Science.gov

Sample records for investigate microstructural features

  1. Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.

    2014-02-01

    The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.

  2. Investigation of the crystallization features, atomic structure, and microstructure of chromium-doped monticellite

    NASA Astrophysics Data System (ADS)

    Subbotin, K. A.; Iskhakova, L. D.; Zharikov, E. V.; Lavrishchev, S. V.

    2008-12-01

    A series of Cr4+:CaMgSiO4 single crystals is grown using floating zone melting, and their microstructure, composition, and crystal structure are investigated. It is shown that regions with inclusions of second phases, such as forsterite, akermanite, MgO, and Ca4Mg2Si3O12, can form over the length of the sample. The composition of the single-phase regions of the single crystals varies from the stoichiometric monticellite CaMgSiO4 to the solid solution Ca(1 - x)Mg(1 + x)SiO4( x = 0.22). The Cr:(Ca0.88Mg0.12)MgSiO4 crystal is studied using X-ray diffraction. It is revealed that, in this case, the olivine-like orthorhombic crystal lattice is distorted to the monoclinic lattice with the parameters a = 6.3574(5) Å, b = 4.8164(4) Å, c = 11.0387(8) Å, β = 90.30(1)o, Z = 4, V = 337.98 Å3, and space group P21/ c. In the monoclinic lattice, the M(1) position of the initial olivine structure is split into two nonequivalent positions with the center of symmetry, which are occupied only by Mg2+ cations with the average length of the Mg-O bond R av = 2.128 Å. The overstoichiometric Mg2+ cations partially replace Ca2+ cations (in the M(2) position of the orthorhombic prastructure) with the average bond length of 2.347 Å in the [(Ca,Mg)-O6] octahedron. The average distance in SiO4 distorted tetrahedra is 1.541 Å.

  3. A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Mazlan, Saiful Amri

    2016-07-01

    Soft magnetic materials have been used in many applications, i.e., electrical and electronic industries, due to their desirable electromagnetic characteristics. The performance of these materials in bulk form, where the size of grains is in micrometer scale, is only limited to a few megahertz frequencies due to their higher conductivity and domain wall resonance. Synthesizing the ferrite particles in nanometer scales before compacting them for sintering would be one way to solve using these materials at higher frequencies. The properties of ferrite depend mainly on the technique and conditions of preparation, which, in turn, affect the cation distribution over the tetrahedral and octahedral sites. Thus, the aim of this study was to introduce some methods used for synthesizing nanocrystalline soft magnetic ferrites. Furthermore, the microstructure features, i.e., grain sizes and porosities, which are influenced by the types of method used for preparation, playing key role on the magnetic properties of the sample, are also highlighted.

  4. Microstructural Features in Aged Erbium Tritide Foils

    SciTech Connect

    Gelles, David S.; Brewer, L. N.; Kotula, Paul G.; Cowgill, Donald F.; Busick, C. C.; Snow, C. S.

    2008-01-01

    Aged erbium tritide foil specimens are found to contain five distinctly different microstructural features. The general structure was of large columnar grains of ErT2. But on a fine scale, precipitates believed to be erbium oxy-tritides and helium bubbles could be identified. The precipitate size was in the range of ~10 nm and the bubbles were of an unusual planar shape on {111} planes with an invariant thickness of ~1 nm and a diameter on the order of 10 nm. Also, an outer layer containing no fine precipitate structure and only a few helium bubbles was present on foils. This layer is best described as a denuded zone which probably grew during aging in air. Finally, large embedded Er2O3 particles were found at low density and non-uniformly distributed, but sometimes extending through the thickness of the foil. A failure mechanism allowing the helium to escape is suggested by observed cracking between bubbles closer to end of life.

  5. Experimental Investigation of Microstructured Evaporators

    NASA Astrophysics Data System (ADS)

    Wibel, W.; Westermann, S.; Maikowske, S.; Brandner, J. J.

    2012-11-01

    Microfluidic devices have become more and more popular over the last decades [1]. Cooling is a topic where microstructures offer significant advantages compared to conventional techniques due the much higher possible surface to volume ratios and short heat transfer lengths. By evaporating of a fluid in microchannels, compact, fast and powerful cooling devices become possible [2]. Experimental results for different designs of microstructured evaporators are presented here. They have been obtained either using water as evaporating coolant or the refrigerant R134a (Tetrafluoroethane). A new microstructured evaporator design consisting of bended microchannels instead of straight channels for a better performance is shown and compared to previous results [2] for the evaporation of R134a in straight microchannels.

  6. Microstructural investigation of some biocompatible ferrofluids

    NASA Astrophysics Data System (ADS)

    Răcuciu, M.; Creangă, D. E.; Bădescu, V.; Sulitanu, N.

    2007-09-01

    Two batches of aqueous ferrofluids based on iron oxide particles as solid nanomagnetic phase have been prepared by applying the chemical precipitation method. Tetramethylammonium hydroxide (N(CH 3) 4OH) and citric acid (C 6H 8O 7) were used to functionalize magnetic cores. Physical tests have been performed in order to reveal the microstructural and magnetic features, both needed for biomedical utilization. The particle size was investigated using transmission electron microscopy (TEM), magnetization measurements and X-ray diffraction (for composition and phase information). The dimensional distribution of the ferrophase physical diameter was comparatively discussed using the box-plot statistical method revealing the fulfilling of the main requirements for ferrofluid stability.

  7. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  8. Investigation of Human Nail Microstructure with Ultrasound

    NASA Astrophysics Data System (ADS)

    Maeva, A. R.; Bakulin, E. Y.; Denisova, L. A.; Maev, R. Gr.

    Investigation of a human fingernail and the extraction of the data on its microstructure and elastic properties is important in three main aspects. First of all, various diseases of the nail can be differentiated more precisely; second of all, it is possible to non-invasively track during time the effects of a cosmetic product upon the nail; third of all, because various processes in the organism have a strong influence upon the nail plate growth, the monitoring of the nail morphology and its mechanical properties may be used as additional information for the diagnosis of a number of medical disorders, such as systemic sclerosis, psoriasis, chronic hand eczema, anemia etc. The aim of the present study was to carry out a detailed ultrasound investigation in the high-frequency range (25-50 MHz) of a human nail including micro-anatomical structure imaging and ultrasound velocity evaluation, using B-scans obtained with a scanning acoustic microscope. On the images, exact topology of the nail, nail matrix and the underlying bone have been revealed. Additionally, a certain type of inclined internal layering along the nails of some individuals has been found, which was not reported in previous ultrasonic studies of the nail.

  9. Influence of microstructural features on thermal expansion coefficient in graphene/epoxy composites.

    PubMed

    Shi, Zhan; Li, Xiao-Fei; Bai, Hua; Xu, Wei-Wei; Yang, Shui-Yuan; Lu, Yong; Han, Jia-Jia; Wang, Cui-Ping; Liu, Xing-Jun; Li, Wei-Bin

    2016-03-01

    In this paper, theoretical calculations were conducted to determine the coefficient of thermal expansion (CTE) based on the effective medium approach using Green's function method. The influences of microstructural features were investigated, including volume fraction, aspect ratio, and the orientation of graphene fillers. Calculated results demonstrated strong anisotropy of CTE when all graphene sheets in the composite were aligned in the in-plane direction due to the large difference between the elastic moduli of the graphene and epoxy. The in-plane CTE in the graphene/epoxy composite can be effectively reduced with small additions of graphene additive. Orientation dispersion among the graphene fillers significantly decreases the anisotropy of CTE. Accounting for the influences of all microstructural features, simulation results closely align with current experimental results. This work will provide a general guideline and a solid foundation for the optimal design and preparation of graphene/polymer composites. PMID:27441268

  10. MICROSTRUCTURAL FEATURES AFFECTING PROPERTIES AND AGING OF TRITIUM-EXPOSED AUSTENTIC STAINLESS STEEL

    SciTech Connect

    Subramanian, K; Michael Morgan, M

    2004-01-10

    banding and nitrogen concentration were also included as features of interest. The microstructural features of interest included (1) grain size, shape, and orientation; (2) dislocation structure and distribution, or recovered vs. un-recovered. The grain size and orientation affect the grain boundary fracture stress and the hydrogen solubility and diffusion paths. The dislocation structure and distribution play a role in hydrogen trapping as well as potentially affecting the hydrogen assisted fracture path. The initial mechanical and physical properties that are to be included in the investigation are yield stress, fracture toughness, work-hardening capacity, threshold hydrogen cracking stress intensity and stacking-fault energy.

  11. Microstructural investigation of thermally treated titanium subhydrides

    SciTech Connect

    Wang, P.S.; Wittberg, T.N.; Wolf, J.D.

    1984-09-05

    The ignition of titanium subhydride/potassium perchlorate pyrotechnic blends is influenced by the diffusion of oxygen into the titanium subhydride fuel. The following work is a preliminary study of the microstructural changes that take place during the dehydriding of titanium subhydride. Samples of TiH/sub 1/ /sub 63/ were dehydrided at temperatures between 625 and 775/sup 0/C. In the partially dehydrided samples, evidence of three different phases - ..cap alpha.. Ti (hexagonal), ..beta.. Ti (cubic), and ..gamma.. TiH/sub 2/ (cubic) - was seen. Microstructural examination of a TiH/sub 1/ /sub 15/ sample that had a layered structure is also reported. A furnace constructed for hydriding titanium foils is also described. Titanium subhydride foils having the stoichiometries TiH/sub 1/ /sub 53/ and TiH/sub 0/ /sub 87/ were prepared using this furnace.

  12. Magnetic characterisation of microstructural feature distribution in P9 and T22 steels by major and minor BH loop measurements

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wilson, John; Strangwood, Martin; Davis, Claire L.; Peyton, Anthony

    2016-03-01

    This paper investigates the magnetic properties and parameters measured from major/minor loops and used to characterise different microstructural feature distributions in P9 and T22 steel in different heat treatment or service conditions. The present study introduces a non-destructive way of selecting microstructural features of interest and/or excluding those of little relevance by examination of minor loop measurements at a selected range of applied fields and discusses the fundamental mechanism in terms of domain processes. There is remarkable consistency in magnetic behaviours and properties such as initial/incremental permeability values between the measurements by different techniques. This behaviour has been ascribed to the similar underlying domain processes and hence similar selected microstructural features that are affecting the domain processes.

  13. Some refractometric features of dual-core chirped microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    Velasquez-Botero, Fabian; Reyes-Vera, Erick; Torres, Pedro

    2015-09-01

    Refractometric features of dual-core transversally chirped microstructured optical fibers (MOF) are evaluated. It is shown from numerical results that the chirped MOF could act as a structure with decoupled cores, forming a Mach- Zehnder interferometer in which the analyte directly modulates the device transmittance by its differential influence on the effective refractive index of each core mode. We investigate the influence of the MOF parameters and the analyte refractive index on sensor performance. This novel structure is suitable for measuring refractive indices in the 1.33-1.44 range.

  14. Quantitative analysis and feature recognition in 3-D microstructural data sets

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.

    2006-12-01

    A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.

  15. As-cast microstructure investigation of two iron aluminides

    NASA Astrophysics Data System (ADS)

    Geraldo Schön, Cláudio; Geoffroy Scuracchio, Bruno

    2006-08-01

    The as-cast microstructure of Fe-30Al-6Cr and Fe-30Al-10Ti high purity alloys was investigated using Electron Backscatter Diffraction. The first alloy is characterized by a highly textured columnar grain microstructure with large grains, while the second is characterized by an equiaxed grain microstructure with small grains and a random texture. These differences are discussed with regard to the higher reactivity of Ti compared with Cr, leading to nanometric nitride or oxide, which may act as sites for heterogeneous nucleation, and the ordered state of the BCC phase in equilibrium with the liquid during solidification and its effect upon dendrite growth kinetics.

  16. Application of Image Analysis for Characterization of Spatial Arrangements of Features in Microstructure

    NASA Technical Reports Server (NTRS)

    Louis, Pascal; Gokhale, Arun M.

    1995-01-01

    A number of microstructural processes are sensitive to the spatial arrangements of features in microstructure. However, very little attention has been given in the past to the experimental measurements of the descriptors of microstructural distance distributions due to the lack of practically feasible methods. We present a digital image analysis procedure to estimate the micro-structural distance distributions. The application of the technique is demonstrated via estimation of K function, radial distribution function, and nearest-neighbor distribution function of hollow spherical carbon particulates in a polymer matrix composite, observed in a metallographic section.

  17. Investigation of the microstructure, mechanical properties and thermal stability of nanocomposite coatings based on amorphous carbon

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Litovchenko, I. Y.; Korotaev, A. D.; Borisov, D. P.

    2015-10-01

    The Ti-C-Ni-Cr and Ti-C-Ni-Cr-Al-Si nanocomposite coatings based on amorphous carbon and the nanosized particles were synthesized by magnetron method. The results of the microstructure features and mechanical properties investigations of these coatings are presented. The thermal stability of microstructure and properties of these coatings at tempering up to 900°C were investigated. These coatings have a high (11-18 GPa) hardness, low (μ < 0.2) the coefficient of friction and high thermal stability of the microstructure and properties up to 700°C. The features of elastically stressed state of nanosized particles in these coatings were founded. A high local internal stresses in the TiC nanoscale particles do not observed.

  18. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    NASA Astrophysics Data System (ADS)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  19. Peculiar Features of Microstructure Formation and Microhardness Variations During Torsional Straining of Tantalum Specimens in Bridgman Anvils

    NASA Astrophysics Data System (ADS)

    Ditenberg, I. A.; Tymentsev, A. N.; Korznikov, A. V.

    2015-04-01

    Using the method of transmission electron microscopy, peculiar features of evolution of microstructure and variations in microhardness of Та are investigated under torsional loading in the Bridgman anvil as a function of plastic deformation at room temperature. A quantitative examination of grain and defect's structure of the material under study and the values of local internal stresses is performed in different loading stages. The mechanisms of formation of submicrocrystalline and nanostructured states are analyzed and so is the microstructure variation as a function of the defect-structure characteristics, strain level, and spacing from the axis of torsion.

  20. Rapid characterization of titanium microstructural features for specific modelling of mechanical properties

    NASA Astrophysics Data System (ADS)

    Searles, T.; Tiley, J.; Tanner, A.; Williams, R.; Rollins, B.; Lee, E.; Kar, S.; Banerjee, R.; Fraser, H. L.

    2005-01-01

    Mechanical properties of α/β Ti alloys are closely related to their microstructure. The complexity of the microstructural features involved makes it rather difficult to develop models for predicting properties of these alloys. Advances in stereology and microscopy permit rapid characterization of various features in Ti alloys including Widmanstätten α-laths, grain sizes, grain shapes, colony structures and volume fractions of different phases. This research documents the stereology procedures for characterizing microstructural features in Ti alloys, including the use of three-dimensional serial sectioning and reconstruction procedures for developing through material measurements. The resulting data indicate the powerful characterization processes now available, and the ability to rapidly assess microstructural features in Ti alloys. The processes were tested using Ti-62222 by serial sectioning the sample and conducting automated stereology protocols to determine features. In addition, three-dimensional reconstruction was completed on a Ti-6242 sample to evaluate lath interactions within the alloy. Results indicate the tremendous potential for characterizing microstructures using advanced techniques.

  1. Microstructural Features in Corroded Celtic Iron Age Sword Blades

    NASA Astrophysics Data System (ADS)

    Ghiara, G.; Piccardo, P.; Campodonico, S.; Carnasciali, M. M.

    2014-05-01

    Archaeological artefacts made from iron and steel are often of critical importance for archaeometallurgical studies, which aim to understand the process of manufacturing, as the nearly complete alloy mineralization does not allow for any type of metallographic interpretation. In this study, three Iron Age sword blades dated from the second century BC (LaTène B2/D1) found in the archaeological site of Tintignac (Commune de Naves, Corrèze, France), were investigated. A multianalytical approach was employed to acquire a complete range of data from the partially or totally corroded objects. Analyses were carried out with the use of light optical microscopy, micro Raman spectroscopy, and scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy (EDXS). Remnants of metallographic features—ghost microstructure—in the corrosion layers of the blades were observed, allowing for a partial reconstruction of the manufacturing process.

  2. Investigation of sensing properties of microstructured polymer optical fibres

    NASA Astrophysics Data System (ADS)

    Witt, J.; Steffen, M.; Schukar, M.; Krebber, K.

    2010-04-01

    We investigated sensing properties of single mode poly methyl methacrylate (PMMA) microstructured polymer optical fibres (MPOF) with mechanically imprinted long period gratings (LPG). After preparation of the MPOF end-faces the samples were elongated with silica fibres. These samples were used to measure the influence of strain to the LPG wavelength which showed the viscoelastic nature of PMMA. We also measured the influence of temperature and humidity. The results show that MPOF LPGs are well suited for strain sensing. One MPOF LPG was stitched to a textile. Using this textile we measured a simulated respiratory motion.

  3. TEM investigations on the local microstructure of electrodeposited galfenol nanowires.

    PubMed

    Pohl, D; Damm, C; Pohl, D; Schultz, L; Schlörb, H

    2016-01-22

    The local microstructure of Fe-Ga nanowires is investigated considering dependence on the deposition technique. Using a complexed electrolyte, smooth and homogeneous Fe80Ga20 nanowires are deposited into anodic aluminum oxide templates by either applying pulse potential or potentiostatic deposition technique. At optimized deposition conditions the wires show the desired composition of Fe80±2Ga20±2 without a gradient along the growth direction. Composition distribution, structure and microstructure are examined in detail and reveal only minor differences. Line EELS and crystal lattice measurements reveal a negligible oxygen content for both preparation routines. Neither Fe/Ga oxides nor hydroxides were found. Both potentiostatically deposited as well as pulse deposited nanowires exhibit a preferred 〈110〉orientation, the latter with slightly larger crystals. Different contrast patterns were found by TEM that appear more pronounced in the case of pulse deposited wires. High resolution transmission electron microscopy analysis and comparison of differently prepared focused ion beam lamellas reveal that these contrasts are caused by defects in the alternating potential deposition itself and are not induced during the TEM preparation process. The alternating potential mode causes periodic growth thereby inducing different layers with reduced wire thickness/defects at the layer interfaces. PMID:26651087

  4. TEM investigations on the local microstructure of electrodeposited galfenol nanowires

    NASA Astrophysics Data System (ADS)

    Pohl, D.; Damm, C.; Pohl, D.; Schultz, L.; Schlörb, H.

    2016-01-01

    The local microstructure of Fe-Ga nanowires is investigated considering dependence on the deposition technique. Using a complexed electrolyte, smooth and homogeneous Fe80Ga20 nanowires are deposited into anodic aluminum oxide templates by either applying pulse potential or potentiostatic deposition technique. At optimized deposition conditions the wires show the desired composition of Fe80±2Ga20±2 without a gradient along the growth direction. Composition distribution, structure and microstructure are examined in detail and reveal only minor differences. Line EELS and crystal lattice measurements reveal a negligible oxygen content for both preparation routines. Neither Fe/Ga oxides nor hydroxides were found. Both potentiostatically deposited as well as pulse deposited nanowires exhibit a preferred <110> orientation, the latter with slightly larger crystals. Different contrast patterns were found by TEM that appear more pronounced in the case of pulse deposited wires. High resolution transmission electron microscopy analysis and comparison of differently prepared focused ion beam lamellas reveal that these contrasts are caused by defects in the alternating potential deposition itself and are not induced during the TEM preparation process. The alternating potential mode causes periodic growth thereby inducing different layers with reduced wire thickness/defects at the layer interfaces.

  5. Experimental investigations of creep in gold RF-MEMS microstructures

    NASA Astrophysics Data System (ADS)

    Somà, Aurelio; De Pasquale, Giorgio; Saleem, Muhammad Mubasher

    2015-05-01

    Lifetime prediction and reliability evaluation of micro-electro-mechanical systems (MEMS) are influenced by permanent deformations caused by plastic strain induced by creep. Creep in microstructures becomes critical in those applications where permanent loads persist for long times and thermal heating induces temperature increasing respect to the ambient. Main goal of this paper is to investigate the creep mechanism in RF-MEMS microstructures by means of experiments. This is done firstly through the detection of permanent deformation of specimens and, then, by measuring the variation of electro-mechanical parameters (resonance frequency, pull-in voltage) that provide indirect evaluation of mechanical stiffness alteration from creep. To prevent the errors caused be cumulative heating of samples and dimensional tolerances, three specimens with the same nominal geometry have been tested per each combination of actuation voltage and temperature. Results demonstrated the presence of plastic deformation due to creep, combined with a component of reversible strain linked to the viscoelastic behavior of the material.

  6. Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Xuesong; Lu, Yan; Zheng, Feiyan; Chen, Bin

    2015-11-01

    This paper is aimed to investigate the microstructure of 7005 aluminum sheets joined by friction-stir welding as well as their mechanical properties. Specimens with ten different sets of welding parameters were studied. Tensile test and fracture analysis determined that the joint of the best quality was obtained at the rotation speed of 1000 rpm matching with the travel speed of 200 mm/min, and the travel speed has more impact on the ultimate tensile strength. Optical microscope observation was applied to this high-quality specimen and gave evidence to explaining the formation of the onion ring structure. Electron back-scattered diffraction (EBSD) technique was employed to characterize the textures and revealed the evolution of microstructures during friction stir processing. The EBSD results showed that the grains maintain their original orientations at relatively low deformation while the orientations rotate under increasing strain. Accumulated rotation will turn the textures into mixed shear components, which finally results in grain refinement and contributes to the high quality of the joint.

  7. Microstructural Features Leading to Enhanced Resistance to Grain Boundary Creep Cracking in ALLVAC 718Plus

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Hayes, Robert W.; Mills, Michael J.; Daehn, Glenn S.

    2010-02-01

    This study focuses on the microstructural features that enhance the resistance of ALLVAC 718Plus to grain boundary creep cracking during testing of samples at 704 °C in both dry and moist air. Fully recrystallized structures were found to be susceptible to brittle grain boundary cracking in both environments. Detailed transmission electron microscopy (TEM) microstructural characterization reveals features that are believed to lead to resistance to grain boundary cracking in the resistant microstructures. It is suggested that dislocation substructures found within the grains of resistant structures compete with the high-angle grain boundaries for oxygen, thereby reducing the concentration of oxygen on the grain boundaries and subsequent embrittlement. In addition, electron backscatter diffraction (EBSD) misorientation maps reveal that special boundaries ( i.e., Σ3 boundaries) resist cracking. This is in agreement with previous findings on the superalloy INCONEL 718. Furthermore, it is observed that cracks propagate along high-angle boundaries. This study also shows that in this case, the presence of delta phase at the grain boundaries does not by itself produce materials that are resistant to grain boundary cracking.

  8. Distinctive microstructural features of aged sodium silicate-activated slag concretes

    SciTech Connect

    San Nicolas, Rackel; Bernal, Susan A.; Mejía de Gutiérrez, Ruby; Deventer, Jannie S.J. van; Provis, John L.

    2014-11-15

    Electron microscopic characterisation of 7-year old alkali-activated blast-furnace slag concretes enabled the identification of distinct microstructural features, providing insight into the mechanisms by which these materials evolve over time. Backscattered electron images show the formation of Liesegang-type ring formations, suggesting that the reaction at advanced age is likely to follow an Oswald supersaturation–nucleation–depletion cycle. Segregation of Ca-rich veins, related to the formation of Ca(OH){sub 2}, is observed in microcracked regions due to the ongoing reaction between the pore solution and available calcium from remnant slag grains. A highly dense and uniform interfacial transition zone is identified between siliceous aggregate particles and the alkali activated slag binders, across the concretes assessed. Alkali-activated slag concretes retain a highly dense and stable microstructure at advanced ages, where any microcracks induced at early ages seem to be partially closing, and the remnant slag grains continue reacting.

  9. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Kozarevskaya, T. V.; Kusumoto, K.; Yamamoto, K.

    2014-11-01

    The objective of this investigation is to study the influence of vanadium (5.0wt%-10.0wt%) and chromium (0-9.0wt%) on the microstructure and hardness of Cr-V-Mn-Ni white cast irons with spheroidal vanadium carbides. The alloys' microstructural features are presented and discussed with regard to the distribution of phase elements. The structural constituents of the alloys are spheroidal VC, proeutectoid cementite, ledeburite eutectic, rosette-shaped carbide eutectic (based on M7C3), pearlite, martensite, and austenite. Their combinations and area fraction (AF) ratios are reported to be influenced by the alloys' chemical composition. Spheroidized VC particles are found to be sites for the nucleation of carbide eutectics. Cr and V are shown to substitute each other in the VC and M7C3 carbides, respectively. Chromium alloying leads to the formation of a eutectic (γ-Fe + M7C3), preventing the appearance of proeutectoid cementite in the structure. Vanadium and chromium are revealed to increase the total carbide fraction and the amount of austenite in the matrix. Cr is observed to play a key role in controlling the metallic matrix microstructure.

  10. Investigating Surface Features on Nix and Hydra

    NASA Astrophysics Data System (ADS)

    Weaver, Harold A.; Barnouin, O. S.; Cheng, A. F.; Ernst, C. M.; Lauer, T. R.; Stern, S. A.; Olkin, C. B.; Ennico, K.; Young, L. A.

    2015-11-01

    The LORRI (Cheng et al. 2008,Space Sci. Rev. 140, 189) and MVIC (Reuter et al. 2008,Space Sci. Rev. 140, 129) imagers on the New Horizons (NH) spacecraft obtained spatially resolved measurements of Nix and Hydra, two of Pluto's four small moons. Nix was observed by LORRI in panchromatic light (350-850 nm) at resolutions up to 0.30 km/pix, and by MVIC in color (400-550 nm, 540-700 nm, 780-975 nm, 860-910 nm; the latter is centered on a weak CH4 band) at resolutions up to 2.0 km/pix. Hydra was observed by LORRI in panchromatic light at 1.1 km/pix, and by MVIC in color at 4.6 km/pix. The lossless versions of the images, which we will employ in our analysis, are scheduled for downlink in September and October 2015. After image deconvolutions, which typically double the spatial resolution, the NH images provide hundreds to thousands of pixels across the surfaces of Nix and Hydra. We will present results on our searches for craters, lineaments, and other features on the surfaces of Nix and Hydra. We will also present results on any correlations between morphological features and color and albedo variations on the surface. This work was supported by NASA's New Horizons project.

  11. [Investigation of the microstructure of biological systems by triplet label].

    PubMed

    Kotel'niko, A I; Kuznetsov, S N; Fogel', V R; Likhtenshteĭn, G I

    1979-01-01

    A method for investigating the microstruct and dynamics of biological systems by means of triplet-excited molecules is suggested. The method is based on the phenomenon of triplet excitation disactivation by exchange-resonance triplet-triplet energy transfer to the acceptor or by intercombination conversion induced by interaction of an excited molecule with a paramagnetic center. The disactivation efficiency was measured by registrating the phosphorescense decay kinetics. The interaction of the triplet label eosin isothiocyanate, covalently coupled with albumine, lysozyme, sarcoplasmic reticulum membrane and Ca-Mg-dependent sarcoplasmic reticulum ATPase, with O2, the stable nitroxide radicals and ions of Mn2+ was investigated to analyse the potentialities of this method. As a model system the eosin phosphorescence quenching by the same quenchers in glycerine-aguaous solutions was studied. The method permits to investigate the microviscosity and microstructure of biological objects in the label attached region on interaction of the label with a sound-quencher with constants being 10(4) divided by 10(9) M-1 sec-1 and to measure the lateral diffusion of molecules in highly viscosity media (10 divided by 10(5) santypuas). PMID:223037

  12. Transmission electron microscopy characterization of microstructural features of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Pizzo, P. P.; Larson, L. A.

    1983-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitation events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significant alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  13. Experimental investigation of the serum albumin fascia microstructure

    NASA Astrophysics Data System (ADS)

    Buzoverya, M. E.; Shcherbak, Yu. P.; Shishpor, I. V.

    2012-09-01

    The results of theoretical and experimental investigation of biological liquids are reported. Structural effects observed in fascias are considered with account of the molecular features of albumin and the concept of supramolecular organization of polymers. It is revealed that the morphology of human serum albumin fascias depends on the concentration and quality of the solvent. It is shown that the water-salt fascias of albumin are more structured than water solutions with the same concentration.

  14. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  15. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. PMID:26280279

  16. Internal Microstructure Investigation of Tin Whisker Growth Using FIB Technology

    NASA Astrophysics Data System (ADS)

    Fortier, Aleksandra; Kovacevic, Radovan

    2012-08-01

    The problem of tin (Sn) whiskers has been a significant reliability issue in electronics for the past several decades. Despite the large amount of research conducted on this issue, a solution for mitigating the growth of whiskers remains a challenge for the research community. Whiskers have unpredictable growth and morphology, and a study of a whisker's internal structure may provide further insights into the reason behind their complex growth. This study reports on the internal microstructure and morphology of complex-shaped Sn whiskers grown from an electroplated bright Sn layer on brass substrates exposed to ambient and 95% humid environment. The variables analyzed include surface and microstructure conditions of the film, and morphology and internal microstructure of the Sn whiskers using scanning electron microscopy with focused ion beam technology. Experimental results demonstrated that the whiskers with more complex morphology grow primarily from surfaces exposed to a controlled environment, and some of them have traits of polycrystalline growth rather than only single crystalline, as usually known.

  17. Investigation of efficient features for image recognition by neural networks.

    PubMed

    Goltsev, Alexander; Gritsenko, Vladimir

    2012-04-01

    In the paper, effective and simple features for image recognition (named LiRA-features) are investigated in the task of handwritten digit recognition. Two neural network classifiers are considered-a modified 3-layer perceptron LiRA and a modular assembly neural network. A method of feature selection is proposed that analyses connection weights formed in the preliminary learning process of a neural network classifier. In the experiments using the MNIST database of handwritten digits, the feature selection procedure allows reduction of feature number (from 60 000 to 7000) preserving comparable recognition capability while accelerating computations. Experimental comparison between the LiRA perceptron and the modular assembly neural network is accomplished, which shows that recognition capability of the modular assembly neural network is somewhat better. PMID:22391231

  18. Investigation on multilayer microstructure grating for three-port splitting

    NASA Astrophysics Data System (ADS)

    Shu, Wenhao; Wang, Bo; Pei, Hao; Li, Hongtao; Chen, Li; Lei, Liang; Zhou, Jinyun

    2016-06-01

    A new structure of microstructure reflection three-port beam splitter grating is described in this paper. The grating includes two dielectric layers and a metal slab on the substrate, where incident waves are reflected into the zeroth-order and the ± first-order with polarization-independent property. With the optimized grating profile, reflection efficiencies’ ratios between the first-order and the zeroth-order can reach 0.998 and 1.001 for TE and TM polarizations, respectively. Especially, the reflection grating can diffract efficiencies more than 30% into the ± first-order and the zeroth-order with the incident angular bandwidth of ‑1.9-1.9∘ for TM polarization, which can have merits compared with single-layer transmission grating.

  19. Mechanical Properties and Microstructure Investigation of Lead Free Solder

    NASA Technical Reports Server (NTRS)

    Wang, Qing; Gail, William F.; Johnson, R. Wayne; Strickland, Mark; Blanche, Jim

    2005-01-01

    While the electronics industry appears to be focusing on Sn-Ag-Cu as the alloy of choice for lead free electronics assembly, ,the exact composition varies by geographic region, supplier and user. Add to that dissolved copper and silver from the printed circuit board traces and surface finish, and there can be significant variation in the final solder joint composition. A systematic study of the mechanical and microstructural properties of Sn-Ag-Cu alloys with Ag varying from 2wt% to 4wt% and Cu varying from 0.5wt% to lSwt%, was undertaken in this research study. Different sample preparation techniques (water quenched, oil quenched and water quenched followed by reflow) were explored and the resulting microstructure compared to that of a typical reflowed lead free chip scale package (CSP) solder joint. Tensile properties (modulus, 0.2% yield strength and the ultimate tensile strength) and creep behavior of selected alloy compositions (Sn-4Ag-1 X u , Sn-4Ag-OSCu, Sn- 2Ag-1 X u , Sn-2Ag-OSCu, Sn-3.5Ag-O.SCu) were determined for three conditions: as- cast; aged for 100 hours at 125OC; and aged for 250 hours at 125OC. There was no significant difference in Young's Modulus as a function of alloy composition. After an initial decrease in modulus after 100 hours at 125"C, there was an insignificant change with further aging. The distribution of 0.2% strain yield stress and ultimate tensile strength as a function of alloy composition was more significant and decreased with aging time and temperature. The microstructures of these alloys were examined using light and scanning electron microscopy (LM and SEM) respectively and SEM based energy dispersive x-ray spectroscopy (EDS). Fracture surface and cross-section analysis were performed on the specimens after creep testing. The creep testing results and the effect of high temperature aging on mechanical properties is presented for the oil quenched samples. In general the microstructure of oil quenched specimen exhibited a

  20. Microstructural Investigations On Ni-Ta-Al Ternary Alloys

    SciTech Connect

    Negache, M.; Souami, N.

