Science.gov

Sample records for investigate molecular structure

  1. Theoretical investigation of the molecular structure of the isoquercitrin molecule

    NASA Astrophysics Data System (ADS)

    Cornard, J. P.; Boudet, A. C.; Merlin, J. C.

    1999-09-01

    Isoquercitrin is a glycosilated flavonoid that has received a great deal of attention because of its numerous biological effects. We present a theoretical study on isoquercitrin using both empirical (Molecular Mechanics (MM), with MMX force field) and quantum chemical (AM1 semiempirical method) techniques. The most stable structures of the molecule obtained by MM calculations have been used as input data for the semiempirical treatment. The position and orientation of the glucose moiety with regard to the remainder of the molecule have been investigated. The flexibility of isoquercitrin principally lies in rotations around the inter-ring bond and the sugar link. In order to know the structural modifications generated by the substitution by a sugar, geometrical parameters of quercetin (aglycon) and isoquercitrin have been compared. The good accordance between theoretical and experimental electronic spectra permits to confirm the reliability of the structural model.

  2. Molecular tools for investigating ANME community structure and function

    SciTech Connect

    Hallam, Steven J.; Page, Antoine P.; Constan, Lea; Song, Young C.; Norbeck, Angela D.; Brewer, Heather M.; Pasa-Tolic, Ljiljana

    2011-05-20

    Methane production and consumption in anaerobic marine sediments 1 is catalyzed by a series of reversible tetramethanopterin (H4MPT)-linked C1 transfer reactions. Although many of these reactions are conserved between one-carbon compound utilizing microorganisms, two remain diagnostic for archaeal methane metabolism. These include reactions catalyzed by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase and methyl coenzyme M reductase. The latter enzyme is central to C-H bond formation and cleavage underlying methanogenic and reverse methanogenic phenotypes. Here we describe a set of novel tools for the detection and functional analysis of H4MPT-linked C1 transfer reactions mediated by uncultivated anaerobic methane oxidizing archaea (ANME). These tools include polymerase chain reaction primers targeting ANME methyl coenzyme M reductase subunit A subgroups and protein extraction methods from marine sediments compatible with high-resolution mass spectrometry for profiling population structure and functional dynamics. [910, 1,043

  3. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    ERIC Educational Resources Information Center

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  4. Theoretical and experimental investigations on molecular structure of bis(2-methoxy-4-allylphenyl)oxalate

    NASA Astrophysics Data System (ADS)

    Şahin, Zarife Sibel; Kantar, Günay Kaya; Şaşmaz, Selami; Büyükgüngör, Orhan

    2016-01-01

    The aim of this study is to find out the molecular characteristic and structural parameters that govern the chemical behavior of a new bis(2-methoxy-4-allylphenyl)oxalate compound and to compare predictions made from theory with experimental observations. The title compound, bis(2-methoxy-4-allylphenyl)oxalate (I), (C22H22O6), has been synthesized. The compound has been characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopies and single crystal X-ray diffraction techniques. Optimized molecular structure, harmonic vibrational frequencies have been calculated by B3LYP/6-311G(d,p) method using density functional theory (DFT). 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule have been investigated by the Gauge-Invariant Atomic Orbital (GIAO) method. The calculated results show that the predicted geometry can well reproduce structural parameters. To estimate chemical reactive sites of the molecule, molecular electrostatic potential map (MEP), frontier molecular orbitals (FMOs), Mulliken population method and natural population analysis (NPA) have been calculated for the optimized geometry of the molecule. To investigate the NLO properties of the molecule, the electric dipole, the polarizability and the first hyperpolarizability have been calculated. In addition, thermodynamic properties have also been studied.

  5. Investigating the correlations among the chemical structures, bioactivity profiles and molecular targets of small molecules

    PubMed Central

    Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2010-01-01

    Motivation: Most of the previous data mining studies based on the NCI-60 dataset, due to its intrinsic cell-based nature, can hardly provide insights into the molecular targets for screened compounds. On the other hand, the abundant information of the compound–target associations in PubChem can offer extensive experimental evidence of molecular targets for tested compounds. Therefore, by taking advantages of the data from both public repositories, one may investigate the correlations between the bioactivity profiles of small molecules from the NCI-60 dataset (cellular level) and their patterns of interactions with relevant protein targets from PubChem (molecular level) simultaneously. Results: We investigated a set of 37 small molecules by providing links among their bioactivity profiles, protein targets and chemical structures. Hierarchical clustering of compounds was carried out based on their bioactivity profiles. We found that compounds were clustered into groups with similar mode of actions, which strongly correlated with chemical structures. Furthermore, we observed that compounds similar in bioactivity profiles also shared similar patterns of interactions with relevant protein targets, especially when chemical structures were related. The current work presents a new strategy for combining and data mining the NCI-60 dataset and PubChem. This analysis shows that bioactivity profile comparison can provide insights into the mode of actions at the molecular level, thus will facilitate the knowledge-based discovery of novel compounds with desired pharmacological properties. Availability: The bioactivity profiling data and the target annotation information are publicly available in the PubChem BioAssay database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/). Contact: ywang@ncbi.nlm.nih.gov; bryant@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20947527

  6. Spectroscopic and structural investigation of interaction product of 8-mercaptoquinoline with molecular iodine

    NASA Astrophysics Data System (ADS)

    Chernov'yants, Margarita S.; Starikova, Zoya A.; Karginova, Anastasia O.; Kolesnikova, Tatiana S.; Tereznikov, Alexander Yu.

    2013-11-01

    The behavior of 8-mercaptoquinoline, which is a potential antithyroid drug toward molecular iodine was investigated. The ability of 8-mercaptoquinoline to form the outer-sphere charge-transfer complex C9H7NS·I2 with iodine molecular in dilute chloroform solution has been studied by UV/vis spectroscopy (lg β = 3.14). The crystal structure of the new salt 8-(quinoline-8-yldisulfonyl)quinolinium triiodide - product of irreversible oxidation of 8-mercaptoquinoline was determined by X-ray diffraction. Intramolecular hydrogen bond of N-H⋯N type is presented in the organic cation. The triiodide ion is the nearly centrosymmetrical anion. The 8-(quinoline-8-yldisulfanyl)quinolinium cations form dimers through π-π-stacking interaction between quinolinium rings. The reduced intramolecular interactions are observed between iodine - sulfur atoms and iodine-hydrogen atoms with shortened contacts (less of sum of van-der-waals contacts).

  7. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2010-09-01

    Folded polyproline peptides can exist as either left-(PPII) or right-handed (PPI) helices, depending on their environment. In this work, we have characterized the conformations and the free energy landscapes of Ace-(Pro)n-Nme, n =2,3,…,9, and 13 peptides both in vacuo and in an implicit solvent environment. In order to enhance the sampling provided by regular molecular dynamics simulations, we have used the recently developed adaptively biased molecular dynamics method—which provides an accurate description of the free energy landscapes in terms of a set of relevant collective variables—combined with Hamiltonian and temperature replica exchange molecular dynamics methods. The collective variables, which are chosen so as to reflect the stable structures and the "slow modes" of the polyproline system, were based primarily on properties of length and of the cis/trans isomerization associated with the prolyl bonds. Results indicate that the space of peptide structures is characterized not just by pure PPII and PPI structures, but rather by a broad distribution of stable minima with similar free energies. These results are in agreement with recent experimental work. In addition, we have used steered molecular dynamics methods in order to quantitatively estimate the free energy difference of PPI and PPII for peptides of the length n =2,…,5 in vacuo and implicit water and qualitatively investigate transition pathways and mechanisms for the PPII to PPI transitions. A zipper-like mechanism, starting from either the center of the peptide or the amidated end, appear to be the most likely mechanisms for the PPII→PPI transition for the longer peptides.

  8. First principles investigations of electronic structure and transport properties of graphitic structures and single molecular junctions

    NASA Astrophysics Data System (ADS)

    Owens, Jonathan R.

    properties of the IV curves of single molecule nano-junctions. Specifically, these systems consist of a zinc-porphyrin molecule coupled between two gold electrodes, i.e., a nano-gap. The first observation we want to explain is the asymmetric nature of the experimental IV curve for this porphyrin system, where the IV curve is skewed heavily to the negative bias region. Using a plane-wave DFT calculation, we present the density of states of the porphyrin molecule (both in the presence and absence of the electrodes) and indeed see highly delocalized states (as confirmed by site-projection of the DOS) only in the negative bias region, meaning that the channels with high transmission probability reside there, in agreement with experimental observation. The next problem studied pertains to observed switching in an experimentally-measured IV curve, this time of a longer zinc porphyrin molecule, still within a gold nano-gap. The switching behavior is observed only at 300K, not at 4.2K. The temperature-dependance of this problem renders our previous toolset of DFT calculations void; DFT is a ground-state theory. Instead, we employ a density functional-based tight-binding (DFTB) approach in a molecular dynamics simulation. Basically, the structural configuration evaluated at each time step is based on a tight-binding electronic structure calculation, instead of a typical MD force field. Trajectories are presented at varying temperatures and electric field strengths. Indeed, we observe a conformation of the porphyrin molecule between two configurations of the dihedral angle of the central nitrogen ring, ±15. {o} at 300K, but not 4.2K. These confirmations are equally likely, i.e., the structure assumes these configurations an equal number of teams, meaning the average structure has an angle of 0. {o}. After computing the DOS of all three aforementioned configurations (0. {text{o}} and ±15. {text{o}}), we indeed see a difference between the DOS curves at ±15. {text{o}} (which are

  9. Investigation of Molecular Structure of Porous Epoxy Thermosets via Swelling and Glass Transition Behavior

    NASA Astrophysics Data System (ADS)

    Sharifi, Majid; Ghorpade, Kaustubh; Raman, Vijay; Palmese, Giuseppe

    2014-05-01

    Many of the excellent properties of highly crosslinked polymers are due to their molecular structures. In this study, network structures of three epoxy systems, Epon828-PACM, Epon836-PACM, and Epon1001F-PACM were investigated via equilibrium swelling theory. Each systems separately cured in presence of an inert solvent, THF, ranging from 0 to 92% by volume fraction of solvent. Experimental results showed that the conventional swelling theory is valid for specimens polymerized in moderate dilute environments, i.e. up to around 60% solvent by vol. whereas in extremely dilute environments, i.e. above 60%, the computed Mc values are exponentially increasing. This drastic increase in Mc was investigated by Tg measurement of the polymer phase (on supercritically dried specimens). The measured Mc could not predict the corresponding Tg values according to Fox equation. Due to the highly porous nature of the resulting thermosets after supercritical drying, a modifying factor, based on the probability of finding elastic chains in a porous network, was incorporated in the conventional swelling model (Bray-Merrill equation). It was shown that the adjusted Mc values of each thermoset and the corresponding Tgs are acceptably match via the well-known Fox equation. The modified Mc values indicate that, polymer networks produced in presence of miscible inert phases have relatively uniform molecular weight between crosslinks, irrespective of the amount of that inert phase.

  10. First principles investigations of electronic structure and transport properties of graphitic structures and single molecular junctions

    NASA Astrophysics Data System (ADS)

    Owens, Jonathan R.

    properties of the IV curves of single molecule nano-junctions. Specifically, these systems consist of a zinc-porphyrin molecule coupled between two gold electrodes, i.e., a nano-gap. The first observation we want to explain is the asymmetric nature of the experimental IV curve for this porphyrin system, where the IV curve is skewed heavily to the negative bias region. Using a plane-wave DFT calculation, we present the density of states of the porphyrin molecule (both in the presence and absence of the electrodes) and indeed see highly delocalized states (as confirmed by site-projection of the DOS) only in the negative bias region, meaning that the channels with high transmission probability reside there, in agreement with experimental observation. The next problem studied pertains to observed switching in an experimentally-measured IV curve, this time of a longer zinc porphyrin molecule, still within a gold nano-gap. The switching behavior is observed only at 300K, not at 4.2K. The temperature-dependance of this problem renders our previous toolset of DFT calculations void; DFT is a ground-state theory. Instead, we employ a density functional-based tight-binding (DFTB) approach in a molecular dynamics simulation. Basically, the structural configuration evaluated at each time step is based on a tight-binding electronic structure calculation, instead of a typical MD force field. Trajectories are presented at varying temperatures and electric field strengths. Indeed, we observe a conformation of the porphyrin molecule between two configurations of the dihedral angle of the central nitrogen ring, ±15. {o} at 300K, but not 4.2K. These confirmations are equally likely, i.e., the structure assumes these configurations an equal number of teams, meaning the average structure has an angle of 0. {o}. After computing the DOS of all three aforementioned configurations (0. {text{o}} and ±15. {text{o}}), we indeed see a difference between the DOS curves at ±15. {text{o}} (which are

  11. The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates.

    PubMed

    Wilke, Manuel; Buzanich, Ana Guilherme; Reinholz, Uwe; Rademann, Klaus; Emmerling, Franziska

    2016-06-21

    We describe a fast and effective synthesis for molecular metal phosphonates. Isomorphic compounds [M(ii)(HO3PPh)2(H2O3PPh)2(H2O)2] (M = Mn (1), Co (2), Ni (3); Ph = C6H5) were obtained by grinding. The complexes are mononuclear compounds containing neutral and monodeprotonated phenylphosphonic acid and water as ligands. The crystal structures were determined using powder X-ray diffraction (PXRD) data and validated by extended X-ray absorption fine structure (EXAFS) data. Combined synchrotron XRD measurements and Raman spectroscopy were conducted for investigating the reactions in situ. Based on these data, the intermediates were characterized and the formation mechanism was derived. PMID:27188480

  12. Investigation of the structure of levan polysaccharide chains in water via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Turgut, Deniz; Coskunkan, Binnaz; Cem, Gulcin; Rende, Deniz; Arga, K. Yalcin; Bucak, Seyda; Baysal, Nihat; Toksoy-Oner, Ebru; Ozisik, Rahmi

    2014-03-01

    Levan is a biopolymer consisting of β-D-fructofuranose units with β (2-6) linkages between fructose rings. Investigation of the structure and behavior of levan in aqeous environments is necessary to understand its biological activity and its potential use in various applications such as carbohydrate-derived drug release. The use of different in vivo and in vitro bioactivity assays fail to relate the chemical structure and conformation to the observed biological activity. Therefore, considerable research has been directed on elucidating the biological activity mechanisms of polysaccharides by structure-function analysis. To overcome the inherent difficulties of experiments, molecular dynamics (MD) simulations have been used to retrieve comprehensive information regarding the conformations of polysaccharides and their dynamic properties. In the current study, the structure of levan is investigated in aqueous medium and in saline solutions via fully atomistic MD simulations at 298 and 310 K, representing room temperature and physiological temperatures, respectively. The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232 and 113M265.

  13. Structural investigation of lanthanoid coordination: a combined XANES and molecular dynamics study.

    PubMed

    D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Mancini, Giordano; Persson, Ingmar; Chillemi, Giovanni

    2009-11-01

    This is the first systematic study exploring the potentiality of the X-ray absorption near edge structure (XANES) technique as a structural tool for systems containing lanthanoid(III) ions. A quantitative analysis of the XANES spectra at the K- and L(3)-edges has been carried out for three hydrated lanthanoid(III) ions, namely, Yb, Nd, and Gd, in aqueous solution and in the isostructural trifluoromethanesulfonate salts. The structural and dynamic properties of the hydrated lanthanoid(III) ions in aqueous solution have been investigated by a combined experimental-theoretical approach employing X-ray absorption spectroscopy and molecular dynamics (MD) simulations. This method allows one to perform a quantitative analysis of the XANES spectra of ionic solutions using a proper description of the thermal and structural fluctuations. XANES spectra have been computed starting from the MD trajectory, without carrying out any minimization in the structural parameter space. A comparative K- and L(3)-edge XANES data analysis is presented, demonstrating the clear advantages of the L(3)-edge XANES analysis over the K-edge studies for structural investigations of lanthanoid compounds. The second hydration shells provide a detectable contribution to the L(3)-edge spectra while the K-edge data are insensitive to the more distant coordination spheres because of the strong damping and broadening of the signal caused by the extremely large core hole widths. The XANES technique has been found to be a new valuable tool for the structural characterization of metal complexes both in the solid and in the liquid state, especially in the presence of low symmetry. PMID:19788258

  14. Molecular structure, linear and nonlinear optical properties of some cyclic phosphazenes: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Hadji, Djebar; Rahmouni, Ali

    2016-02-01

    We report ab initio and density functional theory calculations of structural data, dipole moment, diagonal vibrational and electronic contributions to polarizability, vibrational and electronic contributions to first hyperpolarizability of some cyclic phosphazenes. The electronic structure of substituted cyclic phosphazenes has been investigated using Hartree-Fock and density functional theory. The vibrational and electronic contributions to polarizabilities and first hyperpolarizability of these molecules were calculated with HF method, and different DFT levels used the traditional B3LYP and PBE functional and the long-range corrected functional like Coulomb-attenuating method CAM-B3LYP, LC-BLYP and wB97XD used different basis sets. These cyclic phosphazenes adopts a planar structure. The chosen level of theory was found to describe satisfactory the molecular structure (r. m. s. of the relative deviations). The study reveals that the cyclic phosphazenes derivatives have large vibrational contribution to static first hyperpolarizability values. The results obtained from this work will provide into the electronic properties of this important class of inorganic polymers.

  15. Molecular- and nm-scale Investigation of the Structure and Compositional Heterogeneity of Naturally Occurring Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.

    2008-12-01

    Ferrihydrite is a hydrated Fe(III) nano-oxide that forms in vast quantities in contaminated acid mine drainage environments. As a result of its high surface area, ferrihydrite is an important environmental sorbent, and plays an essential role in the geochemical cycling of pollutant metal(loid)s in these settings. Despite its environmental relevance, this nanomineral remains one of the least understood environmental solids in terms of its structure (bulk and surface), compositional variations, and the factors affecting its reactivity. Under natural aqueous conditions, ferrihydrite often precipitates in the presence of several inorganic compounds such as aluminum, silica, arsenic, etc., or in the presence of organic matter. These impurities can affect the molecular-level structure of naturally occurring ferrihydrite, thus modifying fundamental properties that are directly correlated with solid-phase stability and surface reactivity. Currently there exists a significant gap in our understanding of the structure of synthetic vs. natural ferrihydrites, due to the inherent difficulties associated to the investigation of these poorly crystalline nanophases. In this study, we combined synchrotron- and laboratory-based techniques to characterize naturally occurring ferrihydrite from an acid mine drainage system situated at the New Idria mercury mine in California. We used high-energy X-ray total scattering and pair distribution function analysis to elucidate quantitative structural details of these samples. We have additionally used scanning transmission X-ray microscopy high resolution imaging (30 nm) to evaluate the spatial relationship of major elements Si, Al, and C within ferrihydrite. Al, Si and C K-edge near- edge X-ray absorption fine structure spectroscopy and 27Al nuclear magnetic resonance spectroscopy were used to obtain short-range structural information. By combining these techniques we attain the highest level of resolution permitted by current analytical

  16. Structural analysis and investigation of molecular properties of Cefpodoxime acid, a third generation antibiotic

    NASA Astrophysics Data System (ADS)

    Suganthi, S.; Balu, P.; Sathyanarayanamoorthi, V.; Kannappan, V.; Kamil, M. G. Mohamed; Kumar, R.

    2016-03-01

    Extensive quantum mechanical studies are carried out on Cefpodoxime acid (CA), a new generation drug by Hartree-Fock (HF) and B3LYP methods to understand the structural and spectral characteristics of the molecule. The most stable geometry of the molecule was optimized and the bond parameters were reported. The spectroscopic properties of this pharmaceutically important compound were investigated by FT-IR, FT-Raman, UV and 1H NMR techniques. The scaled vibrational frequencies of CA in the ground state are calculated by HF and B3LYP methods with 6-311++G (d, p) basis set and compared with the observed FT-IR and FT-Raman spectra. The vibrational spectral analysis indicates the presence of two intra molecular hydrogen bonds in the molecule which is supported by theoretical study. 1H NMR chemical shifts (δ) were calculated for the CA molecule and compared with the experimental values. The theoretical electronic absorption spectral data in water and ethanol solvents were computed by TD-DFT method. UV-Vis absorption spectra of CA are recorded in these two solvents and compared with theoretical spectra. The spectral data and natural bond orbital (NBO) analysis confirm the occurrence of intra molecular interactions in CA. The electronic distribution, in conjunction with electrophilicity index of CA was used to establish the active site and type of interaction between CA and beta lactamases. Mulliken population analysis on atomic charges is also carried out and thermodynamic properties of the title compound are calculated.

  17. Theoretical investigation of the molecular structures and excitation spectra of triphenylamine and its derivatives.

    PubMed

    Sumimoto, Michinori; Yokogawa, Daisuke; Komeda, Masahiro; Yamamoto, Hidetoshi; Hori, Kenji; Fujimoto, Hitoshi

    2011-10-15

    The molecular geometries, electronic structures, and excitation energies of NPh(3), NPh(2)Me, NPhMe(2), and NMe(3), were investigated using DFT and post-Hartree Fock methods. When the structural stabilities of these compounds were compared to results obtained by using MP4(SDQ) method, it was confirmed that the optimized geometries by using MP2 method were sufficiently reliable. The excited states with large oscillator strengths consisted of transition components from the HOMO. It should be noted that the orbitals of the nitrogen atom mix with the π-orbital of the phenyl group in an anti-bonding way in the HOMO, and the orbital energy increases with this mixing. The unoccupied orbitals are generated from bonding and anti-bonding type interactions between the π-orbitals of the phenyl groups; therefore, the number of phenyl groups strongly affects the energy diagram of the compounds studied. The differences in the energy diagram cause a spectral change in these compounds in the ultraviolet region. PMID:21795108

  18. Theoretical investigation of the molecular structures and excitation spectra of triphenylamine and its derivatives

    NASA Astrophysics Data System (ADS)

    Sumimoto, Michinori; Yokogawa, Daisuke; Komeda, Masahiro; Yamamoto, Hidetoshi; Hori, Kenji; Fujimoto, Hitoshi

    2011-10-01

    The molecular geometries, electronic structures, and excitation energies of NPh 3, NPh 2Me, NPhMe 2, and NMe 3, were investigated using DFT and post-Hartree Fock methods. When the structural stabilities of these compounds were compared to results obtained by using MP4(SDQ) method, it was confirmed that the optimized geometries by using MP2 method were sufficiently reliable. The excited states with large oscillator strengths consisted of transition components from the HOMO. It should be noted that the orbitals of the nitrogen atom mix with the π-orbital of the phenyl group in an anti-bonding way in the HOMO, and the orbital energy increases with this mixing. The unoccupied orbitals are generated from bonding and anti-bonding type interactions between the π-orbitals of the phenyl groups; therefore, the number of phenyl groups strongly affects the energy diagram of the compounds studied. The differences in the energy diagram cause a spectral change in these compounds in the ultraviolet region.

  19. Effects of wettability and interfacial nanobubbles on flow through structured nanochannels: an investigation of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yen, Tsu-Hsu

    2015-12-01

    Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.

  20. Mechanism of allosteric propagation across a β-sheet structure investigated by molecular dynamics simulations.

    PubMed

    Interlandi, Gianluca; Thomas, Wendy E

    2016-07-01

    The bacterial adhesin FimH consists of an allosterically regulated mannose-binding lectin domain and a covalently linked inhibitory pilin domain. Under normal conditions, the two domains are bound to each other, and FimH interacts weakly with mannose. However, under tensile force, the domains separate and the lectin domain undergoes conformational changes that strengthen its bond with mannose. Comparison of the crystallographic structures of the low and the high affinity state of the lectin domain reveals conformational changes mainly in the regulatory inter-domain region, the mannose binding site and a large β sheet that connects the two distally located regions. Here, molecular dynamics simulations investigated how conformational changes are propagated within and between different regions of the lectin domain. It was found that the inter-domain region moves towards the high affinity conformation as it becomes more compact and buries exposed hydrophobic surface after separation of the pilin domain. The mannose binding site was more rigid in the high affinity state, which prevented water penetration into the pocket. The large central β sheet demonstrated a soft spring-like twisting. Its twisting motion was moderately correlated to fluctuations in both the regulatory and the binding region, whereas a weak correlation was seen in a direct comparison of these two distal sites. The results suggest a so called "population shift" model whereby binding of the lectin domain to either the pilin domain or mannose locks the β sheet in a rather twisted or flat conformation, stabilizing the low or the high affinity state, respectively. Proteins 2016; 84:990-1008. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27090060

  1. Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation.

    PubMed

    Singh, Shailza; Mandlik, Vineetha

    2015-05-01

    Leishmania major is the causative agent of cutaneous leishmaniasis which affects over 1 million people in 88 different countries. The incidence of this disease is on the rise due to the current problems associated with the present chemotherapeutics. In addition, Leishmania confronts resistance to the traditional drugs like sodium stibogluconate and newer repurposed drugs like miltefosine. ABC transporters are involved in the development of drug resistance. Miltefosine, the drug used for the treatment of leishmaniasis, is effluxed by P4 ATPase and ABC transporter, which is the prime focus of our study in this paper. P4 ATPase (MDR1) along with an unnamed protein (cdc50) translocates miltefosine from the outer to the inner leaflet by the process of flipping which is ATP driven. In contrast, miltefosine also escapes from the cells by an energy dependent mechanism that involves the ABC transporter protein (ABC). It is known that certain genes in the parasite amplify the portions of a gene which encodes ABC transporter and P4 ATPase involved in translocating phospholipids and hence resistance to miltefosine. We observed the ABC and P4 ATPase genes, 39 T-box elements were observed in the ABC transporter protein and three elements were observed in the P4 ATPase gene suggesting its role in transcription regulation. To the best of our knowledge, there are no structural and regulatory reports on these two proteins in L. major. Computational structural biology tools may aid in understanding the interaction of miltefosine with the P4-ATPase-cdc50 complex and the ABC transporter. This can be achieved by modeling the target protein structures, studying the dynamics associated with the different domains of the protein and later using activators and inhibitors to alter the functioning of the protein. Molecular dynamics simulation with a lipid bilayer is performed to investigate the conformational changes and structure-activity relationship. As transporters are difficult to model

  2. Molecular polymorphism: microwave spectra, equilibrium structures, and an astronomical investigation of the HNCS isomeric family.

    PubMed

    McGuire, Brett A; Martin-Drumel, Marie-Aline; Thorwirth, Sven; Brünken, Sandra; Lattanzi, Valerio; Neill, Justin L; Spezzano, Silvia; Yu, Zhenhong; Zaleski, Daniel P; Remijan, Anthony J; Pate, Brooks H; McCarthy, Michael C

    2016-08-10

    The rotational spectra of thioisocyanic acid (HNCS), and its three energetic isomers (HSCN, HCNS, and HSNC) have been observed at high spectral resolution by a combination of chirped-pulse and Fabry-Pérot Fourier-transform microwave spectroscopy between 6 and 40 GHz in a pulsed-jet discharge expansion. Two isomers, thiofulminic acid (HCNS) and isothiofulminic acid (HSNC), calculated here to be 35-37 kcal mol(-1) less stable than the ground state isomer HNCS, have been detected for the first time. Precise rotational, centrifugal distortion, and nitrogen hyperfine coupling constants have been determined for the normal and rare isotopic species of both molecules; all are in good agreement with theoretical predictions obtained at the coupled cluster level of theory. On the basis of isotopic spectroscopy, precise molecular structures have been derived for all four isomers by correcting experimental rotational constants for the effects of rotation-vibration interaction calculated theoretically. Formation and isomerization pathways have also been investigated; the high abundance of HSCN relative to ground state HNCS, and the detection of strong lines of SH using CH3CN and H2S, suggest that HSCN is preferentially produced by the radical-radical reaction HS + CN. A radio astronomical search for HSCN and its isomers has been undertaken toward the high-mass star-forming region Sgr B2(N) in the Galactic Center with the 100 m Green Bank Telescope. While we find clear evidence for HSCN, only a tentative detection of HNCS is proposed, and there is no indication of HCNS or HSNC at the same rms noise level. HSCN, and tentatively HNCS, displays clear deviations from a single-excitation temperature model, suggesting weak masing may be occurring in some transitions in this source. PMID:27478937

  3. Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer.

    PubMed

    Tu, K; Tobias, D J; Blasie, J K; Klein, M L

    1996-02-01

    We report the results of a constant pressure and temperature molecular dynamics simulation of a gel-phase dipalmitoylphosphatidylcholine bilayer with nw = 11.8 water molecules/lipid at 19 degrees C. The results of the simulation were compared in detail with a variety of x-ray and neutron diffraction data. The average positions of specific carbon atoms along the bilayer normal and the interlamellar spacing and electron density profile were in very good agreement with neutron and x-ray diffraction results. The area per lipid and the details of the in-plane hydrocarbon chain structure were in excellent agreement with wide-angle x-ray diffraction results. The only significant deviation is that the chains met in a pleated arrangement at the bilayer center, although they should be parallel. Novel discoveries made in the present work include the observation of a bimodal headgroup orientational distribution. Furthermore, we found that there are a significant number of gauche conformations near the ends of the hydrocarbon chains and, in addition to verifying a previous suggestion that there is partial rotational ordering in the hydrocarbon chains, that the two chains in a given molecule are inequivalent with respect to rotations. Finally, we have investigated the lipid/water interface and found that the water penetrates beneath the headgroups, but not as far as the carbonyl groups, that the phosphates are strongly hydrated almost exclusively at the nonesterified oxygen atoms, and that the hydration of the ammonium groups is more diffuse, with some water molecules concentrated in the grooves between the methyl groups. PMID:8789079

  4. Molecular structural investigation of adenosine using spectroscopic and quantum computational calculations

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, D.; Periandy, S.; Xavier, S.

