virgin queens in September, with queen numbers then remaining steadily high until April. Nothing is known for any ant species about how the queen number per nest/colony affects

  3. The influence of insecticides and vegetation in structuring Formica mound ant communities (Hymenoptera: Formicidae) in Maine lowbush blueberry.

    PubMed

    Choate, Beth; Drummond, Francis A

    2013-04-01

    Assessing the influence of new, reduced-risk insecticides on natural enemies within agroecosystems is essential to developing integrated pest management strategies. Three species of mound-building Formica ants are abundant throughout Maine lowbush blueberry fields (Formica exsectoides Forel, F. glacialis Wheeler, and F. ulkei Emery). All three species have been described in the literature as predaceous, with research demonstrating that F. exsectoides preys on major pest insects of lowbush blueberry. The objectives of this study were to determine the impact of common-use and newly introduced insecticides on Formica sp. ant communities in lowbush blueberry fields. Laboratory assays indicated that the commonly applied insecticide phosmet is toxic to F. exsectoides, even after 8 d of field weathering (P < 0.05). Species comparisons indicated that susceptibility varied with exposure to residues in the field. However, some of the reduced-risk biorational insecticides, such as acetamiprid, had little effect on survival of all three species. Abundance of each species in the field varied with lowbush blueberry pesticide-use strategy and amount of nonblueberry vegetation. Both F. exsectoides and F. glacialis were most abundant in organic fields; however, overall F. glacialis was the most abundant in fields of all management types. Field surveys support laboratory results suggesting that phosmet is highly toxic to these species and influences their spatial pattern. Manipulation of the crop to conserve natural enemies in lowbush blueberry is difficult because the crop is not planted; therefore, we must look closely at the incorporation of low toxicity insecticides with natural enemies to efficiently control pest insects. PMID:23786059

  4. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew.

    PubMed

    Blüthgen, N; Verhaagh, M; Goitía, W; Jaffé, K; Morawetz, W; Barthlott, W

    2000-10-01

    Ant-plant interactions in the canopy of a lowland Amazonian rainforest of the upper Orinoco, Venezuela, were studied using a modified commercial crane on rails (Surumoni project). Our observations show a strong correlation between plant sap exudates and both abundance of ants and co-occurrence of ant species in tree canopies. Two types of plant sap sources were compared: extrafloral nectaries (EFNs) and honeydew secretions by homopterans. EFNs were a frequent food source for ants on epiphytes (Philodendron spp., Araceae) and lianas (Dioclea, Fabaceae), but rare on canopy trees in the study area, whereas the majority of trees were host to aggregations of homopterans tended by honeydew-seeking ants (on 62% of the trees examined). These aggregations rarely occurred on epiphytes. Baited ant traps were installed on plants with EFNs and in the crowns of trees from three common genera, including trees with and without ant-tended homopterans: Goupia glabra (Celastraceae), Vochysia spp. (Vochysiaceae), and Xylopia spp. (Annonaceae). The number of ant workers per trap was significantly higher on plants offering one of the two plant sap sources than on trees without such resources. Extrafloral nectaries were used by a much broader spectrum of ant species and genera than honeydew, and co-occurrence of ant species (in traps) was significantly higher on plants bearing EFNs than on trees. Homopteran honeydew (Coccidae and Membracidae), on the other hand, was mostly monopolised by a single ant colony per tree. Homopteran-tending ants were generally among the most dominant ants in the canopy. The most prominent genera were Azteca, Dolichoderus (both Dolichoderinae), Cephalotes, Pheidole, Crematogaster (all Myrmicinae), and Ectatomma (Ponerinae). Potential preferences were recorded between ant and homopteran species, and also between ant-homopteran associations and tree genera. We hypothesize that the high availability of homopteran honeydew provides a key resource for ant mosaics

  5. Invasive lionfish harbor a different external bacterial community than native Bahamian fishes

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; Olson, J. B.

    2013-12-01

    The introduction and subsequent spread of lionfish into the Atlantic Ocean and Caribbean Sea has become a worldwide conservation issue. These highly successful invaders may also be capable of introducing non-native microorganisms to the invaded regions. This study compared the bacterial communities associated with lionfish external tissue to those of native Bahamian fishes and ambient water. Terminal restriction fragment length polymorphism analyses demonstrated that lionfish bacterial communities were significantly different than those associated with three native Bahamian fishes. Additionally, all fishes harbored distinct bacterial communities from the ambient bacterioplankton. Analysis of bacterial clone libraries from invasive lionfish and native squirrelfish indicated that lionfish communities were more diverse than those associated with squirrelfish, yet did not contain known fish pathogens. Using microscopy and molecular genetic approaches, lionfish eggs were examined for the presence of bacteria to evaluate the capacity for vertical transmission. Eggs removed from the ovaries of gravid females were free of bacteria, suggesting that lionfish likely acquire bacteria from the environment. This study was the first examination of bacterial communities associated with the invasive lionfish and indicated that they support different communities of environmentally derived bacteria than Caribbean reef fishes.

  6. Predicting invasive species impacts: a community module functional response approach reveals context dependencies.

    PubMed

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-03-01

    Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. PMID:25265905

  7. Predicting invasive species impacts: a community module functional response approach reveals context dependencies

    PubMed Central

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-01-01

    Summary Predatory functional responses play integral roles in predator–prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator–prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. PMID:25265905

  8. Changes in plant community of Seasonally Semideciduous Forest after invasion by Schizolobium parahyba at southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Abreu, Rodolfo Cesar Real de; Santos, Francisco Ferreira de Miranda; Durigan, Giselda

    2014-01-01

    The recognition of a species as invasive is generally accepted when it comes from another continent or even from another country, but requires strong evidences of negative impacts to support control actions when the invasive species comes from another region in the same country. Schyzolobium parahyba - the 'guapuruvu', is a Brazilian tree native from the evergreen type of the Atlantic Forest, which has been recorded as invader in a number of remnants of the Seasonally Semideciduous Forest - SSF. We hypothesized that this giant and fast growing invasive tree changes the structure and composition of the understory, thus impairing the forest dynamics. We assessed the invasive population in the whole fragment, and, within the portion invaded, we sampled the regenerating plant community 1) under the largest alien trees, 2) under a native species with similar ecology (Peltophorum dubium), and 3) randomly in the forest. Density, basal area and richness under S. parahyba were remarkably lower than under the equivalent native species or in the understory as a whole. Floristic composition of the plant community was also distinct under S. parahyba, possibly due to increased competition for soil water. Even though the alien species has occupied, as yet, a small proportion of the forest fragment, it dominates the overstory and threatens the regeneration processes under its canopy. In view of our findings, we recommend extirpation of the species from SSF, as well as avoiding cultivation of the species away from its native range.

  9. The influence of Aster x salignus Willd. Invasion on the diversity of soil yeast communities

    NASA Astrophysics Data System (ADS)

    Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.