    2010-01-05

    The Ni-Al-Ta ternary alloys in the Ni-rich part present complex microstructures. They are composed of multiple phases that are formed according to the nominal composition of the alloy, primary Ni(gamma), Ni{sub 3}Al(gamma'), Ni{sub 6}AlTa(tau{sub 3}), Ni{sub 3}Ta(delta) or in equilibrium: two solid phases (gamma'-tau{sub 3}), (tau{sub 3}-delta), (tau{sub 3}-gamma), (gamma-delta) or three solid phases (gamma'-tau{sub 3}-delta). The nature and the volume fraction of these phases give these alloys very interesting properties at high temperature, and this makes them attractive for specific applications. We have developed a series of ternary alloys in electric arc furnace, determining their solidification sequences using Differential Thermal Analysis (DTA), characterized by SEM-EDS, X-ray diffraction and by a microhardness tests. The follow-up results made it possible to make a correlation between the nature of the formed phases and their solidifying way into the Ni{sub 75}Al{sub x}Ta{sub y} (x+y = 25at.%) system, which are varied and complex. In addition to the solid solution Ni (gamma), the formed intermetallics compounds (gamma', tau{sub 3} and delta) has been identified and correlated with a complex balance between phases.We noticed that the hardness increases with the tantalum which has a hardening effect and though the compound Ni{sub 3}Ta(delta) is the hardest. The below results provide a better understanding of the complex microstructure of these alloys.

  1. Investigation on a "tentacle-like" corrosion feature on Bronze Age tin-bronze objects

    NASA Astrophysics Data System (ADS)

    Piccardo, Paolo; Mödlinger, Marianne; Ghiara, Giorgia; Campodonico, Serena; Bongiorno, Valeria

    2013-12-01

    Studying the micro-structure of Austrian, Bosnian and Croatian Bronze Age objects made of tin bronze, a rare kind of corrosion feature, called in the following "tentacle-like" according to its specific way of penetrating the metallic matrix, was noted and investigated. Differing from the more classical intergranular, pitting, or crevice corrosion features, the "tentacle-like" corrosion is not following the grain boundaries, nor precisely positioned under the etching area, but penetrates mainly the crystal matrix without any apparent order. This paper discusses the first results achieved and the following hypotheses formulated in respect of the typology of this corrosion. The analyses were carried out by optical microscopy, Raman microspectroscopy, and scanning electron microscopy equipped with EDX spectroscopy for quantitative analyses.

  2. Microstructural features at the interface between laser ablated YBa2Cu3O7 films and LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Guo, L. P.; Tian, Y. J.; Liu, J. Z.; Xu, S. F.; Li, L.; Zhao, Z. X.; Chen, Z. H.; Cui, D. F.; Lu, H. B.; Zhou, Y. L.; Yang, G. Z.

    1995-06-01

    The microstructure at the interface between YBa2Cu3O7(YBCO) thin film and (100)LaAlO3 substrate has been investigated by using transmission electron microscopy. It has been observed that two distinct microstructural features existed in the interface: (1) A thin transitional layer of Ba3Al2O6 was frequently observed and the YBCO thin film grown on it showed stacking faults. (2) Sharp interface with no transitional layer was also occasionally observed and the YBCO film grown on it was single crystalline. In rare cases, a low symmetry phase was observed near the surface of the LaAlO3 substrate, however, the distortion caused by the lattice mismatch between this phase and the YBCO did not affect the quality of the YBCO thin film.

  3. Confined blue iridescence by a diffracting microstructure: an optical investigation of the Cynandra opis butterfly.

    PubMed

    Brink, D J; Lee, M E

    1999-09-01

    When illuminated and viewed along certain well-defined directions, segments on the wings of the butterfly Cynandra opis shows a striking violet-blue to blue-green. We quantify the spectral and the directional properties of these areas of the wings of the insect. Electron microscopy shows that wing scales from these iridescent regions of the wings contain two gratinglike microstructures crossed at right angles. Application of the diffraction theory, as formulated by the Stratton-Silver-Chu integral, to the microstructure can explain all the important features observed experimentally. PMID:18324029

  4. Microstructure investigation of plasma sprayed alumina 13 weight percent titania coatings from nanocrystalline feed powders

    NASA Astrophysics Data System (ADS)

    Goberman, Daniel George

    The development of constituent phases and microstructure in air plasma sprayed alumina (Al2O3) thirteen weight percent titania (TiO2) coatings from reconstituted nanocrystalline feed powder (nanopowder) was investigated as a function of processing conditions and compared to a conventional coating created from micron-sized feed powder. The microstructure of the nanopowder coating was found to consist of a mixture of two distinct regions; one was completely melted and quenched as splats, and the other partially melted with a particulate microstructure retained from the starting powder. The melted regions predominantly consisted of gamma-Al2O 3 with dissolved Ti4+ that varied in morphology and size from a few nanometers to several microns. Based upon these experimental observations, a theory is developed that explains the mechanism behind the morphological differences observed across the melted splat structures. In addition, differences between the melted structures in the nanopowder coatings and the conventional coating are explained using this theory. The partially melted regions were found to be primarily submicrometer-sized alpha-Al2O 3 particles in an amorphous TiO2 matrix containing small amounts of gamma-Al2O3 with dissolved Ti4+ . For the nanopowder coatings, the ratio of the melted splat microstructure to the particulate microstructure and thus the ratio of the gamma-Al 2O3 to alpha-Al2O3 can be controlled by a plasma spray parameter, defined as the critical plasma spray parameter (CPSP). The conventional coating microstructure was insensitive to CPSP, consisting primarily of fully melted splats. The ability to vary the microstructure of the nanopowder coating through CPSP has resulted in bimodal distributions of microstructure and grain size that have allowed these coatings to significantly surpass the conventional coating in several measures of mechanical properties.

  5. Effect of Prior Austenite Grain Size Refinement by Thermal Cycling on the Microstructural Features of As-Quenched Lath Martensite

    NASA Astrophysics Data System (ADS)

    Hidalgo, Javier; Santofimia, Maria Jesus

    2016-05-01

    Current trends in steels are focusing on refined martensitic microstructures to obtain high strength and toughness. An interesting manner to reduce the size of martensitic substructure is by reducing the size of the prior austenite grain (PAG). This work analyzes the effect of PAGS refinement by thermal cycling on different microstructural features of as-quenched lath martensite in a 0.3C-1.6Si-3.5Mn (wt pct) steel. The application of thermal cycling is found to lead to a refinement of the martensitic microstructures and to an increase of the density of high misorientation angle boundaries after quenching; these are commonly discussed to be key structural parameters affecting strength. Moreover, results show that as the PAGS is reduced, the volume fraction of retained austenite increases, carbides are refined and the concentration of carbon in solid solution as well as the dislocation density in martensite increase. All these microstructural modifications are related with the manner in which martensite forms from different prior austenite conditions, influenced by the PAGS.

  6. Preliminary investigation into sources of uncertainty in quantitative imaging features.

    PubMed

    Fave, Xenia; Cook, Molly; Frederick, Amy; Zhang, Lifei; Yang, Jinzhong; Fried, David; Stingo, Francesco; Court, Laurence

    2015-09-01

    Several recent studies have demonstrated the potential for quantitative imaging features to classify non-small cell lung cancer (NSCLC) patients as high or low risk. However applying the results from one institution to another has been difficult because of the variations in imaging techniques and feature measurement. Our study was designed to determine the effect of some of these sources of uncertainty on image features extracted from computed tomography (CT) images of non-small cell lung cancer (NSCLC) tumors. CT images from 20 NSCLC patients were obtained for investigating the impact of four sources of uncertainty: Two region of interest (ROI) selection conditions (breathing phase and single-slice vs. whole volume) and two imaging protocol parameters (peak tube voltage and current). Texture values did not vary substantially with the choice of breathing phase; however, almost half (12 out of 28) of the measured textures did change significantly when measured from the average images compared to the end-of-exhale phase. Of the 28 features, 8 showed a significant variation when measured from the largest cross sectional slice compared to the entire tumor, but 14 were correlated to the entire tumor value. While simulating a decrease in tube voltage had a negligible impact on texture features, simulating a decrease in mA resulted in significant changes for 13 of the 23 texture values. Our results suggest that substantial variation exists when textures are measured under different conditions, and thus the development of a texture analysis standard would be beneficial for comparing features between patients and institutions. PMID:26004695

  7. Investigation of microstructural alterations in M50 and 52100 steel using nanoindentation

    NASA Astrophysics Data System (ADS)

    Paulson, Kristin R.

    Bearing steels are used in rolling elements and are designed to withstand heavy loads for an extended period of time. At the end of life, microstructural alterations within the material have been observed and are linked to failure. In this study, a three ball-on-rod fatigue tester was used to test M50 and 52100 steel cylindrical rods at differing loads of 4.0 GPa, 4.5 GPa, and 5.0 GPa and in lubricated and unlubricated conditions to 108 cycles in an attempt to produce microstructural alterations. Microstructural alterations characterized as butterflies were observed and investigated further in two M50 samples that were tested at 4.5 GPa to 10 8 cycles in the lubricated and unlubricated condition. Microstructural alterations characterized as dark etching regions (DER), and white etching bands (WEBs) were not observed. Additionally, hardness was investigated cross sectionally as a function of depth and location within the wear track produced by the fatigue test. No conclusive evidence was derived from the hardness measurements as a function of depth in relation to the formation of microstructural alterations or the stress experienced subsurface within the material. Hardness measurements performed specifically within a butterfly wing, however, returned hardness values significantly higher than the matrix hardness values.

  8. Investigation of microstructure and thermal stability of pulsed plasma processed chromium ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Emelyanova, O.; Dzhumaev, P.; Yakushin, V.; Polsky, V.

    2016-04-01

    This paper presents results of the microstructural evolution and thermal stability of the promising Russian ferritic-martensitic steels (EP 823, EP 900, EK 181 and ChS 139) for the nuclear and fusion application after surface modification by high temperature pulsed plasma flows (HTPPF) treatment. Investigations of microstructure, topography and elemental content changes associated with irradiation by nitrogen plasma with energy density 19-28 J/ cm2 and pulse duration 20 μs were carried out. Changes in microstructure and elemental content occurring in the modified surface layer were characterized by means of scanning electron microscopy (SEM) and X-ray microanalysis (EDS and WDS). It was shown that independently of initial microstructure and phase composition, HTPPF treatment of ferritic- martensitic steels leads to formation of ultrafine homogeneous structure in the near surface layers with typical grain size ∼100 nm. Results of microstructure investigations after annealing during 1 hour demonstrates significant thermal stability of nanostructure formed by HTPPF treatment.

  9. Evolution and Control of 2219 Aluminum Microstructural Features Through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  10. Microstructural Investigation of High Emittance Glass Coatings on Fibrous Ceramic Insulation

    NASA Technical Reports Server (NTRS)

    Ellerby, Don; Leiser, Dan; DiFiore, Robert; Figone, Jeff; Smith, Dane; Loehman, Ron; Kotula, Paul

    2001-01-01

    This viewgraph presentation provides an overview of the Space Shuttle Thermal Protection System (TPS) and the various products incorporated in the TPS. There are three tile systems which include pure silica, fibrous refractory composite insulation (FRCI), and alumina enhanced thermal barrier (AETB). Coating systems include reaction cured glass (RCG) and toughened uni-piece insulation (TUFI). The microstructures of these systems are explored as are the manufacturing processes associated with each. Microstructural investigation using methods such as automated X-ray spectral image analysis (AXSIA) is a crucial part of understanding the mechanical nature of these systems.

  11. Microstructural investigation of copper corrosion: Influence of humidity

    NASA Astrophysics Data System (ADS)

    Campin, Michael J.

    2003-10-01

    Copper is a critical material in electrical components and is subject to atmospheric corrosion. This study characterized the corrosion products formed when copper is exposed to environments containing activated oxygen species or sulfur containing species. Investigation of the oxides formed when copper is exposed to an electron-cyclotron resonance (ECR) O2 plasma has revealed the presence of both Cu2O and CuO. In addition, it was found that the presence of CuO on copper prevents sulfidation. Particular emphasis is placed on the product formed when Cu is exposed to a dilute (50--200 ppb) H2S atmosphere at low (0.5%) to high (80%) relative humidity (RH). An important observation was that the Cu2S growth rate is significantly higher for sulfides formed at low RH compared to high RH. In addition, it is found that for both low and high RH sulfidation, copper reacts to form the low chalcocite phase (Cu2S) as identified by X-ray and electron diffraction. Cross-section and plan-view TEM revealed that the Cu2S grains formed at high RH are 20--50 nm in size with a large amount of porosity, whereas the grains formed at low RH are 75--150+ nm and appear to undergo grain growth with little porosity. Finally, numerical modeling of an ideal diffusion process is used to demonstrate that point like sources can result in behavior similar to that observed for the rate of sulfidation at high RH.

  12. Investigation of flow and microstructure in rheometric and processing flow conditions for liquid crystalline pitch

    NASA Astrophysics Data System (ADS)

    Kundu, Santanu

    The microstructure development within mesophase pitch-based carbon materials depends on the flow history that the pitch is subjected to. Therefore, a fundamental understanding of flow and its influence on the microstructure is required to obtain carbon materials with desired properties. The objective of this research was to investigate the flow and microstructural behavior of a synthetic mesophase pitch (AR-HP) in rheometric and processing flow conditions. In addition, simulation studies were performed to establish a frame work for modeling the flow behavior of this complex material in different flow situations. The steady-shear viscosities obtained from a cone-plate rheometer during increasing rate-sweep experiments exhibited shear-thinning (Region I) and plateau (Region II) responses. However, the slope of the shear-thinning region was only about -0.2, much lower than -0.5 observed in some pitches and liquid-crystalline polymers. This difference could arise from the different molecular constituents of pitches. At higher shear rates, as measured from capillary rheometers, the viscosity values remained almost constant. The transient shear stress responses, as measured from cone-plate rheometer, exhibited nonmonotonic behavior as a function of applied strain at all shear rates and temperatures tested. After rheological experiments, the samples were collected by developing a new experimental protocol for preservation of the sample for microstructural analysis. Microstructural observations obtained from three orthogonal sections, reported for the first time in the literature, indicate that the local maximum in shear stress was due to yielding of initial microstructure. The microstructure became flow oriented with further shearing, and the structure size decreased with increasing shear rates. In addition to high-strain experiments, dynamic experiments were also performed in the linear viscoelastic region where no significant deformation of fluid takes place. The

  13. Evolution and Control of 2219 Aluminum Microstructural Features through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  14. Microstructural Features of Quenching and Partitioning: A New Martensitic Steel Heat Treatment

    SciTech Connect

    Edmonds, D. V.; He, K.; Miller, Michael K; Rizzo, F. C.; Clarke, A.; Matlock, D. K.; Speer, J. G.

    2007-01-01

    The microstructure following a new martensite heat treatment has been examined, principally by high-resolution microanalytical transmission electron microscopy and by atom probe tomography. The new process involves quenching to a temperature between the martensite-start (Ms) and martensite-finish (Mf) temperatures, followed by ageing either at or above, the initial quench temperature, whereupon carbon can partition from the supersaturated martensite phase to the untransformed austenite phase. Thus the treatment has been termed ''Quenching and Partitioning'' (Q&P). The carbon must be protected from competing reactions, primarily carbide precipitation, during the first quench and partitioning steps, thus enabling the untransformed austenite to be enriched in carbon and largely stabilised against further decomposition to martensite upon final quenching to room temperature. This microstructural objective is almost directly opposed to conventional quenching and tempering of martensite, which seeks to eliminate retained austenite and where carbon supersaturation is relieved by carbide precipitation. This study focuses upon a steel composition representative of a TRIP-assisted sheet steel. The Q&P microstructure is characterised, paying particular attention to the prospect for controlling or suppressing carbide precipitation by alloying, through examination of the carbide precipitation that occurs.

  15. Investigation of Spectral Characteristics for Microstructured Quasi-Optical Bandpass Subteraherz Filters

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Gelfand, A. V.

    2016-03-01

    The electrodynamic features of quasi-optical bandpass filters based on multilayer microstructured frequency selective surfaces intended for effective spectral selection of subteraherz electromagnetic radiation are considered. As an optimal solution, the multiplex filters are highlighted wherein tripole-slot self-bearing copper microstructures free from dielectric substrates are employed. The results of the experimental development for such filters are presented by the example of structures with resonant transmission at the frequencies of 0.6 and 1 THz, and the details of testing their spectral performance in the range of 0.1-1.5 THz using a BWO spectroscopy technique are described. Good agreement between the experimental data and the results of theoretical predictions is demonstrated.

  16. A Monte Carlo Potts Investigation of Microstructural Evolution: Particle Assisted Abnormal Grain Growth

    NASA Astrophysics Data System (ADS)

    Guebels, Corentin Alain Pierre Nicolas

    The microstructural changes that occur in metals and alloys due to deformation and heat treatment are often characterized according to the macroscale deformation process (i.e. cold or hot working). The general problem of this type of characterization is that it only distinguishes the general microstructural trends. For many decades, these microstructural phenomena have been described empirically or with limited experimental verification. This shortcoming is apparent for recrystallization and abnormal grain growth processes. Understanding and characterizing the thermal and mechanical processes that compete to control grain boundary kinetics and the subsequent microstructural evolution is critical. These include but are not limited to: the input and recovery of deformation energy, the influence of deformation energy on grain boundary migration, the mechanisms controlling the nucleation of new grains, and the effect of second-phase particles. The present work introduces a new temporal scaling method and investigates the conditions in which some grain boundaries may become unpinned in an otherwise stable, pinned microstructure and extends work done by E. Holm. The temporal scaling method contributes to resolving some of the limitations of Monte Carlo Potts (MCP) simulations in the investigation of the conditions and mechanisms that distinguish recrystallization from dynamic abnormal grain growth (DAGG). Grain boundary unpinning is then investigated for the case of an idealized spherical grain and for a polycrystalline microstructure. The mechanisms of grain boundary pinning and grain growth inhibition by second-phase particles are well known. The influence of simulation temperature on grain boundary unpinning is investigated numerically using a 3D Monte Carlo Potts approach. MCP based models are commonly implemented to simulate microstructural evolution. However, the numerical implementations of recrystallization and other deformation-induced phenomena often elude

  17. Investigation of Magnetic Signatures and Microstructures for Heat-Treated Ferritic/Martensitic HT-9 Alloy

    SciTech Connect

    Henager, Charles H.; McCloy, John S.; Ramuhalli, Pradeep; Edwards, Danny J.; Hu, Shenyang Y.; Li, Yulan

    2013-05-01

    There is increased interest in improved methods for in-situ nondestructive interrogation of materials for nuclear reactors in order to ensure reactor safety and quantify material degradation (particularly embrittlement) prior to failure. Therefore, a prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated to assess microstructure effects on micromagnetics measurements – Barkhausen noise emission, magnetic hysteresis measurements, and first-order reversal curve analysis – for samples with three different heat-treatments. Microstructural and physical measurements consisted of high-precision density, resonant ultrasound elastic constant determination, Vickers microhardness, grain size, and texture. These were varied in the HT-9 alloy samples and related to various magnetic signatures. In parallel, a meso-scale microstructure model was created for alpha iron and effects of polycrystallinity and demagnetization factor were explored. It was observed that Barkhausen noise emission decreased with increasing hardness and decreasing grain size (lath spacing) while coercivity increased. The results are discussed in terms of the use of magnetic signatures for nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys.

  18. Damage in dual phase steel DP1000 investigated using digital image correlation and microstructure simulation

    NASA Astrophysics Data System (ADS)

    Alharbi, Khaled; Ghadbeigi, Hassan; Efthymiadis, Panos; Zanganeh, Mohammad; Celotto, Steven; Dashwood, Richard; Pinna, Christophe

    2015-12-01

    Microstructure failure mechanisms and void nucleation in dual-phase (DP) steels during deformation have been studied using a combination of in situ tensile testing in a scanning electron microscope (SEM), digital image correlation (DIC) and finite element (FE) modelling. SEM images acquired during in situ tests were used to follow the evolution of damage within the microstructure of a DP1000 steel. From these images, strain maps were generated using DIC and used as boundary conditions for a FE model to investigate the stress state of martensite and ferrite before the onset of the martensite phase cracking. Based on the simulation results, a maximum principal stress of about 1700 MPa has been estimated for crack initiation in the martensite of the investigated DP1000 steel. The SEM image observations in combination with the FE analyses provide new insights for the development of physically-based damage models for DP-steels.

  19. Microstructural and crystallographic features of ausferrite in as-cast gray iron

    SciTech Connect

    Ferry, M. . E-mail: m.ferry@unsw.edu.au; Xu, W.

    2004-09-15

    Ausferrite has been shown to form during casting of gray iron by carefully controlling the alloying additions Mo, Mn, Si and Cu and consists of an acicular ferrite constituent, termed bainitic ferrite ({alpha}{sub B}), which develops during continuous cooling as a coarse, feathery-type structure within the prior austenite ({gamma}) grains. Regardless of alloy composition, the ausferrite that forms in the microstructure during casting in volume fractions greater than {approx}0.1 was found to have a constant bainitic ferrite/retained austenite ratio ({alpha}{sub B}/{gamma}{approx}3). Electron backscatter diffraction (EBSD) in the scanning electron microscope has demonstrated that {alpha}{sub B} and {gamma} in ausferrite is related by the Kurdjumov-Sachs orientation relationship: {l_brace}111{r_brace}{sub {gamma}}//{l_brace}011{r_brace}{sub {alpha}} and <011>{sub {gamma}}//<111>{sub {alpha}} with a number of {alpha}{sub B} variants possible within a given austenite grain. This study confirms that the ausferrite generated in gray iron by direct casting has comparable microstructural and crystallographic characteristics to that produced in austempered gray and ductile irons.

  20. Effect of processing conditions on microstructural features in Mn–Si sintered steels

    SciTech Connect

    Oro, Raquel; Hryha, Eduard; Campos, Mónica; Torralba, José M.

    2014-09-15

    Sintering of steels containing oxidation sensitive elements is possible if such elements are alloyed with others which present lower affinity for oxygen. In this work, a master alloy powder containing Fe–Mn–Si–C, specifically designed to create a liquid phase during sintering, has been used for such purpose. The effect of processing conditions such as sintering temperature and atmosphere was studied with the aim of describing the microstructural evolution as well as the morphology and distribution of oxides in the sintered material, evaluating the potential detrimental effect of such oxides on mechanical properties. Chemical analyses, metallography and fractography studies combined with X-ray photoelectron spectroscopy analyses on the fracture surfaces were used to reveal the main mechanism of fracture and their correlation with the chemical composition of the different fracture surfaces. The results indicate that the main mechanism of failure in these steels is brittle fracture in the surrounding of the original master alloy particles due to degradation of grain boundaries by the presence of oxide inclusions. Mn–Si oxide inclusions were observed on intergranular decohesive facets. The use of reducing atmospheres and high sintering temperatures reduces the amount and size of such oxide inclusions. Besides, high heating and cooling rates reduce significantly the final oxygen content in the sintered material. A model for microstructure development and oxide evolution during different stages of sintering is proposed, considering the fact that when the master alloy melts, the liquid formed can dissolve some of the oxides as well as the surface of the surrounding iron base particles. - Highlights: • Oxide distribution in steels containing oxidation-sensitive elements • Mn, Si introduced in a master alloy powder, mixed with a base iron powder • Selective oxidation of Mn and Si on iron grain boundaries • Decohesive fracture caused by degradation of grain

  1. Experimental investigation of high aspect ratio tubular microstructuring of glass by means of picosecond Bessel vortices

    NASA Astrophysics Data System (ADS)

    Jedrkiewicz, Ottavia; Bonanomi, Simone; Selva, Marco; Di Trapani, Paolo

    2015-07-01

    We report on experiments on glass material modification using nondiffractive high-order picosecond pulsed Bessel beams, generated by a spatial light phase modulator and then suitably demagnified. We investigate the possibility to generate in single-shot tubular microstructures across 100-μm-thin borosilicate glass, when a suitable energy range is considered, and we highlight the effect of the unstable propagation regime for very high input energies, leading to a breakup of the tubular microstructure. The micromachined glass samples are observed on their top and bottom surfaces as well as longitudinally along their thickness. For the conical beam geometry used, we observe no internal material modification pattern with pulses in the femtosecond range. A comparison with glass machining by means of a focused ring-shaped beam is also presented. The results highlight the role of the conical energy flux for single-shot smooth high aspect ratio material modification in a regime where nonlinear Kerr effects are absent.

  2. Pumice-supported palladium catalysts. I. Chemical preparation and microstructural features

    SciTech Connect

    Fagherazzi, G.; Benedetti, A.; Deganello, G.; Duca, D.; Martorana, A.; Spoto, G.

    1994-11-01

    Two series of pumice-supported palladium catalysts (W = washed, U = unwashed) were prepared by the reaction of [Pd(C{sub 3}H{sub 5}){sub 2}] with the support, followed by reduction using H{sub 2}. W catalysts were washed before reduction to eliminate unreacted [Pd(C{sub 3}H{sub 5}){sub 2}]. U catalysts did not undergo this treatment. Microstructural characterization of the catalysts was performed by small-angle X-ray scattering (SAXS), wide-angle X-ray line broadening, and transmission electron microscopy (TEM). Line-broadening analysis revealed the presence of lattice imperfections, such as growth stacking faults and microstrains in the fcc structure of palladium. The average particle size values determined by SAXS were confirmed by TEM analysis and were employed to calculate the percentage of palladium exposed (catalyst dispersion). W catalysts showed well-dispersed spheroidal particles, whereas the U series displayed agglomerates. 38 refs., 9 figs., 2 tabs.

  3. GALACTIC S STARS: INVESTIGATIONS OF COLOR, MOTION, AND SPECTRAL FEATURES

    SciTech Connect

    Otto, Elizabeth; Green, Paul J.; Gray, Richard O.

    2011-09-01

    Known bright S stars, recognized as such by their enhanced s-process abundances and C/O ratio, are typically members of the asymptotic giant branch (AGB) or the red giant branch. Few modern digital spectra for these objects have been published, from which intermediate resolution spectral indices and classifications could be derived. For published S stars, we find accurate positions using the Two-Micron All Sky Survey (2MASS), and use the FAST spectrograph of the Tillinghast reflector on Mt. Hopkins to obtain the spectra of 57 objects. We make available a digital S star spectral atlas consisting of 14 spectra of S stars with diverse spectral features. We define and derive basic spectral indices that can help distinguish S stars from late-type (M) giants and carbon stars. We convolve all our spectra with the Sloan Digital Sky Survey bandpasses, and employ the resulting gri magnitudes together with 2MASS JHK{sub s} mags to investigate S star colors. These objects have colors similar to carbon and M stars, and are therefore difficult to distinguish by color alone. Using near- and mid-infrared colors from IRAS and Akari, we identify some of the stars as intrinsic (AGB) or extrinsic (with abundances enhanced by past mass transfer). We also use V band and 2MASS magnitudes to calculate a temperature index for stars in the sample. We analyze the proper motions and parallaxes of our sample stars to determine upper and lower limit absolute magnitudes and distances, and confirm that most are probably giants.

  4. Investigation of the Dynamic Strain Aging and Mechanical Properties in Alloy-625 with Different Microstructures

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arnomitra; Sharma, Garima; Tewari, R.; Chakravartty, J. K.

    2015-03-01

    Tensile tests were carried out on service exposed Alloy 625 ammonia cracker tube used at heavy water production plant to study the effect of microstructure on the serrated yielding and mechanical properties of the material. Owing to temperature gradient during service exposure, the microstructure was different in top, middle, and bottom sections of the tube. Variation of flow stress, ductility, and average work hardening were monitored with temperature. In the present work, emphasis was given on the study of serrated yielding in the service exposed Alloy 625. Detail investigations were made to study the effect of microstructure on the underlying mechanism of dynamic strain aging of the material. The study revealed that both the normal and the inverse Portevin-Le Chatelier effect (PLC) occured in the material at lower and higher temperature regime, respectively. While the normal PLC dynamics was associated with locking of dislocations by interstitial carbon atoms, the inverse one was accomplished by the dislocation pinning by substitutional Mo atoms. Further analyses identified that the basic deformation mechanism was different in middle and bottom samples as that in the top samples which was reflected in the difference in their respective activation energy and stress drop magnitude.

  5. Clinical investigation of speech signal features among patients with schizophrenia

    PubMed Central

    ZHANG, Jing; PAN, Zhongde; GUI, Chao; CUI, Donghong

    2016-01-01

    Background A new area of interest in the search for biomarkers for schizophrenia is the study of the acoustic parameters of speech called 'speech signal features'. Several of these features have been shown to be related to emotional responsiveness, a characteristic that is notably restricted in patients with schizophrenia, particularly those with prominent negative symptoms. Aim Assess the relationship of selected acoustic parameters of speech to the severity of clinical symptoms in patients with chronic schizophrenia and compare these characteristics between patients and matched healthy controls. Methods Ten speech signal features-six prosody features, formant bandwidth and amplitude, and two spectral features-were assessed using 15-minute speech samples obtained by smartphone from 26 inpatients with chronic schizophrenia (at enrollment and 1 week later) and from 30 healthy controls (at enrollment only). Clinical symptoms of the patients were also assessed at baseline and 1 week later using the Positive and Negative Syndrome Scale, the Scale for the Assessment of Negative Symptoms, and the Clinical Global Impression-Schizophrenia scale. Results In the patient group the symptoms were stable over the 1-week interval and the 1-week test-retest reliability of the 10 speech features was good (intraclass correlation coefficients [ICC] ranging from 0.55 to 0.88). Comparison of the speech features between patients and controls found no significant differences in the six prosody features or in the formant bandwidth and amplitude features, but the two spectral features were different: the Mel-frequency cepstral coefficient (MFCC) scores were significantly lower in the patient group than in the control group, and the linear prediction coding (LPC) scores were significantly higher in the patient group than in the control group. Within the patient group, 10 of the 170 associations between the 10 speech features considered and the 17 clinical parameters considered were

  6. A microstructural investigation of the depth-dependent response of cartilage during stress relaxation

    NASA Astrophysics Data System (ADS)

    Zhang, Geran; Thambyah, Ashvin; Broom, Neil

    2009-08-01

    The poro-visco-hyperelastic nature of articular cartilage has been studied extensively, yet little has been done to correlate its unique mechanical properties with its microstructural response to load. Making such a correlation would help determine how the microstructure of cartilage, with its zonally-differentiated fibrillar microarchitecture and water-content, influences the overall macro-level mechanical response. A total of eight cartilage-on-bone samples were subjected to stress relaxation tests, conducted via stepwise indentation, and using a 2mm diameter cylindrical indenter. Each step indentation consisted of a 10% compressive strain, up to 80%. At each strain increment the specimen was allowed to fully relax to an equilibrium stress before compressing it further. From the stress relaxation curve at each strain level, peak and equilibrium stresses were recorded. For the microstructural investigation, specimens stress-equilibrated at 20%, 40%, 60% and 80% strain, were chemically fixed to capture the deformed state and then cryo-sectioned and imaged using differential interference contrast (DIC) microscopy. It was found that stress relaxation, i.e. the time from peak stress to equilibrium, occurred at a slower rate at the larger levels of compressive strain. Peak stresses increased exponentially with increasing levels of strain. The equilibrium stress relationship with compressive strain level was largely linear but between 60% and 80% strain, the change in equilibrium stress increased dramatically. The microstructural data showed how at lower strain levels, much of the load was distributed laterally within the upper zones of the cartilage matrix. At higher strain levels (>60%) the deep zone fibrillar alignment was sheared and this may explain the abrupt rise in equilibrium stress levels. Finally, the increase in peak stress at higher strain-levels is likely due to a decreased interstitial fluid permeability associated with an increasingly consolidated matrix.

  7. Investigation of image feature extraction by a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Perkins, Simon J.; Harvey, Neal R.; Szymanski, John J.; Bloch, Jeffrey J.; Mitchell, Melanie

    1999-11-01

    We describe the implementation and performance of a genetic algorithm which generates image feature extraction algorithms for remote sensing applications. We describe our basis set of primitive image operators and present our chromosomal representation of a complete algorithm. Our initial application has been geospatial feature extraction using publicly available multi-spectral aerial-photography data sets. We present the preliminary results of our analysis of the efficiency of the classic genetic operations of crossover and mutation for our application, and discuss our choice of evolutionary control parameters. We exhibit some of our evolved algorithms, and discuss possible avenues for future progress.