    2016-09-01

    In this study; spectroscopic investigation of adenosine having clinical importance was studied computationally and obtained results were compared with experimental ones. In this scope, geometric optimization and conformational analysis were studied and vibrational spectroscopic properties were studied on the most stable form. NMR and TD-DFT studies on the title compound were conducted with its experimental data. In addition atomic charge distribution, NBO, frontier molecular analysis, thermodynamic analysis and hyperpolarization features were studied.

  5. Molecular Modeling of Myrosinase from Brassica oleracea: A Structural Investigation of Sinigrin Interaction

    PubMed Central

    Natarajan, Sathishkumar; Thamilarasan, Senthil Kumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup

    2015-01-01

    Myrosinase, which is present in cruciferous plant species, plays an important role in the hydrolysis of glycosides such as glucosinolates and is involved in plant defense. Brassicaceae myrosinases are diverse although they share common ancestry, and structural knowledge about myrosinases from cabbage (Brassica oleracea) was needed. To address this, we constructed a three-dimensional model structure of myrosinase based on Sinapis alba structures using Iterative Threading ASSEmbly Refinement server (I-TASSER) webserver, and refined model coordinates were evaluated with ProQ and Verify3D. The resulting model was predicted with β/α fold, ten conserved N-glycosylation sites, and three disulfide bridges. In addition, this model shared features with the known Sinapis alba myrosinase structure. To obtain a better understanding of myrosinase–sinigrin interaction, the refined model was docked using Autodock Vina with crucial key amino acids. The key nucleophile residues GLN207 and GLU427 were found to interact with sinigrin to form a hydrogen bond. Further, 20-ns molecular dynamics simulation was performed to examine myrosinase–sinigrin complex stability, revealing that residue GLU207 maintained its hydrogen bond stability throughout the entire simulation and structural orientation was similar to that of the docked state. This conceptual model should be useful for understanding the structural features of myrosinase and their binding orientation with sinigrin. PMID:26703735

  6. Structural properties of coal metallic glasses investigated by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Xia, J. H.; Gao, Xue-Mei; Xiao, Xu-Yang; Cheng, Zheng-Fu

    2015-01-01

    Based on using molecular dynamics simulations, the structural transitions of Co25Al75 and Co75Al25 were studied during two different quenching processes. The pair-correlation function, the Honeycutt-Andersen (HA) pair analysis technique, Voronoi indices and structural snapshot are adopted in both rapid quenching processes. The results provide direct evidence of the liquid-crystal transition and the liquid Co75Al25 crystallizes into bcc phase at 300 K during the rapid quenching process r1 = 1 K/ps. While during the rapid quenching r2 = 10 K/ps the liquid is frozen into the glass state at 300 K. Meanwhile, the liquid Co25Al75 is frozen into the glass state at 300 K during the two rapid quenching processes. Our results show that the phase formation is strongly dependent on the cooling rates and the compositions.

  7. Structure of Penta-Alanine Investigated by Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation.

    PubMed

    Feng, Yuan; Huang, Jing; Kim, Seongheun; Shim, Ji Hyun; MacKerell, Alexander D; Ge, Nien-Hui

    2016-06-23

    We have studied the structure of (Ala)5, a model unfolded peptide, using a combination of 2D IR spectroscopy and molecular dynamics (MD) simulation. Two different isotopomers, each bis-labeled with (13)C═O and (13)C═(18)O, were strategically designed to shift individual site frequencies and uncouple neighboring amide-I' modes. 2D IR spectra taken under the double-crossed ⟨π/4, -π/4, Y, Z⟩ polarization show that the labeled four-oscillator systems can be approximated by three two-oscillator systems. By utilizing the different polarization dependence of diagonal and cross peaks, we extracted the coupling constants and angles between three pairs of amide-I' transition dipoles through spectral fitting. These parameters were related to the peptide backbone dihedral angles through DFT calculated maps. The derived dihedral angles are all located in the polyproline-II (ppII) region of the Ramachandran plot. These results were compared to the conformations sampled by Hamiltonian replica-exchange MD simulations with three different CHARMM force fields. The C36 force field predicted that ppII is the dominant conformation, consistent with the experimental findings, whereas C22/CMAP predicted similar population for α+, β, and ppII, and the polarizable Drude-2013 predicted dominating β structure. Spectral simulation based on MD representative conformations and structure ensembles demonstrated the need to include multiple 2D spectral features, especially the cross-peak intensity ratio and shape, in structure determination. Using 2D reference spectra defined by the C36 structure ensemble, the best spectral simulation is achieved with nearly 100% ppII population, although the agreement with the experimental cross-peak intensity ratio is still insufficient. The dependence of population determination on the choice of reference structures/spectra and the current limitations on theoretical modeling relating peptide structures to spectral parameters are discussed. Compared

  8. Solution Structure of Molecular Associations Investigated Using NMR for Polysaccharides: Xanthan/Galactomannan Mixtures.

    PubMed

    Takemasa, Makoto; Nishinari, Katsuyoshi

    2016-03-31

    Although the intermolecular nuclear Overhauser effect (NOE) signal was valuable to elucidate molecular association structure, it could not always be observed for associated molecules due to the short spin-spin relaxation time T2 in NMR measurements, especially for high molar mass systems. While almost no study has been reported for high molar mass polymers (>1 × 10(6)), especially for polysaccharide-polysaccharide interactions, NOE signals were observed for the first time between two different types of polysaccharides, xanthan and galactomannan (locust bean gum), forming a synergistic gel, as a direct evidence of intermolecular binding of polysaccharides. The NOE peak was found between pyruvic acid in xanthan and anomeric proton of mannose of galactomannan. This NOE signal was observed only when mixing time >0.5 s, indicating indirect NOEs caused by spin diffusion. Therefore, this NOE could not be used to construct the molecular models. However, it is a direct evidence for the binding between two different types of polysaccharide to elucidate the synergistic gelation. This NOE signal was observed only for low molar mass galactomannans (1.4 × 10(4)). T2 of pyruvate methyl drastically decreased at low temperatures in the presence of synergistic interaction, suggesting that pyruvate group at terminal end of side chain in xanthan plays an essential role in synergistic interaction. PMID:26943259

  9. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations.

    PubMed

    Liu, Ya-Lin; Jang, Soonmin; Wang, Shih-Min; Chen, Chiu-Hao; Li, Feng-Yin

    2016-06-01

    The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank. PMID:26198481

  10. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    SciTech Connect

    Carnevale, V.; Raugei, S.

    2009-12-14

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  11. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Carnevale, V.; Raugei, S.

    2009-12-01

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  12. Investigation of mechanical strength of 2D nanoscale structures using a molecular dynamics based computational intelligence approach

    NASA Astrophysics Data System (ADS)

    Garg, A.; Vijayaraghavan, V.; Wong, C. H.; Tai, K.; Singru, Pravin M.; Mahapatra, S. S.; Sangwan, K. S.

    2015-09-01

    A molecular dynamics (MD) based computational intelligence (CI) approach is proposed to investigate the Young modulus of two graphene sheets: Armchair and Zigzag. In this approach, the effect of aspect ratio, the temperature, the number of atomic planes and the vacancy defects on the Young modulus of two graphene sheets are first analyzed using the MD simulation. The data obtained using the MD simulation is then fed into the paradigm of a CI cluster comprising of genetic programming, which was specifically designed to formulate the explicit relationship of Young modulus of two graphene structures. We find that the MD-based-CI model is able to model the Young modulus of two graphene structures very well, which compiles in good agreement with that of experimental results obtained from the literature. Additionally, we also conducted sensitivity and parametric analysis and found that the number of defects has the most dominating influence on the Young modulus of two graphene structures.

  13. Dioxygen difluoride: Electron diffraction investigation of the molecular structure in the gas

    SciTech Connect

    Hedberg, L.; Hedberg, K.; Eller, P.G.; Ryan, R.R.

    1988-01-27

    An electron diffraction study of the structure of dioxygen difluoride (/sub 2/F/sub 2/) at /minus/42/degree/C has confirmed the results of an earlier microwave investigation. The molecule has C/sub 2/symmetry, a short O-O bond, and extraordinarily long O-F bonds: r/sub g/(O-O) = 1.216 (2) /angstrom/, r/sub g/(O-F) = 1.586 (2) /angstrom/. Other parameter values are /angle//sub /alpha//FOO = 109.2 (2)/degree/, /angle//sub /alpha//FOOF = 88.1 (4)/degree/, l(O-O) = 0.046 (3) /angstrom/, l(O-F) = 0.069 (3) /angstrom/, l(O/hor ellipsis/F) = 0.073 (4) /angstrom/, and l(F/hor ellipsis/F) = 0.113 (10) /angstrom/; the l values are rms amplitudes of vibration, and the parameter uncertainties are estimated 2/sigma/. The data are consistent with a high barrier to internal rotation. There is no evidence for the presence of a planar form. Attempts to detect O/sub 2/F radical or its dimer were unsuccessful. 23 refs., 2 figs., 2 tabs.

  14. Crystallographic approaches for the investigation of molecular materials: structure property relationships and reverse crystal engineering.

    PubMed

    Macchi, Piero

    2014-01-01

    This article discusses the connection between crystallography and material science. It sheds light on some of the research opportunities that are currently available and it critically reviews the directions taken by the scientific community in the field of crystal engineering. The focus is on materials formed by the assembly of organic and organometallic molecular building blocks. PMID:24801694

  15. Synthesis, molecular structure investigations and antimicrobial activity of 2-thioxothiazolidin-4-one derivatives

    NASA Astrophysics Data System (ADS)

    Barakat, Assem; Al-Najjar, Hany J.; Al-Majid, Abdullah Mohammed; Soliman, Saied M.; Mabkhot, Yahia Nasser; Al-Agamy, Mohamed H. M.; Ghabbour, Hazem A.; Fun, Hoong-Kun

    2015-02-01

    A variety of 2-thioxothiazolidin-4-one derivatives were prepared and their in vitro antimicrobial activities were studied. Most of these compounds showed significant antibacterial activity specifically against Gram-positive bacteria, among which compounds 4a,e,g, 5b,e,g,h and 6f exhibit high levels of antimicrobial activity against Bacillus subtilis ATCC 10400 with Minimum Inhibitory Concentration (MIC) value of 16 μg/mL. All compounds have antifungal activity against Candida albicans. Unfortunately, however, none of the compounds were active against Gram-negative bacteria. The chemical structure of 3 was confirmed by X-ray single crystal diffraction technique. DFT calculations of 3 have been performed on the free C10H7Cl2NO2S2, 3a and the H-bonded complex, C10H7Cl2NO2S2·H2O, 3b to explore the effect of the H-bonding interactions on the geometric and electronic properties of the studied systems. A small increase in bond length was observed in the C12-O6 due to the H-bonding interactions between 3a and water molecule. MEP study has been used to recognize the most reactive sites towards electrophilic and nucleophilic attacks as well as the possible sites for the H-bonding interactions. The TD-DFT calculations have been used to predict theoretically the electronic spectra of the studied compound. The most intense transition band is predicted at 283.9 nm due to the HOMO-2/HOMO-1 to LUMO transitions. NBO analyses were carried out to investigate the stabilization energy of the various intramolecular charge transfer interactions within the studied molecules.

  16. An investigation of molecular structure of copolymers using positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St.clair, T. L.; Holt, W. H.; Mock, W., Jr.

    1985-01-01

    Positron lifetime measurements were made in copolyimides synthesized from linear 4,4 prime-bis(3,4-dicarboxyphenoxy) diphenylsulfide dianhydride (BDSDA)/4,4 prime-diaminodiphenyl (ODA) and BDSDA/1,3-diaminobenzene (m-phenylene diamine) homopolymers. The probability of positronium formation as well as its subsequent lifetime are lower in the BDSDA/ODA/MPD (50-50) copolyimide, indicating the presence of a transition molecular architecture characterized by higher electron density and stronger bonds which permit both chemical as well as physical entry of water molecules into it. The presence of this transition region imparts unique physical and mechanical properties to the copolyimide.

  17. Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at the Molecular Level.

    PubMed

    Nie, Haichen; Mo, Huaping; Zhang, Mingtao; Song, Yang; Fang, Ke; Taylor, Lynne S; Li, Tonglei; Byrn, Stephen R

    2015-07-01

    Strong associations between drug and polymeric carriers are expected to contribute to higher drug loading capacities and better physical stability of amorphous solid dispersions. However, molecular details of the interaction patterns and underlying mechanisms are still unclear. In the present study, a series of amorphous solid dispersions of clofazimine (CLF), an antileprosy drug, were prepared with different polymers by applying the solvent evaporation method. When using hypromellose phthalate (HPMCP) as the carrier, the amorphous solid dispersion system exhibits not only superior drug loading capacity (63% w/w) but also color change due to strong drug-polymer association. In order to further explain these experimental observations, the interaction between CLF and HPMCP was investigated in a nonpolar volatile solvent system (chloroform) prior to forming the solid dispersion. We observed significant UV/vis and (1)H NMR spectral changes suggesting the protonation of CLF and formation of ion pairs between CLF and HPMCP in chloroform. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) and diffusion order spectroscopy (DOSY) were employed to evaluate the strength of associations between drug and polymers, as well as the molecular mobility of CLF. Finally, by correlating the experimental values with quantum chemistry calculations, we demonstrate that the protonated CLF is binding to the carboxylate group of HPMCP as an ion pair and propose a possible structural model of the drug-polymer complex. Understanding the drug and carrier interaction patterns from a molecular perspective is critical for the rational design of new amorphous solid dispersions. PMID:25988812

  18. Theoretical investigation of the molecular structure of the pi kappa DNA base pair.

    PubMed

    Florián, J; Leszczyński, J

    1995-04-01

    The structure of the nonclassical pi kappa base pair (7-methyl-oxoformycin B. . .2,4-diaminopyrimidine) was studied at the ab initio Hartree-Fock (HF) and MP2 levels using the 6-31G* and 6-31G** basis sets. The pi kappa base pair is bound by three parallel hydrogen bonds with the donor-acceptor-donor recognition pattern. Recently, these bases were proposed as an extension of the genetic alphabet from four to six letters (Piccirilli et al, Nature 343,33 (1990)). By the HF/6-31G* method with full geometry optimization we calculated the 12 degree propeller twist for the minimum energy structure of this complex. The linearity of hydrogen bonds is preserved in the twisted structure by virtue of the pyramidal arrangement of the kappa-base amino groups. The rings of both the pi and kappa molecules remain nearly planar. This nonplanar structure of the pi kappa base pair is only 0.1 kcal/mol more stable than the planar (Cs) conformation. The HF/6-31G* level gas-phase interaction energy of pi kappa (-13.5 kcal/mol) calculated by us turned out to be nearly the same as the interaction energy obtained previously for the adenine-thymine base pair (-13.4 kcal/mol) at the same computational level. The inclusion of p-polarization functions on hydrogens, electron correlation effects (MP2/6-31G** level), and the correction for the basis set superposition error (BSSE) increase this energy to -14.0 kcal/mol. PMID:7626240

  19. Complementarity of real-time neutron and synchrotron radiation structural investigations in molecular biology

    SciTech Connect

    Aksenov, V. L.; Kiselev, M. A.

    2010-12-15

    General problems of the complementarity of different physical methods and specific features of the interaction between neutron and matter and neutron diffraction with respect to the time of flight are discussed. The results of studying the kinetics of structural changes in lipid membranes under hydration and self-assembly of the lipid bilayer in the presence of a detergent are reported. The possibilities of the complementarity of neutron diffraction and X-ray synchrotron radiation and developing a free-electron laser are noted.

  20. Raman microprobe investigation of molecular structure and organization in the native state of woody tissue

    SciTech Connect

    Atalla, R.H.

    1989-08-01

    Although the primary emphasis of our program has remained with the application of Raman spectroscopy to the study of native tissue, the scope of the work has been expanded to include a number of complementary approaches. These have included Solid State 13C NMR, autoradiography of radiolabeled woody tissue sections, and the generation of biomimetic tertiary aggregates which simulate states of aggregation characteristic of cell walls. Our Raman spectroscopic studies have resulted in progress in the areas of interpretation of the spectral features, and confirmation of the variability of the patterns of orientation of lignin reported earlier. We have assembled and made operational our new microprobe and spectrometer systems acquired under the DOE-URIP program. We have also demonstrated that, operating with gated detection and pulsed laser excitation, we can discriminate against the laser-excited fluorescence characteristic of most woody tissue. Our studies of celluloses, which combine Raman spectroscopy and 13C NMR have shown that all native celluloses are composites of two forms which have the same secondary structure but different tertiary structures.

  1. Molecular structure and vibrational spectroscopic investigation of secnidazole using density functional theory.

    PubMed

    Mishra, Soni; Chaturvedi, Deepika; Tandon, Poonam; Gupta, V P; Ayala, A P; Honorato, S B; Siesler, H W

    2009-01-01

    Secnidazole (alpha,2-dimethyl-5-nitro-1H-imidazole-1-ethanol) is an antimicrobical drug, and it is particularly effective in the treatment of amebiasis, giardiasis, trichomoniasis, and bacterial vaginosis. Secnidazole crystallizes as a hemihydrate, which belongs to a monoclinic system having space group P2(1)/c, with a = 12.424 A, b = 12.187 A, c = 6.662 A, and beta = 100.9 degrees. The optimized geometries and total energies of different conformers of the secnidazole molecule have been determined by the method of density functional theory (DFT). For both geometry and total energy, it has been combined with B3LYP functionals having extended basis sets 4-31G, 6-31G, and 6-311++G(d,p) for each of the three stable conformers of secnidazole. Using this optimized structure, we have calculated the infrared and Raman wavenumbers and compared them with the experimental data. The calculated wavenumbers are in an excellent agreement with the experimental values. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of the most stable conformer of secnidazole. A complete assignment is provided for the observed Raman and IR spectra. PMID:19072620

  2. Molecular monolayer structures formed on vicinal surfaces as investigated by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Avila-Bront, Lynna Gabriela

    The increasing demand for efficient cancer treatment inspired the researchers for new investigations about an alternative treatment of cancer. Microwave ablation is the newest ablation technique to cure cancer. This method is minimally noninvasive and inexpensive compared to the other methods. However, current microwave ablation systems suffer due to narrow band nature of the antenna (dipole or slot) placed at the tip of the probe. Therefore, this study developed an ultra-wide band ablation probe that operates from 300 MHz to 10 GHz. For this purpose, a small wide band antenna is designed to place at the tip of the probe and fabricated. These probes are tested at ISM frequencies (2.4 GHz and 5.8 GHz) in skin mimicking gels and pig liver. Microwave ablation probe design, simulation results, and experiment results are provided in this thesis.

  3. Molecular structure, intramolecular hydrogen bonding and vibrational spectral investigation of 2-fluoro benzamide - A DFT approach

    NASA Astrophysics Data System (ADS)

    Krishnakumar, V.; Murugeswari, K.; Surumbarkuzhali, N.

    2013-10-01

    The FTIR and FT-Raman spectra of 2-fluoro benzamide (2FBA) have been recorded in the region 4000-400 and 4000-100 cm-1, respectively. The structural analysis, hydrogen bonding, optimized geometry, frequency and intensity of the vibrational bands of 2FBA were obtained by the density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G** basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The 13C NMR spectra have been recorded and 13C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method and their respective linear correlations were obtained. The electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The change in electron density (ED) in the σ* antibonding orbitals and stabilization energies E(2) have been calculated by natural bond (NBO) analysis to give clear evidence of stabilization originating in the hyper conjugation of hydrogen-bonded interactions.

  4. Structure investigation of three hydrazones Schiff's bases by spectroscopic, thermal and molecular orbital calculations and their biological activities

    NASA Astrophysics Data System (ADS)

    Belal, Arafa A. M.; Zayed, M. A.; El-Desawy, M.; Rakha, Sh. M. A. H.

    2015-03-01

    Three Schiff's bases AI (2(1-hydrazonoethyl)phenol), AII (2, 4-dibromo 6-(hydrazonomethyl)phenol) and AIII (2(hydrazonomethyl)phenol) were prepared as new hydrazone compounds via condensation reactions with molar ratio (1:1) of reactants. Firstly by reaction of 2-hydroxy acetophenone solution and hydrazine hydrate; it gives AI. Secondly condensation between 3,5-dibromo-salicylaldehyde and hydrazine hydrate gives AII. Thirdly condensation between salicylaldehyde and hydrazine hydrate gives AIII. The structures of AI-AIII were characterized by elemental analysis (EA), mass (MS), FT-IR and 1H NMR spectra, and thermal analyses (TG, DTG, and DTA). The activation thermodynamic parameters, such as, ΔE∗, ΔH∗, ΔS∗ and ΔG∗ were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bond responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their anti-microbial potential.

  5. Structure investigation of three hydrazones Schiff's bases by spectroscopic, thermal and molecular orbital calculations and their biological activities.

    PubMed

    Belal, Arafa A M; Zayed, M A; El-Desawy, M; Rakha, Sh M A H

    2015-03-01

    Three Schiff's bases AI (2(1-hydrazonoethyl)phenol), AII (2, 4-dibromo 6-(hydrazonomethyl)phenol) and AIII (2(hydrazonomethyl)phenol) were prepared as new hydrazone compounds via condensation reactions with molar ratio (1:1) of reactants. Firstly by reaction of 2-hydroxy acetophenone solution and hydrazine hydrate; it gives AI. Secondly condensation between 3,5-dibromo-salicylaldehyde and hydrazine hydrate gives AII. Thirdly condensation between salicylaldehyde and hydrazine hydrate gives AIII. The structures of AI-AIII were characterized by elemental analysis (EA), mass (MS), FT-IR and (1)H NMR spectra, and thermal analyses (TG, DTG, and DTA). The activation thermodynamic parameters, such as, ΔE(∗), ΔH(∗), ΔS(∗) and ΔG(∗) were calculated from the TG curves using Coats-Redfern method. It is important to investigate their molecular structures to know the active groups and weak bond responsible for their biological activities. Consequently in the present work, the obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculations (MOCS) using PM3 procedure. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their anti-microbial potential. PMID:25437844

  6. Structures, molecular orbitals and UV-vis spectra investigations on Br2C6H4: a computational study.

    PubMed

    Wang, Tsang-Hsiu; Hsu, Chen-Shuo; Huang, Wen-Lin; Lo, Yih-Hsing

    2013-11-01

    The dibromobenzenes (1,2-, 1,3- and 1,4-Br2C6H4) have been studied by theoretical methods. The structures of these species are optimized and the structural characteristics are determined by density functional theory (DFT) and the second order Møller-Plesset perturbation theory (MP2) levels. The geometrical structures of Br2C6H4 show a little distortion of benzene ring due to the substitution of highly electronegativity of bromine atoms. The electronegativity of bromine atoms in 1,4-Br2C6H4 is predicted to be more negative than 1,2- and 1,3-Br2C6H4. In addition, dipole moment and frontier molecular orbitals (FMOs) of these Br2C6H4 are performed as well. The 1,4-Br2C6H4 is slightly more reactive than 1,2- and 1,3-Br2C6H4 because of its small HOMO-LUMO energy gap. The simulated UV-vis spectra are investigated by time-dependent density functional theory (TD-DFT) approach, which are in excellent agreement with the available experimental value. Our calculations show that a few of absorption features are between 140nm and 250nm, which is in ultraviolet C range, and the red shift of 1,3- and 1,4-Br2C6H4 are predicted. Moreover, the UV absorption features of these Br2C6H4 in water or methanol are predicted to be more intense than in gas phase due to solvent effect. PMID:23892349

  7. Ionic strength effect on molecular structure of hyaluronic acid investigated by flow field-flow fractionation and multiangle light scattering.

    PubMed

    Kim, Bitnara; Woo, Sohee; Park, Young-Soo; Hwang, Euijin; Moon, Myeong Hee

    2015-02-01

    This study describes the effect of ionic strength on the molecular structure of hyaluronic acid (HA) in an aqueous solution using flow field-flow fractionation and multiangle light scattering (FlFFF-MALS). Sodium salts of HA (NaHA) raw materials (∼2 × 10(6) Da) dispersed in different concentrations of NaCl prepared by repeated dilution/ultrafiltration procedures were examined in order to study conformational changes in terms of the relationship between the radius of gyration and molecular weight (MW) and molecular weight distribution (MWD) of NaHA in solution. This was achieved by varying the ionic strength of the carrier solution used in a frit-inlet asymmetrical FlFFF (FIAF4) channel. Experiments showed that the average MW of NaHA increased as the ionic strength of the NaHA solution decreased due to enhanced entanglement or aggregation of HA molecules. Relatively large molecules (greater than ∼5 MDa) did not show a large increase in RMS radius value as the NaCl concentration decreased. Conversely, smaller species showed larger changes, suggesting molecular expansion at lower ionic strengths. When the ionic strength of the FlFFF carrier solution was decreased, the HA species in a salt-rich solution (0.2 M NaCl) underwent rapid molecular aggregation during FlFFF separation. However, when salt-depleted HA samples (I = 4.66∼0.38 mM) were analyzed with FFF carrier solutions of a high ionic strength, the changes in both molecular structure and size were somewhat reversible, although there was a delay in correction of the molecular structure. PMID:25542570

  8. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    SciTech Connect

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done

  9. An investigation of G-quadruplex structural polymorphism in the human telomere using a combined approach of hydrodynamic bead modeling and molecular dynamics simulation.

    PubMed

    Le, Huy T; Dean, William L; Buscaglia, Robert; Chaires, Jonathan B; Trent, John O

    2014-05-22

    Guanine-rich oligonucleotides can adopt noncanonical tertiary structures known as G-quadruplexes, which can exist in different forms depending on experimental conditions. High-resolution structural methods, such as X-ray crystallography and NMR spectroscopy, have been of limited usefulness in resolving the inherent structural polymorphism associated with G-quadruplex formation. The lack of, or the ambiguous nature of, currently available high-resolution structural data, in turn, has severely hindered investigations into the nature of these structures and their interactions with small-molecule inhibitors. We have used molecular dynamics in conjunction with hydrodynamic bead modeling to study the structures of the human telomeric G-quadruplex-forming sequences at the atomic level. We demonstrated that molecular dynamics can reproduce experimental hydrodynamic measurements and thus can be a powerful tool in the structural study of existing G-quadruplex sequences or in the prediction of new G-quadruplex structures. PMID:24779348

  10. Molecular-scale investigations of structures and surface charge distribution of surfactant aggregates by three-dimensional force mapping

    SciTech Connect

    Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi; Kobayashi, Kei

    2014-02-07

    Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.

  11. Investigation of structural and dynamical properties of hafnium(IV) ion in liquid ammonia: An ab initio QM/MM molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Suwardi; Pranowo, Harno Dwi; Armunanto, Ria

    2015-09-01

    The structure and dynamics of Hf4+ ion in liquid ammonia have been investigated by an ab initio quantum mechanics molecular mechanics (QM/MM) molecular dynamics simulation. The structural data was obtained in terms of radial distribution, coordination number and angular distribution, and then the dynamics in mean ligand residence time. The Hf4+ ion is coordinated by five ammonia molecules in the first solvation shell showing a distorted square pyramidal structure with an average Hf4+-N distance of 2.38 Å. No ammonia ligand was observed for exchange processes between the first and second shells.

  12. Molecular structure and conformational composition of 1,1-dichlorobutane: a gas-phase electron diffraction and ab initio investigation

    NASA Astrophysics Data System (ADS)

    Aarset, Kirsten; Hagen, Kolbjørn; Stølevik, Reidar

    1997-09-01

    Gas-phase electron diffraction data obtained at 23°C, together with results from ab initio molecular orbital calculations ( {HF}/{6-31 G(d)}). were used to determine the structure and conformational composition of 1,1-dichlorobutane. Of the five distinguishable conformers (AA, G + A, AG +, G + G + and G + G -), the G + A conformer was found to be the low-energy form, and the investigation also indicated that certain amounts of the AA and G + G - conformers might be present. The symbols describing the conformers refer to torsion about the C 1C 2 and C 2C 3 bonds, anti (A) with H 5C 1C 2C 3 and C 1C 2C 3C 4 torsion angles of 180° and gauche (G + or G -) with torsion angles of + 60° or 300° (-60°) respectively. The results for the principal distances ( rg) and angles (∠ α) from the combined electron diffraction/ab initio study for the G + A conformer, with estimated 2σ uncertainties, were as follows: r( C1 C2) = 1.521(4) Å, r( C2 C3) = 1.539(4) Å, r( C3 C4) = 1.546(4) Å, r( C Cl6) = 1.782(3) Å, r( CCl7) = 1.782(3) Å, = 1.106(6) Å, ∠C 1C 2C 3 = 114.4(13)°, ∠C 2C 3C 4 = 112.5(13)°, ∠CCCl 6 = 110.4(7)°, ∠CCCl 7 = 111.9(7)°, <∠CCH> = 108.9(47)°. Only average values for r(CC), r(CCl), r(CH), ∠CCC, ∠CCX and ∠CCH were determined in the least-square refinements; the differences between the values for these parameters in the same conformer and between the different conformers were kept constant at the values obtained from the ab initio molecular orbital calculations.