    2016-07-01

    The annual dynamics of yeast communities were studied in the soddy-podzolic soil under the thickets of Aster x salignus Willd., one of the widespread invasive plant species in central Russia. Yeast groups in the soils under continuous aster thickets were found to differ greatly from the yeast communities in the soils under the adjacent indigenous meadow vegetation. In both biotopes the same species ( Candida vartiovaarae, Candida sake, and Cryptococcus terreus) are dominants. However, in the soils under indigenous grasses, eurybiontic yeasts Rhodotorula mucilaginosa, which almost never occur in the soil under aster, are widespread. In the soil under aster, the shares of other typical epiphytic and pedobiontic yeast fungi (ascomycetic species Wickerhamomyces aniomalus, Barnettozyma californica and basidiomycetic species Cystofilobasidium macerans, Guehomyces pullulans) significantly increase. Thus, the invasion of Aster x salignus has a clear effect on soil yeast complexes reducing their taxonomic and ecological diversity.

  10. Species richness and interacting factors control invasibility of a marine community

    PubMed Central

    Marraffini, M. L.; Geller, J. B.

    2015-01-01

    Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species' ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment. PMID:26203005

  11. Invasive toads shift predator-prey densities in animal communities by removing top predators.

    PubMed

    Doody, J Sean; Soanes, Rebekah; Castellano, Christina M; Rhind, David; Green, Brian; McHenry, Colin R; Clulow, Simon

    2015-09-01

    Although invasive species can have substantial impacts on animal communities, cases of invasive species facilitating native species by removing their predators have rarely been demonstrated across vertebrate trophic linkages. The predictable spread of the invasive cane toad (Rhinella marina), however, offered a unique opportunity to quantify cascading effects. In northern Australia, three species of predatory monitor lizards suffered severe population declines due to toad-induced lethal toxic ingestion (yellow-spotted monitor (Varanus panoptes), Mertens' water monitor (V. mertensi), Mitchell's water monitor (V. mitchelli). We, thus, predicted subsequent increases in the abundance and recruitment of prey species due to the reduction of those predators. Toad-induced population-level declines in the water monitor species approached 50% over a five-year period spanning the toad invasion, apparently causing fledging success of the Crimson Finch (Neochmia.phaeton) to increase from 55% to 81%. The consensus of our original and published long-term data is that invasive cane toads are causing predators to lose a foothold on top-down regulation of their prey, triggering shifts in the relative densities of predator and prey in the Australian tropical savannah ecosystem. PMID:26594710

  12. Effects of the invasive clam Corbicula fluminea (Müller, 1774) on an estuarine microbial community.

    PubMed

    Novais, Adriana; Souza, Allan T; Ilarri, Martina; Pascoal, Cláudia; Sousa, Ronaldo

    2016-10-01

    The Asian clam Corbicula fluminea (Müller, 1774) is well recognized for its invasive behavior and high ecological and economic impacts, being classified as one of the 100 worst invasive alien species (IAS) in Europe. In this study, we performed a manipulative experiment under natural conditions to assess the effects of C. fluminea on sediments biochemistry and on the structure of an estuarine microbial (fungi and bacteria) community. We placed 5 treatments (control, rock, closed, live and open) for 2months in the Minho estuary (NW Iberian Peninsula). No differences were detected between treatments regarding the values of carbon (C), nitrite (NO2(-)), ammonium (NH4(+)), phosphate (PO4(3-)) and calcium (Ca) in the sediments; however, potassium (K) had higher values in the open treatment. Furthermore, we found that the presence of live C. fluminea stimulated fungal biomass (but not diversity) and bacterial diversity. Bioturbation activities by C. fluminea are possibly the main mechanism explaining these results; however, other factors such as the presence of other macroinvertebrate species and/or production of feces and pseudofeces by C. fluminea cannot be excluded. To our knowledge, this is the first manipulative experiment under natural conditions that clearly shows the effects of C. fluminea on an estuarine microbial community. Given the widespread distribution of this IAS and the paucity of quantitative assessments of invasive bivalves' effects on microbial communities, it will be important that future studies further investigate these processes. PMID:27265734

  13. Invasibility of resident biofilms by allochthonous communities in bioreactors.

    PubMed

    Bellucci, Micol; Bernet, Nicolas; Harmand, Jérôme; Godon, Jean-Jacques; Milferstedt, Kim

    2015-09-15

    Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia. These consortia consisted of fresh activated sludge suspensions for the biofilms inoculated with tap water (reactors W1 and W2) and of transplanted mature tap water biofilm for the activated sludge biofilm (reactor S). The introduction of virgin, unoccupied coupons into W1 and W2 enabled us to additionally investigate the competition for new resources (space) among the resident biofilm and the allochthonous consortia. CE-SSCP revealed that after the invasion event changes were mostly observed in the abundance of the dominant species in the native biofilms rather than their composition. This suggests that the resident communities within a bioreactor immediately outcompete the allochthonous microbes and shape the microbial community assemblage on both new coupons and already colonized surfaces for the short term. However, with time, latent members of the allochthonous community might grow up affecting the diversity and composition of the original biofilms. PMID:26072021

  14. [Effects of Phyllostachys edulis invasion of native broadleaf forest on soil fungal community].

    PubMed

    Li, Yong-chun; Liang, Xue; Li, Yong-fu; Wang, Qi; Chen, Jun-hui; Xu, Qiu-fang

    2016-02-01

    To investigate variation of soil fungal community in response to invasion of Phyllostachys edulis into native broadleaf forest, we characterized the community structure and the abundance of fungi in soil under bamboo (BB), mixture forest of bamboo and broadleaf (MF) and broadleaf forest (BL) using terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR. The results showed that the most obvious difference in the soil fungal community structure was observed between the BB and BF stands, followed by that between the MF and BL. Shannon index and evenness index of soil fungi were higher in the MF than in the BB and BL. pH and NH4+-N content were the most important environmental gradients on the distribution of fungal community under BB, while NO3(-)-N content significantly affected the distribution of the fungal community under BL. The abundance of fungi in BL was significantly higher than that in BB and MF, and the fungi abundance showed a negative correlation with soil pH but a positive correlation with NO3(-)-N content. These results implied that heterotrophic nitrification driven by fungi could occur in soil of BL, and this process might be changed by the bamboo invasion. PMID:27396134

  15. Plant community resistance to invasion by Bromus species – the roles of community attributes, Bromus Interactions with plant communities, and Bromus traits

    USGS Publications Warehouse

    Chambers, Jeanne; Germino, Matthew; Belnap, Jayne; Brown, Cynthia; Schupp, Eugene W.; St. Clair, Samuel B