  8. Microstructure investigation and magnetic study of permalloy thin films grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Lamrani, Sabrina; Guittoum, Abderrahim; Schäfer, Rudolf; Pofahl, Stefan; Neu, Volker; Hemmous, Messaoud; Benbrahim, Nassima

    2016-06-01

    We study the effect of thickness on the structural and magnetic properties of permalloy thin films, evaporated on glass substrate. The films thicknesses range from 16 to 90 nm. From X-ray diffraction spectra analysis, we show that the thinner films present a "1,1,1" preferred orientation. However, the thicker films exhibit a random orientation. The grains size increases and the lattice parameter decreases with increasing thickness. The magnetic force microscopy observations display cross-tie walls features only for the two thicker films (60 and 90 nm thick films). The magnetic microstructure, carried out by Kerr microscopy technique, shows the presence of magnetic domains changing with the direction of applied magnetic field. The coercive field, Hc, was found to decrease from 6.5 for 16 to 1.75 Oe for 90 nm. All these results will be discussed and correlated.

  9. Microstructural investigations of materials for low temperature co-fired ceramic (LTCC) based fuel cell using small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Mohamed, A. A.; Ahmad, M. H.; Ibrahim, A.; Azman, A.; Alias, R.; Ambak, Z.; Shapee, S.; Putra, E. G.; Patriati, A.; Sharom, M. A.; Yazid, H.; Mamat, M. R.; Karim, J. A.; Idris, F. M.; Yazid, K.; Zin, M. R.

    2013-06-01

    The concept and the realization fuel cell based on LTCC technology require the investigations of fired LTCC microstructures. The majority of the works involved using small angle neutron scattering studies on the microstructural of LTCC ceramic tape and development of neutron tomography for future tool to visualize channels inside the fired tape. Most SANS characterization were carried out at Smarter SANS instrument at BATAN, Indonesia. Standard sample for resolving tens of micron of object size were measured using simple neutron tomography setup utilizing monochromatic SANS beam at Malaysian Nuclear Agency. The initial microstructural findings indicates that organic additives shape the final microstructural of LTCC after firing with the glassy material possibly fill the space left by the burned organic additives. The tomography results showed that 40 micron size object can be differentiated. The conductor deposited on LTCC is preliminary investigated which will later be used as support for catalyst.

  10. Investigation of mesoscale cloud features viewed by LANDSAT

    NASA Technical Reports Server (NTRS)

    Sherr, P. E. (Principal Investigator); Feteris, P. J.; Lisa, A. S.; Bowley, C. J.; Fowler, M. G.; Barnes, J. C.

    1976-01-01

    The author has identified the following significant results. Some 50 LANDSAT images displaying mesoscale cloud features were analyzed. This analysis was based on the Rayleigh-Kuettner model describing the formation of that type of mesoscale cloud feature. This model lends itself to computation of the average wind speed in northerly flow from the dimensions of the cloud band configurations measured from a LANDSAT image. In nearly every case, necessary conditions of a curved wind profile and orientation of the cloud streets within 20 degrees of the direction of the mean wind in the convective layer were met. Verification of the results by direct observation was hampered, however, by the incompatibility of the resolution of conventional rawinsonde observations with the scale of the banded cloud patterns measured from LANDSAT data. Comparison seems to be somewhat better in northerly flows than in southerly flows, with the largest discrepancies in wind speed being within 8m/sec, or a factor of two.

  11. Orbital-science investigation: Part L: selected volcanic features

    USGS Publications Warehouse

    West, Mareta N.

    1972-01-01

    Preliminary examination of Apollo 15 orbital photographs indicates a large number of volcanic features. One area of exceptionally interesting volcanic activity is depicted in figure 25-74. Located approximately at latitude 25° S and longitude 123° E on the lunar far side, this region also is covered by panoramic camera photographs AS15-9954, 9956, 9958, and 9960 and by stereoscopically overlapping frames AS15-9959, 9961, 9963, and 9965.

  12. Microstructural Investigation of Fe-Ni-Mn-Mo-V-C-N Ferritic Steels by Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Beskrovnyi, A. I.; Parshorov, I.; Vassilovskii, S. G.

    2010-01-01

    The design of alloys, that economize strategic element as chromium requires detailed physical investigations of their structure and phase composition. In the search for new materials in the last two decades a new class of Fe alloys was composed—the so-called nitrogen steels. The contemporary achievements in the casting technology—the use of nitrogen under high preasure above the melt—made possible the production of Fe alloys with nitrogen concentration even above 0.4 wt%. The wide application of investigated alloy system is connected with creation of alloys without presence of strong carbides-forming elements. The microstructure and phase formation of these new materials are insufficiently studied. The aim of this work is to characterize the microstructure and phase composition of two series Fe-alloys casted with and without nitrogen pressure above the melt. The so cast steels appear as experimental ones and they are directed to demonstrate the possibility for nitrogen doping of steels without presence of Chromium in them. The latter is technologically difficult to fulfil at usual conditions. Six samples [with lower nitrogen, N = 0.0111 wt%] are cast at normal pressure, and six samples [with higher nitrogen, N0.2121 wt%] are cast at pressure of 10.106 Pa. The results of Rietveld structure analysis of Time-Of-Flight neutron diffraction data show that studied steels consist of purely ferritic crystal phase (Body Centered Cubic crystal lattice).

  13. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE PAGESBeta

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; Buchheit, Thomas E.; Battaile, Corbett C.

    2016-02-27

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  14. Microstructure and frictional properties of sheared calcite speleothems: natural vs. experimental investigation

    NASA Astrophysics Data System (ADS)

    Mitrovic, I.; Tesei, T.; Grasemann, B.; Collettini, C.; Plan, L.; Baron, I.

    2015-12-01

    Several alpine caves in Austria preserve evidences related to active faulting, such as broken and scratched speleothems. Here, in order to better understand fault slip behavior and related potential earthquake hazards, microstructures of experimentally deformed speleothems are presented and compared with naturally deformed ones. Speleothems are monomineralitic rocks precipitated in caves, composed of columnar centimeter-scale calcite crystals with strong growth orientation. In order to better study the origin and evolution of deformation in faulted speleothems we performed sliding experiments using a rock deformation biaxial apparatus. In order to recreate the faulting conditions observed in Austrian caves, speleothems were cut into rectangular blocks and sheared against each other, with long growth axes of calcite perpendicular to the shearing direction. The experiments were performed under room conditions, sliding velocity in the range of 0.001-0.01 mm/s, and constant effective normal stress of 3 MPa. The mechanical data show fairly high friction coefficient (0.7-0.95) accompanied by the production of calcite-rich fault gouge which displays Riedel shears within a foliated cataclasite and drastic grain size reduction (nano-scale). The transition from the fault gouge towards the undeformed crystals is characterized first by a series of in situ jigsaw puzzle fracturing, then dense mechanical twin network, which is decreasing in its intensity away from the gouge (i.e. principal slip surface). The similarity between laboratory induced and naturally formed microstructures reinforce the tectonic interpretation of the damaged speleothems. Detailed microstructure investigations, including electron backscattered diffraction technique combined with electron microprobe and cathodoluminescence, are on the way to help distinguishing between seismic slip and/or aseismic creep.

  15. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts.

    PubMed

    Singh, Atul Kumar; Gajiwala, Astrid Lobo; Rai, Ratan Kumar; Khan, Mohd Parvez; Singh, Chandan; Barbhuyan, Tarun; Vijayalakshmi, S; Chattopadhyay, Naibedya; Sinha, Neeraj; Kumar, Ashutosh; Bellare, Jayesh R

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  16. Features of the microstructure development under conditions, reproducing the process of friction stir welding. Molecular-dynamics study

    SciTech Connect

    Nikonov, Anton Yu. E-mail: dmitr@ispms.tsc.ru; Dmitriev, Andrey I. E-mail: dmitr@ispms.tsc.ru; Kolubaev, Evgeniy A. E-mail: rvy@ispms.tsc.ru; Rubtsov, Valeriy E. E-mail: rvy@ispms.tsc.ru

    2014-11-14

    Friction stir welding is a recently developed technology which is used in various branches of modern engineering. The basis of this technology is the friction of the rotating cylindrical or specially shaped tool between two metal plates brought together either to meet their ends of one above another with the overlap. When applying the FSW process in various economical sectors, the important task is to study the mechanisms and identify the physical laws and factors leading to formation of structural inhomogeneities and discontinuities in the weld seam. This paper analyzes the basic mechanisms behind the structural state generation in the material subjected to severe plastic deformation and heating. To investigate the atomic mechanisms of structural changes in FSW, the modeling at atomic scale has been carried out. Results of work can be a basis for new knowledge about the microstructure evolution in FSW.

  17. An Investigation into the Microstructure of Friction-Stir Welded and Artificially Aged AA2017

    NASA Astrophysics Data System (ADS)

    Mirjalili, A.; Aval, H. Jamshidi; Serajzadeh, S.

    2013-11-01

    Microstructural changes in friction-stir welding (FSW) of artificially aged AA2017 were investigated. First, FSW was performed with rotational and linear speeds of 800 rpm and 40 mm/min, respectively. Then, microstructural studies by means of optical metallography and electron microscopy were conducted in different regions of the welded plates. Hardness testing was also employed to determine local strength and subsequent natural aging progress after welding. The results indicate that the considerable hardness degradation occurs in the thermo-mechanically affected zone owing to coarsening of semi-coherent precipitates. Grain refinement also takes place in the weld nugget as a result of dynamic recrystallization and it results in a fine-grained structure with the mean grain size to 5 μm. On the other hand, the initial precipitate distribution is completely vanished in the weld nugget and instead, spherical-shaped particles are formed. Moreover, natural aging after FSW occurs in the welded sample and leads to considerable increase in the hardness of the weld nugget zone.

  18. Microstructural investigation of hardfacing weld deposit obtained from CrB paste

    SciTech Connect

    Kr. Ray, S.; Sarker, B.; Kr. Bhattacharya, S. )

    1989-05-01

    Hardfacing weld deposits are used as a protective layer on engineering components and tools subjected to different modes of wear. Cheaper iron-based alloys with chromium and carbon or relatively expensive alloys with some niobium or titanium have long been used as standard hardfacing materials. In recent years boron has substituted the costlier alloying elements and the newly developed Fe-B-C alloys have shown encouraging results. The microstructure of the welded hardfacing deposit is one of the most important factors that determine its performance. The amount, size, distribution and hardness of the individual constituents play important roles in imparting the desired properties. Recently Colomonoy sweat on paste containing fine CrB particles (of about 12 {mu}m average size) suspended in an organic binder has been marketed as the new generation hardfacing material. A thin coating of the paste is applied on the component surface, allowed to dry and welded. The welded deposit has been found to offer good wear resistance in many industrial applications. This paper reports the microstructural investigation of the welded deposit obtained from this paste.

  19. Microstructure Evaluation of Fe-BASED Amorphous Alloys Investigated by Doppler Broadening Positron Annihilation Technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao

    2013-07-01

    Microstructure of Fe-based amorphous and nanocrystalline soft magnetic alloy has been investigated by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and Doppler broadening positron annihilation technique (PAT). Doppler broadening measurement reveals that amorphous alloys (Finemet, Type I) which can form a nanocrystalline phase have more defects (free volume) than alloys (Metglas, Type II) which cannot form this microstructure. XRD and TEM characterization indicates that the nanocrystallization of amorphous Finemet alloy occurs at 460°C, where nanocrystallites of α-Fe with an average grain size of a few nanometers are formed in an amorphous matrix. With increasing annealing temperature up to 500°C, the average grain size increases up to around 12 nm. During the annealing of Finemet alloy, it has been demonstrated that positron annihilates in quenched-in defect, crystalline nanophase and amorphous-nanocrystalline interfaces. The change of line shape parameter S with annealing temperature in Finemet alloy is mainly due to the structural relaxation, the pre-nucleation of Cu nucleus and the nanocrystallization of α-Fe(Si) phase during annealing. This study throws new insights into positron behavior in the nanocrystallization of metallic glasses, especially in the presence of single or multiple nanophases embedded in the amorphous matrix.

  20. A Whole-Brain Investigation of White Matter Microstructure in Adolescents with Conduct Disorder

    PubMed Central

    Sarkar, Sagari; Dell’Acqua, Flavio; Froudist Walsh, Seán; Blackwood, Nigel; Scott, Stephen; Craig, Michael C.

    2016-01-01

    Background The biological basis of severe antisocial behaviour in adolescents is poorly understood. We recently reported that adolescents with conduct disorder (CD) have significantly increased fractional anisotropy (FA) of the uncinate fasciculus (a white matter (WM) tract that connects the amygdala to the frontal lobe) compared to their non-CD peers. However, the extent of WM abnormality in other brain regions is currently unclear. Methods We used tract-based spatial statistics to investigate whole brain WM microstructural organisation in 27 adolescent males with CD, and 21 non-CD controls. We also examined relationships between FA and behavioural measures. Groups did not differ significantly in age, ethnicity, or substance use history. Results The CD group, compared to controls, had clusters of significantly greater FA in 7 brain regions corresponding to: 1) the bilateral inferior and superior cerebellar peduncles, corticopontocerebellar tract, posterior limb of internal capsule, and corticospinal tract; 2) right superior longitudinal fasciculus; and 3) left cerebellar WM. Severity of antisocial behavior and callous-unemotional symptoms were significantly correlated with FA in several of these regions across the total sample, but not in the CD or control groups alone. Conclusions Adolescents with CD have significantly greater FA than controls in WM regions corresponding predominantly to the fronto-cerebellar circuit. There is preliminary evidence that variation in WM microstructure may be dimensionally related to behaviour problems in youngsters. These findings are consistent with the hypothesis that antisocial behaviour in some young people is associated with abnormalities in WM ‘connectivity’. PMID:27271503

  1. Investigation of road network features and safety performance.

    PubMed

    Wang, Xuesong; Wu, Xingwei; Abdel-Aty, Mohamed; Tremont, Paul J

    2013-07-01

    The analysis of road network designs can provide useful information to transportation planners as they seek to improve the safety of road networks. The objectives of this study were to compare and define the effective road network indices and to analyze the relationship between road network structure and traffic safety at the level of the Traffic Analysis Zone (TAZ). One problem in comparing different road networks is establishing criteria that can be used to scale networks in terms of their structures. Based on data from Orange and Hillsborough Counties in Florida, road network structural properties within TAZs were scaled using 3 indices: Closeness Centrality, Betweenness Centrality, and Meshedness Coefficient. The Meshedness Coefficient performed best in capturing the structural features of the road network. Bayesian Conditional Autoregressive (CAR) models were developed to assess the safety of various network configurations as measured by total crashes, crashes on state roads, and crashes on local roads. The models' results showed that crash frequencies on local roads were closely related to factors within the TAZs (e.g., zonal network structure, TAZ population), while crash frequencies on state roads were closely related to the road and traffic features of state roads. For the safety effects of different networks, the Grid type was associated with the highest frequency of crashes, followed by the Mixed type, the Loops & Lollipops type, and the Sparse type. This study shows that it is possible to develop a quantitative scale for structural properties of a road network, and to use that scale to calculate the relationships between network structural properties and safety. PMID:23584537

  2. Early Age Characterization and Microstructural Features of Sustainable Binder Systems for Concrete

    NASA Astrophysics Data System (ADS)

    Vance, Kirk

    Concrete is the most widely used infrastructure material worldwide. Production of Portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these binder systems. Two main strategies for enhancing this sustainability are explored in this work: (i) the use of high volume limestone in combination with other alternative cementitious materials to decrease the Portland cement quantity in concrete and (ii) the use of geopolymers as the binder phase in concrete. The first phase of the work investigates the use of fine limestone as cement replacement from the perspective of hydration, strength development, and pore structure. The nature of the potential synergistic benefit of limestone and alumina will be explored. The second phase will focus on the rheological characterization of these materials in the fresh state, as well as a more general investigation of the rheological characterization of suspensions. The results of this work indicate several key ideas. (i) There is a potential synergistic benefit for strength, hydration, and pore structure by using alumina and in Portland limestone cements, (ii) the limestone in these systems is shown to react to some extent, and fine limestone is shown to accelerate hydration, (iii) rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, interparticle forces, surface area of the particles

  3. White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging

    PubMed Central

    Kranz, Georg S.; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F.; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects’ sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. PMID:25392513

  4. Surface microstructural features of scales in relation to toxic stress of Basic Violet-1.

    PubMed

    Kaur, Kirandeep; Kaur, Ramandeep; Kaur, Arvinder

    2016-01-01

    The present work deals with scanning electron microscopic (SEM) studies of the scales of Labeo rohita on exposure to lethal and sublethal doses of Basic Violet-1 (an important textile and hair colorant). The dye induced loosening of the scales and caused breakage and disorganization of lepidonts. Erosion of lepidonts occurred mostly in the fish exposed to 0.20 and 0.40 mg/L dye, during acute exposure and to 0.0225 and 0.045 mg/L dye, during the subchronic exposure. However, lepidonts were sloughed off from their sockets in 0.60 and 0.80 mg/L dye during acute exposure and in 0.09 mg/L dye during the subchronic exposure. Circuli, the base that provides anchorage to the lepidonts, got damaged, and tubercles responsible for coloration of a fish became atrophied with an increase in the duration of exposure. The results of the present investigation clearly indicated that exposure to Basic Violet-1 (BV-1) even at a concentration as low as 0.0225 mg was responsible for deleterious changes in the scale morphology of the test fish after 150 days of exposure. Similar changes were observed in the scales of the dead fish also. It can thus be suggested that this noninvasive technique is very helpful for evaluating the health status of an aquatic body. At the same time, the changes in ultramorphology of scales can act as an early indicator of the stress of very minute doses of dyes and even the scales of a dead fish can act as indicators of the untoward changes that would have occurred in the environment of the fish before death. PMID:26432273

  5. Bayes factor for investigative assessment of selected handwriting features.

    PubMed

    Taroni, F; Marquis, R; Schmittbuhl, M; Biedermann, A; Thiéry, A; Bozza, S

    2014-09-01

    This paper extends previous research on the use of multivariate continuous data in comparative handwriting examinations, notably for gender classification. A database has been constructed by analyzing the contour shape of loop characters of type a and d by means of Fourier analysis, which allows characters to be described in a global way by a set of variables (e.g., Fourier descriptors). Sample handwritings were collected from right- and left-handed female and male writers. The results reported in this paper provide further arguments in support of the view that investigative settings in forensic science represent an area of application for which the Bayesian approach offers a logical framework. In particular, the Bayes factor is computed for settings that focus on inference of gender and handedness of the author of an incriminated handwritten text. An emphasis is placed on comparing the efficiency for investigative purposes of characters a and d. PMID:25117907

  6. [Effect of technological parameters of sputtering on the microstructure of silicon film investigated by Raman analysis].

    PubMed

    Tian, Gui; Zhu, Jia-qi; Han, Jie-cai; Jiang, Chun-zhu; Jia, Ze-chun

    2010-07-01

    In order to facilitate optical polishing of silicon carbide space telescope, in the present paper, silicon film, which has similar coefficient of thermal expansion with silicon carbide, was fabricated on SiC substrate by radio frequency magnetron sputtering. The effect of substrate temperature, radio frequency power, and substrate bias voltage was investigated by Raman scattering. The results indicate that at lower substrate temperature, the crystalline volume fraction of Si films increases with the increase in deposition temperature. Exceeding a certain temperature, the crystalline volume fraction decreases with further increasing deposition temperature; the increase in substrate bias voltage is bad for forming crystalline structure; the effect of radio power on microstructure of silicon film is comparatively complicated. As the rf power increases, the cluster size and crystallite volume fraction decrease, and both of them increase with further increasing the rf power. But when the rf power is too high, the crystallite volume fraction of the silicon film will decrease slightly. PMID:20827972

  7. Microstructure investigations of streak formation in 6063 aluminum extrusions by optical metallographic techniques.

    PubMed

    Vander Voort, George; Suárez-Peña, Beatriz; Asensio-Lozano, Juan

    2013-04-01

    The present study investigates the effect of the solidification strategy for AA 6063 alloy on the surface appearance of anodized extrusions. The microstructure of the samples was analyzed using both light optical microscopy and scanning electron microscopy. Results show that if heavy segregation occurs from rapid solidification, coarse Mg2Si particles form, thus reducing the potential for precipitation strengthening by the finer β-Mg2Si developed in the solid state. Differentially-strained regions formed during hot extrusion induce differences in particle size for magnesium silicide (Mg2Si) precipitates. Anodizing generates surface roughness due to Mg2Si particle dissolution and AlFeSi decohesion, which is related to both particle size and deformation. During anodizing, an oxide layer forms on the surface of the extruded products, which can lead to streak formation, usually a subject of rejection due to unacceptable heterogeneous reflectivity. PMID:23481588

  8. Investigation of microstructure changes in ODS-EUROFER after hydrogen loading

    NASA Astrophysics Data System (ADS)

    Emelyanova, O. V.; Ganchenkova, M. G.; Malitskii, E.; Yagodzinskyy, Y. N.; Klimenkov, M.; Borodin, V. A.; Vladimirov, P. V.; Lindau, R.; Möslang, A.; Hänninen, H.

    2016-01-01

    The effect of hydrogen on the microstructure of mechanically tested ODS-EUROFER steel was investigated by means of transmission electron microscopy, thermal desorption spectroscopy, and atomistic simulations. The presence of yttrium oxide particles notably increases hydrogen uptake in ODS-EUROFER steel as compared to ODS-free EUROFER 97. Under tensile loading, hydrogen accumulation promotes the loss of cohesion at the oxide particle interfaces. First-principles molecular dynamics simulations indicate that hydrogen can be trapped at nanoparticle/matrix interface, creating OH-groups. The accumulation of hydrogen atoms at the oxide particle surface can be the reason for the observed hydrogen-induced oxide/matrix interface weakening and de-cohesion under the action of external tensile stress.

  9. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  10. Microstructural and magnetic investigations of pseudotachylyte and ultracataclasite in the Hoping River, Tananao Complex, Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, Ruo-Lin; Chou, Yu-Min; Ferré, Eric. C.; Yeh, En-Chao; Chu, Hao-Tsu; Hu, Jyr-Ching

    2016-04-01

    Here we investigate seismic rupture processes through the microstructural and magnetic study of pseudotachylyte and ultracataclasite from the Hoping River area. Unlike other fault rocks, pseudotachylytes form through friction-related melting during an earthquake. Therefore, these rocks, regarded as earthquake fossils potentially hold valuable information on seismic deformation. Paradoxically, although Taiwan is a seismically active zone, reports of pseudotachylyte outcrops in Taiwan remain rare. Previous studies reported the first pseudotachylyte outcrop in the Hoping River from which the magnitude, direction and sense of seismic slip were subsequently determined. In this study, we apply new microstructural and magnetic approaches to investigate the pseudotachylyte veins. X- ray fluorescence (XRF) geochemical analyses show that the pseudotachylyte melt, formed by incongruent melting, is depleted in SiO2, Al2O3, Na2O and enriched in Fe2O3, K2O compared with the ultracataclasite and host rock. This observation suggests selective melting of biotite. Scanning electron microscopy (SEM) and transmission X-ray microscopy (TXM) supports the melt origin of the pseudotachylyte although melting occurred only in small spots, manifested by a few microcrystalline aggregates, with low melt percentage (≈10%). Small iron-oxide grains are discovered under TXM, which may be formed by the breakdown of biotite in the host rock during melting. The presence of iron oxide grains appears restricted to the pseudotachylyte. Since the iron content of the pseudotachylyte is slightly higher (4 wt. %) than the ultracataclasite and granitic host rock, magnetic hysteresis measurements were performed under high field (up to 1 Tesla) using a vibrating sample magnetometer (VSM) to determine the nature of ferromagnetic minerals. Magnetic hysteresis curves show the pseudotachylyte veins of the Hoping River are dominated by paramagnetic phases, with a very weak saturation isothermal remanent

  11. Microstructural investigation of MX-80 bentonite and Na/Ca-montmorillonite using basal spacing determination

    NASA Astrophysics Data System (ADS)

    Holmboe, M.; Wold, S.

    2010-12-01

    interlayer swelling as water uptake restricted by volume. Hence saturating clay samples under free swelling conditions vs. RH% may not be representative for describing water uptake and swelling of the bentonite barrier in a deep geological repository. The interlayer porosity dominated the total porosity for all samples investigated. In general, the interparticle, or so-called free porosity, decreases with decreasing water content and was found to be lower than commonly reported in the literature. For the clay buffer dry density planned to be used in the Swedish KBS-3 concept (1.6 g/cm3), the average basal spacing for compacted MX-80 bentonite is approx. 17.3±1 Å compared to the theoretical maximum of 17.8 Å. This means the microstructure is dominated by 2 and 3 H2O layers and the free porosity is approx. < 3%. In order to verify these results, accurate data from neutron or X-ray small-angle scattering and diffraction experiments in transmission mode using pressure cells is needed, as well as more precise layer structure functions at high water contents. [1] Holmboe, M., Wold, S. 2010. To be submitted. [2] Moore & Reynolds, 1997, 2ed. [3] Ferrage et al, 2005, Chem. Mater. 17, 3499-3512.

  12. Investigating the performance of catalyst layer micro-structures with different platinum loadings

    SciTech Connect

    Khakaz-Baboli, Moben; Harvey, David; Pharoah, Jon

    2012-07-01

    In this study a four-phase micro-structure of a PEFC catalyst layer was reconstructed by randomly placing overlapping spheres for each solid catalyst phase. The micro-structure was mirrored to make a micro-structure. A body-fit computational mesh was produced for the reconstructed micro-structure in OpenFOAM. Associated conservation equations were solved within all the phases with electrochemical reaction as the boundary condition at the interface between ionomer and platinum phases. The study is focused on the platinum loading of CL. The polarization curves of the micro-structure performance have been compared for different platinum loadings. This paper gives increased insight into the relatively greater losses at decreased platinum loadings.

  13. Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo

    Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  14. Investigation of the effect of microstructure on the R-Curve behavior of metal-ceramic composites

    SciTech Connect

    Ellerby, D.T.; Flinn, B.D.; Scott, W.D.; Bordia, R.K.; Ewsuk, K.G.; Loehman, R.E.; Fahrenholtz, W.G.

    1995-07-01

    An investigation was made into the effect of microstructure on the peak toughness and shape of the crack growth resistance curves for two ceramic-metal composites. An Al{sup 2}O{sup 3}/Al composite formed by Reactive Metal Penetration was used along with an AlN/Al composite formed using a reactive infiltration technique. The results indicate that the toughness increases with an increase in the volume fraction of the metal phase for a particular composite composition, and the peak toughness and shape of the R-Curve also depend on the composite microstructure and metal composition.

  15. Investigation of correlation between the microstructure and electrical properties of sol-gel derived ZnO based thin films

    NASA Astrophysics Data System (ADS)

    Zhu, M. W.; Gong, J.; Sun, C.; Xia, J. H.; Jiang, X.

    2008-10-01

    Pure ZnO and aluminum doped ZnO films (ZAO) were prepared by sol-gel method and the effect of Al doping on the microstructure and electrical properties of the films was investigated. The results showed that the transformation from granular to columnar structure could be observed in pure ZnO films with the increase in heating time while in aluminum doped films little structural changes occurred even after a prolonged heating time. Additionally, measurements of electrical properties showed that both microstructural evolution and doping could significantly improve the conductivity of the films, which could be assigned to an increase both in Hall mobility and carrier concentration. The relationship between microstructure and the electrical properties of the films was discussed, and various scattering mechanisms were proposed for sol-gel derived ZnO and ZAO films as a function of the carrier concentration.

  16. Investigation of biological microstructures by using diffraction-enhanced imaging computed tomography

    NASA Astrophysics Data System (ADS)

    Shu, Hang; Liu, Bo; Zhu, Peiping; Gao, Xin; Yin, Hongxia; Yuan, Qingxi; Wang, Junyue; Huang, Wanxia; Gao, Xiulai; Luo, Shuqian; Wu, Ziyu; Fang, Shouxian

    2006-11-01

    Diffraction-enhanced imaging computer tomography (DEI-CT) is a new method to provide the object's inner information. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here, we provide further evidence for the improved overall image quality and for the option to distinguish the inner microstructures of the guinea pig's cochlea. Data has shown the details of the cochlea's inner microstructure such as vestibular membrane which only have 6 μm. A better knowledge of these microstructures may be relevant to achieve progress in the otology of clinical anatomization.

  17. THEORETICAL INVESTIGATION OF MICROSTRUCTURE EVOLUTION AND DEFORMATION OF ZIRCONIUM UNDER CASCADE DAMAGE CONDITIONS

    SciTech Connect

    Barashev, Alexander V; Golubov, Stanislav I; Stoller, Roger E

    2012-06-01

    This work is based on our reaction-diffusion model of radiation growth of Zr-based materials proposed recently in [1]. In [1], the equations for the strain rates in unloaded pure crystal under cascade damage conditions of, e.g., neutron or heavy-ion irradiation were derived as functions of dislocation densities, which include contributions from dislocation loops, and spatial distribution of their Burgers vectors. The model takes into account the intra-cascade clustering of self-interstitial atoms and their one-dimensional diffusion; explains the growth stages, including the break-away growth of pre-annealed samples; and accounts for some striking observations, such as of negative strain in prismatic direction, and co-existence of vacancy- and interstitial-type prismatic loops. In this report, the change of dislocation densities due to accumulation of sessile dislocation loops is taken into account explicitly to investigate the dose dependence of radiation growth. The dose dependence of climb rates of dislocations is calculated, which is important for the climb-induced glide model of radiation creep. The results of fitting the model to available experimental data and some numerical calculations of the strain behavior of Zr for different initial dislocation structures are presented and discussed. The computer code RIMD-ZR.V1 (Radiation Induced Microstructure and Deformation of Zr) developed is described and attached to this report.

  18. Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces

    PubMed Central

    Younis, Mohammad I; Miles, Ronald; Jordy, Daniel

    2009-01-01

    There is strong experimental evidence for the existence of strange modes of failure of microelectromechanical systems (MEMS) devices under mechanical shock and impact. Such failures have not been explained with conventional models of MEMS. These failures are characterized by overlaps between moving microstructures and stationary electrodes, which cause electrical shorts. This work presents modeling and simulation of MEMS devices under the combination of shock loads and electrostatic actuation, which sheds light on the influence of these forces on the pull-in instability. Our results indicate that the reported strange failures can be attributed to early dynamic pull-in instability. The results show that the combination of a shock load and an electrostatic actuation makes the instability threshold much lower than the threshold predicted, considering the effect of shock alone or electrostatic actuation alone. In this work, a single-degree-of-freedom model is utilized to investigate the effect of the shock–electrostatic interaction on the response of MEMS devices. Then, a reduced-order model is used to demonstrate the effect of this interaction on MEMS devices employing cantilever and clamped–clamped microbeams. The results of the reduced-order model are verified by comparing with finite-element predictions. It is shown that the shock–electrostatic interaction can be used to design smart MEMS switches triggered at a predetermined level of shock and acceleration. PMID:21720492

  19. Automated detection and characterization of microstructural features: application to eutectic particles in single crystal Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Groeber, M. A.; Fahringer, R.; Simmons, J. P.; Rosenberger, A. H.; Woodward, C.

    2010-03-01

    Serial sectioning methods continue to produce an abundant amount of image data for quantifying the three-dimensional nature of material microstructures. Here, we discuss a methodology to automate detecting and characterizing eutectic particles taken from serial images of a production turbine blade made of a heat-treated single crystal Ni-based superalloy (PWA 1484). This method includes two important steps for unassisted eutectic particle characterization: automatically identifying a seed point within each particle and segmenting the particle using a region growing algorithm with an automated stop point. Once detected, the segmented eutectic particles are used to calculate microstructural statistics for characterizing and reconstructing statistically representative synthetic microstructures for single crystal Ni-based superalloys. The significance of this work is its ability to automate characterization for analysing the 3D nature of eutectic particles.

  20. Influence of Aging Treatments on Alterations of Microstructural Features and Stress Corrosion Cracking Behavior of an Al-Zn-Mg Alloy

    NASA Astrophysics Data System (ADS)

    Rout, Prasanta Kumar; Ghosh, M. M.; Ghosh, K. S.