  13. A Combination of Hand-Held Models and Computer Imaging Programs Helps Students Answer Oral Questions about Molecular Structure and Function: A Controlled Investigation of Student Learning

    ERIC Educational Resources Information Center

    Harris, Michelle A.; Peck, Ronald F.; Colton, Shannon; Morris, Jennifer; Neto, Elias Chaibub; Kallio, Julie

    2009-01-01

    We conducted a controlled investigation to examine whether a combination of computer imagery and tactile tools helps introductory cell biology laboratory undergraduate students better learn about protein structure/function relationships as compared with computer imagery alone. In all five laboratory sections, students used the molecular imaging…

  14. Structure and Transformation of Amorphous Calcium Carbonate: A Solid-State 43Ca NMR and Computational Molecular Dynamics Investigation

    SciTech Connect

    Singer, Jared W.; Yazaydin, A. O.; Kirkpatrick, Robert J.; Bowers, Geoffrey M.

    2012-05-22

    Amorphous calcium carbonate (ACC) is a metastable precursor to crystalline CaCO{sub 3} phases that precipitates by aggregation of ion pairs and prenucleation clusters. We use {sup 43}Ca solid-state NMR spectroscopy to probe the local structure and transformation of ACC synthesized from seawater-like solutions with and without Mg{sup 2+} and computational molecular dynamics (MD) simulations to provide more detailed molecular-scale understanding of the ACC structure. The {sup 43}Ca NMR spectra of ACC collected immediately after synthesis consist of broad, featureless resonances with Gaussian line shapes (FWHH = 27.6 {+-} 1 ppm) that do not depend on Mg{sup 2+} or H{sub 2}O content. A correlation between {sup 43}Ca isotropic chemical shifts and mean Ca-O bond distances for crystalline hydrous and anhydrous calcium carbonate phases indicates indistinguishable maximum mean Ca-O bond lengths of {approx}2.45 {angstrom} for all our samples. This value is near the upper end of the published Ca-O bond distance range for biogenic and synthetic ACCs obtained by Ca-X-ray absorption spectroscopy. It is slightly smaller than the values from the structural model of Mgfree ACC by Goodwin et al. obtained from reverse Monte Carlo (RMC) modeling of X-ray scattering data and our own computational molecular dynamics (MD) simulation based on this model. An MD simulation starting with the atomic positions of the Goodwin et al. RMC model using the force field of Raiteri and Gale shows significant structural reorganization during the simulation and that the interconnected carbonate/water-rich channels in the Goodwin et al. model shrink in size over the 2 ns simulation time. The distribution of polyhedrally averaged Ca-O bond distances from the MD simulation is in good agreement with the {sup 43}Ca NMR peak shape, suggesting that local structural disorder dominates the experimental line width of ACC.

  15. INSTRUMENTS AND METHODS OF INVESTIGATION: Atomic structures on a GaAs(001) surface grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bakhtizin, Raouf Z.; Hashizume, T.; Xue, Qi-Kun; Sakurai, Toshio

    1997-11-01

    A unique apparatus for in-situ atomic-resolution study of solid state structures grown by molecular beam epitaxy (MBE) is developed, in which a scanning tunneling microscope (STM) is combined with an MBE chamber within the same vacuum system. The utility of the apparatus is demonstrated by examining atomic structures on a molecular-beam-epitaxial GaAs(001) surface over a wide range of [As]/[Ga] ratios. By varying the As surface coverage, the 2×4 - α, β, γ and c(4×4) phases are examined in detail. High-resolution STM images indicate that 2×4 - α, β, and γ phases in the outermost surface layer have essentially the same unit cell consisting of two As dimers and two As dimer vacancies. Using the STM images, reflection high-energy electron diffraction (RHEED) patterns and dynamical RHEED calculations, the existing structural models for the 2×4 phases are analysed and a new model of the As-rich GaAs(001) surface is proposed, found to be consistent with most of the previous observations.

  16. INVESTIGATION OF MOLECULAR CLOUD STRUCTURE AROUND INFRARED BUBBLES: CARMA OBSERVATIONS OF N14, N22, AND N74

    SciTech Connect

    Sherman, Reid A.

    2012-11-20

    We present CARMA observations in 3.3 mm continuum and several molecular lines of the surroundings of N14, N22, and N74, three infrared bubbles from the GLIMPSE catalog. We have discovered 28 compact continuum sources and confirmed their associations with the bubbles using velocity information from HCO{sup +} and HCN. We have also mapped small-scale structures of N{sub 2}H{sup +} emission in the vicinity of the bubbles. By combining our data with survey data from GLIMPSE, MIPSGAL, BGPS, and MAGPIS, we establish about half of our continuum sources as star-forming cores. We also use survey data with the velocity information from our molecular line observations to describe the morphology of the bubbles and the nature of the fragmentation. We conclude from the properties of the continuum sources that N74 likely is at the near kinematic distance, which was previously unconfirmed. We also present tentative evidence of molecular clouds being more fragmented on bubble rims compared to dark clouds, suggesting that triggered star formation may occur, though our findings do not conform to a classic collect-and-collapse model.

  17. Structural investigations of E. Coli dihydrolipoamide dehydrogenase in solution: Small-angle X-ray scattering and molecular docking

    NASA Astrophysics Data System (ADS)

    Dadinova, L. A.; Rodina, E. V.; Vorobyeva, N. N.; Kurilova, S. A.; Nazarova, T. I.; Shtykova, E. V.

    2016-05-01

    Dihydrolipoamide dehydrogenase from Escherichia coli (LpD) is a bacterial enzyme that is involved in the central metabolism and shared in common between the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes. In the crystal structure, E. coli LpD is known to exist as a dimer. The present work is focused on analyzing the solution structure of LpD by small-angle X-ray scattering, molecular docking, and analytical ultracentrifugation. It was shown that in solution LpD exists as an equilibrium mixture of a dimer and a tetramer. The presence of oligomeric forms is determined by the multifunctionality of LpD in the cell, in particular, the required stoichiometry in the complexes.

  18. Validity assessment of the detection method of maize event Bt10 through investigation of its molecular structure.

    PubMed

    Milcamps, Anne; Rabe, Scott; Cade, Rebecca; De Framond, Anic J; Henriksson, Peter; Kramer, Vance; Lisboa, Duarte; Pastor-Benito, Susana; Willits, Michael G; Lawrence, David; Van den Eede, Guy

    2009-04-22

    In March 2005, U.S. authorities informed the European Commission of the inadvertent release of unauthorized maize GM event Bt10 in their market and subsequently the grain channel. In the United States measures were taken to eliminate Bt10 from seed and grain supplies; in the European Union an embargo for maize gluten and brewer's grain import was implemented unless certified of Bt10 absence with a Bt10-specific PCR detection method. With the aim of assessing the validity of the Bt10 detection method, an in-depth analysis of the molecular organization of the genetic modification of this event was carried out by both the company Syngenta, who produced the event, and the European Commission Joint Research Centre, who validated the detection method. Using a variety of molecular analytical tools, both organizations found the genetic modification of event Bt10 to be very complex in structure, with rearrangements, inversions, and multiple copies of the structural elements (cry1Ab, pat, and the amp gene), interspersed with small genomic maize fragments. Southern blot analyses demonstrated that all Bt10 elements were found tightly linked on one large fragment, including the region that would generate the event-specific PCR amplicon of the Bt10 detection method. This study proposes a hypothetical map of the insert of event Bt10 and concludes that the validated detection method for event Bt10 is fit for its purpose. PMID:19368351

  19. Molecular Investigations of the Structure and Function of the Protein Phosphatase 1:Spinophilin:Inhibitor-2 Heterotrimeric Complex

    PubMed Central

    Dancheck, Barbara; Ragusa, Michael J.; Allaire, Marc; Nairn, Angus C.; Page, Rebecca; Peti, Wolfgang

    2011-01-01

    Regulation of the major ser/thr phosphatase Protein Phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes, and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry and small angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and Inhibitor-2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1:spinophilin:I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1:spinophilin and PP1:I2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1:I2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multi-functional PP1 holoenzymes. PMID:21218781

  20. Molecular Investigations of the Structure and Function of the Protein Phosphatase 1-Spinophilin-Inhibitor 2 Heterotrimeric Complex

    SciTech Connect

    Dancheck, B.; Allaire, M.; Ragusa, M.J.; Nairn, A.C.; Page, R.; Peti, W.

    2011-01-06

    Regulation of the major Ser/Thr phosphatase protein phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry, and small-angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and inhibitor 2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1-spinophilin-I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1-spinophilin and PP1-I-2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1-I-2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multifunctional PP1 holoenzymes.

  1. A nuclear Overhauser effect investigation of the molecular and electronic structure of the heme crevice in lactoperoxidase

    SciTech Connect

    Thanabal, V.; La Mar, G.N. )

    1989-08-22

    The proton homonuclear nuclear Overhauser effect, NOE, in conjunction with paramagnetic-induced dipolar relaxation, is utilized to assign resonances and to probe the molecular and electronic structures of the heme cavity in the low-spin cyanide complex of resting-state bovine lactoperoxidase, LPO-CN. Predominantly primary NOEs were detected in spite of the large molecular weight of the enzyme, which demonstrates again the advantage of paramagnetism suppressing spin diffusion in large proteins. Both of the nonlabile ring protons of a coordinated histidine are located at resonance positions consistent with a deprotonated imidazole. Several methylene proton pairs are identified, of which the most strongly hyperfine-shifted pair is assigned to the unusual chemically functionalized 8-(mercaptomethylene) group of the prosthetic group. The large 8-(mercaptomethylene) proton contact shifts relative to that of the only resolved heme methyl signal are rationalized by the additive perturbations on the rhombic asymmetry of the functionalization of the 8-position and the alignment of the axial histidyl imidazole projection along a vector passing through pyrrole A and C of the prosthetic group. Such a stereochemistry is consistent with the resolution of only a single heme methyl group, 3-CH{sub 3}, as observed. A pair of hyperfine-shifted methylene protons, as well as a low-field hyperfine-shifted labile proton signal, exhibit dipolar connectivities similar to those previously reported for the distal arginine and histidine, respectively, of horseradish peroxidase suggesting that these catalytically relevant residues may also exist in LPO.

  2. Testing the limits of sensitivity in a solid-state structural investigation by combined X-ray powder diffraction, solid-state NMR, and molecular modelling.

    PubMed

    Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu

    2011-10-28

    A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. PMID:21931906

  3. Molecular Dynamics Investigations of the Local Structural Characteristics of DNA Oligonucleotides: Studies of Helical Axis Deformations, Conformational Sequence Dependence and Modified Nucleoside Perturbations.

    NASA Astrophysics Data System (ADS)

    Louise-May, Shirley

    The present DNA studies investigate the local structure of DNA oligonucleotides in order to characterize helical axis deformations, sequence dependent fine structure and modified nucleoside perturbations of selected oligonucleotide sequences. The molecular dynamics method is used to generate an ensemble of energetically feasible DNA conformations which can then be analyzed for dynamical conformational properties, some of which can be compared to experimentally derived values. A theory and graphical presentation for the analysis of helical deformations of DNA based on the configurational statistics of polymers, called "Persistence Analysis", was designed. The results of the analysis on prototype forms, static crystal structures and two solvated MD simulations of the sequence d(CGCGAATTCGCG) indicate that all of the expected features of bending can be sensitively and systematically identified by this approach. Comparison of the relative performance of three molecular dynamics potential functions commonly used for dynamical modeling of biological macromolecules; CHARMm, AMBER and GROMOS was investigated via in vacuo MD simulations on the dodecamer sequence d(CGCGAATTCGCG)_2 with respect to the conformational properties of each dynamical model and their ability to support A and B families of DNA. Vacuum molecular dynamics simulations using the CHARMm force field carried out on simple homo- and heteropolymers of DNA led to the conclusion that sequence dependent fine structure appears to be well defined for adenine-thymine rich sequences both at the base pair and base step level whereas much of the the fine structure found in cytosine -guanine rich sequences appears to be context dependent. The local conformational properties of the homopolymer poly (dA) -poly (dT) revealed one dynamical model which was found in general agreement with fiber models currently available. Investigation of the relative structural static and dynamical effect of the misincorporation of

  4. Structure investigation of codeine drug using mass spectrometry, thermal analyses and semi-emperical molecular orbital (MO) calculations

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; Hawash, M. F.; Fahmey, M. A.

    2006-05-01

    Codeine is an analgesic with uses similar to morphine, but it has a mild sedative effect. It is preferable used as phosphate form and it is often administrated by mouth with aspirin or paracetamol. Therefore, it is important to investigate its structure to know the active groups and weak bonds responsible for its medical activity. Consequently in the present work, codeine was investigated by mass spectrometry and thermal analyses (TG, DTG and DTA) and confirming by semi-empirical MO-calculation (PM3 method) in the neutral and positively charged forms of the drug. Some results of studying the d-block element complexes of codeine were used to declare the relationship between drug structure and its chemical reactivity in vitro system. The mass spectra and thermal analyses fragmentation pathways were proposed and compared to each other to select the most suitable scheme representing the correct fragmentation of this drug. From EI mass spectra, the main primary cleavage site of the charged drug molecule is that due to β-cleavage to nitrogen atom in its skeleton. It occurs in two parallel mechanisms with the same possibility, i.e. no difference in appearance activation energy between them. In the neutral drug form the primary site cleavage is that occurs in the ether ring. Thermal analyses of the neutral form of the drug revealed the high response of the drug to the temperature variation with very fast rate. It decomposed in several sequential steps in the temperature range 200-600 °C. The initial thermal fragments are very similar to that obtained by mass spectrometric fragmentation. Therefore, comparison between mass and thermal helps in selection of the proper pathway representing the fragmentation of this drug. This comparison successfully confirmed by MOC. These calculations give the bond order, charge distribution, heat of formation and possible hybridization of some atoms in different position of the drug skeleton. This helps the successful choice of the weakest

  5. Theoretical investigations on the molecular structure, vibrational spectra, HOMO-LUMO and NBO analysis of 5-chloro-2-((4-chlorophenoxy)methyl)benzimidazole

    NASA Astrophysics Data System (ADS)

    Mary, Y. Shyma; Jojo, P. J.; Panicker, C. Yohannan; Van Alsenoy, Christian; Ataei, Sanaz; Yildiz, Ilkay

    2014-03-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 5-chloro-2-((4-chlorophenoxy)methyl)benzimidazole have been investigated experimentally and theoretically using Gaussian09 software package. The energy and oscillator strength calculated by time dependent density functional theory results almost compliments with experimental findings. Gauge-including atomic orbital 1H NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Molecular electrostatic potential was performed by the DFT method and the infrared intensities and Raman activities are reported. Mulliken's net charges have been calculated and compared with the atomic natural charges. Fist hyperpolarizability is calculated in order to find its role in non-linear optics.

  6. Investigation of the local structure of mixtures of an ionic liquid with polar molecular species through molecular dynamics: cluster formation and angular distributions.

    PubMed

    Carrete, Jesús; Méndez-Morales, Trinidad; Cabeza, Óscar; Lynden-Bell, Ruth M; Gallego, Luis J; Varela, Luis M

    2012-05-24

    In this work, we used molecular dynamics simulations to analyze in detail the spatial distributions of the different constituents in mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with three polar molecular species: water and two alcohols of different chain lengths (methanol and ethanol). In particular, we report results regarding the influence of the chosen species and its concentration on the formation of ionic and molecular clusters over the whole miscibility range, as well as on the angular distribution of polar molecules around the anion and the cation in these systems. Both analyses showed that addition of a molecular species breaks down the polar network of the pure ionic liquid in clusters whose mean size decreases progressively as more molecules are added. At very high concentrations of the molecular species, the ions are found to be isolated in mixtures with water and methanol, but they tend to form pairs in ethanol. In mixtures with water we identified large clusters that form a water network at very high water concentrations, while at low water concentrations polar molecules tend to form smaller aggregates. In contrast, in mixtures with alkanols there is no evidence of the formation of large alcohol clusters at any concentration. Spatial order in alcohol was also studied by means of the Kirkwood G factor, reaching the conclusion that the angular correlations which appear in pure alcohols due to dipole interactions are destroyed by the ionic liquid, even when present only in tiny amounts. PMID:22587330

  7. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: A combined experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Ali Cipiloglu, M.; Kurt, Mustafa

    2012-11-01

    This work presents the characterization of 2,3-difluorophenylboronic acid (abbreviated as 2,3-DFPBA, C6H3B(OH)2F2) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C nuclear magnetic resonance (NMR) techniques. The FT-IR spectrum (4000-400 cm-1) and the FT-Raman spectrum (3500-10 cm-1) in the solid phase were recorded for 2,3-DFPBA. The 1H and 13C NMR spectra were recorded in DMSO solution. The UV-Vis absorption spectra of the 2,3-DFPBA that dissolved in water and ethanol were recorded in the range of 200-400 nm. There are four possible conformers for this molecule. The computational results diagnose the most stable conformer of the 2,3-DFPBA as the trans-cis form. The structural and spectroscopic data of the molecule were obtained for all four conformers from DFT (B3LYP) with 6-311++G (d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. We obtained good consistency between experimental and theoretical spectra. 13C and 1H NMR chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Finally the calculation results were analyzed to simulate infrared, Raman, NMR and UV spectra of the 2,3-DFPBA which show good agreement with observed spectra.

  8. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: a combined experimental and theoretical analysis.

    PubMed

    Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Ali Cipiloglu, M; Kurt, Mustafa

    2012-11-01

    This work presents the characterization of 2,3-difluorophenylboronic acid (abbreviated as 2,3-DFPBA, C(6)H(3)B(OH)(2)F(2)) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman UV-Vis, (1)H and (13)C nuclear magnetic resonance (NMR) techniques. The FT-IR spectrum (4000-400 cm(-1)) and the FT-Raman spectrum (3500-10 cm(-1)) in the solid phase were recorded for 2,3-DFPBA. The (1)H and (13)C NMR spectra were recorded in DMSO solution. The UV-Vis absorption spectra of the 2,3-DFPBA that dissolved in water and ethanol were recorded in the range of 200-400 nm. There are four possible conformers for this molecule. The computational results diagnose the most stable conformer of the 2,3-DFPBA as the trans-cis form. The structural and spectroscopic data of the molecule were obtained for all four conformers from DFT (B3LYP) with 6-311++G (d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. We obtained good consistency between experimental and theoretical spectra. (13)C and (1)H NMR chemical shifts of the molecule were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, absorption wavelengths, HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Finally the calculation results were analyzed to simulate infrared, Raman, NMR and UV spectra of the 2,3-DFPBA which show good agreement with observed spectra. PMID:22902933

  9. Electrostatic guidelines and molecular tailoring for density functional investigation of structures and energetics of (Li)n clusters

    NASA Astrophysics Data System (ADS)

    K. V., Jovan Jose; Gadre, Shridhar R.

    2008-10-01

    A molecular electrostatic potential (MESP)-guided method for building metal aggregates is proposed and tested on prototype lithium (Li)n clusters from n =4 to 58. The smaller clusters are subsequently subjected to direct density functional theory based geometry optimization, while the larger ones are optimized via molecular tailoring approach (MTA). The calculations are performed using PW91-PW91 as well as B3LYP functionals, and the trends in the interaction energies are found to be similar. The MESP-guided model for building metal clusters is validated by comparing the resulting cluster geometries with the ones reported in the literature up to n =20. A comparison of the ionization potential and polarizability (up to n =22) with their experimental counterparts shows a fairly good agreement. A new MTA-based scheme for calculating the ionization potential and polarizability values of large metal clusters is proposed and tested on Li40 and Li58 clusters. Further, the existence of "magic numbered clusters" up to n =22 is justified in terms of "maximum hardness principle" as well based on molecular electron density topography and distance descriptors.

  10. Non-nucleoside inhibitors of HIV-1 reverse transcriptase: molecular modeling and X-ray structure investigations.

    PubMed

    Schäfer, W; Friebe, W G; Leinert, H; Mertens, A; Poll, T; von der Saal, W; Zilch, H; Nuber, B; Ziegler, M L

    1993-03-19

    The structural features of a new class of non-nucleoside HIV-1 reverse transcriptase inhibitors (3) are presented. Comparison of the structural and electronic properties with those of TIBO (1) and Nevirapine (2) yields a common three-dimensional model. This model permits the improvement of the lead compound 3 by chemical modification (5,6). Additionally, two new types of inhibitors (4, 7) with similar biological activity can be derived from this model. The structure of the new compounds, including their absolute configuration, are determined by X-ray crystallography. PMID:7681480

  11. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations.

    PubMed

    Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok

    2016-06-01

    Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers. PMID:26212016

  12. A dynamic structural model of expanded RNA CAG repeats: a refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations.

    PubMed

    Yildirim, Ilyas; Park, HaJeung; Disney, Matthew D; Schatz, George C

    2013-03-01

    One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded CAG repeats can cause Huntington's and other disease through translation of toxic proteins. Herein, a crystal structure of r[5'UUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that shows both anti-anti and syn-anti orientations for 1 × 1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using AMBER force field in explicit solvent were run for over 500 ns on the model systems r(5'GCGCAGCGC)2 (MS1) and r(5'CCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti ↔ anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, an explicit solvent MD simulation over 800 ns was run on r[5'GGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1 × 1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and to develop small molecules that target RNA dynamic ensembles. PMID:23441937

  13. A dynamic structural model of expanded RNA CAG repeats: A refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations

    PubMed Central

    Yildirim, Ilyas; Park, Hajeung; Disney, Matthew D.; Schatz, George C.

    2013-01-01

    One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded r(CAG) repeats can cause Huntington’s and other disease through translation of toxic proteins. Herein, crystal structure of r[5ʹUUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that show both anti-anti and syn-anti orientations for 1×1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using Amber force field in explicit solvent were run for over 500 ns on model systems r(5ʹGCGCAGCGC)2 (MS1) and r(5ʹCCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti↔anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, over 800 ns explicit solvent MD simulation was run on r[5ʹGGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1×1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and develop small molecules that target RNA dynamic ensembles. PMID:23441937

  14. Functional and Structural Analyses of CYP1B1 Variants Linked to Congenital and Adult-Onset Glaucoma to Investigate the Molecular Basis of These Diseases.

    PubMed

    Banerjee, Antara; Chakraborty, Subhadip; Chakraborty, Abhijit; Chakrabarti, Saikat; Ray, Kunal

    2016-01-01

    Glaucoma, the leading cause of irreversible blindness, appears in various forms. Mutations in CYP1B1 result in primary congenital glaucoma (PCG) by an autosomal recessive mode of inheritance while it acts as a modifier locus for primary open angle glaucoma (POAG). We investigated the molecular basis of the variable phenotypes resulting from the defects in CYP1B1 by using subclones of 23 CYP1B1 mutants reported in glaucoma patients, in a cell based system by measuring the dual activity of the enzyme to metabolize both retinol and 17β-estradiol. Most variants linked to POAG showed low steroid metabolism while null or very high retinol metabolism was observed in variants identified in PCG. We examined the translational turnover rates of mutant proteins after the addition of cycloheximide and observed that the levels of enzyme activity mostly corroborated the translational turnover rate. We performed extensive normal mode analysis and molecular-dynamics-simulations-based structural analyses and observed significant variation of fluctuation in certain segmental parts of the mutant proteins, especially at the B-C and F-G loops, which were previously shown to affect the dynamic behavior and ligand entry/exit properties of the cytochrome P450 family of proteins. Our molecular study corroborates the structural analysis, and suggests that the pathologic state of the carrier of CYP1B1 mutations is determined by the allelic state of the gene. To our knowledge, this is the first attempt to dissect biological activities of CYP1B1 for correlation with congenital and adult onset glaucomas. PMID:27243976

  15. Functional and Structural Analyses of CYP1B1 Variants Linked to Congenital and Adult-Onset Glaucoma to Investigate the Molecular Basis of These Diseases

    PubMed Central

    Chakrabarti, Saikat; Ray, Kunal

    2016-01-01

    Glaucoma, the leading cause of irreversible blindness, appears in various forms. Mutations in CYP1B1 result in primary congenital glaucoma (PCG) by an autosomal recessive mode of inheritance while it acts as a modifier locus for primary open angle glaucoma (POAG). We investigated the molecular basis of the variable phenotypes resulting from the defects in CYP1B1 by using subclones of 23 CYP1B1 mutants reported in glaucoma patients, in a cell based system by measuring the dual activity of the enzyme to metabolize both retinol and 17β-estradiol. Most variants linked to POAG showed low steroid metabolism while null or very high retinol metabolism was observed in variants identified in PCG. We examined the translational turnover rates of mutant proteins after the addition of cycloheximide and observed that the levels of enzyme activity mostly corroborated the translational turnover rate. We performed extensive normal mode analysis and molecular-dynamics-simulations-based structural analyses and observed significant variation of fluctuation in certain segmental parts of the mutant proteins, especially at the B-C and F-G loops, which were previously shown to affect the dynamic behavior and ligand entry/exit properties of the cytochrome P450 family of proteins. Our molecular study corroborates the structural analysis, and suggests that the pathologic state of the carrier of CYP1B1 mutations is determined by the allelic state of the gene. To our knowledge, this is the first attempt to dissect biological activities of CYP1B1 for correlation with congenital and adult onset glaucomas. PMID:27243976

  16. Investigation of torsional potentials, molecular structure, vibrational properties, molecular characteristics and NBO analysis of some bipyridines using experimental and theoretical tools

    NASA Astrophysics Data System (ADS)

    Prashanth, J.; Reddy, B. Venkatram; Rao, G. Ramana

    2016-08-01

    The Fourier Transform Infrared (FTIR) and Fourier Transform Raman (FT-Raman) spectra of 2,2‧-bipyridine (2BPE); 4,4‧-bipyridine (4BPE); and 2,4‧-bipyridine (24BPE) were measured in the range 4000-450 cm-1 and 4000-50 cm-1, respectively. Torsional potentials were evaluated at various angles of rotation around the C-C inter-ring bond for the three molecules in order to arrive at the molecular conformation of lowest energy. This conformation was further optimized to get ground state geometry. Vibrational frequencies along with infrared and Raman intensities were computed. In the above calculations, DFT employing B3LYP functional with 6311++G(d,p) basis set was used. The rms error between observed and calculated frequencies was 10.0, 10.9 and 10.2 cm-1 for 2BPE, 4BPE and 24BPE, respectively. A 54-parameter modified valence force field was derived by solving inverse vibrational problem using Wilson's GF matrix method. The force constants were refined using 117 experimental frequencies of the three molecules in overlay least-squares technique. The average error between observed and computed frequencies was 12.44 cm-1. PED and eigen vectors calculated in the process were used to make unambiguous vibrational assignments of all the fundamental vibrations. The values of dipole moment, polarizability and hyperpolarizability were computed to determine the NLO behaviour of these molecules. The HOMO and LUMO energies, thermodynamic parameters and molecular electrostatic surface potentials (MESP) were also evaluated. Stability of the molecules arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis.

  17. Spectroscopic and molecular structure investigation of the phosphorus-containing G‧2 dendrimer with terminal aldehyde groups using DFT method

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2015-02-01

    The FTIR and FT Raman spectra of the second generation dendrimer G‧2 built from thiophosphoryl core with terminal aldehyde groups have been recorded. The structural optimization and normal mode analysis were performed for model compound C, consisting of thiophosphoryl core, one branch with three repeated units, and four 4-oxybenzaldehyde terminal groups on the basis of the density functional theory (DFT) at the PBE/TZ2P level. The vibrational frequencies, infrared and Raman intensities for the t,g,g- and t,-g,g-conformers of the terminal groups were calculated. The t,g,g-conformer is 2.0 kcal/mol less stable compared to t,-g,g-conformer. A reliable assignment of the fundamental bands observed in the experimental IR and Raman spectra of dendrimer was achieved. For the low generations (G‧1 to G‧3) the disk form of studied dendrimer molecules is the most probable. For higher generations, the shape of dendrimer molecules will be that of a cauliflower.

  18. Investigation of Pseudomonas aeruginosa quorum-sensing signaling system for identifying multiple inhibitors using molecular docking and structural analysis methodology.