    2016-01-01

    The factors that determine plant community resistance to exotic annual Bromus species (Bromushereafter) are diverse and context specific. They are influenced by the environmental characteristics and attributes of the community, the traits of Bromus species, and the direct and indirect interactions of Bromus with the plant community. Environmental factors, in particular ambient and soil temperatures, have significant effects on the ability of Bromus to establish and spread. Seasonality of precipitation relative to temperature influences plant community resistance toBromus through effects on soil water storage, timing of water and nutrient availability, and dominant plant life forms. Differences among plant communities in how well soil resource use by the plant community matches resource supply rates can influence the magnitude of resource fluctuations due to either climate or disturbance and thus the opportunities for invasion. The spatial and temporal patterns of resource availability and acquisition of growth resources by Bromus versus native species strongly influence resistance to invasion. Traits of Bromus that confer a “priority advantage” for resource use in many communities include early-season germination and high growth and reproductive rates. Resistance to Bromus can be overwhelmed by high propagule supply, low innate seed dormancy, and large, if short-lived, seed banks. Biological crusts can inhibit germination and establishment of invasive annual plants, including several annual Bromus species, but are effective only in the absence of disturbance. Herbivores can have negative direct effects on Bromus, but positive indirect effects through decreases in competitors. Management strategies can be improved through increased understanding of community resistance to exotic annual Bromus species.

  16. An evaluation of the impact of Melaleuca quinquenervia invasion and managment on plant community structure after fire.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The successful management of invasive species can be particularly difficult in natural areas that depend on disturbances such as fire to maintain community structure and function. In these systems, fire-adapted invasive species may disproportionally benefit from post-fire resource availability, inc...

  17. High Invasive Pollen Transfer, Yet Low Deposition on Native Stigmas in a Carpobrotus-invaded Community

    PubMed Central

    Bartomeus, Ignasi; Bosch, Jordi; Vilà, Montserrat

    2008-01-01

    Background and Aims Invasive plants are potential agents of disruption in plant–pollinator interactions. They may affect pollinator visitation rates to native plants and modify the plant–pollinator interaction network. However, there is little information about the extent to which invasive pollen is incorporated into the pollination network and about the rates of invasive pollen deposition on the stigmas of native plants. Methods The degree of pollinator sharing between the invasive plant Carpobrotus affine acinaciformis and the main co-flowering native plants was tested in a Mediterranean coastal shrubland. Pollen loads were identified from the bodies of the ten most common pollinator species and stigmatic pollen deposition in the five most common native plant species. Key Results It was found that pollinators visited Carpobrotus extensively. Seventy-three per cent of pollinator specimens collected on native plants carried Carpobrotus pollen. On average 23 % of the pollen on the bodies of pollinators visiting native plants was Carpobrotus. However, most of the pollen found on the body of pollinators belonged to the species on which they were collected. Similarly, most pollen on native plant stigmas was conspecific. Invasive pollen was present on native plant stigmas, but in low quantity. Conclusions Carpobrotus is highly integrated in the pollen transport network. However, the plant-pollination network in the invaded community seems to be sufficiently robust to withstand the impacts of the presence of alien pollen on native plant pollination, as shown by the low levels of heterospecific pollen deposition on native stigmas. Several mechanisms are discussed for the low invasive pollen deposition on native stigmas. PMID:18593688

  18. [Impact of Mikania micrantha invasion on soil meso- and micro-invertebrate community structure].

    PubMed

    Quan, Guo-ming; Zhang, Jia-en; Xie, Jun-fang; Mao, Dan-juan; Xu, Hua-qin; Jiang, Wan-bing; Wen, Du-juan

    2011-07-01

    Mikania micrantha, a notorious exotic weed of Asteraceae family, has invaded successfully in southern China, and caused serious damages to native ecosystems. In this paper, a field survey was conducted in the Huolushan Forest Park of Guangzhou, China, aimed to understand the impact of M. micrantha invasion on the soil meso- and micro-invertebrate community. Three sampling sites were installed, including M. micrantha-invaded site, ecotone, and native vegetation site. Through four samplings in 2009, a total of 5206 soil meso- and micro-invertebrate individuals were collected, belonging to 4 phyla, 10 classes, and 19 orders, among which, Nematoda was the dominant group, and Acarina, Collembolan, and Rotifera were the common groups. M. micrantha invasion altered the characteristics of soil meso- and micro-invertebrate community structure. Compared with those at the other two sampling sites, the numbers of total individuals, Nematoda, and Acarina at M. micrantha-invaded site increased significantly, but the groups of soil meso- and micro-invertebrates had less change. At M. micrantha-invaded site, the density-group index (DG) of soil meso- and micro-invertebrates was significantly higher, Margalef richness index (D) and Simpson dominance index (C) tended to ascend, but Pielou evenness index (E) and Shannon index (H') tended to descend. The similarity coefficient of soil meso- and micro-invertebrate community between M. micrantha-invaded site and ecotone was higher than that between M. micrantha-invaded site and native vegetation site. The changes of local climate conditions, plant litters, root secretions, and soil physical-chemical properties caused by M. micrantha invasion could be the major contributing factors that altered the community structure of soil meso- and micro-invertebrates at M. micrantha-invaded site. PMID:22007466

  19. Ecological consequences of interactions between ants and honeydew-producing insects

    PubMed Central

    Styrsky, John D; Eubanks, Micky D

    2006-01-01

    Interactions between ants and honeydew-producing hemipteran insects are abundant and widespread in arthropod food webs, yet their ecological consequences are very poorly known. Ant–hemipteran interactions have potentially broad ecological effects, because the presence of honeydew-producing hemipterans dramatically alters the abundance and predatory behaviour of ants on plants. We review several studies that investigate the consequences of ant–hemipteran interactions as ‘keystone interactions’ on arthropod communities and their host plants. Ant–hemipteran interactions have mostly negative effects on the local abundance and species richness of several guilds of herbivores and predators. In contrast, out of the 30 studies that document the effects of ant–hemipteran interactions on plants, the majority (73%) shows that plants actually benefit indirectly from these interactions. In these studies, increased predation or harassment of other, more damaging, herbivores by hemipteran-tending ants resulted in decreased plant damage and/or increased plant growth and reproduction. The ecological consequences of mutualistic interactions between honeydew-producing hemipterans and invasive ants relative to native ants have rarely been studied, but they may be of particular importance owing to the greater abundance, aggressiveness and extreme omnivory of invasive ants. We argue that ant–hemipteran interactions are largely overlooked and underappreciated interspecific interactions that have strong and pervasive effects on the communities in which they are embedded. PMID:17148245

  20. Long-Term Functional Dynamics of an Aphidophagous Coccinellid Community Remain Unchanged despite Repeated Invasions

    PubMed Central

    Bahlai, Christine A.; Colunga-Garcia, Manuel; Gage, Stuart H.; Landis, Douglas A.