    2015-07-01

    7xxx series Al-Zn-Mg-(Cu) alloys have higher strength in their peak-aged (T6) states compared with other age-hardenable aluminum alloys; however, the maximum strength peak-aged state is more susceptible to stress corrosion cracking (SCC) which leads to catastrophic failure. The over-aged (T7) temper with 10-15% lower strength has higher resistance to SCC requiring oversized structural aerospace component applications. The medium-strength AA7017 Al-Zn-Mg weldable alloy without Cu is also prone to SCC under certain environmental conditions. In the present investigation, the SCC behaviors of an AA7017 Al-Zn-Mg alloys of different tempers have been assessed. Specific aging schedules have been adapted to an AA7017 alloy to produce various tempers, e.g., under-, peak-(T6), over-(T7), and highly over-aged tempers. Artificial aging behavior of the AA7017 alloy has been characterized by hardness, electrical conductivity measurements, x-ray diffraction, differential scanning calorimetry, and electrochemical studies. Slow strain rate test technique was used to assess the SCC behaviors of the AA7017 alloys of under-, T6, T7, and highly over-aged tempers in 3.5 wt.% NaCl solution at free corrosion potential (FCP) and at applied anodic potential, as well. Results revealed that the AA7017 alloy tempers are not susceptible to SCC in 3.5 wt.% NaCl solution at FCP, but severely damaging to SCC at applied anodic potentials. Microstructural features, showing a non-recrystallized grain structure and the presence of discrete, widely spaced, not-interconnected η precipitates at the grain boundaries, are the contributive factors by virtue of which the alloy tempers at FCP did not exhibit SCC. However, the applied anodic potential resulted in rapid metal dissolution from the grain boundary region and led to SCC. The local anodic dissolution (LAD) is believed to be the associated SCC mechanism.

  1. An investigation on the crack growth resistance of human tooth enamel: Anisotropy, microstructure and toughening

    NASA Astrophysics Data System (ADS)

    Yahyazadehfar, Mobin

    The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. The primary objective of this dissertation is to characterize the role of enamel's microstructure and degree of decussation on the fracture behavior of human enamel. The importance of the protein content and aging on the fracture toughness of enamel were also explored. Incremental crack growth in sections of human enamel was achieved using a special inset Compact Tension (CT) specimen configuration. Crack extension was achieved in two orthogonal directions, i.e. longitudinal and transverse to the prism axes. Fracture surfaces and the path of crack growth path were evaluated using scanning electron microscopy (SEM) to understand the fundamental mechanisms of crack growth extension. Furthermore, a hybrid approach was adopted to quantify the contribution of toughening mechanisms to the overall toughness. Results of this investigations showed that human enamel exhibits rising R-curve for both directions of crack extension. Cracks extending transverse to the rods in the outer enamel achieved lower rise in toughness with crack extension, and significantly lower toughness (1.23 +/- 0.20 MPa·m 0.5) than in the inner enamel (1.96 +/- 0.28 MPa· 0.5) and in the longitudinal direction (2.01 +/- 0.21 MPa· 0.5). The crack growth resistance exhibited both anisotropy and inhomogeneity, which arise from the complex hierarchical microstructure and the decussated prism structure. Decussation causes deflection of cracks extending from the enamel surface inwards, and facilitates a continuation of transverse crack extension within the outer enamel. This process dissipates fracture energy and averts cracks from extending toward the dentin and vital pulp. This study is the first to investigate the importance of proteins and the effect of

  2. In situ TEM investigation of microstructural behavior of superplastic Al–Mg–Sc alloy

    SciTech Connect

    Dám, Karel; Lejček, Pavel; Michalcová, Alena

    2013-02-15

    Dynamic changes in microstructure of the superplastic ultrafine-grained Al–3Mg–0.2Sc (wt.%) alloy refined by equal-channel angular pressing (ECAP). were observed by in situ transmission electron microscopy at temperatures up to 300 °C (annealing and tensile deformation) in order to simulate the initial stages of superplastic testing. It was found that the microstructure changes significantly during the preheating before the superplastic deformation, which was accompanied by decreased microhardness. During the deformation at 300 °C, high dislocation activity as well as motion of low-angle grain boundaries was observed while high-angle grain boundaries did not move due to the presence of scandium in the alloy. - Highlights: ► We performed in situ TEM annealing and straining on superplastic Al–Mg–Sc alloy. ► We simulated the conditions of early stages of superplastic testing. ► Significant changes in microstructure occur during preheating before deformation.

  3. Effects of changes in rock microstructures on permeability: 3-D printing investigation

    NASA Astrophysics Data System (ADS)

    Head, D.; Vanorio, T.

    2016-07-01

    Rocks are naturally heterogeneous; two rock samples with identical bulk properties can vary widely in microstructure. Understanding how the microstructure and bulk properties of rocks then evolve during experiments and computations simulating diagenesis is inherently a multiscale problem. The advent of modern 3-D printing has provided an unprecedented opportunity to link those scales by combining the strengths of digital and experimental rock physics. In this study, we take a computerized tomography-scanned model of a natural carbonate pore space then iteratively digitally manipulate, 3-D print, and measure the flow properties in the laboratory. This approach allows us to access multiple scales digitally and experimentally and test hypotheses about how changes in rock microstructure due to compaction and dissolution affect bulk transport properties in a repeatable manner.

  4. The Use of Linear Feature Detection to Investigate Thematic Mapper Data Performance and Processing

    NASA Technical Reports Server (NTRS)

    Gurney, C. M.

    1984-01-01

    Geometric and radiometric characteristics of Thematic Mapper data are investigated through analysis of linear features in the data. A linear feature is defined as two close, parallel and opposite edges. Examples in remotely sensed data are such features as rivers and roads. The geometric and radiometric precision TM data is sufficient to allow accurate measurement of linear feature widths. Results also confirm a 28.5m ground IFOV as specified prior to launch. The increase dimensionality of the TM data as compared with MSS data allows the possibility of independent verification of results by using data from several bands.

  5. Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.

    2015-11-01

    We present the result of the experiments on producing graphite-like cylindrical microstructures by focusing single femtosecond laser pulses into the bulk of a transparent polymer (polycarbonate). The microstructures are embedded in a cladding with a modified refractive index, possessing waveguide properties. In the experiments with nontransparent screens and diaphragms, placed in the laser beam in front of the entrance pupil of the objective with a large numerical aperture, we have found that the paraxial rays are blocked by the peripheral ones, which reduces the length of the destruction region in the pre-focal zone. In the experiments with transparent screens and diaphragms, introducing optical delays τd between the paraxial and peripheral rays, the quantitative dependence of the destruction region length in the pre-focal zone on the value of τd is determined.

  6. Biomechanical aspects of bone microstructure in vertebrates: potential approach to palaeontological investigations.

    PubMed

    Mishra, S

    2009-11-01

    Biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of the bone's building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa. PMID:20009272

  7. Relationships between microstructure and microfissuring in alloy 718

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.

    1985-01-01

    Microfissures which occur in the weld heat affected zone of alloy 718 can be a limiting factor in the material's weldability. Several studies have attempted to relate microfissuring susceptibility to processing conditions, microstructure, and/or heat-to-heat chemistry differences. The present investigation studies the relationships between microstructure and microfissuring by isolating a particular microstructural feature and measuring microfissuring as a function of that feature. Results to date include the identification of a microstructure-microfissure sequence, microfissuring susceptibility as a function of grain size, and microfissuring susceptibility as a function of solution annealing time.

  8. Investigation on microstructure characterization and property of rapidly solidified Mg-Zn-Ca-Ce-La alloys

    SciTech Connect

    Zhou Tao; Chen Zhenhua; Yang Mingbo; Hu Jianjun; Xia Hua

    2012-01-15

    Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial to the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.

  9. Investigation of the microstructure and properties of doped nanocomposite coatings based on titanium nitride

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. V.; Korotaev, A. D.; Moshkov, V. Yu.; Borisov, D. P.

    2012-02-01

    The special features of the elemental composition, structure-phase and elastically stressed states, and properties of coatings based on titanium nitride are investigated for different concentrations of Al, Si, Cu, Ni, Cr, and C doping elements using x-ray fluorescent analysis, x-ray microanalysis, dark-field electronmicroscopic analysis of the crystal lattice bending and torsion, microhardness measurements, and scratch tests. Influence of the structure and concentration of the doping elements on the relative fraction of nonmetallic atoms, crystal size, and phase composition of the coating is established. High values (several hundred degrees per micron) of the lattice bending-torsion with dipole configuration are established for nanocrystals with sizes smaller than 20 nm. Residual stresses in nanocrystals are estimated for the disclination model of the structural state. It is demonstrated that the increased degree of coating doping improves the thermal stability of their structure and properties.

  10. Micro-chemical and micro-structural investigation of archaeological bronze weapons from the Ayanis fortress (lake Van, Eastern Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Faraldi, F.; Çilingirǒglu, A.; Angelini, E.; Riccucci, C.; De Caro, T.; Batmaz, A.; Mezzi, A.; Caschera, D.; Cortese, B.

    2013-12-01

    Bronze weapons (VII cen BC) found during the archaeological excavation of the Ayanis fortress (lake Van, eastern Anatolia, Turkey) are investigated in order to determine their chemical composition and metallurgical features as well as to identify the micro-chemical and micro-structural nature of the corrosion products grown during long-term burial. Small fragments were sampled from the artefacts and analysed by means of the combined use of optical microscopy (OM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results show that the bronze artefacts have been manufactured by using alloys with a controlled and refined chemical composition demonstrating the high level metallurgical competence and skill of the Urartian craftsmen and artists. Furthermore, the micro-structural and metallurgical investigations evidence the presence of equiaxed grains in the matrix, indicating that the artefact were produced by repeated cycles of mechanical shaping and thermal annealing treatments to restore the alloy ductility. From the degradation point of view, the results show the structures and the chemical composition of the stratified corrosion layers (i.e. the patina) where the copper or tin depletion phenomenon is commonly observed with the surface enrichment of some elements coming from the burial soil, mainly Cl, which is related to the high concentration of chlorides in the Ayanis soil. The results reveal also that another source of degradation is the inter-granular corrosion phenomenon likely increased by the metallurgical features of the alloys caused by the high temperature manufacturing process that induces crystallisation and segregation phenomena along the grain boundaries.

  11. The use of linear feature detection to investigate thematic mapper data performance and processing

    NASA Technical Reports Server (NTRS)

    Gurney, C. M.

    1983-01-01

    The geometric and radiometric characteristics of thematic mapper data through analysis of linear features in the data are investigated. The particular aspects considered are: (1) thematic mapper ground IFOV; (2) radiometric contrast between linear features and background; (3) precision of system geometric correction; (4) band-to-band registration; and (5) potential utility of TM data for linear feature detection especially as compared to MSS data. It is shown that TM data may be used to estimate TM pixel size and to illustrate band-band mis-registration. Further, the geometry and radiometry of the data are sufficiently precise to allow accurate estimation of the widths of linear features. In optimum conditions features one quarter of a pixel in width may be accurately measured. These results have considerable potential for applications for hydrological and topographic mapping.

  12. Investigation of Microstructural Uniformity During Isothermal Forging of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Mirahmadi, S. Javid; Hamedi, Mohsen; Habibi Parsa, Mohammad

    2014-09-01

    The effect of strain on microstructural changes and the primary alpha (αP) volume fraction as well as the workability of Ti-6Al-4V are studied by isothermal compression of wedge-shaped specimens at the initial temperatures of 850, 900, and 950 °C and platen velocities of 2.5, 25, and 250 mm/min in combination with finite element method. The results show that higher platen velocity leads to a lesser αP volume fraction at all of the temperatures. Higher temperature reduces the αP volume fraction, but increases the impact of strain and platen velocity on the microstructure through the specimen. A more uniform distribution of the primary alpha volume fraction can be achieved by decreasing the initial temperature and/or platen velocity. All of the specimens were free from any defects and can withstand a compression with the normalized Cockcroft-Latham damage value of 0.61.

  13. Investigation of Microstructural Uniformity During Isothermal Forging of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Mirahmadi, S. Javid; Hamedi, Mohsen; Habibi Parsa, Mohammad

    2014-12-01

    The effect of strain on microstructural changes and the primary alpha (αP) volume fraction as well as the workability of Ti-6Al-4V are studied by isothermal compression of wedge-shaped specimens at the initial temperatures of 850, 900, and 950 °C and platen velocities of 2.5, 25, and 250 mm/min in combination with finite element method. The results show that higher platen velocity leads to a lesser αP volume fraction at all of the temperatures. Higher temperature reduces the αP volume fraction, but increases the impact of strain and platen velocity on the microstructure through the specimen. A more uniform distribution of the primary alpha volume fraction can be achieved by decreasing the initial temperature and/or platen velocity. All of the specimens were free from any defects and can withstand a compression with the normalized Cockcroft-Latham damage value of 0.61.

  14. The Use of Linear Feature Detection to Investigate Thematic Mapper Data Performance and Processing

    NASA Technical Reports Server (NTRS)

    Gurney, C. M.

    1985-01-01

    The geometric and radiometric characteristics of thematic mapper data through analysis of linear features in the data are investigated. The particular aspects considered are: (1) thematic mapper ground IFUV; (2) radiometric contrast between linear features and background; (3) precision of system geometric correction; (4) band-to-band registration; and (5) potential utility of TM data for linear feature detection especially as compared to MSS data. It is shown that TM data may be used to estimate TM pixel size illustrate band: band mis-registration.

  15. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  16. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.

    PubMed

    Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L

    2016-06-01

    White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD. PMID:27021440

  17. Investigation of Microstructure and Mechanical Properties of ECAP-Processed AM Series Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Gopi, K. R.; Nayaka, H. Shivananda; Sahu, Sandeep

    2016-07-01

    Magnesium alloy Mg-Al-Mn (AM70) was processed by equal channel angular pressing (ECAP) at 275 °C for up to 4 passes in order to produce ultrafine-grained microstructure and improve its mechanical properties. ECAP-processed samples were characterized for microstructural analysis using optical microscopy, scanning electron microscopy, and transmission electron microscopy. Microstructural analysis showed that, with an increase in the number of ECAP passes, grains refined and grain size reduced from an average of 45 to 1 µm. Electron backscatter diffraction analysis showed the transition from low angle grain boundaries to high angle grain boundaries in ECAP 4 pass sample as compared to as-cast sample. The strength and hardness values an showed increasing trend for the initial 2 passes of ECAP processing and then started decreasing with further increase in the number of ECAP passes, even though the grain size continued to decrease in all the successive ECAP passes. However, the strength and hardness values still remained quite high when compared to the initial condition. This behavior was found to be correlated with texture modification in the material as a result of ECAP processing.

  18. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE PAGESBeta

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-07-08

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  19. Investigation of the effects of cooling rate on the microstructure of investment cast biomedical grade Co alloys

    NASA Astrophysics Data System (ADS)

    Kaiser, R.; Browne, D. J.; Williamson, K.

    2012-01-01

    The objective of this work is to determine the microstructural characteristics of investment cast cobalt alloy as the cross-sectional area is varied, thus changing the local effective cooling rates and solidification times. The extent of published work on the as-cast properties of cobalt alloys is minimal. The primary aim of this work is therefore to extend knowledge of the behaviour of such alloys as they solidify, which will influence the design of new products as well as the industrial optimisation of the casting process. Wedge-shaped parts were cast from a biomedical grade cobalt alloy employing the method of lost wax investment casting. Analytical techniques such as optical microscopy, image analysis and microhardness testing were used to characterise the as-cast parts. Parameters studied include variations in grain structure, nature of the columnar and equiaxed zones and the spread of porosity (both shrinkage and gas). Changes in microstructure were compared to microhardness values obtained. The solidification profile of the alloy through the prototype cast component was investigated based on measurement of the dendrite arm spacings. A discussion on the physical phenomena controlling the microstructural variations is presented.

  20. An Investigation on Microstructure and Mechanical Properties of Nd:YAG Laser Beam Weld of Copper Beryllium Alloy

    NASA Astrophysics Data System (ADS)

    Akbari Mousavi, S. A. A.; Niknejad, S. T.

    2009-06-01

    Nd:YAG pulsed laser beam welding is conducted on UNS-C17200 copper beryllium sheet. Welding is carried out in the as-annealed and as-aged conditions to investigate the effects of preweld condition on weld microstructure and mechanical properties. Two different heat treatments including direct age treating and solution annealing + subsequent age treating are considered after welding. The mechanical and microstructural characteristics of weld metal regions (WMs) and heat-affected zones (HAZ) of four different samples are considered using tensile tests, hardness measurements, optical microscopy, electron microscopy, and X-ray diffraction (XRD). Results indicate that the microstructural and mechanical properties of the HAZ without postweld treatment are adversely affected by grain boundary liquation observed if welding is carried out in the as-aged condition. Tensile strength and hardness of the WM are improved after a postweld artificial age treatment at 315 °C for 3 hours. However, hardness of the WM is lower than that of the base metal (BM) and HAZ, because the precipitation mechanism in the fusion zone is not as effective as that is in the HAZ and BM. The CuBe secondary phase precipitates during solidification. The precipitates/matrix interface is incoherent, which does not significantly raise the hardness of the weld metal. Incoherent interdendritic precipitates are dissolved in the weld structure after postweld solution annealing. Having performed postweld solution treatment and aging, full strength and hardness throughout the copper beryllium material were observed.

  1. On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Lambrecht, M.; Meslin, E.; Malerba, L.; Hernández-Mayoral, M.; Bergner, F.; Pareige, P.; Radiguet, B.; Almazouzi, A.

    2010-11-01

    A correlation is attempted between microstructural observations by various complementary techniques, which have been implemented within the PERFECT project and the hardening measured by tensile tests of reactor pressure vessel steel and model alloys after irradiation to a dose of ˜7 × 10 19 n cm -2. This is done, using the simple hardening model embodied by the Orowan equation and applying the most suitable superposition law, as suggested by a parametric study using the DUPAIR line tension code. It is found that loops are very strong obstacles to dislocation motion, but due to their low concentration, they only play a minor role in the hardening itself. For the precipitates, the contrary is found, although they are quite soft (due to their very small sizes and their coherent nature), they still play the dominant role in the hardening. Vacancy clusters are important for the formation of both loops and precipitates, but they will play almost no role in the hardening by themselves.

  2. EBSD investigation of the microstructure and texture characteristics of hot deformed duplex stainless steel.

    PubMed

    Cizek, P; Wynne, B P; Rainforth, W M

    2006-05-01

    The microstructure and crystallographic texture characteristics were studied in a 22Cr-6Ni-3Mo duplex stainless steel subjected to plastic deformation in torsion at a temperature of 1000 degrees C using a strain rate of 1 s(-1). High-resolution EBSD was successfully used for precise phase and substructural characterization of this steel. The austenite/ferrite ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over large sample areas. The deformation mechanisms in each phase and the interrelationship between the two are discussed. PMID:16774517

  3. Investigations on Microstructures and Toughness of Fe-B Cast Alloy Containing Titanium and Nitrogen

    NASA Astrophysics Data System (ADS)

    Yi, Dawei; Zhang, Zhiyun; Fu, Hanguang; Yang, Chengyan

    2013-11-01

    The effects of titanium and nitrogen elements on the microstructure and impact toughness of the Fe-B alloy have been studied. The results show that the borides are refined after the additions of titanium and nitrogen elements. With the additions of titanium and nitrogen, titanium nitrides are formed in the Fe-B alloy. Titanium nitride can act as effective heterogeneous nuclei of primary austenite, and promote the refinement of austenite and boride. After heat treatment, the impact toughness of Fe-B alloys modified by titanium and nitrogen elements is higher than that of ordinary alloy.

  4. Microstructural Investigation of a Wark-Lovering Rim on a Vigarano CAI

    NASA Technical Reports Server (NTRS)

    Han, J.; Keller, L. P.; Needham, A. W.; Messenger, S.; Simon, J. I.

    2015-01-01

    Wark-Lovering (WL) rims are thin multi-layered mineral sequences that surround many CAIs. These rim layers consist of the primary minerals found in the CAI interiors, but vary in their mineralogy. Several models for their origin have been proposed including condensation, reaction with a nebular gas, evaporation, or combinations of these. However, there still is little consensus on how and when the rims formed. Here, we describe the microstructure and mineralogy of a WL rim on a type B CAI from the Vigarano CV(sub red) chondrite using FIB/TEM to better understand the astrophysical significance of WL rim formation.

  5. An Investigation of Some Features of the Psychosocial Learning Environment in Some Nigerian Secondary Schools.

    ERIC Educational Resources Information Center

    Akindehin, Folajimi

    1993-01-01

    Investigated features of the classroom- and school-level psychological learning environments in some secondary schools in Ondo State, Nigeria. It was found that age of a school has no effect on classroom- and school-level psychosocial learning environments. The presumed superiority of old schools over new schools in the provision of favorable…

  6. Investigation of microemulsion microstructure and its impact on skin delivery of flufenamic acid.

    PubMed

    Mahrhauser, Denise-Silvia; Kählig, Hanspeter; Partyka-Jankowska, Ewa; Peterlik, Herwig; Binder, Lisa; Kwizda, Kristina; Valenta, Claudia

    2015-07-25

    Microemulsions are well known penetration enhancing delivery systems. Several properties are described that influence the transdermal delivery of active components. Therefore, this study aimed to characterize fluorosurfactant-based microemulsions and to assess the impact of formulation variables on the transdermal delivery of incorporated flufenamic acid. The microemulsion systems prepared in this study consisted of bistilled water, oleic acid, isopropanol as co-solvent, flufenamic acid as active ingredient and either Hexafor(TM)670 (Hex) or Chemguard S-550-100 (Sin) as fluorosurfactant. Characterization was performed by a combination of techniques including electrical conductivity measurements, small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) self-diffusion experiments. In vitro skin permeation experiments were performed with each prepared microemulsion using Franz type diffusion cells to correlate their present microstructure with their drug delivery to skin. Electrical conductivity increased with added water content. Consequently, the absence of a conductivity maximum as well as the NMR and SAXS data rather suggest O/W type microemulsions with spherical or rod-like microstructures. Skin permeation data revealed enhanced diffusion for Hex- and Sin-microemulsions if the shape of the structures was rather elongated than spherical implying that the shape of droplets had an essential impact on the skin permeation of flufenamic acid. PMID:26022888

  7. Investigation into Microstructures of Maraging Steel 250 Weldments and Effect of Post-Weld Heat Treatments

    NASA Astrophysics Data System (ADS)

    Tariq, Fawad; Baloch, Rasheed Ahmed; Ahmed, Bilal; Naz, Nausheen

    2010-03-01

    This study was undertaken to gain a better understanding of microstructures obtained by multipass gas tungsten arc welding in maraging steel grade 250. Metallography and microhardness measurements were carried out on sheet and welded joints in as-welded and post-weld aged conditions. It was found that there was a significant amount of reverted austenite formed on cell boundaries of weld metal after aging at 758-823 K for 3-5 h, and was stable at room temperature. Aging at higher temperatures led to an increase in the continuous network of patchy austenite along the cell boundaries. The reason for the above, in our opinion, is the concentrational heterogeneity which characterizes the microstructure of maraging steel welds. No reverted austenite was observed in as-welded specimens. Solution annealing at 1093 K for 1 h did not completely eliminate the chemical heterogeneity associated with weld structures. However, homogenizing at 1373 K produced homogenous structure that on subsequent aging produces austenite-free lath martensitic structure.

  8. Investigation on the evolution of microstructure and texture of electroplated Ni-Ti composite coating by Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhao, Yuantao; Cai, Fei; Wang, Chengxi; Chai, Ze; Zhu, Kaiyuan; Xu, Zhou; Jiang, Chuanhai

    2015-10-01

    Rietveld refinement was utilized to investigate the evolution of microstructure and texture of the Ni-Ti composite coatings electroplated at different applied current densities. Scanning Electron Microscope and Energy Dispersive Spectroscopy were utilized to investigate the morphology and chemical composition of the coatings. Relative texture coefficients (RTC) and measured pole figures were utilized to investigate the texture evolution of the coatings. The results showed that the surface morphology of the coatings changed from a colonial structure to a polyhedral one. And the incorporated Ti content decreased with increasing applied current density. As the applied current density increased, the crystallite sizes increased and their distribution got less uniform, and the microstrain and dislocation density decreased. The results of simulated pole figures obtained from Rietveld refinement illustrated that the texture of the coatings changed from no obvious texture to a strong [2 0 0] fiber texture with increasing applied current density. The texture evolution obtained from simulated pole figures was confirmed by the result of RTC and the measured pole figures. The evolutions of the microstructure and texture were derived from the change of the applied current density and incorporated Ti content in the Ni-Ti composite coatings.

  9. Learning through Feature Prediction: An Initial Investigation into Teaching Categories to Children with Autism through Predicting Missing Features

    ERIC Educational Resources Information Center

    Sweller, Naomi

    2015-01-01

    Individuals with autism have difficulty generalising information from one situation to another, a process that requires the learning of categories and concepts. Category information may be learned through: (1) classifying items into categories, or (2) predicting missing features of category items. Predicting missing features has to this point been…

  10. Microstructural investigation of as-cast uranium rich U-Zr alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yuting; Wang, Xin; Zeng, Gang; Wang, Hui; Jia, Jianping; Sheng, Liusi; Zhang, Pengcheng

    2016-04-01

    The present study evaluates the microstructure in as-cast uranium rich U-Zr alloys, an important subsystem of U-Pu-Zr ternary metallic nuclear reactor fuel, as a function of the Zr content, from 2wt.% to 15wt.%Zr. It has been previously suggested that the unique intermetallic compound δ phase in U-Zr alloys is only present in as-cast U-Zr alloys with a Zr content exceeding 10wt.%Zr. However, our analysis of transmission electron microscopy (TEM) data shows that the δ phase is common to all as-cast alloys studied in this work. Furthermore, specific coherent orientation relationship is found between the α and δ phases, consistent with previous findings, and a third variant is discovered in this paper.

  11. Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material

    DOE PAGESBeta

    Patra, Anirban; McDowell, David L.

    2016-03-25

    We use a continuum crystal plasticity framework to study the effect of microstructure and mesoscopic factors on dislocation channeling and flow localization in an irradiated model bcc alloy. For simulated dislocation channeling characteristics we correlate the dislocation and defect densities in the substructure, local Schmid factor, and stress triaxiality, in terms of their temporal and spatial evolution. A metric is introduced to assess the propensity for localization and is correlated to the grain-level Schmid factor. We also found that localization generally takes place in grains with a local Schmid factor in the range 0.42 or higher. Surface slip step heightsmore » are computed at free surfaces and compared to relevant experiments.« less

  12. Investigation of microstructured chitosans by coherent anti-Stokes Raman microscopy.

    PubMed

    Dementjev, A; Mordas, G; Ulevičius, V; Gulbinas, V

    2015-03-01

    This work describes application of coherent anti-Stokes Raman scattering (CARS) microscopy technique for analytical characterization of microstructured materials based on chitosan. We demonstrate that nitrogen-hydrogen vibration band in the high wavenumber region of CARS spectrum prevails over response from oxygen-hydrogen vibrations and can be used as a spectral marker of chitosan. The chemically selective imaging is experimentally demonstrated by applying CARS microscopy to discriminate between chitosan and polystyrene microparticles. CARS microscopy was shown to be a valuable tool for characterization of polluted chitosan fibre from utilized engine filter material. A possibility to observe foreign material pieces on the surface of the polluted chitosan fibre is demonstrated and discussed. PMID:25529768

  13. Three-dimensional microstructural investigation of high magnetization nano-micro composite fluids using x-ray microcomputed tomography

    NASA Astrophysics Data System (ADS)

    Borbáth, T.; Borbáth, I.; Günther, S.; Marinica, O.; Vékás, L.; Odenbach, S.

    2014-05-01

    X-ray microcomputed tomography was used in a three-dimensional investigation of the microstructure of suspensions of multi-domain soft iron particles in magnetic nanofluids. The measurements were performed using two different approaches: with the sample kept frozen, and with the sample under the effect of an external magnetic field. Results show that even a relatively low magnetic field gradient drives the micron-sized iron particles towards the stronger field and thus leads to a redistribution of the ferromagnetic particles in the magnetic nanofluid. Three-dimensional images of the internal microstructure of the composite magnetizable fluid (CMF) were obtained not only for the nano-micro composite system placed in a closed sample holder, but also for the spikes formed at the CMF free surface. It was demonstrated that x-ray microcomputed tomography is an efficient way to investigate the distribution and chain formation of ferromagnetic microparticles in a magnetic nanofluid carrier allowing an analysis even at a single particle level.

  14. Investigation of gait features for stability and risk identification in elders.

    PubMed

    Liang, Jun; Abbott, Carmen C; Skubic, Marjorie; Keller, James

    2009-01-01

    Today, eldercare demands a greater degree of versatility in healthcare. Automatic monitoring devices and sensors are under development to help senior citizens achieve greater autonomy, and, as situations arise, alert healthcare providers. In this paper, we study gait patterns based on extracted silhouettes from image sequences. Three features are investigated through two different image capture perspectives: shoulder level, spinal incline, and silhouette centroid. Through the evaluation of fourteen image sequences representing a range of healthy to frail gait styles, features are extracted and compared to validation results using a Vicon motion capture system. The results obtained show promise for future studies that can increase both the accuracy of feature extraction and pragmatism of machine monitoring for at-risk elders. PMID:19965074

  15. Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy

    SciTech Connect

    Hu, Z.L.; Wang, X.S.; Yuan, S.J.

    2012-11-15

    The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction stir welded (FSW) 2024 aluminum alloy was investigated for the potential applications on light weight design of vehicles. The microstructure characteristics of the FSW joints, such as the grain structure, dislocation density and the distribution of precipitation, were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The tensile deformation characteristic of the FSW joints was examined using the automatic strain measuring system (ASAME) by mapping the global and local strain distribution, and then was analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous leading to a significant decrease in global ductility. The FSW joints mainly contain two typical deformation zones, which show great effect on the regional inhomogeneous deformation. One is the nugget zone (NZ) with a region of 8 mm in width, and the other is part of the BM with a region of 10 mm in width. The BM of the joints is the weakest region where the strain localizes early and this localization extends until fracture with a strain over 30%, while the strain in the NZ is only 4%. Differences in regional strain of FSW joints, which are essentially controlled by grain structure, the distribution of precipitation and dislocation density, result in decrease on the overall mechanical properties. - Highlights: Black-Right-Pointing-Pointer Microstructure heterogeneity of welds on tensile deformation behavior is studied. Black-Right-Pointing-Pointer The welds contain two typical deformation zones, affecting the global ductility. Black-Right-Pointing-Pointer Regional strain of welds is controlled by grain structure and dislocation density. Black-Right-Pointing-Pointer Theoretical calculation is in good agreement with experimental result.

  16. Experimental and microstructural investigations of frictional heating and fluidization in clay-rich fault gouge

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Nakakoji, T.; Tsutsumi, A.

    2011-12-01

    Mature faults commonly contain a considerable amount of clay minerals in their core. The frictional properties and the co-seismic deformation mechanisms of clay-rich fault gouges are key controls of the co-seismic fault strength, rupture propagation, and tsunamigenesis in subduction zones. Recent microstructural observations of natural slip zones and high-velocity friction experiments on clay-rich fault gouges suggest that the clay-clast aggregates (CCA; the spherical aggregates defined by clasts surrounded by a cortex of concentric clay layer) and the grain size segregation could be new textural evidence for thermal pressurization associated with water vaporization and fluidization, respectively. However, the physical processes and frictional properties during the development of these textures remain not fully understood. We conducted friction experiments on clay-rich fault gouge taken from the megasplay fault zone in the Nankai subduction zone and examined the resulting microstructures. Friction experiments were conducted at a normal stress of 1.0 MPa and slip rates (V) of 0.0013-1.3 m/s under dry (room humidity) and wet (water saturated) conditions. In the dry tests at V=1.3 m/s, the peak friction of 0.6-0.7 decreases to the steady-state friction of 0.2, over slip weakening distances of ~10.9 m, which is closely correlated to gouge dilation. In contrast, there is no visible slip weakening in the dry tests at V=0.0013-0.13 m/s; friction coefficients remain high in the range of 0.6-0.9 until the end of the experiments and the gouge dilation is small or absent. However, CCA are observed in all dry tests, with their volume content in the fault gouge decreasing with a decrease in V. The calculated temperatures in the fault gouge during the experiments are lower than the temperature for water vaporization at 1.0 MPa (180°C) when V=0.0013-0.013 m/s. These results demonstrate that CCA are neither textural evidence of the reduction in frictional coefficient due to

  17. Investigation of Edge Plasma Features in the HL-1M Tokamak

    NASA Astrophysics Data System (ADS)

    Yan, Long-wen; Yang, Shi-kun; Hong, Wen-yu; Wang, En-yao; Qian, Jun

    1999-12-01

    Edge plasma features in typical HL-1M discharges were presented. Particle confinement and plasma rotation have been investigated in the discharges with lower hybrid current drive (LHCD), molecular beam injection (MBI) and pellet fuelling. LHCD can make particle confinement increase a factor of 2-3 for low-density discharge. Particle confinement time and poloidal rotation can be at least doubled after pellet injection, while MBI can make confinement time increase about one order of magnitude with higher performance.