    PubMed

    Soheili, Vahid; Bazzaz, Bibi Sedigheh Fazly; Abdollahpour, Nooshin; Hadizadeh, Farzin

    2015-12-01

    Pseudomonas aeruginosa is an opportunistic human pathogen and a common Gram-negative bacterium in hospital-acquired infections. It causes death in many burn victims, cystic-fibrosis and neutropenic-cancer patients. It is known that P. aeruginosa biofilm maturation and production of cell-associated and extracellular virulence factors such as pyocyanin, elastase and rhamnolipids are under the control of a quorum-sensing (QS) system. Among several proteins involved in the Pseudomonas QS mechanism, LasR and PqsE play an important role in its cascade signaling system. They can cause increases in QS factors, biofilm maturation, and the production of virulence factors. Therefore, inhibition of these proteins can reduce the pathogenicity of P. aeruginosa. According to the structure of corresponding auto-inducers bound to these proteins, in silico calculations were performed with some non-steroidal anti-inflammatory drugs (NSAIDs) to estimate possible interactions and find the co-inhibitors of LasR and PqsE. The results showed that oxicams (Piroxicam and Meloxicam) can interact well with active sites of both proteins with the Ki of 119.43 nM and 4.0 μM for Meloxicam and 201.39 nM and 4.88 μM against LasR and PqsE, respectively. These findings suggested that Piroxicam and Meloxicam can be used as potential inhibitors for control of the P. aeruginosa QS signaling system and biofilm formation, and may be used in the design of multiple inhibitors. PMID:26358567

  19. Structural changes of humic acids from sinking organic matter and surface sediments investigated by advanced solid-state NMR: Insights into sources, preservation and molecularly uncharacterized components

    NASA Astrophysics Data System (ADS)

    Mao, Jingdong; Tremblay, Luc; Gagné, Jean-Pierre

    2011-12-01

    Knowledge of the structural changes that particulate organic matter (POM) undergoes in natural systems is essential for determining its reactivity and fate. In the present study, we used advanced solid-state NMR techniques to investigate the chemical structures of sinking particulate matter collected at different depths as well as humic acids (HAs) extracted from these samples and underlying sediments from the Saguenay Fjord and the St. Lawrence Lower Estuary (Canada). Compared to bulk POM, HAs contain more non-polar alkyls, aromatics, and aromatic C-O, but less carbohydrates (or carbohydrate-like structures). In the two locations studied, the C and N contents of the samples (POM and HAs) decreased with depth and after deposition onto sediments, leaving N-poor but O-enriched HAs and suggesting the involvement of partial oxidation reactions during POM microbial degradation. Advanced NMR techniques revealed that, compared to the water-column HAs, sedimentary HAs contained more protonated aromatics, non-protonated aromatics, aromatic C-O, carbohydrates (excluding anomerics), anomerics, OC q, O-C q-O, OCH, and OCH 3 groups, but less non-polar alkyls, NCH, and mobile CH 2 groups. These results are consistent with the relatively high reactivity of lipids and proteins or peptides. In contrast, carbohydrate-like structures were selectively preserved and appeared to be involved in substitution and copolymerization reactions. Some of these trends support the selective degradation (or selective preservation) theory. The results provide insights into mechanisms that likely contribute to the preservation of POM and the formation of molecules that escape characterization by traditional methods. Despite the depletion of non-polar alkyls with depth in HAs, a significant portion of their general structure survived and can be assigned to a model phospholipid. In addition, little changes in the connectivities of different functional groups were observed. Substituted and copolymerized

  20. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation

    NASA Astrophysics Data System (ADS)

    Sharma, Anirban; Ghorai, Pradip Kr.

    2016-03-01

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  1. Techniques for Investigating Molecular Toxicology of Nanomaterials.

    PubMed

    Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong

    2016-06-01

    Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods. PMID:27319209

  2. Pressure-induced structural changes in the network-forming isostatic glass GeSe4: An investigation by neutron diffraction and first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bouzid, Assil; Pizzey, Keiron J.; Zeidler, Anita; Ori, Guido; Boero, Mauro; Massobrio, Carlo; Klotz, Stefan; Fischer, Henry E.; Bull, Craig L.; Salmon, Philip S.

    2016-01-01

    The changes to the topological and chemical ordering in the network-forming isostatic glass GeSe4 are investigated at pressures up to ˜14.4 GPa by using a combination of neutron diffraction and first-principles molecular dynamics. The results show a network built from corner- and edge-sharing Ge(Se1 /2)4 tetrahedra, where linkages by Se2 dimers or longer Sen chains are prevalent. These linkages confer the network with a local flexibility that helps to retain the network connectivity at pressures up to ˜8 GPa, corresponding to a density increase of ˜37 % . The network reorganization at constant topology maintains a mean coordination number n ¯≃2.4 , the value expected from mean-field constraint-counting theory for a rigid stress-free network. Isostatic networks may therefore remain optimally constrained to avoid stress and retain their favorable glass-forming ability over a large density range. As the pressure is increased to around 13 GPa, corresponding to a density increase of ˜49 % , Ge(Se1 /2)4 tetrahedra remain as the predominant structural motifs, but there is an appearance of 5-fold coordinated Ge atoms and homopolar Ge-Ge bonds that accompany an increase in the fraction of 3-fold coordinated Se atoms. The band gap energy decreases with increasing pressure, and midgap states appear at pressures beyond ˜6.7 GPa. The latter originate from undercoordinated Se atoms that terminate broken Sen chains.

  3. Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine

    SciTech Connect

    Buchholz, B A; Mueller, C J; Upatnieks, A; Martin, G C; Pitz, W J; Westbrook, C K

    2004-01-07

    The effect of oxygenate molecular structure on soot emissions from a DI diesel engine was examined using carbon-14 ({sup 14}C) isotope tracing. Carbon atoms in three distinct chemical structures within the diesel oxygenate dibutyl maleate (DBM) were labeled with {sup 14}C. The {sup 14}C from the labeled DBM was then detected in engine-out particulate matter (PM), in-cylinder deposits, and CO{sub 2} emissions using accelerator mass spectrometry (AMS). The results indicate that molecular structure plays an important role in determining whether a specific carbon atom either does or does not form soot. Chemical-kinetic modeling results indicate that structures that produce CO{sub 2} directly from the fuel are less effective at reducing soot than structures that produce CO before producing CO{sub 2}. Because they can follow individual carbon atoms through a real combustion process, {sup 14}C isotope tracing studies help strengthen the connection between actual engine emissions and chemical-kinetic models of combustion and soot formation/oxidation processes.

  4. Investigation of coal structure

    SciTech Connect

    Not Available

    1993-01-01

    The method was applied to standard polymers under the same condition above. The particle size distribution with volume diameters of polyvinylpyrrolidone (average molecular mass; 10,000) was measured at sample/solvent = 0.50 g/100 ml. This polymer readily dissolve in methanol and water, while the polymer does not dissolve in n-hexane and toluene, and toluene is a slightly better solvent than n-hexane. Figure 3 shows the particle size distributions in n-hexane (a) and toluene (b-1 and -2). The distribution in toluene changed time to time, and two representative distributions are shown. The mean volume diameters-were 14 [mu]m in n-hexane and 18 and 31 [mu]m in toluene. The particle size distribution of cross-linked polyvinylpyrrolidone was further examined in methanol and n-hexane. Figure 4 compares these distributions with scanned counts at sample/solvent = 0.50 g/100 ml. As a significant portion of particles was over 250 [mu]m with volume diameters, the distributions are presented with scanned counts. Figure 4 compared the specific swelling ratio (Q') versus sample/solvent (w/w %) in the same solvents for this sample. It is seen that methanol is a good solvent than n-hexane and swells the sample. It is also seen that the swelling is dependent on the sample concentration. Therefore, the particle size in good solvent methanol is expected to be larger due to swelling. However, the particle size was smaller in methanol than in n-hexane (Figure 4). The dependence of sample concentration on solvent swelling in methanol (Figure 5) is interpreted as follows: Polymer particles disaggregated at low sample concentration and the interparticle voidage of the swollen polymer after centrifugation changed depending upon disaggregation.

  5. Interactive Modelling of Molecular Structures

    NASA Astrophysics Data System (ADS)

    Rustad, J. R.; Kreylos, O.; Hamann, B.

    2004-12-01

    The "Nanotech Construction Kit" (NCK) [1] is a new project aimed at improving the understanding of molecular structures at a nanometer-scale level by visualization and interactive manipulation. Our very first prototype is a virtual-reality program allowing the construction of silica and carbon structures from scratch by assembling them one atom at a time. In silica crystals or glasses, the basic building block is an SiO4 unit, with the four oxygen atoms arranged around the central silicon atom in the shape of a regular tetrahedron. Two silicate units can connect to each other by their silicon atoms covalently bonding to one shared oxygen atom. Geometrically, this means that two tetrahedra can link at their vertices. Our program is based on geometric representations and uses simple force fields to simulate the interaction of building blocks, such as forming/breaking of bonds and repulsion. Together with stereoscopic visualization and direct manipulation of building blocks using wands or data gloves, this enables users to create realistic and complex molecular models in short amounts of time. The NCK can either be used as a standalone tool, to analyze or experiment with molecular structures, or it can be used in combination with "traditional" molecular dynamics (MD) simulations. In a first step, the NCK can create initial configurations for subsequent MD simulation. In a more evolved setup, the NCK can serve as a visual front-end for an ongoing MD simulation, visualizing changes in simulation state in real time. Additionally, the NCK can be used to change simulation state on-the-fly, to experiment with different simulation conditions, or force certain events, e.g., the forming of a bond, and observe the simulation's reaction. [1] http://graphics.cs.ucdavis.edu/~okreylos/ResDev/NanoTech

  6. Investigating the molecular structural features of hulless barley (Hordeum vulgare L.) in relation to metabolic characteristics using synchrotron-based fourier transform infrared microspectroscopy.

    PubMed

    Yang, Ling; Christensen, David A; McKinnon, John J; Beattie, Aaron D; Xin, Hangshu; Yu, Peiqiang

    2013-11-27

    The synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM) technique was used to quantify molecular structural features of the four hulless barley lines with altered carbohydrate traits [amylose, 1-40% of dry matter (DM); β-glucan, 5-10% of DM] in relation to rumen degradation kinetics, intestinal nutrient digestion, and predicted protein supply. Spectral features of β-glucan (both area and heights) in hulless barley lines showed a negative correlation with protein availability in the small intestine, including truly digested protein in the small intestine (DVE) (r = -0.76, P < 0.01; r = -0.84, P < 0.01) and total metabolizable protein (MP) (r = -0.71, P < 0.05; r = -0.84, P < 0.01). Variation in absorption intensities of total carbohydrate (CHO) was observed with negative effects on protein degradation, digestion, and potential protein supply (P < 0.05). Molecular structural features of CHO in hulless barley have negative effects on the supply of true protein to ruminants. The results clearly indicated the impact of the carbohydrate-protein structure and matrix. PMID:24156528

  7. 2004 Reversible Associations in Structure & Molecular Biology

    SciTech Connect

    Edward Eisenstein Nancy Ryan Gray

    2005-03-23

    The Gordon Research Conference (GRC) on 2004 Gordon Research Conference on Reversible Associations in Structure & Molecular Biology was held at Four Points Sheraton, CA, 1/25-30/2004. The Conference was well attended with 82 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  8. Investigating the Conformational Structure and Potential Site Interactions of SOD Inhibitors on Ec-SOD in Marine Mud Crab Scylla serrata: A Molecular Modeling Approach.

    PubMed

    Paital, Biswaranjan; Sablok, Gaurav; Kumar, Sunil; Singh, Sanjeev Kumar; Chainy, G B N

    2016-09-01

    Superoxide dismutases (SODs) act as a first line of the enzymatic antioxidant defense system to control cellular superoxide anion toxicity. Previously, several inhibitors have been widely identified and catalogued for inhibition of SOD activity; however, still the information about the mechanism of interaction and points toward the inhibitor interactions in structures of SODs in general and in extracellular (Ec)-SOD in particular is still in naive. In the present research, we present an insight to elucidate the molecular basis of interactions of SOD inhibitors with Ec-SOD in mud crab Scylla serrata using molecular modeling and docking approaches. Different inhibitors of SOD such as hydrogen peroxide [Formula: see text], potassium cyanide, sodium dodecyl sulfate (SDS), [Formula: see text]-mercaptoethanol and dithiocarbamate were screened to understand the potential sites that may act as sites for cleavage or blocking in the protein. SOD-SDS and [Formula: see text] complex interactions indicate residues Pro72 and Asp102 of the predicted crab Ec-SOD as common targets. The GOLD result indicates that Pro72, Asp102 and Thr103 are commonly acting as the site of interaction in Ec-SOD of S. serrata with SOD inhibitors. For the first time, the results of this study provide an insight into the structural properties of Ec-SOD of S. serrata and define the possible involvements between the amino acids present in its active sites, i.e., in the regions from 70 to 84 and from 101 to 103 and different inhibitors. PMID:26286009

  9. Molecular investigations of flaxseed mucilage polysaccharides.

    PubMed

    Roulard, Romain; Petit, Emmanuel; Mesnard, François; Rhazi, Larbi

    2016-05-01

    The molecular properties of flaxseed mucilage were determined using a multi-angle laser light scattering (MALLS) detector coupled on-line to size exclusion chromatography (SEC) and asymmetric flow field-flow fractionation (AF4). Water and salt solution were tested as mobile phases. The SEC-MALLS method gave partial information and enabled molecular characterization of disaggregated mucilage molecules. Regardless of the eluent used, the observed Mw ranged from about 1.6 × 10(6) to more than 10 × 10(6) g/mol for mucilage polysaccharides. The AF4-MALLS system enabled a complete analysis of mucilage carbohydrate aggregates in water, in which two populations were satisfactorily separated. The molecular weight distribution (MWD) of molecules ranged from 1.5 × 10(6) to more than 4 × 10(8) g/mol. Experiments showed that the conformational structure of mucilage molecules was strongly influenced by ionic strength. Mucilage carbohydrates exhibited a spherical and compact structure in NaCl solution while they displayed a random-coil conformation in water. PMID:26851358

  10. FT-IR and FT-Raman, NMR and UV spectroscopic investigation and hybrid computational (HF and DFT) analysis on the molecular structure of mesitylene.

    PubMed

    Kose, E; Atac, A; Karabacak, M; Nagabalasubramanian, P B; Asiri, A M; Periandy, S

    2013-12-01

    The spectroscopic properties of mesitylene were investigated by FT-IR, FT-Raman, UV, (1)H and (13)C NMR techniques. The geometrical parameters and energies have been obtained from density functional theory (DFT) B3LYP method and Hartree-Fock (HF) method with 6-311++G(d,p) and 6-311G(d,p) basis sets calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. (13)C and (1)H NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed. Reduced density gradient (RDG) of the mesitylene was also given to investigate interactions of the molecule. PMID:23978748

  11. FT-IR and FT-Raman, NMR and UV spectroscopic investigation and hybrid computational (HF and DFT) analysis on the molecular structure of mesitylene

    NASA Astrophysics Data System (ADS)

    Kose, E.; Atac, A.; Karabacak, M.; Nagabalasubramanian, P. B.; Asiri, A. M.; Periandy, S.

    2013-12-01

    The spectroscopic properties of mesitylene were investigated by FT-IR, FT-Raman, UV, 1H and 13C NMR techniques. The geometrical parameters and energies have been obtained from density functional theory (DFT) B3LYP method and Hartree-Fock (HF) method with 6-311++G(d,p) and 6-311G(d,p) basis sets calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. 13C and 1H NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) and thermodynamic properties were performed. Reduced density gradient (RDG) of the mesitylene was also given to investigate interactions of the molecule.

  12. 8B structure in Fermionic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Henninger, K. R.; Neff, T.; Feldmeier, H.

    2015-04-01

    The structure of the light exotic nucleus 8B is investigated in the Fermionic Molecular Dynamics (FMD) model. The decay of 8B is responsible for almost the entire high- energy solar-neutrino flux, making structure calculations of 8B important for determining the solar core temperature. 8B is a proton halo candidate thought to exhibit clustering. FMD uses a wave-packet basis and is well-suited for modelling clustering and halos. For a multiconfiguration treatment we construct the many-body Hilbert space from antisymmetrised angular-momentum projected 8-particle states. First results show formation of a proton halo.

  13. Students' understanding of molecular structure representations

    NASA Astrophysics Data System (ADS)

    Ferk, Vesna; Vrtacnik, Margareta; Blejec, Andrej; Gril, Alenka

    2003-10-01

    The purpose of the investigation was to determine the meanings attached by students to the different kinds of molecular structure representations used in chemistry teaching. The students (n = 124) were from primary (aged 13-14 years) and secondary (aged 17-18 years) schools and a university (aged 21-25 years). A computerised 'Chemical Visualisation Test' was developed and applied. The research indicates that students' appreciation of three-dimensional molecular structures differs according to the kind of representation used. The best results were achieved with the use of concrete, and pseudo-concrete types of representations (e.g. three-dimensional models, their photographs, computer-generated models). However, the use of more abstract types (e.g. schematic representations, stereochemical formula) was less effective. A correlation between students' results on the Chemical Visualisation Test and their educational level, spatial visualisation, and spatial relations skills was shown statistically, but no statistically significant gender differences were observed.

  14. Molecular structure-optical property relationships of 1,3-bis (4-methoxyphenyl) prop-2-en-1-one: A DFT and TD-DFT investigation

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Aribi, I.; Ayachi, S.; Haj Said, A.; Alimi, K.

    2015-08-01

    Some fundamental properties of the 1,3-bis (4-methoxyphenyl) prop-2-en-1-one, as functional monomer, are measured as well as calculated. The combined results are used for modeling and predicting monomer structure-property relationships. Thus, theoretical calculations based on Density Functional Theory (DFT) and its Time-Dependent counterpart (TD-DFT) are performed to evaluate the vibrational frequencies [IR and Raman], magnetic shielding for nuclear magnetic resonance [1H and 13C NMR], electronic and optical properties of the studied material, respectively. The DFT/TD-DFT at B3LYP with 6-31G(d,p), 6-31G(d) and 3-21G(d) were employed to choose appropriate basis set that provides a more accurate molecular-property description. The simulated spectra are found to agree well, in shape, position, and relative intensity of peaks, with the available experimental measurements. In addition, frontier molecular orbitals, Mullikan charge and electron spin density distributions are carried out. Our results highlight the use of predictive calculations to provide an in-depth understanding evidence of the electrochemically-initiated monomer reactivity.

  15. Investigation of the structure of ethanol-water mixtures by molecular dynamics simulation I: analyses concerning the hydrogen-bonded pairs.

    PubMed

    Gereben, Orsolya; Pusztai, László

    2015-02-19

    Series of molecular dynamics simulations for ethanol-water mixtures with 20-80 mol % ethanol content, pure ethanol, and water were performed. In each mixture, for ethanol the OPLS force field was used, combined with three different water force fields, the SPC/E, the TIP4P-2005, and the SWM4-DP. Water potential models were distinguished on the basis of deviations between calculated and measured total scattering X-ray structure factors aided by ethanol-water pair binding energy comparison. No single water force field could provide the best agreement with experimental data at all concentrations: at the ethanol content of 80% the SWM-DP, for 60 mol % the SWM4-DP and the TIP4P-2005, whereas for the 40 and 20 mol % mixtures TIP4P-2005 water force field provided the closest match. Coordination numbers and hydrogen bonds/molecule values were calculated, revealing that the oxygen-oxygen first coordination numbers strongly overestimate the average number of hydrogen bonds/molecule. The center-of-molecule distributions indicate that the ethanol-ethanol first coordination sphere expands with increasing water concentration while the size of the first water-water coordination sphere does not change. Various two and three-dimensional distributions were calculated that reveal the differences between simulations with different water force fields. Detailed conformational analyses of the hydrogen-bonded pairs were performed; drawings of the characteristic molecular arrangements are provided. PMID:25635651

  16. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission

    NASA Technical Reports Server (NTRS)

    Arnoult, K. M.; Wdowiak, T. J.; Beegle, L. W.

    2000-01-01

    , provide insight into possible molecular structure details of newly formed hydrocarbon-rich interstellar dust and its transformation into aged material that becomes resident in the interstellar medium. Specifically the presence of naphthalene-like and butadiene-like conjugated structures as chromophores for the 2175 angstroms ultraviolet extinction feature is indicated.

  17. Investigating Evolutionary Questions Using Online Molecular Databases.

    ERIC Educational Resources Information Center

    Puterbaugh, Mary N.; Burleigh, J. Gordon

    2001-01-01

    Recommends using online molecular databases as teaching tools to illustrate evolutionary questions and concepts while introducing students to public molecular databases. Provides activities in which students make molecular comparisons between species. (YDS)

  18. Synthesis, characterization and quantum chemical investigation of molecular structure and vibrational spectra of 2,5-dichloro-3,6-bis-(methylamino)1,4-benzoquinone

    NASA Astrophysics Data System (ADS)

    Gautam, Bhanu Pratap Singh; Srivastava, Mayuri; Prasad, R. L.; Yadav, R. A.

    2014-08-01

    2,5-Dichloro-3,6-bis-methylamino-[1,4]benzoquinone has been synthesized by condensing methyl amine hydrochloride with chloranil in presence of condensing agent sodium acetate. FT-IR (4000-400 cm-1) and FT-Raman (4000-400 cm-1) spectral measurements of dmdb have been done. Ab initio and DFT (B3LYP/6-311+G**) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, infrared intensities and Raman activities. The optimized molecular structure of the compound is found to possess C2h point group symmetry. A detailed interpretation of the observed IR and Raman spectra of dmdb is reported on the basis of the calculated potential energy distribution. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The thermodynamic functions of the title compound have also been computed.

  19. Synthesis, molecular structure, spectral investigation on (E)-1-(4-bromophenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Asiri, A. M.; Karabacak, M.; Sakthivel, S.; Al-youbi, A. O.; Muthu, S.; Hamed, S. A.; Renuga, S.; Alagesan, T.

    2016-01-01

    In this work, an organic nonlinear optical material (E)-1-(4-bromophenyl)-3-(4-(dimethylamino)phenyl)prop-2-en-1-one (C17H16NOBr) was synthesized by reacting 4-bromoacetophenone and N,N-dimethyl benzaldehyde in ethanol in the presence of sodium hydroxide. FT-IR and FT-Raman spectra were recorded in the region 4000-500 cm-1 and 4000-50 cm-1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with 6-311++G(d,p) basis set. The vibrational frequencies were calculated and compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. 1H NMR spectrum was recorded in CDCl3 and 1H NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in water in the range of 200-800 nm and the electronic properties were calculated by time-dependent density functional theory (TD-DFT) approach. Besides, Mulliken atomic charges, molecular electrostatic potential (MEP) were performed. Nonlinear optical features and thermodynamic properties were also outlined theoretically. The geometric parameters, energies, harmonic vibrational frequencies, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule. Comprehensive theoretical and experimental structural studies on the molecule were carried out by FT-IR, FT-Raman, NMR and UV spectrometry.

  20. Theoretical and experimental investigations on molecular structure of 7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-one with cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Satheeshkumar, Rajendran; Shankar, Ramasamy; Kaminsky, Werner; Kalaiselvi, Sivalingam; Padma, Viswanadha Vijaya; Rajendra Prasad, Karnam Jayarampillai

    2016-04-01

    7-Chloro-9-phenyl-2,3-dihydroacridin-4(1H)-one (3) is synthesized from 2-amino-5-chlorobenzophenone (1) and 1,2-cyclohexanedione (2) in the presence of catalyst InCl3. FT-IR, FT-Raman and FT-NMR spectra of molecule 3 have been recorded and the structure was confirmed by single crystal X-ray diffraction. CDCl3 and DMSO-d6 FT-NMR spectra and 1H and 13C NMR chemical shifts have been measured in molecule 3 and calculated at the B3LYP/6-311G (d,p) and MO6-2x/6-311G (d,p) levels of theory. Similarly calculated vibrational frequencies were found in good agreement with experimental findings. The optimized geometry of molecule 3 was compared with experimental XRD values. DFT calculations of the molecular electrostatic potential (MEP) and HOMO - LUMO frontier orbitals identified chemically active sites of molecule 3 responsible for its bioactivity. The title compound, 3 exhibits higher cytotoxicity in Human breast cancer cells (MCF-7) compared to human lung adenocarcinoma cells (A549).

  1. Molecular dynamics investigation of nanoscale cavitation dynamics

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Keblinski, Pawel

    2014-12-01

    We use molecular dynamics simulations to investigate the cavitation dynamics around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. Specifically, we study the temporal evolution of vapor nanobubbles that form around the solid nanoparticles heated over ps time scale and provide a detail description of the following vapor formation and collapse. For 8 nm diameter nanoparticles we observe the formation of vapor bubbles when the liquid temperature 0.5-1 nm away from the nanoparticle surface reaches ˜90% of the critical temperature, which is consistent with the onset of spinodal decomposition. The peak heat flux from the hot solid to the surrounding liquid at the bubble formation threshold is ˜20 times higher than the corresponding steady state critical heat flux. Detailed analysis of the bubble dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.

  2. Experimental and theoretical investigation on the molecular structure, spectroscopic and electric properties of 2,4-dinitrodiphenylamine, 2-nitro-4-(trifluoromethyl)aniline and 4-bromo-2-nitroaniline.

    PubMed

    Hernández-Paredes, Javier; Hernández-Negrete, Ofelia; Carrillo-Torres, Roberto C; Sánchez-Zeferino, Raúl; Duarte-Moller, Alberto; Alvarez-Ramos, Mario E

    2015-10-01

    2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good β values. However, the β values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline. PMID:25965171

  3. Experimental and theoretical investigation on the molecular structure, spectroscopic and electric properties of 2,4-dinitrodiphenylamine, 2-nitro-4-(trifluoromethyl)aniline and 4-bromo-2-nitroaniline

    NASA Astrophysics Data System (ADS)

    Hernández-Paredes, Javier; Hernández-Negrete, Ofelia; Carrillo-Torres, Roberto C.; Sánchez-Zeferino, Raúl; Duarte-Moller, Alberto; Alvarez-Ramos, Mario E.

    2015-10-01

    2,4-Dinitrodiphenylamine (I), 2-nitro-4-(trifluoromethyl)aniline (II) and 4-bromo-2-nitroaniline (III) have been investigated by DFT and experimental FTIR, Raman and UV-Vis spectroscopies. The gas-phase molecular geometries were consistent with similar compounds already reported in the literature. From the vibrational analysis, the main functional groups were identified and their absorption bands were assigned. Some differences were found between the calculated and the experimental UV-Vis spectra. These differences were analyzed and explained in terms of the TD-DFT/B3LYP limitations, which were mainly attributed to charge-transfer (CT) effects. These findings were in agreement with previous works, which reported that TD-DFT/B3LYP calculations diverge from experimental results when the electronic transitions involve CT. Despite this, TD-DFT/B3LYP calculations provided satisfactory results and a detailed description of the electronic transitions involved in the absorption bands of the UV-Vis spectra. In terms of the NLO properties, it was found that compound (I) is a good candidate for NLO applications and deserves further study due to its good β values. However, the β values for compounds (II) and (III) were negatively affected compared to those found on o-nitroaniline.

  4. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4'-methylpropiophenone.

    PubMed

    Karunakaran, V; Balachandran, V

    2014-07-15

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4'-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4'-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set. PMID:24657464

  5. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4‧-Methylpropiophenone

    NASA Astrophysics Data System (ADS)

    Karunakaran, V.; Balachandran, V.

    2014-07-01

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4‧-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4‧-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The 1H and 13C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set.

  6. Development of molecular markers and preliminary investigation of the population structure and mating system in one lineage of black morel (Morchella elata) in the Pacific Northwestern USA.