    2013-01-01

    Aphidophagous coccinellids (ladybeetles) are important providers of herbivore suppression ecosystem services. In the last 30 years, the invasion of exotic coccinellid species, coupled with observed declines in native species, has led to considerable interest in the community dynamics and ecosystem function of this guild. Here we examined a 24-year dataset of coccinellid communities in nine habitats in southwestern Michigan for changes in community function in response to invasion. Specifically we analyzed their temporal population dynamics and species diversity, and we modeled the community’s potential to suppress pests. Abundance of coccinellids varied widely between 1989 and 2012 and became increasingly exotic-dominated. More than 71% of 57,813 adult coccinellids captured over the 24-year study were exotic species. Shannon diversity increased slightly over time, but herbivore suppression potential of the community remained roughly constant over the course of the study. However, both Shannon diversity and herbivore suppression potential due to native species declined over time in all habitats. The relationship between Shannon diversity and herbivore suppression potential varied with habitat type: a positive relationship in forest and perennial habitats, but was uncorrelated in annual habitats. This trend may have been because annual habitats were dominated by a few, highly voracious exotic species. Our results indicated that although the composition of the coccinellid community in southwestern Michigan has changed dramatically in the past several decades, its function has remained relatively unchanged in both agricultural and natural habitats. While this is encouraging from the perspective of pest management, it should be noted that losses of one of the dominant exotic coccinellids could result in a rapid decline in pest suppression services if the remaining community is unable to respond. PMID:24349505

  1. Are Local Filters Blind to Provenance? Ant Seed Predation Suppresses Exotic Plants More than Natives

    PubMed Central

    Pearson, Dean E.; Icasatti, Nadia S.; Hierro, Jose L.; Bird, Benjamin J.

    2014-01-01

    The question of whether species’ origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species’ traits interact with community filters, a process presumably blind to species’ origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters. PMID:25099535

  2. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities

    PubMed Central

    2013-01-01

    Background Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms’ specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Results Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms

  3. Community-based participatory research helps farmers and scientists to manage invasive pests in the Ecuadorian Andes.

    PubMed

    Dangles, O; Carpio, F C; Villares, M; Yumisaca, F; Liger, B; Rebaudo, F; Silvain, J F

    2010-06-01

    Participatory research has not been a conspicuous methodology in developing nations for studying invasive pests, an increasing threat to the sustainable development in the tropics. Our study presents a community-based monitoring system that focuses on three invasive potato tuber moth species (PTM). The monitoring was developed and implemented by young farmers in a remote mountainous area of Ecuador. Local participants collected data from the PTM invasion front, which revealed clear connection between the abundance of one of the species (Tecia solanivora) and the remoteness to the main market place. This suggests that mechanisms structuring invasive populations at the invasion front are different from those occurring in areas invaded for longer period. Participatory monitoring with local people may serve as a cost-effective early warning system to detect and control incipient invasive pest species in countries where the daily management of biological resources is largely in the hands of poor rural people. PMID:20799682

  4. Impact of nitrogen availability and soil communities on biomass accumulation of an invasive species

    PubMed Central

    Bajpai, Devika; Inderjit

    2013-01-01

    Exotic plant species impact belowground processes by influencing resource availability through enhanced microbial activity as a consequence of litter inputs. We have little understanding of the impact of microbe-driven nutrient fluctuations on the biomass accumulation of invasive species. Here we attempt to answer the question on whether soil community-driven nitrogen availability influences invader biomass. We discovered that soil communities cultured by Ageratina adenophora, a neotropical invader in Asia, retain available nitrogen that influences the biomass of the invader. Through soil manipulation experiments we found that A. adenophora grows better in soil with a higher available nitrogen content. Ageratina adenophora-invaded soil had higher microbial activity and available nitrogen due to higher inputs of terpene-rich litter compared with soil not yet invaded by it. Our results provide evidence that microbe-linked nitrogen availability exerts a positive impact on A. adenophora biomass accumulation. Our work emphasizes the importance of soil community-driven nitrogen availability in invasion success.

  5. Minimal Effects of an Invasive Flowering Shrub on the Pollinator Community of Native Forbs

    PubMed Central

    Chung, Y. Anny; Burkle, Laura A.; Knight, Tiffany M.

    2014-01-01

    Biological invasions can strongly influence species interactions such as pollination. Most of the documented effects of exotic plant species on plant-pollinator interactions have been observational studies using single pairs of native and exotic plants, and have focused on dominant exotic plant species. We know little about how exotic plants alter interactions in entire communities of plants and pollinators, especially at low to medium invader densities. In this study, we began to address these gaps by experimentally removing the flowers of a showy invasive shrub, Rosa multiflora, and evaluating its effects on the frequency, richness, and composition of bee visitors to co-flowering native plants. We found that while R. multiflora increased plot-level richness of bee visitors to co-flowering native plant species at some sites, its presence had no significant effects on bee visitation rate, visitor richness, bee community composition, or abundance overall. In addition, we found that compared to co-flowering natives, R. multiflora was a generalist plant that primarily received visits from generalist bee species shared with native plant species. Our results suggest that exotic plants such as R. multiflora may facilitate native plant pollination in a community context by attracting a more diverse assemblage of pollinators, but have limited and idiosyncratic effects on the resident plant-pollinator network in general. PMID:25343718

  6. Ecophysiological Responses of Invasive and Native Grass Communities with Simulated Warming

    NASA Astrophysics Data System (ADS)

    Quade, B.; Ravi, S.; Huxman, T. E.

    2010-12-01

    William Quade1, Sujith Ravi2, Ashley Weide2, Greg Barron-Gafford2, Katerina Dontsova2 and Travis E Huxman2 1Carthage College, WI 2 B2 Earthscience & UA Biosphere 2, University of Arizona, Tucson. Abstract Climate change, anthropogenic disturbances and lack of proper management practices have rendered many arid regions susceptible to invasions by exotic grasses with consequent ecohydrological, biogeochemical and socio economic implications. Thus, understanding the ecophysiological processes driving these large-scale vegetation shifts in drylands, in the context of rising temperatures and recurrent droughts is fundamental to global change research. Using the Biosphere 2 facility to maintain distinct temperature treatments of ambient and predicted warmer conditions (+ 4o C) inside, we compared the physiological (e.g. photosynthesis, stomatal conductance, biomass) responses of a native grass - Heteropogan contortus (Tanglehead) and an invasive grass - Pennisetum ciliare (Buffelgrass) growing in single and mixed communities. The results indicate that Buffelgrass can assimilate more CO2 per unit leaf area under current conditions, though warming seems to inhibit the performance when looking at biomass, photosynthesis and stomatal conductance. Under similar moisture regimes Buffelgrass performed better than Tangle head in mixed communities regardless of the temperature. Both grasses had decrease in stomatal conductance with warmer conditions, however the Buffel grass did not have the same decrease of conductance when planted in a mixed communities. Key words: Buffelgrass, Tanglehead, Biosphere 2, stomatal conductance, climate change

  7. ESTUARINE AND SCALAR PATTERNS OF INVASION IN THE SOFT-BOTTOM BENTHIC COMMUNITIES OF THE SAN FRANCISCO ESTUARY

    EPA Science Inventory

    The spatial patterns of nonindigenous species in seven subtidal soft-bottom communities in the San Francisco Estuary were quantified. Sixty nonindigenous species were found out of the 533 taxa enumerated (11%). Patterns of invasion across the communities were evaluated using a ...