  18. Micro-structural, electrical and spectroscopic investigations of pulsed laser ablated palladium incorporated nanostructured tungsten oxide films.

    PubMed

    Lethy, K J; Beena, D; Pillai, V P Mahadevan; Suresh, K A

    2009-09-01

    Pure and Pd incorporated (0.5, 1 and 5 wt%) WO3 films are prepared on quartz substrates using pulsed laser ablation (PLD) technique in an oxygen ambient of 0.12 mbar, at a substrate temperature (Ts) of 873 K. Palladium incorporation effects on the microstructure, optical and electrical properties of tungsten oxide films are systematically investigated using techniques like X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, UV-Vis absorption spectroscopy and temperature dependent electrical resistivity measurements. The micro-structural analysis by XRD and micro-Raman indicates that Pd addition can perturb the tungsten oxide lattice and suppress the grain growth. Optical band gap values of the films increases from 3.17 eV for pure WO3 to 3.29 eV for 5 wt% Pd incorporated WO3 films. All the films present high transparency in the visible spectral range. The electrical resistivity studies of the pure and Pd incorporated films done at room temperature and for the range of temperature; 170-450 K reveal that Pd addition can lower the resistivity of the WO3 thin films. Room temperature resistivity as well as activation energy of the film decreases exponentially with Pd incorporation concentration. Highly transparent, nanocrystalline and semiconducting WO3 films with low resistivity obtained by Pd incorporation can make WO3 suitable for microelectronics industry and for gas sensing applications. PMID:19928224

  19. Investigation of structural properties associated with alkali-silica reaction by means of macro- and micro-structural analysis

    SciTech Connect

    Mo Xiangyin . E-mail: moxiangyin@njnu.edu.cn; Fournier, Benoit

    2007-02-15

    Structural properties associated with alkali-silica reaction were systematically investigated by means of macro-structural accelerated mortar prism expansion levels testing, combined with micro-structural analysis. One part of this study is to determine the reactivity of the aggregate by means of accelerated mortar bar tests, and also to evaluate perlite aggregate constituents, especially the presence of deleterious components and find main causes of the alkali-silica reaction, which was based on the petrographic studies by optical microscope and the implication of X-ray diffraction on the aggregate. Results implied that the aggregate was highly alkali-silica reactive and the main micro-crystalline quartz-intermediate character and matrix that is mainly composed of chalcedony are potentially suitable for alkali-silica reaction. The other part is to study the long-term effect of lithium salts against alkali-silica reaction by testing accelerated mortar prism expansion levels. The macro-structural results were also consistent with the micro-structural mechanisms of alkali-silica reaction of mortar prisms containing this aggregate and the effect of chemical admixtures by means of the methods of scanning electron microscope-X-ray energy-dispersive spectroscopy and X-ray diffraction. It was indicated by these techniques that lithium salts, which were introduced into concrete containing reactive aggregate at the mixing stage, suppressed the alkali-silica reaction by producing non-expansive crystalline materials.

  20. Investigations of high order plasmonic resonance features of the nano hyper ring

    NASA Astrophysics Data System (ADS)

    Wang, C.; Li, C. X.; Wu, Y. N.; Wang, Z. J.; Han, Q. Y.; Zheng, H. R.; Dong, J.

    2016-09-01

    A novel silver hyper ring and its complex nanostructures are designed and its plasmonic properties are investigated numerically. It is found that these hyper ring structures have relative stable optical features. The absorption cross section of the structure changes slightly when the direction and polarization of incident light is adjusting. For the complex structure, the position of each resonance peak does not present obvious change when the relative position of the inner hyper ring and outside larger ring changes. The result of the investigation has great significance for the production of practical nanostructures and the improvement of possible applications.

  1. Investigations of high order plasmonic resonance features of the nano hyper ring.

    PubMed

    Wang, C; Li, C X; Wu, Y N; Wang, Z J; Han, Q Y; Zheng, H R; Dong, J

    2016-09-01

    A novel silver hyper ring and its complex nanostructures are designed and its plasmonic properties are investigated numerically. It is found that these hyper ring structures have relative stable optical features. The absorption cross section of the structure changes slightly when the direction and polarization of incident light is adjusting. For the complex structure, the position of each resonance peak does not present obvious change when the relative position of the inner hyper ring and outside larger ring changes. The result of the investigation has great significance for the production of practical nanostructures and the improvement of possible applications. PMID:27385083

  2. An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure

    PubMed Central

    Dubrovinskaia, N.; Wirth, R.; Wosnitza, J.; Papageorgiou, T.; Braun, H. F.; Miyajima, N.; Dubrovinsky, L.

    2008-01-01

    The discovery of superconductivity in polycrystalline boron-doped diamond (BDD) synthesized under high pressure and high temperatures [Ekimov, et al. (2004) Nature 428:542–545] has raised a number of questions on the origin of the superconducting state. It was suggested that the heavy boron doping of diamond eventually leads to superconductivity. To justify such statements more detailed information on the microstructure of the composite materials and on the exact boron content in the diamond grains is needed. For that we used high-resolution transmission electron microscopy and electron energy loss spectroscopy. For the studied superconducting BDD samples synthesized at high pressures and high temperatures the diamond grain sizes are ≈1–2 μm with a boron content between 0.2 (2) and 0.5 (1) at %. The grains are separated by 10- to 20-nm-thick layers and triangular-shaped pockets of predominantly (at least 95 at %) amorphous boron. These results render superconductivity caused by the heavy boron doping in diamond highly unlikely. PMID:18697937

  3. Microstructural properties of superalloys investigated by nanoindentations in an atomic force microscope

    SciTech Connect

    Goeken, M.; Kempf, M.

    1999-02-05

    The microstructure of nickel-base superalloys with differently shaped {gamma}{prime} precipitates determines their excellent high-temperature behavior. A reliable quantitative determination of volume fraction and particle size distribution (PSD) of these precipitates is difficult, since the size of the precipitates is often below 100 nm. With an atomic force microscope (AFM), sections through specimens are analyzed with a resolution in the nanometer range, which allows a quantitative determination of the {gamma}{prime} volume content and PSD for different superalloys. Thus, determined volume fractions for the {gamma}{prime} phase in the superalloys CMSX-6 and Waspaloy amount to 56% and 27%, respectively. A combination of an AFM with a nanoindentation system also allows the measurement of local mechanical properties such as hardness and elasticity. These quantities are determined for the first time directly on the superalloys CMSX-6 and Waspaloy for the {gamma}{prime} and matrix phases, separately. The {gamma}{prime} phase in both alloys shows a significantly higher but different hardness than the matrix phase, whereas the moduli of elasticity are similar. A depth dependence of the hardness was found for very small indentations.

  4. Study of Radiographic Linear Indications and Subsequent Microstructural Features in Gas Tungsten Arc Welds of Inconel 718

    NASA Technical Reports Server (NTRS)

    Walley, J. L.; Nunes, A. C.; Clounch, J. L.; Russell, C. K.

    2007-01-01

    This study presents examples and considerations for differentiating linear radiographic indications produced by gas tungsten arc welds in a 0.05-in-thick sheet of Inconel 718. A series of welds with different structural features, including the enigma indications and other defect indications such as lack of fusion and penetration, were produced, radiographed, and examined metallographically. The enigma indications were produced by a large columnar grain running along the center of the weld nugget occurring when the weld speed was reduced sufficiently below nominal. Examples of respective indications, including the effect of changing the x-ray source location, are presented as an aid to differentiation. Enigma, nominal, and hot-weld specimens were tensile tested to demonstrate the harmlessness of the enigma indication. Statistical analysis showed that there is no difference between the strengths of these three weld conditions.

  5. The mechanical and microstructural behaviour of calcite-dolomite composites: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Kushnir, Alexandra R. L.; Kennedy, L. A.; Misra, Santanu; Benson, Philip; White, J. C.

    2015-01-01

    The styles and mechanisms of deformation associated with many variably dolomitized limestone shear systems are strongly controlled by strain partitioning between dolomite and calcite. Here, we present experimental results from the deformation of four composite materials designed to address the role of dolomite on the strength of limestone. Composites were synthesized by hot isostatic pressing mixtures of dolomite (Dm) and calcite powders (% Dm: 25%-Dm, 35%-Dm, 51%-Dm, and 75%-Dm). In all composites, calcite is finer grained than dolomite. The synthesized materials were deformed in torsion at constant strain rate (3 × 10-4 and 1 × 10-4 s-1), high effective pressure (262 MPa), and high temperature (750 °C) to variable finite shear strains. Mechanical data show an increase in yield strength with increasing dolomite content. Composites with <75% dolomite (the remaining being calcite), accommodate significant shear strain at much lower shear stresses than pure dolomite but have significantly higher yield strengths than anticipated for 100% calcite. The microstructure of the fine-grained calcite suggests grain boundary sliding, accommodated by diffusion creep and dislocation glide. At low dolomite concentrations (i.e. 25%), the presence of coarse-grained dolomite in a micritic calcite matrix has a profound effect on the strength of composite materials as dolomite grains inhibit the superplastic flow of calcite aggregates. In high (>50%) dolomite content samples, the addition of 25% fine-grained calcite significantly weakens dolomite, such that strain can be partially localized along narrow ribbons of fine-grained calcite. Deformation of dolomite grains by shear fracture is observed; there is no intracrystalline deformation in dolomite irrespective of its relative abundance and finite shear strain.

  6. Investigation of the microstructure and optical properties of Ge films grown by DC magnetron sputtering and in situ annealing

    NASA Astrophysics Data System (ADS)

    Li, Hui-Song; Qiu, Feng; Xin, Zheng-Hang; Wang, Rong-Fei; Yang, Jie; Zhang, Jin; Wang, Chong; Yang, Yu

    2016-06-01

    We investigate the microstructure and optical properties of Ge films on Si substrates prepared at low temperature by DC magnetron sputtering and the effect of in situ annealing on them. With increasing growth temperature, Ge films undergo a transition from amorphous to microcrystalline, then to polycrystalline. After annealing, these thin films transform into polycrystalline films with the (111) preferred orientation and identical crystal sizes. The surfaces of the amorphous and microcrystalline Ge films are severely coarsened, whereas the polycrystalline Ge film still displays a smooth surface. The growth mechanisms of Ge films with different crystalline phases in the annealing process are discussed, which can explain their morphology evolutions. Additionally, their infrared absorptions are enhanced after annealing, and this is useful for fabricating high-efficiency Si-based solar cells.

  7. Investigations on the 1.7 micron residual absorption feature in the vegetation reflection spectrum

    NASA Technical Reports Server (NTRS)

    Verdebout, J.; Jacquemoud, S.; Andreoli, G.; Hosgood, B.; Sieber, A.

    1993-01-01

    The detection and interpretation of the weak absorption features associated with the biochemical components of vegetation is of great potential interest to a variety of applications ranging from classification to global change studies. This recent subject is also challenging because the spectral signature of the biochemicals is only detectable as a small distortion of the infrared spectrum which is mainly governed by water. Furthermore, the interpretation is complicated by complexity of the molecules (lignin, cellulose, starch, proteins) which contain a large number of different and common chemical bonds. In this paper, we present investigations on the absorption feature centered at 1.7 micron; these were conducted both on AVIRIS data and laboratory reflectance spectra of leaves.

  8. Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Wang, Zhenbo; Zheng, Lili; Yu, Fuda; Liu, Baosheng; Zhang, Yin; Ke, Ke

    2015-08-01

    The high voltage spinel LiNi0.5Mn1.5O4 is a promising cathode material in next generation of lithium ion batteries. In this study, LiNi0.5Mn1.5O4 with various particle microstructures are prepared by controlling the microstructures of precursors. LiNi0.5Mn1.5O4 spinel samples with solid, hollow and hierarchical microstructures are prepared with solid MnCO3, hollow MnO2 and hierarchical Mn2O3 as precursor, respectively. The homemade spinel materials are investigated and the results show that the content of Mn3+ and impurity phase differ much in these three spinel samples obtained under the same calcining and annealing conditions. It is revealed for the first time that an inhomogeneous migration of atoms may introduce Mn3+ and impurity phase in the spinel. The hierarchical microstructure with the primary particles interconnected is optimal for electrode materials because this microstructure has a higher conductivity between the interconnected primary particles and appropriate specific surface area. LiNi0.5Mn1.5O4 in this microstructure has the best rate capability and also the best long-term cycling stability.

  9. Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries.

    PubMed

    Xue, Yuan; Wang, Zhenbo; Zheng, Lili; Yu, Fuda; Liu, Baosheng; Zhang, Yin; Ke, Ke

    2015-01-01

    The high voltage spinel LiNi0.5Mn1.5O4 is a promising cathode material in next generation of lithium ion batteries. In this study, LiNi0.5Mn1.5O4 with various particle microstructures are prepared by controlling the microstructures of precursors. LiNi0.5Mn1.5O4 spinel samples with solid, hollow and hierarchical microstructures are prepared with solid MnCO3, hollow MnO2 and hierarchical Mn2O3 as precursor, respectively. The homemade spinel materials are investigated and the results show that the content of Mn(3+) and impurity phase differ much in these three spinel samples obtained under the same calcining and annealing conditions. It is revealed for the first time that an inhomogeneous migration of atoms may introduce Mn(3+) and impurity phase in the spinel. The hierarchical microstructure with the primary particles interconnected is optimal for electrode materials because this microstructure has a higher conductivity between the interconnected primary particles and appropriate specific surface area. LiNi0.5Mn1.5O4 in this microstructure has the best rate capability and also the best long-term cycling stability. PMID:26299774

  10. Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries

    PubMed Central

    Xue, Yuan; Wang, Zhenbo; Zheng, Lili; Yu, Fuda; Liu, Baosheng; Zhang, Yin; Ke, Ke

    2015-01-01

    The high voltage spinel LiNi0.5Mn1.5O4 is a promising cathode material in next generation of lithium ion batteries. In this study, LiNi0.5Mn1.5O4 with various particle microstructures are prepared by controlling the microstructures of precursors. LiNi0.5Mn1.5O4 spinel samples with solid, hollow and hierarchical microstructures are prepared with solid MnCO3, hollow MnO2 and hierarchical Mn2O3 as precursor, respectively. The homemade spinel materials are investigated and the results show that the content of Mn3+ and impurity phase differ much in these three spinel samples obtained under the same calcining and annealing conditions. It is revealed for the first time that an inhomogeneous migration of atoms may introduce Mn3+ and impurity phase in the spinel. The hierarchical microstructure with the primary particles interconnected is optimal for electrode materials because this microstructure has a higher conductivity between the interconnected primary particles and appropriate specific surface area. LiNi0.5Mn1.5O4 in this microstructure has the best rate capability and also the best long-term cycling stability. PMID:26299774

  11. Correlation of Fractographic Features with Mechanical Properties in Systematically Varied Microstructures of Cu-Strengthened High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Das, Arpan; Das, Swapan Kumar; Tarafder, Soumitra

    2009-12-01

    Fracture is often the culmination of continued deformation. Therefore, it is probable that a fracture surface may contain an imprint of the deformation processes that were operative. In this study, the deformation behavior of copper-strengthened high-strength low-alloy (HSLA) 100 steel has been investigated. Systematic variation of the microstructure has been introduced in the steel through various aging treatments. Due to aging, the coherency, size, shape, and distribution of the copper precipitates were changed, while those of inclusions, carbides, and carbonitrides were kept unaltered. Two-dimensional dimple morphologies, quantified from tensile fracture surfaces, have been correlated to the nature of the variation of the deformation parameters with aging treatment.

  12. Dependence of pH on dispersion of SiC fine particulates in boehmite and its correlation with microstructural features of alumina

    SciTech Connect

    Hareesh, U.S.; Ananthakumar, S.; Damodaran, A.D.; Warrier, K.G.K.

    1996-12-31

    The possibility of increasing fracture toughness and strength of alumina ceramics has been achieved recently by incorporating fine SiC particles. One of the many investigated methods for the synthesis of Alumina-SiC composites is by use of pre-coated SiC powders. Gelation of boehmite (AlOOH) in presence of SiC particles have also been attempted. The present study is for obtaining stable, finely dispersed SiC particles in boehmite matrix as precursor material. The effect of pH and solvent medium in the gelation process of boehmite-SiC mixture are followed by optical microscopy coupled with image analysis system and such composites after sintering are evaluated by microstructural observation. Structure-property correlation has been obtained for highly dispersed SiC particles in alumina-SiC nano composites.

  13. Determination of optimum threshold values for EMG time domain features; a multi-dataset investigation

    NASA Astrophysics Data System (ADS)

    Nlandu Kamavuako, Ernest; Scheme, Erik Justin; Englehart, Kevin Brian

    2016-08-01

    Objective. For over two decades, Hudgins’ set of time domain features have extensively been applied for classification of hand motions. The calculation of slope sign change and zero crossing features uses a threshold to attenuate the effect of background noise. However, there is no consensus on the optimum threshold value. In this study, we investigate for the first time the effect of threshold selection on the feature space and classification accuracy using multiple datasets. Approach. In the first part, four datasets were used, and classification error (CE), separability index, scatter matrix separability criterion, and cardinality of the features were used as performance measures. In the second part, data from eight classes were collected during two separate days with two days in between from eight able-bodied subjects. The threshold for each feature was computed as a factor (R = 0:0.01:4) times the average root mean square of data during rest. For each day, we quantified CE for R = 0 (CEr0) and minimum error (CEbest). Moreover, a cross day threshold validation was applied where, for example, CE of day two (CEodt) is computed based on optimum threshold from day one and vice versa. Finally, we quantified the effect of the threshold when using training data from one day and test data of the other. Main results. All performance metrics generally degraded with increasing threshold values. On average, CEbest (5.26 ± 2.42%) was significantly better than CEr0 (7.51 ± 2.41%, P = 0.018), and CEodt (7.50 ± 2.50%, P = 0.021). During the two-fold validation between days, CEbest performed similar to CEr0. Interestingly, when using the threshold values optimized per subject from day one and day two respectively, on the cross-days classification, the performance decreased. Significance. We have demonstrated that threshold value has a strong impact on the feature space and that an optimum threshold can be quantified. However, this optimum threshold is highly data and

  14. Micro-chemical and micro-structural investigation of the corrosion products on `` The Dancing Satyr'' (Mazara del Vallo, Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; Riccucci, C.; Faraldi, F.; Casaletto, M. P.; Guida, G.

    2010-09-01

    The “ Dancing Satyr”, a bronze statue measuring more than 2 metres in height and weighting 108 kg, represents one of the most important recent archaeological finds in Italy. The statue was discovered on the floor of the Sicilian channel (the portion of the Mediterranean sea between Sicily and Tunisia), not far from the south-western Sicilian coast, under 500 metres of seawater in 1998. The bronze statue depicts a nude satyr captured in a frenzied whirling movement during a dance in honour of Dionysus, the God of wine. Though some scholars dated it to the IV century B.C. as an original Praxiteles work or a copy thereof, it could be also dated either back to the Hellenistic period (III or II century B.C.) or possibly to the Roman Empire age (early II century A.D.). The nature and structure of the corrosion products grown on the Dancing Satyr surface and the metallurgical features of the statue were investigated taking into account the nature of the marine environment of provenance. A detailed micro-chemical and micro-structural characterisation was performed by means of the combined use of scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and optical microscopy (OM). Results provided good insight into the different corrosion layers and a tentative correlation of the patina nature and the chemical composition of the statue and the marine context is proposed.

  15. Munitions integrity and corrosion features observed during the HUMMA deep-sea munitions disposal site investigations

    NASA Astrophysics Data System (ADS)

    Silva, Jeff A. K.; Chock, Taylor

    2016-06-01

    An evaluation of the current condition of sea-disposed military munitions observed during the 2009 Hawaii Undersea Military Munitions Assessment Project investigation is presented. The 69 km2 study area is located south of Pearl Harbor, Oahu, Hawaii, and is positioned within a former deep-sea disposal area designated as Hawaii-05 or HI-05 by the United States Department of Defense. HI-05 is known to contain both conventional and chemical munitions that were sea-disposed between 1920 and 1951. Digital images and video reconnaissance logs collected during six remotely operated vehicle and 16 human-occupied vehicle surveys were used to classify the integrity and state of corrosion of the 1842 discarded military munitions (DMM) objects encountered. Of these, 5% (or 90 individual DMM objects) were found to exhibit a mild-moderate degree of corrosion. The majority (66% or 1222 DMM objects) were observed to be significantly corroded, but visually intact on the seafloor. The remaining 29% of DMM encountered were found to be severely corroded and breached, with their contents exposed. Chemical munitions were not identified during the 2009 investigation. In general, identified munitions known to have been constructed with thicker casings were better preserved. Unusual corrosion features were also observed, including what are termed here as 'corrosion skirts' that resembled the flow and cementation of corrosion products at and away from the base of many munitions, and 'corrosion pedestal' features resembling a combination of cemented corrosion products and seafloor sediments that were observed to be supporting munitions above the surface of the seafloor. The origin of these corrosion features could not be determined due to the lack of physical samples collected. However, a microbial-mediated formation hypothesis is presented, based on visual analysis, which can serve as a testable model for future field programs.

  16. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    PubMed

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. PMID:26712269

  17. Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X-ray Phase Contrast Tomography.

    PubMed

    Sun, Fu; Zielke, Lukas; Markötter, Henning; Hilger, André; Zhou, Dong; Moroni, Riko; Zengerle, Roland; Thiele, Simon; Banhart, John; Manke, Ingo

    2016-08-23

    Due to its low redox potential and high theoretical specific capacity, Li metal has drawn worldwide research attention because of its potential use in next-generation battery technologies such as Li-S and Li-O2. Unfortunately, uncontrollable growth of Li microstructures (LmSs, e.g., dendrites, fibers) during electrochemical Li stripping/plating has prevented their practical commercialization. Despite various strategies proposed to mitigate LmS nucleation and/or block its growth, a fundamental understanding of the underlying evolution mechanisms remains elusive. Herein, synchrotron in-line phase contrast X-ray tomography was employed to investigate the morphological evolution of electrochemically deposited/dissolved LmSs nondestructively. We present a 3D characterization of electrochemically stripped Li electrodes with regard to electrochemically plated LmSs. We clarify fundamentally the origin of the porous lithium interface growing into Li electrodes. Moreover, cleavage of the separator caused by growing LmS was experimentally observed and visualized in 3D. Our systematic investigation provides fundamental insights into LmS evolution and enables us to understand the evolution mechanisms in Li electrodes more profoundly. PMID:27463258

  18. Glancing angle deposition of SiO{sub 2} thin film microstructures: Investigations of optical and morphological properties

    SciTech Connect

    Tokas, R. B. E-mail: tokasstar@gmail.com; Jena, S. E-mail: tokasstar@gmail.com; Sarkar, P. E-mail: tokasstar@gmail.com; Thakur, S. E-mail: tokasstar@gmail.com; Sahoo, N. K. E-mail: tokasstar@gmail.com

    2014-04-24

    In present work, the optical and the morphological properties of micro-structured SiO{sub 2} thin films fabricated by using glancing angle deposition (GLAD) technique has been carried out. The results are compared with the normally deposited SiO{sub 2} films for the gained advantages. The influence of the glancing angle on the refractive index of porous SiO{sub 2} film was investigated by the spectral transmission measurement in 400–950 nm wavelength regimes. The refractive index has been found to be 1.14@532 nm for the porous SiO{sub 2} film deposited at a glancing angle of 85°. The density and surface qualities of these samples were primarily investigated by using grazing angle X-ray reflectivity (GIXR) and atomic force microscope (AFM) measurements. Results indicate a substantial decrease in film density and refractive index and increase in surface roughness and grain size for GLAD SiO{sub 2} compared to normally deposited SiO{sub 2} films.

  19. Investigation of cellular microstructure and enhanced coercivity in sputtered Sm{sub 2}(CoCuFeZr){sub 17} film

    SciTech Connect

    Bhatt, Ranu Schütz, G.; Bhatt, Pramod

    2014-03-14

    We have investigated the effect of annealing temperature on the microstructure and magnetic properties of Sm{sub 2}(CoCuFeZr){sub 17} films prepared using ion beam sputtering at room temperature. The as-deposited film shows randomly oriented polycrystalline grains and exhibits small coercivity (H{sub C}) of 0.04 T at room temperature. Post annealing of these films at 700 °C under Ar atmosphere shows significant changes in the microstructure transforming it to the development of cellular growth, concomitant with enhanced coercivity up to 1.3 T. The enhanced coercivity is explained using the domain wall pinning mechanism.

  20. Do Online Voting Patterns Reflect Evolved Features of Human Cognition? An Exploratory Empirical Investigation.

    PubMed

    Priestley, Maria; Mesoudi, Alex

    2015-01-01

    Online votes or ratings can assist internet users in evaluating the credibility and appeal of the information which they encounter. For example, aggregator websites such as Reddit allow users to up-vote submitted content to make it more prominent, and down-vote content to make it less prominent. Here we argue that decisions over what to up- or down-vote may be guided by evolved features of human cognition. We predict that internet users should be more likely to up-vote content that others have also up-voted (social influence), content that has been submitted by particularly liked or respected users (model-based bias), content that constitutes evolutionarily salient or relevant information (content bias), and content that follows group norms and, in particular, prosocial norms. 489 respondents from the online social voting community Reddit rated the extent to which they felt different traits influenced their voting. Statistical analyses confirmed that norm-following and prosociality, as well as various content biases such as emotional content and originality, were rated as important motivators of voting. Social influence had a smaller effect than expected, while attitudes towards the submitter had little effect. This exploratory empirical investigation suggests that online voting communities can provide an important test-bed for evolutionary theories of human social information use, and that evolved features of human cognition may guide online behaviour just as it guides behaviour in the offline world. PMID:26066657

  1. Do Online Voting Patterns Reflect Evolved Features of Human Cognition? An Exploratory Empirical Investigation

    PubMed Central

    Priestley, Maria; Mesoudi, Alex

    2015-01-01

    Online votes or ratings can assist internet users in evaluating the credibility and appeal of the information which they encounter. For example, aggregator websites such as Reddit allow users to up-vote submitted content to make it more prominent, and down-vote content to make it less prominent. Here we argue that decisions over what to up- or down-vote may be guided by evolved features of human cognition. We predict that internet users should be more likely to up-vote content that others have also up-voted (social influence), content that has been submitted by particularly liked or respected users (model-based bias), content that constitutes evolutionarily salient or relevant information (content bias), and content that follows group norms and, in particular, prosocial norms. 489 respondents from the online social voting community Reddit rated the extent to which they felt different traits influenced their voting. Statistical analyses confirmed that norm-following and prosociality, as well as various content biases such as emotional content and originality, were rated as important motivators of voting. Social influence had a smaller effect than expected, while attitudes towards the submitter had little effect. This exploratory empirical investigation suggests that online voting communities can provide an important test-bed for evolutionary theories of human social information use, and that evolved features of human cognition may guide online behaviour just as it guides behaviour in the offline world. PMID:26066657

  2. Numerical and experimental investigation on broadband wave propagation features in perforated plates

    NASA Astrophysics Data System (ADS)

    Zhou, C. W.; Lainé, J. P.; Ichchou, M. N.; Zine, A. M.

    2016-06-01

    Perforated plates are widely used in various engineering applications. Their mechanical and dynamical behaviours need to be investigated for the design and optimization purpose. In this work, the wave propagation features on broadband in perforated plates are predicted by a Condensed Wave Finite Element Method (CWFEM). Based on the wave dispersion relation identified by CWFEM, wave-based homogenization methods are proposed to define equivalent solid plates. Three perforated plates with different penetration patterns and hole shapes are considered and the accuracy of the equivalent homogenized model is illustrated by comparing it with finite element method. Experimental validation of the computed wave propagation characteristics on the two models is provided as well. A good correlation is observed not only at low frequency where homogenized model can be found, but also at mid and high frequency, where the wave beaming effect phenomenon occurs.

  3. Investigation of the Phenomenological and Psychopathological Features of Trichotillomania in an Italian Sample.

    PubMed

    Bottesi, Gioia; Cerea, Silvia; Razzetti, Enrico; Sica, Claudio; Frost, Randy O; Ghisi, Marta

    2016-01-01

    Trichotillomania (TTM) is still a scarcely known and often inadequately treated disorder in Italian clinical settings, despite growing evidence about its severe and disabling consequences. The current study investigated the phenomenology of TTM in Italian individuals; in addition, we sought to examine patterns of self-esteem, anxiety, depression, and OCD-related symptoms in individuals with TTM compared to healthy participants. The current study represents the first attempt to investigate the phenomenological and psychopathological features of TTM in Italian hair pullers. One hundred and twenty-two individuals with TTM were enrolled: 24 were assessed face-to-face (face-to-face group) and 98 were recruited online (online group). An additional group of 22 face-to-face assessed healthy controls (HC group) was included in the study. The overall female to male ratio was 14:1, which is slightly higher favoring female than findings reported in literature. Main results revealed that a higher percentage of individuals in the online group reported pulling from the pubic region than did face-to-face participants; furthermore, the former engaged in examining the bulb and running the hair across the lips and reported pulling while lying in bed at higher frequencies than the latter. Interestingly, the online TTM group showed greater functional and psychological impairment, as well as more severe psychopathological characteristics (self-esteem, physiological and social anxiety, perfectionism, overestimation of threat, and control of thoughts), than the face-to-face one. Differences between the two TTM groups may be explained by the anonymity nature of the online group, which may have led to successful recruitment of more serious TTM cases, or fostered more open answers to questions. Overall, results revealed that many of the phenomenological features of Italian TTM participants matched those found in U.S. clinical settings, even though some notable differences were observed

  4. Investigation of the Phenomenological and Psychopathological Features of Trichotillomania in an Italian Sample

    PubMed Central

    Bottesi, Gioia; Cerea, Silvia; Razzetti, Enrico; Sica, Claudio; Frost, Randy O.; Ghisi, Marta

    2016-01-01

    Trichotillomania (TTM) is still a scarcely known and often inadequately treated disorder in Italian clinical settings, despite growing evidence about its severe and disabling consequences. The current study investigated the phenomenology of TTM in Italian individuals; in addition, we sought to examine patterns of self-esteem, anxiety, depression, and OCD-related symptoms in individuals with TTM compared to healthy participants. The current study represents the first attempt to investigate the phenomenological and psychopathological features of TTM in Italian hair pullers. One hundred and twenty-two individuals with TTM were enrolled: 24 were assessed face-to-face (face-to-face group) and 98 were recruited online (online group). An additional group of 22 face-to-face assessed healthy controls (HC group) was included in the study. The overall female to male ratio was 14:1, which is slightly higher favoring female than findings reported in literature. Main results revealed that a higher percentage of individuals in the online group reported pulling from the pubic region than did face-to-face participants; furthermore, the former engaged in examining the bulb and running the hair across the lips and reported pulling while lying in bed at higher frequencies than the latter. Interestingly, the online TTM group showed greater functional and psychological impairment, as well as more severe psychopathological characteristics (self-esteem, physiological and social anxiety, perfectionism, overestimation of threat, and control of thoughts), than the face-to-face one. Differences between the two TTM groups may be explained by the anonymity nature of the online group, which may have led to successful recruitment of more serious TTM cases, or fostered more open answers to questions. Overall, results revealed that many of the phenomenological features of Italian TTM participants matched those found in U.S. clinical settings, even though some notable differences were observed

  5. Associations between white matter microstructure and amyloid burden in preclinical Alzheimer's disease: A multimodal imaging investigation

    PubMed Central

    Racine, Annie M.; Adluru, Nagesh; Alexander, Andrew L.; Christian, Bradley T.; Okonkwo, Ozioma C.; Oh, Jennifer; Cleary, Caitlin A.; Birdsill, Alex; Hillmer, Ansel T.; Murali, Dhanabalan; Barnhart, Todd E.; Gallagher, Catherine L.; Carlsson, Cynthia M.; Rowley, Howard A.; Dowling, N. Maritza; Asthana, Sanjay; Sager, Mark A.; Bendlin, Barbara B.; Johnson, Sterling C.