    PubMed

    Pagliaccia, Deborah; Douhan, Greg W; Douhan, LeAnn; Peever, Tobin L; Carris, Lori M; Kerrigan, Julia L

    2011-01-01

    Phylogenetic analysis of LSU/ITS sequence data revealed two distinct lineages among 44 morphologically similar fruiting bodies of natural black morels (Morchella elata group) sampled at three non-burn locations in the St Joe and Kanisku National Forests in northern Idaho. Most of the sampled isolates (n = 34) represented a dominant LSU/ITS haplotype present at all three sites and identical to the Mel-12 phylogenetic lineage (GU551425) identified in a previous study. Variation at 1-3 nucleotide sites was detected among a small number of isolates (n = 6) within this well supported clade (94%). Four isolates sampled from a single location were in a well supported clade (97%) distinct from the dominant haplotypes and may represent a previously un-sampled, cryptic phylogenetic species. Species-specific SNP and SCAR markers were developed for Mel-12 lineage isolates by cloning and sequencing AFLP amplicons, and segregation of AFLP markers were studied from single ascospore isolates from individual fruiting bodies. Based on the segregation of AFLP markers within single fruiting bodies, split decomposition analyses of two SCAR markers, and population genetic analyses of SNP, SCAR, and AFLP markers, it appears that members of the Morchella sp. Mel-12 phylogenetic lineage are heterothallic and outcross in nature similar to yellow morels. This is the first set of locus-specific molecular markers that has been developed for any Morchella species, to our knowledge. These markers will prove to be valuable tools to study mating system, gene flow and genetic structure of black morels at various spatial scales with field-collected fruiting bodies and eliminate the need to culture samples in vitro. PMID:21642339

  7. Molecular structure investigation of neutral, dimer and anion forms of 3,4-pyridinedicarboxylic acid: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Bilgili, Sibel; Atac, Ahmet

    2015-01-01

    In this study, the structural and vibrational analysis of 3,4-pyridinedicarboxylic acid (3,4-PDCA) are presented using experimental techniques as FT-IR, FT-Raman, NMR, UV and quantum chemical calculations. FT-IR and FT-Raman spectra of 3,4-pyridinedicarboxylic acid in the solid phase are recorded in the region 4000-400 cm-1 and 4000-50 cm-1, respectively. The geometrical parameters and energies of all different and possible monomer, dimer, anion-1 and anion-2 conformers of 3,4-PDCA are obtained from Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) basis set. There are sixteen conformers (C1sbnd C16) for this molecule (neutral form). The most stable conformer of 3,4-PDCA is the C1 conformer. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR spectra are recorded and the chemical shifts are calculated by using DFT/B3LYP methods with 6-311++G(d,p) basis set. The UV absorption spectrum of the studied compound is recorded in the range of 200-400 nm by dissolved in ethanol. The optimized geometric parameters were compared with experimental data via the X-ray results derived from complexes of this molecule. In addition these, molecular electrostatic potential (MEP), thermodynamic and electronic properties, HOMO-LUMO energies and Mulliken atomic charges, are performed.

  8. Preparation and structure investigation of novel Schiff bases using spectroscopic, thermal analyses and molecular orbital calculations and studying their biological activities

    NASA Astrophysics Data System (ADS)

    Zayed, Ehab M.; Zayed, M. A.; El-Desawy, M.

    2015-01-01

    Two novel Schiff's bases (EB1 and L1) as new macrocyclic compounds were prepared via condensation reactions between bisaldehyde (2,2‧-(ethane-1,2-diylbis(oxy))dibenzaldehyde): firstly with hydrazine carbothioamide to give (EB1), secondly with 4,6-diaminopyrimidine-2-thiol to give (L1). EB1 has a general formula C18H20N6O2S2 of mole mass = 416.520, and IUPAC name ((N,N‧Z,N,N‧E)-N,N‧-(((ethane1,2diylbis(oxy))bis(2,1phenylene))bis(methanylylidene))bis(1hydrazinylmethanethioamide). L1 has a general formula C20H16N4O2S of mole mass = 376.10; and IUPAC name 1,2-bis(2-vinylphenoxy)ethane4,6-diaminopyrimidine-2-thiol). The structures of the compounds obtained were characterized based on elemental analysis, FT-IR and 1H NMR spectra, mass, and thermogravimetric analysis (TG, DTG). The activation thermodynamic parameters, such as, ΔE*, ΔH*, ΔS* and ΔG* were calculated from the TG curves using Coats-Redfern method. It is important to investigate their structures to know the active groups and weak bond responsible for their biological activities. The obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculation using PM3 procedure, on the neutral and positively charged forms of these novel Schiff bases. Therefore, comparison between MS and TA helps in selection of the proper pathway representing the decomposition of these compounds to give indication about their structures and consequently their biological activities. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their antimicrobial potential.

  9. Preparation and structure investigation of novel Schiff bases using spectroscopic, thermal analyses and molecular orbital calculations and studying their biological activities.

    PubMed

    Zayed, Ehab M; Zayed, M A; El-Desawy, M

    2015-01-01

    Two novel Schiff's bases (EB1 and L1) as new macrocyclic compounds were prepared via condensation reactions between bisaldehyde (2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde): firstly with hydrazine carbothioamide to give (EB1), secondly with 4,6-diaminopyrimidine-2-thiol to give (L1). EB1 has a general formula C₁₈H₂₀N₆O₂S₂ of mole mass=416.520, and IUPAC name ((N,N'Z,N,N'E)-N,N'-(((ethane1,2diylbis(oxy))bis(2,1phenylene))bis(methanylylidene))bis(1hydrazinylmethanethioamide). L1 has a general formula C₂₀H₁₆N₄O₂S of mole mass=376.10; and IUPAC name 1,2-bis(2-vinylphenoxy)ethane4,6-diaminopyrimidine-2-thiol). The structures of the compounds obtained were characterized based on elemental analysis, FT-IR and (1)H NMR spectra, mass, and thermogravimetric analysis (TG, DTG). The activation thermodynamic parameters, such as, ΔE(*), ΔH(*), ΔS(*) and ΔG(*) were calculated from the TG curves using Coats-Redfern method. It is important to investigate their structures to know the active groups and weak bond responsible for their biological activities. The obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculation using PM3 procedure, on the neutral and positively charged forms of these novel Schiff bases. Therefore, comparison between MS and TA helps in selection of the proper pathway representing the decomposition of these compounds to give indication about their structures and consequently their biological activities. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their antimicrobial potential. PMID:25016203

  10. Investigation of glassy state molecular motions in thermoset polymers

    NASA Astrophysics Data System (ADS)

    Tu, Jianwei

    This dissertation presents the investigation of the glassy state molecular motions in isomeric thermoset epoxies by means of solid-state deuterium (2H) NMR spectroscopy technique. The network structure of crosslinked epoxies was altered through monomer isomerism; specifically, diglycidyl ether of bisphenol A (DGEBA) was cured with isomeric amine curatives, i.e., the meta-substituted diaminodiphenylsulfone (33DDS) and para-substituted diaminodiphenylsulfone (44DDS). The use of structural isomerism provided a path way for altering macroscopic material properties while maintaining identical chemical composition within the crosslinked networks. The effects of structural isomerism on the glassy state molecular motions were studied using solid-state 2H NMR spectroscopy, which offers unrivaled power to monitor site-specific molecular motions. Three distinctive molecular groups on each isomeric network, i.e., the phenylene rings in the bisphenol A structure (BPA), the phenylene rings in the diaminodiphenylsulfone structure (DDS), and the hydroxypropoyl ether group (HPE) have been selectively deuterated for a comprehensive study of the structure-dynamics- property relationships in thermoset epoxies. Quadrupolar echo experiments and line shape simulations were employed as the main research approach to gain both qualitative and quantitative motional information of the epoxy networks in the glassy state. Quantitative information on the geometry and rate of the molecular motions allows the elucidation of the relationship between molecular motions and macro physical properties and the role of these motions in the mechanical relaxation. Specifically, it is revealed that both the BPA and HPE moieties in the isomeric networks have almost identical behaviors in the deep glassy state, which indicates that the molecular motions in the glassy state are localized, and the correlation length of the motions does not exceed the length of the DGEBA repeat unit. BPA ring motions contribute

  11. Ab initio investigation of the molecular structure of methyl methoxymethyl phosphonate, a promising nuclease-resistant alternative of the phosphodiester linkage.

    PubMed

    Strajbl, M; Florian, J

    1996-02-01

    Conformational flexibility of the methyl methoxymethyl phosphonate anion (CH3-O-PO2-CH2-O-CH3)-, a nuclease resistant alternative to the phosphodiester linkage in DNA, have been investigated by ab initio quantum mechanical calculations. The potential of backbone torsional degrees of freedom of methyl methoxymethyl phosphonate anion (MMP) was determined at the Hartree-Fock (HF) 3-21G* level using the adiabatic mapping technique. Energies, geometries, and effective atomic charges of different conformers were calculated at HF/6-31G* and MP2/6-31G* levels of theory. These were compared to the results obtained for dimethyl phosphate calculated at the same level. The impact on DNA structure from inserting a methylene group between phosphorus and oxygen of the nucleoside sugar moiety was examined via distance and angle-constrained geometry optimizations. Due to its high flexibility, MMP has been shown to be compatible with both A and B forms of DNA. PMID:8906889

  12. Break-junctions for investigating transport at the molecular scale

    NASA Astrophysics Data System (ADS)

    Schwarz, Florian; Lörtscher, Emanuel

    2014-11-01

    Break-junctions (BJs) enable a pair of atomic-sized electrodes to be created and the relative position between them to be controlled with sub-nanometer accuracy by mechanical means—a level of microscopic control that is not yet achievable by top-down fabrication. Locally, a BJ consists of a single-atom contact, an arrangement that is ideal not only to study various types of quantum point contacts, but also to investigate transport through an individual molecule that can bridge such a junction. In this topical review, we will provide a broad overview on the field of single-molecule electronics, in which BJs serve as the main tool of investigation. To correlate the molecular structure and transport properties to gain a fundamental understanding of the underlying transport mechanisms at the molecular scale, basic experiments that systematically cover all aspects of transport by rational chemical design and tailored experiments are needed. The variety of fascinating transport mechanisms and intrinsic molecular functionalities discovered in the past range from nonlinear transport over conductance switching to quantum interference effects observable even at room temperature. Beside discussing these results, we also look at novel directions and the most recent advances in molecular electronics investigating simultaneously electronic transport and also the mechanical and thermal properties of single-molecule junctions as well as the interaction between molecules and light. Finally, we will describe the requirements for a stepwise transition from fundamental BJ experiments towards technology-relevant architectures for future nanoelectronics applications based on ultimately-scaled molecular building blocks.

  13. Algorithmic dimensionality reduction for molecular structure analysis

    PubMed Central

    Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul

    2008-01-01

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation—a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation. PMID:18715062

  14. Structure parameters in molecular tunneling ionization theory

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Li, Wei; Zhao, Song-Feng

    2014-04-01

    We extracted the accurate structure parameters in molecular tunneling ionization theory (so called MO-ADK theory) for 22 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model.

  15. Computing stoichiometric molecular composition from crystal structures

    PubMed Central

    Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas; Okulič-Kazarinas, Mykolas

    2015-01-01

    Crystallographic investigations deliver high-accuracy information about positions of atoms in crystal unit cells. For chemists, however, the structure of a molecule is most often of interest. The structure must thus be reconstructed from crystallographic files using symmetry information and chemical properties of atoms. Most existing algorithms faithfully reconstruct separate molecules but not the overall stoichiometry of the complex present in a crystal. Here, an algorithm that can reconstruct stoichiometrically correct multimolecular ensembles is described. This algorithm uses only the crystal symmetry information for determining molecule numbers and their stoichiometric ratios. The algorithm can be used by chemists and crystallographers as a standalone implementation for investigating above-molecular ensembles or as a function implemented in graphical crystal analysis software. The greatest envisaged benefit of the algorithm, however, is for the users of large crystallographic and chemical databases, since it will permit database maintainers to generate stoichiometrically correct chemical representations of crystal structures automatically and to match them against chemical databases, enabling multidisciplinary searches across multiple databases. PMID:26089747

  16. Molecular modeling of nucleic acid structure

    PubMed Central

    Galindo-Murillo, Rodrigo; Bergonzo, Christina

    2013-01-01

    This unit is the first in a series of four units covering the analysis of nucleic acid structure by molecular modeling. This unit provides an overview of computer simulation of nucleic acids. Topics include the static structure model, computational graphics and energy models, generation of an initial model, and characterization of the overall three-dimensional structure. PMID:18428873

  17. (Structural investigation of curium bismuthide)

    SciTech Connect

    Haire, R.G.

    1990-10-12

    The primary objective of the collaborative studies with EITU was to study curium bismuthide using energy dispersive X-ray diffraction to monitor its structure as a function of pressure. This objective was accomplished and the material was investigated up to 0.48 megabars of pressure. These studies were a continuation of established and productive collaborations between ORNL and EITU. The study of this curium compound is significant in that it is the first 5f-element bismuthide to be studied under pressure. Bismuth has the highest Z and the largest radius of the pnictogen group of elements (important for Hill Plot assessments) and has the greatest potential to form f-p type bonding with actinides under pressure. From a preliminary assessment of our experimental data it has been determined that two structural transitions occurred in the curium bismuthide sample as a result of the applied pressure.

  18. The Molecular Structure of Penicillin

    NASA Astrophysics Data System (ADS)

    Bentley, Ronald

    2004-10-01

    The chemical structure of penicillin was determined between 1942 and 1945 under conditions of secrecy established by the U.S. and U.K. governments. The evidence was not published in the open literature but as a monograph. This complex volume does not present a structure proof that can be readily comprehended by a student. In this article, a basic structural proof for the penicillin molecule is provided, emphasizing the chemical work. The stereochemistry of penicillin is also described, and various rearrangements are considered on the basis of the accepted β-lactam structure.

  19. Adaptive modelling of structured molecular representations for toxicity prediction

    NASA Astrophysics Data System (ADS)

    Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Solaro, Roberto; Tiné, Maria Rosaria

    2012-12-01

    We investigated the possibility of modelling structure-toxicity relationships by direct treatment of the molecular structure (without using descriptors) through an adaptive model able to retain the appropriate structural information. With respect to traditional descriptor-based approaches, this provides a more general and flexible way to tackle prediction problems that is particularly suitable when little or no background knowledge is available. Our method employs a tree-structured molecular representation, which is processed by a recursive neural network (RNN). To explore the realization of RNN modelling in toxicological problems, we employed a data set containing growth impairment concentrations (IGC50) for Tetrahymena pyriformis.

  20. Molecular Contamination Investigation Facility (MCIF) Capabilities

    NASA Technical Reports Server (NTRS)

    Soules, David M.

    2013-01-01

    This facility was used to guide the development of ASTM E 1559 center dot Multiple Quartz Crystal Microbalances (QCMs), large sample and spectral effects capability center dot Several instrumented, high vacuum chamber systems are used to evaluate the molecular outgassing characteristics of materials, flight components and other sensitive surfaces. Test materials for spacecraft/instrument selection center.Test flight components for acceptable molecular outgas levels center dot Determine time/temperature vacuum bake-out requirements center. Data used to set limits for use of materials and specific components center. Provide Input Data to Contamination Transport Models -Applied to numerous flight projects over the past 20 years.

  1. One Pot Selective Arylation of 2-Bromo-5-Chloro Thiophene; Molecular Structure Investigation via Density Functional Theory (DFT), X-ray Analysis, and Their Biological Activities.

    PubMed

    Rasool, Nasir; Kanwal, Aqsa; Rasheed, Tehmina; Ain, Quratulain; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Khan, Khalid Mohammed; Arshad, Muhammad Nadeem; M Asiri, Abdullah; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E

    2016-01-01

    Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity. PMID:27367666

  2. One Pot Selective Arylation of 2-Bromo-5-Chloro Thiophene; Molecular Structure Investigation via Density Functional Theory (DFT), X-ray Analysis, and Their Biological Activities

    PubMed Central

    Rasool, Nasir; Kanwal, Aqsa; Rasheed, Tehmina; Ain, Quratulain; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Khan, Khalid Mohammed; Arshad, Muhammad Nadeem; M. Asiri, Abdullah; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z. E.

    2016-01-01

    Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity PMID:27367666

  3. The Molecular Structure of Penicillin

    ERIC Educational Resources Information Center

    Bentley, Ronald

    2004-01-01

    Overviews of the observations that constitute a structure proof for penicillin, specifically aimed at the general student population, are presented. Melting points and boiling points were criteria of purity and a crucial tool was microanalysis leading to empirical formulas.

  4. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  5. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    SciTech Connect

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  6. Investigation of superlattice device structures

    NASA Technical Reports Server (NTRS)

    Gergis, I. S.; Manasevit, H. M.; Lin, A. L.; Jones, A. B.

    1985-01-01

    This report describes the investigation of growth properties, and the structure of epitaxial multilayer Si(Si(1x)Ge(x)) films grown on bulk Silicon Substrates. It also describes the fabrication and characterization of MOSFET and MESFET devices made on these epitaxial films. Films were grown in a CVD reactor using hydrides of Si and Ge with H2 and He as carrier gases. Growth temperatures were between 900 C and 1050 C with most films grown at 1000 C. Layer thickness was between 300A and 2000A and total film thickness was between 0.25 micro m and 7 micro m. The Ge content (X) in the alloy layers was between .05 and 0.2. N-type multilayer films grown on (100) p-type Si showed Hall mobility in the range 1000 to 1500 sq cm/v for an average carrier concentration of approx. 10 to the 16th power/cu cm. This is up to 50% higher than the Hall mobility observed in epitaxial Si films grown under the same conditions and with the same average carrier concentration. The mobility enhancement occurred in films with average carrier concentration (n) from 0.7 x 10 to the 16th power to 2 x 10 to the 17th power/cu cm, and total film thickness greater than 1.0 micro m. No mobility enhancement was seen in n-type multilayer films grown on (111) Si or in p-type multilayer films. The structure of the films was investigated was using SEM, TEM, AES, SIMS, and X-ray double crystal diffraction techniques. The film composition profile (AES, SIMS) showed that the transition region between layers is of the order of about 100A. The TEM examination revealed a well defined layered structure with fairly sharp interfaces and good crystalline quality. It also showed that the first few layers of the film (closest to the substrate) are uneven, most probably due to the initial growth pattern of the epitaxial film where growth occurs first in isolated islands that eventually growth and coalesce. The X-ray diffraction measurement determined the elastic strain and strain relief in the alloy layers of the film

  7. Investigation of the molecular structure of radical cation of s-trioxane: quantum chemical calculations and low-temperature EPR results

    NASA Astrophysics Data System (ADS)

    Janovský, I.; Naumov, S.; Knolle, W.; Mehnert, R.

    2003-06-01

    s-Trioxane radical cation was radiolytically generated in freon matrix and the changes of the EPR spectra with temperature, arising from conformational interconversion involving ring, were observed. The equilibration, leading to six equivalent protons (hfs splitting constant 5.9 mT) characteristic of the average planar geometry of the radical cation, occurs at ˜120 K in CF 3CCl 3. Supplementary experiments with 1,3-dioxane, which forms a radical cation with a similar electronic structure, were also performed. DFT quantum chemical calculations were used to support the experimental results.

  8. Raman microprobe investigation of molecular structure and organization in the native state of woody tissue. Progress report, April 1, 1987--July 31, 1989

    SciTech Connect

    Atalla, R.H.

    1989-08-01

    Although the primary emphasis of our program has remained with the application of Raman spectroscopy to the study of native tissue, the scope of the work has been expanded to include a number of complementary approaches. These have included Solid State 13C NMR, autoradiography of radiolabeled woody tissue sections, and the generation of biomimetic tertiary aggregates which simulate states of aggregation characteristic of cell walls. Our Raman spectroscopic studies have resulted in progress in the areas of interpretation of the spectral features, and confirmation of the variability of the patterns of orientation of lignin reported earlier. We have assembled and made operational our new microprobe and spectrometer systems acquired under the DOE-URIP program. We have also demonstrated that, operating with gated detection and pulsed laser excitation, we can discriminate against the laser-excited fluorescence characteristic of most woody tissue. Our studies of celluloses, which combine Raman spectroscopy and 13C NMR have shown that all native celluloses are composites of two forms which have the same secondary structure but different tertiary structures.

  9. Structures in Molecular Clouds: Modeling

    SciTech Connect

    Kane, J O; Mizuta, A; Pound, M W; Remington, B A; Ryutov, D D

    2006-04-20

    We attempt to predict the observed morphology, column density and velocity gradient of Pillar II of the Eagle Nebula, using Rayleigh Taylor (RT) models in which growth is seeded by an initial perturbation in density or in shape of the illuminated surface, and cometary models in which structure is arises from a initially spherical cloud with a dense core. Attempting to mitigate suppression of RT growth by recombination, we use a large cylindrical model volume containing the illuminating source and the self-consistently evolving ablated outflow and the photon flux field, and use initial clouds with finite lateral extent. An RT model shows no growth, while a cometary model appears to be more successful at reproducing observations.

  10. On the emergence of molecular structure

    SciTech Connect

    Matyus, Edit; Reiher, Markus; Hutter, Juerg; Mueller-Herold, Ulrich

    2011-05-15

    The structure of (a{sup {+-}},a{sup {+-}},b{sup {+-}})-type Coulombic systems is characterized by the effective ground-state density of the a-type particles, computed via nonrelativistic quantum mechanics without introduction of the Born-Oppenheimer approximation. A structural transition is observed when varying the relative mass of the a- and b-type particles, e.g., between atomic H{sup -} and molecular H{sub 2}{sup +}. The particle-density profile indicates a molecular-type behavior for the positronium ion, Ps{sup -}.

  11. Reverse engineering chemical structures from molecular descriptors : how many solutions?

    SciTech Connect

    Brown, William Michael; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-06-01

    Physical, chemical and biological properties are the ultimate information of interest for chemical compounds. Molecular descriptors that map structural information to activities and properties are obvious candidates for information sharing. In this paper, we consider the feasibility of using molecular descriptors to safely exchange chemical information in such a way that the original chemical structures cannot be reverse engineered. To investigate the safety of sharing such descriptors, we compute the degeneracy (the number of structure matching a descriptor value) of several 2D descriptors, and use various methods to search for and reverse engineer structures. We examine degeneracy in the entire chemical space taking descriptors values from the alkane isomer series and the PubChem database. We further use a stochastic search to retrieve structures matching specific topological index values. Finally, we investigate the safety of exchanging of fragmental descriptors using deterministic enumeration.

  12. Molecular structure and conformations of 1,2-dimethoxycyclobutene-3,4-dione. An electron-diffraction investigation augmented by quantum mechanical and normal coordinate calculations.

    PubMed

    Costello, Luke L; Hedberg, Lise; Hedberg, Kenneth

    2015-03-01

    The structure and conformations of 1,2-dimethoxycyclobutene-3,4-dione in the vapor at a temperature of 185 °C have been measured by gas-phase electron diffraction. The molecule exists in two forms, one of symmetry C2v with the methyl groups trans to the double bond, and one of Cs symmetry with a methyl group cis and the other trans to this bond (these forms hereafter designated as trans and cis). The molar ratio trans/cis is 68/32 with a 2σ uncertainty of about 24. Many of the parameter values for the two forms are very nearly alike and could not be measured experimentally. With the adoption of parameter differences calculated at the B3LYP/cc-pVTZ level, the following bond distances (r(g)/Å) and bond angles (∠/deg) with estimated 2σ uncertainties were obtained for trans/cis: C1═C2 = 1.381(9)/1.381, C1-C4 = 1.493(11)/1.495, C3-C4 = 1.543(20)/1.545, C═O = 1.203(4)/⟨1.200⟩, C1-O = 1.316(6)/⟨1.320⟩, O-CH3 = 1.444(9)/⟨1.443⟩, C═C-C3 = 93.1(5)/⟨93.1⟩, C3-C4═O = 136.7(29)/⟨136.9⟩, C═C-O = 131.0(23)/137.5, and 131.8, C-O-C = 117.2(12)/118.2 and 116.9; the individual angle values for the cis form listed as averages differ very little. The bond distances and bond angles are in excellent qualitative agreement with prediction based on conventional ideas about the effects of conjugation and hybridization, and their relative values agree very well with predictions from quantum mechanical calculations. PMID:25158151

  13. How We Teach Molecular Structure to Freshmen.

    ERIC Educational Resources Information Center

    Hurst, Michael O.

    2002-01-01

    Currently molecular structure is taught in general chemistry using three theories, this being based more on historical development rather than logical pedagogy. Electronegativity is taught with a confusing mixture of definitions that do not correspond to modern practice. Valence bond theory and VSEPR are used together in a way that often confuses…

  14. Molecular Structure of Human-Liver Glycogen

    PubMed Central

    Deng, Bin; Sullivan, Mitchell A.; Chen, Cheng; Li, Jialun; Powell, Prudence O.; Hu, Zhenxia; Gilbert, Robert G.

    2016-01-01

    Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets. PMID:26934359

  15. Molecular Association and Structure of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Giguere, Paul A.

    1983-01-01

    The statement is sometimes made in textbooks that liquid hydrogen peroxide is more strongly associated than water, evidenced by its higher boiling point and greater heat of vaporization. Discusses these and an additional factor (the nearly double molecular mass of the peroxide), focusing on hydrogen bonds and structure of the molecule. (JN)

  16. Structure investigations on oxygen fluorides.

    PubMed

    Marx, Rupert; Seppelt, Konrad

    2015-12-01

    The crystal structure of O2F2 is obtained at -180 °C. In the solid state the molecule has the typical hydrogen peroxide structure that has been established long ago by electron diffraction and microwave spectroscopy. OF2 melts at -223.8 °C, so its structure is determined by powder X-ray data. The structure differs from the solid state structures of ozone and Br2O. O2F in its dissolved form as O2(+) HnFn+1(-) oxidizes palladium to the four valence state, as found some time ago. The first product formed at low temperatures is (O2(+)H3Pd2F12(-))n. PMID:26351980

  17. Creep rupture of fiber bundles: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Linga, G.; Ballone, P.; Hansen, Alex

    2015-08-01

    The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc=400 chains reproduce characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ on F . A power law τ ˜F-4 , however, is recovered at high load. We discuss the role of reversible bond breaking and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics, inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric fibers, investigated within a sound statistical mechanics framework.

  18. Investigation of coal structure. Final report

    SciTech Connect

    Nishioka, Masaharu

    1994-03-01

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  19. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni, R.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-01

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.

  20. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    SciTech Connect

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-07

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the {sigma}/{pi} hyperconjugation in EtFC and the {pi}-conjugation in VFC and EFC.

  1. Structural investigation of hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Lo Celso, F.; Triolo, A.; Negroni, F.; Hainbuchner, M.; Baron, M.; Strunz, P.; Rauch, H.; Triolo, R.

    Ultra small (USANS) and small angle neutron scattering (SANS) techniques were employed to study an elastomer styrene-butadiene, where two kinds of silica fillers have been added in different amounts. Small silica-particle fillers are expected to modify morphological and mechanical properties when dispersed in the copolymer matrix. The USANS and SANS techniques can span a wide range of momentum transfer, investigating morphological properties of the filled elastomer over a number of decades in length scale. Surface and mass fractal behavior has been observed over different length scales.

  2. Investigation of a novel molecular descriptor for the lead optimization of 4-aminoquinazolines as vascular endothelial growth factor receptor-2 inhibitors: application for quantitative structure-activity relationship analysis in lead optimization.

    PubMed

    Kawakami, Joel K; Martinez, Yannica; Sasaki, Brandi; Harris, Melissa; Kurata, Wendy E; Lau, Alan F

    2011-03-01

    We investigated the use of infrared vibrational frequency of ligands as a potential novel molecular descriptor in three different molecular target and chemical series. The vibrational energy of a ligand was approximated from the sum of infrared (IR) absorptions of each functional group within a molecule and normalized by its molecular weight (MDIR). Calculations were performed on a set of 4-aminoquinazolines with similar docking scores for the VEGFR2/KDR receptor. 4-Aminoquinazolines with MDIR values ranging 192-196 provided compounds with KDR inhibitory activity. The correlation of KDR inhibitory activity was similarly observed in a separate chemical series, the pyrazolo[1,5-a]pyrimidines. Initial exploration of this molecular descriptor supports a tool for rapid lead optimization in the 4-aminoquinazoline chemical series and a potential method for scaffold hopping in pursuit of new inhibitors. PMID:21306896

  3. Investigation of a novel molecular descriptor for the lead optimization of 4-aminoquinazolines as vascular endothelial growth factor receptor – 2 inhibitors: Application for quantitative structure activity relationship analysis in lead optimization

    PubMed Central

    Kawakami, Joel K.; Martinez, Yannica; Sasaki, Brandi; Harris, Melissa; Kurata, Wendy E.; Lau, Alan F.