  8. Nitrogen-limitation and invasive sweetclover impacts vary between two Great Plains plant communities

    USGS Publications Warehouse

    Van Riper, Laura C.; Larson, Diane L.; Larson, Jennifer L.

    2010-01-01

    Yellow sweetclover is an exotic herbaceous legume common in the Great Plains of the US. Although woody legumes have been shown to affect ecosystem processes through nitrogen (N) fixation (i.e., they can be considered "transformers" sensu Richardson et al. (2000)), the same has not been shown for short-lived herbaceous species. The objectives of this study were to (1) quantify the effects of yellow sweetclover on N mineralization and nitrification and (2) assess the effects of N fertilization on two plant communities, badlands sparse vegetation and western wheatgrass prairie. We used in situ (in wheatgrass prairie) and laboratory incubations (for both plant communities) to assess N dynamics at sites with high and low sweetclover cover in the two plant communities. We found that both N mineralization and nitrification were higher in the high sweetclover plots in the sparse plant community, but not in the wheatgrass prairie. To assess fertilization effects and determine if nutrients or water were limiting at our sites, we conducted a field experiment with five resource addition treatments, (1) N, (2) N + water, (3) water, (4) phosphorus, and (5) no addition. Water was limiting in the wheatgrass prairie but contrary to expectation, N was not. In contrast, N was limiting in the sparse community, where a fertilization effect was seen in exotic forbs, especially the toxic invader Halogeton glomeratus. Our results emphasize the contingent nature of plant invasion in which effects are largely dependent on attributes of the recipient vegetation.

  9. The Lake Ontario zooplankton community before (1987-1991) and after (2001-2005) invasion-induced ecosystem change

    USGS Publications Warehouse

    Stewart, T.J.; Johannsson, O.E.; Holeck, K.; Sprules, W.G.; O'Gorman, R.

    2010-01-01

    We assessed changes in Lake Ontario zooplankton biomass, production, and community composition before (1987–1991) and after (2001–2005) invasion-induced ecosystem changes. The ecosystem changes were associated with establishment of invasive dreissenid mussels and invasive predatory cladocerans (Bythotrephes and Cercopagis). Whole-lake total epilimnetic plus metalimnetic zooplankton production declined by approximately half from 42.45 (g dry wt∙m−2∙ year−1) during 1987–1991 to 21.91 (g dry wt∙m−2∙ year−1) in 2003 and averaged 21.01 (g dry wt∙m−2∙ year−1) during 2001–2005. Analysis of two independent data sets indicates that the mean biomass and biomass proportion of cyclopoid copepods declined while the same measures increased for the invasive predatory cladocerans. Changes in means and proportions of all other zooplankton groups were not consistent between the data sets. Cyclopoid copepod biomass and production declined by factors ranging from 3.6 to 5.7. Invasive predatory cladoceran biomass averaged from 5.0% to 8.0% of the total zooplankton biomass. The zooplankton community was otherwise resilient to the invasion-induced disruption as zooplankton species richness and diversity were unaffected. Zooplankton production was likely reduced by declines in primary productivity but may have declined further due to increased predation by alewives and invasive predatory cladocerans. Shifts in zooplankton community structure were consistent with increased predation pressure on cyclopoid copepods by alewives and invasive predatory cladocerans. Predicted declines in the proportion of small cladocerans were not evident. This study represents the first direct comparison of changes in Lake Ontario zooplankton production before and after the invasion-induced disruption and will be important to food web-scale investigations of invasion effects.

  10. Bacterial community survey of Solenopsis invicta Buren (red imported fire ant) colonies in the presence and absence of Solenopsis invicta virus (SINV).

    PubMed

    Powell, Christopher M; Hanson, John D; Bextine, Blake R

    2014-10-01

    Insect bacterial symbionts contribute to many essential biological functions of their hosts and can also influence host fecundity and fitness. The physiological contribution symbionts provide can aid in immune response and xenobiotic detoxification. Both of these immune factors can directly impact strategies aimed at managing insect populations. One biological control strategy that shows promise in insects is the use of single-stranded RNA viruses within the group Dicistroviridae. The Solenopsis invicta Virus (SINV; Dicistroviridae), a ssRNA virus, has been proposed as a potential biological control agent for the urban pest S. invicta Buren or red imported fire ant (RIFA). SINV has been shown to be prevalent in RIFA populations of Texas and Florida; however, mortality is associated with high viral load. In other insect microbe systems, presence of particular bacteria induced resistance against Dicistrovirus. If this type of relationship is present in the RIFA-SINV system, their bacterial community could reduce the effectiveness of SINV as a biological control system. The advantage of 454 pyro-sequencing is that it enables classification of unculturable bacteria. This study examines the bacterial community in brood, workers, and reproductive cast members from colonies with and without SINV infection. Manipulation of the bacterial community may alter virus infection and replication within the mid-gut. Understanding the differences in the microbial community of ant colonies may provide insights that will refine current efforts designing control strategies for this important urban pest. PMID:24934994

  11. Ecosystem engineering of harvester ants: effects on vegetation in a sagebrush-steppe ecosystem

    USGS Publications Warehouse

    Gosselin, Elyce N; Holbrook, Joseph D.; Huggler, Katey; Brown, Emily; Vierling, Kerri T.; Arkle, Robert; Pilliod, David

    2016-01-01

    Harvester ants are influential in many ecosystems because they distribute and consume seeds, remove vegetation, and redistribute soil particles and nutrients. Understanding the interaction between harvester ants and plant communities is important for management and restoration efforts, particularly in systems altered by fire and invasive species such as the sagebrush-steppe. Our objective was to evaluate how vegetation cover changed as a function of distance from Owyhee harvester ant (Pogonomyrmex salinus) nests within a sagebrush-steppe ecosystem. We sampled 105 harvester ant nests within southern Idaho, USA, that occurred in different habitats: annual grassland, perennial grassland, and native shrubland. The influence of Owyhee harvester ants on vegetation was larger at the edge of ant nests, but the relationship was inconsistent among plant species. Percent cover was positively associated with distance from harvester ant nests for plant species that were considered undesirable food sources and were densely distributed. However, percent cover was negatively associated with distance-from-nests for patchily distributed and desirable plant species. For some plant species, there was no change in cover associated with distance-from-nests. Total vegetation cover was associated with distance-from-nests in the shrubland habitat but not in the 2 grasslands. The dominant plant species in the shrubland habitat was a densely distributed shrub (winterfat, Krascheninnikovia lanata) that was defoliated by harvester ants. Our results suggest that Owyhee harvester ants increase spatial heterogeneity in plant communities through plant clearing, but the direction and magnitude of effect will likely be contingent on the dominant vegetation groups. This information may inform future management and plant restoration efforts in sagebrush-steppe by directly considering the islands of influence associated with harvester ant engineering.

  12. Parasites alter freshwater communities in mesocosms by modifying invasive crayfish behavior.

    PubMed

    Reisinger, Lindsey S; Lodge, David M

    2016-06-01

    Parasites can alter communities by reducing densities of keystone hosts, but few studies have examined how trait-mediated indirect effects of parasites can alter ecological communities. We test how trematode parasites (Microphallus spp.) that affect invasive crayfish (Orconectes rusticus) behavior alter how crayfish impact lake littoral communities. O. rusticus drive community composition in north temperate lakes, and predatory fish can reduce crayfish activity and feeding. In laboratory studies, Microphallus parasites also alter O. rusticus behavior: infected O. rusticus eat fewer macroinvertebrates and are bolder near predatory fish than uninfected individuals. We used a 2 x 2 factorial experiment to test how predatory fish and parasites affect O. rusticus impacts in large mesocosms over 4 weeks. We predicted (1) that when predators were absent, infected crayfish would have lower impacts than uninfected crayfish on macrophytes and macroinvertebrates (as well as reduced growth and higher mortality). However, (2) when predators were present but unable to consume crayfish, infected crayfish would have greater impacts (as well as greater growth and lower mortality) than uninfected crayfish because of increased boldness. Because of its effect on crayfish feeding behavior, we also predicted (3) that infection would alter macrophyte and macroinvertebrate community composition. In contrast to our first hypothesis, we found that infected and uninfected crayfish had similar impacts on lower trophic levels when predators were absent. Across all treatments, infected crayfish were more likely to be outside shelters and had greater growth than uninfected crayfish, suggesting that the reduced feeding observed in short-term experiments does not occur over longer timescales. However, in support of the second hypothesis, when predatory fish were present, infected crayfish ate more macroinvertebrates than did uninfected crayfish, likely due to increased boldness. We also observed a

  13. Cascading effects of fire retardant on plant-microbe interactions, community composition, and invasion.

    PubMed

    Marshall, Abigail; Waller, Lauren; Lekberg, Ylva

    2016-06-01

    Climate change, historical fire suppression, and a rise in human movements in urban-forest boundaries have resulted in an increased use of long-term fire retardant (LTFR). While LTFR is an effective fire-fighting tool, it contains high concentrations of nitrogen and phosphorus, and little is known about how this nutrient pulse affects terrestrial ecosystems. We used field surveys and greenhouse experiments to quantify effects of LTFR on plant productivity, community composition, and plant interactions with the ubiquitous root symbiont arbuscular mycorrhizal fungi (AMF). In the field, LTFR applications were associated with persistent shifts in plant communities toward exotic annuals with little or no dependency of AMF. Plants exposed to LTFR were less colonized by AMF, both in field surveys and in the greenhouse, and this was most likely due to the substantial and persistent increase in soil available phosphorus. All plants grew bigger with LTFR in the greenhouse, but the invasive annual cheatgrass (Bromus tectorum) benefitted most. While LTFR can control fires, it may cause long-term changes in soil nutrient availabilities, disrupt plant interactions with beneficial soil microbes, and exasperate invasion by some exotic plants. PMID:27509743

  14. Bacterial community structure in freshwater springs infested with the invasive plant species Hydrilla verticillata

    PubMed Central

    Gordon-Bradley, N.; Li, N.

    2015-01-01

    The phylogenetic composition and physiological profiles of bacterial communities in freshwater springs were evaluated during the blooming and non-blooming stages of the invasive plant species, Hydrilla verticillata. Community-level physiological profiles (CLPPs) and pyrosequencing of 16S rRNA gene amplicons were used to study potential Hydrilla mediated shifts in the physiological potential and phylogenetic composition of the bacterial community in infested systems. The results of CLPP revealed that the microbes in the Hydrilla invaded sites utilized less substrates during blooming periods than during nonblooming periods of the plant. Spearman’s rank correlation analysis showed some relationships between the relative abundances of bacterial taxa and the Biolog substrate utilization pattern. The relative abundance of the identified taxa showed some striking differences based on the blooming status of Hydrilla and to a lesser extent on site variation. The relative abundance of Actinobacteria, Bacteriodetes, and Verrucomicrobia was generally higher during Hydrilla blooms, while Deltaproteobacteria was generally higher during non-blooming stages of Hydrilla. The detected genera also varied based on the blooming stages of the plant. Based on the findings, it appears that Hydrilla alters the phylogenetic composition and structure of the bacterial community during the blooming stage. PMID:26207069

  15. Estimation of the number of founders of an invasive pest insect population: the fire ant Solenopsis incivta in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of the number of founders responsible for the establishment of invasive plant and animal populations is important for developing biologically based management practices, predicting the invasive potential of species, and making inferences about basic ecological and evolutionary processe...

  16. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    DOE PAGESBeta

    Lewin, Gina R.; Johnson, Amanda L.; Soto, Rolando D. Moreira; Perry, Kailene; Book, Adam J.; Horn, Heidi A.; Pinto-Tomás, Adrián A.; Currie, Cameron R.

    2016-03-21

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using materialmore » from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within general containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. Lastly, a representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation.« less

  17. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability

    PubMed Central

    Lewin, Gina R.; Johnson, Amanda L.; Soto, Rolando D. Moreira; Perry, Kailene; Book, Adam J.; Horn, Heidi A.; Pinto-Tomás, Adrián A.; Currie, Cameron R.

    2016-01-01

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using material from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within genera containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. A representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation. PMID:26999749

  18. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica) Refuse Dumps Vary in Taxonomic Composition and Degradation Ability.

    PubMed

    Lewin, Gina R; Johnson, Amanda L; Soto, Rolando D Moreira; Perry, Kailene; Book, Adam J; Horn, Heidi A; Pinto-Tomás, Adrián A; Currie, Cameron R

    2016-01-01

    Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using material from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs) across samples were classified within genera containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. A representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation. PMID:26999749

  19. Host and Environmental Specificity in Bacterial Communities Associated to Two Highly Invasive Marine Species (Genus Asparagopsis)

    PubMed Central

    Aires, Tânia; Serrão, Ester A.; Engelen, Aschwin H.

    2016-01-01

    As habitats change due to global and local pressures, population resilience, and adaptive processes depend not only on their gene pools but also on their associated bacteria communities. The hologenome can play a determinant role in adaptive evolution of higher organisms that rely on their bacterial associates for vital processes. In this study, we focus on the associated bacteria of the two most invasive seaweeds in southwest Iberia (coastal mainland) and nearby offshore Atlantic islands, Asparagopsis taxiformis and Asparagopsis armata. Bacterial communities were characterized using 16S rRNA barcoding through 454 next generation sequencing and exploratory shotgun metagenomics to provide functional insights and a backbone for future functional studies. The bacterial community composition was clearly different between the two species A. taxiformis and A. armata and between continental and island habitats. The latter was mainly due to higher abundances of Acidimicrobiales, Sphingomonadales, Xanthomonadales, Myxococcales, and Alteromonadales on the continent. Metabolic assignments for these groups contained a higher number of reads in functions related to oxidative stress and resistance to toxic compounds, more precisely heavy metals. These results are in agreement with their usual association with hydrocarbon degradation and heavy-metals detoxification. In contrast, A. taxiformis from islands contained more bacteria related to oligotrophic environments which might putatively play a role in mineralization of dissolved organic matter. The higher number of functional assignments found in the metagenomes of A. taxiformis collected from Cape Verde Islands suggest a higher contribution of bacteria to compensate nutrient limitation in oligotrophic environments. Our results show that Asparagopsis-associated bacterial communities have host-specificity and are modulated by environmental conditions. Whether this environmental effect reflects the host's selective requirements or

  20. Host and Environmental Specificity in Bacterial Communities Associated to Two Highly Invasive Marine Species (Genus Asparagopsis).

    PubMed

    Aires, Tânia; Serrão, Ester A; Engelen, Aschwin H

    2016-01-01

    As habitats change due to global and local pressures, population resilience, and adaptive processes depend not only on their gene pools but also on their associated bacteria communities. The hologenome can play a determinant role in adaptive evolution of higher organisms that rely on their bacterial associates for vital processes. In this study, we focus on the associated bacteria of the two most invasive seaweeds in southwest Iberia (coastal mainland) and nearby offshore Atlantic islands, Asparagopsis taxiformis and Asparagopsis armata. Bacterial communities were characterized using 16S rRNA barcoding through 454 next generation sequencing and exploratory shotgun metagenomics to provide functional insights and a backbone for future functional studies. The bacterial community composition was clearly different between the two species A. taxiformis and A. armata and between continental and island habitats. The latter was mainly due to higher abundances of Acidimicrobiales, Sphingomonadales, Xanthomonadales, Myxococcales, and Alteromonadales on the continent. Metabolic assignments for these groups contained a higher number of reads in functions related to oxidative stress and resistance to toxic compounds, more precisely heavy metals. These results are in agreement with their usual association with hydrocarbon degradation and heavy-metals detoxification. In contrast, A. taxiformis from islands contained more bacteria related to oligotrophic environments which might putatively play a role in mineralization of dissolved organic matter. The higher number of functional assignments found in the metagenomes of A. taxiformis collected from Cape Verde Islands suggest a higher contribution of bacteria to compensate nutrient limitation in oligotrophic environments. Our results show that Asparagopsis-associated bacterial communities have host-specificity and are modulated by environmental conditions. Whether this environmental effect reflects the host's selective requirements or

  1. Monitoring the dynamics of an invasive emergent macrophyte community using operational remote sensing data

    USGS Publications Warehouse

    Albright, T.P.; Ode, D.J.

    2011-01-01

    Potamogeton crispus L. (curly pondweed) is a cosmopolitan aquatic macrophyte considered invasive in North America and elsewhere. Its range is expanding and, on individual water bodies, its coverage can be dynamic both within and among years. In this study, we evaluate the use of free and low-cost satellite remote sensing data to monitor a problematic emergent macrophyte community dominated by P. crispus. Between 2000 and 2006, we acquired eight satellite images of 24,000-ha Lake Sharpe, South Dakota (USA). During one of the dates for which satellite imagery was acquired, we sampled the lake for P. crispus and other emergent macrophytes using GPS and photography for documentation. We used cluster analysis to assist in classification of the satellite imagery and independently validated results using the field data. Resulting estimates of emergent macrophyte coverage ranged from less than 20 ha in 2002 to 245 ha in 2004. Accuracy assessment indicated 82% of image pixels were correctly classified, with errors being primarily due to failure to identify emergent macrophytes. These results emphasize the dynamic nature of P. crispus-dominated macrophyte communities and show how they can be effectively monitored over large areas using low-cost remote sensing imagery. While results may vary in other systems depending on water quality and local flora, such an approach could be applied elsewhere and for a variety of macrophyte communities. ?? Springer Science+Business Media B.V. 2010.

  2. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community.

    PubMed

    Tapio, Ilma; Shingfield, Kevin J; McKain, Nest; Bonin, Aurélie; Fischer, Daniel; Bayat, Ali R; Vilkki, Johanna; Taberlet, Pierre; Snelling, Timothy J; Wallace, R John

    2016-01-01

    Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint. PMID:26986467

  3. Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community

    PubMed Central

    Tapio, Ilma; Shingfield, Kevin J.; McKain, Nest; Bonin, Aurélie; Fischer, Daniel; Bayat, Ali R.; Vilkki, Johanna; Taberlet, Pierre; Snelling, Timothy J.; Wallace, R. John

    2016-01-01

    Microbial community analysis was carried out on ruminal digesta obtained directly via rumen fistula and buccal fluid, regurgitated digesta (bolus) and faeces of dairy cattle to assess if non-invasive samples could be used as proxies for ruminal digesta. Samples were collected from five cows receiving grass silage based diets containing no additional lipid or four different lipid supplements in a 5 x 5 Latin square design. Extracted DNA was analysed by qPCR and by sequencing 16S and 18S rRNA genes or the fungal ITS1 amplicons. Faeces contained few protozoa, and bacterial, fungal and archaeal communities were substantially different to ruminal digesta. Buccal and bolus samples gave much more similar profiles to ruminal digesta, although fewer archaea were detected in buccal and bolus samples. Bolus samples overall were most similar to ruminal samples. The differences between both buccal and bolus samples and ruminal digesta were consistent across all treatments. It can be concluded that either proxy sample type could be used as a predictor of the rumen microbial community, thereby enabling more convenient large-scale animal sampling for phenotyping and possible use in future animal breeding programs aimed at selecting cattle with a lower environmental footprint. PMID:26986467

  4. Consequences of forest clear-cuts for native and nonindigenous ants (Hymenoptera: Formicidae)

    USGS Publications Warehouse

    Zettler, J.A.; Taylor, M.D.; Allen, C.R.; Spira, T.P.

    2004-01-01

    Currently, the southern United States produces more timber than any other region in the world. Entire timber stands are removed through a harvesting method called clear-cutting. This common forestry practice may lead to the replacement of native ant communities with invasive, nonindigenous species. In four deciduous forest sites in South Carolina, we monitored the change in ant species richness, diversity, and abundance immediately after forest clearing for a period of 15 mo to 2 yr and determined the incidence of colonization of the red imported fire ant Solenopsis invicta into these four newly disturbed sites. Each site consisted of an uncut, forested plot and a logged, pine-planted plot. Fire ants were collected in clear-cuts as early as 3 mo postcutting, and by the end of the experiment, they were found in all four treatment sites. Our study is the first to document, through a controlled experiment, that clear-cutting alters ant species assemblages by increasing S. invicta and Pheidole spp. populations and significantly reducing native ant numbers. Long-term studies are needed to assess how replacing native deciduous forests with pine monocultures affects ant assemblages. ?? 2004 Entomological Society of America.

  5. Early detection of potentially invasive invertebrate species in Mytilus galloprovincialis Lamarck, 1819 dominated communities in harbours

    NASA Astrophysics Data System (ADS)

    Preda, Cristina; Memedemin, Daniyar; Skolka, Marius; Cogălniceanu, Dan

    2012-12-01

    Constanţa harbour is a major port on the western coast of the semi-enclosed Black Sea. Its brackish waters and low species richness make it vulnerable to invasions. The intensive maritime traffic through Constanţa harbour facilitates the arrival of alien species. We investigated the species composition of the mussel beds on vertical artificial concrete substrate inside the harbour. We selected this habitat for study because it is frequently affected by fluctuating levels of temperature, salinity and dissolved oxygen, and by accidental pollution episodes. The shallow communities inhabiting it are thus unstable and often restructured, prone to accept alien species. Monthly samples were collected from three locations from the upper layer of hard artificial substrata (maximum depth 2 m) during two consecutive years. Ten alien macro-invertebrate species were inventoried, representing 13.5% of the total number of species. Two of these alien species were sampled starting the end of summer 2010, following a period of high temperatures that triggered hypoxia, causing mass mortalities of benthic organisms. Based on the species accumulation curve, we estimated that we have detected all benthic alien species on artificial substrate from Constanţa harbour, but additional effort is required to detect all the native species. Our results suggest that monitoring of benthic communities at small depths in harbours is a simple and useful tool in early detection of potentially invasive alien species. The selected habitat is easily accessible, the method is low-cost, and the samples represent reliable indicators of alien species establishment.

  6. Urban Pest Management of Ants in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Keeping pace with the dynamic and evolving landscape of invasive ants in California presents a formidable challenge to the pest management industry. Pest management professionals (PMPs) are on the frontlines when it comes to battling these exotic ant pests, and are often the first ones to intercept ...

  7. Invasive symbiont bearing (and other) foraminifera altering the community structure of eastern Mediterranean rocky reefs environments

    NASA Astrophysics Data System (ADS)

    Hyams-Kaphzan, Orit; Perelis Grossowicz, Lydia; Almogi-Labin, Ahuva

    2015-04-01

    The rocky reefs of the Israeli eastern Mediterranean shelf constitute a highly diverse marine ecosystem rich in macroalgae and calcareous organisms. The benthic foraminiferal community living in this ecosystem is rapidly changing due to massive invasion of symbiont bearing foraminifera (SBF) as well as other foraminiferal species of tropical origin. This trend facilitated by the ongoing increase in temperature enables more tropical species to adjust to the eastern Mediterranean habitats. In order to document the status of the benthic foraminiferal community structure rocky reefs at Akhziv (AK) and Carmel Head (CH), northern Israel were sampled by scuba diving. Different macroalgae species, including invasive ones, accommodating the live epiphytic benthic foraminifera were sampled twice a year at AK and in each season at CH in three depth intervals between 5-20 m, during 2013-4. The numerical abundance of the group ranges between 170-3500 #/10cc (wet macroalgae volume) without any significant difference in standing stocks within regions, water depths or macroalgae preference. In total 77 benthic foraminiferal species were identified 71 in CH and only 43 at AK. Species richness per site varied between 3 and 42 with higher values at CH. 25% of all species were aliens, mostly Lessepsian, that comprise on average 70% - 84% of the numerical abundance of AK and CH respectively. Cluster analysis using benthic foraminifera relative abundance data did not correlate with the different macroalgae species, water depths or seasonality, indicating that the foraminiferal community in the two regions is quite homogenous. Amphistegina lobifera a Lessepsian migrant is by far the most common species on the Israeli rocky reefs occurring in all samples and comprising 18-93% of the foraminiferal community. Heterostegina depressa behaves similarly to A. lobifera though it occurs in lower numbers. Pararotalia calcariformata, a recently arriving SBF occupies mainly shallow water sites at CH

  8. Recovery dynamics and invasibility of herbaceous plant communities after exposure to fifty-year climate extremes in different seasons

    NASA Astrophysics Data System (ADS)

    Dreesen, F. E.; De Boeck, H. J.; Janssens, I. A.; Nijs, I.

    2013-10-01

    Disturbance events such as climatic extremes may enhance the invasibility of plant communities, through the creation of gaps and the associated local increase in available resources. In this study, experimental herbaceous communities consisting of three species were subjected to 50 yr extreme drought and/or heat events, in spring, summer or autumn. In the year of the induced extremes, species mortality and end-of-season biomass were examined. In two subsequent years without further disturbances, establishment of new species was recorded. The drought and drought + heat extremes in summer and autumn induced greater plant mortality compared with the heat extremes in those seasons and compared with all extremes applied in spring, in all three originally planted species. Recovery in terms of biomass towards the end of the growing season, however, was species-specific. The dominant species, the nitrogen fixer Trifolium repens, recovered poorly from the drought and drought + heat extremes which governed the community response. Community biomass, which was heavily affected by the drought and especially by the drought + heat events in summer and autumn, reached control values already one year later. Invasibility was increased in the communities that underwent the drought + heat extremes in the first year following the extreme events, but no longer in the second year. During the two years of invasion, the community composition changed, but independently of the type and impact of the extreme event. In short, the extreme climate events greatly affected the survival and productivity of the species, modified the species composition and dominance patterns, and increased the invasibility of our plant communities. However, none of these community properties seemed to be affected in the long term, as the induced responses faded out after one or two years.

  9. Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional level

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Submerged aquatic plants have a key role in maintaining functioning aquatic ecosystems through their effects in the hydrological regime, sedimentation, nutrient cycling and habitats of associated fauna. Modifications of aquatic plant communities, as for example through the introduction of invasive s...

  10. Molecular approach to describing a seed-based food web: the post-dispersal granivore community of an invasive plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We adapted protein-marking techniques and gut content analysis to study the relative granivore communities of the invasive plant, dandelion, in its recipient and native ranges. Dandelion seeds marked with Rabbit IgG were disseminated into plots that had high dandelion populations in recipient habita...