    2014-01-01

    Some cognitively healthy individuals develop brain amyloid accumulation, suggestive of incipient Alzheimer's disease (AD), but the effect of amyloid on other potentially informative imaging modalities, such as Diffusion Tensor Imaging (DTI), in characterizing brain changes in preclinical AD requires further exploration. In this study, a sample (N = 139, mean age 60.6, range 46 to 71) from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort enriched for AD risk factors, was recruited for a multimodal imaging investigation that included DTI and [C-11]Pittsburgh Compound B (PiB) positron emission tomography (PET). Participants were grouped as amyloid positive (Aβ+), amyloid indeterminate (Aβi), or amyloid negative (Aβ−) based on the amount and pattern of amyloid deposition. Regional voxel-wise analyses of four DTI metrics, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), and radial diffusivity (Dr), were performed based on amyloid grouping. Three regions of interest (ROIs), the cingulum adjacent to the corpus callosum, hippocampal cingulum, and lateral fornix, were selected based on their involvement in the early stages of AD. Voxel-wise analysis revealed higher FA among Aβ+ compared to Aβ− in all three ROIs and in Aβi compared to Aβ− in the cingulum adjacent to the corpus callosum. Follow-up exploratory whole-brain analyses were consistent with the ROI findings, revealing multiple regions where higher FA was associated with greater amyloid. Lower fronto-lateral gray matter MD was associated with higher amyloid burden. Further investigation showed a negative correlation between MD and PiB signal, suggesting that Aβ accumulation impairs diffusion. Interestingly, these findings in a largely presymptomatic sample are in contradistinction to relationships reported in the literature in symptomatic disease stages of Mild Cognitive Impairment and AD, which usually show higher MD and lower FA. Together with analyses

  6. Microstructural investigation of the weld HAZ in a modified 800H alloy

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P. . Materials Science and Engineering)

    1994-07-01

    Detailed metallographic investigations of Gleeble simulated HAZ samples in modified 800H were performed. Precipitate dissolution, gain growth, HAZ liquation and the hardness degradation behavior in modified 800H were also addressed. Results of this study agree with previous HAZ hot cracking and softening behavior evaluations. Modified 800H is one of the newly developed high-temperature alloys for applications in coal-fired power generating systems (Swindeman, 1991). Modified 800H possesses a greater creep and higher temperature tensile strength as compared to standard alloy 800 and conventional austenitic stainless steels. To achieve excellent creep and high-temperature tensile strength a thermomechanical treatment is applied during alloy fabrication (5--10% cold work). Therefore, grain growth, recrystallization, and precipitate dissolution and redistribution will occur in the weld HAZ during fabrication. Thus, both mechanical and metallurgical degradation may occur in the HAZ. Additionally, metallurgical reactions adjacent to the fusion boundary, including a partially melted region and constitutional liquation, may occur and influence the hot cracking resistance.

  7. Investigation of internal microstructure and thermo-responsive properties of composite PNIPAM/silica microcapsules.

    PubMed

    Cejková, Jitka; Hanus, Jaroslav; Stepánek, Frantisek

    2010-06-15

    Composite microcapsules consisting of a thermo-responsive hydrogel poly-N-isopropylacrylamide (PNIPAM) and coated by silica (SiO(2)) nanoparticles have been synthesized by the inverse Pickering emulsion polymerization method. The composite capsules, whose mean diameter is in the 25-86 microm range in the expanded state, were characterized by static light scattering, atomic force microscopy (AFM), scanning electron microscopy (SEM), and laser scanning confocal microscopy (LSCM). It is reported that the hydrogel surface is uniformly covered by a monolayer of silica nanoparticles and that depending on the capsule size and degree of polymer cross-linking, either hollow-core or partially-filled hydrogel-core microcapsules can be created. Equilibrium thermo-responsive behavior of the composite microcapsules is investigated and it is found that after heating the particles above the lower critical solution temperature (LCST) of PNIPAM, the shrinkage ratio V/V(max) varies from 0.8 to 0.4 for a cross-linking ratio from 0.6% to 9% on a mass basis. Dynamic temperature cycling studies reveal no hysteresis in the shrinking and recovery phases, but a small measurable dependence of the asymptotic shrinkage ratio V/V(max) on the rate of temperature change exists. The composite capsules are stable under long-term storage in both dried and hydrated states and easily re-dispersible in water. PMID:20304409

  8. Microstructure investigations of hcp phase CoPt thin films with high coercivity

    SciTech Connect

    Yang, Y.; Varghese, B.; Tan, H. K.; Wong, S. K.; Piramanayagam, S. N.

    2014-02-28

    CoPt films have been grown in the past with a high anisotropy in L1{sub 1} or L1{sub 0} phase, and a high coercivity is observed only in L1{sub 0} CoPt films. Recently, we have grown CoPt films which exhibited a high coercivity without exhibiting an ordered phase. In this study, high resolution transmission electron microscopy (HRTEM) investigations have been carried out to understand the strong thickness and deposition pressure dependent magnetic properties. HRTEM studies revealed the formation of an initial growth layer in a metastable hexagonal (hcp) CoPt with high anisotropy. This phase is believed to be aided by the heteroepitaxial growth on Ru as well as the formation of Ru-doped CoPt phase. As the films grew thicker, transformation from hcp phase to an energetically favourable face-centered cubic (fcc) phase was observed. Stacking faults were found predominantly at the hcp-fcc transformation region of the CoPt film. The higher coercivity of thinner CoPt film is attributed to relatively less fcc fraction, less stacking faults, and to the isolated grain structure of these films compared to the thicker films.

  9. Synthesis and Microstructural Investigations of Organometallic Pd(II) Thiol-Gold Nanoparticles Hybrids

    PubMed Central

    2008-01-01

    In this work the synthesis and characterization of gold nanoparticles functionalized by a novel thiol-organometallic complex containing Pd(II) centers is presented. Pd(II) thiol,trans, trans-[dithiolate-dibis(tributylphosphine)dipalladium(II)-4,4′-diethynylbiphenyl] was synthesized and linked to Au nanoparticles by the chemical reduction of a metal salt precursor. The new hybrid made of organometallic Pd(II) thiol-gold nanoparticles, shows through a single S bridge a direct link between Pd(II) and Au nanoparticles. The size-control of the Au nanoparticles (diameter range 2–10 nm) was achieved by choosing the suitable AuCl4−/thiol molar ratio. The size, strain, shape, and crystalline structure of these functionalized nanoparticles were determined by a full-pattern X-ray powder diffraction analysis, high-resolution TEM, and X-ray photoelectron spectroscopy. Photoluminescence spectroscopy measurements of the hybrid system show emission peaks at 418 and 440 nm. The hybrid was exposed to gaseous NOxwith the aim to evaluate the suitability for applications in sensor devices; XPS measurements permitted to ascertain and investigate the hybrid –gas interaction. PMID:21350592

  10. Investigation on Strength Development in RBI Grade 81 Stabilized Serian Soil with Microstructural Considerations

    NASA Astrophysics Data System (ADS)

    Taib, S. N. L.; Striprabu, S.; Ahmad, F.; Charmaine, H. J.; Patricia, N. E.

    2016-07-01

    The aim of the research is to investigate the strength development of stabilised local Serian soil with RBI Grade 81 a chemical additive to enhance soil properties in term of strength. Serian is a town which is located about 60 km from Kuching city where the soil was chosen to be treated in this study. The soil sample was mixed with 2%, 6% and 8% of RBI Grade 81 by weight of dry soil and added with water at optimum water content (OWC) to replicate field site conditions. The modified samples were cured in ambient air for 7, 14, and 28 days. Scanning Electron Microscope (SEM) was utilized to analyze surface morphology of the stabilized soil specifically on the formation of bonding between soils and RBI 81 particles. The experimental results show the highest average peak UCS strength achieved was 1071.6 kN/m2 at 14 day curing period with 8% of RBI Grade 81 which is higher than the untreated control sample which was 179.946 kN/m2, showing increment by almost six folds. Hence the RBI 81 stabilization technique enhances the local soil structure by improving the inter-cluster bonding, reducing pore spaces in the soil and subsequently increasing the soil's strength.

  11. Dilatometric Analysis and Microstructural Investigation of the Sintering Mechanisms of Blended Elemental Ti-6Al-4V Powders

    NASA Astrophysics Data System (ADS)

    Kim, Youngmoo; Lee, Junho; Lee, Bin; Ryu, Ho Jin; Hong, Soon Hyung

    2016-09-01

    The densification behavior of mixed Ti and Al/V master alloy powders for Ti-6Al-4V was investigated by a series of dilatometry tests to measure the shrinkage of the samples with the sintering temperature. The corresponding microstructural changes were examined under various sintering conditions with optical microscopy, energy-dispersive spectroscopy, and X-ray diffraction analyses. From these results, the consolidation of the mixed powders was divided into two domains: (i) sintering densification and solute homogenization of Ti and Al/V master alloy particles below 1293 K (1020 °C), and (ii) densification of Ti alloy phases above 1293 K (1020 °C). In the lower temperature region, the inter-diffusion between Ti and Al/V master alloy particles dominated the sintering of the mixed powders because the chemical gradient between two types of particles outweighed the surface energy reduction. Following chemical homogenization, the densification induced the shrinkage of the Ti alloy phases to reduce their surface energies. These tendencies are also supported by the density and grain size variations of the sintered specimens with temperature. The apparent activation energies of the sintering and grain growth for Ti alloy particles are 85.91 ± 6.93 and 37.33 kJ/mol, respectively, similar to or slightly lower than those of pure Ti particles. The difference was attributed to the slower self-diffusion of Ti resulting from the alloying of Al and V into in the Ti matrix.

  12. Dilatometric Analysis and Microstructural Investigation of the Sintering Mechanisms of Blended Elemental Ti-6Al-4V Powders

    NASA Astrophysics Data System (ADS)

    Kim, Youngmoo; Lee, Junho; Lee, Bin; Ryu, Ho Jin; Hong, Soon Hyung

    2016-06-01

    The densification behavior of mixed Ti and Al/V master alloy powders for Ti-6Al-4V was investigated by a series of dilatometry tests to measure the shrinkage of the samples with the sintering temperature. The corresponding microstructural changes were examined under various sintering conditions with optical microscopy, energy-dispersive spectroscopy, and X-ray diffraction analyses. From these results, the consolidation of the mixed powders was divided into two domains: (i) sintering densification and solute homogenization of Ti and Al/V master alloy particles below 1293 K (1020 °C), and (ii) densification of Ti alloy phases above 1293 K (1020 °C). In the lower temperature region, the inter-diffusion between Ti and Al/V master alloy particles dominated the sintering of the mixed powders because the chemical gradient between two types of particles outweighed the surface energy reduction. Following chemical homogenization, the densification induced the shrinkage of the Ti alloy phases to reduce their surface energies. These tendencies are also supported by the density and grain size variations of the sintered specimens with temperature. The apparent activation energies of the sintering and grain growth for Ti alloy particles are 85.91 ± 6.93 and 37.33 kJ/mol, respectively, similar to or slightly lower than those of pure Ti particles. The difference was attributed to the slower self-diffusion of Ti resulting from the alloying of Al and V into in the Ti matrix.

  13. A network of disdrometers to investigate the variability of the microstructure of precipitation at the radar pixel scale

    NASA Astrophysics Data System (ADS)

    Jaffrain, J.; Berne, A.; Studzinski, A.; Pantillon, F.

    2009-04-01

    The microstructure of precipitation, in particular the raindrop size distribution (DSD hereafter), is of primary importance for quantitative interpretation of weather radar measurements. As an indirect measurement, radar rain rate estimation depends on the DSD via the Z-R relationship. As precipitation, DSD is characterized by a strong variability in space and time. In order to investigate the effect of the DSD variability at the pixel scale on radar rain rate estimation, a network of disdrometers has been set up. It consists of about 15 optical disdrometers PARSIVEL that are autonomous in terms of power supply (battery, solar panel) as well as data storage (data logger). The network is designed for real-time access and monitoring of data, favoring remote communication (radio modem and GPRS) for data transfer. The network is deployed on EPFL campus over a typical operational radar pixel (~ 1Ã-1 km) since late 2008. The first analyses highlight the uncertainty associated with DSD measurements as well as the variability of the DSD of precipitation over 1 km2.

  14. Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample.

    PubMed

    Ma, Zongqing; Liu, Yongchang; Yu, Liming; Cai, Qi

    2012-01-01

    The ball milling technique has been successfully applied to the synthesis of various materials such as equilibrium intermetallic phases, amorphous compounds, nanocrystalline materials, or metastable crystalline phases. However, how the phase composition and nanoscale microstructure evolute during ball milling in various materials is still controversial due to the complex mechanism of ball milling, especially in the field of solid-state amorphization caused by ball milling. In the present work, the phase evolution during the high-energy ball milling process of the Mg and Cu (atomic ratio is 1:1) mixed powder was investigated. It was found that Mg firstly reacts with Cu, forming the Mg2Cu alloy in the primary stage of ball milling. As the milling time increases, the diffracted peaks of Mg2Cu and Cu gradually disappear, and only a broad halo peak can be observed in the X-ray diffraction pattern of the final 18-h milled sample. As for this halo peak, lots of previous studies suggested that it originated from the amorphous phase formed during the ball milling. Here, a different opinion that this halo peak results from the very small size of crystals is proposed: As the ball milling time increases, the sizes of Mg2Cu and Cu crystals become smaller and smaller, so the diffracted peaks of Mg2Cu and Cu become broader and broader and result in their overlap between 39° and 45°, at last forming the amorphous-like halo peak. In order to determine the origin of this halo peak, microstructure observation and annealing experiment on the milled sample were carried out. In the transmission electron microscopy dark-field image of the milled sample, lots of very small nanocrystals (below 20 nm) identified as Mg2Cu and Cu were found. Moreover, in the differential scanning calorimetry curve of the milled sample during the annealing process, no obvious exothermic peak corresponding to the crystallization of amorphous phase is observed. All the above results confirm that the broad

  15. Dysgraphia in dementia: a systematic investigation of graphemic buffer features in a case series.

    PubMed

    Haslam, Catherine; Kay, Janice; Tree, Jeremy; Baron, Rachel

    2009-08-01

    In this paper we report findings from a systematic investigation of spelling performance in three patients - PR, RH and AC - who despite their different medical diagnoses showed a very consistent pattern of dysgraphia, more typical of graphemic buffer disorder. Systematic investigation of the features characteristic of this disorder in Study 1 confirmed the presence of length effects in spelling, classic errors (i.e., letter substitution, omission, addition, transposition), a bow-shaped curve in the serial position of errors and consistency in substitution of consonants and vowels. However, in addition to this clear pattern of graphemic buffer impairment, evidence of regularity effects and phonologically plausible errors in spelling raised questions about the integrity of the lexical spelling route in each case. A second study was conducted, using a word and non-word immediate delay copy task, in an attempt to minimise the influence of orthographic representations on written output. Persistence of graphemic buffer errors would suggest an additional, independent source of damage. Two patients, PR and AC, took part and in both cases symptoms of graphemic buffer disorder persisted. Together, these findings suggest that damage to the graphemic buffer may be more common than currently suggested in the literature. PMID:19370478

  16. Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features.

    PubMed

    Kelleher, S M; Habimana, O; Lawler, J; O' Reilly, B; Daniels, S; Casey, E; Cowley, A

    2016-06-22

    Recently, the surface of the wings of the Psaltoda claripennis cicada species has been shown to possess bactericidal properties and it has been suggested that the nanostructure present on the wings was responsible for the bacterial death. We have studied the surface-based nanostructure and bactericidal activity of the wings of three different cicadas (Megapomponia intermedia, Ayuthia spectabile and Cryptotympana aguila) in order to correlate the relationship between the observed surface topographical features and their bactericidal properties. Atomic force microscopy and scanning electron microscopy performed in this study revealed that the tested wing species contained a highly uniform, nanopillar structure on the surface. The bactericidal properties of the cicada wings were investigated by assessing the viability of autofluorescent Pseudomonas fluorescens cells following static adhesion assays and targeted dead/live fluorescence staining through direct microscopic counting methods. These experiments revealed a 20-25% bacterial surface coverage on all tested wing species; however, significant bactericidal properties were observed in the M. intermedia and C. aguila species as revealed by the high dead:live cell ratio on their surfaces. The combined results suggest a strong correlation between the bactericidal properties of the wings and the scale of the nanotopography present on the different wing surfaces. PMID:26551558

  17. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  18. Performing effective feature selection by investigating the deep structure of the data

    SciTech Connect

    Richeldi, M.; Lanzi, P.L.

    1996-12-31

    This paper introduces ADHOC (Automatic Discoverer of Fligher-Order Correlation), an algorithm that combines the advantages of both filter and feedback models to enhance the understanding of the given data and to increase the efficiency of the feature selection process. ADHOC partitions the observed features into a number of groups, called factors, that reflect the major dimensions of the phenomenon under consideration. The set of learned factors define the starting point of the search of the best performing feature subset. A genetic algorithm is used to explore the feature space originated by the factors and to determine the set of most informative feature configurations. The feature subset evaluation function is the performance of the induction algorithm. This approach offers three main advantages: (i) the likelihood of selecting good performing features grows; (ii) the complexity of search diminishes consistently; (iii) the possibility of selecting a bad feature subset due to overfitting problems decreases. Extensive experiments on real-world data have been conducted to demonstrate the effectiveness of ADHOC as data reduction technique as well as feature selection method.

  19. Primary combination of phase-field and discrete dislocation dynamics methods for investigating athermal plastic deformation in various realistic Ni-base single crystal superalloy microstructures

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo

    2015-10-01

    Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.

  20. Electron Backscattered Diffraction Analysis Of Narrow Copper Interconnects In Cross-View To Investigate Scale Effect On Microstructure

    SciTech Connect

    Galand, Romain; Clement, Laurent; Waltz, Patrice; Wouters, Yves

    2010-11-24

    In this article, we propose to use Electron Backscattered Diffraction (EBSD) to characterize microstructure of copper interconnects of thin metal level in top view and cross view. These two views give very complementary information about microstructure of copper and thus about recrystallization of copper during annealing. Moreover, for minimum width, as interconnect is two times thicker than wide; It will be easier to analyze smaller interconnect of 45 nm node technology in cross-section. We look for evolution of texture and microstructure of copper with line width in top view and in cross view. We highlight the presence of two recrystallization mechanisms and also the fact that transition from one to the other is progressive with competition of both mechanisms.

  1. Judging a Book by Its Cover: An Investigation of Peritextual Features in Caldecott Award Books

    ERIC Educational Resources Information Center

    Martinez, Miriam; Stier, Catherine; Falcon, Lori

    2016-01-01

    While scholars have recognized the meaning making potential offered by the peritext of picturebooks, there has previously been only limited research on the nature of peritextual features. This content analysis focused on the ways in which various peritextual features (dust jackets, beginning endpapers, illustrations before title page, title pages,…

  2. Explosive crystallization of PZT microstructures by femtosecond infrared radiation

    NASA Astrophysics Data System (ADS)

    Elshin, A. S.; Firsova, N. Yu; Emelianov, V. I.; Pronin, I. P.; Senkevich, S. V.; Zhigalina, O. M.; Mishina, E. D.; Sigov, A. S.

    2015-12-01

    The features of microstructure crystallization into perovskite phase in lead zirconate titanate film by femtosecond laser radiation of near-infrared range were discussed. In-situ crystallization kinetics by method of second harmonic generation (SHG) was studied. The presence of several types of crystallization was shown, including ultra-fast (explosive) crystallization occurring immediately after the start of exposure, and slow (self-sustaining) crystallization, occurring after termination of exposure. The advantage of the second-harmonic generation microscopy for the study of annealed microstructures was shown. The morphology of microstructures was investigated by transmission electron microscopy (TEM).

  3. Investigation of optimal feature value set in false positive reduction process for automated abdominal lymph node detection method

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshihiko; Nimura, Yukitaka; Kitasaka, Takayuki; Mizuno, Shinji; Furukawa, Kazuhiro; Goto, Hidemi; Fujiwara, Michitaka; Misawa, Kazunari; Ito, Masaaki; Nawano, Shigeru; Mori, Kensaku

    2015-03-01

    This paper presents an investigation of optimal feature value set in false positive reduction process for the automated method of enlarged abdominal lymph node detection. We have developed the automated abdominal lymph node detection method to aid for surgical planning. Because it is important to understand the location and the structure of an enlarged lymph node in order to make a suitable surgical plan. However, our previous method was not able to obtain the suitable feature value set. This method was able to detect 71.6% of the lymph nodes with 12.5 FPs per case. In this paper, we investigate the optimal feature value set in the false positive reduction process to improve the method for automated abdominal lymph node detection. By applying our improved method by using the optimal feature value set to 28 cases of abdominal 3D CT images, we detected about 74.7% of the abdominal lymph nodes with 11.8 FPs/case.

  4. Investigation of context, soft spatial, and spatial frequency domain features for buried explosive hazard detection in FL-LWIR

    NASA Astrophysics Data System (ADS)

    Price, Stanton R.; Anderson, Derek T.; Stone, Kevin; Keller, James M.

    2014-05-01

    It is well-known that a pattern recognition system is only as good as the features it is built upon. In the fields of image processing and computer vision, we have numerous spatial domain and spatial-frequency domain features to extract characteristics of imagery according to its color, shape and texture. However, these approaches extract information across a local neighborhood, or region of interest, which for target detection contains both object(s) of interest and background (surrounding context). A goal of this research is to filter out as much task irrelevant information as possible, e.g., tire tracks, surface texture, etc., to allow a system to place more emphasis on image features in spatial regions that likely belong to the object(s) of interest. Herein, we outline a procedure coined soft feature extraction to refine the focus of spatial domain features. This idea is demonstrated in the context of an explosive hazards detection system using forward looking infrared imagery. We also investigate different ways to spatially contextualize and calculate mathematical features from shearlet filtered candidate image chips. Furthermore, we investigate localization strategies in relation to different ways of grouping image features to reduce the false alarm rate. Performance is explored in the context of receiver operating characteristic curves on data from a U.S. Army test site that contains multiple target and clutter types, burial depths, and times of day.

  5. An investigation of the microstructure and mechanical properties of electrochemically coated Ag(4)Sn dental alloy particles condensed in vitro

    NASA Astrophysics Data System (ADS)

    Marquez, Jose Antonio

    As part of the ongoing scientific effort to develop a new amalgam-like material without mercury, a team of metallurgists and electrochemists at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, announced in 1993 the development of a new Ag-Sn dental alloy system without mercury that sought to replace conventional dental amalgams. They used spherical Ag3Sn and Ag4Sn intermetallic dental alloy particles, commonly used in conventional dental alloys, and coated them with electrodeposited silver with newly-developed electrolytic and immersion techniques. The particles had relatively pure silver coatings that were closely adherent to the intermetalfic cores. These silver-coated particles, due to silver's plasticity at room temperature, were condensed into PlexiglasRTM molds with the aid of an acidic surface activating solution (HBF4) and a mechanical condensing device, producing a metal-matrix composite with Ag3,4Sn filler particles surrounded by a cold-welded silver matrix. Since silver strain hardens rather easily, the layers had to be condensed in less than 0.5 mm increments to obtain a dense structure. Mechanical testing at NIST produced compressive strength values equal to or greater than those of conventional dental amalgams. Because of its potential for eliminating mercury as a constituent in dental amalgam, this material created a stir in dental circles when first developed and conceivably could prove to be a major breakthrough in the field of dental restoratives. To date, the chief impediments to its approval for human clinical applications by the Food and Drug Administration are the potentially-toxic surface activating solution used for oxide reduction, and the high condensation pressures needed for cold welding because of the tendency for silver to strain harden. In this related study, the author, who has practiced general dentistry for 25 years, evaluates some of the mechanical and microstructural properties of these

  6. No place for /h/: an ERP investigation of English fricative place features

    PubMed Central

    Schluter, Kevin; Politzer-Ahles, Stephen; Almeida, Diogo

    2016-01-01

    ABSTRACT The representational format of speech units in long-term memory is a topic of debate. We present novel event-related brain potential evidence from the Mismatch Negativity (MMN) paradigm that is compatible with abstract, non-redundant feature-based models like the Featurally Underspecified Lexicon (FUL). First, we show that the fricatives /s/ and /f/ display an asymmetric pattern of MMN responses, which is predicted if /f/ has a fully specified place of articulation ([Labial]) but /s/ does not ([Coronal], which is lexically underspecified). Second, we show that when /s/ and /h/ are contrasted, no such asymmetric MMN pattern occurs. The lack of asymmetry suggests both that (i) oral and laryngeal articulators are represented distinctly and that (ii) /h/ has no oral place of articulation in long-term memory. The lack of asymmetry between /s/ and /h/ is also in-line with traditional feature-geometric models of lexical representations. PMID:27366758

  7. Experimental investigations and multiscale modeling of the microstructure evolution and the mechanical properties of a ferritic steel grade during the production process

    NASA Astrophysics Data System (ADS)

    Helm, Dirk; Baiker, Maria; Bienger, Pierre

    2013-05-01

    The process chain for sheet metals after casting to produce components made of semi-finished products is complex and the resulting mechanical properties of the produced material depend strongly on the evolution of the microstructure. After casting, a typical process chain consists of hot rolling, cold rolling, annealing, skin pass rolling, and sheet metal forming. In order to represent the microstructure evolution in an adequate way, a multiscale modeling concept is applied for the process steps cold rolling, annealing, and sheet metal forming. In this Integrated Computational Materials Engineering (ICME) concept, the strong microstructure evolution during the production of semi-finished products is modeled by using crystal plasticity for the representation of the cold rolling process and a cellular automaton is incorporated to model the annealing procedure. In both cases, only the microstructure in an adequate unit cell is considered. For sheet metal forming, the whole component has to be simulated together with the interaction between workpiece and the forming tools in order to solve technological problems like springback. For this purpose, classical macroscopic plasticity models have been applied. To connect the different length scales of the modeling approaches, a scale transition on the basis of numerical homogenization is introduced for the determination of the mechanical properties like the multi-axial yield behavior. These information are required to virtually determine the type of the macroscopic plasticity model, the material parameters of the plasticity model, and to simulate sheet metal forming processes. In the article, the different modeling approaches are compared step by step with experimental investigations in order to prove the predictability of each modeling technique.

  8. Toward Automated Multi-Trait Scoring of Essays: Investigating Links among Holistic, Analytic, and Text Feature Scores

    ERIC Educational Resources Information Center

    Lee, Yong-Won; Gentile, Claudia; Kantor, Robert

    2010-01-01

    The main purpose of the study was to investigate the distinctness and reliability of analytic (or multi-trait) rating dimensions and their relationships to holistic scores and "e-rater"[R] essay feature variables in the context of the TOEFL[R] computer-based test (TOEFL CBT) writing assessment. Data analyzed in the study were holistic and…

  9. An Investigation of the 3-μm Feature in M-Type Asteroids

    NASA Astrophysics Data System (ADS)

    Landsman, Zoe A.; Campins, H.; Hargrove, K.; Pinilla-Alonso, N.; Emery, J.; Ziffer, J.

    2013-10-01

    The M-type asteroids had originally been interpreted as the disrupted iron cores of differentiated bodies by spectral analogy with the NiFe meteorites. More detailed studies have since indicated a range of compositions. In particular, the presence of a 3-µm feature, diagnostic of hydration, detected in more than 35% of surveyed M-type asteroids (Jones et al. 1990, Rivkin et al. 1995, 2000) has challenged the notion that these bodies are all metallic. Spectroscopy in the 0.8 - 2.5 µm region has revealed absorption features due to mafic silicates and hydroxides or phyllosilicates (Fornasier et al. 2010, Hardersen et al. 2006, 2010, Ockert-Bell et al. 2010). Radar studies have shown that most M-types are not likely to be iron cores, but they typically have a higher metal content than average (Shepard et al. 2010). Taken together, these results paint a fairly confounding picture of the M-type asteroids. While several interpretations have been suggested, more work is needed to clarify the mineralogy of these bodies. We have started a new spectroscopic study of the M asteroids in the 2 - 4 µm region. We seek to characterize the shape, band center, and band depth of the 3-µm feature where it is present, as these measures are indicative of the type and extent of hydration present on asteroids (Lebofsky et al. 1985, Rivkin et al. 2002, Takir & Emery 2012, Volguardsen et al. 2007). With this work, we hope to shed new light on the origin of hydration on M asteroids and its context within their mineralogy and thermal evolution. In July 2013, we obtained 2 - 4 µm spectra for 69 Hesperia, 136 Austria, and 261 Prymno with the SpeX at NASA’s IRTF, and are in the process of reducing the data. We have also obtained 0.8 - 2.0 µm data for 261 Prymno using the NICS at the TNG in February 2013. We report the presence of an absorption feature near 0.9 µm in Prymno’s spectrum, indicating a partially silicate composition. Based on spectral, physical and orbital similarities to

  10. Investigations of the electron field emission properties and microstructure correlation in sulfur-incorporated nanocrystalline carbon thin films

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Weiner, B. R.; Morell, G.

    2002-06-01

    Results are reported on the electron field emission properties of sulfur (S)-incorporated nanocrystalline carbon (n-C:S) thin films grown on molybdenum (Mo) substrates by hot-filament chemical vapor deposition (HFCVD) technique. In addition to the conventionally used methane (CH4) as carbon precursor with high hydrogen (H2) dilution, hydrogen sulfide-hydrogen (H2)S/H2 premix gas was used for sulfur incorporation. The field emission properties for the S-incorporated films were investigated systematically as a function of substrate temperature (TS) and sulfur concentration. Lowest turn-on field achieved was observed at around 4.0 V/mum for the n-C:S sample grown at TS of 900 degC with 500 ppm of H2S. These results are compared with those films grown without sulfur (n-C) at a particular TS. The turn-on field was found to be almost half for the S-assisted film thus demonstrating the effect of sulfur addition to the chemical vapor deposition process. An inverse relation between turn-on field (EC), growth temperature and sulfur concentration was found. The S incorporation also causes significant microstructural changes, as characterized with non-destructive complementary ex situ techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy (RS). S-assisted films show relatively smoother and finer-grained surfaces than those grown without it. These findings are discussed in terms of the dual role of sulfur in enhancing the field emission properties by controlling the sp2 C cluster size and introducing substantial structural defects through its incorporation. The in-plane correlation length (La) of sp2 C cluster was determined from the intensity ratio of the D- and G-bands I(D)/I(G) in the visible RS as a function of deposition temperature and sulfur concentration using a phenomenological model. The turn-on field was found to decrease with increasing sp2 C cluster size in general ranging from 0.8 to 1.4 nm. The films having sp2 C

  11. Investigating the role of content knowledge, argumentation, and situational features to support genetics literacy

    NASA Astrophysics Data System (ADS)

    Shea, Nicole Anne

    Science curriculum is often used as a means to train students as future scientists with less emphasis placed on preparing students to reason about issues they may encounter in their daily lives (Feinstein, Allen, & Jenkins, 2013; Roth & Barton, 2004). The general public is required to think scientifically to some degree throughout their life and often across a variety of issues. From an empirical standpoint, we do not have a robust understanding of what scientific knowledge the public finds useful for reasoning about socio-scientific issues in their everyday lives (Feinstein, 2011). We also know very little about how the situational features of an issue influences reasoning strategy (i.e., the use of knowledge to generate arguments). Rapid advances in science - particularly in genetics - increasingly challenge the public to reason about socio-scientific issues. This raises questions about the public's ability to participate knowledgeably in socio-scientific debates, and to provide informed consent for a variety of novel scientific procedures. This dissertation aims to answer the questions: How do individuals use their genetic content knowledge to reason about authentic issues they may encounter in their daily lives? Individuals' scientific knowledge is a critical aspect of scientific literacy, but what scientific literacy looks like in practice as individuals use their content knowledge to reason about issues comprised of different situational features is still unclear. The purpose of this dissertation is to explore what knowledge is actually used by individuals to generate and support arguments about a variety of socio-scientific issues, and how the features of those issues influences reasoning strategy. Three studies were conducted to answer questions reflecting this purpose. Findings from this dissertation provide important insights into what scientific literacy looks like in practice.

  12. An investigation of the high-temperature and solidification microstructures of PH 13-8 Mo stainless steel

    NASA Astrophysics Data System (ADS)

    Cieslak, M. J.; Hills, C. R.; Hlava, P. F.; David, S. A.

    1990-09-01

    Differential thermal analysis (DTA), high-temperature water-quench (WQ) experiments, and optical and electron microscopy were used to establish the near-solidus and solidification microstructures in PH 13-8 Mo. On heating at a rate of 0. 33 °C/s, this alloy begins to transform from austenite to δ-ferrite at ≈1350 °C. Transformation is complete by ≈1435 °C. The solidus is reached at ≈1447 °C, and the liquidus is ≈1493 °C. On cooling from the liquid state at a rate of 0. 33 °C/s, solidification is completed as δ-ferrite with subsequent transformation to austenite beginning in the solid state at ≈1364 °C. Insufficient time at temperature is available for complete transformation and the resulting room-temperature microstructure consists of matrix martensite (derived from the shear decomposition of the austenite) and residual δ-ferrite. The residual δ-ferrite in the DTA sample is enriched in Cr (≈16 wt pct), Mo (≈4 wt pct), and Al (≈1. 5 wt pct) and depleted in Ni (≈4 wt pct) relative to the martensite (≈12. 5 wt pct Cr, ≈2 wt pct Mo, ≈1 wt pct Al, ≈9 wt pct Ni). Solid-state transformation of δ σ γ was found to be quench-rate sensitive with large grain, fully ferritic microstructures undergoing a massive transformation as a result of water quenching, while a diffusionally controlled Widmanstätten structure was produced in air-cooled samples.