    2013-01-01

    We investigated the use of infrared vibrational frequency of ligands as a potential novel molecular descriptor in three different molecular target and chemical series. The vibrational energy of a ligand was approximated from the sum of infrared (IR) absorptions of each functional group within a molecule and normalized by its molecular weight (MDIR). Calculations were performed on a set of 4-aminoquinazolines with similar docking scores for the VEGFR2/KDR receptor. 4-Aminoquinazolines with MDIR values ranging 192–196 provided compounds with KDR inhibitory activity. The correlation of KDR inhibitory activity was similarly observed in a separate chemical series, the pyrazolo[1,5-a]pyrimidines. Initial exploration of this molecular descriptor supports a tool for rapid lead optimization in the 4-aminoquinazoline chemical series and a potential method for scaffold hopping in pursuit of new inhibitors. PMID:21306896

  4. Molecular Motions in (CH3)3XCl, X = Sn and Pb. NMR Investigations and Crystal Structure Study of (CH3)3PbCl and CH3SnBr3

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Dou, Shi-Qi; Weiss, Alarich

    1991-04-01

    The molecular motion in (CH3)3XCl, X = Sn and Pb has been investigated by measurement of the second moment M2(1H) as function of temperature in the range 95 < T,/K<345. The methyl groups in both compounds rotate freely over the whole temperature range studied. In (CH3)3SnCl the C'3-rotation of (CH3)3Sn-group about the Sn CI axis sets in above 273 K. To explain the NMR and INS results, the crystal structures of (CH3)3PbCl and CH3SnBr3 were determined by single X-ray diffraction. (CH3)3PbCl crystallizes in a monoclinic space group C32-C2, a = 1276.7(3) pm, b = 982.3(3) pm, c = 547.0(2) pm, ß = 91.12(1)°; Z = 4, R = 0.035. CH3SnBr3 crystallizes in an orthorhombic space group D162h-Pnma, a = 643.0(3) pm, b= 1005.3(4) pm, c= 1148.0(4) pm; Z = 4, R =0.057

  5. Investigation of high hole mobility In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum well structures grown by molecular beam epitaxy

    SciTech Connect

    Wang, Juan; Xing, Jun-Liang; Xiang, Wei; Wang, Guo-Wei; Xu, Ying-Qiang; Ren, Zheng-Wei; Niu, Zhi-Chuan

    2014-02-03

    Modulation-doped In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb quantum-well (QW) structures were grown by molecular beam epitaxy. Cross-sectional transmission electron microscopy and atomic force microscopy studies show high crystalline quality and smooth surface morphology. X-ray diffraction investigations confirm 1.94% compressive strain within In{sub 0.41}Ga{sub 0.59}Sb channel. High room temperature hole mobility with high sheet density of 1000 cm{sup 2}/Vs, 0.877 × 10{sup 12}/cm{sup 2}, and 965 cm{sup 2}/Vs, 1.112 × 10{sup 12}/cm{sup 2} were obtained with different doping concentrations. Temperature dependent Hall measurements show different scattering mechanisms on hole mobility at different temperature range. The sheet hole density keeps almost constantly from 300 K to 77 K. This study shows great potential of In{sub 0.41}Ga{sub 0.59}Sb/Al{sub 0.91}Ga{sub 0.09}Sb QW for high-hole-mobility device applications.

  6. Thermal and molecular investigation of laser tissue welding

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack on both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of the probability of long-term success. Molecular effects induced in the tissue by laser irradiation were investigated by measuring the concentrations of specific collagen covalent crosslinks and measuring the infrared absorption spectra before and after the laser exposure. This investigation yielded results pertaining to both the methods and mechanisms of laser tissue welding. The combination of two-color infrared thermometry to obtain accurate surface temperatures free from emissivity bias and computer modeling illustrated the importance of including evaporation in the simulations, which effectively serves as an inherent cooling mechanism during laser irradiation. Moreover, the hydration state predicted by the model was useful in assessing the role of electrostatic versus covalent bonding in the fusion. These tools also helped elicit differences between dye- enhanced liquid solders and solid-matrix patches in laser-assisted tissue welding, demonstrating the significance of repeatable energy delivery. Surprisingly, covalent bonds

  7. The Global Coronal Structure Investigation

    NASA Astrophysics Data System (ADS)

    Golub, Leon

    1998-02-01

    During the past year we have completed the changeover from the NIXT program to the new TXI sounding rocket program. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design, has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronics and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated x-ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The H-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. A new H-alpha camera has been built, with a high-resolution RS170 CCD camera output. Two papers, summarizing scientific results from the NIXT rocket program, have been written and published this year: 1. "The Solar X-ray Corona," by L. Golub, Astrophysics and Space Science, 237, 33 (1996). 2. "Difficulties in Observing Coronal Structure," Keynote Paper, Proceedings STEPWG1 Workshop on Measurements and Analyses of the Solar 3D Magnetic Field, Solar Physics, 174, 99 (1997).

  8. The Global Coronal Structure Investigation

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    During the past year we have completed the changeover from the NIXT program to the new TXI sounding rocket program. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design, has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronics and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated x-ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The H-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. A new H-alpha camera has been built, with a high-resolution RS170 CCD camera output. Two papers, summarizing scientific results from the NIXT rocket program, have been written and published this year: 1. "The Solar X-ray Corona," by L. Golub, Astrophysics and Space Science, 237, 33 (1996). 2. "Difficulties in Observing Coronal Structure," Keynote Paper, Proceedings STEPWG1 Workshop on Measurements and Analyses of the Solar 3D Magnetic Field, Solar Physics, 174, 99 (1997).

  9. On calculating the equilibrium structure of molecular crystals.

    SciTech Connect

    Mattsson, Ann Elisabet; Wixom, Ryan R.; Mattsson, Thomas Kjell Rene

    2010-03-01

    The difficulty of calculating the ambient properties of molecular crystals, such as the explosive PETN, has long hampered much needed computational investigations of these materials. One reason for the shortcomings is that the exchange-correlation functionals available for Density Functional Theory (DFT) based calculations do not correctly describe the weak intermolecular van der Waals' forces present in molecular crystals. However, this weak interaction also poses other challenges for the computational schemes used. We will discuss these issues in the context of calculations of lattice constants and structure of PETN with a number of different functionals, and also discuss if these limitations can be circumvented for studies at non-ambient conditions.

  10. Explorations of molecular structure-property relationships.

    PubMed

    Seybold, P G

    1999-01-01

    The problem of the relationship between the structure of a molecule and its physical, chemical, and biological properties is one of the most fundamental in chemistry. Three molecular structure-property studies are discussed as illustrations of different approaches to this problem. In the first study the carcinogenic activities of polycyclic aromatic hydrocarbons and their derivatives are examined. Molecular orbital calculations of the presumptive activation steps and species for these compounds (based on the "bay region" theory of activation) are seen to yield a surprisingly good guide to the observed carcinogenic activities. Both activation and deactivation steps are considered. The second study reviews structure-property work on the tissue solubilities of halogenated hydrocarbons. Relatively simple structural descriptors give a good account of the solubilities of these compounds in blood, muscle, fat, and liver tissue. With the aid of principal components analysis it is shown that there are two dominant dimensions to this problem, which can be interpreted in terms of solubilities of the compounds in lipid and saline environments. The final study, which examines the boiling points of aliphatic alcohols, illustrates the value of using more than one descriptor set. The (perhaps surprising) conclusion is that a theoretical model can sometimes be more accurate than the data upon which it is based. Moreover, two models are better than one. PMID:10491848

  11. Filamentary structure in the Orion molecular cloud

    NASA Astrophysics Data System (ADS)

    Bally, John; Langer, William D.; Stark, Antony A.; Wilson, Robert W.

    1987-01-01

    A large-scale (C-13)O map (containing 33,000 spectra on a 1-arcmin grid) is presented for the giant molecular cloud located in the southern part of Ori which contains the Ori Nebula, NGC 1977, and the L1641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. The northern portion of the cloud is compressed, dynamically relaxed, and supports massive star formation. In contrast, the southern part of the Ori A cloud is diffuse, exhibits chaotic spatial and velocity structure, and supports only intermediate- to low-mass star formation. This morphology may be the consequence of the formation and evolution of the Ori OB I association centered north of the molecular cloud. The entire cloud, in addition to the 5000-solar-mass filament containing both OMC-1 and OMC-2, exhibits a north-south velocity gradient. Implications of the observed cloud morphology for theories of molecular cloud evolution are discussed.

  12. Filamentary structure in the Orion molecular cloud

    SciTech Connect

    Bally, J.; Stark, A.A.; Wilson, R.W.; Langer, W.D.

    1987-01-01

    A large-scale (C-13)O map (containing 33,000 spectra on a 1-arcmin grid) is presented for the giant molecular cloud located in the southern part of Ori which contains the Ori Nebula, NGC 1977, and the L1641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. The northern portion of the cloud is compressed, dynamically relaxed, and supports massive star formation. In contrast, the southern part of the Ori A cloud is diffuse, exhibits chaotic spatial and velocity structure, and supports only intermediate- to low-mass star formation. This morphology may be the consequence of the formation and evolution of the Ori OB I association centered north of the molecular cloud. The entire cloud, in addition to the 5000-solar-mass filament containing both OMC-1 and OMC-2, exhibits a north-south velocity gradient. Implications of the observed cloud morphology for theories of molecular cloud evolution are discussed. 14 references.

  13. Solution 1H NMR investigation of the active site molecular and electronic structures of substrate-bound, cyanide-inhibited HmuO, a bacterial heme oxygenase from Corynebacterium diphtheriae.

    PubMed

    Li, Yiming; Syvitski, Ray T; Chu, Grace C; Ikeda-Saito, Masao; Mar, Gerd N La

    2003-02-28

    The molecular structure and dynamic properties of the active site environment of HmuO, a heme oxygenase (HO) from the pathogenic bacterium Corynebacterium diphtheriae, have been investigated by (1)H NMR spectroscopy using the human HO (hHO) complex as a homology model. It is demonstrated that not only the spatial contacts among residues and between residues and heme, but the magnetic axes that can be related to the direction and magnitude of the steric tilt of the FeCN unit are strongly conserved in the two HO complexes. The results indicate that very similar contributions of steric blockage of several meso positions and steric tilt of the attacking ligand are operative. A distal H-bond network that involves numerous very strong H-bonds and immobilized water molecules is identified in HmuO that is analogous to that previously identified in hHO (Li, Y., Syvitski, R. T., Auclair, K., Wilks, A., Ortiz de Montellano, P. R., and La Mar, G. N. (2002) J. Biol. Chem. 277, 33018-33031). The NMR results are completely consistent with the very recent crystal structure of the HmuO.substrate complex. The H-bond network/ordered water molecules are proposed to orient the distal water molecule near the catalytically key Asp(136) (Asp(140) in hHO) that stabilizes the hydroperoxy intermediate. The dynamic stability of this H-bond network in HmuO is significantly greater than in hHO and may account for the slower catalytic rate in bacterial HO compared with mammalian HO. PMID:12480929

  14. The Molecular Structure of cis-FONO

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Rice, Julia E.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The molecular structure of cis-FONO has been determined with the CCSD(T) correlation method using an spdf quality basis set. In agreement with previous coupled-cluster calculations but in disagreement with density functional theory, cis-FONO is found to exhibit normal bond distances. The quadratic and cubic force fields of cis-FONO have also been determined in order to evaluate the effect of vibrational averaging on the molecular geometry. Vibrational averaging is found to increase bond distances, as expected, but it does not affect the qualitative nature of the bonding. The CCSD(T)/spdf harmonic frequencies of cis-FONO support our previous assertion that a band observed at 1200 /cm is a combination band (upsilon(sub 3) + upsilon(sub 4)), and not a fundamental.

  15. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    NASA Astrophysics Data System (ADS)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  16. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach.

    PubMed

    Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A

    2013-03-21

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio

  17. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  18. Synthesis, molecular structure, spectroscopic analysis, thermodynamic parameters and molecular modeling studies of (2-methoxyphenyl)oxalate

    NASA Astrophysics Data System (ADS)

    Şahin, Zarife Sibel; Kantar, Günay Kaya; Şaşmaz, Selami; Büyükgüngör, Orhan

    2015-05-01

    The aim of this study is to find out the molecular characteristic and structural parameters that govern the chemical behavior of a new (2-methoxyphenyl)oxalate compound and to compare predictions made from theory with experimental observations. The title compound, (2-methoxyphenyl)oxalate, (I), (C16H14O6), has been synthesized. The compound has been characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopies and single crystal X-ray diffraction techniques. Optimized molecular structure, harmonic vibrational frequencies, 1H and 13C NMR chemical shifts have been investigated by B3LYP/6-31G(d,p) method using density functional theory (DFT). The calculated results show that the predicted geometry can well reproduce structural parameters. In addition, global chemical reactivity descriptors, molecular electrostatic potential map (MEP), frontier molecular orbitals (FMOs), Mulliken population method and natural population analysis (NPA) and thermodynamic properties have also been studied. The energetic behavior of title compound has been examined in solvent media using polarizable continuum model (PCM).

  19. Structure investigations on assembled astaxanthin molecules

    NASA Astrophysics Data System (ADS)

    Köpsel, Christian; Möltgen, Holger; Schuch, Horst; Auweter, Helmut; Kleinermanns, Karl; Martin, Hans-Dieter; Bettermann, Hans

    2005-08-01

    The carotenoid r,r-astaxanthin (3R,3‧R-dihydroxy-4,4‧-diketo-β-carotene) forms different types of aggregates in acetone-water mixtures. H-type aggregates were found in mixtures with a high part of water (e.g. 1:9 acetone-water mixture) whereas two different types of J-aggregates were identified in mixtures with a lower part of water (3:7 acetone-water mixture). These aggregates were characterized by recording UV/vis-absorption spectra, CD-spectra and fluorescence emissions. The sizes of the molecular assemblies were determined by dynamic light scattering experiments. The hydrodynamic diameter of the assemblies amounts 40 nm in 1:9 acetone-water mixtures and exceeds up to 1 μm in 3:7 acetone-water mixtures. Scanning tunneling microscopy monitored astaxanthin aggregates on graphite surfaces. The structure of the H-aggregate was obtained by molecular modeling calculations. The structure was confirmed by calculating the electronic absorption spectrum and the CD-spectrum where the molecular modeling structure was used as input.

  20. Rheological investigation of highly filled polymers: Effect of molecular weight

    NASA Astrophysics Data System (ADS)

    Hnatkova, Eva; Hausnerova, Berenika; Hales, Andrew; Jiranek, Lukas; Vera, Juan Miguel Alcon

    2015-04-01

    The paper deals with rheological properties of highly filled polymers used in powder injection molding. Within the experimental framework seven PIM feedstocks based on superalloy Inconel 718 powder were prepared. Each feedstock contains the fixed amount of powder loading and the same composition of binder system consisting of three components: polyethylene glycol (PEG) differing in molecular weight, poly (methyl methacrylate) (PMMA) and stearic acid (SA). The aim is to investigate the influence of PEG's molecular weight on the flow properties of feedstocks. Non-Newtonian indices, representing the shear rate sensitivity of the feedstocks, are obtained from a polynomial fit, and found to vary within measured shear rates range from 0.2 to 0.8. Temperature effect is considered via activation energies, showing decreasing trend with increasing of molecular weight of PEG (except of feedstock containing 1,500 g.mol-1 PEG).

  1. Structural disorder in molecular framework materials.

    PubMed

    Cairns, Andrew B; Goodwin, Andrew L

    2013-06-21

    It is increasingly apparent that many important classes of molecular framework material exhibit a variety of interesting and useful types of structural disorder. This tutorial review summarises a number of recent efforts to understand better both the complex microscopic nature of this disorder and also how it might be implicated in useful functionalities of these materials. We draw on a number of topical examples including topologically-disordered zeolitic imidazolate frameworks (ZIFs), porous aromatic frameworks (PAFs), the phenomena of temperature-, pressure- and desorption-induced amorphisation, partial interpenetration, ferroelectric transition-metal formates, negative thermal expansion in cyanide frameworks, and the mechanics and processing of layered frameworks. We outline the various uses of pair distribution function (PDF) analysis, dielectric spectroscopy, peak-shape analysis of powder diffraction data and single-crystal diffuse scattering measurements as means of characterising disorder in these systems, and we suggest a number of opportunities for future research in the field. PMID:23471316

  2. Growth mechanism, electronic spectral investigation and molecular orbital studies of L-prolinium phosphate.

    PubMed

    Liu, Xiaojing; Sun, Xin; Xu, Xijin; Sun, Ping

    2015-11-01

    By using atomic force microscopy, birth and spread has proved to be the primary growth mechanism for L-prolinium phosphate (LPP). The phenomenon of newly formed islands expanding to the edge of the preceding terrace was observed. The optimized molecular structure and the molecular properties were calculated by density functional theory method. Natural bond orbital analysis was carried out to demonstrate the various inter and intramolecular interactions that are responsible for the stabilization of LPP leading to high NLO activity. Molecular electrostatic potential, frontier molecular orbital analysis and thermodynamic properties were investigated to get a better insight of the molecular properties. Global and local reactivity descriptors were computed to predict the reactivity and reactive sites on the molecules. Non-linear optical (NLO) properties such as the total dipole moment (μ) and first order hyperopolarizability (β) were also calculated to predict NLO behavior. PMID:26067937

  3. Plant sex chromosomes: molecular structure and function.

    PubMed

    Jamilena, M; Mariotti, B; Manzano, S

    2008-01-01

    Recent molecular and genomic studies carried out in a number of model dioecious plant species, including Asparagus officinalis, Carica papaya, Silene latifolia, Rumex acetosa and Marchantia polymorpha, have shed light on the molecular structure of both homomorphic and heteromorphic sex chromosomes, and also on the gene functions they have maintained since their evolution from a pair of autosomes. The molecular structure of sex chromosomes in species from different plant families represents the evolutionary pathway followed by sex chromosomes during their evolution. The degree of Y chromosome degeneration that accompanies the suppression of recombination between the Xs and Ys differs among species. The primitive Ys of A. officinalis and C. papaya have only diverged from their homomorphic Xs in a short male-specific and non-recombining region (MSY), while the heteromorphic Ys of S. latifolia, R. acetosa and M. polymorpha have diverged from their respective Xs. As in the Y chromosomes of mammals and Drosophila, the accumulation of repetitive DNA, including both transposable elements and satellite DNA, has played an important role in the divergence and size enlargement of plant Ys, and consequently in reducing gene density. Nevertheless, the degeneration process in plants does not appear to have reached the Y-linked genes. Although a low gene density has been found in the sequenced Y chromosome of M. polymorpha, most of its genes are essential and are expressed in the vegetative and reproductive organs in both male and females. Similarly, most of the Y-linked genes that have been isolated and characterized up to now in S. latifolia are housekeeping genes that have X-linked homologues, and are therefore expressed in both males and females. Only one of them seems to be degenerate with respect to its homologous region in the X. Sequence analysis of larger regions in the homomorphic X and Y chromosomes of papaya and asparagus, and also in the heteromorphic sex chromosomes

  4. The crystal and molecular structure of triethanol-ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Bracuti, A. J.

    1992-12-01

    The liquid propellant used in the 155-mm regenerative liquid propellant gun is XM46. XM46 is a solution of 60 percent hydroxyl ammonium nitrate (HAN), 20 percent triethanolammonium nitrate (TEAN), and 20 percent water. This material exhibits rather unusual liquid properties that have been attributed to its being a 'molten eutectic' of fused salts rather than a normal aqueous solution of two different nitrate salts. A hydrogen-bonded liquid structure for eutectic LP1946 was proposed previously based on the known structures of neat HAN and water and a best-guess estimate of the TEAN structure. To verify this estimate, the molecular structure of neat TEAN was recently determined. This investigation revealed TEAN has very unusual and interesting bifurcated intermolecular and trifurcated intramolecular hydrogen bonding configurations within the crystal. If these hydrogen bonding configurations are retained in aqueous solution, they could be responsible in some part to the observed unusual liquid properties of liquid propellant XM46.

  5. Theoretical investigations on the molecular structure, vibrational spectra, HOMO-LUMO analyses and NBO study of 1-[(Cyclopropylmethoxy)methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione

    NASA Astrophysics Data System (ADS)

    Al-Abdullah, Ebtehal S.; Mary, Y. Sheena; Panicker, C. Yohannan; El-Brollosy, Nasser R.; El-Emam, Ali A.; Van Alsenoy, Christian; Al-Saadi, Abdulaziz A.

    2014-12-01

    The FT-IR and FT-Raman spectra of 1-[(Cyclopropylmethoxy)methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione were recorded. In this work, experimental and theoretical study on the molecular structure and vibrational wavenumbers of the title compound are presented. The vibrational wavenumbers were obtained theoretically at the DFT level and were compared with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, NBO, mapped molecular electrostatic potential and first hyperpolarizability. The calculated first hyperpolarizability of the title compound is 9.15 times that of urea and hence the title compound and the series of compounds it represents are attractive candidates for further studies in non linear optical applications. In the title compound, the HOMO of π nature is delocalized over the phenyl ring while the LUMO is located over the pyrimidine ring. The inter-molecular hydrogen bonding at O7 and N1sbnd H25 positions in each monomer give rise to a C2-symmetry dimer which is predicted to be about 10 kcal mol-1 more stable than the monomeric form.

  6. A molecular investigation of adsorption onto mineral pigments

    NASA Astrophysics Data System (ADS)

    Ninness, Brian J.

    Pigment suspensions are important in several processes such as ceramics, paints, inks, and coatings. In the wet state, pigments are combined with a variety of chemical species such as polymers, surfactants, and polyelectrolytes which produce a complex colloidal system. The adsorption, desorption, and redistribution of these species at the pigment-aqueous solution interface can have an impact on the behavior in both the wet state or its final dried state. The goal of this work is to establish a molecular picture of the adsorption properties of these pigmented systems. A novel in situ infrared technique has been developed which allows the detection of adsorbed surface species on pigment particles in an aqueous environment. The technique involves the use of a polymeric binder to anchor the colloidal pigment particles to the surface of an internal reflection element (IRE). The binder only weakly perturbs about 25% of the reactive surface sites (hydroxyl groups) on silica. The reaction of succinic anhydride with an aminosilanized silica surface has been quantified using this technique. The adsorption dynamics of the cationic surfactant cetyltrimethylammonium bromide (C16TAB) at the TiO2-aqueous solution interface has been investigated using Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR) and electrokinetic analysis. At low bulk concentrations, C16TAB is shown to adsorb as isolated islands with a "defective" bilayer structure. Anionic probe molecules are shown to effectively "tune" the adsorbed surfactant microstructure. The results indicate that the structure of the adsorbed surfactant layer, and not the amount of adsorbed surfactant, dictates the subsequent adsorption behavior of the system. Atomic Layer Deposition is used to deposit a TiO2 layer onto the surfaces of silica and kaolin pigments. The process involves the cyclic reaction sequence of the vapors of TiCl4 and H2O. Three complete deposition cycles are needed before the surfaces

  7. FTIR investigation of non-volatile molecular nanoparticles

    NASA Astrophysics Data System (ADS)

    Signorell, R.; Kunzmann, M. K.; Suhm, M. A.

    2000-10-01

    A new approach for the spectroscopic investigation of non-volatile molecular nanoparticles with diameters in the range between 10 and 100 nm is proposed. The nanoparticles are produced in an electrospray with subsequent solvent evaporation. The number size distribution of the generated aerosol is determined with a scanning mobility particle sizer. Fourier transform infrared spectroscopy is used to study the vibrational dynamics of the nanoparticles. As an example, we have investigated sucrose nanoparticles with six different diameters between 36 and 82 nm. From a comparison with different bulk phase spectra, we conclude that sucrose aerosols are formed in a solid amorphous state.

  8. Normal coordinate analysis, molecular structure, vibrational, electronic spectra and NMR investigation of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione by ab initio HF and DFT method

    NASA Astrophysics Data System (ADS)

    Bahgat, Khaled; Fraihat, Safwan

    2015-01-01

    In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of APTT were recorded in solid phase. The UV-Vis absorption spectrum of the APTT was recorded in the range of 200-400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

  9. COMPUTER-ASSISTED STUDIES OF MOLECULAR STRUCTURE-BIOLOGICAL ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Computer-assisted methods can be used to investigate the relationships between the molecular structures of compounds and their biological activity. A number of approaches have been reported in the literature, including correlations of activity with substituent constants, conforma...

  10. MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Abstract
    One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...

  11. [Evolution and systematics of nematodes based on molecular investigation].

    PubMed

    Okulewicz, Anna; Perec, Agnieszka

    2004-01-01

    Evolution and systematics of nematodes based on molecular investigation. The use of molecular phylogenetics to examine the interrelationships between animal parasites, free-living nematodes, and plant parasites versus traditional classification based on morphological-ecological characters was discussed and reviewed. Distinct differences were observed between parasitic nematodes and free-living ones. Within the former group, animal parasites turned out to be distinctly different from plant parasites. Using small subunit of ribosomal RNA gene sequence from a wide range of nematodes, there is a possibility to compare animal-parasitic, plant-parasitic and free-living taxa. Nowadays the parasitic nematodes expressed sequence tag (EST) project is currently generating sequence information to provide a new source of data to examine the evolutionary history of this taxonomic group. PMID:16859012

  12. Shock induced phase transition of water: Molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2016-02-01

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  13. [Molecular structure of luminal diuretic receptors].

    PubMed

    Gamba, G

    1995-01-01

    Since day to day sodium and water intake is more or less constant, the output by urinary sodium excretion is the key to maintain extracellular fluid volume within physiologic ranges. To achieve this goal, the kidneys ensure that most of the large quantities of filtered sodium are reabsorbed, a function that takes place in the proximal tubule, the loop of Henle and the distal tubule, and then the kidneys adjust the small amount of sodium that is excreted in urine in such a way that sodium balance is maintained. This adjustment occurs in the collecting duct. Three groups of diuretic-sensitive sodium transport mechanisms have been identified in the apical membranes of the distal nephron based on their different sensitivities to diuretics and requirements for chloride and potassium: 1) the sulfamoylbenzoic (or bumetanide)-sensitive Na+:K+:2CI- and Na+:CI- symporters in the thick ascending loop of Henle; 2) the benzothiadiazine (or thiazide)-sensitive Na+:CI- cotransporter in the distal tubule; and 3) the amiloride-sensitive Na+ channel in the collecting tubule. The inhibition of any one of these proteins by diuretics results in increased sodium urinary excretion. Recently, the use of molecular biology techniques, specially the functional expression cloning in Xenopus laevis oocytes, has led to the identification of cDNA's encoding members of the three groups of diuretic-sensitive transport proteins. The present paper reviews the primary structure and some aspects of the relationship between structure and function of these transporters as well as the new protein families emerging from these sequences. It also discusses the future implications of these discoveries on the physiology and pathophysiology of kidney disease and sodium retaining states. PMID:7569367

  14. Filamentary structure in the Orion molecular cloud

    NASA Astrophysics Data System (ADS)

    Bally, J.; Dragovan, M.; Langer, W. D.; Stark, A. A.; Wilson, R. W.

    1986-10-01

    A large scale 13CO map (containing 33,000 spectra) of the giant molecular cloud located in the southern part of Orion is presented which contains the Orion Nebula, NGC1977, and the LI641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. This morphology may result from the effects of star formation in the region or embedded magnetic fields in the cloud. We suggest a simple picture for the evolution of the Orion-A cloud and the formation of the major filament. A rotating proto-cloud (counter rotating with respect to the galaxy) contians a b-field aligned with the galaxtic plane. The northern portion of this cloud collapsed first, perhaps triggered by the pressure of the Ori I OB association. The magnetic field combined with the anisotropic pressure produced by the OB-association breaks the symmetry of the pancake instability, a filament rather than a disc is produced. The growth of instabilities in the filament formed sub-condensations which are recent sites of star formation.

  15. Molecular structure of brown-dwarf disks

    NASA Astrophysics Data System (ADS)

    Wiebe, D. S.; Semenov, D. A.; Henning, T.

    2008-11-01

    We describe typical features of the chemical composition of proto-planetary disks around brown dwarfs. We model the chemical evolution in the disks around a low-mass T Tauri star and a cooler brown dwarf over a time span of 1 Myr using a model for the physical structure of an accretion disk with a vertical temperature gradient and an extensive set of gas-phase chemical reactions. We find that the disks of T Tauri stars are, in general, hotter and denser than the disks of lower-luminosity substellar objects. In addition, they have more pronounced vertical temperature gradients. The atmospheres of the disks around low-mass stars are more strongly ionized by UV and X-ray radiation, while less dense brown-dwarf disks have higher fractional ionizations in their midplanes. Nevertheless, in both cases, most molecules are concentrated in the so-called warm molecular layer between the ionized atmosphere and cold midplane, where grains with ice mantles are abundant.

  16. Filamentary structure in the Orion molecular cloud

    NASA Technical Reports Server (NTRS)

    Bally, J.; Langer, W. D.; Bally, J.; Langer, W. D.; Bally, J.; Langer, W. D.

    1986-01-01

    A large scale 13CO map (containing 33,000 spectra) of the giant molecular cloud located in the southern part of Orion is presented which contains the Orion Nebula, NGC1977, and the LI641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. This morphology may result from the effects of star formation in the region or embedded magnetic fields in the cloud. We suggest a simple picture for the evolution of the Orion-A cloud and the formation of the major filament. A rotating proto-cloud (counter rotating with respect to the galaxy) contians a b-field aligned with the galaxtic plane. The northern protion of this cloud collapsed first, perhaps triggered by the pressure of the Ori I OB association. The magnetic field combined with the anisotropic pressure produced by the OB-association breaks the symmetry of the pancake instability, a filament rather than a disc is produced. The growth of instabilities in the filament formed sub-condensations which are recent sites of star formation.

  17. The Determination of Molecular Structure from Rotational Spectra

    DOE R&D Accomplishments Database

    Laurie, V. W.; Herschbach, D. R.

    1962-07-01

    An analysis is presented concerning the average molecular configuration variations and their effects on molecular structure determinations. It is noted that the isotopic dependence of the zero-point is often primarily governed by the isotopic variation of the average molecular configuration. (J.R.D.)

  18. Investigating the Web Structure by Isolated Stars

    NASA Astrophysics Data System (ADS)

    Uno, Yushi; Ota, Yoshinobu; Uemichi, Akio

    The link structure of the Web is generally represented by the webgraph, and it is often used for web structure mining that mainly aims to find hidden communities on the Web. In this paper, we identify a common frequent substructure and give it a formal graph definition, which we call an isolated star (i-star), and propose an efficient enumeration algorithm of i-stars. We then investigate the structure of the Web by enumerating i-stars from real web data. As a result, we observed that most i-stars correspond to index structures in single domains, while some of them are verified to be candidates of communities, which implies the validity of i-stars as useful substructure for web structure mining and link spam detecting. We also observed that the distributions of i-star sizes show power-law, which is another new evidence of the scale-freeness of the webgraph.

  19. Polymorphism and disorder in caffeine: Dielectric investigation of molecular mobilities

    NASA Astrophysics Data System (ADS)

    Descamps, M.; Decroix, A. A.

    2014-12-01

    Using dielectric relaxation data we have characterized the molecular mobilities of caffeine both in phase I (stable and metastable) and in phase II. In phase I effects of sublimation and phase transformation kinetics were carefully considered. In plane rotational motions were followed on a wide temperature range. A noticeable antiferroelectric short range order developing at the approach of the glass-like transition is characterized. Condition for occurrence of a critical-like behaviour is discussed. At high temperature the emergence of an additional ultra slow relaxation process is highlighted. Possible molecular mechanisms are proposed for both processes. In phase II the existence of a less intense relaxation process is confirmed. Close similarity with the main process developing in phase I hints at a common origin of the dipolar motions. Careful consideration of recent structure determinations leads to suggest that this process is associated to similar molecular in plane rotations but developing at the surface of crystalline samples. Lower cooperativity at the surface is reflected in the smaller activation entropy of the relaxation.

  20. Molecular cloning of chicken aggrecan. Structural analyses.

    PubMed Central

    Chandrasekaran, L; Tanzer, M L

    1992-01-01

    The large, aggregating chondroitin sulphate proteoglycan of cartilage, aggrecan, has served as a generic model of proteoglycan structure. Molecular cloning of aggrecans has further defined their amino acid sequences and domain structures. In this study, we have obtained the complete coding sequence of chicken sternal cartilage aggrecan by a combination of cDNA and genomic DNA sequencing. The composite sequence is 6117 bp in length, encoding 1951 amino acids. Comparison of chicken aggrecan protein primary structure with rat, human and bovine aggrecans has disclosed both similarities and differences. The domains which are most highly conserved at 70-80% identity are the N-terminal domains G1 and G2 and the C-terminal domain G3. The chondroitin sulphate domain of chicken aggrecan is smaller than that of rat and human aggrecans and has very distinctive repeat sequences. It has two separate sections, one comprising 12 consecutive Ser-Gly-Glu repeats of 20 amino acids each, adjacent to the other which has 23 discontinuous Ser-Gly-Glu repeats of 10 amino acids each; this latter region, N-terminal to the former one, appears to be unique to chicken aggrecan. The two regions contain a total of 94 potential chondroitin sulphate attachment sites. Genomic comparison shows that, although chicken exons 11-14 are identical in size to the rat and human exons, chicken exon 10 is the smallest of the three species. This is also reflected in the size of its chondroitin sulphate coding region and in the total number of Ser-Gly pairs. The putative keratan sulphate domain shows 31-45% identity with the other species and lacks the repetitive sequences seen in the others. In summary, while the linear arrangement of specific domains of chicken aggrecan is identical to that in the aggrecans of other species, and while there is considerable identity of three separate domains, chicken aggrecan demonstrates unique features, notably in its chondroitin sulphate domain and its keratan sulphate

  1. Optical properties and structural investigations of (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells grown by molecular beam epitaxy

    SciTech Connect

    Rosales, Daniel; Gil, Bernard; Bretagnon, Thierry; Brault, Julien; Vennéguès, Philippe; Nemoz, Maud; Mierry, Philippe de; Damilano, Benjamin; Massies, Jean; Bigenwald, Pierre

    2015-07-14

    We have grown (11-22)-oriented GaN/Al{sub 0.5}Ga{sub 0.5}N quantum wells (QWs) using molecular beam epitaxy on GaN (11-22)-oriented templates grown by metal-organic vapor phase epitaxy on m-plane oriented sapphire substrates. The performance of epitaxial growth of GaN/Al{sub 0.5}Ga{sub 0.5}N heterostructures on the semi-polar orientation (11-22) in terms of surface roughness and structural properties, i.e., strain relaxation mechanisms is discussed. In addition, high resolution transmission electron microscopy reveals very smooth QW interfaces. The photoluminescence of such samples are strictly originating from radiative recombination of free excitons for temperatures above 100 K. At high temperature, the population of localized excitons, moderately trapped (5 meV) at low temperature, is negligible.

  2. Optical properties and structural investigations of (11-22)-oriented GaN/Al0.5Ga0.5N quantum wells grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, Bernard; Bretagnon, Thierry; Brault, Julien; Vennéguès, Philippe; Nemoz, Maud; de Mierry, Philippe; Damilano, Benjamin; Massies, Jean; Bigenwald, Pierre

    2015-07-01

    We have grown (11-22)-oriented GaN/Al0.5Ga0.5N quantum wells (QWs) using molecular beam epitaxy on GaN (11-22)-oriented templates grown by metal-organic vapor phase epitaxy on m-plane oriented sapphire substrates. The performance of epitaxial growth of GaN/Al0.5Ga0.5N heterostructures on the semi-polar orientation (11-22) in terms of surface roughness and structural properties, i.e., strain relaxation mechanisms is discussed. In addition, high resolution transmission electron microscopy reveals very smooth QW interfaces. The photoluminescence of such samples are strictly originating from radiative recombination of free excitons for temperatures above 100 K. At high temperature, the population of localized excitons, moderately trapped (5 meV) at low temperature, is negligible.

  3. Kinetic Effects of Aromatic Molecular Structures on Diffusion Flame Extinction

    SciTech Connect

    Won, Sang Hee; Dooley, S.; Dryer, F. L.; Ju, Yiguang

    2011-01-01

    Kinetic effects of aromatic molecular structures for jet fuel surrogates on the extinction of diffusion flames have been investigated experimentally and numerically in the counterflow configuration for toluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. Quantitative measurement of OH concentration for aromatic fuels was conducted by directly measuring the quenching rate from the emission lifetimes of OH planar laser induced fluorescence (LIF). The kinetic models for toluene and 1,2,4-trimethylbenzene were validated against the measurements of extinction strain rates and LIF measurements. A semi-detailed n-propylbenzene kinetic model was developed and tested. The experimental results showed that the extinction limits are ranked from highest to lowest as n-propylbenzene, toluene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. The present models for toluene and n-propylbenzene agree reasonably well with the measurements, whereas the model for 1,2,4-trimethylbenzene under-estimates extinction limits. Kinetic pathways of OH production and consumption were analyzed to investigate the impact of fuel fragmentation on OH formation. It was found that, for fuels with different molecular structures, the fuel decomposition pathways and their propagation into the formation of radical pool play an important role to determine the extinction limits of diffusion flames. Furthermore, OH concentrations were found to be representative of the entire radical pool concentration, the balance between chain branching and propagation/termination reactions and the balance between heat production from the reaction zone and heat losses to the fuel and oxidizer sides. Finally, a proposed “OH index,” was defined to demonstrate a linear correlation between extinction strain rate and OH index and fuel mole fraction, suggesting that the diffusion flame extinctions for the tested aromatic fuels can be determined by the capability of a fuel to establish a radical pool

  4. Nonlinear Optical Investigations of Vibrational Relaxation in Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Decola, Philip Lawrence

    Experimental studies of four-wave mixing have been used to obtain novel spectroscopic information in molecular crystals. This work can be separated into singly resonant and multiresonant investigations. One effort was to exploit the frequency and time domain capabilities of singly resonant coherent anti-Stokes Raman spectroscopy (CARS) to study vibrational dynamics in naphthalene and benzene single crystals at liquid Helium temperatures. To a large extent vibrational energy is chemical energy, so to understand the flow of vibrational energy in molecules and molecular aggregates can enhance our understanding of chemical reaction rates and pathways. Some of the salient results are: (1) the existence of motional narrowing in molecular crystals makes it possible for lifetime (T _1) broadening to dominate the linewidth of the vibrational transition even when the intrinsic disorder width is much larger than 1/T_1, (2) relaxation in molecular crystals can be surprisingly slow, ranging from subnanosecond to nanosecond, (3) substantial mode dependent contribution to relaxation from ^{13}C impurities in benzene, and (4) evidence of mode specific energy relaxation observed in a systematic study of benzene Raman active modes. The results obtained here are applied to the problems of understanding the contributions to residual low-temperature vibron linewidths and of developing simple mechanical intuitions to explain systematically the kinetic pathways for vibrational relaxation in molecular crystals. These results are discussed in light of the current theories of excitation dynamics in condensed phases. The other area of study was multiresonant nonlinear spectroscopic investigations of mixed organic crystals. The first multiresonant CARS and its Stokes analogue (CSRS) have been obtained in a mixed crystal of pentacene in benzoic acid allowing the simultaneous observation of ground and excited state Raman spectra. These spectra contain lines that are much sharper than expected

  5. Molecular-Level Understanding of Structural Changes of Organic Crystals Induced by Macroscopic Mechanical Stimulation.

    PubMed

    Seki, Tomohiro; Ito, Hajime

    2016-03-18

    Structural changes to molecular crystals upon mechanical stimulation have attracted attention for sensing, recording, and microactuation. Comprehensive structure information is required to understand relationships between the mechanical force applied, the crystal structure, and the bulk property changes in order to develop general design concepts for mechanoresponsive compounds. Unfortunately, mechanical stimulation of organic crystals typically deteriorates their integrity, preventing detailed structure analyses by single-crystal X-ray diffraction (XRD) methods. However, in the past three years, several interesting studies have been reported in which molecular crystals retain their integrity even after a mechanically induced crystalline structure change. These materials have allowed us to investigate how macroscopic mechanical forces affect the microscopic structures of molecular crystals by single-crystal XRD analyses. This Minireview summarizes current knowledge of mechanically induced structure changes in molecular crystals, which will facilitate research in this field. PMID:26748640

  6. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  7. Fee structure for investigational drug studies.

    PubMed

    Anandan, J V; Isopi, M J; Warren, A J

    1993-11-01

    The development and implementation of a fee structure for a pharmacy-coordinated investigational drug service is described. A pilot task and time study established specific time and cost elements for investigational drug services provided by the pharmacy department. To fully assess the costs in dispensing investigational drugs, each research study that used the investigational drug service was broken down into five phases of service. Each phase was further categorized by specific tasks or activities, and a time element to perform each activity or task was determined. Since some studies could require more elaborate randomization of patients, more extensive review of protocols, or more individualized dispensing procedures than others, a range of charges was derived: $2800 for standard protocols to $5700 for more complicated studies. An institutional drug therapy newsletter describing the services and costs was distributed to all medical staff members and principal investigators. The development of a fee structure for an investigational drug service coordinated by the pharmacy department has ensured that pharmacy services are adequately reimbursed and has allowed the department to allocate appropriate personnel to provide the services. PMID:8266958

  8. Molecular Dynamics Simulations to Investigate the Influences of Amino Acid Mutations on Protein Three-Dimensional Structures of Cytochrome P450 2D6.1, 2, 10, 14A, 51, and 62

    PubMed Central

    Watanabe, Yurie; Hiratsuka, Masahiro; Yamaotsu, Noriyuki; Hirono, Shuichi; Manabe, Noriyoshi; Takahashi, Ohgi; Oda, Akifumi

    2016-01-01

    Many natural mutants of the drug metabolizing enzyme cytochrome P450 (CYP) 2D6 have been reported. Because the enzymatic activities of many mutants are different from that of the wild type, the genetic polymorphism of CYP2D6 plays an important role in drug metabolism. In this study, the molecular dynamics simulations of the wild type and mutants of CYP2D6, CYP2D6.1, 2, 10, 14A, 51, and 62 were performed, and the predictions of static and dynamic structures within them were conducted. In the mutant CYP2D6.10, 14A, and 61, dynamic properties of the F-G loop, which is one of the components of the active site access channel of CYP2D6, were different from that of the wild type. The F-G loop acted as the “hatch” of the channel, which was closed in those mutants. The structure of CYP2D6.51 was not converged by the simulation, which indicated that the three-dimensional structure of CYP2D6.51 was largely different from that of the wild type. In addition, the intramolecular interaction network of CYP2D6.10, 14A, and 61 was different from that of the wild type, and it is considered that these structural changes are the reason for the decrease or loss of enzymatic activities. On the other hand, the static and dynamic properties of CYP2D6.2, whose activity was normal, were not considerably different from those of the wild type. PMID:27046024

  9. Investigating bias in squared regression structure coefficients

    PubMed Central

    Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce

    2015-01-01

    The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273

  10. Giant Molecular Cloud Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Technical Monitor); Bodenheimer, P. H.

    2003-01-01

    Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.

  11. Quantum Theory of Atomic and Molecular Structures and Interactions

    NASA Astrophysics Data System (ADS)

    Makrides, Constantinos

    This dissertation consists of topics in two related areas of research that together provide quantum mechanical descriptions of atomic and molecular interactions and reactions. The first is the ab initio electronic structure calculation that provides the atomic and molecular interaction potential, including the long-range potential. The second is the quantum theory of interactions that uses such potentials to understand scattering, long-range molecules, and reactions. In ab initio electronic structure calculations, we present results of dynamic polarizabilities for a variety of atoms and molecules, and the long-range dispersion coefficients for a number of atom-atom and atom-molecule cases. We also present results of a potential energy surface for the triatomic lithium-ytterbium-lithium system, aimed at understanding the related chemical reactions. In the quantum theory of interactions, we present a multichannel quantum-defect theory (MQDT) for atomic interactions in a magnetic field. This subject, which is complex especially for atoms with hyperfine structure, is essential for the understanding and the realization of control and tuning of atomic interactions by a magnetic field: a key feature that has popularized cold atom physics in its investigations of few-body and many-body quantum systems. Through the example of LiK, we show how MQDT provides a systematic and an efficient understanding of atomic interaction in a magnetic field, especially magnetic Feshbach resonances in nonzero partial waves.

  12. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization.

    PubMed

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-Lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  13. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    PubMed Central

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  14. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  15. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy.

    PubMed

    Schuler, Bruno; Meyer, Gerhard; Peña, Diego; Mullins, Oliver C; Gross, Leo

    2015-08-12

    Petroleum is one of the most precious and complex molecular mixtures existing. Because of its chemical complexity, the solid component of crude oil, the asphaltenes, poses an exceptional challenge for structure analysis, with tremendous economic relevance. Here, we combine atomic-resolution imaging using atomic force microscopy and molecular orbital imaging using scanning tunnelling microscopy to study more than 100 asphaltene molecules. The complexity and range of asphaltene polycyclic aromatic hydrocarbons are established in detail. Identifying molecular structures provides a foundation to understand all aspects of petroleum science from colloidal structure and interfacial interactions to petroleum thermodynamics, enabling a first-principles approach to optimize resource utilization. Particularly, the findings contribute to a long-standing debate about asphaltene molecular architecture. Our technique constitutes a paradigm shift for the analysis of complex molecular mixtures, with possible applications in molecular electronics, organic light emitting diodes, and photovoltaic devices. PMID:26170086

  16. Ab initio investigation of benzene clusters: Molecular tailoring approach

    NASA Astrophysics Data System (ADS)

    Mahadevi, A. Subha; Rahalkar, Anuja P.; Gadre, Shridhar R.; Sastry, G. Narahari

    2010-10-01

    An exhaustive study on the clusters of benzene (Bz)n, n =2-8, at MP2/6-31++G∗∗ level of theory is reported. The relative strengths of CH-π and π-π interactions in these aggregates are examined, which eventually govern the pattern of cluster formation. A linear scaling method, viz., molecular tailoring approach (MTA), is efficiently employed for studying the energetics and growth patterns of benzene clusters consisting up to eight benzene (Bz) units. Accuracy of MTA-based calculations is appraised by performing the corresponding standard calculations wherever possible, i.e., up to tetramers. For benzene tetramers, the error introduced in energy is of the order of 0.1 mH (˜0.06 kcal/mol). Although for higher clusters the error may build up, further corrections based on many-body interaction energy analysis substantially reduce the error in the MTA-estimate. This is demonstrated for a prototypical case of benzene hexamer. A systematic way of building up a cluster of n monomers (n-mer) which employs molecular electrostatic potential of an (n -1)-mer is illustrated. The trends obtained using MTA method are essentially identical to those of the standard methods in terms of structure and energy. In summary, this study clearly brings out the possibility of effecting such large calculations, which are not possible conventionally, by the use of MTA without a significant loss of accuracy.

  17. Structural investigation of californium under pressure

    NASA Astrophysics Data System (ADS)

    Heathman, S.; Le Bihan, T.; Yagoubi, S.; Johansson, B.; Ahuja, R.

    2013-06-01

    The high-pressure structural behavior of californium has been studied experimentally and theoretically up to 100 GPa. A valence change from divalent to trivalent forms was observed under modest pressure revealing californium to be the only actinide to exhibit more than one metallic valence at near to ambient conditions as is the case for cerium in the lanthanide series. Three metallic valencies and four different crystallographic phases were observed in californium as a function of pressure. High-pressure techniques, synchrotron radiation, and ab initio electronic structure calculations of total energies were used to investigate the material and to determine the role which californium's 5f electrons play in influencing these transitions. The crystallographic structures observed are similar to those found in the preceding actinide elements, curium and americium, with the initially localized 5f states becoming completely delocalized under the influence of high pressure.

  18. A Survey of Quantitative Descriptions of Molecular Structure

    PubMed Central

    Guha, Rajarshi; Willighagen, Egon

    2013-01-01

    Numerical characterization of molecular structure is a first step in many computational analysis of chemical structure data. These numerical representations, termed descriptors, come in many forms, ranging from simple atom counts and invariants of the molecular graph to distribution of properties, such as charge, across a molecular surface. In this article we first present a broad categorization of descriptors and then describe applications and toolkits that can be employed to evaluate them. We highlight a number of issues surrounding molecular descriptor calculations such as versioning and reproducibility and describe how some toolkits have attempted to address these problems. PMID:23110530

  19. Thermal and molecular investigation of laser tissue welding

    SciTech Connect

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  20. Molecular structural order and anomalies in liquid silica.

    PubMed

    Shell, M Scott; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2002-07-01

    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water. PMID:12241346

  1. Molecular-dynamics investigation of the desensitization of detonable material

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.; Mattson, William; Trevino, Samuel F.

    1998-05-01

    A molecular-dynamics investigation of the effects of a diluent on the detonation of a model crystalline explosive is presented. The diluent, a heavy material that cannot exothermally react with any species of the system, is inserted into the crystalline explosive in two ways. The first series of simulations investigates the attenuation of the energy of a detonation wave in a pure explosive after it encounters a small layer of crystalline diluent that has been inserted into the lattice of the pure explosive. After the shock wave has traversed the diluent layer, it reenters the pure explosive. Unsupported detonation is not reestablished unless the energy of the detonation wave exceeds a threshold value. The second series of simulations investigates detonation of solid solutions of different concentrations of the explosive and diluent. For both types of simulations, the key to reestablishing or reaching unsupported detonation is the attainment of a critical number density behind the shock front. Once this critical density is reached, the explosive molecules make a transition to an atomic phase. This is the first step in the reaction mechanism that leads to the heat release that sustains the detonation. The reactive fragments formed from the atomization of the heteronuclear reactants subsequently combine with new partners, with homonuclear product formation exothermally favored. The results of detonation of the explosive-diluent crystals are consistent with those presented in an earlier study on detonation of pure explosive [B. M. Rice, W. Mattson, J. Grosh, and S. F. Trevino, Phys. Rev. E 53, 611 (1996)].

  2. Molecular structural studies of human factor VIII.

    PubMed

    McKee, P A; Andersen, J C; Switzer, M E

    1975-01-20

    Neither normal nor hemophilic factor VIII protein enters a 5% sosium dodecyl sulfate gel; on reduction, however, a single 195 000-molecular-weight peptide is observed. Hemophilic and normal factor VIII contain carbohydrate and appear identical in subunit molecular weight, electrical charge, and major antigenic determinants. Thrombin activation and inactivation of factor VIII does not detectably change the subunit molecular weight. Trypsin causes similar activity changes and obviously cleaves the factor VIII subunit. Human plasmin destroys factor VIII procoagulant activity and degrades the factor VIII subunit to 103 000-, 88 000-, and 17 000-molecular-weight peptides. Both normal and hemophilic factor VIII as well as thrombin-inactivated factor VIII support ristocetin-induced platelet aggregation. Purified factor VIII chromatographed on 4% agarose in 1.0 M sodium chloride shows no dissociation of the procoagulant activity from the void volume protein. Gel chromatography on 4% agarose in 0.25 M calcium chloride results in a procoagulant activity peak removed from the void volume protein; both peaks contain protein which does not enter a 5% SDS gel, but on reduction a 195 000-molecular-weight subunit band is observed for each. Both the void volume protein peak and the procoagulant activity peak from the 0.25 M calcium chloride-agarose gel column support ristocetin-induced platelet aggregation. After removal of calcium, a small amount of procoagulant activity is present only in the void volume peak. These data suggest that both the procoagulant and von Willebrand activities are on the same molecule. Thus our previous conclusion remains the same: human factor VIII is a large glycoprotein composed of identical 195 000-molecular-weight subunits jointed by disulfide bonds and is responsible for both antihemophilic and von Willebrand activities in human plasma. PMID:122889

  3. Molecular structures, charge distributions, and vibrational analyses of the tetracoordinate Cu(II), Zn(II), Cd(II), and Hg(II) bromide complexes of p-toluidine investigated by density functional theory in comparison with experiments

    NASA Astrophysics Data System (ADS)

    Bardakçı, Tayyibe; Kumru, Mustafa; Altun, Ahmet

    2016-07-01

    The Cu(II), Zn(II), Cd(II), and Hg(II) bromide complexes of p-toluidine have been studied with B3LYP calculations by using def2-TZVP basis set at the metal atoms and using def2-TZVP and 6-311G+(d,p) basis sets at the remaining atoms. Both basis set combinations give analogous results, which validate the use of quickly converging 6-311G+(d,p) basis set in future studies. The molecular structures, atomic charge and spin distributions, and harmonic vibrational frequencies of the complexes have been calculated. The Zn, Cd and Hg complexes have been found to have distorted tetrahedral environments around the metal atoms whereas Cu complex has a square planar geometry. The NBO charge analysis have been found more accurate and less misleading compared with the Mulliken scheme. The present vibrational spectra calculations allow accurate assignment of the vibrational bands, which otherwise assigned tentatively in previous experimental-only studies.

  4. Structure, molecular evolution, and hydrolytic specificities of largemouth bass pepsins.

    PubMed

    Miura, Yoko; Suzuki-Matsubara, Mieko; Kageyama, Takashi; Moriyama, Akihiko

    2016-02-01

    The nucleotide sequences of largemouth bass pepsinogens (PG1, 2 and 3) were determined after molecular cloning of the respective cDNAs. Encoded PG1, 2 and 3 were classified as fish pepsinogens A1, A2 and C, respectively. Molecular evolutionary analyses show that vertebrate pepsinogens are classified into seven monophyletic groups, i.e. pepsinogens A, F, Y (prochymosins), C, B, and fish pepsinogens A and C. Regarding the primary structures, extensive deletion was obvious in S'1 loop residues in fish pepsin A as well as tetrapod pepsin Y. This deletion resulted in a decrease in hydrophobic residues in the S'1 site. Hydrolytic specificities of bass pepsins A1 and A2 were investigated with a pepsin substrate and its variants. Bass pepsins preferred both hydrophobic/aromatic residues and charged residues at the P'1 sites of substrates, showing the dual character of S'1 sites. Thermodynamic analyses of bass pepsin A2 showed that its activation Gibbs energy change (∆G(‡)) was lower than that of porcine pepsin A. Several sites of bass pepsin A2 moiety were found to be under positive selection, and most of them are located on the surface of the molecule, where they are involved in conformational flexibility. The broad S'1 specificity and flexible structure of bass pepsin A2 are thought to cause its high proteolytic activity. PMID:26627128

  5. The molecular structure of waxy maize starch nanocrystals.

    PubMed

    Angellier-Coussy, Hélène; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Dufresne, Alain; Bertoft, Eric; Perez, Serge

    2009-08-17

    The insoluble residues obtained by submitting amylopectin-rich native starch granules from waxy maize to a mild acid hydrolysis consist of polydisperse platelet nanocrystals that have retained the allomorphic type of the parent granules. The present investigation is a detailed characterization of their molecular composition. Two major groups of dextrins were found in the nanocrystals and were isolated. Each group was then structurally characterized using beta-amylase and debranching enzymes (isoamylase and pullulanase) in combination with anion-exchange chromatography. The chain lengths of the dextrins in both groups corresponded with the thickness of the crystalline lamellae in the starch granules. Only approximately 62 mol% of the group of smaller dextrins with an average degree of polymerization (DP) 12.2 was linear, whereas the rest consisted of branched dextrins. The group of larger dextrins (DP 31.7) apparently only consisted of branched dextrins, several of which were multiply branched molecules. It was shown that many of the branch linkages were resistant to the action of the debranching enzymes. The distribution of branched molecules in the two populations of dextrins suggested that the nanocrystals possessed a regular and principally homogeneous molecular structure. PMID:19414173

  6. Structural investigation of the 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione scaffold to obtain AMPA and kainate receptor selective antagonists. Synthesis, pharmacological, and molecular modeling studies.

    PubMed

    Colotta, Vittoria; Catarzi, Daniela; Varano, Flavia; Lenzi, Ombretta; Filacchioni, Guido; Costagli, Chiara; Galli, Alessandro; Ghelardini, Carla; Galeotti, Nicoletta; Gratteri, Paola; Sgrignani, Jacopo; Deflorian, Francesca; Moro, Stefano

    2006-10-01

    In this paper, the study of new 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione derivatives, designed as AMPA and kainate (KA) receptor antagonists, is reported. Some derivatives bear different carboxy-containing alkyl chains on the 3-hydroxy group, while various heterocyclic rings or amide moieties are present at the 6-position of other compounds. Binding data at Gly/NMDA, AMPA, and high-affinity KA receptors showed that the presence of the free 3-hydroxy group is of paramount importance for a good affinity at all three investigated receptors, while introduction of some 6-heterocyclic moieties yielded AMPA-selective antagonists. The most significant result was the finding of the 6-(2-carboxybenzoylamino)-3-hydroxy-1H-quinazolin-2,4-dione 12, which possesses good affinity for high-affinity and low-affinity KA receptors (Ki=0.62 microM and 1.6 microM, respectively), as well as good selectivity. To rationalize the trend of affinities of the reported derivatives, an intensive molecular modeling study was carried out by docking compounds to models of the Gly/NMDA, AMPA, and KA receptors. PMID:17004715

  7. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family.

    PubMed

    Papaleo, Elena; Riccardi, Laura; Villa, Chiara; Fantucci, Piercarlo; De Gioia, Luca

    2006-08-01

    Molecular dynamics simulations of representative mesophilic and psycrophilic elastases have been carried out at different temperatures to explore the molecular basis of cold adaptation inside a specific enzymatic family. The molecular dynamics trajectories have been compared and analyzed in terms of secondary structure, molecular flexibility, intramolecular and protein-solvent interactions, unravelling molecular features relevant to rationalize the efficient catalytic activity of psychrophilic elastases at low temperature. The comparative molecular dynamics investigation reveals that modulation of the number of protein-solvent interactions is not the evolutionary strategy followed by the psycrophilic elastase to enhance catalytic activity at low temperature. In addition, flexibility and solvent accessibility of the residues forming the catalytic triad and the specificity pocket are comparable in the cold- and warm-adapted enzymes. Instead, loop regions with different amino acid composition in the two enzymes, and clustered around the active site or the specificity pocket, are characterized by enhanced flexibility in the cold-adapted enzyme. Remarkably, the psycrophilic elastase is characterized by reduced flexibility, when compared to the mesophilic counterpart, in some scattered regions distant from the functional sites, in agreement with hypothesis suggesting that local rigidity in regions far from functional sites can be beneficial for the catalytic activity of psychrophilic enzymes. PMID:16920043

  8. Hydration structure of salt solutions from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-01

    The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  9. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-07

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  10. Hydration structure of salt solutions from ab initio molecular dynamics.

    PubMed

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L

    2013-01-01

    The solvation structures of Na(+), K(+), and Cl(-) ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na(+), K(+), and Cl(-), respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed. PMID:23298049

  11. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  12. Imaging radar investigations of the Sudbury structure

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.; Singhroy, V. H.; Slaney, V. R.

    1992-01-01

    This paper reports preliminary results of airborne imaging radar studies of the Sudbury structure carried out in preparation for a CCRS European Remote Sensing Satellite (ERS-1) investigation. The data used were synthetic aperture radar (SAR) C-band (5.66 cm) images acquired from about 6 km altitude in 1987. They cover the Sudbury area in both wide and narrow swath modes, with east-west flight paths and north-south illumination directions. Narrow swath resolution is 6 m in range and azimuth; wide swath resolution is 20 m in range and 10 m in azimuth. The STAR imagery has proven highly effective for field use, providing excellent rendition of topography and topographically expressed structure. Reasons for this include the illumination geometry, notably the look azimuth normal to the long axis of the Sudbury structure and Penokean fold axes, the good spatial resolution, and the short wavelength. Forested areas in the Sudbury area tend to be uniformly rough at C-band wavelength, with backscatter dominated by local incidence angle (i.e., topography). Field work using the SAR imagery has to date been concentrated in the North Range and Superior Province as far north as the Benny greenstone belt. This area was chosen for initial investigation of the original size and shape of the Sudbury structure because the effects of the Penokean Orogeny were minimal there. Field work using SAR indicates that there has been little postimpact deformation of the North Range or adjacent Superior Province rock. There appears to be no evidence for an outer ring concentric with the North Range as indicated by early Landsat imagery. The apparent ring shown by Landsat is visible on the SAR imagery as the intersection of two regional fracture patterns not related to the Sudbury structure. There is no outer ring visible southwest of the structure. This can reasonably be explained by Penokean deformation, but there is no outer ring to the northeast cutting the relatively undeformed Huronian

  13. Molecular Modeling and Structural Analysis of Arylesterase of Ancylostoma Duodenale

    PubMed Central

    Panda, Subhamay; Panda, Santamay; Kumari, Leena

    2016-01-01

    Parasitic worm infection of humans is one of the most commonly prevalent helminth infection that has imposed great impact on society and public health in the developing world. The two species of hookworm, namely Ancylostoma duodenale and Necator americanus may be primarily responsible for causing parasitic infections in human beings. The highly prevalent areas for Ancylostoma duodenale infections are mainly India, Middle East, Australia, northern Africa and other parts of the world. The serum arylesterases/paraoxonases are family of enzymes that is involved in the hydrolysis of a number of organophosphorus insecticides to the nontoxic products. The participation of the enzymes in the breakdown of a variety of organophosphate substrates that is generally made up of paraoxon and numerous aromatic carboxylic acid esters (e.g., phenyl acetate), and hence combats the toxic effect of organophosphates. The aim of the present investigation is to evaluate the arylesterases of Ancylostoma duodenale giving special importance to structure generation, validation of the generated models, distribution of secondary structural elements and positive charge distribution over the structure. By the implementation of comparative modeling approach we propose the first molecular model structure of arylesterases of Ancylostoma duodenale.

  14. Colour Chemistry, Part I, Principles, Colour, and Molecular Structure

    ERIC Educational Resources Information Center

    Hallas, G.

    1975-01-01

    Discusses various topics in color chemistry, including the electromagnetic spectrum, the absorption and reflection of light, additive and subtractive color mixing, and the molecular structure of simple colored substances. (MLH)

  15. Molecular Modeling and Experimental Investigations of Nonlinear Optical Compounds Monosubstituted Derivatives of Dicyanovinylbenzene

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatiana V.; Nesterov, Vladimir N.; Antipin, Mikhail Yu.; Clark, Ronald D.; Sanghadasa, Mohan; Cardelino, Beatriz H.; Moore, Craig E.; Frazier, Donald O.

    1999-01-01

    A search for potential nonlinear optical compounds was performed using the Cambridge Structure Database and molecular modeling. We investigated a series of monosubstituted derivatives of dicyanovinylbenzene, since the nonlinear optical (NLO) properties of such derivatives (o-methoxy-dicyanovinylbenzene, DIVA) were studied earlier. The molecular geometry of these compounds was investigated with x-ray analysis and discussed along with the results of molecular mechanics and ab initio quantum chemical calculations. The influence of crystal packing on the planarity of the molecules of this series has been revealed. Two new compounds from the series studied, ortho-F and para-Cl-dicyanovinylbenzene, according to powder measurements, were found to be NLO compounds in the crystal state about 10 times more active than urea. The peculiarities of crystal structure formation in the framework of balance between van der Waals and electrostatic interactions have been discussed. The crystal shape of DIVA and two new NLO compounds have been calculated on the basis of the known crystal structure.

  16. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory.

    PubMed

    Beran, Gregory J O

    2016-05-11

    Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed. PMID:27008426

  17. An investigation of the preparation of high molecular weight perfluorocarbon polyethers

    NASA Technical Reports Server (NTRS)

    Watts, R. O.; Tarrant, P.

    1972-01-01

    High molecular weight perfluorocarbon polyether gums were obtained by photolysis of perfluorodienes and discyl fluorides containing a perfluorocarbon polyether backbond. The materials obtained are represented by chemical formulas. A method was developed whereby reactive acyl fluoride and trifluorovinyl end groups are converted into inert structures. In order to investigate the possible preparation of difunctional molecules which may be useful in polymer synthesis, the reactions of hexafluoropropene oxide (HFPO) with Grignard and organolithium reagents have been studied. Reactions of various nucleophilic reagents with HFPO were also investigated.

  18. Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level

    NASA Astrophysics Data System (ADS)

    Hu, Xinxin; Yu, Zehua; Liu, Rutao

    2013-05-01

    The toxicity of hydroxyl group of isopropanol to trypsin in aqueous solution was investigated by techniques including UV-visible absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, enzyme activity assay and molecular docking technology. The results of UV-visible absorption spectroscopy and CD spectra indicate that isopropanol could change the secondary structure of trypsin by increasing the content of α-helix and decreasing the content of β-sheet. The tertiary structure of trypsin was also changed owing to the loss of environmental asymmetry of amino acid residues. Isopropanol bound into a hydrophobic cavity on the surface of trypsin by a hydrogen bond located between the hydrogen atom on the hydroxyl of isopropanol and the oxygen atoms on SER 214 and hydrophobic interaction, as the molecular docking results showed. In addition, isopropanol could affect the function of trypsin by increasing its catalytic activity.

  19. Investigation of Changes in the Microscopic Structure of Anionic Poly(N-isopropylacrylamide-co-Acrylic acid) Microgels in the Presence of Cationic Organic Dyes toward Precisely Controlled Uptake/Release of Low-Molecular-Weight Chemical Compound.

    PubMed

    Kureha, Takuma; Shibamoto, Takahisa; Matsui, Shusuke; Sato, Takaaki; Suzuki, Daisuke

    2016-05-10

    Changes in a microscopic structure of an anionic poly(N-isopropylacrylamide-co-acrylic acid) microgel were investigated using small- and wide-angle X-ray scattering (SWAXS). The scattering profiles of the microgels were analyzed in a wide scattering vector (q) range of 0.07 ≤ q/nm(-1) ≤ 20. In particular, the microscopic structure of the microgel in the presence of a cationic dye rhodamine 6G (R6G) was characterized in terms of its correlation length (ξ), which represents the length scale of the spatial correlation of the network density fluctuations, and characteristic distance (d*), which originated from the local packing of isopropyl groups of two neighboring chains. In the presence of cationic R6G, ξ exhibited a divergent-like behavior, which was not seen in the absence of R6G, and d* was decreased with decreasing the volume of the microgel upon increasing temperature. At the same time, the amount of R6G adsorbed per unit mass of the microgel increased upon heating. These results suggested that a coil-to-globule transition of the poly(N-isopropylacrylamide) chains in the present anionic microgel occurred because of efficiently screened, thus, short ranged electrostatic repulsion between the charged groups, and hydrophobic interaction between the isopropyl groups in the presence of cationic R6G. The combination of hydrophobic and electrostatic interaction between the cationic dye and the microgel affected the separation and volume transition behavior of the microgel. PMID:27101468

  20. Molecular dynamics investigations of PRODAN in a DLPC bilayer.

    PubMed

    Nitschke, William K; Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Stassen, Hubert

    2012-03-01

    Molecular dynamics computer simulations have been performed to identify preferred positions of the fluorescent probe PRODAN in a fully hydrated DLPC bilayer in the fluid phase. In addition to the intramolecular charge-transfer first vertical excited state, we considered different charge distributions for the electronic ground state of the PRODAN molecule by distinct atomic charge models corresponding to the probe molecule in vacuum as well as polarized in a weak and a strong dielectric solvent (cyclohexane and water). Independent on the charge distribution model of PRODAN, we observed a preferential orientation of this molecule in the bilayer with the dimethylamino group pointing toward the membrane's center and the carbonyl oxygen toward the membrane's interface. However, changing the charge distribution model of PRODAN, independent of its initial position in the equilibrated DLPC membrane, we observed different preferential positions. For the ground state representation without polarization and the in-cyclohexane polarization, the probe maintains its position close to the membrane's center. Considering the in-water polarization model, the probe approaches more of the polar headgroup region of the bilayer, with a strong structural correlation with the choline group, exposing its oxygen atom to water molecules. PRODAN's representation of the first vertical excited state with the in-water polarization also approaches the polar region of the membrane with the oxygen atom exposed to the bilayer's hydration shell. However, this model presents a stronger structural correlation with the phosphate groups than the ground state. Therefore, we conclude that the orientation of the PRODAN molecule inside the DLPC membrane is well-defined, but its position is very sensitive to the effect of the medium polarization included here by different models for the atomic charge distribution of the probe. PMID:22329741

  1. Investigation of synthetic molecular recognition for biosensing applications

    NASA Astrophysics Data System (ADS)

    Stratis-Cullum, Dimitra N.; McMasters, Sun; Sooter, Letha J.; Pellegrino, Paul M.

    2007-04-01

    A fundamental understanding of the factors which influence binding performance is critical to any technology or methodology relying on molecular recognition of a specific target species. For the Army, there is a growing need for a basic understanding of these interactions with traditional recognition elements (e.g., antibodies) in non-traditional environmental conditions, such as with new and emerging threats. There is a similar need for building a base of knowledge on non-traditional affinity ligands that are biomimetic or biosynthetic in nature. In this paper, specific research at the Army Research Laboratory towards the development, evaluation and use of synthetic affinity ligands for sensing applications is discussed. This includes the results of our investigations of aptamer-based affinity ligands targeting Campylobacter jejuni. Using capillary electrophoretic techniques, the relative binding affinities of the aptamer ligands towards the target pathogen as well as the degree of cross-reactivity with other food borne-pathogens (i.e., Escherichia coli O157:H7 and Salmonella typhimurium) were evaluated. Current progress towards the development of synthetic affinity ligands for sensing applications will also be discussed.

  2. Molecular dynamics simulation investigations of atomic-scale wear

    NASA Astrophysics Data System (ADS)

    Shao, Yuchong; Falk, Michael

    2013-03-01

    Frictional running-in and material transfer in wear take place at the micro- and nano-scale but the fundamental physics remain poorly understood. Here we intend to investigate wear and running-in phenomena in silicon based materials, which are widely utilized in micro/nano electromechanical systems(MEMS/NEMS). We use an atomic force microscopy (AFM) model composed of a crystalline silicon tip and substrate coated with native oxide layers. Molecular dynamics simulation has been performed over a range of temperatures, external loads and slip rates. Results show that adhesive wear takes place across the interface in an atom-by-atom fashion which remodels the tip leading to a final steady state. We quantify the rate of material transfer as a function of the coverage of non-bridging oxygen (NBO) atoms, which has a pronounced change of the system's tribological and wear behaviors. A constitutive rate and state model is proposed to predict the evolution of frictional strength and wear. This work is supported by the National Science Foundation under Award No. 0926111.

  3. Investigating molecular dynamics-guided lead optimization of EGFR inhibitors.

    PubMed

    Lavecchia, Martin J; Puig de la Bellacasa, Raimon; Borrell, José I; Cavasotto, Claudio N

    2016-02-15

    The epidermal growth factor receptor (EGFR) is part of an extended family of proteins that together control aspects of cell growth and development, and thus a validated target for drug discovery. We explore in this work the suitability of a molecular dynamics-based end-point binding free energy protocol to estimate the relative affinities of a virtual combinatorial library designed around the EGFR model inhibitor 6{1} as a tool to guide chemical synthesis toward the most promising compounds. To investigate the validity of this approach, selected analogs including some with better and worse predicted affinities relative to 6{1} were synthesized, and their biological activity determined. To understand the binding determinants of the different analogs, hydrogen bonding and van der Waals contributions, and water molecule bridging in the EGFR-analog complexes were analyzed. The experimental validation was in good qualitative agreement with our theoretical calculations, while also a 6-dibromophenyl-substituted compound with enhanced inhibitory effect on EGFR compared to the reference ligand was obtained. PMID:26810832

  4. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  5. Synthesis and molecular structure of gold triarylcorroles.

    PubMed

    Thomas, Kolle E; Alemayehu, Abraham B; Conradie, Jeanet; Beavers, Christine; Ghosh, Abhik

    2011-12-19

    A number of third-row transition-metal corroles have remained elusive as synthetic targets until now, notably osmium, platinum, and gold corroles. Against this backdrop, we present a simple and general synthesis of β-unsubstituted gold(III) triarylcorroles and the first X-ray crystal structure of such a complex. Comparison with analogous copper and silver corrole structures, supplemented by extensive scalar-relativistic, dispersion-corrected density functional theory calculations, suggests that "inherent saddling" may occur for of all coinage metal corroles. The degree of saddling, however, varies considerably among the three metals, decreasing conspicuously along the series Cu > Ag > Au. The structural differences reflect significant differences in metal-corrole bonding, which are also reflected in the electrochemistry and electronic absorption spectra of the complexes. From Cu to Au, the electronic structure changes from noninnocent metal(II)-corrole(•2-) to relatively innocent metal(III)-corrole(3-). PMID:22111600

  6. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    DOE PAGESBeta

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of themore » substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  7. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    SciTech Connect

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  8. Structure of Lambda Hypernuclei with Antisymmetrized Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Isaka, Masahiro

    2014-09-01

    In this talk, we will discuss the structure change caused by a Λ particle and structure of neutron-rich (n-rich) and sd shell Λ hypernuclei based on the antisymmetrized molecular dynamics (AMD). One of the unique and interesting aspects of hypernuclei is structure change caused by a hyperon(s) as an impurity in nuclei. In light Λ hypernuclei, experimental and theoretical studies have revealed a couple of interesting structure changes such as shrinkage of the inter-cluster distance. In n-rich and sd shell Λ hypernuclei, it is expected that the variety of structure and structure changes will appear in the low energy regions, because n-rich and sd shell nuclei have various structures. For example, the n-rich nucleus 11Be has the parity-inverted ground-state 1/2+, which is inconsistent with the ordinary shell model picture. In sd shell nuclei, it has been discussed that various deformations appear in the ground and low-lying states. For example, 24Mg is a candidate of triaxially deformed nuclei with the presence of the low-lying 2nd 2+ state. To reveal the structure of the corresponding Λ hypernuclei, we have extended the AMD model for hypernuclei (HyperAMD) and applied it to n-rich and sd shell Λ hypernuclei. The AMD model can describe various nuclear structures without assumptions on clustering and symmetry of nuclear deformations. Combined with the generator coordinate method (GCM), the HyperAMD model succeeded to describe the low-lying structure of p-sd shell Λ hypernuclei. In this study, we investigate several n-rich and sd shell Λ hypernuclei such as Λ12Be and Λ25Mg. In this talk, we will discuss the changes of the parity-inverted ground state of 11Be by adding a Λ particle. Furthermore, in Λ25Mg, we will discuss a possibility to identify the nuclear (triaxial) deformation of Mg by using Λ as a probe.

  9. Investigating Student Understanding of the Universe: Structure

    NASA Astrophysics Data System (ADS)

    Hayes, Virginia; Coble, K.; Nickerson, M.; Cochran, G.; Camarillo, C. T.; Bailey, J. M.; McLin, K. M.; Cominsky, L. R.

    2011-05-01

    Chicago State University (CSU) offers an introductory astronomy course that services students from a variety of majors including pre-service teachers. At CSU, we have been investigating methods and tools that will improve student conceptual understanding in astronomy for this diverse group of students. We have analyzed pre-course surveys, pre-course essays, exams, and interviews in an effort to better understand the ideas and difficulties in understanding that students have in regards to the structure of the universe. Analysis of written essays has revealed that our students do have some knowledge of the objects in the universe, but interviews inform us that their understanding of the structure of the universe is superficial. This project is a part of a larger study; also see our posters on student ideas about dark matter, the age and expansion of the universe, and perceptions of astronomical sizes and distances. This work was supported by NASA ROSES E/PO Grant #NNXlOAC89G, as well as by the Illinois Space Grant Consortium and National Science Foundation CCLI Grant #0632563 at Chicago State University and the Fermi E/PO program at Sonoma State University.

  10. Molecular aggregation of rhodamine dyes in dispersions of layered silicates: influence of dye molecular structure and silicate properties.

    PubMed

    Bujdák, Juraj; Iyi, Nobuo

    2006-02-01

    The molecular aggregation of six rhodamine dyes (rhodamine 560, B, 3B, 19, 6G, 123) in layered silicate (saponite and fluorohectorite) dispersions was investigated by using visible (vis) spectroscopy. The dye molecular aggregation was influenced by the properties of both the silicates and the dyes themselves. The layer charge of the silicates enhanced the molecular aggregation of the hydrophilic, cationic dyes. The presence of a carboxyl acid group in the dye molecules inhibited adsorption of the dyes on the surface of fluorohectorite, a silicate with a high charge density. A lower or no adsorption could be observed by vis spectroscopy. Strong association of the dyes to the silicate surface led to remarkable changes in the dye spectra, mainly due to the molecular aggregation. Dye assemblies initially formed after mixing the dye solutions with silicate dispersions were unstable. Decomposition of the dye molecular assemblies, and the formation of new species or molecular aggregate rearrangements, were studied on the bases of time-difference spectra. The reaction pathways were specific, not only for the dyes, depending upon their molecular structure and properties, but also on the silicate substrates. PMID:16471802

  11. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  12. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  13. FT-IR, FT-Raman, UV, NMR spectra and molecular structure investigation of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Therasa Alphonsa, A.; Loganathan, C.; Athavan Alias Anand, S.; Kabilan, S.

    2015-11-01

    This work presents the characterization of (E)-2-(3-chloropyrazin-2-yl)-1-(3-ethyl-2, 6-diphenyl piperidin-4-ylidene) hydrazine (HDE) by quantum chemical calculations and spectral techniques. The structure was investigated by FT-IR, FT-Raman, UV-vis and NMR techniques. The geometrical parameters and energies have been obtained from Density functional theory (DFT) B3LYP (6-31G (d, p)) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-independent atomic orbital method (GIAO). The electronic properties such as excitation energies, wavelength, HOMO, LUMO energies performed by Time dependent density functional theory (TD-DFT) results complements with the experimental findings. NBO analysis has been performed for analyzing charge delocalization throughout the molecule. The calculation results were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. To provide information about the interactions between human cytochrome protein and the novel compound theoretically, docking studies were carried out using Schrödinger software.

  14. Molecular gymnastics: serpin structure, folding and misfolding.

    PubMed

    Whisstock, James C; Bottomley, Stephen P

    2006-12-01

    The native state of serpins represents a long-lived intermediate or metastable structure on the serpin folding pathway. Upon interaction with a protease, the serpin trap is sprung and the molecule continues to fold into a more stable conformation. However, thermodynamic stability can also be achieved through alternative, unproductive folding pathways that result in the formation of inactive conformations. Our increasing understanding of the mechanism of protease inhibition and the dynamics of native serpin structures has begun to reveal how evolution has harnessed the actual process of protein folding (rather than the final folded outcome) to elegantly achieve function. The cost of using metastability for function, however, is an increased propensity for misfolding. PMID:17079131

  15. Molecular-structure variation of organic materials irradiated with atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Takenaka, K.; Miyazaki, A.; Setsuhara, Y.

    2014-06-01

    The effect of atmospheric pressure He plasma on the molecular structure of polyethylene terephthalate (PET) has been investigated. The plasma composition was analyzed using optical emission spectroscopy. In addition to strong He emission lines, lines due to O and N radicals were also detected. The change in the molecular structure of the PET film surface was investigated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. It was found that plasma irradiation led to oxidation and degradation of the surface due to chemical and physical effects of the active species. The results demonstrate the feasibility of observing the interaction of plasma with organic material on a local scale.

  16. Molecular Eigensolution Symmetry Analysis and Fine Structure

    PubMed Central

    Harter, William G.; Mitchell, Justin C.

    2013-01-01

    Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041

  17. Complementary molecular information changes our perception of food web structure

    PubMed Central

    Wirta, Helena K.; Hebert, Paul D. N.; Kaartinen, Riikka; Prosser, Sean W.; Várkonyi, Gergely; Roslin, Tomas

    2014-01-01

    How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them. PMID:24449902

  18. DFT study of the effect of substitution on the molecular structure of copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhjot; Sachdeva, Ritika; Singh, Sukhwinder; Saini, G. S. S.

    2016-05-01

    To study the effect of sulfonic acid group as substituent on the molecular structure of an organic compound copper Phthalocyanine, the optimized geometry, mulliken charges, energies and dipole momemts of copper phthalocyanine and copper phthalocyaninetetrasulfonic acid tetra sodium salt have been investigated using density functional theory. Also to predict the change in reactive sites after substitution, molecular electrostatic potential maps for both the molecules have been calculated.

  19. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  20. Molecular structure-adsorption study on current textile dyes.

    PubMed

    Örücü, E; Tugcu, G; Saçan, M T

    2014-01-01

    This study was performed to investigate the adsorption of a diverse set of textile dyes onto granulated activated carbon (GAC). The adsorption experiments were carried out in a batch system. The Langmuir and Freundlich isotherm models were applied to experimental data and the isotherm constants were calculated for 33 anthraquinone and azo dyes. The adsorption equilibrium data fitted more adequately to the Langmuir isotherm model than the Freundlich isotherm model. Added to a qualitative analysis of experimental results, multiple linear regression (MLR), support vector regression (SVR) and back propagation neural network (BPNN) methods were used to develop quantitative structure-property relationship (QSPR) models with the novel adsorption data. The data were divided randomly into training and test sets. The predictive ability of all models was evaluated using the test set. Descriptors were selected with a genetic algorithm (GA) using QSARINS software. Results related to QSPR models on the adsorption capacity of GAC showed that molecular structure of dyes was represented by ionization potential based on two-dimensional topological distances, chromophoric features and a property filter index. Comparison of the performance of the models demonstrated the superiority of the BPNN over GA-MLR and SVR models. PMID:25529487

  1. Electronic and molecular structure of carbon grains

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Luethi, Hans-Peter

    1990-01-01

    Clusters of carbon atoms have been studied with large-scale ab initio calculations. Planar, single-sheet graphite fragments with 6 to 54 atoms were investigated, as well as the spherical C(sub 60) Buckminsterfullerene molecule. Polycyclic aromatic hydrocarbons (PAHs) have also been considered. Thermodynamic differences between diamond- and graphite-like grains have been studied in particular. Saturation of the peripheral bonds with hydrogen is found to provide a smooth and uniform convergence of the properties with increasing cluster size. For the graphite-like clusters the convergence to bulk values is much slower than for the three-dimensional complexes.

  2. An Investigation of College Chemistry Students' Understanding of Structure-Property Relationships

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Corley, Leah M.; Underwood, Sonia M.

    2013-01-01

    The connection between the molecular-level structure of a substance and its macroscopic properties is a fundamental concept in chemistry. Students in college-level general and organic chemistry courses were interviewed to investigate how they used structure-property relationships to predict properties such as melting and boiling points. Although…

  3. Molecular Evolution and Structural Features of IRAK Family Members

    PubMed Central

    Gosu, Vijayakumar; Basith, Shaherin; Durai, Prasannavenkatesh; Choi, Sangdun

    2012-01-01

    The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations. PMID:23166766

  4. Investigation of Structural Phase Transitions on Wurtzite Gallium Nitride Surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Tianjiao; Chinchore, Abhijit; Liu, Yinghao; Wang, Kangkang; Lin, Wenzhi; Smith, Arthur

    2009-03-01

    Surface structures of wurtzite gallium nitride (w-GaN) have been investigated previously,[1][2] and it is well known that above 300K there exist order-disorder phase transitions. For N-polar w-GaN (000-1) at 300K, a family of surface reconstructions occurs, including 1x1, 3x3, 6x6, and c(6x12). Not much is known, however, about what happens to these structures as they are cooled below 300K. We have recently developed a new epitaxy/analysis system, including a sample stage which can be both heated and cooled. The N-polar w-GaN surfaces are prepared using rf N-plasma-assisted molecular beam epitaxy, and monitored in-situ using reflection high energy electron diffraction (RHEED). The approach is to monitor the [11-20] and [10-10] RHEED diffractions during cryogenic cooling, starting with the 1x1 or 3x3 structures. A critical issue to explore is the interrelationship between surface gallium concentration and structural deformation. This study may provide the missing link to new reconstructions of w-GaN recently observed using LT scanning tunneling microscopy.[3] This work is supported by NSF (Grant No. 0730257). [1] A. R. Smith et al., Phys. Rev. Lett. 79, 3934 (1997). [2] A. R. Smith et al., Surface Science 423, 70 (1999). [3] D. Acharya, S.-W. Hla et al., unpublished.

  5. Investigating Atmospheric Oxidation with Molecular Dynamics Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Merrill, W. G.; Case, A. S.; Keutsch, F. N.

    2013-06-01

    Volatile organic compounds (VOCs) in the Earth's atmosphere constitute trace gas species emitted primarily from the biosphere, and are the subject of inquiry for a variety of air quality and climate studies. Reactions intiated (primarily) by the hydroxyl radical (OH) lead to a myriad of oxygenated species (OVOCs), which in turn are prone to further oxidation. Investigations of the role that VOC oxidation plays in tropospheric chemistry have brought to light two troubling scenarios: (1) VOCs are responsible in part for the production of two EPA-regulated pollutants---tropospheric ozone and organic aerosol---and (2) the mechanistic details of VOC oxidation remain convoluted and poorly understood. The latter issue hampers the implementation of near-explicit atmospheric simulations, and large discrepancies in OH reactivity exist between measurements and models at present. Such discrepancies underscore the need for a more thorough description of VOC oxidation. Time-of-flight measurements and ion-imaging techniques are viable options for resolving some of the mechanistic and energetic details of VOC oxidation. Molecular beam studies have the advantage of foregoing unwanted bimolecular reactions, allowing for the characterization of specific processes which must typically compete with the complex manifold of VOC oxidation pathways. The focus of this work is on the unimolecular channels of organic peroxy radical intermediates, which are necessarily generated during VOC oxidation. Such intermediates may isomerize and decompose into distinct chemical channels, enabling the unambiguous detection of each pathway. For instance, a (1 + 1') resonance enhanced multiphoton ionization (REMPI) scheme may be employed to detect carbon monoxide generated from a particular unimolecular process. A number of more subtle mechanistic details may be explored as well. By varying the mean free path of the peroxy radicals in a flow tube, the role of collisional quenching in these unimolecular

  6. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    SciTech Connect

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.; Nico, Peter; Keiluweit, Marco; Ahmed, Musahid

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.

  7. Structural investigation of a new antimicrobial thiazolidine compound

    NASA Astrophysics Data System (ADS)

    Cozar, I. B.; Pırnǎu, A.; Vedeanu, N.; Nastasǎ, C.

    2013-11-01

    Thiazoles and their derivatives have attracted the interest over the last decades because of their varied biological activities: antibacterial, antiviral, antifungal, inflammation or in the treatment of allergies. A new synthesized compound 3-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethyl]-thazolidine-2,4-dione was investigated by FT-IR, FT-Raman, 1H, 13C NMR spectroscopies and also by DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between the experimental and theoretical data shows that the optimized molecular structure is very close to reality. Also the NMR spectra show a monomeric behaviour of this compound in solutions.

  8. Structural investigation of a new antimicrobial thiazolidine compound

    SciTech Connect

    Cozar, I. B.; Pîrnău, A.; Vedeanu, N.; Nastasă, C.

    2013-11-13

    Thiazoles and their derivatives have attracted the interest over the last decades because of their varied biological activities: antibacterial, antiviral, antifungal, inflammation or in the treatment of allergies. A new synthesized compound 3-[2-(4-Methyl-2-phenyl-thiazol-5-yl)-2-oxo-ethyl]-thazolidine-2,4-dione was investigated by FT-IR, FT-Raman, {sup 1}H, {sup 13}C NMR spectroscopies and also by DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between the experimental and theoretical data shows that the optimized molecular structure is very close to reality. Also the NMR spectra show a monomeric behaviour of this compound in solutions.

  9. DFT investigation on the electronic structure of Faujasite

    SciTech Connect

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza

    2013-11-13

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.

  10. DFT investigation on the electronic structure of Faujasite

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza

    2013-11-01

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.