  13. Submicron scale 3D investigation of kelyphyites after garnet: thermodynamics, crystallographic orientation, microstructure evolution and fluid-rock interactions

    NASA Astrophysics Data System (ADS)

    Dégi, Júlia; Török, Kálmán; Németh, Bianca; Rhede, Dieter; Takács, Ágnes; Habler, Gerlinde; Abart, Rainer

    2016-04-01

    Complex kelyphitic rims after garnet were studied in a lower crustal mafic granulite xenolith from the Bakony-Balaton Highland Volcanic Field, W-Hungary. The xenolith is dominated by a garnet granulite mineral assemblage equilibrated at 900 ° C, 1.4 GPa within the overthickened orogenic root of the Alps. Garnet breakdown was initiated during the extension of the Pannonian Basin and remained continuous until the xenoliths reached the surface. This resulted in the formation of various microstructural domains within the kelyphitic rims which were distinguished to three main types: fine-grained symplectites, recrystallized symplectites and cyrstallized melts. Fine-grained symplectites are the products of isochemical breakdown of garnet to pure anorthite, Al-orthopyroxene and hercynitic spinel. Nanoscale topography built up by curved chains of humps on the garnet surface showing regular spatial distribution is observed at the reaction front in 3D reconstructions. These patterns follow the contours of anorthites nucleating at the reaction front. This suggests that diffusion-controlled material transfer in solid state together with surface energy minimization determines symplectite microstructure. The latter leads to continuous isochemical coarsening getting further from the reaction front. Slight increase of Na and Ti-content in fine-grained symplectites is associated with sudden changes in 3D microstructure reflecting the effect of aquaeous fluids infiltrating to the reaction rim. A similar aquaeous fluid may have induced the formation of nearly isochemical melting and in situ recrystallization of the symplectites to form recrystallized symplectites. Some of these remained pristine, while some experienced ductile deformation and re-melting due to a reaction with an external melt in the lower crust. Well-crystallized melt pockets consisting of complexly zoned pyroxene, spinel and plagioclase grains were formed around 1000 ° C in this stage. Following this, interaction

  14. Jackpot Expiry: An Experimental Investigation of a New EGM Player-Protection Feature.

    PubMed

    Rockloff, Matthew J; Donaldson, Phillip; Browne, Matthew

    2015-12-01

    Given the evidence for the motivating influence of electronic gaming machines (EGM) jackpots on intensifying player behaviour (Rockloff and Hing in J Gambl Stud 1-7, 2013), there is good reason to explore consumer-protection features. Jackpot Expiry is a potential feature of a mandatory pre-commitment system or player identification system (e.g., loyalty program) whereby the availability of jackpots expires after a fixed interval of play. One hundred and thirty volunteers (males = 56, females = 74) played a laptop-simulated EGM with a starting $20 real-money stake. In the test condition, players were shown a "relevant" message stating that the promised jackpot had expired and could no longer be won by the participant (after the 20th trial). In the irrelevant message condition a similar pop-up message simply said to push the button to continue. Lastly, a control condition had no pop-up message about the jackpot expiring. The results showed that betting speeds (one indicator of gambling intensity) were significantly slowed by the relevant 'expiry' message. Most importantly, all wagers past the 20th trial were programmed as losses. Player receiving the 'expiry' message for a cash jackpot quit with significantly more money remaining on the machine. Therefore, jackpot expiry was effective in limiting player losses, while there was no evidence that jackpot expiry reduced self-rated player enjoyment of the simulated EGM experience. PMID:24871299

  15. Investigation of the microstructure and mineralogical composition of urinary calculi fragments by synchrotron radiation X-ray microtomography: a feasibility study.

    PubMed

    Kaiser, Jozef; Holá, Markéta; Galiová, Michaela; Novotný, Karel; Kanický, Viktor; Martinec, Petr; Sčučka, Jiří; Brun, Francesco; Sodini, Nicola; Tromba, Giuliana; Mancini, Lucia; Kořistková, Tamara

    2011-08-01

    The outcomes from the feasibility study on utilization of synchrotron radiation X-ray microtomography (SR-μCT) to investigate the texture and the quantitative mineralogical composition of selected calcium oxalate-based urinary calculi fragments are presented. The comparison of the results obtained by SR-μCT analysis with those derived from current standard analytical approaches is provided. SR-μCT is proved as a potential effective technique for determination of texture, 3D microstructure, and composition of kidney stones. PMID:21161649

  16. Effect of microstructure on the properties of MoSi{sub 2} and its composites

    SciTech Connect

    Newman, A.; Jewett, T.; Sampath, S.; Herman, H.

    1997-12-31

    The effects of processing on the microstructure and properties of MoSi{sub 2} are examined. A diverse array of samples, processed through a variety of means, were investigated for their microstructural features and indentation fracture behavior. Results from this study indicate that a finely dispersed secondary phase enhances tortuous crack paths, crack branching, and microcracking, thereby improving fracture toughness. The effects of substitutional alloying (Re, Al) and composite additions (SiC) have also been investigated.

  17. The distinguishing characteristics of narrative identity in adults with features of borderline personality disorder: an empirical investigation.

    PubMed

    Adler, Jonathan M; Chin, Erica D; Kolisetty, Aiswarya P; Oltmanns, Thomas F

    2012-08-01

    While identity disturbance has long been considered one of the defining features of Borderline Personality Disorder (BPD), the present study marks only the third empirical investigation to assess it and the first to do so from the perspective of research on narrative identity. Drawing on the rich tradition of studying narrative identity, the present study examined identity disturbance in a group of 40 mid-life adults, 20 with features of BPD and a matched sample of 20 without BPD. Extensive life story interviews were analyzed for a variety of narrative elements and the themes of agency, communion fulfillment (but not communion), and narrative coherence significantly distinguished the stories of those people with features of BPD from those without the disorder. In addition, associations between the theme of agency and psychopathology were evident six and twelve months following the life story interview. This study seeks to bridge the mutually-informative fields of research on personality disorders and normal identity processes. PMID:22867502

  18. Investigation of the clinical features in filamentary keratitis in Hangzhou, east of China

    PubMed Central

    Chen, Siming; Ruan, Yimeng; Jin, Xiuming

    2016-01-01

    Abstract Filamentary keratitis (FK) is a chronic and recurrent disorder of the cornea. FK is reportedly associated with various kinds of ocular surface diseases or conditions. Until now, there have been lacks of studies based on quantitative sample analysis concerning FK incidence regularity and inducement characteristics at different ages. This was a retrospective study of 147 patients (162 eyes) with FK who had been continuously and completely recorded from August 2012 to August 2015 at the Second Affiliated Hospital of Zhejiang University in Hangzhou, east of China. Our results suggest that the causative factors of FK varied at different ages and the distribution of filaments on the corneal surface was also diverse with different inducements. By exploring the frequency and clinical features of FK, we believe that the findings from our research will be clinically significant and aid in the early prevention and treatment guidance of the disease. PMID:27583881

  19. Search for DNA conformational features for functional sites. Investigation of the TATA box

    SciTech Connect

    Ponomarenko, M.P.; Ponomarenko, J.V.; Kel, A.E.; Kolchanov, N.A.

    1996-12-31

    A method for searching for DNA conformational features significant for functional sites is developed. The method uses helical angles averaged for known X-ray structures. Nucleotide sequences are assigned mean angles in a given region. Choice of the significant angles is based on their capabilities to discriminate functional sites from random sequences. The yeast, invertebrate, and vertebrate TATA boxes are analyzed using this method. Regions neighboring the TATA boxes are found to have smaller helical twist and roll angles. The results agree with the experimental data on Dickerson-Drew dodecamers. There is a significant decrease in the length of a small roll angle region with increasing complexity of taxon organization. 28 refs., 3 figs., 3 tabs.

  20. Investigating chaotic features in solar radiation over a tropical station using recurrence quantification analysis

    NASA Astrophysics Data System (ADS)

    Ogunjo, Samuel T.; Adediji, Adekunle T.; Dada, Joseph B.

    2015-09-01

    The use of solar energy for power generation and other uses is on the increase. This demand necessitate a better understanding of the underlying dynamics for better prediction. Nonlinear dynamics and its associated tools readily lend itself for such analysis. In this paper, nonlinearity in solar radiation data is tested using recurrence plot (RP) and recurrence quantification analysis (RQA) in a tropical station. The data used was obtained from an ongoing campaign at the Federal University of Technology, Akure, Southwestern Nigeria using an Integrated Sensor Suite (Vantage2 Pro). Half hourly and daily values were tested for each month of the year. Both were found to be nonlinear. The dry months of the year exhibit higher chaoticity compared to the wet months of the year. The daily average values were found to be mildly chaotic. Using RQA, features due to external effects such as harmattan and intertropical discontinuity (ITD) on solar radiation data were uniquely identified.

  1. Investigation of the clinical features in filamentary keratitis in Hangzhou, east of China.

    PubMed

    Chen, Siming; Ruan, Yimeng; Jin, Xiuming

    2016-08-01

    Filamentary keratitis (FK) is a chronic and recurrent disorder of the cornea. FK is reportedly associated with various kinds of ocular surface diseases or conditions. Until now, there have been lacks of studies based on quantitative sample analysis concerning FK incidence regularity and inducement characteristics at different ages. This was a retrospective study of 147 patients (162 eyes) with FK who had been continuously and completely recorded from August 2012 to August 2015 at the Second Affiliated Hospital of Zhejiang University in Hangzhou, east of China. Our results suggest that the causative factors of FK varied at different ages and the distribution of filaments on the corneal surface was also diverse with different inducements.By exploring the frequency and clinical features of FK, we believe that the findings from our research will be clinically significant and aid in the early prevention and treatment guidance of the disease. PMID:27583881

  2. A modelling investigation of solute transport in permeable porous media containing a discrete preferential flow feature

    NASA Astrophysics Data System (ADS)

    Sebben, Megan L.; Werner, Adrian D.

    2016-08-01

    Preferential flow features (PFFs, e.g. fractures and faults) are common features in rocks that otherwise have significant matrix permeability. Despite this, few studies have explored the influence of a PFF on the distribution of solute plumes in permeable rock formations, and the current understanding of PFF effects on solute plumes is based almost entirely on low-permeability rock matrices. This research uses numerical modelling to examine solute plumes that pass through a PFF in permeable rock, to explore the PFF's influence on plume migration. The study adopts intentionally simplified arrangements involving steady-state solute plumes in idealised, moderate-to-high-permeability rock aquifers containing a single PFF. A range of matrix-PFF permeability ratios (4.9 × 10-6-2.5 × 10-2), typical of fractured sedimentary aquifers, is considered. The results indicate that for conditions representative of high-to-moderate-permeability sedimentary rock matrices containing a medium-sized fracture, the effect of the PFF on solute plume displacement and spreading can be considerable. For example, plumes are between 1.3 and 19 times wider than in associated porous media only scenarios, and medium-sized PFFs in moderately permeable matrices can reduce the maximum solute concentration by up to 104 times. Plume displacement and spreading is lower in aquifers of higher matrix-PFF permeability ratios, and where solute plumes are more dispersed at the point of intersection with the PFF. Asymmetry in the plume caused by the passage through the PFF is more pronounced for more dispersive plumes. The current study demonstrates that PFFs most likely govern solute plume characteristics in typical permeable matrices, given that a single PFF of aperture representing a medium-sized fracture (i.e. 5.0 × 10-4m) produces the equivalent spreading effects of 0.22-7.88 m of plume movement through the permeable matrix.

  3. The features of infrared spectrum of bio-polymer and its theoretical investigation

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng

    2015-12-01

    We have here an insight into the features of molecular structures of bio-polymers with α-helix structure using infrared spectrum and elucidated theoretically, its relationship with bio-functions. In this case, we analyzed first the features of molecular structure of collagen and collected further the infrared spectrum of absorption of collagen and bovine serum albumin containing α-helix conformation in 400-4000 cm-1 as well as their changes of strength of infrared absorption with varying temperatures using Fourier Transform-Infrared (FT-IR) spectrometers in the region of 15-95°C. The results show that there is a new band of 1650 cm-1 close to the amide-I band of 1666 cm-1 or 1670 cm-1 in these bio-polymers, its strength decreases exponentially with increasing temperature of the systems, which can be expressed by exp[-(0.437 + 8.987 × 10-6 T2)], but 1666 cm-1 band increases linearly with increasing temperature. We calculated the energy spectrum of the protein molecules with α-helix conformation using the Soliton Theory of bio-energy transport, which are basically same with the experimental results measured by us. From these results and soliton theory we can conclude that the nonlinear soliton excitation, corresponding to 1650 cm-1 band and the exciton excitation, is related to 1666 cm-1 band, exists in the collagen and bovine serum albumin. In the meanwhile, these results also verified that the soliton theory of bio-energy transport along α-helix bio-polymers is appropriate to the protein molecules with α-helix conformation. Therefore, the studied results are helpful to elucidate the relationship between the molecular structure and bio-function of these bio-polymers.

  4. A Microstructural and Kinetic Investigation of the KCl-Induced Corrosion of an FeCrAl Alloy at 600 °C

    SciTech Connect

    Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; Jonsson, T.; Norell, M.; Svensson, J. -E.; Johansson, L. -G.

    2015-03-18

    In this paper, the corrosion behaviour of a FeCrAl alloy was investigated at 600 °C in O2 + H2O with solid KCl applied. A kinetics and microstructural investigation showed that KCl accelerates corrosion and that potassium chromate formation depletes the protective scale in Cr, thus triggering the formation of a fast-growing iron-rich scale. Iron oxide was found to grow both inward and outward, on either side of the initial oxide. A chromia layer is formed with time underneath the iron oxide. Finally, it was found that although the alloy does not form a continuous pure alumina scale at the investigated temperature, aluminium is, however, always enriched at the oxide/alloy interface.

  5. Investigating Neuroanatomical Features in Top Athletes at the Single Subject Level

    PubMed Central

    Taubert, Marco; Wenzel, Uwe; Draganski, Bogdan; Kiebel, Stefan J.; Ragert, Patrick; Krug, Jürgen; Villringer, Arno

    2015-01-01

    In sport events like Olympic Games or World Championships competitive athletes keep pushing the boundaries of human performance. Compared to team sports, high achievements in many athletic disciplines depend solely on the individual’s performance. Contrasting previous research looking for expertise-related differences in brain anatomy at the group level, we aim to demonstrate changes in individual top athlete’s brain, which would be averaged out in a group analysis. We compared structural magnetic resonance images (MRI) of three professional track-and-field athletes to age-, gender- and education-matched control subjects. To determine brain features specific to these top athletes, we tested for significant deviations in structural grey matter density between each of the three top athletes and a carefully matched control sample. While total brain volumes were comparable between athletes and controls, we show regional grey matter differences in striatum and thalamus. The demonstrated brain anatomy patterns remained stable and were detected after 2 years with Olympic Games in between. We also found differences in the fusiform gyrus in two top long jumpers. We interpret our findings in reward-related areas as correlates of top athletes’ persistency to reach top-level skill performance over years. PMID:26079870

  6. Investigation of the features of polycrystals complex loading using a two-level crystal plasticity theory

    NASA Astrophysics Data System (ADS)

    Volegov, P. S.; Trusov, P. V.; Gribov, D. S.

    2015-01-01

    The article considers a two-level mathematical model of inelastic deformation of metal polycrystals taking into account evolution of the structure. The structure of the model was considered, some special features of its application to describe the intensity of inelastic deformations were marked. The need for a careful physical analysis of the hardening laws construction was highlighted. To evaluate the applicability of multi-level models to describe the known experimental effects of cyclic deformation a number of results of field experiments on the complex proportional and disproportional cyclic deformation was considered, some specific effects that appear in these processes were identified: stresses amplitude output at the stationary value; additional cyclic hardening at a disproportionate loading, which magnitude depends on the so-called degree of disproportionality. Numerical experiments on the disproportionate cyclic loading were carried out, the possibility of modified hardening laws to describe access to the stationary values of the stress intensity was noted, and also the possibility of a qualitative description of the effect of additional cyclic hardening was demonstrated. The A.A. Ilyushin hypothesis by isotropy and the principle of vector properties delay at the turn of the deformation path were validated.

  7. Investigation of features of plastic deformation and fracture of fine-crystalline V-4Ti-4Cr alloy

    SciTech Connect

    Grinyaev, Konstantin V. Tyumentsev, Alexander N.; Ditenberg, Ivan A.; Smirnov, Ivan V.; Chernov, Vyacheslav M. E-mail: mmp@bochvar.ru; Potapenko, Mikhail M. E-mail: mmp@bochvar.ru

    2014-11-14

    With the use of transmission electron microscopy the investigation of defect substructure was carried out in the V-4Ti-4Cr-(C, N, O) alloy with disperse strengthening (by nanoparticles of oxy-carbo-nitride phase) after deformation by active tension at temperatures of 20 and 800 °C. It has been shown that an important feature of plastic deformation is deformation localization with crystal lattice reorientation.

  8. Comparative investigation of CuFe2O4 nano and microstructures for structural, morphological, optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Raja, G.; Gopinath, S.; Raj, R. Azhagu; Shukla, Arun K.; Alhoshan, Mansour S.; Sivakumar, K.

    2016-09-01

    CuFe2O4 nanocrystals were synthesized by the sol-gel method (SGM) and microwave method (MM) by using sucrose as a fuel. The structural, morphological, optical and magnetic properties of the products were determined and characterized in detail by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). The XRD results confirmed the formation of cubic phase CuFe2O4. The formation of CuFe2O4 nano and microstructures were confirmed by HR-SEM. Photoluminescence emissions were determined by PL spectra, respectively. The relatively high saturation magnetization (78.22 emu/g) of CuFe2O4-MM shows that it is ferromagnetic and low saturation magnetization (35.98 emu/g) of CuFe2O4O-SGM confirms the super paramagnetic behavior.

  9. Investigating tectonic and bathymetric features of the Indian Ocean using MAGSAT magnetic anomaly data

    NASA Technical Reports Server (NTRS)

    Sailor, R. V.; Lazarewicz, A. R. (Principal Investigator)

    1982-01-01

    An equivalent source anomaly map and a map of the relative magnetization for the investigation region were produced. Gravimetry, bathymetry, and MAGSAT anomaly maps were contoured in pseudocolor displays. Finally, an autoregressive spectrum estimation technique was verified with synthetic data and shown to be capable of resolving exponential power spectra using small samples of data. Interpretations were made regarding the relationship between MAGSAT data spectra and crustal anomaly spectra.

  10. In Situ Investigation of the 3D Mechanical Microstructure at Nanoscale: Nano-CT Imaging Method of Local Small Region in Large Scale Sample

    PubMed Central

    Xu, Feng; Hu, Xiao-fang; Qu, Hong-yan; Kang, Dan; Xiao, Ti-qiao

    2014-01-01

    To investigate the local micro-/nanoscale region in a large scale sample, an image reconstruction method for nanometer computed tomography (nano-CT) was proposed in this paper. In the algorithm, wavelets were used to localize the filtered-backprojection (FBP) algorithm because of its space-frequency localization property. After the implementation of the algorithm, two simulation local reconstruction experiments were performed to confirm its effectiveness. Three evaluation criteria were used in the experiments to judge the quality of the reconstructed images. The experimental results showed that the algorithm proposed in this paper performed best because (1) the quality of its results had improved 20%–30% compared to the results of FBP and 10%–30% compared to the results of another wavelet algorithm; (2) the new algorithm was stable under different circumstances. Besides, an actual reconstruction experiment was performed using real projection data that had been collected in a CT experiment. Two-dimensional (2D) and three-dimensional (3D) images of the sample were reconstructed. The microstructure of the sample could be clearly observed in the reconstructed images. Since much attention has been directed towards the nano-CT technique to investigate the microstructure of materials, this new wavelet-based local tomography algorithm could be considered as a meaningful effort. PMID:24723829

  11. In situ investigation of the 3D mechanical microstructure at nanoscale: nano-CT imaging method of local small region in large scale sample.

    PubMed

    Dong, Bo; Xu, Feng; Hu, Xiao-fang; Qu, Hong-yan; Kang, Dan; Xiao, Ti-qiao

    2014-01-01

    To investigate the local micro-/nanoscale region in a large scale sample, an image reconstruction method for nanometer computed tomography (nano-CT) was proposed in this paper. In the algorithm, wavelets were used to localize the filtered-backprojection (FBP) algorithm because of its space-frequency localization property. After the implementation of the algorithm, two simulation local reconstruction experiments were performed to confirm its effectiveness. Three evaluation criteria were used in the experiments to judge the quality of the reconstructed images. The experimental results showed that the algorithm proposed in this paper performed best because (1) the quality of its results had improved 20%-30% compared to the results of FBP and 10%-30% compared to the results of another wavelet algorithm; (2) the new algorithm was stable under different circumstances. Besides, an actual reconstruction experiment was performed using real projection data that had been collected in a CT experiment. Two-dimensional (2D) and three-dimensional (3D) images of the sample were reconstructed. The microstructure of the sample could be clearly observed in the reconstructed images. Since much attention has been directed towards the nano-CT technique to investigate the microstructure of materials, this new wavelet-based local tomography algorithm could be considered as a meaningful effort. PMID:24723829

  12. High-Resolution Seismic Investigation of a Surface Collapse Feature at Weeks Island Salt Dome, Louisiana

    NASA Astrophysics Data System (ADS)

    Miller, R. D.; Xia, J.; Harding, R. S.; Steeples, D. W.

    2005-05-01

    Seismic imaging techniques delineated the subsurface expression of an active sinkhole above a former salt mine at Weeks Island, Louisiana, which was used at the time by the U.S. Department of Energy's Strategic Petroleum Reserve. (The Weeks Island salt dome is no longer part of the Reserve.) The sinkhole, which at the time of the survey was approximately 12 m wide and 11 m deep, is directly over the edge of the upper storage chamber and approximately 60 m above the top of the salt dome. Surface seismic reflections imaged a dramatic bowl-shaped depression in a 28-m-deep reflector spatially consistent with the sinkhole. Two reflections (28 m and 60 m) on multichannel VSP data represent the only velocity and/or density contrasts detected above the top of the salt dome. The 28-m reflector identified on both VSP and surface seismic reflection data is at a depth consistent with the piezometric surface. Considering the high measured permeability and relative geometric severity of the reflection geometry, it is questionable whether this drape in the 28-m reflection is consistent with the water table. Localized velocity variations could account for some of the apparent geometry. The 60-m salt reflection, evident on VSP, can be interpreted on selected processed surface seismic shot gathers, but is difficult to confidently and consistently identify on stacked sections. The sinkhole lies along a northeast-trending acoustic lineament, possibly related to or associated with salt dissolution. The acoustic expression of the sinkhole suggests a localized, predominantly vertical feature. No evidence was discovered to confidently ascertain the mechanism responsible for exposing the salt to unsaturated meteoric water.

  13. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    PubMed

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos. PMID:24058543

  14. Investigation of Antifouling Properties of Surfaces Featuring Zwitterionic α-Aminophosphonic Acid Moieties.

    PubMed

    Wagner, Natalie; Zimmermann, Phyllis; Heisig, Peter; Klitsche, Franziska; Maison, Wolfgang; Theato, Patrick

    2015-12-01

    Zwitterionic thin films containing α-amino phosphonic acid moieties were successfully introduced on silicon surfaces and their antifouling properties were investigated. Initially, the substrates were modified with a hybrid polymer, composed of poly(methylsilsesquioxane) (PMSSQ) and poly(4-vinyl benzaldehyde) (PStCHO). Next, a Kabachnik-Fields post-polymerization modification (sur-KF-PMR) of the functionalized aldehyde surfaces was conducted with different amines and dialkyl phosphonates. After subsequent deprotection reaction of dialkyl phosphonates, the obtained zwitterionic surfaces were characterized by various techniques and we found excellent antifouling properties of the resulting films. PMID:26332285

  15. An NMR and molecular dynamics investigation of the avian prion hexarepeat conformational features in solution

    NASA Astrophysics Data System (ADS)

    Pietropaolo, Adriana; Raiola, Luca; Muccioli, Luca; Tiberio, Giustiniano; Zannoni, Claudio; Fattorusso, Roberto; Isernia, Carla; Mendola, Diego La; Pappalardo, Giuseppe; Rizzarelli, Enrico

    2007-07-01

    The prion protein is a copper binding glycoprotein that in mammals can misfold into a pathogenic isoform leading to prion diseases, as opposed, surprisingly, to avians. The avian prion N-terminal tandem repeat is richer in prolines than the mammal one, and understanding their effect on conformation is of great biological importance. Here we succeeded in investigating the conformations of a single avian hexarepeat by means of NMR and molecular dynamics techniques. We found a high flexibility and a strong conformational dependence on pH: local turns are present at acidic and neutral pH, while unordered regions dominate at basic conditions.

  16. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  17. Certain features of the preparation of boron powders in x-ray diffraction investigations

    SciTech Connect

    Tsagareishvili, G.V.; Avlokhashvili, D.A.; Bairamashvili, I.A.; Dolidze, T.V.; Gabuniya, D.L.; Nakashidze, T.G.; Oganezov, K.A.; Tabutsidze, M.L.

    1985-05-01

    It is known that elemental boron is characterized by an increased reaction capacity toward oxygen. Boron powders oxidize especially intensely. Under real conditions, boron powders always contain a certain quantity of oxide phase (primarily in the form of B2O3), the quantity of which depends on their degree of dispersion, the method of production, and the storage conditions. In long exposure to air, as the result of its high hygroscopicity, boric anhydride reacts with particles of moisture, as the result of which orthoboric acid is formed. The mass absorption coefficient of x-rays by elemental boron is significantly lower than by its compounds (anhydride and acid). The presence on the surface of particles of boric anhydride and products of its hydration, the total quantity of which in the powder is large, cannot affect the result of x-ray diffraction investigations of the powders. In this work an investigation is made of the possibility of weakening this influence by preliminary treatment of the powders.

  18. Investigating tectonic and bathymetric features of the Indian Ocean using MAGSAT magnetic anomaly data

    NASA Technical Reports Server (NTRS)

    Lazarewicz, A. R.; Sailor, R. V. (Principal Investigator)

    1982-01-01

    MAGSAT Investigator-B tapes were preprocessed by (1) removing all data points with obvious erroneous values and location errors; (2) removing smaller spikes (typically 15 nT or more), and deleting data tracks with fewer than 20 points; and (3) removing a linear trend from each track. The remaining data were recorded on tape for use by the equivalent source mapping (ESMAP) program which uses a least squares algorithm to fit the magnetization parameter of the grid of equivalent source dipoles in the crust to satellite data acquired at different times and locations. ESMAP was implemented on the TASC computing system and modified to read preprocessed MAGSAT tapes and interface with TASC plotting software. Some verification of the software was accomplished. Gridded 1-degree mean values of gravity anomaly and sea surface undulation computed from SEASAT radar altimeter were obtained and brought on line.

  19. Characteristic features of water dynamics in restricted geometries investigated with quasi-elastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Osti, N. C.; Coté, A.; Mamontov, E.; Ramirez-Cuesta, A.; Wesolowski, D. J.; Diallo, S. O.

    2016-02-01

    Understanding the molecular behavior of water in spatially restricted environments is key to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrument resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250 ⩽ T ⩽ 290 K.

  20. Integrated system for investigating sub-surface features of a rock formation

    DOEpatents

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.

  1. Characteristic Features of Water Dynamics in Restricted Geometries Investigated with Quasi-Elastic Neutron Scattering

    DOE PAGESBeta

    Osti, Naresh C.; Mamontov, Eugene; Ramirez-cuesta, A.; Wesolowski, David J.; Diallo, S. O.

    2015-12-10

    Understanding the molecular behavior of water in spatially restricted environments is important to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrumentmore » resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250≤T≤290 K.« less

  2. Characteristic Features of Water Dynamics in Restricted Geometries Investigated with Quasi-Elastic Neutron Scattering

    SciTech Connect

    Osti, Naresh C.; Mamontov, Eugene; Ramirez-cuesta, A.; Wesolowski, David J.; Diallo, S. O.

    2015-12-10

    Understanding the molecular behavior of water in spatially restricted environments is important to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrument resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250≤T≤290 K.

  3. A Microstructural and Kinetic Investigation of the KCl-Induced Corrosion of an FeCrAl Alloy at 600 °C

    DOE PAGESBeta

    Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; Jonsson, T.; Norell, M.; Svensson, J. -E.; Johansson, L. -G.

    2015-03-18

    In this paper, the corrosion behaviour of a FeCrAl alloy was investigated at 600 °C in O2 + H2O with solid KCl applied. A kinetics and microstructural investigation showed that KCl accelerates corrosion and that potassium chromate formation depletes the protective scale in Cr, thus triggering the formation of a fast-growing iron-rich scale. Iron oxide was found to grow both inward and outward, on either side of the initial oxide. A chromia layer is formed with time underneath the iron oxide. Finally, it was found that although the alloy does not form a continuous pure alumina scale at the investigatedmore » temperature, aluminium is, however, always enriched at the oxide/alloy interface.« less

  4. Investigation of Endoscopic and Pathologic Features for Safe Endoscopic Treatment of Superficial Spreading Early Gastric Cancer.

    PubMed

    Lee, Kyong Joo; Pak, Kyung Ho; Hyung, Woo Jin; Noh, Sung Hoon; Kim, Choong Bai; Lee, Yong Chan; Kim, Hee Man; Lee, Sang Kil

    2016-04-01

    Superficial spreading early gastric cancer (EGC) is a rare disease that is treated mainly by surgery. There are few studies on the safety of endoscopic treatment for patients with superficial spreading EGC. The aims of this study were to (1) investigate the risk of lymph node metastasis of superficial spreading EGC and (2) investigate the potential criteria for endoscopic treatment of superficial spreading EGC using surgical specimens.Between 2000 and 2010, patients who received curative surgery of R0 resection at Severance Hospital (Seoul, Korea) for early gastric cancer were enrolled. The superficial spreading EGC was defined as cancer in which the longest tumor length was ≥6 cm. The medical records of the patients were reviewed retrospectively.Of the 3813 patients with EGC, 140 (3.7%) had lesions ≥ 6 cm, whereas 3673 (96.3%) had lesions < 6 cm. Patients with superficial spreading EGC had higher rates of submucosal cancer (59.3% vs 45.7%, P = 0.002), lymphovascular invasion (18.6% vs 9.8%, P < 0.001), and lymph node metastasis (15.7% vs 10.1%, P = 0.033) compared with patients with common EGC (< 6 cm). Multivariate analysis revealed that a tumor ≥ 6 cm was not strongly associated with lymph node metastasis in EGC, as compared with a tumor < 6 cm, but submucosal invasion and lymphovascular invasion were strongly associated with lymph node metastasis in EGC. In mucosal cancer without ulcers, tumors ≥ 6 cm had a higher rate of lymph node metastasis than tumors ≤ 2 cm; however, this trend was not significant (7.7% vs 5.3%, P = 0.455).Superficial spreading EGC was not associated with an increased risk of lymph node metastasis compared with common EGC. We suggest that differentiated intramucosal superficial spreading EGC without ulceration can be treated by endoscopic submucosal dissection. PMID:27057862

  5. Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid.

    PubMed

    Desbois, G; Urai, J L; Pérez-Willard, F; Radi, Z; Offern, S; Burkart, I; Kukla, P A; Wollenberg, U

    2013-03-01

    The contribution describes the implementation of a broad ion beam (BIB) polisher into a scanning electron microscope (SEM) functioning at cryogenic temperature (cryo). The whole system (BIB-cryo-SEM) provides a first generation of a novel multibeam electron microscope that combines broad ion beam with cryogenic facilities in a conventional SEM to produce large, high-quality cross-sections (up to 2 mm(2)) at cryogenic temperature to be imaged at the state-of-the-art SEM resolution. Cryogenic method allows detecting fluids in their natural environment and preserves samples against desiccation and dehydration, which may damage natural microstructures. The investigation of microstructures in the third dimension is enabled by serial cross-sectioning, providing broad ion beam tomography with slices down to 350 nm thick. The functionalities of the BIB-cryo-SEM are demonstrated by the investigation of rock salts (synthetic coarse-grained sodium chloride synthesized from halite-brine mush cold pressed at 150 MPa and 4.5 GPa, and natural rock salt mylonite from a salt glacier at Qom Kuh, central Iran). In addition, results from BIB-cryo-SEM on a gas shale and Boom Clay are also presented to show that the instrument is suitable for a large range of sedimentary rocks. For the first time, pore and grain fabrics of preserved host and reservoir rocks can be investigated at nm-scale range over a representative elementary area. In comparison with the complementary and overlapping performances of the BIB-SEM method with focused ion beam-SEM and X-ray tomography methods, the BIB cross-sectioning enables detailed insights about morphologies of pores at greater resolution than X-ray tomography and allows the production of large representative surfaces suitable for FIB-SEM investigations of a specific representative site within the BIB cross-section. PMID:23323728

  6. Compositional and technological features of glazed pottery from Aosta Valley (Italy): a SEM-EDS investigation.

    PubMed

    Gulmini, Monica; Appolonia, Lorenzo; Framarin, Patrizia; Mirti, Piero

    2006-11-01

    Twelve finds from archaeological excavations carried out in the Aosta region (Italy) were studied by scanning electron microscopy coupled with energy-dispersive X-ray detection (SEM-EDS). The archaeological samples were shards of glazed pottery dating from the fourth to the seventh century AD. Analysis of ceramic bodies revealed a general homogeneity in composition among the studied samples and the use of a noncalcareous clay for their manufacture; however, two shards stand out due to their high iron contents. Glazes proved to be high-lead products with more than 70% PbO in all of the samples investigated but one. For the latter, a composition poorer in lead and richer in silicon, aluminium and iron was found. SEM observation of the contact region between body and glaze suggests that the vitreous coatings were mostly obtained by applying the glazing components onto the unfired clay body; moreover, a comparison between clay and glaze compositions suggests the use of a lead compound mixed with a silica-rich material, not a lead compound by itself. PMID:17028850

  7. Investigation on the Microstructure, Interfacial IMC Layer, and Mechanical Properties of Cu/Sn-0.7Cu-xNi/Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ge, Jinguo; Zhang, Yaocheng; Dai, Jun; Liu, Haixiang; Xiang, Jicen

    2016-04-01

    Sn-0.7Cu-xNi composite solder has been fabricated via mechanical mixing of different weight percentages of Ni particles with Sn-0.7Cu solder paste, and the effect of the Ni concentration on the microstructure, wettability, and tensile properties of Cu/Sn-0.7Cu-xNi/Cu solder joints investigated. The results show that refined dot-shaped particles of intermetallic compounds (IMCs) are uniformly dispersed in a primary β-Sn matrix in the Cu/Sn-0.7Cu-(0.05-0.1)Ni/Cu solder joints. The interfacial IMC layer thickness increased slightly when adding Ni content to 0.05 wt.%, then rapidly when further increasing the Ni concentration to 0.4 wt.%. Excellent wettability with bright appearance was obtained for the Sn-0.7Cu-0.05Ni solder due to diminished interfacial tension. The tensile properties improved after adding Ni content to 0.05 wt.% due to the presence of the refined dot-like IMC particles, in agreement with theoretical predictions based on the combination of dispersion and grain-refinement strengthening mechanisms. Refined microstructure and enhanced mechanical properties were obtained for the Cu/Sn-0.7Cu-0.05Ni/Cu solder joint.

  8. Investigation on the Microstructure, Interfacial IMC Layer, and Mechanical Properties of Cu/Sn-0.7Cu- xNi/Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ge, Jinguo; Zhang, Yaocheng; Dai, Jun; Liu, Haixiang; Xiang, Jicen

    2016-07-01

    Sn-0.7Cu- xNi composite solder has been fabricated via mechanical mixing of different weight percentages of Ni particles with Sn-0.7Cu solder paste, and the effect of the Ni concentration on the microstructure, wettability, and tensile properties of Cu/Sn-0.7Cu- xNi/Cu solder joints investigated. The results show that refined dot-shaped particles of intermetallic compounds (IMCs) are uniformly dispersed in a primary β-Sn matrix in the Cu/Sn-0.7Cu-(0.05-0.1)Ni/Cu solder joints. The interfacial IMC layer thickness increased slightly when adding Ni content to 0.05 wt.%, then rapidly when further increasing the Ni concentration to 0.4 wt.%. Excellent wettability with bright appearance was obtained for the Sn-0.7Cu-0.05Ni solder due to diminished interfacial tension. The tensile properties improved after adding Ni content to 0.05 wt.% due to the presence of the refined dot-like IMC particles, in agreement with theoretical predictions based on the combination of dispersion and grain-refinement strengthening mechanisms. Refined microstructure and enhanced mechanical properties were obtained for the Cu/Sn-0.7Cu-0.05Ni/Cu solder joint.

  9. Investigation of microstructure and V-defect formation inInxGa1-xN/GaN MQW grown using temperature-gradient MOCVD

    SciTech Connect

    Johnson, M.C.; Liliental-Weber, Z.; Zakharov, D.N.; McCready,D.E.; Jorgenson, R.J.; Wu, J.; Shan, W.; Bourret-Courchesne, E.D.

    2004-11-19

    Temperature-gradient Metalorganic Chemical Vapor Deposition was used to deposit In{sub x}Ga{sub 1-x}N/GaN multiple quantum well structures with a concentration gradient of indium across the wafer. These multiple quantum well structures were deposited on low defect density (2 x 10{sup 8} cm{sup -2}) GaN template layers for investigation of microstructural properties and V-defect (pinhole) formation. Room temperature photoluminescence and photomodulated transmission were used for optical characterization which show a systematic decrease in emission energy for a decrease in growth temperature. Triple-axis X-ray diffraction, scanning electron microscopy and cross-section transmission electron microscopy were used to obtain microstructural properties of different regions across the wafer. Results show that there is a decrease in crystal quality and an increase in V-defect formation with increasing indium concentration. A direct correlation was found between V-defect density and growth temperature due to increased strain and indium segregation for increasing indium concentration.

  10. Investigation of structural and chemical transitions in copper oxide microstructures produced by combustion waves in a mixture of CuO-Cu2O-Cu and fuel

    NASA Astrophysics Data System (ADS)

    Hwang, Hayoung; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2015-12-01

    The application of micro/nanostructured materials to combustion enables distinctive chemical reactions that can be used to modulate the reaction rates. Simultaneously, combustion is capable of changing the intrinsic properties of micro/nanostructured materials based on chemical interactions in high-temperature conditions. In this work, we investigate the structural-chemical transition of copper oxide microstructures exposed to interfacially driven combustion waves. The high thermal energy and exchange of chemical compounds resulting from the instant combustion waves cause direct transition without any further processes. The precise characterization of the structural and chemical transitions in the copper oxide microstructures and chemical fuels confirm that the self-propagating combustion waves in the layered composites of Cu/Cu2O/CuO microparticle-based films and the chemical fuel layers yield the direct synthesis of Cu(OH)2 flower-like structures and nanowires. The propagation of combustion waves at the interface induces an increase of the surface temperatures over 650 °C and the direct interaction between the copper oxide and chemical compounds of the fuel layers. Further application of these interfacially driven combustion waves will contribute to the development of one-step, fast, low-cost methods for the synthesis of micro/nanostructured materials.

  11. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application.

    PubMed

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Li, Junlei; Zhao, Chaoqian; Zhuo, Dongxian; Lin, Jinxin

    2015-04-01

    In this study, an experimental investigation on fabricating Ni-free CoCrW alloys by selective laser melting (SLM) for dental application was conducted in terms of microstructure, hardness, mechanical property, electrochemical behavior, and metal release; and line and island scanning strategy were applied to determine whether these strategies are able to obtain expected CoCrW parts. The XRD revealed that the γ-phase and ε-phase coexisted in the as-SLM CoCrW alloys; The OM and SEM images showed that the microstructure of CoCrW alloys appeared square-like pattern with the fine cellular dendrites at the borders; tensile test suggested that the difference of mechanical properties of line- and island-formed specimens was very small; whilst the outcomes from the electrochemical and metal release tests indicated that the island-formed alloys showed slightly better corrosion resistance than line-formed ones in PBS and Hanks solutions. Considering that the mechanical properties and corrosion resistance of line-formed and island-formed specimens meet the standards of ISO 22674:2006 and EN ISO 10271, CoCrW dental alloys can be successfully fabricated by line and island scanning strategies in the SLM process. PMID:25686979

  12. Investigation on the effect of microstructure of proton exchange membrane fuel cell porous layers on liquid water behavior by soft X-ray radiography

    NASA Astrophysics Data System (ADS)

    Sasabe, Takashi; Deevanhxay, Phengxay; Tsushima, Shohji; Hirai, Shuichiro

    2011-10-01

    In order to investigate the effect of microstructure of PEMFC porous layers on the liquid water transport, liquid water accumulation and discharge behavior in the operating PEMFC was visualized by laboratory-based soft X-ray radiography. The utilization of low energy X-ray made it possible to visualize the liquid water behavior in the PEMFC with the spatial resolution of 0.8 μm and the temporal resolution of 2.0 s frame-1, and the cross-sectional imaging can resolve the each components of the PEMFC. The visualization results showed that adding the MPL prevents the accumulation of liquid water in the substrate layer from contacting and forming the liquid water film on the catalyst layer. Furthermore, it was found that the liquid water distribution in the carbon paper and the carbon cloth GDL was completely different. The liquid water in the carbon cloth GDL concentrates at the weaves of fiber bundle and was effectively discharged to the channel. These visualization results suggested that the microstructure of the PEMFC porous layers strongly affect the liquid water behavior in the PEMFC, and the detailed understanding of the pore structures and the network of liquid water is essential for keeping the oxygen transport path to the catalyst site.

  13. Investigation of atmospheric insect wing-beat frequencies and iridescence features using a multispectral kHz remote detection system

    NASA Astrophysics Data System (ADS)

    Gebru, Alem; Rohwer, Erich; Neethling, Pieter; Brydegaard, Mikkel

    2014-01-01

    Quantitative investigation of insect activity in their natural habitat is a challenging task for entomologists. It is difficult to address questions such as flight direction, predation strength, and overall activities using the current techniques such as traps and sweep nets. A multispectral kHz remote detection system using sunlight as an illumination source is presented. We explore the possibilities of remote optical classification of insects based on their wing-beat frequencies and iridescence features. It is shown that the wing-beat frequency of the fast insect events can be resolved by implementing high-sampling frequency. The iridescence features generated from the change of color in two channels (visible and near-infrared) during wing-beat cycle are presented. We show that the shape of the wing-beat trajectory is different for different insects. The flight direction of an atmospheric insect is also determined using a silicon quadrant detector.

  14. Diffusion in polycrystalline microstructures

    SciTech Connect

    Swiler, T.P.; Holm, E.A.

    1995-07-01

    Mass transport properties are important in polycrystalline materials used as protective films. Traditionally, such properties have been studied by examining model polycrystalline structures, such as a regular array of straight grain boundaries. However, these models do not account for a number of features of real grain ensembles, including the grain size distribution and the topological aspects of grain boundaries. In this study, a finite difference scheme is developed to study transient and steady-state mass transport through realistic two-dimensional polycrystalline microstructures. Effects of microstructural parameters such as average grain size and grain boundary topology are examined, as are effects due to limits of the model.

  15. Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM

    PubMed Central

    Wang, Yanlu; Li, Tie-Qiang

    2015-01-01

    Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p < 0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data. PMID

  16. Detailed investigation of optoelectronic and microstructural properties of plasma polymerized cyclohexane thin films: Dependence on the radiofrequency power

    SciTech Connect

    Manaa, C.; Bouaziz, L.; Lejeune, M.; Zellama, K. Benlahsen, M.; Kouki, F.; Mejatty, M.; Bouchriha, H.

    2015-06-07

    Optical properties of polymerized cyclohexane films deposited by radiofrequency plasma enhanced chemical vapor deposition technique at different radiofrequency powers onto glass and silicon substrates, are studied and correlated with the microstructure of the films, using a combination of atomic force microscopy, Raman and Fourier Transformer Infrared spectroscopy and optical measurements. The optical constants such as refractive index n, dielectric permittivity ε and extinction k and absorption α coefficients, are extracted from transmission and reflection spectra through the commercial software CODE. These constants lead, by using common theoretical models as Cauchy, Lorentz, Tauc and single effective oscillator, to the determination of the static refractive index n{sub s} and permittivity ε{sub s}, the plasma frequency ω{sub p}, the carrier density to effective mass ratio N/m{sub e}{sup *}, the optical conductivity σ{sub oc}, the optical band gap E{sub g} and the oscillation and dispersion energies E{sub 0} and E{sub d}, respectively. We find that n, ε{sub s}, ω{sub p}, N/m{sub e}{sup *}, E{sub d}, increase with radiofrequency power, while E{sub g} and E{sub 0} decrease in the same range of power. These results are well correlated with those obtained from atomic force microscopy, Raman and infrared measurements. They also indicate that the increase of the radiofrequency power promotes the fragmentation of the precursor and increases the carbon C-sp{sup 2} hybridization proportion, which results in an improvement of the optoelectronic properties of the films.

  17. Investigation of Microstructure and Mechanical Properties of St37 Steel-Ck60 Steel Joints by Explosive Cladding

    NASA Astrophysics Data System (ADS)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2015-10-01

    The present work aimed at studying the microstructure and mechanical properties of Ck60/St37 composite plates fabricated by explosive cladding. The explosive ratio and stand-off distance were set to be R = 1.7 and s = 1.5 t, respectively. Optical and scanning electron microscopy revealed that the bonding at the interface had a wavy morphology, but local melted zones were formed along the interface. The chemical composition of the local melted zones was evaluated by energy-dispersive spectroscopy analysis. This analysis showed that the melted zones consisted of both Ck60 and St37 steels. The maximum hardness was obtained near the explosively cladded interface; then these values were decreased by the distance away from the interface. Moreover, it was seen that the local melted zones, especially the vortices, had a high degree of hardness. Shear tests on the cladded metals also showed that the average shear strength was higher than 140 MPa, as set by the ASTM A263-12, implying that composite plates could be used safely. The study was also conducted to consider the strength of bonding by bending test in two ways, one with the cladding metal in tension and the other with the cladding metal in compression. Bending test results showed that these joints could be used safely when the cladded metal was in compression; otherwise, it would be fractured. Finally, impact test results showed that the fracture toughness of cladded samples was higher than that of flyer material due to the higher fracture toughness of the base material.

  18. Investigation of the spectroscopic features of clay-rich rocks in terms of geo-mechanical evaluations

    NASA Astrophysics Data System (ADS)

    Nefeslioglu, Hakan A.

    2013-04-01

    The main purpose of this study is to investigate the spectroscopic features of clay-rich rocks in terms of geo-mechanical evaluations. For the purpose, different types of sedimentary rocks including claystones and mudstones were used. Ultra sonic pulse velocity (Vp) measurements and Uniaxial Compressive Strength (UCS) tests were carried out by using the core samples of these clay-rich rocks, and moduli of elasticity (Ei) values of the samples were calculated. Spectroscopic measurements were also done by using the failed core samples. According to the spectral feature search analyses of the samples 7 spectral bands were differentiated depending on crystal filed effects and charge transfer absorptions of transition elements and water and OH vibrational features. Considering these 7 spectral bands, 8 different genetic rock types were defined. The regression equations of Vp-UCS and Vp-Ei were evaluated for the unclassified and genetic rock types, respectively. The coefficients of correlations of the equations became considerably higher when the genetic rock types were considered, and the equations were found to be statistically significant.

  19. Microstructural Investigation of SexTe100-x Thin Films Deposited on Si(100) Substrates by X-ray Diffractometer and Transmission Electron Microscopy Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Eun Tae; Lee, Jeong Yong; Kim, Yong Tae

    2007-11-01

    The microstructural properties of SexTe100-x (x=16,29,38) thin films are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. SexTe100-x thin films have a Te hexagonal structure and Te{011} interplanar spacing decreases because some Se atoms occupy Te atomic sites, forming Se helical chains within the Te helical chains. By increasing the Se contents from 16 to 29 at. %, Se5.95Te1.05 monoclinic and Se hexagonal structures coexist in a grain and at 38 at. %, a Se hexagonal structure is observed within the Te hexagonal grain. This means that SexTe100-x thin films maintain the Te hexagonal structure and that phase separation does not occur owing to the short diffusion time.

  20. [Investigation of characteristic microstructures of adhesive interface in wood/bamboo composite material by synchrotron radiation X-ray phase contrast microscopy].

    PubMed

    Peng, Guan-Yun; Wang, Yu-Rong; Ren, Hai-Qing; Yang, Shu-Min; Ma, Hong-Xia; Xie, Hong-Lan; Deng, Biao; Du, Guo-Hao; Xiao, Ti-Qiao

    2013-03-01

    Third-generation synchrotron radiation X-ray phase-contrast microscopy(XPCM)can be used for obtaining image with edge enhancement, and achieve the high contrast imaging of low-Z materials with the spatial coherence peculiarity of X-rays. In the present paper, the characteristic microstructures of adhesive at the interface and their penetration in wood/bamboo composite material were investigated systematically by XPCM at Shanghai Synchrotron Radiation Facility (SSRF). And the effect of several processing techniques was analyzed for the adhesive penetration in wood/bamboo materials. The results show that the synchrotron radiation XPCM is expected to be one of the important precision detection methods for wood-based panels. PMID:23705464

  1. Influence of Cu doping on the microstructure, optical properties and photoluminescence features of Cd0.9Zn0.1S nanoparticles

    NASA Astrophysics Data System (ADS)

    Devadoss, I.; Muthukumaran, S.

    2015-08-01

    Cd0.9-xZn0.1CuxS (0≤x≤0.06) nanoparticles were successfully synthesized by a conventional chemical co-precipitation method at room temperature. Crystalline phases and optical absorption of the nanoparticles have been studied by X-ray diffraction (XRD) and UV-visible spectrophotometer. XRD confirms the phase singularity of the synthesized material, which also confirmed the formation of Cd-Zn-Cu-S alloy nanocrystals rather than separate nucleation or phase formation. Elemental composition was examined by the energy dispersive X-ray analysis and the microstructure was examined by scanning electron microscope. The blue shift of absorption edge below Cu=2% is responsible for dominance of Cu+ while at higher Cu concentration dominated Cu2+, d-d transition may exist. It is suggested that the addition of third metal ion (Cu2+/Cu+) is an effective way to improve the optical property and stability of the Cd0.9Zn0.1S solid solutions. When Cu is introduced, stretching of Cd-Zn-Cu-S bond is shifted lower wave number side from 678 cm-1 (Cu=0%) to 671 cm-1 (Cu=6%) due to the presence of Cu in Cd-Zn-S lattice and also the size effect. The variation in blue band emission peak from 456 nm (∼2.72 eV) to 482 nm (∼2.58 eV) by Cu-doping is corresponding to the inter-band radiation combination of photo-generated electrons and holes. Intensity of red band emission centered at 656 nm significantly increased up to Cu=4%; beyond 4% it is decreased due to the quenching of Cu concentration.

  2. Investigation of microstructure evolution during self-annealing in thin Cu films by combining mesoscale level set and ab initio modeling

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Olsson, Pär A. T.

    2016-05-01

    Microstructure evolution in thin Cu films during room temperature self-annealing is investigated by means of a mesoscale level set model. The model is formulated such that the relative, or collective, influence of anisotropic grain boundary energy, mobility and heterogeneously distributed stored energy can be investigated. Density functional theory (DFT) calculations are performed in the present work to provide the variation of grain boundary energy for different grain boundary configurations. The stability of the predominant (111) fiber texture in the as-deposited state is studied as well as the stability of some special low-Σ grain boundaries. Further, the numerical model allows tracing of the grain size distribution and occurrence of abnormal grain growth during self-annealing. It is found that abnormal grain growth depends mainly on the presence of stored energy variations, whereas anisotropic grain boundary energy or mobility is insufficient to trigger any abnormal growth in the model. However, texture dependent grain boundary properties, mobility in particular, contribute to an increased content of low-Σ boundaries in the annealed microstructure. The increased presence of such boundaries is also promoted by stored energy variations. In addition, if the stored energy variations are sufficient the coexisting (111) and (001) texture components in the as-deposited state will evolve into a (001) dominated texture during annealing. Further, it is found that whereas stored energy variations promote the stability of the (001) texture component, anisotropic grain boundary energy and mobility tend to work the other way and stabilize the (111) component at the expense of (001) grains.

  3. Functional Popliteal Artery Entrapment Syndrome: Poorly Understood and Frequently Missed? A Review of Clinical Features, Appropriate Investigations, and Treatment Options

    PubMed Central

    Hislop, Matthew; Kennedy, Dominic; Cramp, Brendan; Dhupelia, Sanjay

    2014-01-01

    Functional popliteal artery entrapment syndrome (PAES) is an important and possibly underrecognized cause of exertional leg pain (ELP). As it is poorly understood, it is at risk of misdiagnosis and mismanagement. The features indicative of PAES are outlined, as it can share features with other causes of ELP. Investigating functional PAES is also fraught with potential problems and if it is performed incorrectly, it can result in false negative and false positive findings. A review of the current vascular investigations is provided, highlighting some of the limitations standard tests have in determining functional PAES. Once a clinical suspicion for PAES is satisfied, it is necessary to further distinguish the subcategories of anatomical and functional entrapment and the group of asymptomatic occluders. When definitive entrapment is confirmed, it is important to identify the level of entrapment so that precise intervention can be performed. Treatment strategies for functional PAES are discussed, including the possibility of a new, less invasive intervention of guided Botulinum toxin injection at the level of entrapment as an alternative to vascular surgery. PMID:26464888

  4. Microstructural investigation of a locally mirror-like surface collected at 4 km depth in a Pomeranian shale sample

    NASA Astrophysics Data System (ADS)

    Pluymakers, Anne; Renard, Francois

    2016-04-01

    The presence of shiny sliding surfaces, or mirror surfaces, is sometimes thought to have been caused by slip at seismic velocities. Many fault mirrors reported so far are described to occur in carbonate-rich rocks. Here we present microstructural data on a mirror-like slip surface in the Pomeranian shale, recovered from approximately 4 km depth. The accommodated sliding of this fault is probably small, not more than one or two centimeter. The Pomeranian shale is a dark-grey to black shale, composed of 40-60% illite plus mica, 1-10% organic matter, 10% chlorite, and 10 % carbonates plus minor amounts of K-feldspar, plagioclase and kaolinite. In this sample, the surface is optically smooth with striations and some patches that reflect light. Observations using a Hitachi TM3000 (table-top) SEM show that the striations are omnipresent, though more prominent in the carbonate patches (determined using EDS analysis). The smooth surface is locally covered by granular material with a grain size up to 10 μm. This is shown to consist of a mixture of elements and thus likely locally derived fault gouge. The clay-rich parts of the smooth surface are equidimensional grains, with sub-micron grain sizes, whereas in the unperturbed part of the shale core the individual clay platelets are easy to distinguish, with lengths up to 10 μm. The striated calcite-rich patches appear as single grains with sizes up to several millimeters, though they occasionally are smeared out in a direction parallel to the striations. We have analyzed surface roughness at magnifications of 2.5x to 100x using a standard White Light Interferometer, parallel and perpendicular to slip. At low magnifications, 2.5x and 5x, Hurst exponents were anomalously low, around 0.1 to 0.2, interpreted to be related to a lack of sufficient resolution to pick up the striations. At higher magnification the Hurst exponent is 0.34 to 0.43 parallel to the striation, and 0.44 to 0.61 perpendicular to the striation. This

  5. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior

    SciTech Connect

    Barmouz, Mohsen; Besharati Givi, Mohammad Kazem; Seyfi, Javad

    2011-01-15

    The main aim of this study is to produce copper reinforced metal matrix composite (MMC) layers using micron sized SiC particles via friction stir processing (FSP) in order to enhance surface mechanical properties. Microstructural evaluation using optical microscopy (OM) and scanning electron microscopy (SEM) indicated that an increase in traverse speed and a decrease in rotational speed cause a reduction in the grain size of stir zone (SZ) for the specimens friction stir processed (FSPed) without SiC particles. With the aim of determining the optimum processing parameters, the effect of traverse speed as the main processing variable on microstructure and microhardness of MMC layers was investigated. Higher traverse speeds resulted in poor dispersion of SiC particles and consequently reduced the microhardness values of MMC layers. It was found that upon addition of SiC particles, wear properties were improved. This behavior was further supported by SEM images of wear surfaces. Results demonstrated that the microcomposite produced by FSP exhibited enhanced wear resistance and higher average friction coefficient in comparison with pure copper. Tensile properties and fracture characteristics of the specimens FSPed with and without SiC particles and pure copper were also evaluated. According to the results, the MMC layer produced by FSP showed lower strength and elongation than pure copper while a remarkable elongation was observed for FSPed specimen without SiC particles. Research Highlights: {yields} Decrease in traverse speed leads to good dispersion of SiC particles in composites. {yields} No distinct TMAZ in side regions of SZ of FSPed specimens with SiC particles. {yields} Microhardness of FSPed specimens with SiC particles shows a remarkable increase. {yields} Reinforcement of Cu with SiC particles improves wear and friction behavior of surface. {yields} A weak bonding in tensile due to probable agglomeration for SiC containing samples.

  6. Microstructure and mechanical properties of titanium alloys reinforced with titanium boride

    NASA Astrophysics Data System (ADS)

    Hill, Davion M.

    Microstructure features in TiB-reinforced titanium alloys are correlated with mechanical properties. Both laser deposition and arc melting are used to fabricate test alloys where microstructure evolution with heat treatment is examined. SEM and TEM investigations of microstructure are coupled with 3D reconstruction to provide an adequate picture of phases in these alloys. Mechanical properties are then studied. Wear testing of several test alloys is presented, followed by hardness and modulus measurements of individual phases via micro- and nano-indentation as well as a novel micro-compression technique. Bulk mechanical properties are then tested in Ti-6Al-4V and Ti-555 (Ti-5Al-5V-5Mo-3Cr-1Fe) with varying amounts of boron. Image processing methods are then applied to high resolution back-scattered scanning electron microscope images to quantify microstructure features in the tensile test specimens, and these values are then correlated with mechanical properties.

  7. Investigating the use of texture features for analysis of breast lesions on contrast-enhanced cone beam CT

    NASA Astrophysics Data System (ADS)

    Wang, Xixi; Nagarajan, Mahesh B.; Conover, David; Ning, Ruola; O'Connell, Avice; Wismueller, Axel

    2014-04-01

    Cone beam computed tomography (CBCT) has found use in mammography for imaging the entire breast with sufficient spatial resolution at a radiation dose within the range of that of conventional mammography. Recently, enhancement of lesion tissue through the use of contrast agents has been proposed for cone beam CT. This study investigates whether the use of such contrast agents improves the ability of texture features to differentiate lesion texture from healthy tissue on CBCT in an automated manner. For this purpose, 9 lesions were annotated by an experienced radiologist on both regular and contrast-enhanced CBCT images using two-dimensional (2D) square ROIs. These lesions were then segmented, and each pixel within the lesion ROI was assigned a label - lesion or non-lesion, based on the segmentation mask. On both sets of CBCT images, four three-dimensional (3D) Minkowski Functionals were used to characterize the local topology at each pixel. The resulting feature vectors were then used in a machine learning task involving support vector regression with a linear kernel (SVRlin) to classify each pixel as belonging to the lesion or non-lesion region of the ROI. Classification performance was assessed using the area under the receiver-operating characteristic (ROC) curve (AUC). Minkowski Functionals derived from contrastenhanced CBCT images were found to exhibit significantly better performance at distinguishing between lesion and non-lesion areas within the ROI when compared to those extracted from CBCT images without contrast enhancement (p < 0.05). Thus, contrast enhancement in CBCT can improve the ability of texture features to distinguish lesions from surrounding healthy tissue.

  8. Women with TSC: Relationship between Clinical, Lung Function and Radiological Features in a Genotyped Population Investigated for Lymphangioleiomyomatosis

    PubMed Central

    Imeri, Gianluca; Palumbo, Giuseppina; La Briola, Francesca; Tresoldi, Silvia; Volpi, Angela; Gualandri, Lorenzo; Ghelma, Filippo; Alfano, Rosa Maria; Montanari, Emanuele; Gorio, Alfredo; Lesma, Elena; Peron, Angela; Canevini, Maria Paola; Centanni, Stefano

    2016-01-01

    The advent of pharmacological therapies for lymphangioleiomyomatosis (LAM) has made early diagnosis important in women with tuberous sclerosis complex (TSC), although the lifelong cumulative radiation exposure caused by chest computer tomography (CT) should not be underestimated. We retrospectively investigated, in a cohort of TSC outpatients of San Paolo Hospital (Milan, Italy) 1) the role of pulmonary function tests (PFTs) for LAM diagnosis, 2) the association between LAM and other features of TSC (e.g. demography, extrapulmonary manifestations, genetic mutations, etc.), and 3) the characteristics of patients with multifocal micronodular pneumocyte hyperplasia (MMPH). Eighty-six women underwent chest CT scan; pulmonary involvement was found in 66 patients (77%; 49% LAM with or without MMPH, and 28% MMPH alone). LAM patients were older, with a higher rate of pneumothorax, presented more frequently with renal and hepatic angiomyolipomas, and tended to have a TSC2 mutation profile. PFTs, assessed in 64% of women unaffected by cognitive impairments, revealed a lower lung diffusion capacity in LAM patients. In multivariate analysis, age, but not PFTs, resulted independently associated with LAM diagnosis. Patients with MMPH alone did not show specific clinical, functional or genetic features. A mild respiratory impairment was most common in LAM-TSC patients: In conclusions, PFTs, even if indicated to assess impairment in lung function, are feasible in a limited number of patients, and are not significantly useful for LAM diagnosis in women with TSC. PMID:27171001

  9. The influence of microstructure on the sintering process in crystalline metal powders investigated by positron lifetime spectroscopy: II. Tungsten powders with different powder-particle sizes

    NASA Astrophysics Data System (ADS)

    Staab, T. E. M.; Krause-Rehberg, R.; Vetter, B.; Kieback, B.; Lange, G.; Klimanek, P.

    1999-02-01

    Compacts of tungsten powder with five different powder-particle sizes (from 0953-8984/11/7/010/img7 to 0953-8984/11/7/010/img8) are subjected to pressureless sintering. We investigate the change in microstructure during the sintering process by positron lifetime spectroscopy. So as to be able to distinguish between defects having the same positron lifetime, we investigate their kinetics when the sample is annealed. In particular, we consider the annealing out of vacancy clusters after low-temperature electron irradiation, as well as recovery and recrystallization of a tungsten sheet, in as-manufactured form. Making measurements on uncompacted powder, we find an increasing fraction of positrons annihilating in surface states with decreasing powder-particle size. The powder-particle and grain sizes (influencing the x-ray domain size) are monitored additionally by means of metallography and x-ray diffraction. We find that all of the methods give results in agreement with each other. The small grain sizes at lower temperature, about one fifth of the powder-particle size, cause positrons to annihilate at grain boundaries, leading to vacancy-cluster-like signals. At the intensive-shrinkage stage, there are certainly contributions from different shrinkage mechanisms. The observed shrinkage rates can be explained by Coble creep. It is possible that dislocations also play a role as vacancy sources and sinks, since the intensive-shrinkage stage occurs in a temperature region wherein recrystallization takes place.

  10. Classical molecular dynamics investigation of microstructure evolution and grain boundary diffusion in nano-polycrystalline UO2

    NASA Astrophysics Data System (ADS)

    Govers, K.; Verwerft, M.

    2013-07-01

    The High Burnup Structure (HBS) observed at pellet periphery in conventional Light Water Reactor nuclear fuels and around spots presenting high plutonium content in mixed (U, Pu) oxide fuel - MOX fuel - consists of a restructuration of the original grains into smaller ones. The process is often postulated to occur because of the accumulation of irradiation damage and the retention of fission products in the matrix. The computing power nowadays available enables for simulating larger systems at the atomic scale up to the point that nano-polycrystalline material can now be investigated by empirical potential molecular dynamics. Simulations of nano-polycrystalline UO2 structures have been carried out at various temperatures to investigate atom mobility close to grain boundaries. The variation of Arrhénius parameters for the diffusion coefficient of oxygen, uranium and xenon as a function of the distance from a grain boundary was studied, leading to the distinction of three zones: the grain boundary layers (up to 1 nm depth) presenting enhanced diffusion, an intermediate zone (1 to roughly 2 nm depth) with intermediate diffusion values and the bulk of the grains. The following Arrhénius relations for grain boundary diffusion were derived: