Science.gov

Sample records for investigating high field

  1. Investigating High Field Gravity using Astrophysical Techniques

    SciTech Connect

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and

  2. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    SciTech Connect

    Gratz, Marcel; Galvosas, Petrik

    2008-12-05

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  3. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    NASA Astrophysics Data System (ADS)

    Gratz, Marcel; Galvosas, Petrik

    2008-12-01

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  4. Investigating Jeffery-Hamel flow with high magnetic field and nanoparticle by HPM and AGM

    NASA Astrophysics Data System (ADS)

    Rostami, A.; Akbari, M.; Ganji, D.; Heydari, S.

    2014-12-01

    In this study, the effects of magnetic field and nanoparticle on the Jeffery-Hamel flow are studied using two powerful analytical methods, Homotopy Perturbation Method (HPM) and a simple and innovative approach which we have named it Akbari-Ganji's Method(AGM). Comparisons have been made between HPM, AGM and Numerical Method and the acquired results show that these methods have high accuracy for different values of α, Hartmann numbers, and Reynolds numbers. The flow field inside the divergent channel is studied for various values of Hartmann number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated. It is necessary to represent some of the advantages of choosing the new method, AGM, for solving nonlinear differential equations as follows: AGM is a very suitable computational process and is applicable for solving various nonlinear differential equations. Moreover, in AGM by solving a set of algebraic equations, complicated nonlinear equations can easily be solved and without any mathematical operations such as integration, the solution of the problem can be obtained very simply and easily. It is notable that this solution procedure, AGM, can help students with intermediate mathematical knowledge to solve a broad range of complicated nonlinear differential equations.

  5. Physics Laboratory Investigation of Vocational High School Field Stone and Concrete Construction Techniques in the Central Java Province (Indonesia)

    ERIC Educational Resources Information Center

    Purwandari, Ristiana Dyah

    2015-01-01

    The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…

  6. Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling.

    PubMed

    Deelchand, Dinesh Kumar; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2006-02-01

    Most in vivo 13C NMR spectroscopy studies in the brain have been performed using 1H decoupling during acquisition. Decoupling imposes significant constraints on the experimental setup (particularly for human studies at high magnetic field) in order to stay within safety limits for power deposition. We show here that incorporation of the 13C label from 13C-labeled glucose into brain amino acids can be monitored accurately using localized 13C NMR spectroscopy without the application of 1H decoupling. Using LCModel quantification with prior knowledge of one-bond and multiple-bond J(CH) coupling constants, the uncertainty on metabolites concentrations was only 35% to 91% higher (depending on the carbon resonance of interest) in undecoupled spectra compared to decoupled spectra in the rat brain at 9.4 Tesla. Although less sensitive, 13C NMR without decoupling dramatically reduces experimental constraints on coil setup and pulse sequence design required to keep power deposition within safety guidelines. This opens the prospect of safely measuring 13C NMR spectra in humans at varied brain locations (not only the occipital lobe) and at very high magnetic fields above 4 Tesla. PMID:16345037

  7. Investigation of MAGSAT and TRIAD magnetometer data to provide corrective information on high-latitude external fields

    NASA Technical Reports Server (NTRS)

    Potemra, T. A. (Principal Investigator)

    1981-01-01

    The compilation of a catalog of the MAGSAT-observed high altitude disturbances is discussed and an example of contents and format is given. The graphs allow the investigation of Birkeland current signatures which are superimposed upon the main geomagnetic field. An example of a display of the MAGSAT orbital tracks in a polar geomagnetic coordinate system with the locations, flow directions, and intensities of field aligned currents shown in color is also given. The display was generated using an interactive color graphics terminal.

  8. Experimental investigation of a Ka band high power millimeter wave generator operated at low guiding magnetic field

    SciTech Connect

    Zhu Jun; Shu Ting; Zhang Jun; Li Guolin; Zhang Zehai; Fan Yuwei

    2011-05-15

    An overmoded slow wave type Ka band generator is investigated experimentally to produce high power millimeter waves in this paper. The experiments were carried out at the TORCH-01 accelerator. The produced microwave frequency was measured by dispersive line method, and the power was estimated by integrating over the radiation pattern at far field. With relatively low guiding magnetic field of 0.8 T and diode voltage and beam current of 590 kV and 5.2 kA, respectively, a 33.56 GHz millimeter wave with an output power of 320 MW was generated, and the microwave mode was quasi-TM{sub 01} mode.

  9. Theoretical investigation of the behavior of CuSe2O5 compound in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Saghafi, Z.; Jahangiri, J.; Mahdavifar, S.; Hadipour, H.; Farjami Shayesteh, S.

    2016-01-01

    Based on the analytical and numerical approaches, we investigate thermodynamic properties of CuSe2O5 compound at high magnetic fields which is a candidate for the strong intra-chain interaction in quasi one-dimensional (1D) quantum magnets. Magnetic behavior of the system can be described by the 1D spin-1/2 XXZ model in the presence of the Dzyaloshinskii-Moriya (DM) interaction. Under these circumstances, there is one quantum critical field in this compound. Below the quantum critical field the spin chain system is in the gapless Luttinger liquid (LL) regime, whereas above it one observes a crossover to the gapped saturation magnetic phase. Indications on the thermodynamic curves confirm the occurrence of such a phase transition. The main characteristics of the LL phase are gapless and spin-spin correlation functions decay algebraic. The effects of zero-temperature quantum phase transition are observed even at rather high temperatures in comparison with the counterpart compounds. In addition, we calculate the Wilson ratio in the model. The Wilson ratio at a fixed temperature remains almost independent of the field in the LL region. In the vicinity of the quantum critical field, the Wilson ratio increases and exhibits anomalous enhancement.

  10. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields.

    PubMed

    Song, Likai; Liu, Zhanglong; Kaur, Pavanjeet; Esquiaqui, Jackie M; Hunter, Robert I; Hill, Stephen; Smith, Graham M; Fanucci, Gail E

    2016-04-01

    High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94GHz) and D-band (∼140GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100ps to 2ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232nt RNA. For sample volumes of ∼50μL, concentration sensitivities of 2-20μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry. PMID:26923151

  11. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields

    NASA Astrophysics Data System (ADS)

    Song, Likai; Liu, Zhanglong; Kaur, Pavanjeet; Esquiaqui, Jackie M.; Hunter, Robert I.; Hill, Stephen; Smith, Graham M.; Fanucci, Gail E.

    2016-04-01

    High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.

  12. The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites

    NASA Astrophysics Data System (ADS)

    Stolle, Claudia; Michaelis, Ingo; Rauberg, Jan

    2016-07-01

    Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10-15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ.

  13. Investigation of the process of diamagnetic particle separation in a high-gradient ordered-structure magnetic field

    NASA Astrophysics Data System (ADS)

    Kashevskii, B. É.; Kashevskii, S. É.; Prokhorov, I. V.; Zholud', A. M.

    2011-05-01

    On the basis of the model of a flow-type magnetic filter with a transversely magnetized ordered system of long ferromagnetic rods of rectangular cross section, the process of high-gradient magnetic separation of microscopic diamagnetic particles (potato starch granules of sizes 8-30 μm) from a liquid suspension has been investigated. The registered laws of change in the concentration and size distribution of particles at the suspension outlet from the filter agree with the theoretical conclusions obtained from the analysis of the magnetic field structure and thecharacter of the particle motion in the filter volume.

  14. Numerical investigation of symmetry breaking and critical behavior of the acoustic streaming field in high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-06-01

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled three-dimensional multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. In certain respects the system behaves similar to a ferromagnet near the Curie point. It is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach with a transient model.

  15. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments.

    PubMed

    Zhu, Wei; Zhou, Xiaohua; Chen, Huaimin; Gao, Li; Xiao, Man; Li, Ming

    2016-09-15

    Correlations between Microcystis colony size and environmental factors were investigated in Meiliang Bay and Gonghu Bay of Lake Taihu (China) from 2011 to 2013. Compared with Gonghu Bay, both nutrient concentrations and Microcystis colony sizes were greater in Meiliang Bay. The median colony size (D50: 50% of the total mass of particles smaller than this size) increased from April to August and then decreased until November. In both bays, the average D50 of Microcystis colonies were <100 μm in spring, but colonies within moderate-size (100-500 μm) dominated in summer. The differences in colony size in Meiliang Bay and Gonghu Bay were probably due to horizontal drift driven by the prevailing south wind in summer. Redundancy analysis (RDA) of field data indicated that colony size was negatively related to nutrient concentrations but positively related to air temperature, suggesting that low nutrient concentrations and high air temperature promoted formation of large colonies. To validate the field survey, Microcystis colonies collected from Lake Taihu were cultured at different temperatures (15, 20, 25 and 30 °C) under high and low nutrient concentrations for 9 days. The size of Microcystis colonies significantly decreased when temperature was above 20 °C but had no significant change at 15 °C. The differences in temperature effects on colony formation shown from field and laboratory suggested that the larger colonies in summer were probably due to the longer growth period rather than the higher air temperature and light intensity. In addition, colony size decreased more significantly at high nutrient levels. Therefore, it could be concluded that high nutrient concentration and temperature may alleviate formation of large colonies of Microcystis. PMID:27262121

  16. The field-dependent shock profiles of a magnetorhelogical damper due to high impact: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Kim, Hwan-Choong; Oh, Jong-Seok; Choi, Seung-Bok

    2015-02-01

    This work proposes a new damper featuring magnetorheological fluid (MR damper) and presents its field-dependent damping forces due to high impact. To achieve this goal, a large MR damper, which can produce a damping force of 100 kN at 6 A, is designed and manufactured based on the analysis of the magnetic flux intensity of the damper. After identifying the field-dependent damping force levels of the manufactured MR damper, a hydraulic horizontal shock tester is established. This shock testing system consists of a velocity generator, impact mass, shock programmer, and test mass. The MR damper is installed at the end of the wall in the shock tester and tested under four different experimental conditions. The shock profile characteristics of the MR damper due to different impact velocities are investigated at various input current levels. In addition, the inner pressure of the MR damper during impact, which depends on the input’s current level, is evaluated at two positions that can represent the pressure drop that generates the damping force of the MR damper. It is demonstrated from this impact testing that the shock profiles can be changed by the magnitude of the input current applied to the MR damper. It directly indicates that a desired shock profile can be achieved by installing the MR damper associated with appropriate control logics to adjust the magnitude of the input current.

  17. Ground vortex flow field investigation

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Delfrate, John H.; Eshleman, James E.

    1988-01-01

    Flow field investigations were conducted at the NASA Ames-Dryden Flow Visualization Facility (water tunnel) to investigate the ground effect produced by the impingement of jets from aircraft nozzles on a ground board in a STOL operation. Effects on the overall flow field with both a stationary and a moving ground board were photographed and compared with similar data found in other references. Nozzle jet impingement angles, nozzle and inlet interaction, side-by-side nozzles, nozzles in tandem, and nozzles and inlets mounted on a flat plate model were investigated. Results show that the wall jet that generates the ground effect is unsteady and the boundary between the ground vortex flow field and the free-stream flow is unsteady. Additionally, the forward projection of the ground vortex flow field with a moving ground board is one-third less than that measured over a fixed ground board. Results also showed that inlets did not alter the ground vortex flow field.

  18. Nano-scale investigations of electric-dipole-layer enhanced field and thermionic emission from high current density cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios

    Cesium iodide coated graphitic fibers and scandate cathodes are two important electron emission technologies. The coated fibers are utilized as field emitters for high power microwave sources. The scandate cathodes are promising thermionic cathode materials for pulsed power vacuum electron devices. This work attempts to understand the fundamental physical and chemical relationships between the atomic structure of the emitting cathode surfaces and the superior emission characteristics of these cathodes. Ab initio computational modeling in conjunction with experimental investigations was performed on coated fiber cathodes to understand the origin of their very low turn on electric field, which can be reduced by as much as ten-fold compared to uncoated fibers. Copious amounts of cesium and oxygen were found co-localized on the fiber, but no iodine was detected on the surface. Additional ab initio studies confirmed that cesium oxide dimers could lower the work function significantly. Surface cesium oxide dipoles are therefore proposed as the source of the observed reduction in the turn on electric field. It is also proposed that emission may be further enhanced by secondary electrons from cesium oxide during operation. Thermal conditioning of the coated cathode may be a mechanism by which surface cesium iodide is converted into cesium oxide, promoting the depletion of iodine by formation of volatile gas. Ab initio modeling was also utilized to investigate the stability and work functions of scandate structures. The work demonstrated that monolayer barium-scandium-oxygen surface structures on tungsten can dramatically lower the work function of the underlying tungsten substrate from 4.6 eV down to 1.16 eV, by the formation of multiple surface dipoles. On the basis of this work, we conclude that high temperature kinetics force conventional dispenser cathodes (barium-oxygen monolayers on tungsten) to operate in a non-equilibrium compositional steady state with higher than

  19. Magnetic fields and childhood cancer: an epidemiological investigation of the effects of high-voltage underground cables.

    PubMed

    Bunch, K J; Swanson, J; Vincent, T J; Murphy, M F G

    2015-09-01

    Epidemiological evidence of increased risks for childhood leukaemia from magnetic fields has implicated, as one source of such fields, high-voltage overhead lines. Magnetic fields are not the only factor that varies in their vicinity, complicating interpretation of any associations. Underground cables (UGCs), however, produce magnetic fields but have no other discernible effects in their vicinity. We report here the largest ever epidemiological study of high voltage UGCs, based on 52,525 cases occurring from 1962-2008, with matched birth controls. We calculated the distance of the mother's address at child's birth to the closest 275 or 400 kV ac or high-voltage dc UGC in England and Wales and the resulting magnetic fields. Few people are exposed to magnetic fields from UGCs limiting the statistical power. We found no indications of an association of risk with distance or of trend in risk with increasing magnetic field for leukaemia, and no convincing pattern of risks for any other cancer. Trend estimates for leukaemia as shown by the odds ratio (and 95% confidence interval) per unit increase in exposure were: reciprocal of distance 0.99 (0.95-1.03), magnetic field 1.01 (0.76-1.33). The absence of risk detected in relation to UGCs tends to add to the argument that any risks from overhead lines may not be caused by magnetic fields. PMID:26344172

  20. The Crustal Structure of Beira High, Central Mozambique - Combined Investigation of Wide-angle Seismic and Potential Field Data

    NASA Astrophysics Data System (ADS)

    Müller, C. O.; Schreckenberger, B.; Heyde, I.; Jokat, W.

    2015-12-01

    the lowermost velocity gradients to allow a sound interpretation of the Beira High origin. The acquired shipborne, magnetic data show a complex magnetic pattern and strong influences by the presence of lava flows and intrusions and require further investigations. We will introduce the latest results of the joint interpretation of seismic and potential field data sets.

  1. HAIC/HIWC field campaign - investigating ice microphysics in high ice water content regions of mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter; Lilie, Lyle; Dezitter, Fabien; Grandin, Alice

    2015-04-01

    Despite existing research programs focusing on tropical convection, high ice water content (IWC) regions in Mesoscale Convective Systems (MCS) - potentially encountered by commercial aircraft and related to reported in-service events - remain poorly documented either because investigation of such high IWC regions was not of highest priority or because utilized instrumentation was not capable of providing accurate cloud microphysical measurements. To gather quantitative data in high IWC regions, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including a first field campaign conducted out of Darwin (Australia) in 2014. The French Falcon 20 research aircraft had been equipped among others with a state-of-the-art in situ microphysics package including the IKP (isokinetic evaporator probe which provides a reference measurement of IWC and TWC), the CDP (cloud droplet spectrometer probe measuring particles in the range 2-50 µm), the 2D-S (2D-Stereo, 10-1280 µm) and PIP (precipitation imaging probe, 100-6400 µm) optical array probes. Microphysical data collection has been performed mainly at -40°C and -30°C levels, whereas little data could be sampled at -50°C and at -15C/-10°C. The study presented here focuses on ice crystal size properties, thereby analyzing in detail the 2D image data from 2D-S and PIP optical array imaging probes. 2D images recorded with 2D-S and PIP were processed in order to extract a large variety of geometrical parameters, such as maximum diameter (Dmax), 2D surface equivalent diameter (Deq), and the corresponding number particle size distribution (PSD). Using the PSD information from both probes, a composite size distribution was then built, with sizes ranging from few tens of µm to roughly 10 mm. Finally, mass-size relationships for ice crystals in tropical convection were established in terms of power laws in order to compute median mass diameters MMDmax and

  2. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  3. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  4. An investigation of dynamic failure events in steels using full field high-speed infrared thermography and high-speed photography

    NASA Astrophysics Data System (ADS)

    Guduru, Pradeep R.

    An infrared (IR) imaging system has been developed for measuring the temperature increase during the dynamic deformation of materials. The system consists of an 8 x 8 HgCdTe focal plane array, each with its own preamplifier. Outputs from all 64 signals are simultaneously acquired and held using a bank of track and hold amplifiers. An array of eight 8:1 multiplexers then routes the signals to eight 10MHz digitizers, acquiring data from each row of detectors in parallel. The maximum rate is one million frames per second. Crack tip temperature rise during dynamic deformation is known to alter the fracture mechanisms and consequently the fracture toughness of a material. However, no direct experimental measurements have ever been made to determine the same because of limited diagnostic tools. By transcending the existing experimental limitations, this investigation presents detailed, real time evolution of the transient crack tip temperature fields in two different steels (C300 and HY100 steels), using the 2-D high speed IR camera. The crack tip temperature rise at initiation in C300 steel was found to be about 55K. In case of HY100, which is a highly ductile steel, the crack tip temperature rise was above 200K and was seen to be a strong function of loading rate. HRR elastic-plastic singular field has been used to extract J integral evolution from the measured temperature field. An experimental investigation has been conducted to study the initiation and propagation characteristics of dynamic shear bands in C300 maraging steel. Pre-fatigued single edge notched specimens were impacted on the edge under the notch to produce shear dominated mixed mode stress fields. The optical technique of coherent gradient sensing (CGS) was employed to study the evolution of the mixed mode stress intensity factors. Simultaneously, a newly developed high speed IR camera was employed to obtain the temperature field evolution during the initiation and propagation of the shear bands. The

  5. Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Murphy, Anthony B.; Rong, Mingzhe; Looe, Hui M.; Spencer, Joseph W.

    2013-09-01

    Sulfur hexafluoride (SF6) gas, widely used in high-voltage circuit breakers, has a high global warming potential and hence substitutes are being sought. The use of a mixture of carbon tetrafluoride (CF4) and SF6 is examined here. It is known that this reduces the breakdown voltage at room temperature. However, the electrical breakdown in a circuit breaker after arc interruption occurs in a hot gas environment, with a complicated species composition because of the occurrence of dissociation and other reactions. The likelihood of breakdown depends on the electron interactions with all these species. The critical reduced electric field strength (the field at which breakdown can occur, relative to the number density) of hot SF6/CF4 mixtures corresponding to the dielectric recovery phase of a high voltage circuit breaker is calculated in the temperature range from 300 K to 3500 K. The equilibrium compositions of hot SF6/CF4 mixtures under different mixing fractions were determined based on Gibbs free energy minimization. Full sets of improved cross sections for interactions between electrons and the species present are presented. The critical reduced electric field strength of these mixtures was obtained by balancing electron generation and loss mechanisms. These were evaluated using the electron energy distribution function derived from the Boltzmann transport equation under the two-term approximation. The result indicates that critical electric field strength decreases with increasing heavy-particle temperature from 1500 to 3500 K. Good agreement was found between calculations for pure hot SF6 and pure hot CF4 and experimental results and previous calculations. The addition of CF4 to SF6 was found to increase the critical reduced electric field strength for temperatures above 1500 K, indicating the potential of replacing SF6 by SF6/CF4 mixtures in high-voltage circuit breakers.

  6. Investigation of Resistive Wall Mode Stabilization Physics in High-beta Plasmas Using Applied Non-axisymmetric Fields in NSTX

    SciTech Connect

    Sontag, A. C.; Sabbagh, S. A.; Zhu, W.; Menard, J. E.; Bell, R. E.; Bialek, J. M.; Bell, M. G.; Gates, D. A.; Glasser, A. H.; LeBlanc, B. P.; Shaing, K. C.; Stutman, D.; Tritz, K. L.

    2009-06-16

    The National Spherical Torus Experiment (NSTX) offers an operational space characterized by high-beta (βt = 39%, βN > 7, βN/βno-wall N > 1.5) and low aspect ratio (A > 1.27) to leverage the plasma parameter dependences of RWM stabilization and plasma rotation damping physics giving greater confidence for extrapolation to ITER. Significant new capability for RWM research has been added to the device with the commissioning of a set of six nonaxisymmetric magnetic field coils, allowing generation of fields with dominant toroidal mode number, n, of 1–3. These coils have been used to study the dependence of resonant field amplification on applied field frequency and RWMstabilization physics by reducing the toroidal rotation profile belowits steady-state value through non-resonant magnetic braking. Modification of plasma rotation profiles shows that rotation outside q = 2.5 is not required for passive RWM stability and there is large variation in the RWM critical rotation at the q = 2 surface, both of which are consistent with distributed dissipation models.

  7. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields.

    PubMed

    Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe

    2016-07-01

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging. PMID:27475594

  8. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe

    2016-07-01

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  9. The crustal structure of Beira High, central Mozambique-Combined investigation of wide-angle seismic and potential field data

    NASA Astrophysics Data System (ADS)

    Mueller, Christian Olaf; Jokat, Wilfried; Schreckenberger, Bernd

    2016-06-01

    The timing and geometry of the initial Gondwana break-up between Africa and East Antarctica is still poorly known due to missing information about the continent-ocean boundaries along the rifted margins. In this context, the Beira High off central Mozambique forms a critical geological feature of uncertain crustal fabric. Based on new wide-angle seismic and potential field data across Beira High a P-wave velocity model, supported by amplitude and gravity modelling, provides constraints on the crustal composition of this area. In the Mozambique Basin mainly normal oceanic crust of 5.5-7 km thickness with velocities of 6.5-7.0 km/s in the lower crust is present. A sharp transition towards Beira High marks the continent-ocean boundary. Here the crust thickens to 23 km at maximum. A small velocity-depth gradient and a constant increase in velocity with basal velocities of maximum 7.0 km/s are in good agreement with typical velocities of continental crust and continental fragments. The density model indicates the existence of felsic material in greater depths and supports a fabric of stretched, but highly intruded continental crust below Beira High. A gradual decrease in crustal thickness characterizes the transition towards the Mozambican shelf area. Here, in the Zambezi Delta Depression 12 km of sediments cover the underlying 7 km thick crust. The presence of a high-velocity lower crustal body with velocities of 7.1-7.4 km/s indicates underplated, magmatic material in this part of the profile. However, the velocity structure in the shelf area allows no definite interpretation because of the experimental setup. Thus, the crustal nature below the Zambezi Delta and consequently the landward position of the continent-ocean boundary remains unknown. The difference in stretching below the margins of Beira High suggests the presence of different thinning directions and a rift jump during the early rifting stage.

  10. High Field Solid-State NMR Spectroscopy Investigation of (15)N-Labeled Rosette Nanotubes: Hydrogen Bond Network and Channel-Bound Water.

    PubMed

    Fenniri, Hicham; Tikhomirov, Grigory A; Brouwer, Darren H; Bouatra, Souhaila; El Bakkari, Mounir; Yan, Zhimin; Cho, Jae-Young; Yamazaki, Takeshi

    2016-05-18

    (15)N-labeled rosette nanotubes were synthesized and investigated using high-field solid-state NMR spectroscopy, X-ray diffraction, atomic force microscopy, and electron microscopy. The results established the H-bond network involved in the self-assembly of the nanostructure as well as bound water molecules in the nanotube's channel. PMID:27141817

  11. Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field

    SciTech Connect

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-07-15

    Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

  12. The Giotto magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.

    1983-01-01

    The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.

  13. Damage and loss assessment on rubber trees caused by typhoon based on high-precision remote sensing data and field investigation

    NASA Astrophysics Data System (ADS)

    Li, Jian; Fang, Weihua; Tan, Chenyan

    2016-04-01

    Forest dynamics are highly relevant to land hydrology, climate, carbon budget and biodiversity. Damage and loss assessment of forest caused by typhoon is essential to the understanding of ecosystem variations. Combination of high-precision remote sensing data and field investigation is critical to the assessment of forest damage loss. In this study, high-precision remote sensing data prior to and after typhoon from IKONOS, QuickBird, unmanned aerial vehicle (UAV) are used for identifying rubber tree disturbance. The ground truth data of rubber tree damage collected through field investigation are used to verify and compare the results. Taken the forest damage induced by typhoon Rammasun (201409) in Hainan as an example, 5 damage types (overthrown, trunk snapped below 2m, trunk snapped above 2m, half-overthrown, and sheared) of rubber trees are clearly interpreted compared with field investigation results. High-precision remote sensing data is then applied to other areas to evaluate the forest damage severity. At last, rubber tree damage severity is investigated with other typhoon hazard factors such as wind, topography, soil and precipitation.

  14. Numerical investigation of the high Reynolds number 3D flow field generated by a self-propelling manta ray

    NASA Astrophysics Data System (ADS)

    Pederzani, Jean-Noel; Haj-Hariri, Hossein

    2012-11-01

    An embedded-boundary (or cut-cell) method for complex geometry with moving boundaries is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta swimming at moderately high Reynolds numbers. The motion of the ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented, on a block-structured Cartesian grid using a cut-cell approach enabling the code to correctly evaluate the wall shear-stress, a key feature necessary at higher Reynolds. To enhance computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated against published experimental results. Supported by ONR MURI.

  15. Investigations on the magnetic field coupling of automotive high voltage systems to determine relevant parameters for an EMR-optimized designing

    NASA Astrophysics Data System (ADS)

    Krause, David; John, Werner; Weigel, Robert

    2016-03-01

    The implementation of electrical drive trains in modern vehicles is a new challenge for EMC development. This contribution depicts a variety of investigations on magnetic field coupling of automotive high-voltage (HV) systems in order to fulfil the requirements of an EMR-optimized designing. The theoretical background is discussed within the scope of current analysis, including the determination of current paths and spectral behaviour. It furthermore presents models of shielded HV cables with particular focus on the magnetic shielding efficiency. Derived findings are validated by experimental measurements of a state-of-the-art demonstrator on system level. Finally EMC design rules are discussed in the context of minimized magnetic fields.

  16. Field investigation of keyblock stability

    SciTech Connect

    Yow, J.L. Jr.

    1985-04-01

    Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. This engineering problem is divided into two parts: block identification, and evaluation of block stability. One stable keyblock and thirteen fallen keyblocks were observed in field investigations at the Nevada Test Site. Nine blocks were measured in detail sufficient to allow back-analysis of their stability. Measurements included block geometry, and discontinuity roughness and compressive strength. Back-analysis correctly predicted stability or failure in all but two cases. These two exceptions involved situations that violated the stress assumptions of the stability calculations. Keyblock faces correlated well with known joint set orientations. The effect of tunnel orientation on keyblock frequency was apparent. Back-analysis of physical models successfully predicted block pullout force for two-dimensional models of unit thickness. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were examined. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls block displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender. Rock mass temperature decreases reduce the confining stress magnitudes and can lead to failure. The pattern of stresses affecting each block face explains conceptually the occurrence of pyramidal keyblocks that are truncated near their apex.

  17. Polypyrrole nanostructures and their field emission investigations

    NASA Astrophysics Data System (ADS)

    Harpale, Kashmira; More, Mahendra A.; Koinkar, Pankaj M.; Patil, Sandip S.; Sonawane, Kishor M.

    2015-03-01

    Polypyrrole (PPy) nanostructures have been synthesized on indium doped tin oxide (ITO) substrates by a facile electrochemical route employing cyclic voltammetry (CV) mode. The morphology of the PPy thin films was observed to be influenced by the monomer concentration. Furthermore, FTIR revealed formation of electrically conducting state of PPy. Field emission investigations of the PPy nanostructures were carried out at base pressure of 1×10-8mbar. The values of turn-on field, corresponding to emission current density of 1 μA/cm2 were observed to be 0.6, 1.0 and 1.2 V/μm for the PPy films characterized with rod-like, cauliflower and granular morphology, respectively. In case of PPy nanorods maximum current density of 1.2 mA/cm2 has been drawn at electric field of 1 V/μm. The low turn on field, extraction of very high emission current density at relatively lower applied field and good emission stability propose the PPy nanorods as a promising material for field emission based devices.

  18. High volume-high value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 2 -- Field investigations. Quarterly report, October 1--December 31, 1997

    SciTech Connect

    1998-08-01

    The field investigation phase of the project was essentially completed when grout placed into auger holes at the Lodestar Energy mine site during Summer 1997 was sampled. Mining had proceeded to a point where the strata overlying the coal was completely removed, thus exposing the grout-filled auger holes. All of the auger holes contained either grout from these experiments or shale that in-filled the non-grouted holes during the process of clearing the top surface of the coal. Eleven grouted holes were sampled, utilizing hammers and chisels, for physical (strength) testing, as well as chemical, mineralogical, and microscopical analysis. Upon arrival at the laboratory, moisture contents, densities, and void ratios were obtained before disturbing the samples, and after strength testing. Representative samples of each grout were then cut into flat-sided prisms, with a height:width ratio {approx}2, to be used for testing of unconfined compressive strength. In summary, all of the grouts had very good mechanical strength, ranging from 1000 psi to 2250 psi. The lowest compressive strength was recorded on a bed ash-based grout.

  19. Cobalt(II) "scorpionate" complexes as models for cobalt-substituted zinc enzymes: electronic structure investigation by high-frequency and -field electron paramagnetic resonance spectroscopy.

    PubMed

    Krzystek, J; Swenson, Dale C; Zvyagin, S A; Smirnov, Dmitry; Ozarowski, Andrew; Telser, Joshua

    2010-04-14

    A series of complexes of formula Tp(R,R')CoL, where Tp(R,R'-) = hydrotris(3-R,5-R'-pyrazol-1-yl)borate ("scorpionate") anion (R = tert-butyl, R' = H, Me, 2'-thienyl (Tn), L = Cl(-), NCS(-), NCO(-), N(3)(-)), has been characterized by electronic absorption spectroscopy in the visible and near-infrared (near-IR) region and by high-frequency and -field electron paramagnetic resonance (HFEPR). Reported here are also crystal structures of seven members of the series that have not been reported previously: R' = H, L = NCO(-), N(3)(-); R' = Me, L = Cl(-), NCS(-), NCO(-), N(3)(-); R' = Tn, L = Cl(-), NCS(-). These include a structure for Tp(t-Bu,Me)CoCl different from that previously reported. All of the investigated complexes contain a four-coordinate cobalt(II) ion (3d(7)) with approximate C(3v) point group symmetry about the metal ion and exhibit an S = (3)/(2) high-spin ground state. The use of HFEPR allows extraction of the full set of intrinsic S = (3)/(2) spin Hamiltonian parameters (D, E, and g values). The axial zero-field splitting parameter, D, for all investigated Tp(R,R')CoL complexes is always positive, a fact not easily determined by other methods. However, the magnitude of this parameter varies widely: 2.4 cm(-1) field parameters for these complexes following the angular overlap model (AOM). This description of electronic structure and bonding in pseudotetrahedral cobalt(II) complexes can enhance the understanding of similar sites in metalloproteins, specifically cobalt-substituted zinc enzymes. PMID:20329727

  20. Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR

    SciTech Connect

    Zhao, Zhenchao; Xu, Suochang; Hu, Mary Y.; Bao, Xinhe; Peden, Charles HF; Hu, Jian Z.

    2015-01-22

    Aluminum site changes for dehydrated H-Beta zeolite during rehydration process are systematically investigated by ²⁷Al MAS and MQ MAS NMR at high magnetic fields up to 19.9 T. Benefiting from the high magnetic field, more detailed information is obtained from the considerably broadened and overlapped spectra of dehydrated H-beta zeolite. Dynamic changes of aluminum sites are demonstrated during rehydration process. In completely dehydrated H-Beta, invisible aluminum can reach 29%. The strength of quadrupole interactions for framework aluminum sites decreases gradually during water adsorption processes. The number of extra-framework aluminum (EFAL) species, i.e., penta- (34 ppm) and octa- (4 ppm) coordinated aluminum atoms rises initially with increasing water adsorption, and finally change into either tetra-coordinated framework or extra-framework aluminum in saturated water adsorption samples, with the remaining octa-coordinated aluminum lying at 0 and -4 ppm, respectively. Quantitative ²⁷Al MAS NMR analysis combined with ¹H MAS NMR indicates that some active EFAL species formed during calcination can reinsert into the framework during this hydration process. The assignment of aluminum at 0 ppm to EFAL cation and -4 ppm to framework aluminum is clarified for H-Beta zeolite.

  1. Progress with field investigations at Stripa

    SciTech Connect

    Witherspoon, P.A.; Cook, N.G.W.; Gale, J.E.

    1980-02-01

    It is generally agreed that the most practicable method of isolating nuclear wastes from the biosphere is by deep burial in suitable geologic formations. Such burial achieves a high degree of physical isolation but raises questions concerning the rate at which some of these wastes may return to the biosphere through transport by groundwater. Any suitable repository site will be disturbed first by the excavation of the repository and second by the thermal pulse caused by the radioactive decay of the wastes. To assess the effectiveness of geologic isolation it is necessary to develop the capability of predicting the response of a rock mass to such a thermal pulse. Ultimately, this requires field measurements at depths below surface and in media representative of those likely to be encountered at an actual repository. Access to a granitic rock mass adjacent to a defunct iron ore mine at Stripa in Sweden at a depth of about 350 m below surface has provided a unique opportunity to conduct a comprehensive suite of hydrological and thermo-mechanical experiments under such conditions virtually without delay. The results of these field tests have shown the importance of geologic structure and the functional dependence of the thermo-mechanical properties on temperature in developing a valid predictive model. The results have also demonstrated the vital importance of being able to carry out large scale investigations in a field test facility.

  2. High-field side scrape-off layer investigation: scaling of the power e-folding width and impurity screening behavior in near-double null configurations

    NASA Astrophysics Data System (ADS)

    Labombard, B.; Kuang, A.; Brunner, D.; Mumgaard, R.; Terry, J.; Hughes, J. W.; Walk, J.; Chilenski, M.; Lin, Y.; Marmar, E.; Wallace, G.; Whyte, D.; Wolfe, S.; Wukitch, S.; Reinke, M.

    2015-11-01

    Fluctuation-induced transport measured on the C-Mod high-field side (HFS) scrape-off layer (SOL) is extremely low; n, T profiles there become very sharp in near-double null configurations and, unlike on the low-field side (LFS), no far SOL ``shoulders'' are seen. In single-null discharges, this transport asymmetry drives near-sonic parallel flows. A strong impurity screening behavior is also evident - 6x higher N puff rate on the HFS compared to LFS produces the same core N content. It has been proposed that future tokamaks should exploit this remarkable behavior - locate all RF actuators and close-fitting wall structures on the HFS and employ near-double-null topologies, for example. C-Mod is presently investigating this physics more fully: (1) How does the HFS power e-folding width scale with plasma current, ~ 1/Ip as seen for the LFS? (2) Does the favorable screening behavior extend to balanced-double null behavior where the HFS SOL flows become stagnant, or must some unbalance be required? Latest experimental results will be presented. Supported by USDoE agreement DE-FC02-99ER54512.

  3. Spray features in the near field of a flow-blurring injector investigated by high-speed visualization and time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Jiang, Lulin; Agrawal, Ajay K.

    2015-05-01

    In a flow-blurring (FB) injector, atomizing air stagnates and bifurcates at the gap upstream of the injector orifice. A small portion of the air penetrates into the liquid supply line to create a turbulent two-phase flow. Pressure drop across the injector orifice causes air bubbles to expand and burst thereby disintegrating the surrounding liquid into a fine spray. In previous studies, we have demonstrated clean and stable combustion of alternative liquid fuels, such as biodiesel, straight vegetable oil and glycerol by using the FB injector without requiring fuel pre-processing or combustor hardware modification. In this study, high-speed visualization and time-resolved particle image velocimetry (PIV) techniques are employed to investigate the FB spray in the near field of the injector to delineate the underlying mechanisms of atomization. Experiments are performed using water as the liquid and air as the atomizing gas for air to liquid mass ratio of 2.0. Flow visualization at the injector exit focused on a field of view with physical dimensions of 2.3 mm × 1.4 mm at spatial resolution of 7.16 µm per pixel, exposure time of 1 µs, and image acquisition rate of 100 k frames per second. Image sequences illustrate mostly fine droplets indicating that the primary breakup by FB atomization likely occurs within the injector itself. A few larger droplets appearing mainly at the injector periphery undergo secondary breakup by Rayleigh-Taylor instabilities. Time-resolved PIV is applied to quantify the droplet dynamics in the injector near field. Plots of instantaneous, mean, and root-mean-square droplet velocities are presented to reveal the secondary breakup process. Results show that the secondary atomization to produce fine and stable spray is complete within a few diameters from the injector exit. These superior characteristics of the FB injector are attractive to achieve clean combustion of different fuels in practical systems.

  4. Hurricane Ike: Field Investigation Survey (Invited)

    NASA Astrophysics Data System (ADS)

    Ewing, L.

    2009-12-01

    Hurricane Ike made landfall at 2:10 a.m. on September 13, 2008, as a Category 2 hurricane. The eye of the hurricane crossed over the eastern end of Galveston Island and a large region of the Texas and Louisiana coast experienced extreme winds, waves and water levels, resulting in large impacts from overtopping, overwash, wind and wave forces and flooding. Major damage stretched from Freeport to the southwest and to Port Arthur to the northeast. The effects of the hurricane force winds were felt well inland in Texas and Louisiana and the storm continued to the interior of the US, causing more damage and loss of life. Through the support of the Coasts, Oceans, Ports and Rivers Institute (COPRI) of the American Society of Civil Engineers (ASCE) a team of 14 coastal scientists and engineers inspected the upper Texas coast in early October 2008. The COPRI team surveyed Hurricane Ike’s effects on coastal landforms, structures, marinas, shore protection systems, and other infrastructure. Damages ranges from very minor to complete destruction, depending upon location and elevation. Bolivar Peninsula, to the right of the hurricane path, experienced severe damage and three peninsula communities were completely destroyed. Significant flood and wave damage also was observed in Galveston Island and Brazoria County that were both on the left side of the hurricane path. Beach erosion and prominent overwash fans were observed throughout much of the field investigation area. The post-storm damage survey served to confirm expected performance under extreme conditions, as well as to evaluate recent development trends and conditions unique to each storm. Hurricane Ike confirmed many previously reported observations. One of the main conclusions from the inspection of buildings was that elevation was a key determinant for survival. Elevation is also a major factor in the stability and effectiveness of shore protection. The Galveston Seawall was high enough to provide protection from

  5. High volume-high value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 2 -- Field investigations. Quarterly report, January 1--March 31, 1998

    SciTech Connect

    1998-09-01

    The factors that control the strength of FBC ash grout were the focus of work during this quarter. Samples were prepared at different water contents and placed into cylindrical PVC molds. At specified curing intervals, the grout cylinders were subjected to unconfined compressive strength testing as per procedures described in previous reports. Chemical, mineralogical, and microscopical analyses were also conducted on the samples. It was found that higher curing temperatures significantly increase the strength gain rate of the FBC ash grout, in agreement with earlier results. As expected, water content also exerts a strong influence on the strength of the grout. The compressive strength data obtained for the laboratory-prepared samples are in excellent agreement with strength data obtained on grout placed in auger holes during the field demonstrations. The data also indicate that the field samples suffered negligible deterioration over the course of the curing period in the auger holes. Analysis of the laboratory prepared grout samples using XRD revealed a mineralogy similar to the field samples. A correspondence between ettringite abundance and compressive strength was observed only during grout curing. The formation of minerals such as ettringite is apparently a good indication that curing reactions are progressing and that the grout strength is increasing, but mineral distribution by itself does not explain or predict final strength. The microscopy data, in combination with geotechnical and XRD data, suggest that the strength of the grout is largely a function of the density of an amorphous (or finely crystalline) material that comprises the majority of the cured grout. Therefore, an increase in density of this material results in an increase in grout strength.

  6. The Electron Losses and Fields Investigation

    NASA Astrophysics Data System (ADS)

    Bingley, L.; Angelopoulos, V.; Caron, R.; Zarifian, A.; Miller, J.; Gildemeister, A.; Schoen, B.; Tsai, E.; Berger, S.; Zhang, F.; Subramanian, A.; Chung, M.; Runov, A.; Cruce, P. R.

    2015-12-01

    The Electron Losses and Fields Investigation (ELFIN), is a joint NASA/NSF funded project at the University of California, Los Angeles focusing on eliminating the current deficit in the understanding of the innate physical processes behind geomagnetic storms. Set to launch in 2017, the mission takes advantage of a 3U+ CubeSat design to reduce cost and complexity traditionally associated with a space weather mission of this kind. This mission seeks to quantify the precipitation of relativistic electrons from the radiation belts using a pair of energetic particle detectors (EPDs). The spacecraft will also fly a fluxgate magnetometer (FGM) for determining the pitch angle distribution of the particles, which in conjunction with the EPDs will provide insight to the mechanisms responsible for their loss. Electromagnetic Ion Cyclotron (EMIC) waves are thought to be a significant contributor to the precipitation of electrons trapped in the magnetosphere; however without direct measurement to verify the exact energy range of the particles with high angular resolution, the precise role of these waves is as yet undetermined. ELFIN is unique as it is the first spacecraft that will perform direct pitch angle measurements of the high-energy electrons at the region in the ionosphere where the particles are being lost. Together with correlative measurements from THEMIS, Van Allen Probes and the upcoming ERG mission, ELFIN will provide a unique dataset of magnetospheric wave-particle interactions that will be able to contribute to a marked increase in the fidelity of current space weather models.

  7. Performance Investigation of Proteomic Identification by HCD/CID Fragmentations in Combination with High/Low-Resolution Detectors on a Tribrid, High-Field Orbitrap Instrument

    PubMed Central

    Shen, Shichen; Sheng, Quanhu; Shyr, Yu; Qu, Jun

    2016-01-01

    The recently-introduced Orbitrap Fusion mass spectrometry permits various types of MS2 acquisition methods. To date, these different MS2 strategies and the optimal data interpretation approach for each have not been adequately evaluated. This study comprehensively investigated the four MS2 strategies: HCD-OT (higher-energy-collisional-dissociation with Orbitrap detection), HCD-IT (HCD with ion trap, IT), CID-IT (collision-induced-dissociation with IT) and CID-OT on Orbitrap Fusion. To achieve extensive comparison and identify the optimal data interpretation method for each technique, several search engines (SEQUEST and Mascot) and post-processing methods (score-based, PeptideProphet, and Percolator) were assessed for all techniques for the analysis of a human cell proteome. It was found that divergent conclusions could be made from the same dataset when different data interpretation approaches were used and therefore requiring a relatively fair comparison among techniques. Percolator was chosen for comparison of techniques because it performs the best among all search engines and MS2 strategies. For the analysis of human cell proteome using individual MS2 strategies, the highest number of identifications was achieved by HCD-OT, followed by HCD-IT and CID-IT. Based on these results, we concluded that a relatively fair platform for data interpretation is necessary to avoid divergent conclusions from the same dataset, and HCD-OT and HCD-IT may be preferable for protein/peptide identification using Orbitrap Fusion. PMID:27472422

  8. Performance Investigation of Proteomic Identification by HCD/CID Fragmentations in Combination with High/Low-Resolution Detectors on a Tribrid, High-Field Orbitrap Instrument.

    PubMed

    Tu, Chengjian; Li, Jun; Shen, Shichen; Sheng, Quanhu; Shyr, Yu; Qu, Jun

    2016-01-01

    The recently-introduced Orbitrap Fusion mass spectrometry permits various types of MS2 acquisition methods. To date, these different MS2 strategies and the optimal data interpretation approach for each have not been adequately evaluated. This study comprehensively investigated the four MS2 strategies: HCD-OT (higher-energy-collisional-dissociation with Orbitrap detection), HCD-IT (HCD with ion trap, IT), CID-IT (collision-induced-dissociation with IT) and CID-OT on Orbitrap Fusion. To achieve extensive comparison and identify the optimal data interpretation method for each technique, several search engines (SEQUEST and Mascot) and post-processing methods (score-based, PeptideProphet, and Percolator) were assessed for all techniques for the analysis of a human cell proteome. It was found that divergent conclusions could be made from the same dataset when different data interpretation approaches were used and therefore requiring a relatively fair comparison among techniques. Percolator was chosen for comparison of techniques because it performs the best among all search engines and MS2 strategies. For the analysis of human cell proteome using individual MS2 strategies, the highest number of identifications was achieved by HCD-OT, followed by HCD-IT and CID-IT. Based on these results, we concluded that a relatively fair platform for data interpretation is necessary to avoid divergent conclusions from the same dataset, and HCD-OT and HCD-IT may be preferable for protein/peptide identification using Orbitrap Fusion. PMID:27472422

  9. The magnetic field investigation on Cluster

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  10. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  11. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  12. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  13. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  14. Field investigation of the drift shadow

    USGS Publications Warehouse

    Su, G.W.; Kneafsey, T.J.; Ghezzehei, T.A.; Cook, P.J.; Marshall, B.D.

    2006-01-01

    The "Drift Shadow" is defined as the relatively drier region that forms below subsurface cavities or drifts in unsaturated rock. Its existence has been predicted through analytical and numerical models of unsaturated flow. However, these theoretical predictions have not been demonstrated empirically to date. In this project we plan to test the drift shadow concept through field investigations and compare our observations to simulations. Based on modeling studies we have an identified a suitable site to perform the study at an inactive mine in a sandstone formation. Pretest modeling studies and preliminary characterization of the site are being used to develop the field scale tests.

  15. FIELD INVESTIGATIONS OF THE DRIFT SHADOW

    SciTech Connect

    G. W. Su, T. J. Kneafsey, T. A. Ghezzehei, B. D. Marshall, and P. J. Cook

    2006-01-15

    The ''Drift Shadow'' is defined as the relatively drier region that forms below subsurface cavities or drifts in unsaturated rock. Its existence has been predicted through analytical and numerical models of unsaturated flow. However, these theoretical predictions have not been demonstrated empirically to date. In this project they plan to test the drift shadow concept through field investigations and compare our observations to simulations. Based on modeling studies they have an identified suitable site to perform the study at an inactive mine in a sandstone formation. Pretest modeling studies and preliminary characterization of the site are being used to develop the field scale tests.

  16. Investigation of the Hall Effect in Rectangular Quantum Wells with a Perpendicular Magnetic Field in the Presence of a High-Frequency Electromagnetic Wave

    NASA Astrophysics Data System (ADS)

    Bau, Nguyen Quang; Hoi, Bui Dinh

    2014-11-01

    The Hall effect is theoretically studied in a rectangular quantum well (RQW) with infinite barriers subjected to a crossed dc electric field and magnetic field (the magnetic field is oriented perpendicularly to the barriers) in the presence of a high-frequency electromagnetic wave (EMW). By using the quantum kinetic equation for electrons interacting with acoustic phonons at low temperatures, we obtain analytical expressions for the conductivity tensor as well as the Hall coefficient (HC). Numerical results for the AlGaN/GaN RQW show the Shubnikov-de Haas (SdH) oscillations in the magnetoresistance (MR) whose period does not depend on the temperature and amplitude decreases with increasing temperature. In the presence of the EMW, the MR shows maxima at Ω/ωc = 1, 2, 3, … and minima at Ω/ωc = 3/2, 5/2, 7/2, … (Ω and ωc are the EMW and the cyclotron frequencies, respectively), and with increasing of the EMW amplitude the MR approaches zero. Obtained results are in accordance with recent experimental data and in good agreement with other theories in two-dimensional (2D) electron systems. The results for the HC show a saturation of the HC as the magnetic field or the EMW frequency increases. Furthermore, in the region of large magnetic field the HC depends weakly on the well-width.

  17. Rydberg EIT in High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  18. Electronic structure of four-coordinate C3v nickel(II) scorpionate complexes: investigation by high-frequency and -field electron paramagnetic resonance and electronic absorption spectroscopies.

    PubMed

    Desrochers, Patrick J; Telser, Joshua; Zvyagin, S A; Ozarowski, Andrew; Krzystek, J; Vicic, David A

    2006-10-30

    A series of complexes of formula TpNiX, where Tp*- = hydrotris(3,5-dimethylpyrazole)borate and X = Cl, Br, I, has been characterized by electronic absorption spectroscopy in the visible and near-infrared (NIR) region and by high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy. The crystal structure of TpNiCl has been previously reported; that for TpNiBr is given here: space group = Pmc2(1), a = 13.209(2) A, b = 8.082(2) A, c = 17.639(4) A, alpha = beta = gamma = 90 degrees , Z = 4. TpNiX contains a four-coordinate nickel(II) ion (3d8) with approximate C3v point group symmetry about the metal and a resulting S = 1 high-spin ground state. As a consequence of sizable zero-field splitting (zfs), TpNiX complexes are "EPR silent" with use of conventional EPR; however, HFEPR allows observation of multiple transitions. Analysis of the resonance field versus the frequency dependence of these transitions allows extraction of the full set of spin Hamiltonian parameters. The axial zfs parameter for TpNiX displays pronounced halogen contributions down the series: D = +3.93(2), -11.43(3), -22.81(1) cm(-1), for X = Cl, Br, I, respectively. The magnitude and change in sign of D observed for TpNiX reflects the increasing bromine and iodine spin-orbit contributions facilitated by strong covalent interactions with nickel(II). These spin Hamiltonian parameters are combined with estimates of 3d energy levels based on the visible-NIR spectra to yield ligand-field parameters for these complexes following the angular overlap model (AOM). This description of electronic structure and bonding in a pseudotetrahedral nickel(II) complex can enhance the understanding of similar sites in metalloproteins, both native nickel enzymes and nickel-substituted zinc enzymes. PMID:17054352

  19. Investigation of high-temperature, igneous-related hydraulic fracturing as a reservoir control in the Blackburn and Grant Canyon/Bacon Flat oil fields, Nevada

    SciTech Connect

    Hulen, J.B.

    1991-01-01

    Research in progress to evaluate natural, igenous-related hydrothermal fracturing as a reservoir control in two eastern Nevada oil fields has revealed evidence of a far more comprehensive role for moderate- to high-temperature hydrothermal systems in Basin-and-Range oil-reservoir evolution. Fluid-inclusion and petrographic studies have shown that (now) oil-bearing dolomite breccias of the Blackburn field (Pine Valley, Eureka County) were formed when overpressured, magmatically-heated, high-temperature (>350{degrees}C) hydrothermal brines explosively ruptured their host rocks; similar studies of texturally identical breccias of the Grant Canyon/Bacon Flat field (Railroad Valley, Nye County) so far do not support such an explosive origin. At Grant Canyon, however, hydrothermal, breccia-cementing quartz hosts primary oil, aqueous/oil, and aqueous fluid inclusions (homogenization temperature = 120{degrees}C) which document a direct geothermal connection for oil migration and entrapment. Moreover, at both Blackburn and Grant Canyon/Bacon Flat, the oil reservoirs are top- and side-sealed by hydrothermally altered Tertiary ignimbrites and epiclastic rocks. Contemporary geothermal activity is also apparent at grant Canyon/Bacon Flat, where subsurface water temperatures reach 171{degrees}C, and at Blackburn, above which a petroleum-providing hot spring issues at a temperature of 90{degrees}C. We suggest that in the Basin and Range province, hydrothermal systems may have: (1) matured oil from otherwise submature source rocks; (2) transported oil to ultimate entrapment sites by convection in moderate-to high-temperature fluids; and (3) sealed reservoir traps through hydrothermal alteration of overlying Tertiary caprocks. 69 refs., 11 figs., 1 tab.

  20. Spectroscopic investigation of the spatiotemporal dynamics of an electric field in plasma of a beam-type high-voltage discharge in helium

    SciTech Connect

    Demkin, V. P.; Mel'nichuk, S. V.

    2015-02-15

    In the present work, a method of determining the spatiotemporal characteristics of the electric field strength in an accelerating gap and a plasma flare of a beam-type high-voltage pulsed discharge in He at moderate pressure is presented. The method is based on spectroscopic data on the Stark splitting of π-components of He 2P–4Q transitions; Q = D(4921.93 Å), F(4920.35 Å) in the near-cathode region of the discharge and on the spatiotemporal characteristics of intensities of He(2s{sup 1}S–3p{sup 1}P{sup 0}) spectral lines with λ = 5015 Å and He{sup +}(3d–4f) spectral lines with λ = 4685 Å measured experimentally and calculated from the data of statistical simulation of the electron kinetics by the Monte Carlo method. The shape and strength of the electric field of the space charge in the interelectrode gap and the drift region of the discharge are estimated. It is demonstrated that the electric field created by the current pulse of uncompensated space charge in the near-anode region changes the discharge regime and causes degradation of the electron beam in the plasma flare. It is established that the flux of secondary electrons from the drift region to the anode has significant effect on the radiation intensity distribution in this region of the discharge.

  1. Planar dipolar polymer brush: field theoretical investigations

    NASA Astrophysics Data System (ADS)

    Mahalik, Jyoti; Kumar, Rajeev; Sumpter, Bobby

    2015-03-01

    Physical properties of polymer brushes bearing monomers with permanent dipole moments and immersed in a polar solvent are investigated using self-consistent field theory (SCFT). It is found that mismatch between the permanent dipole moments of the monomer and the solvent plays a significant role in determining the height of the polymer brush. Sign as well as magnitude of the mismatch determines the extent of collapse of the polymer brush. The mismatch in the dipole moments also affects the force-distance relations and interpenetration of polymers in opposing planar brushes. In particular, an attractive force between the opposing dipolar brushes is predicted for stronger mismatch parameter. Furthermore, effects of added monovalent salt on the structure of dipolar brushes will also be presented. This investigation highlights the significance of dipolar interactions in affecting the physical properties of polymer brushes. Csmd division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.

  2. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    PubMed

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces. PMID:21639503

  3. Investigation of the Structure and Active Sites of TiO2 Nanorod Supported VOx Catalysts by High-Field and Fast-Spinning 51V MAS NMR

    SciTech Connect

    Hu, Jian Z.; Xu, Suochang; Li, Weizhen; Hu, Mary Y.; Deng, Xuchu; Dixon, David A.; Vasiliu, Monica; Craciun, Raluca; Wang, Yong; Bao, Xinhe; Peden, Charles HF

    2015-07-02

    Supported VOx/TiO2-Rod catalysts were studied by 51V MAS NMR at high field using a sample spinning rate of 55 kHz. The superior spectral resolution allows for the observation of at least five vanadate species. The assignment of these vanadate species was carried out by quantum mechanical calculations of 51V NMR chemical shifts of model V-surface structures. Methanol oxidative dehydrogenation (ODH) was used to establish the correlation between the reaction rate and the various surface V-sites. It is found that monomeric V-species dominated the catalyst at low vanadium loadings with two peaks observed at about -502 and -529 ppm. V-dimers with two bridged oxygen appeare at about -555 ppm. Vanadate dimers and polyvanadates connected by one bridged oxygen atom between two adjacent V atoms resonate at about -630 ppm. A positive correlation is found between the V-dimers related to the -555 ppm peak and the ODH rate while a better correlation is obtained by including monomeric contributions. This result indicates that surface V-dimers related to the -555 ppm peak are the major active sites for ODH reaction despite mono-V species are more catalytic active but their relative ratios are decreased dramatically at high V-loadings. Furthermore, a portion of the V-species is found invisible. In particular, the level of such invisibility increases with decreased level of V-loading, suggesting the existence of paramagnetic V-species at the surface.

  4. Nonlinear diffusion waves in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Datsko, I. M.; Rybka, D. V.; Ratakhin, N. A.; Khishchenko, K. V.

    2015-11-01

    The nonlinear diffusion of a magnetic field and the large-scale instabilities arising upon an electrical explosion of conductors in a superstrong (2-3 MG) magnetic field were investigated experimentally on the MIG high-current generator (up to 2.5 peak current, 100 ns current rise time). It was observed that in the nonlinear stage of the process, the wavelength of thermal instabilities (striations) increased with a rate of 1.5-3 km/s.

  5. Low temperature, high magnetic field investigations of the nature of magnetism in the molecular semiconductor β- cobalt phthalocyanine (C32H16CoN8)

    NASA Astrophysics Data System (ADS)

    Wang (王正君), Zhengjun; Lee, M.; Choi, E. S.; Poston, J.; Seehra, M. S.

    2016-06-01

    Results from detailed investigations of the magnetic properties of a powder sample of β-CoPc for the temperatures T=0.4 K to 300 K and in magnetic fields H up to 90 kOe are reported. X-ray diffraction confirmed the β-phase and scanning electron microscopy showed plate-like morphology of the sample. For T>3 K, the data of magnetic susceptibility χ vs. T fit the Curie-Weiss (CW) law yielding θ=-2.5 K, μ=2.16 μB per Co2+ and g=2.49 for spin S=1/2 of the low spin-state of Co2+. However for T<3 K, the χ vs. T data deviates from the CW law yielding a peak in χ at Tmax=1.9 K. It is shown that the χ vs. T data from 0.4 K to 300 K fits well with the predictions of the Bonner-Fisher (BF) model for S=1/2 Heisenberg linear chain antiferromagnet with the Co2+-Co2+ exchange J/kB = -1.5 K (Ĥ=-2J Σ Si•Si+1). The data of magnetization M vs. H at T=1 K agrees with the predictions of the BF model with J/kB=-1.5 K, yielding saturation magnetization MS=12.16 emu/g above 60 kOe corresponding to complete alignment of the spins.

  6. Persistence in STEM: An investigation of the relationship between high school experiences in science and mathematics and college degree completion in STEM fields

    NASA Astrophysics Data System (ADS)

    Maltese, Adam V.

    While the number of Bachelor's degrees awarded annually has nearly tripled over the past 40 years (NSF, 2008), the same cannot be said for degrees in the STEM (science, technology, engineering and mathematics) fields. The Bureau of Labor Statistics projects that by the year 2014 the combination of new positions and retirements will lead to 2 million job openings in STEM (BLS, 2005). Thus, the research questions I sought to answer with this study were: (1)What are the most common enrollment patterns for students who enter into and exit from the STEM pipeline during high school and college? (2) Controlling for differences in student background and early interest in STEM careers, what are the high school science and mathematics classroom experiences that characterize student completion of a college major in STEM? Using data from NELS:88 I analyzed descriptive statistics and completed logistic regressions to gain an understanding of factors related to student persistence in STEM. Approximately 4700 students with transcript records and who participated in all survey rounds were included in the analyses. The results of the descriptive analysis demonstrated that most students who went on to complete majors in STEM completed at least three or four years of STEM courses during high school, and enrolled in advanced high school mathematics and science courses at higher rates. At almost every pipeline checkpoint indicators of the level of coursework and achievement were significant in predicting student completion of a STEM degree. The results also support previous research that showed demographic variables have little effect on persistence once the sample is limited to those who have the intrinsic ability and desire to complete a college degree. The most significant finding is that measures of student interest and engagement in science and mathematics were significant in predicting completion of a STEM degree, above and beyond the effects of course enrollment and performance

  7. Emplacement and geochemical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: The lujavrites of the Ilímaussaq complex, SW Greenland

    NASA Astrophysics Data System (ADS)

    Ratschbacher, Barbara C.; Marks, Michael A. W.; Bons, Paul D.; Wenzel, Thomas; Markl, Gregor

    2015-08-01

    Structural mapping and the combined study of magmatic to solid-state deformation textures and mineral compositions in highly evolved nepheline syenites (lujavrites) of the alkaline to peralkaline Ilímaussaq complex (South Greenland) reveal detailed insight into the emplacement and geochemical evolution of the melts they crystallized from. Based on magmatic to solid-state flow textures such as foliations and lineations, we propose that the investigated rock sequence forms a sill-like structure with a steep feeder zone that flattens out over a short distance and intrudes into less evolved overlying units as sub-horizontal sheets by roof uplift. Systematic compositional variation of early-magmatic eudialyte-group minerals (EGM) in the investigated rock sequence monitors the geochemical evolution of the lujavrite-forming melt(s). The chlorine contents of EGM decrease successively upwards within the rock sequence, which probably indicates a successive increase of water activity during differentiation, consistent with a change from sodic pyroxene (aegirine) to sodic amphibole (arfvedsonite) in the mineral assemblage. Both REE contents and Fe/Mn ratios of EGM are promising differentiation indicators, which increase and decrease, respectively, upwards within the sequence due to fractional crystallization. This closed-system evolution is interrupted by a shift towards less evolved melt compositions in one lujavrite unit, for which we assume magma recharge. Our study demonstrates the strength of a combined structural and petrological approach to understand the petrogenesis of an igneous body in more detail and highlights their close connection.

  8. A high-resolution field-emission-gun, scanning electron microscope investigation of anisotropic hydrogen decrepitation in Nd-Fe-B-based sintered magnets

    SciTech Connect

    Soderznik, Marko; McGuiness, Paul; Zuzek-Rozman, Kristina; Kobe, Spomenka; Skulj, Irena; Yan Gaolin

    2010-05-15

    In this investigation commercial magnets based on (Nd,Dy){sub 14}(Fe,Co){sub 79}B{sub 7} were prepared by a conventional powder-metallurgy route with a degree of alignment equal to {approx}90% and then exposed to hydrogen at a pressure of 1 bar. The magnets, in the form of cylinders, were observed to decrepitate exclusively from the ends. High-resolution electron microscopy was able to identify the presence of crack formation within the Nd{sub 2}Fe{sub 14}B grains, with the cracks running parallel to the c axis of these grains. Based on the concentration profile for hydrogen in a rare-earth transition-metal material, it is clear that the presence of hydrogen-induced cracks running perpendicular to the ends of the magnet provides for a much more rapidly progressing hydrogen front in this direction than from the sides of the magnet. This results in the magnet exhibiting a macroscopic tendency to decrepitate from the poles of the magnet toward the center. This combination of microstructural modification via particle alignment as part of the sintering process and direct observation via high-resolution electron microscopy has led to a satisfying explanation for the anisotropic hydrogen-decrepitation effect.

  9. The Giotto magnetic-field investigation

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Acuna, M. H.; Burlaga, L. F.; Franke, B.; Gramkow, B.; Mariani, F.; Musmann, G.; Ness, N. F.; Schmidt, H. U.; Terenzi, T.

    1986-01-01

    The objectives of the Giotto magnetometer experiment are the investigation of the interaction between Comet Halley and the solar wind 0.9 AU from the Sun, to within 500 km of the cometary nucleus, and the study of the interplanetary magnetic field. The instrumentation consists of a triaxial and a separate biaxial system of fluxgate sensors of the ring-core type, the associated analog electronics and a digital processor. The measuring ranges of + or 1 16 up to + or - 65536 nT are digitized by a 12-bit analog-to-digital converter. Memory modes allow the bridging of gaps in telemetry coverage of up to 10 days. Because of the dust hazard near closest approach, a magnetometer boom could not be included in the spacecraft design. The magnetic contamination problem was attacked by the use of two magnetometers and by a magnetic-cleanliness program. In-flight results show that the instrument is working flawlessly, though magnetic-contamination problems remain.

  10. FIELD INVESTIGATION OF THE DRIFT SHADOW

    SciTech Connect

    G.W. Su; T.J. Kneafsey

    2006-02-01

    A drift shadow is an area immediately beneath an underground void that, in theory, will be relatively drier than the surrounding rock mass. Numerical and analytical models of water flow through unsaturated rock predict the existence of a drift shadow, but field tests confirming the existence of the drift shadow have yet to be performed. Proving the existence of drift shadows and understanding their hydrologic and transport characteristics could provide a better understanding of how contaminants move in the subsurface if released from waste emplacement drifts such as the proposed nuclear waste repository at Yucca Mountain, Nevada. We describe the field program that will be used to investigate the existence of a drift shadow--and the corresponding hydrological process at the Hazel-Atlas silica-sand mine located at the Black Diamond Mines Regional Preserve in Antioch, California. The location and configuration of this mine makes it an excellent site to observe and measure drift shadow characteristics. The mine is located in a porous sandstone unit of the Domengine formation, an approximately 230 meter thick series of interbedded Eocene-age shales, coals, and massive-bedded sandstones. The mining method used at the mine required the development of two parallel drifts, one above the other, driven along the strike of the mined sandstone stratum. This configuration provides the opportunity to introduce water into the rock mass in the upper drift and to observe and measure its flow around the underlying drift. The passive and active hydrologic tests to be performed are described. In the passive method, cores will be obtained in a radial pattern around a drift and will be sectioned and analyzed for in-situ water content using a gravimetric technique, as well as analyzed for chemistry. With the active hydrologic test, water will be introduced into the upper drift of the two parallel drifts and the flow of the water will be tracked as it passes near the bottom drift

  11. Field Investigation of the Drift Shadow

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Kneafsey, T. J.; Ghezzehei, T. A.; Marshall, B. D.; Cook, P. J.

    2005-12-01

    A drift shadow is an area immediately beneath an underground void that, in theory, will be relatively drier than the surrounding rock mass. Numerical and analytical models of water flow through unsaturated rock predict the existence of a drift shadow, but field tests confirming its existence have yet to be performed. Proving the existence of drift shadows and understanding their hydrologic and transport characteristics could provide a better understanding of how contaminants move in the subsurface if released from waste emplacement drifts such as the proposed nuclear waste repository at Yucca Mountain, Nevada. We describe the field program that will be used to investigate the existence of a drift shadow and the corresponding hydrological process at the Hazel-Atlas silica-sand mine located at the Black Diamond Mines Regional Preserve in Antioch, California. The location and configuration of this mine makes it an excellent site to observe and measure drift shadow characteristics. The mine is located in a porous sandstone unit of the Domengine Formation, an approximately 230 meter thick series of interbedded Eocene-age shales, coals, and massive-bedded sandstones. The mining method used at the mine required the development of two parallel drifts, one above the other, driven along the strike of the mined sandstone stratum. This configuration provides the opportunity to introduce water into the rock mass in the upper drift and to observe and measure its flow around the underlying drift. The passive and active hydrologic tests to be performed are described. In the passive method, cores will be obtained in a radial pattern around a drift and will be sectioned and analyzed for in-situ water content and chemical constituents. With the active hydrologic test, water will be introduced into the upper drift of the two parallel drifts and the flow of the water will be tracked as it passes near the bottom drift. Tensiometers, electrical resistance probes, neutron probes, and

  12. Strain sensors for high field pulse magnets

    SciTech Connect

    Martinez, Christian; Zheng, Yan; Easton, Daniel; Farinholt, Kevin M; Park, Gyuhae

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  13. Field investigation of the drift shadow

    SciTech Connect

    Su, Grace W.; Kneafsey, Timothy J.; Ghezzehei, Teamrat A.; Marshall, Brian D.; Cook, Paul J.

    2005-09-08

    A drift shadow is an area immediately beneath an undergroundvoidthat, in theory, will be relatively drier than the surrounding rockmass. Numerical and analytical models of water flow through unsaturatedrock predict the existence of a drift shadow, but field tests confirmingits existence have yet to be performed. Proving the existence of driftshadows and understanding their hydrologic and transport characteristicscould provide a better understanding of how contaminants move in thesubsurface if released from waste emplacement drifts such as the proposednuclear waste repository at Yucca Mountain, Nevada. We describe the fieldprogram that will be used to investigate the existence of a drift shadowand the corresponding hydrological process at the Hazel-Atlas silica-sandmine located at the Black Diamond Mines Regional Preserve in Antioch,California. The location and configuration of this mine makes it anexcellent site to observe and measure drift shadow characteristics. Themine is located in a porous sandstone unit of the Domengine Formation, anapproximately 230 meter thick series of interbedded Eocene-age shales,coals, and massive-bedded sandstones. The mining method used at the minerequired the development of two parallel drifts, one above the other,driven along the strike of the mined sandstone stratum. Thisconfiguration provides the opportunity to introduce water into the rockmass in the upper drift and to observe and measure its flow around theunderlying drift. The passive and active hydrologic tests to be performedare described. In the passive method, cores will be obtained in a radialpattern around a drift and will be sectioned and analyzed for in-situwater content and chemical constituents. With the active hydrologic test,water will be introduced into the upper drift of the two parallel driftsand the flow of the water will be tracked as it passes near the bottomdrift. Tensiometers, electrical resistance probes, neutron probes, andground penetrating radar may be

  14. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  15. Field investigation of rooting potential in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The differential influence of root systems on plant development under field conditions is very difficult. A field experiment was devised using three different row spacings (101,152 and 203 cm ) to screen sorghum germplasm for rooting potential based on the relative ability to explore additional soil...

  16. High Performance Field Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Binderbauer, Michl

    2014-10-01

    The field-reversed configuration (FRC) is a prolate compact toroid with poloidal magnetic fields. FRCs could lead to economic fusion reactors with high power density, simple geometry, natural divertor, ease of translation, and possibly capable of burning aneutronic fuels. However, as in other high-beta plasmas, there are stability and confinement concerns. These concerns can be addressed by introducing and maintaining a significant fast ion population in the system. This is the approach adopted by TAE and implemented for the first time in the C-2 device. Studying the physics of FRCs driven by Neutral Beam (NB) injection, significant improvements were made in confinement and stability. Early C-2 discharges had relatively good confinement, but global power losses exceeded the available NB input power. The addition of axially streaming plasma guns, magnetic end plugs as well as advanced surface conditioning leads to dramatic reductions in turbulence driven losses and greatly improved stability. As a result, fast ion confinement significantly improved and allowed for build-up of a dominant fast particle population. Under such appropriate conditions we achieved highly reproducible, long-lived, macroscopically stable FRCs with record lifetimes. This demonstrated many beneficial effects of large orbit particles and their performance impact on FRCs Together these achievements point to the prospect of beam-driven FRCs as a path toward fusion reactors. This presentation will review and expand on key results and present context for their interpretation.

  17. Hyperfine structure and magnetic properties of Zn doped Co{sub 2}Z hexaferrite investigated by high-field Mössbauer spectroscopy

    SciTech Connect

    Lim, Jung Tae; Kim, Chul Sung

    2015-05-07

    The polycrystalline samples of Ba{sub 3}Co{sub 2−x}Zn{sub x}Fe{sub 24}O{sub 41} (x = 0.0, 0.5, 1.0, 1.5, and 2.0) were synthesized by the standard solid-state-reaction method. Based on the XRD patterns analyzed by Rietveld refinement, the structure was determined to be single-phased hexagonal with space group of P6{sub 3}/mmc. With increasing Zn ion concentration, the unit cell volume (V{sub u}) of samples was increased, as the sites of Fe{sup 3+} ions changed from tetrahedral to octahedral sites. We have obtained zero-field Mössbauer spectra of all samples at various temperatures ranging from 4.2 to 750 K. The measured spectra below T{sub C} were analyzed with six distinguishable sextets due to the superposition of ten-sextets for Fe sites, corresponding to the Z-type hexagonal ferrite. Also, the hyperfine field (H{sub hf}) and electric quadrupole shift (E{sub Q}) have shown abrupt changes around spin transition temperature (T{sub S}). In addition, Mössbauer spectra of all samples at 4.2 K were taken with an applied field ranging from 0 to 50 kOe, which indicates the decrease in the canting angle between applied field and H{sub hf} of samples with increasing Zn concentration.

  18. Hyperfine structure and magnetic properties of Zn doped Co2Z hexaferrite investigated by high-field Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Lim, Jung Tae; Kim, Chul Sung

    2015-05-01

    The polycrystalline samples of Ba3Co2-xZnxFe24O41 (x = 0.0, 0.5, 1.0, 1.5, and 2.0) were synthesized by the standard solid-state-reaction method. Based on the XRD patterns analyzed by Rietveld refinement, the structure was determined to be single-phased hexagonal with space group of P63/mmc. With increasing Zn ion concentration, the unit cell volume (Vu) of samples was increased, as the sites of Fe3+ ions changed from tetrahedral to octahedral sites. We have obtained zero-field Mössbauer spectra of all samples at various temperatures ranging from 4.2 to 750 K. The measured spectra below TC were analyzed with six distinguishable sextets due to the superposition of ten-sextets for Fe sites, corresponding to the Z-type hexagonal ferrite. Also, the hyperfine field (Hhf) and electric quadrupole shift (EQ) have shown abrupt changes around spin transition temperature (TS). In addition, Mössbauer spectra of all samples at 4.2 K were taken with an applied field ranging from 0 to 50 kOe, which indicates the decrease in the canting angle between applied field and Hhf of samples with increasing Zn concentration.

  19. Coordinated use of ground-based auroral and high-precision LEO magnetic and electric field measurements to investigate auroral electrodynamics

    NASA Astrophysics Data System (ADS)

    Donovan, E.

    2008-12-01

    There are now dozens of sensitive All-Sky Imagers (ASIs) deployed in networks spanning latitudes from the subauroral zone into the polar cap and many hours of magnetic local time. These new networks are collecting data with unprecedented spatial coverage and temporal resolution and in numerous scientifically interesting wavelength ranges. As well, direct satellite overflights of ground-based images that were once rare occurrences are becoming increasingly commonplace. This talk will focus on the scientific opportunities afforded by the integrated use of ground-based auroral images and magnetic and electric field data from existing and planned LEO missions including CHAMP, Oersted, and Swarm. These opportunities include exploring the relationship between field-aligned current and Poynting flux and different types of aurora, as well as reducing spatio-temporal ambiguity in the in situ measurements.

  20. Investigating the QED vacuum with ultra-intense laser fields

    NASA Astrophysics Data System (ADS)

    King, B.; Di Piazza, A.

    2014-05-01

    In view of the increasingly stronger available laser fields it is becoming feasible to employ them to probe the nonlinear dielectric properties of the vacuum as predicted by quantum electrodynamics (QED) and to test QED in the presence of intense laser beams. First, we discuss vacuum-polarization effects that arise in the collision of a high-energy proton beam with a strong laser field. In addition, we investigate the process of light-by-light diffraction mediated by the virtual electron-positrons of the vacuum. A strong laser beam "diffracts" a probe laser field due to vacuum polarization effects, and changes its polarization. This change of the polarization is shown to be in principle measurable. Also, the possibility of generating harmonics by exploiting vacuum-polarization effects in the collision in vacuum of two ultra-strong laser beams is discussed. Moreover, when two strong parallel laser beams collide with a probe electromagnetic field, each photon of the probe may interact through the "polarized" quantum vacuum with the photons of the other two fields. Analogously to "ordinary" double-slit set-ups involving matter, the vacuum-scattered probe photons produce a diffraction pattern, which is the envisaged observable to measure the quantum interaction between the probe and strong field photons. We have shown that the diffraction pattern becomes visible in a few operating hours, if the strong fields have an intensity exceeding 1024W/cm2.

  1. A semi-empirical self-consistent-field hartree—fock crystal-orbital investigation on highly puckered porphyrinatonickel(II) backbones

    NASA Astrophysics Data System (ADS)

    Böhm, Michael C.

    1984-06-01

    The band structure of a highly puckered, saddle-shaped prophyrinatonickel(II) polymer with large inter-deck separations has been studied by means of a semi-empirical INDO crystal-orbital approach. The oxidized material belongs to the class of organic metals with narrow bands that lead to strongly correlated hopping motions of injected charge carriers

  2. An investigation into the utilization of HCMM thermal data for the descrimination of volcanic and Eolian geological units. [Craters of the Moon volcanic field, Idaho; San Francisco volcanic field, Arizona; High Desert, California; and the Cascade Range, California and Oregon

    NASA Technical Reports Server (NTRS)

    Head, J. W., III (Principal Investigator)

    1982-01-01

    Analysis of HCMM data shows that the resolution provided by the thermal data is inadequate to permit the identification of individual lava flows within the volcanic test sites. Thermal data of southern California reveals that dune complexes at Kelso and Algodomes are found to be too small to permit adequate investigation of their structure. As part of the study of the San Francisco volcanic field, marked variations in the thermal properties of the region between Flagstaff and the Utah State border were observed. Several well-defined units within the Grand Canyon and the Colorado Plateau were recognized and appear to be very suitable for analysis with HCMM, SEASAT and LANDSAT images. Although individual volcanic constructs within the Cascade Range are too small to permit detailed characterization with the thermal data, the regional volcano/tectonic setting offers a good opportunity for comparing the possible thermal distinction between this area and sedimentary fold belts such as those found in the eastern United States. Strong intra-regional variations in vegetation cover were also tentatively identified for the Oregon test site.

  3. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    TD water can be sampled for infiltrating water measurement. We installed monitoring wells to measure ground water level and water quality. Inflow, outflow, flooding water, infiltrating water, and ground water were measured and sampled. Regarding to parameters, temperature, pH, EC, DO and COD, main ions were measured to understand characteristic of water quality and transformation processes. Inorganic forms of nitrogen and phosphorus were also measured, as behavior and balance of nitrogen and phosphorus are focused on. We observed following points by taking data of water quality; seasonal trend, changes occurred according to agricultural events like irrigation and fertilization. Nitrogen in ground water tends to high in June due to fertilizer. It is thought because farmers fertilize the filed before transplanting at the beginning of flooding season. Regarding to dissolved inorganic nitrogen, higher concentrations were observed in inflow water than in flooding water and outflow water. Though it needs discussion in loads as well as flow measurement, this suggests that nutrients are absorbed in paddy field and less nutrients are emitted after irrigation water passing through paddy field. Based on this research we are planning continuous investigation to assess environmental impact from paddy field.

  4. Dynamic nuclear polarization at high magnetic fields

    PubMed Central

    Maly, Thorsten; Debelouchina, Galia T.; Bajaj, Vikram S.; Hu, Kan-Nian; Joo, Chan-Gyu; Mak–Jurkauskas, Melody L.; Sirigiri, Jagadishwar R.; van der Wel, Patrick C. A.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    Dynamic nuclear polarization (DNP) is a method that permits NMR signal intensities of solids and liquids to be enhanced significantly, and is therefore potentially an important tool in structural and mechanistic studies of biologically relevant molecules. During a DNP experiment, the large polarization of an exogeneous or endogeneous unpaired electron is transferred to the nuclei of interest (I) by microwave (μw) irradiation of the sample. The maximum theoretical enhancement achievable is given by the gyromagnetic ratios (γe/γl), being ∼660 for protons. In the early 1950s, the DNP phenomenon was demonstrated experimentally, and intensively investigated in the following four decades, primarily at low magnetic fields. This review focuses on recent developments in the field of DNP with a special emphasis on work done at high magnetic fields (≥5 T), the regime where contemporary NMR experiments are performed. After a brief historical survey, we present a review of the classical continuous wave (cw) DNP mechanisms—the Overhauser effect, the solid effect, the cross effect, and thermal mixing. A special section is devoted to the theory of coherent polarization transfer mechanisms, since they are potentially more efficient at high fields than classical polarization schemes. The implementation of DNP at high magnetic fields has required the development and improvement of new and existing instrumentation. Therefore, we also review some recent developments in μw and probe technology, followed by an overview of DNP applications in biological solids and liquids. Finally, we outline some possible areas for future developments. PMID:18266416

  5. High School Students' Representations and Understandings of Electric Fields

    ERIC Educational Resources Information Center

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  6. Investigation of trap properties in high-k/metal gate p-type metal-oxide-semiconductor field-effect-transistors with aluminum ion implantation using random telegraph noise analysis

    SciTech Connect

    Kao, Tsung-Hsien; Chang, Shoou-Jinn Fang, Yean-Kuen; Huang, Po-Chin; Wu, Chung-Yi; Wu, San-Lein

    2014-08-11

    In this study, the impact of aluminum ion implantation (Al I/I) on random telegraph noise (RTN) in high-k/metal gate (HK/MG) p-type metal-oxide-semiconductor field-effect-transistors (pMOSFETs) was investigated. The trap parameters of HK/MG pMOSFETs with Al I/I, such as trap energy level, capture time and emission time, activation energies for capture and emission, and trap location in the gate dielectric, were determined. The configuration coordinate diagram was also established. It was observed that the implanted Al could fill defects and form a thin Al{sub 2}O{sub 3} layer and thus increase the tunneling barrier height for holes. It was also observed that the trap position in the Al I/I samples was lower due to the Al I/I-induced dipole at the HfO{sub 2}/SiO{sub 2} interface.

  7. Recent biophysical studies in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Maret, Georg

    1990-06-01

    A brief overview of biophysical effects of steady magnetic fields is given. The need of high field strength is illustrated by several recent diamagnetic orientation experiments. They include rod-like viruses, purple membranes and chromosomes. Results of various studies on bees, quails, rats and pigeons exposed to fields above 7 T are also resumed.

  8. FIELD INVESTIGATION AND EVALUATION OF LAND TREATING TANNERY SLUDGES

    EPA Science Inventory

    Land treatment of wastewater sludges from tannery processes has been investigated during a five-year field plot study. The experimental design included eight field test plots receiving selected applications of three types of tannery sludges over a three-year period. The five-year...

  9. Investigations in Life Science, Junior High.

    ERIC Educational Resources Information Center

    Stephenson, Robert L.

    Developed for teachers of junior high school science classes, this unit presents ten investigations on plant growth, animal life, pond life, and general science interests. These investigations are designed to accompany any popular life science textbooks, may be used to supplement a year-long course in life science, are intended as a springboard…

  10. A Comparative Model of Field Investigations: Aligning School Science Inquiry with the Practices of Contemporary Science

    ERIC Educational Resources Information Center

    Windschitl, Mark; Dvornich, Karen; Ryken, Amy E.; Tudor, Margaret; Koehler, Gary

    2007-01-01

    Field investigations are not characterized by randomized and manipulated control group experiments; however, most school science and high-stakes tests recognize only this paradigm of investigation. Scientists in astronomy, genetics, field biology, oceanography, geology, and meteorology routinely select naturally occurring events and conditions and…

  11. High-Field Phenomena of Qubits.

    PubMed

    van Tol, Johan; Morley, G W; Takahashi, S; McCamey, D R; Boehme, C; Zvanut, M E

    2009-12-01

    Electron and nuclear spins are very promising candidates to serve as quantum bits (qubits) for proposed quantum computers, as the spin degrees of freedom are relatively isolated from their surroundings and can be coherently manipulated, e.g., through pulsed electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR). For solid-state spin systems, impurities in crystals based on carbon and silicon in various forms have been suggested as qubits, and very long relaxation rates have been observed in such systems. We have investigated a variety of these systems at high magnetic fields in our multifrequency pulsed EPR/ENDOR (electron nuclear double resonance) spectrometer. A high magnetic field leads to large electron spin polarizations at helium temperatures, giving rise to various phenomena that are of interest with respect to quantum computing. For example, it allows the initialization of both the electron spin as well as hyperfine-coupled nuclear spins in a well-defined state by combining millimeter and radio-frequency radiation. It can increase the T(2) relaxation times by eliminating decoherence due to dipolar interaction and lead to new mechanisms for the coherent electrical readout of electron spins. We will show some examples of these and other effects in Si:P, SiC:N and nitrogen-related centers in diamond. PMID:19946596

  12. The High School Players Field Hockey Journal.

    ERIC Educational Resources Information Center

    Schultz, Bobbie

    This student's journal aims at helping to develop a successful and highly motivated high school girls field hockey team. General information about the sport and student involvement is presented. Definitions of terms used in field hockey are given as well as general considerations about play, defensive and offensive strategies, and penalties.…

  13. Large Field, High Resolution Full-Field Optical Coherence Tomography

    PubMed Central

    Assayag, Osnath; Antoine, Martine; Sigal-Zafrani, Brigitte; Riben, Michael; Harms, Fabrice; Burcheri, Adriano; Grieve, Kate; Dalimier, Eugénie; Le Conte de Poly, Bertrand; Boccara, Claude

    2014-01-01

    We present a benchmark pilot study in which high-resolution Full-Field Optical Coherence Tomography (FF-OCT) was used to image human breast tissue and is evaluated to assess its ability to aid the pathologist’s management of intra-operative diagnoses. FF-OCT imaging safety was investigated and agreement between FF-OCT and routinely prepared histopathological images was evaluated. The compact setup used for this study provides 1 µm3 resolution and 200 µm imaging depth, and a 2.25 cm2 specimen is scanned in about 7 minutes. 75 breast specimens were imaged from 22 patients (21 women, 1 man) with a mean age of 58 (range: 25-83). Pathologists blind diagnosed normal/benign or malignant tissue based on FF-OCT images alone, diagnosis from histopathology followed for comparison. The contrast in the FF-OCT images is generated by intrinsic tissue scattering properties, meaning that no tissue staining or preparation is required. Major architectural features and tissue structures of benign breast tissue, including adipocytes, fibrous stroma, lobules and ducts were characterized. Subsequently, features resulting from pathological modification were characterized and a diagnosis decision tree was developed. Using FF-OCT images, two breast pathologists were able to distinguish normal/benign tissue from lesional with a sensitivity of 94% and 90%, and specificity of 75% and 79% respectively. PMID:24000981

  14. Liquid Droplet Dynamics in Gravity Compensating High Magnetic Field

    NASA Technical Reports Server (NTRS)

    Bojarevics, V.; Easter, S.; Pericleous, K.

    2012-01-01

    Numerical models are used to investigate behavior of liquid droplets suspended in high DC magnetic fields of various configurations providing microgravity-like conditions. Using a DC field it is possible to create conditions with laminar viscosity and heat transfer to measure viscosity, surface tension, electrical and thermal conductivities, and heat capacity of a liquid sample. The oscillations in a high DC magnetic field are quite different for an electrically conducting droplet, like liquid silicon or metal. The droplet behavior in a high magnetic field is the subject of investigation in this paper. At the high values of magnetic field some oscillation modes are damped quickly, while others are modified with a considerable shift of the oscillating droplet frequencies and the damping constants from the non-magnetic case.

  15. The Pioneer 11 high-field fluxgate magnetometer

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1973-01-01

    The High Field Fluxgate Magnetometer Experiment flow aboard the Pioneer 11 spacecraft to investigate Jupiter's magnetic field is described. The instrument extends the spacecraft's upper limit measurement capability by more than an order of magnitude to 17.3 gauss with minimum power and volume requirements.

  16. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). As a part of the IRP program, field investigations were performed in 1992 to obtain the information needed to assess what future actions willneed to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities.

  17. High-field magnetization of Dy2O3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 deg and 4.2 K, in applied magnetic fields ranging to 7 Teslas. A linear dependence of magnetization on applied field is observable in high field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is 2.77 + or - 0.08 Bohr magnetons per ion.

  18. High-field magnetization of Dy2O3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    The magnetization of powdered samples of Dy2O3 has been measured at temperatures between 1.45 and 4.2 K, in applied magnetic fields ranging to 70 kilogauss. A linear dependence of magnetization on applied field is observable in the high-field region, the slope of which is independent of temperature over the range investigated. The extrapolated saturation magnetic moment is about 2.77 Bohr magnetons per ion.

  19. High Intensity Radiated Fields (HIRF) project plan

    NASA Astrophysics Data System (ADS)

    Glynn, Michael S.; Blair, Jerry T.; Hintze, M. Marx

    1991-09-01

    Addressed here is the Federal Aviation Administration's approach to High Intensity Radiated Fields (HIRF) affecting the aviation community. Near- and far-term tasks are described. Deliverables, program management, scheduling, and cost issues are discussed.

  20. SITE INVESTIGATIONS/FIELD INVESTIGATIONS OF SUPERFUND HAZARDOUS WASTE SITES: APRIL 1, 2003 - MAY 31, 2004

    EPA Science Inventory

    These projects require developing and implementing Work Plans which include the Project Operations Plan, Field Sampling and Analysis Plan, Quality Assurance Plan and the Health and Safety Plan. In general, these large complex investigations involve: collecting soil, sediment, sur...

  1. High magnetic field facilities in Latin America

    NASA Astrophysics Data System (ADS)

    Sato, R.; Grössinger, R.; Bertorello, H.; Broto, J. M.; Davies, H. A.; Estevez-Rams, E.; Gonzalez, J.; Matutes, J.; Sinnecker, J. P.; Sagredo, V.

    2006-11-01

    The EC supported a network (under the Framework 5 ALFA Programme) designated HIFIELD (Project number II0147FI) and entitled: "Measurement methods involving high magnetic fields for advanced and novel materials". As a result, high field facilities were initiated, constructed or extended at the following laboratories in Latin America: University Cordoba (Argentina), CES, Merida (Venezuela), CIMAV, Chihuahua (Mexico), University Federal de Rio de Janeiro (Brazil).

  2. Frustrated magnets in high magnetic fields-selected examples.

    PubMed

    Wosnitza, J; Zvyagin, S A; Zherlitsyn, S

    2016-07-01

    An indispensable parameter to study strongly correlated electron systems is the magnetic field. Application of high magnetic fields allows the investigation, modification and control of different states of matter. Specifically for magnetic materials experimental tools applied in such fields are essential for understanding their fundamental properties. Here, we focus on selected high-field studies of frustrated magnetic materials that have been shown to host a broad range of fascinating new and exotic phases. We will give brief insights into the influence of geometrical frustration on the critical behavior of triangular-lattice antiferromagnets, the accurate determination of exchange constants in the high-field saturated state by use of electron spin resonance measurements, and the coupling of magnetic degrees of freedom to the lattice evidenced by ultrasound experiments. The latter technique as well allowed new, partially metastable phases in strong magnetic fields to be revealed. PMID:27310818

  3. A High Field Magnet Design for A Future Hadron Collider

    SciTech Connect

    Gupta, R.; Chow, K.; Dietderich, D.; Gourlay, S.; Millos, G.; McInturff, A.; Scanlan, R.

    1998-09-01

    US high energy physics community is exploring the possibilities of building a Very Large Hadron Collider (VLHC) after the completion of LHC. This paper presents a high field magnet design option based on Nb{sub 3}Sn technology. A preliminary magnetic and mechanical design of a 14-16 T, 2-in-1 dipole based on the 'common coil design' approach is presented. The computer code ROXIE has been upgraded to perform the field quality optimization of magnets based on the racetrack coil geometry. A magnet R&D program to investigate the issues related to high field magnet designs is also outlined.

  4. Experiments to investigate particulate materials in reduced gravity fields

    NASA Technical Reports Server (NTRS)

    Bowden, M.; Eden, H. F.; Felsenthal, P.; Glaser, P. E.; Wechsler, A. E.

    1967-01-01

    Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity.

  5. Results of investigations at the Ahuachapan geothermal field, El Salvador

    SciTech Connect

    Dennis, B.; Goff, F.; Van Eeckhout, E.; Hanold, B.

    1990-04-01

    Well logging operations were performed in eight of the geothermal wells at Ahuachapan. High-temperature downhole instruments, including a temperature/rabbit, caliper, fluid velocity spinner/temperature/pressure (STP), and fluid sampler, were deployed in each well. The caliper tool was used primarily to determine if chemical deposits were present in well casings or liners and to investigate a suspected break in the casing in one well. STP logs were obtained from six of the eight wells at various flow rates ranging from 30 to 80 kg/s. A static STP log was also run with the wells shut-in to provide data to be used in the thermodynamic analysis of several production wells. The geochemical data obtained show a system configuration like that proposed by C. Laky and associates in 1989. Our data indicate recharge to the system from the volcanic highlands south of the field. Additionally, our data indicate encroachment of dilute fluids into deeper production zones because of overproduction. 17 refs., 50 figs., 10 tabs.

  6. Investigation of the light field of a semiconductor diode laser.

    PubMed

    Ankudinov, A V; Yanul, M L; Slipchenko, S O; Shelaev, A V; Dorozhkin, P S; Podoskin, A A; Tarasov, I S

    2014-10-20

    Scanning near-field optical microscopy was applied to study, with sub-wavelength spatial resolution, the near- and the far-field distributions of propagating modes from a high-power laser diode. Simple modeling was also performed and compared with experimental results. The simulated distributions were consistent with the experiment and permitted clarification of the configuration of the transverse modes of the laser. PMID:25401675

  7. Antenna development for high field plasma imaging

    SciTech Connect

    Kong, X.; Domier, C. W.; Luhmann, N. C. Jr.

    2010-10-15

    Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) are two microwave nonperturbing plasma visualization techniques that employ millimeter-wave imaging arrays with lens-coupled planar antennas, yielding time-resolved images of temperature (via ECEI) and electron density (via MIR) fluctuations within high temperature magnetic fusion plasmas. A series of new planar antennas have been developed that extend this technology to frequencies as high as 220 GHz for use on high field plasma devices with toroidal fields in excess of 3 T. Antenna designs are presented together with theoretical calculations, simulations, and experimental measurements.

  8. The NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Williams, Reuben A.

    1997-01-01

    High Intensity Radiated Fields (HIRF) are the result of a multitude of intentional and nonintentional electromagnetic sources that currently exists in the world. Many of today's digital systems are susceptible to electronic upset if subjected to certain electromagnetic environments (EME). Modern aerospace designers and manufacturers increasingly rely on sophisticated digital electronic systems to provide critical flight control in both military, commercial, and general aviation aircraft. In an effort to understand and emulate the undesired environment that high energy RF provides modern electronics, the Electromagnetics Research Branch (ERB) of the Flight Electronics and Technology Division (FETD) conducts research on RF and microwave measurement methods related to the understanding of HIRF. In the High Intensity Radiated Fields Laboratory, the effects of high energy radiating electromagnetic fields on avionics and electronic systems are tested and studied.

  9. Epidemiologic response to anthrax outbreaks: field investigations, 1950-2001.

    PubMed

    Bales, Michael E; Dannenberg, Andrew L; Brachman, Philip S; Kaufmann, Arnold F; Klatsky, Peter C; Ashford, David A

    2002-10-01

    We used unpublished reports, published manuscripts, and communication with investigators to identify and summarize 49 anthrax-related epidemiologic field investigations conducted by the Centers for Disease Control and Prevention from 1950 to August 2001. Of 41 investigations in which Bacillus anthracis caused human or animal disease, 24 were in agricultural settings, 11 in textile mills, and 6 in other settings. Among the other investigations, two focused on building decontamination, one was a response to bioterrorism threats, and five involved other causes. Knowledge gained in these investigations helped guide the public health response to the October 2001 intentional release of B. anthracis, especially by addressing the management of anthrax threats, prevention of occupational anthrax, use of antibiotic prophylaxis in exposed persons, use of vaccination, spread of B. anthracis spores in aerosols, clinical diagnostic and laboratory confirmation methods, techniques for environmental sampling of exposed surfaces, and methods for decontaminating buildings. PMID:12396934

  10. Molecular dynamics in high electric fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  11. Field and Laboratory Investigations of Organic Photochemistry on Urban Surfaces

    NASA Astrophysics Data System (ADS)

    Styler, S. A.; Baergen, A.; van Pinxteren, D.; Donaldson, D. J.; Herrmann, H.

    2014-12-01

    In polluted urban environments, windows and building surfaces rapidly become coated with a complex film of chemicals, which enhances the dry deposition of particles and the partitioning of semi-volatile organic species to the surface. Despite its high surface-to-volume ratio and direct exposure to sunlight, few studies have directly investigated the role that this "urban film" may play in promoting the photooxidative processing of semi-volatile organics contained within it. The present study represents a comprehensive field- and laboratory-based investigation of the film-phase photochemistry of polycyclic aromatic hydrocarbons (PAH), here used as proxies for light-absorbing semi-volatile organics present within the film. Urban film sampling was conducted using a custom-built three-stage sampler housing, which was deployed in a central, high-traffic area in Leipzig, Germany. The sampler itself employs small glass beads as surrogate window surfaces and is designed such that only its uppermost stage is exposed to sunlight. Each stage is subdivided into 16 compartments, which allows for the study of film formation and evolution. In the first phase of the study, the role of urban film as a photochemical sink for reactive organic species was determined by measuring total film PAH content and PAH abundance ratios as a function of atmospheric exposure time under both light and dark conditions. In the second, more general, phase of the study, the organic and inorganic composition of collected film samples was compared to that of co-located PM10 samples, and differences between the two sample types were used to gain insight into the relative importance of heterogeneous photochemical oxidation within the particle and film phases. In the third phase of the study, film samples grown under dark conditions were exposed to gas-phase ozone in an atmospheric-pressure flat-bed reactor, and the kinetics of ozone-induced PAH loss were studied under both dark and illuminated conditions

  12. High-field dipoles for future accelerators

    SciTech Connect

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  13. Investigation on a field description of the chirped laser pulse

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Huang, S. J.; Song, Q.; Wang, P. X.

    2016-02-01

    Starting from a first-order approximate field description function for laser pulses, the method currently used to approximate chirped laser pulse (CLP) substitutes frequency and wave vector related variables with spatiotemporally varying functions. We investigated the error involved by calculating the relative deviation from Maxwell equations. Errors for the electric and magnetic fields are analyzed separately, and behaviors related to parameter changes (that is, in laser width, pulse duration and chirp parameter) were studied. Results show that aberration associated with currently used field-description functions for CLP increases monotonically with chirp parameter, and the deviation introduced by chirping is proportional to the relative frequency span of the laser. Simulations based on these functions will lead to considerable error, especially for laser pulses with large chirping.

  14. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendix A, contains the analytical results.

  15. Community fear of nonionizing radiation: a field investigation

    SciTech Connect

    Daley, M.L.; Morton, W.E.; Chartier, V.; Zajac, H.; Benitez, H.

    1985-03-01

    Four children from the same school class developed cancer. Because of concern in the community, a field study designed to document levels of environmental, nonionizing radiation was undertaken. Two school sites were investigated, the one with the cluster of cases and the other without known cases of cancer. The measured values of nonionizing radiation at both sites were not different and were well below existing exposure standards.

  16. Regional Ecorisk Field investigation, upper Clark Fork River Basin

    SciTech Connect

    Pastorok, R.; LaTier, A.; Ginn, T.

    1995-12-31

    The Regional Ecorisk Field Investigation was conducted at the Clark Fork River Superfund Site (Montana) to evaluate the relationships between plant communities and tailings deposits in riparian habitats and to evaluate food-chain transfer of trace elements to selected wildlife species. Stations were selected to represent a range of vegetation biomass (or cover) values and apparent impact of trace elements, with some areas of lush vegetation, some areas of mostly unvegetated soil (e.g., < 30 percent plant cover), and a gradient in between. For the evaluation of risk to wildlife, bioaccumulation of metals was evaluated in native or naturalized plants, terrestrial invertebrates, and the deer mouse (Peromyscus maniculatus). Potential reproductive effects in the deer mouse were evaluated by direct measurements. For other wildlife species, bioaccumulation data were interpreted in the context of food web exposure models. Total biomass and species richness of riparian plant communities are related to tailings content of soil as indicated by pH and metals concentrations. Risk to populations of omnivorous small mammals such as the deer mouse was not significant. Relative abundance and reproductive condition of the deer mouse were normal, even in areas of high metals enrichment. Based on exposure models and site-specific tissue residue data for dietary species, risk to local populations of predators such as red fox and American kestrel that feed on deer mice and terrestrial invertebrates is not significant. Risk to herbivores related to metals bioaccumulation in plant tissues is not significant. Population level effects in deer and other large wildlife are not expected because of the large home ranges of such species and compensatory demographic factors.

  17. Design Studies for an Ultra High Field K80 Cyclotron

    NASA Astrophysics Data System (ADS)

    Schubert, Jeff; Blosser, Henry

    1996-05-01

    We are investigating the use of a wide-bore, 8 T magnet as a component of an ultra high field cyclotron. Such a machine would use the highest magnetic field of any cyclotron, to date. The K80 `Eight Tesla Cyclotron' would have roughly the same magnetic rigidity (Bρ) as the Oak Ridge Isochronous Cyclotron in a package of only one fourth the radius, with a corresponding reduction in cost. This cyclotron could accelerate particles with a charge state Q/A = 1/4 to a final energy of between 5 and 6 MeV/nucleon, the energy range currently being used to study superdeformed, high angular momentum nuclei that result from glancing collisions. Studies thus far have stressed achieving sufficient vertical focusing (ν_z) despite the high magnetic field level. The high field also reduces the space available for central region structures, which complicates early-turn focusing, orbit centering and the design of the spiral inflector.

  18. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  19. Photoconductivity in ZnSe under high electric fields

    SciTech Connect

    Cho, P.S.; Ho, P.T.; Goldhar, J.; Lee, C.H. . Dept. of Electrical Engineering)

    1994-06-01

    High voltage photoconductive switches utilizing polycrystalline ZnSe were investigated. Experiments have been performed on polycrystalline ZnSe switches in a longitudinal geometry. Electrodes of perforated metal films, a transparent liquid electrolyte, plasma, and ultraviolet-light-generated carriers were used. High-bias fields of up to 100 kV/cm and current densities over 100 kA/cm[sup 2] can be applied to the polycrystalline ZnSe switches. Nonlinear effects were observed at high fields with near band edge illumination. Applications of these effects are discussed.

  20. Derivation of the high field semiconductor equations

    SciTech Connect

    Hagan, P.S. ); Cox, R.W. ); Wagner, B.A. . Dept. of Mathematics)

    1991-01-01

    Electron and hole densities evolve in x-z phase space according to Boltzmann equations. When the mean free path of the particles is short and electric force on the particles is weak, a well-known expansion can be used to solve the Boltzmann equation. This asymptotic solution shows that the spatial density of electrons and holes evolves according to diffusion-drift equations. As devices become smaller, electric fields become stronger, which renders the Basic Semiconductor Equations increasingly inaccurate. To remedy this problem, we use singular perturbation techniques to obtain a new asymptotic expansion for the Boltzmann equation. Like the Hilbert expansion, the new expansion requires the mean free path to be short compared to all macroscopic length scales. However, it does not require the electric forces to be weak. The new expansion shows that spatial densities obey diffusion-drift equations as before, but the diffusivity D and mobility {mu} turn out to be nonlinear functions of the electric field. In particular, our analysis determines the field-dependent mobilities {mu}(E) and diffusivities D(E) directly from the scattering operator. By carrying out this asymptotic expansion to higher order, we obtain the high frequency corrections to the drift velocity and diffusivity, and also the corrections due to gradients in the electric field. Remarkably, we find that Einsteins's relation is still satisfied, even with these corrections. The new diffusion-drift equations, together with Poissons' equation for the electric field, form the high-field semiconductor equations, which can be expected to be accurate regardless of the strength of the electric fields within the semiconductor. In addition, our analysis determines the entire momentum distribution of the particles, so we derive a very accurate first moment model for semi-conductors by substituting the asymptotically-correct distribution back into the Boltzmann equation and taking moments.

  1. Sultan - forced flow, high field test facility

    SciTech Connect

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-09-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs.

  2. Investigating options for attenuating methane emission from Indian rice fields.

    PubMed

    Singh, S N; Verma, Amitosh; Tyagi, Larisha

    2003-08-01

    The development of methods and strategies to reduce the emission of methane from paddy fields is a central component of ongoing efforts to protect the Earth's atmosphere and to avert a possible climate change. It appears from this investigation that there can be more than one strategy to contain methane emission from paddy fields, which are thought to be a major source of methane emission in tropical Asia. Promising among the mitigating options may be water management, organic amendments, fertilizer application and selection of rice cultivars. It is always better to adopt multi-pronged strategies to contain CH4 efflux from rice wetlands. Use of fermented manures with low C/N ratio, application of sulfate-containing chemical fertilizers, selection of low CH4 emitting rice cultivars, and implementation of one or two short aeration periods before the heading stage can be effective options to minimize CH4 emission from paddy fields. Among these strategies, water management, which appears to be the best cost-effective and eco-friendly way for methane mitigation, is only possible when excess water is available for reflooding after short soil drying at the right timing and stage. However, in tropical Asia, rice fields are naturally flooded during the monsoonal rainy season and fully controlled drainage is often impossible. In such situation, water deficits during the vegetative and reproductive stage may drastically affect the rice yields. Thus, care must be taken to mitigate methane emission without affecting rice yields. PMID:12742397

  3. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  4. Investigation of Magnetic Interference Induced via Gradient Field Coils for Ultra-Low-Field MRI Systems

    NASA Astrophysics Data System (ADS)

    Oyama, D.; Hatta, J.; Miyamoto, M.; Adachi, Y.; Higuchi, M.; Kawai, J.; Fujihira, J.; Tsuyuguchi, N.; Uehara, G.

    2014-05-01

    We are developing a compact ultra-low-field MRI system that is composed of a SQUID gradiometer and a coil set that generates magnetic fields for capturing MR images. The magnetic interference induced from a power amplifier potentially disturbs MRI measurements. We investigated the path of the interference by experimental measurements and calculation of the magnetic field generated by the coil set. We found that the magnetic field generated from a particular gradient coil affected the SQUID gradiometer and that the level of the interference was strongly dependent on the shape of the gradient coils. When the coils' shapes are designed, minimizing the noise introduced from the power amplifier is crucial, in addition to consideration of the homogeneities of the magnetic field.

  5. Interpretation and communication of the results of medical field investigations.

    PubMed

    Schulte, P A; Singal, M

    1989-07-01

    Since the controversy over cytogenetic test results at the Love Canal in New York State, there has been increasing concern about the communication of medical test results to participants in field studies. To identify the range of issues that arise and to present examples of practices that might be useful for consideration, we have drawn from 15 years of experience in interpreting and communicating the results of medical field investigations by the National Institute for Occupational Safety and Health. The investigations were qualitatively characterized according to study type and design, substances involved, language used in the notification of results, and the nature of the efforts to put results in perspective. Based on this evaluation, the following recommendations are made: (1) provide a comprehensible consent form, (2) interpret results for study participants, (3) use clear language, (4) be explicit about uncertainty of findings, (5) where appropriate, indicate the need for medical follow-up, (6) provide results promptly, (7) provide overall study results, (8) evaluate the impact of the notification, (9) train investigators in the practice of communicating results. PMID:2769455

  6. High-field EPR and ESEEM investigation of the nitrogen quadrupole interaction of nitroxide spin labels in disordered solids: toward differentiation between polarity and proticity matrix effects on protein function.

    PubMed

    Savitsky, A; Dubinskii, A A; Plato, M; Grishin, Y A; Zimmermann, H; Möbius, K

    2008-07-31

    The combination of high-field electron paramagnetic resonance (EPR) with site-directed spin labeling (SDSL) techniques employing nitroxide radicals has turned out to be particularly powerful in revealing subtle changes of the polarity and proticity profiles in proteins enbedded in membranes. This information can be obtained by orientation-selective high-field EPR resolving principal components of the nitroxide Zeeman (g) and hyperfine ( A) tensors of the spin labels attached to specific molecular sites. In contrast to the g- and A-tensors, the (14)N ( I = 1) quadrupole interaction tensor of the nitroxide spin label has not been exploited in EPR for probing effects of the microenvironment of functional protein sites. In this work it is shown that the W-band (95 GHz) high-field electron spin echo envelope modulation (ESEEM) method is well suited for determining with high accuracy the (14)N quadrupole tensor principal components of a nitroxide spin label in disordered frozen solution. By W-band ESEEM the quadrupole components of a five-ring pyrroline-type nitroxide radical in glassy ortho-terphenyl and glycerol solutions have been determined. This radical is the headgroup of the MTS spin label widely used in SDSL protein studies. By DFT calulations and W-band ESEEM experiments it is demonstrated that the Q(yy) value is especially sensitive to the proticity and polarity of the nitroxide environment in H-bonding and nonbonding situations. The quadrupole tensor is shown to be rather insensitive to structural variations of the nitroxide label itself. When using Q(yy) as a testing probe of the environment, its ruggedness toward temperature changes represents an important advantage over the g xx and A(zz) parameters which are usually employed for probing matrix effects on the spin labeled molecular site. Thus, beyond measurenments of g xx and A(zz) of spin labeled protein sites in disordered solids, W-band high-field ESEEM studies of (14)N quadrupole interactions open a new

  7. The Cluster magnetic field investigation: Scientific objectives and instrumentation

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Cowley, S. W. H.; Dunlop, M. W.; Southwood, D. J.; Thomlinson, J. G.; Glassmeier, K. H.; Musmann, G.; Luehr, H.; Acuna, M. H.; Fairfield, D. H.

    1993-01-01

    The Cluster magnetic field investigation is presented. Cluster represents a qualitatively new type of space mission which will provide, for the first time, a three dimensional view of small scale plasma processes and structures in the different regions in and around the Earth's magnetosphere. Concepts of data analysis needed to interpret the four spacecraft magnetic field data in terms of magnetospheric processes and structures are outlined. The instrument itself, a vital component of the scientific payload, follows a long tradition of fluxgate magnetometers on space missions, yet represents an evolution in terms of built in functions and reliability. A detailed description of the instrument is given with emphasis on those aspects that are unique to the mission.

  8. Effective field investigation in arrays of polycrystalline ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Hernández, Eduardo Padrón; Rezende, S. M.; Azevedo, A.

    2008-04-01

    Nanowire arrays have been used as prototypes to investigate basic issues such as size effect, shape anisotropy, and dipolar interaction on the magnetic properties. Under ideal conditions, the nanowires are approximated as perfect long cylinders. Here, coherent rotation as the magnetization reversal mode cannot completely interpret the experimental data. The internal magnetic field value, in nanowire arrays, decreases due to the wire inhomogeneities and the dipolar interaction between the wires. Realistic models must account for the imperfections due to the fabrication process. Instead of it, in this work, a modified ellipsoid-chain array model is proposed to describe magnetization reversal in nanowire arrays. From the angular dependence of the ferromagnetic resonance field presented previously in the literature and from our proper results here, we present experimental confirmations to the model.

  9. The Pioneer XI high field fluxgate magnetometer

    NASA Technical Reports Server (NTRS)

    Acuna, M. A.; Ness, N. F.

    1975-01-01

    The high field fluxgate magnetometer experiment flown aboard the Pioneer XI spacecraft is described. This extremely simple instrument was used to extend the spacecraft's upper-limit measurement capability by approximately an order of magnitude (from 0.14 mT to 1.00 mT) with minimum power and volume requirements. This magnetometer was designed to complement the low-field measurements provided by a helium vector magnetometer and utilizes magnetic ring core sensors with biaxial orthogonal sense coils. The instrument is a single-range, triaxial-fluxgate magnetometer capable of measuring fields of up to 1 mT along each orthogonal axis, with a maximum resolution of 1 microT.

  10. High-resolution simulation of field emission

    SciTech Connect

    Herrmannsfeldt, W.B. ); Becker, R. ); Brodie, I.; Rosengreen, A.; Spindt, C.A. )

    1990-03-01

    High-resolution simulations of field emission electron sources have been made using the electron optics program EGN2. Electron emission distributions are made using the Fowler-Nordheim equation. Mesh resolution in the range of 1-5 {angstrom} is required to adequately model surface details that can result in emission currents in the range found experimentally. A typical problem starts with mechanical details with dimensions of about 1{mu}. To achieve high resolution a new boundary is defined by the tip, a nearby equipotential line, and a pair of field lines. The field lines (one of which is normally the axis of symmetry) define Neumann boundaries. This new boundary is then used by the boundary preprocessor POLYGON to create an enlarged version of the problem, typically by a factor of ten. This process can be repeated until adequate resolution is obtained to simulate surface details, such as microprotusion, that could sufficiently enhance the surface electric fields and cause field emission. When simulating experimental conditions under which emission of several microamperes per tip were observed, it was found that both a locally reduced work function and a surface protrusion were needed to duplicate the experimental results. If only a local region of reduced work function is used, the area involved and the extent of the reduction both need to be very large to reproduce the emission. If only a surface protrusion is used, it is possible to get the observed emission current with a reasonable protrusion of length a few times radius, but then the resulting beam spreads over a very large solid angle due to the strong local radial electric fields. 8 refs., 14 figs., 1 tab.

  11. Applications of high dielectric materials in high field magnetic resonance

    NASA Astrophysics Data System (ADS)

    Haines, Kristina Noel

    At high magnetic fields, radiation losses, wavelength effects, self-resonance, and the high resistance of components all contribute to losses in conventional RF MRI coil designs. The hypothesis tested here is that these problems can be combated by the use of high permittivity ceramic materials at high fields. High permittivity ceramic dielectric resonators create strong uniform magnetic fields in compact structures at high frequencies and can potentially solve some of the challenges of high field coil design. In this study NMR probes were constructed for operation at 600 MHz (14.1 Tesla) and 900 MHz (21.1 Tesla) using inductively fed CaTiO3 (relative permittivity of 156-166) cylindrical hollow bore dielectric resonators. The designs showed the electric field is largely confined to the dielectric itself, with near zero values in the hollow bore, which accommodates the sample. The 600 MHz probe has an unmatched Q value greater than 2000. Experimental and simulation mapping of the RF field show good agreement, with the ceramic resonator giving a pulse width approximately 25% less than a loop gap resonator of similar inner dimensions. High resolution images, with voxel dimensions less than 50 microm3, have been acquired from fixed zebrafish samples, showing excellent delineation of several fine structures. The 900 MHz probe has an unmatched Q value of 940 and shows Q performance five times better than Alderman-Grant and loop-gap resonators of similar dimensions. High resolution images were acquired of an excised mouse spinal cord (25 microm 3) and an excised rat soleus muscle (20 microm3). The spatial distribution of electromagnetic fields within the human body can be tailored using external dielectric materials. Here, a new material is introduced with high dielectric constant and low background MRI signal. The material is based upon metal titanates, which can be made into geometrically formable suspensions in de-ionized water. The suspension's material properties are

  12. High-purity silicon crystal growth investigations

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.; Schuyler, T.; Hurd, J. L.; Fearheiley, M.; Evans, C.; Elder, R.

    1986-01-01

    Information is given on evaporation and segregation contributions to impurity profiles of floating zone crystals (FZ); high-purity silicon float zoning (FZ); minority-carrier lifetime measurement of heavily doped silicon crystals; the effect of some crystal growth parameters on minority-carrier lifetime; and defect investigations by X-ray topography in graphical and tabular form. It was concluded that evaporation contributes substantially to impurity reduction when FZ or cold-crucible growth is conducted in a vacuum; boron and gallium may be more favorable dopants than indium or aluminum for obtaining high minority-carrier lifetimes; minority-carrier lifetimes greater than 100 microseconds are feasible at a 2 times 10 to the 17th power cm-3 doping level; minority-carrier lifetime decreases with increasing crystal cooling rate and also with the presence of dislocations; the method used to clean silicon feed rods affects lifetime; and microdefect densities in dislocation-free FZ crystals appear to be lower with Ga doping than with B doping.

  13. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  14. SITE INVESTIGATIONS (SI) AND FIELD INVESTIGATIONS (FI) OF REGION 4 SUPERFUND HAZARDOUS WASTE SITES: OCTOBER 2006 – JULY 2007

    EPA Science Inventory

    Site Investigations (SIs) and Field Investigations (FIs) conducted by the Region 4 Science and Ecosystem Support Division (SESD) require developing and implementing work plans which include a Project Operations Plan, Field Sampling and Analysis Plan, Quality Assurance Project Pla...

  15. Investigation of a supersonic cruise fighter model flow field

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Bare, E. A.

    1985-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to survey the flow field around a model of a supersonic cruise fighter configuration. Local values of angle of attack, side flow, Mach number, and total pressure ratio were measured with a single multi-holed probe in three survey areas on a model previously used for nacelle/nozzle integration investigations. The investigation was conducted at Mach numbers of 0.6, 0.9, and 1.2, and at angles of attack from 0 deg to 10 deg. The purpose of the investigation was to provide a base of experimental data with which theoretically determined data can be compared. To that end the data are presented in tables as well as graphically, and a complete description of the model geometry is included as fuselage cross sections and wing span stations. Measured local angles of attack were generally greater than free stream angle of attack above the wing and generally smaller below. There were large spanwise local angle-of-attack and side flow gradients above the wing at the higher free stream angles of attack.

  16. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal, to be avoided during drilling activities. This report contains appendices E and F with information on the following: soil boring logs, and data validation of samples analyzed.

  17. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. Geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendices B, C, and D contains information on the following: geophysical contour maps and profile plots; human health risk assessment; and ecological risk assessment.

  18. Investigation of the arcjet plume near field using electrostatic probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plum of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in) and 15 cm (5.9 in) and radial distances extending to 10 cm (3.9 in) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  19. Investigation of the Arcjet near Field Plume Using Electrostatic Probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plume of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in.) and 15 cm (5.9 in.) and radial distances extending to 10 cm (3.9 in.) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in.) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  20. FINESSE: Field Investigations to Enable Solar System Science and Exploration

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer; Lim, Darlene; Colaprete, Anthony

    2015-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We follow the philosophy that "science enables exploration and exploration enables science." 1) FINESSE Science: Understand the effects of volcanism and impacts as dominant planetary processes on the Moon, NEAs, and Phobos & Deimos. 2) FINESSE Exploration: Understand which exploration concepts of operations (ConOps) and capabilities enable and enhance scientific return. To accomplish these objectives, we are conducting an integrated research program focused on scientifically-driven field exploration at Craters of the Moon National Monument and Preserve in Idaho and at the West Clearwater Lake Impact Structure in northern Canada. Field deployments aimed at reconnaissance geology and data acquisition were conducted in 2014 at Craters of the Moon National Monument and Preserve. Targets for data acquisition included selected sites at Kings Bowl eruptive fissure, lava field and blowout crater, Inferno Chasm vent and outflow channel, North Crater lava flow and Highway lava flow. Field investigation included (1) differential GPS (dGPS) measurements of lava flows, channels (and ejecta block at Kings Bowl); (2) LiDAR imaging of lava flow margins, surfaces and other selected features; (3) digital photographic documentation; (4) sampling for geochemical and petrographic analysis; (5) UAV aerial imagery of Kings Bowl and Inferno Chasm features; and (6) geologic assessment of targets and potential new targets. Over the course of the 5-week field FINESSE campaign to the West Clearwater Impact Structure (WCIS) in 2014, the team focused on several WCIS research topics, including impactites, central uplift formation, the impact-generated hydrothermal system, multichronometer

  1. Investigation of back surface fields effect on bifacial solar cells

    NASA Astrophysics Data System (ADS)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  2. High-Gain High-Field Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Li, Ge

    2015-10-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST.

  3. High-Gain High-Field Fusion Plasma.

    PubMed

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)-an electric generator of constant electrical polarity that produces huge currents-could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  4. Investigations on the Incompletely Developed Plane Diagonal-Tension Field

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1940-01-01

    This report presents the results of an investigation on the incompletely developed diagonal-tension field. Actual diagonal-tension beams work in an intermediate stage between pure shear and pure diagonal tension; the theory developed by wagner for diagonal tension is not directly applicable. The first part of the paper reviews the most essential items of the theory of pure diagonal tension as well as previous attempts to formulate a theory of incomplete diagonal tension. The second part of the paper describes strain measurement made by the N. A. C. A. to obtain the necessary coefficients for the proposed theory. The third part of the paper discusses the stress analysis of diagonal-tension beams by means of the proposed theory.

  5. Investigation of Polarization Phase Difference Related to Forest Fields Characterizations

    NASA Astrophysics Data System (ADS)

    Majidi, M.; Maghsoudi, Y.

    2013-09-01

    The information content of Synthetic Aperture Radar (SAR) data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD) statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench Voss), black spruce (Picea mariana (Mill) B.S.P.), poplar (Populus L.), red oak (Quercus rubra L.) , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  6. Continuous field investigation assessing nitrogen and phosphorus emission from irrigated paddy field

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2016-04-01

    In order to maintain good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Other than urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Rice is one of the staple products of Asia and paddy field occupies large areas in Asian countries. Rice is also widely cultivated in Japan. Paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by discharging fertilizer, it is also suggested that paddy field has water purification function. Regarding to nutrient emission from paddy field, existing monitored data are insufficient so as to discuss quantitatively seasonal change of material behavior including flooding season and dry season and to evaluate year round comprehensive impact from paddy field to the river system. These are not sufficient data for discussion of material flow and emission impact quantitatively as well as qualitatively. We have carried out field investigation in paddy fields in middle reach of the Tone River Basin. The aim of the survey is understanding of water and nutrient balance in paddy field. In order to understand emission impact from paddy field to river system, all input and output flow are measured to calculate nutrient balance in paddy field. Therefore we observed quantity of water flow into/from paddy field, water quality change of inflow and outflow during flooding season. We set focus on a monitoring paddy field IM, and monitored continuously water and nutrient behavior. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and depth of flooding water, we tried to quantitatively understand N and P cycle around paddy field including seasonal tendency, change accompanying with rainy events and occurred according to agricultural events like fertilization. At the beginning of flooding season, we

  7. Empirical models of high latitude electric fields

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.

    1976-01-01

    Model cross sections of the high latitude dawn-dusk electric field based on OGO-6 data are presented for the signature profiles, most frequently encountered for both + and -Y orientations of the interplanetary magnetic field. Line integrals give a total potential of 76 keV in each case. To illustrate extremes, examples of model cross-sections with total potentials of 23 keV and 140 keV are also given. Model convection patterns are also presented utilizing OGO-6 data on boundary locations at other magnetic local times. When this information is combined with characteristic field geometries in the region of the Harang discontinuity, and is supplemented by data from Ba+ cloud motions in the polar cap, it becomes possible to construct realistic convection patterns on the nightside which deviate from the usual sun-aligned patterns. The observational models presented are of limited applicability as a consequence of the variability of observed distributions. These limitations are emphasized with particular attention given to several types of recurrent deviations which have not previously been discussed.

  8. Distinguishing among Declarative, Descriptive and Causal Questions to Guide Field Investigations and Student Assessment

    ERIC Educational Resources Information Center

    Odom, Arthur Louis; Bell, Clare V.

    2011-01-01

    Teachers as well as students often have difficulty formulating good research questions because not all questions lend themselves to scientific investigation. The following is a guide for high-school and college life-science teachers to help students define question types central to biological field studies. The mayfly nymph was selected as the…

  9. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  10. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  11. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design. PMID:26307725

  12. A field investigation and numerical simulation of coastal fog

    NASA Technical Reports Server (NTRS)

    Mack, E. J.; Eadie, W. J.; Rogers, C. W.; Kocmond, W. C.; Pilie, R. J.

    1973-01-01

    A field investigation of the microphysical and micrometeorological features of fogs occurring near Los Angeles and Vandenberg, California was conducted. Observations of wind speed and direction, temperature, dew point, vertical wind velocity, dew deposition, drop-size distribution, liquid water content, and haze and cloud nucleus concentration were obtained. These observations were initiated in late evening prior to fog formation and continued until the time of dissipation in both advection and radiation fogs. Data were also acquired in one valley fog and several dense haze situations. The behavior of these parameters prior to and during fog are discussed in detail. A two-dimensional numerical model was developed to investigate the formation and dissipation of advection fogs under the influence of horizontal variations in surface temperature. The model predicts the evolution of potential temperature, water vapor content, and liquid water content in a vertical plane as determined by vertical turbulent transfer and horizontal advection. Results are discussed from preliminary numerical experiments on the formation of warm-air advection fog and dissipation by natural and artificial heating from the surface.

  13. High-field thermal transport properties of REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Bonura, Marco; Senatore, Carmine

    2015-02-01

    The use of REBCO coated conductors (CCs) is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (κ) of REBCO CCs in magnetic fields up to 19 T applied both parallel and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field κ of CCs can be calculated with an accuracy of +/- 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field κ in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the thermal stability analysis of high-temperature superconductor-based magnets.

  14. Physical processes at high field strengths

    SciTech Connect

    Rhodes, C.K.

    1986-01-01

    Measurements of the radiation produced by the high field interaction with the rare gases have revealed the presence of both copious harmonic production and fluorescence. The highest harmonic observed was the seventeenth (14.6 rm) in Ne, the shortest wavelength ever produced by that means. Strong fluorescence was seen in Ar, Kr, and Xe with the shortest wavelengths observed being below 10 nm. Furthermore, radiation from inner-shell excited configurations in Xe, specifically the 4d/sup 9/5s5p ..-->.. 4d/sup 10/5s manifold at approx. 17.7 nm, was detected. The behaviors of the rare gases with respect to multiquantum ionization, harmonic production, and fluorescence were found to be correlated so that the materials fell into two groups, He and Ne in one and Ar, Kr, and Xe in the other. These experimental findings, in alliance with other studies on inner-shell decay processes, give evidence for a role of atomic correlations in a direct nonlinear process of inner-shell excitation. It is expected that an understanding of these high-field processes will enable the generation of stimulated emission in the x-ray range. 59 refs., 6 figs., 5 tabs.

  15. A high performance field-reversed configuration

    SciTech Connect

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  16. A high performance field-reversed configurationa)

    NASA Astrophysics Data System (ADS)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Schmitz, L.; Guo, H. Y.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; Cheung, A. H.; Conroy, K. D.; Dettrick, S. A.; Douglass, J. D.; Feng, P.; Galeotti, L.; Giammanco, F.; Granstedt, E.; Gupta, D.; Gupta, S.; Ivanov, A. A.; Kinley, J. S.; Knapp, K.; Korepanov, S.; Hollins, M.; Magee, R.; Mendoza, R.; Mok, Y.; Necas, A.; Primavera, S.; Onofri, M.; Osin, D.; Rath, N.; Roche, T.; Romero, J.; Schroeder, J. H.; Sevier, L.; Sibley, A.; Song, Y.; Van Drie, A. D.; Walters, J. K.; Waggoner, W.; Yushmanov, P.; Zhai, K.

    2015-05-01

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ˜1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  17. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  18. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  19. High-field transport in two-dimensional graphene

    NASA Astrophysics Data System (ADS)

    Fang, Tian; Konar, Aniruddha; Xing, Huili; Jena, Debdeep

    2011-09-01

    Transport of carriers in two-dimensional graphene at high electric fields is investigated by combining semianalytical and Monte Carlo methods. A semianalytical high-field transport model based on the high rate of optical phonon emission provides useful estimates of the saturation currents in graphene. For developing a more accurate picture, the nonequilibrium (hot) phonon effect and the role of electron-electron scattering were studied using Monte Carlo simulations. Monte Carlo simulations indicate that the hot phonon effect plays a dominant role in current saturation, and electron-electron scattering strongly thermalizes the hot carrier population in graphene. We also find that electron-electron scattering removes negative differential resistance in graphene. Transient phenomenon such as velocity overshoot can be used to speed up graphene-based high-speed electronic devices by shrinking the channel length below 80 nm if electrostatic control can be exercised in the absence of a band gap.

  20. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis.

    PubMed

    Qiu, Wentao; Ndao, Abdoulaye; Lu, Huihui; Bernal, Maria-Pilar; Baida, Fadi Issam

    2016-09-01

    We present a theoretical study of guided resonances (GR) on a thin film lithium niobate rectangular lattice photonic crystal by band diagram calculations and 3D Finite Difference Time Domain (FDTD) transmission investigations which cover a broad range of parameters. A photonic crystal with an active zone as small as 13μm×13μm×0.7μm can be easily designed to obtain a resonance Q value in the order of 1000. These resonances are then employed in electric field (E-field) sensing applications exploiting the electro optic (EO) effect of lithium niobate. A local field factor that is calculated locally for each FDTD cell is proposed to accurately estimate the sensitivity of GR based E-field sensor. The local field factor allows well agreement between simulations and reported experimental data therefore providing a valuable method in optimizing the GR structure to obtain high sensitivities. When these resonances are associated with sub-picometer optical spectrum analyzer and high field enhancement antenna design, an E-field probe with a sensitivity of 50 μV/m could be achieved. The results of our simulations could be also exploited in other EO based applications such as EEG (Electroencephalography) or ECG (Electrocardiography) probe and E-field frequency detector with an 'invisible' probe to the field being detected etc. PMID:27607627

  1. High field magnetic resonance imaging of rodents in cardiovascular research.

    PubMed

    Vanhoutte, Laetitia; Gerber, Bernhard L; Gallez, Bernard; Po, Chrystelle; Magat, Julie; Jean-Luc, Balligand; Feron, Olivier; Moniotte, Stéphane

    2016-07-01

    Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7-11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed. PMID:27287250

  2. Numerical Investigation of Near-Field Plasma Flows in Magnetic Nozzles

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2009-01-01

    The development and application of a multidimensional numerical simulation code for investigating near-field plasma processes in magnetic nozzles are presented. The code calculates the time-dependent evolution of all three spatial components of both the magnetic field and velocity in a plasma flow, and includes physical models of relevant transport phenomena. It has been applied to an investigation of the behavior of plasma flows found in high-power thrusters, employing a realistic magnetic nozzle configuration. Simulation of a channel-flow case where the flow was super-Alfvenic has demonstrated that such a flow produces adequate back-emf to significantly alter the shape of the total magnetic field, preventing the flow from curving back to the magnetic field coil in the near-field region. Results from this simulation can be insightful in predicting far-field behavior and can be used as a set of self-consistent boundary conditions for far-field simulations. Future investigations will focus on cases where the inlet flow is sub-Alfvenic and where the flow is allowed to freely expand in the radial direction once it is downstream of the coil.

  3. Field site investigation: Effect of mine seismicity on groundwater hydrology

    SciTech Connect

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.; Philip, J.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

  4. Investigation of turbulence in reversed field pinch plasma by using microwave imaging reflectometry

    SciTech Connect

    Shi, Z. B.; Nagayama, Y.; Hamada, Y.; Yamaguchi, S.; Hirano, Y.; Kiyama, S.; Koguchi, H.; Sakakita, H.; Michael, C. A.; Yambe, K.

    2011-10-15

    Turbulence in the reversed field pinch (RFP) plasma has been investigated by using the microwave imaging reflectometry in the toroidal pinch experiment RX (TPE-RX). In conventional RFP plasma, the fluctuations are dominated by the intermittent blob-like structures. These structures are accompanied with the generation of magnetic field, the strong turbulence, and high nonlinear coupling among the high and low k modes. The pulsed poloidal current drive operation, which improves the plasma confinement significantly, suppresses the dynamo, the turbulence, and the blob-like structures.

  5. Inviscid fluid in high frequency excitation field

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1984-01-01

    The influence of high frequency excitations (HFE) on a fluid is investigated. The response to these excitations is decomposed in two parts: 'slow' motion, which practically remains unchanged during the vanishingly small period tau, and 'fast' motion whose value during this period is negligible in terms of displacements, but is essential in terms of the kinetic energy. After such a decomposition the 'slow' and 'fast' motions become nonlinearly coupled by the corresponding governing equations. This coupling leads to an 'effective' potential energy which imparts some 'elastic' properties to the fluid and stabilizes laminar flows.

  6. First results of the MAVEN magnetic field investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.; Gruesbeck, J. R.; Oliversen, R. J.; Mitchell, D. L.; Halekas, J.; Mazelle, C.; Brain, D.; Jakosky, B. M.

    2015-11-01

    Two Mars Atmosphere and Volatile EvolutioN magnetic field sensors sample the ambient magnetic field at the outer edge of each solar array. We characterized relatively minor spacecraft-generated magnetic fields using in-flight subsystem tests and spacecraft maneuvers. Dynamic spacecraft fields associated with the power subsystem (≤1 nT) are compensated for using spacecraft engineering telemetry to identify active solar array circuits and monitor their electrical current production. Static spacecraft magnetic fields are monitored using spacecraft roll maneuvers. Accuracy of measurement of the environmental magnetic field is demonstrated by comparison with field directions deduced from the symmetry properties of the electron distribution function measured by the Solar Wind Electron Analyzer. We map the bow shock, magnetic pileup boundary, the V × B convection electric field and ubiquitous proton cyclotron, and 1 Hz waves in the ion foreshock region.

  7. The investigation of fetal doses in mantle field irradiation.

    PubMed

    Karaçam, Songül Cavdar; Güralp, Onur Sahin; Oksüz, Didem Colpan; Koca, Ayse; Cepni, Ismail; Cepni, Kimia; Bese, Nuran

    2009-02-01

    To determine clinically the fetal dose from irradiation of Hodgkin's disease during pregnancy and to quantify the components of fetal dose using phantom measurements. The fetal dose was measured with phantom measurements using thermoluminescent dosemeters (TLDs). Phantom measurements were performed by simulating the treatment conditions on an anthropomorphic phantom. TLDs were placed on the phantom 41, 44, 46.5 and 49.5 cm from the centre of the treatment field. Two TLDs were placed on the surface of the phantom. The estimated total dose to all the TLDs ranged from 8.8 to 13.2 cGy for treatment with (60)Co and from 8.2 to 11.8 cGy for 4 MV photons. It was concluded that the doses in different sections were evaluated to investigate dose changes in different points and depths of fetal tissues in phantom. Precise planning and the use of supplemental fetal shielding may help reduce fetal exposure. PMID:19299479

  8. Limited field investigation for the 200-UP-1 operable unit

    SciTech Connect

    1996-11-01

    The 200-UP-1 Groundwater Operable Unit is located in the southern portion of the 200 West Area on the Hanford Site in Washington State. The operable unit is located adjacent to the 200-ZP-1 Groundwater Operable Unit and underlies a significant part of seven source operable units: 200-RO-1, 200-RO-2, 200-RO-3, 200-RO-4, 200-SS-2, 200-UP-2, and 200-UP-3. Remedial efforts in the 100-ZP-1 Operable Unit focus on addressing volatile organic contamination in the aquifer. The focus of the 200-UP-1 limited field investigation (LFI) is on contaminated aquifer soils and groundwater within its boundary, with the exception of uranium and technetium-99 plumes, which are addressed by an existing 200-UP-1 interim remedial measure (IRM). The LFI approach is driven by general and specific data needs required to refine the site conceptual model and conduct a risk assessment. Activities supporting the LFI include drilling, well construction, sampling and analysis, data validation, geologic and geophysical logging, aquifer testing, measuring depth to water, and evaluating geodetic survey and existing analytical data.

  9. Field Investigations of Evaporation from a Bare Soil

    NASA Astrophysics Data System (ADS)

    Evett, Steven Roy

    Selected components of the water and energy balances at the surface of a bare clay loam were measured at 57 locations in a 1 ha field. Spatial and temporal variability of these components were also studied. Components included evaporation, irrigation, moisture storage, sensible heat flux and long wave radiation. Sub-studies were conducted on irrigation uniformity under low pressure sprinklers; and, on steel versus plastic microlysimeters (ML) of various lengths. An energy balance model of evaporation, requiring minimal inputs, was developed and validated giving an r ^2 value of 0.78. Model improvements included an easy method of accurately estimating soil surface temperature at many points in a field, and an empirically fitted transfer coefficient function for the sensible heat flux from the reference dry soil. The omission of soil heat flux and reflected shortwave radiation terms was shown to reduce model accuracy. Steel ML underestimated cumulative evaporation compared to plastic ML at 20 and 30 cm lengths. Cumulative evaporation increased with ML length. The 10 and 20 cm ML were too short for use over multiple days but 30 cm ML may not be long enough for extended periods. Daily net soil heat flux for steel ML averaged 44% higher than that for both plastic ML and undisturbed field soil. Christiansen's uniformity coefficient (UCC) was close to 0.83 for each of 3 irrigations when measured by both catch cans and by profile water contents. But UCC for the change in storage due to irrigation averaged only 0.43 indicating than the high uniformity of profile water contents was more due to surface and subsurface redistribution than to the uniformity of application. Profile water contents and catch can depths were time invariant across at least 3 irrigations. Midday soil surface temperatures and daily evaporation were somewhat less time invariant. Variogram plots for evaporation and surface temperature showed mostly random behavior. Relative variograms represented well

  10. Investigations into High Temperature Components and Packaging

    SciTech Connect

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  11. High-density Au nanorod optical field-emitter arrays.

    PubMed

    Hobbs, R G; Yang, Y; Keathley, P D; Swanwick, M E; Velásquez-Garcíia, L F; Kärtner, F X; Graves, W S; Berggren, K K

    2014-11-21

    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m(-1), and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer. PMID:25354583

  12. High-density Au nanorod optical field-emitter arrays

    NASA Astrophysics Data System (ADS)

    Hobbs, R. G.; Yang, Y.; Keathley, P. D.; Swanwick, M. E.; Velásquez-García, L. F.; Kärtner, F. X.; Graves, W. S.; Berggren, K. K.

    2014-11-01

    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m-1, and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.

  13. High field optical nonlinearities in gases

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang

    Optical femtosecond self-channeling in gases, also called femtosecond filamentation, has become an important area of research in high field nonlinear optics. Filamentation occurs when laser light self-focuses in a gas owing to self-induced nonlinearity, and then defocuses in the plasma generated by the self-focused beam. The result of this process repeating itself multiple times is an extended region of plasma formation. Filamentation studies have been motivated by the extremely broad range of applications, especially in air, including pulse compression, supercontinuum generation, broadband high power terahertz pulse generation, discharge triggering and guiding, and remote sensing. Despite the worldwide work in filamentation, the fundamental gas nonlinearities governing self-focusing had never been directly measured in the range of laser intensity up to and including the ionization threshold. This dissertation presents the first such measurements. We absolutely measured the temporal refractive index change of O2, N2, Ar, H2, D2 and N2O caused by highfield ultrashort optical pulses with single-shot supercontinuum spectral interferometry, cleanly separating for the first time the instantaneous electronic and delayed rotational nonlinear response in diatomic gases. We conclusively showed that a recent claim by several European groups that the optical bound electron nonlinearity saturates and goes negative is not correct. Such a phenomenon would preclude the need for plasma to provide the defocusing contribution for filamentation. Our results show that the 'standard model of filamentation', where the defocusing is provided by plasma, is correct. Finally, we demonstrated that high repetition rate femtosecond laser pulses filamenting in gases can generate long-lived gas density `holes' which persist on millisecond timescales, long after the plasma has recombined. Gas density decrements up to ~20% have been measured. The density hole refilling is dominated by thermal

  14. High-Gain High-Field Fusion Plasma

    PubMed Central

    Li, Ge

    2015-01-01

    A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314

  15. Near-field scanning optical microscopy investigations of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Dearo, Jessie Ann

    The Near-Field Scanning Optical Microscopy (NSOM) studies of novel, optically active, conjugated polymers are presented. NSOM is a relatively new technique which produces super resolution (˜50--100 nm) optical images simultaneously with topography. The conjugated polymer poly(p-phenylene vinylene) (PPV) and derivatives of PPV are organic semiconductor-like materials with interesting and unique optical properties. Derivatives of PPV have been used in LEDs and have potential in other optoelectronic devices. NSOM provides a tool for investigation of the photoluminescence, absorption/reflection, photo-dynamics and photoconductivity of films of PPV and PPV derivatives on the length scale that these properties are fundamentally defined. The NSOM experiments have revealed mesoscale domains (˜100 nm) of varying photoluminescence emission and average molecular order in drop cast films of PPV. NSOM of stretch-oriented PPV have shown domains of perpendicular molecular orientation with low photoluminescence emission. Near-field photoconductivity experiments of stretch-oriented PPV have correlated the mesoscale topography with the photoconductivity properties of the polymer. NSOM experiments of films of poly(2-methoxy, 5-(2'-(ethyl(hexyloxy)-p-phenylene vinylene) (MEH-PPV) have shown that there is mesoscale spatial inhomogeneity in the photo-oxidation process which reduces photoluminescence emission. NSOM has also been used to create nanoscale photo-patterning in MEH-PPV films. The NSOM experiments of blended films of MEH-PPV in polystyrene have shown mesoscale phase separation directly correlated to variations in the optical properties of the film. Derivatives of PPV, stretch-oriented in polyethylene, show photoluminescence intensity variations perpendicular and parallel to the stretch-direction correlated to topography features. As a complement to the NSOM studies of conjugated polymers, single polymer molecule experiments of MEH-PPV are also presented. The

  16. Plant Responses to High Frequency Electromagnetic Fields.

    PubMed

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  17. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  18. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  19. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  20. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  1. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  2. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  3. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  4. Mechanical reinforcement for RACC cables in high magnetic background fields

    NASA Astrophysics Data System (ADS)

    Bayer, C. M.; Gade, P. V.; Barth, C.; Preuß, A.; Jung, A.; Weiß, K. P.

    2016-02-01

    Operable in liquid helium, liquid hydrogen or liquid nitrogen, high temperature superconductor (HTS) cables are investigated as future alternatives to low temperature superconductor (LTS) cables in magnet applications. Different high current HTS cable concepts have been developed and optimized in the last years—each coming with its own benefits and challenges. As the Roebel assembled coated conductor (RACC) is the only fully transposed HTS cable investigated so far, it is attractive for large scale magnet and accelerator magnet applications when field quality and alternating current (AC) losses are of highest importance. However, due to its filamentary character, the RACC is very sensitive to Lorentz forces. In order to increase the mechanical strength of the RACC, each of the HTS strands was covered by an additional copper tape. After investigating the maximum applicable transverse pressure on the strand composition, the cable was clamped into a stainless steel structure to reinforce it against Lorentz forces. A comprehensive test has been carried out in the FBI facility at 4.2 K in a magnetic field of up to 12 T. This publication discusses the maximum applicable pressure as well as the behaviour of the RACC cable as a function of an external magnetic field.

  5. High magnetic field induced changes of gene expression in arabidopsis

    PubMed Central

    Paul, Anna-Lisa; Ferl, Robert J; Meisel, Mark W

    2006-01-01

    Background High magnetic fields are becoming increasingly prevalent components of non-invasive, biomedical imaging tools (such as MRI), thus, an understanding of the molecular impacts associated with these field strengths in biological systems is of central importance. The biological impact of magnetic field strengths up to 30 Tesla were investigated in this study through the use of transgenic Arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Methods Magnetic field induced Adh/GUS activity was evaluated with histochemical staining to assess tissue specific expression and distribution, and with quantitative, spectrofluometric assays to measure degree of activation. The evaluation of global changes in the Arabidopsis genome in response to exposure to high magnetic fields was facilitated with Affymetrix Gene Chip microarrays. Quantitative analyses of gene expression were performed with quantitative real-time polymerase-chain-reaction (qRT-PCR). Results Field strengths in excess of about 15 Tesla induce expression of the Adh/GUS transgene in the roots and leaves. From the microarray analyses that surveyed 8000 genes, 114 genes were differentially expressed to a degree greater than 2.5 fold over the control. These results were quantitatively corroborated by qRT-PCR examination of 4 of the 114 genes. Conclusion The data suggest that magnetic fields in excess of 15 Tesla have far-reaching effect on the genome. The wide-spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism, are prominent examples. The roles of magnetic field orientation of macromolecules and magnetophoretic effects are discussed as possible factors that contribute to the mounting of this response. PMID:17187667

  6. High-Throughput Investigation of Delafossite materials

    NASA Astrophysics Data System (ADS)

    Haycock, Barry; Kylee Underwood, M.; Lekse, Jonathan; Matranga, Christopher; Lewis, James P.

    2013-03-01

    We present the application of high-throughput calculations to the intriguing problem of the forbidden optical transition in the CuGa1-xFexO2 delafossites, which is prototypical of many delafossite systems. When 5% or more of the Ga sites are replaced with Fe, there is a sudden shift to an optical band gap of 1.5eV from 2.5eV. Using high-throughput calculations and data mining techniques, we show the most likely positional configurations for x = 0.00 through x = 0.10 of the Fe atoms relative to one another. Implications of this result and applications of the techniques used are discussed, including the development of candidate materials via high-throughput analysis of constituent search-space. Funded by the National Science Foundation through NSF DMR 09-03225 and a subcontract from NETL (URS RES) for Work Activity 0004000.6.600.007.002.420.000.005 ARRA ICMI Project.

  7. First Results of the MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.; Gruesbeck, J.; Mitchell, D. L.; Halekas, J. S.; Mazelle, C. X.; Brain, D.; Jakosky, B. M.; Oliversen, R. J.

    2015-12-01

    The MAVEN spacecraft approaches the end of its first year in orbit, systematically mapping the interaction region about Mars with a focus on atmospheric escape. The comprehensive instrument suite aboard MAVEN has busied itself in mapping the magnetosphere, magnetosheath, magnetotail, and extended atmospheric corona in near-Mars space. MAVEN carries two magnetic field sensors (fluxgate magnetometers) as part of the particles and fields package (PFP); they sample the ambient magnetic field from a vantage point on at the outer edge of each solar array. We characterized relatively minor spacecraft-generated magnetic fields using a series of in-flight subsystem tests and spacecraft maneuvers. Dynamic spacecraft fields (≤ 1 nT) associated with the operation of specific solar array circuits are compensated for using spacecraft engineering telemetry to identify active circuits and monitor their electrical current production. Static spacecraft magnetic fields are monitored using spacecraft roll maneuvers. Accuracy of measurement of the environmental magnetic field is demonstrated by comparison with field directions deduced from the symmetry properties of the electron distribution function measured by the Solar Wind Electron Analyzer (SWEA). We compile magnetometer observations to characterize intense crustal magnetic fields, the solar wind interaction with Mars, and ubiquitous proton cyclotron and 1-Hz waves in the upstream solar wind (ion foreshock region). The figure below compiles observations of magnetic fluctuations obtained by MAVEN in near-Mars space. The map of magnetic fluctuations reveals the statistical extent of the magnetosheath, confined between the bow shock and the magnetic pile-up region.

  8. Penetration dynamics of a magnetic field pulse into high-? superconductors

    NASA Astrophysics Data System (ADS)

    Meerovich, V.; Sinder, M.; Sokolovsky, V.; Goren, S.; Jung, G.; Shter, G. E.; Grader, G. S.

    1996-12-01

    The penetration of a magnetic field pulse into a high-0953-2048/9/12/004/img9 superconducting plate is investigated experimentally and theoretically. It follows from our experiments that the threshold of penetration increases with increasing amplitude and/or decreasing duration of the applied pulse. The penetrating field continues to grow as the applied magnetic field decreases. The peculiarities observed are explained in the framework of the extended critical state model. It appears that the deviations from Bean's classical critical state model are characterized by a parameter equal to the square of the ratio of plate thickness to skin depth. The applicability of the classical critical state model is restricted by the condition that this parameter is much less than 1. This condition is also the criterion for the applicability of pulse methods of critical current measurements.

  9. High-magnetic-field MHD-generator program

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Eustis, R. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Kruger, C. H.

    1981-07-01

    Progress in an experimental and theoretical program designed to investigate MHD channel phenomena which are important at high magnetic fields is described. The areas of research include nonuniformity effects, boundary layers, Hall field breakdown, the effects of electrode configuration and current concentrations, and studies of steady-state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions. In the study of the effects of nonuniformities, experiments were performed to test a multi-channel, fiber optics diagnostic system that yields time-resolved temperature profiles in an MHD chanel. For the study of magneto-acoustic fluctuation phenomena, a one dimensional model was developed to describe the performance of a non-ideal MHD generator with a generalized electrical configuration. A two dimensional MHD computer code was developed which predicts the dependence on electrode and insulator dimensions of the onset of interelectrode Hall field breakdown, as initiated either by breakdown in the insulator or in the plasma.

  10. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  11. FIELD INVESTIGATION OF BIOLOGICAL TOILET SYSTEMS AND GREY WATER TREATMENT

    EPA Science Inventory

    The objective of the field program was to determine the operational characteristics and overall acceptability of popular models of biological toilets and a few select grey water systems. A field observation scheme was devised to take advantage of in-use sites throughout the State...

  12. Laboratory and field investigations of marsh edge erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents the laboratory experiments and field observations of marsh edge erosion. The marsh retreat rate in a field study site in Terrebonne Bay, Louisiana, was measured using GPS systems and aerial photographs. The wave environment was also measured in order to correlate the marsh edge...

  13. Transient magnetic field signatures at high latitudes

    SciTech Connect

    Sibeck, D.G. )

    1993-01-01

    We survey GOES 2/5/6 geosynchronous and Huancayo, Peru, ground magnetometer observations at the times of 70 transient (2-10 min) events recorded at South Pole Station, Antarctica. The simultaneous observations indicate that most South Pole events correspond to sudden sharp variations in the equatorial magnetospheric and low-latitude ground magnetic field. The exceptions occur when the South Pole events have weak amplitudes and/or Huancayo and GOES 2/5/6 are far from local noon. The corresponding features observed at GOES 5 and GOES 6 are generally similar, with a lag indicating antisunward motion. A similar antisunward motion may be inferred from the ground observations themselves. On a case-by-case and statistical basis, the characteristics of the events observed in South Pole ground magnetograms resemble those previously interpreted as sudden impulse and sudden storm commencement signatures at other high-latitude stations. These observations suggest that the transient events at South Pole form part of the magnetospheric and ionospheric response to a sudden change in the fraction of the solar wind dynamic pressure applied to the magnetosphere. 57 refs., 14 figs.

  14. Theoretical and Computational Investigation of High-Brightness Beams

    SciTech Connect

    Chen, Chiping

    2013-11-30

    Theoretical and computational investigations of adiabatic thermal beams have been carried out in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research and for various applications such as light sources. Most accelerator applications require high-brightness beams. This is true for high-energy accelerators such as linear colliders. It is also true for energy recovery linacs (ERLs) and free electron lasers (FELs) such as x-ray free electron lasers (XFELs). The breakthroughs and highlights in our research in the period from February 1, 2013 to November 30, 2013 were: a) Completion of a preliminary theoretical and computational study of adiabatic thermal Child-Langmuir flow (Mok, 2013); and b) Presentation of an invited paper entitled ?Adiabatic Thermal Beams in a Periodic Focusing Field? at Space Charge 2013 Workshop, CERN, April 16-19, 2013 (Chen, 2013). In this report, an introductory background for the research project is provided. Basic theory of adiabatic thermal Child-Langmuir flow is reviewed. Results of simulation studies of adiabatic thermal Child-Langmuir flows are discussed.

  15. Investigation of mechanosensation in C. elegans using light field calcium imaging

    PubMed Central

    Shaw, Michael; Elmi, Muna; Pawar, Vijay; Srinivasan, Mandayam A.

    2016-01-01

    We describe a new experimental approach to investigate touch sensation in the model organism C. elegans using light field deconvolution microscopy. By combining fast volumetric image acquisition with controlled indentation of the organism using a high sensitivity force transducer, we are able to simultaneously measure activity in multiple touch receptor neurons expressing the calcium ion indicator GCaMP6s. By varying the applied mechanical stimulus we show how this method can be used to quantify touch sensitivity in C. elegans. We describe some of the challenges of performing light field calcium imaging in moving samples and demonstrate that they can be overcome by simple data processing. PMID:27446713

  16. Investigation of mechanosensation in C. elegans using light field calcium imaging.

    PubMed

    Shaw, Michael; Elmi, Muna; Pawar, Vijay; Srinivasan, Mandayam A

    2016-07-01

    We describe a new experimental approach to investigate touch sensation in the model organism C. elegans using light field deconvolution microscopy. By combining fast volumetric image acquisition with controlled indentation of the organism using a high sensitivity force transducer, we are able to simultaneously measure activity in multiple touch receptor neurons expressing the calcium ion indicator GCaMP6s. By varying the applied mechanical stimulus we show how this method can be used to quantify touch sensitivity in C. elegans. We describe some of the challenges of performing light field calcium imaging in moving samples and demonstrate that they can be overcome by simple data processing. PMID:27446713

  17. Investigation of Spherical-Wave-Initiated Flow Fields Around Bodies

    NASA Technical Reports Server (NTRS)

    McFarland, Donald R.

    1959-01-01

    Measurements of the velocity flow fields and vortex movements have been made about various simple blunt models undergoing spherical blast waves with a positive overpressure of 4 pounds per square inch. A bullet-optical method was used to determine flow velocities and is applied to velocity fields in which the gradients are largely normal to the free-stream direction. The velocity flow fields are shown at various flow times following passage of the blast front for different models. Vortex movements with time are compared for square-bar models of various aspect ratios. Corner sharpness had no discernible effect on the overall disturbed velocity fields or vortex movements for the square-box models used.

  18. Policy Forum: Studying Eyewitness Investigations in the Field

    PubMed Central

    Dawes, Robyn; Jacoby, Larry L.; Kahneman, Daniel; Lempert, Richard; Roediger, Henry L.; Rosenthal, Robert

    2007-01-01

    This article considers methodological issues arising from recent efforts to provide field tests of eyewitness identification procedures. We focus in particular on a field study (Mecklenburg 2006) that examined the “double blind, sequential” technique, and consider the implications of an acknowledged methodological confound in the study. We explain why the confound has severe consequences for assessing the real-world implications of this study. PMID:17610149

  19. Theoretical investigation of hyperfine field parameters through mossbauer gamma ray

    SciTech Connect

    Ali, Sikander; Hashim, Mohd

    2012-06-05

    When a Mossbauer gamma-ray emitting or absorbing nucleus is placed in a crystalline environment, the quadrupole moment of the nucleus interacts with the electric field gradient set up by the ligands around it. In the transition |7/2>{yields}|5/2> twelve lines are obtained. Applying the multipole radiation field theory and density matrix formalism, the determinant of coherency matrix, intensity and degree of polarization have been calculated for each line.

  20. Rotating magnetic field current drive of high-temperature field reversed configurations with high {zeta} scaling

    SciTech Connect

    Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.

    2007-11-15

    Greatly reduced recycling and impurity ingestion in the Translation, Confinement, and Sustainment--Upgrade (TCSU) device has allowed much higher plasma temperatures to be achieved in the field reversed configurations (FRC) under rotating magnetic field (RMF) formation and sustainment. The hotter plasmas have higher magnetic fields and much higher diamagnetic electron rotation rates so that the important ratio of average electron rotation frequency to RMF frequency, called {zeta}, approaches unity, for the first time, in TCSU. A large fraction of the RMF power is absorbed by an as yet unexplained (anomalous) mechanism directly proportional to the square of the RMF magnitude. It becomes of relatively lesser significance as the FRC current increases, and simple resistive heating begins to dominate, but the anomalous absorption is useful for initial plasma heating. Measurements of total absorbed power, and comparisons of applied RMF torque to torque on the electrons due to electron-ion friction under high-{zeta} operation, over a range of temperatures and fields, have allowed the separation of the classical Ohmic and anomalous heating to be inferred, and cross-field plasma resistivities to be calculated.

  1. Investigation Into The Effectiveness of The JLAB High Pressure Rinse System

    SciTech Connect

    John Mammosser; Timothy Rothgeb; Tong Wang; Andy Wu

    2003-05-01

    As part of a study to reduce field emission in Superconducting radio frequency cavities, an investigation into the effectiveness of the Jefferson Lab's High Pressure Rinse (HPR) system is underway. This paper describes discoveries from this investigation, the procedural changes made during this investigation, current vertical test results and further plans for improvements and monitoring.

  2. MO-G-BRF-09: Investigating Magnetic Field Dose Effects in Mice: A Monte Carlo Study

    SciTech Connect

    Rubinstein, A; Guindani, M; Followill, D; Melancon, A; Hazle, J; Court, L

    2014-06-15

    Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown; therefore, preclinical studies are needed to ensure the safe clinical use of MRI-linacs. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies. Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse-sized lung phantom with a 1.0cmx1.0cm photon beam. Magnetic field effects were examined using various beam energies (225kVp, 662keV[Cs-137], and 1.25MeV[Co-60]) and magnetic field strengths (0.75T, 1.5T, and 3T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac. Results: In human simulations, the addition of a 1.5T magnetic field caused an average dose increase of 49% (range:36%–60%) to lung at the soft tissue-to-lung interface and an average dose decrease of 30% (range:25%–36%) at the lung-to-soft tissue interface. In mouse simulations, the magnetic fields had no effect on the 225kVp dose distribution. The dose increases for the Cs-137 beam were 12%, 33%, and 49% for 0.75T, 1.5T, and 3.0T magnetic fields, respectively while the dose decreases were 7%, 23%, and 33%. For the Co-60 beam, the dose increases were 14%, 45%, and 41%, and the dose decreases were 18%, 35%, and 35%. Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5T or 3T fields and a Cs-137 beam with a 3T field compare well with those seen in simulated human treatments with an MRI-linac. These irradiator/magnet combinations are suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field. Partially funded by Elekta.

  3. Threats to ultra-high-field MRI

    NASA Astrophysics Data System (ADS)

    Le Bihan, Denis

    2009-08-01

    In 2004 the European Commission (EC) adopted a directive restricting occupational exposure to electromagnetic fields. This directive (2004/40/CE), which examines the possible health risks of the electromagnetic fields from mobile phones, Wi-Fi, Bluetooth and other devices, concluded that upper limits on radiation and applied electromagnetic fields are necessary to prevent workers from suffering any undue acute health effects. But although not initially intended, the biggest impact of the directive could be on magnetic resonance imaging (MRI), which is used in hospitals worldwide to produce images of unrivalled quality of the brain and other soft tissues.

  4. Investigation of Reddening in Fields of the SMASH Survey

    NASA Astrophysics Data System (ADS)

    Juelfs, Elizabeth A.; Olsen, Knut A.; SMASH Team

    2016-01-01

    We present dust extinction maps derived from eight fields in the Survey of the MAgellanic Stellar History (SMASH), a survey that is imaging 480 deg^2 of the southern sky in DES-ugriz with the CTIO 4-m Blanco telescope and the Dark Energy Camera (DECam). We derive the extinction due to dust using fits to the stellar locus of stars brighter than g=21 in color-color diagrams, and explore the spatial distribution of the extinction within each of the fields. We compare our results to the extinction map of Schlegel, Finkbeiner, & Davis (1998), and find generally good agreement. We describe plans to measure the three-dimensional distribution of extinction in these fields using fainter stars and background galaxies as tracers. Juelfs was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  5. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  6. An X-ray Investigation of the NGC 346 Field in the SMC (2): The Field Population

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Manfroid, J.; Marchenko. S.; Corcoran, M. F.; Moffat, A. F. J.; Skalkowski, G.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results from a Chandra observation of the NGC 346 cluster, the ionizing source of N66, the most luminous H II region and the largest star formation region in the SMC. In the first part of this investigation, we have analysed the X-ray properties of the cluster itself and the remarkable star HD 5980. But the field contains additional objects of interest. In total, 79 X-ray point sources were detected in the Chandra observation and we investigate here their characteristics in details. The sources possess rather high HRs, and their cumulative luminosity function is steeper than the SMC's trend. Their absorption columns suggest that most of the sources belong to NGC 346. Using new UBVRI imaging with the ESO 2.2m telescope, we also discovered possible counterparts for 36 of these X-ray sources. Finally, some objects show X-ray and/or optical variability, and thus need further monitoring.

  7. Extending methods: using Bourdieu's field analysis to further investigate taste

    NASA Astrophysics Data System (ADS)

    Schindel Dimick, Alexandra

    2015-06-01

    In this commentary on Per Anderhag, Per-Olof Wickman and Karim Hamza's article Signs of taste for science, I consider how their study is situated within the concern for the role of science education in the social and cultural production of inequality. Their article provides a finely detailed methodology for analyzing the constitution of taste within science education classrooms. Nevertheless, because the authors' socially situated methodology draws upon Bourdieu's theories, it seems equally important to extend these methods to consider how and why students make particular distinctions within a relational context—a key aspect of Bourdieu's theory of cultural production. By situating the constitution of taste within Bourdieu's field analysis, researchers can explore the ways in which students' tastes and social positionings are established and transformed through time, space, place, and their ability to navigate the field. I describe the process of field analysis in relation to the authors' paper and suggest that combining the authors' methods with a field analysis can provide a strong methodological and analytical framework in which theory and methods combine to create a detailed understanding of students' interest in relation to their context.

  8. Apparatus having reduced mechanical forces for supporting high magnetic fields

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  9. Scanning tunnelling microscopy in extreme fields: very low temperature, high magnetic field, and extreme high vacuum

    NASA Astrophysics Data System (ADS)

    Sagisaka, Keisuke; Kitahara, Masayo; Fujita, Daisuke; Kido, Giyuu; Koguchi, Nobuyuki

    2004-06-01

    We present the performance of our newly developed very-low-temperature scanning tunnelling microscope (VLT-STM). This system can operate with high spatial and energy resolution at temperatures down to 350 mK, and in a magnetic field up to 11 T. The uniqueness of our VLT-STM is that the system possesses extreme-high-vacuum chambers (XHV) ({\\sim } 10^{-10} Pa). System operation ranges from sample preparation, such as cleaning and deposition, to observations in an extremely clean environment. XHV will have a significant impact within material sciences, particularly when treating a semiconductor surface. Test results have revealed STM images obtained below 1 K and with atomic resolution of highly oriented pyrolytic graphite (HOPG), Si(100) dimers, and Au(111) surfaces. Our Si(100) experiments are the first atomically-resolved STM images of the semiconductor surface obtained below 1 K. The results of those tests have conclusively determined its true ground state structure—a subject under debate for many years. Some of the STM images acquired in a high magnetic field are included in this paper. The XHV-VLT-STM system is state-of-the-art and a very powerful instrument for exploration of the nano-sciences.

  10. High magnetic field induced otolith fusion in the zebrafish larvae.

    PubMed

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-01-01

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish. PMID:27063288

  11. High magnetic field induced otolith fusion in the zebrafish larvae

    PubMed Central

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-01-01

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an “all-or-none” manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish. PMID:27063288

  12. Polarized neutron reflectometry in high magnetic fields

    SciTech Connect

    Fritzsche, H.

    2005-11-15

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe{sub 2}/DyFe{sub 2} multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada.

  13. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  14. Field investigation source area ST58 old Quartermaster service station, Eielson Air Force Base, Alaska

    SciTech Connect

    Liikala, T.L.; Evans, J.C.

    1995-01-01

    Source area ST58 is the site of the old Quartermaster service station at Eielson Air Force Base, Alaska. The source area is one of several Source Evaluation Report sites being investigated by Pacific Northwest Laboratory for the US Air Force as candidates for no further remedial action, interim removal action, or a remedial investigation/feasibility study under a Federal Facilities Agreement. The purpose of this work was to characterize source area ST58 and excavate the most contaminated soils for use in composting treatability studies. A field investigation was conducted to determine the nature and extent of soil contamination. The field investigation entailed a records search; grid node location, surface geophysical, and soil gas surveys; and test pit soil sampling. Soil excavation followed based on the results of the field investigation. The site was backfilled with clean soil. Results from this work indicate close spatial correlation between screening instruments, used during the field investigation and soil excavation, and laboratory analyses. Gasoline was identified as the main subsurface contaminant based on the soil gas surveys and test pit soil sampling. A center of contamination was located near the northcentral portion of the source area, and a center was located in the northwestern comer. The contamination typically occurred near or below a former soil horizon probably as a result of surface spills and leaks from discontinuities and/or breaks in the underground piping. Piping locations were delineated during the surface geophysical surveys and corresponded very well to unscaled drawings of the site. The high subsurface concentrations of gasoline detected in the northwestern comer of the source area probably reflect ground-water contamination and/or possibly floating product.

  15. Aluminum doping studies on high field ZnO varistors

    SciTech Connect

    Kimball, K.M.; Doughty, D.H.

    1987-08-01

    We have investigated the effect of Al doping on the physical and electronic properties of high field ZnO varistors. For this study, varistors containing 98.94 m/o ZnO, 0.25 m/o CoO, 0.25 m/o MnO, 0.56 m/o Bi/sub 2/O/sub 3/ and 0 to 200 ppM Al were prepared from powders obtained from solution precipitation techniques. Because of the amphoteric nature of aluminum oxides, precise control of pH and metal concentrations was necessary to assure complete incorporation of dopants. We observed inhibition of grain growth during sintering of varistor pellets at aluminum concentrations of 50 ppM and above. The measured electrical properties show increased switching fields and increased nonlinearity coefficients for Al doping levels of 50 to 200 ppM.

  16. Investigation of defect-induced abnormal body current in fin field-effect-transistors

    SciTech Connect

    Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Yang, Ren-Ya; Cheng, Osbert; Huang, Cheng-Tung

    2015-08-24

    This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal.

  17. 7 CFR 12.22 - Highly erodible field determination criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Highly erodible field determination criteria. 12.22 Section 12.22 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Highly Erodible Land Conservation § 12.22 Highly erodible field determination criteria....

  18. 7 CFR 12.22 - Highly erodible field determination criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Highly erodible field determination criteria. 12.22 Section 12.22 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Highly Erodible Land Conservation § 12.22 Highly erodible field determination criteria....

  19. 7 CFR 12.22 - Highly erodible field determination criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Highly erodible field determination criteria. 12.22 Section 12.22 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Highly Erodible Land Conservation § 12.22 Highly erodible field determination criteria....

  20. 7 CFR 12.22 - Highly erodible field determination criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Highly erodible field determination criteria. 12.22 Section 12.22 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Highly Erodible Land Conservation § 12.22 Highly erodible field determination criteria....

  1. 7 CFR 12.22 - Highly erodible field determination criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Highly erodible field determination criteria. 12.22 Section 12.22 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Highly Erodible Land Conservation § 12.22 Highly erodible field determination criteria....

  2. Investigation of a high power electromagnetic pulse source

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV/m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.

  3. Investigation of a high power electromagnetic pulse source.

    PubMed

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna. PMID:23020399

  4. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  5. Enzyme Substrate Reactions in High Magnetic Fields

    PubMed Central

    Maling, J. E.; Weissbluth, M.; Jacobs, E. E.

    1965-01-01

    The reaction rates of two enzyme substrate systems, ribonuclease-RNA and succinate-cytochrome c reductase, were followed as a function of magnetic field from zero to 48,000 gauss. The reaction rates remained constant to within 10 per cent. PMID:5884011

  6. A Field Course Investigation of a Pembrokeshire River.

    ERIC Educational Resources Information Center

    Bailey, R. G.

    1978-01-01

    The river was investigated at six stations from source to estuary. Modifications of water quality and aquatic communities are related to man's activities in the river basin. The organization of the exercise and the method employed are described. (Author/BB)

  7. FIELD INVESTIGATION OF SULFITE FLUXES TO A DECIDUOUS FOREST

    EPA Science Inventory

    An intensive investigation of particulate sulfur fluxes to a deciduous forest was conducted at Oak Ridge, Tennessee, during May 1983. ddy correlation methods were used to measure fluxes of submicron particulate sulfur, of submicron particles in three different size ranges, and of...

  8. Integrating Field and Laboratory Investigations of Televised Violence and Aggression.

    ERIC Educational Resources Information Center

    Eron, Leonard D.; Huesmann, L. Rowell

    Longitudinal and intervention laboratory studies were conducted to investigate the effects of viewing televised violence on the aggressive behavior of elementary school children. In the longitudinal study 505 children were studied over a 3-year period. The measures used included peer nominated aggression, aggression anxiety and popularity,…

  9. Spectral investigation of nonlinear local field effects in Ag nanoparticles

    SciTech Connect

    Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji

    2015-03-21

    The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.

  10. ASTEROSEISMIC INVESTIGATION OF KNOWN PLANET HOSTS IN THE KEPLER FIELD

    SciTech Connect

    Christensen-Dalsgaard, J.; Kjeldsen, H.; Arentoft, T.; Frandsen, S.; Quirion, P.-O.; Brown, T. M.; Gilliland, R. L.; Borucki, W. J.; Koch, D.; Jenkins, J. M.

    2010-04-20

    In addition to its great potential for characterizing extra-solar planetary systems, the Kepler Mission is providing unique data on stellar oscillations. A key aspect of Kepler asteroseismology is the application to solar-like oscillations of main-sequence stars. As an example, we here consider an initial analysis of data for three stars in the Kepler field for which planetary transits were known from ground-based observations. For one of these, HAT-P-7, we obtain a detailed frequency spectrum and hence strong constraints on the stellar properties. The remaining two stars show definite evidence for solar-like oscillations, yielding a preliminary estimate of their mean densities.

  11. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin

    2011-05-01

    The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is

  12. Echoes from the Field: An Ethnographic Investigation of Outdoor Science Field Trips

    ERIC Educational Resources Information Center

    Boxerman, Jonathan Zvi

    2013-01-01

    As popular as field trips are, one might think they have been well-studied. Nonetheless, field trips have not been heavily studied, and little research has mapped what actually transpires during field trips. Accordingly, to address this research gap, I asked two related research questions. The first question is a descriptive one: What happens on…

  13. Numerical investigation of high pressure and high Reynolds diffusion flame using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Nichkoohi, Ali Lohrasbi; Tousi, Abolghasem Mesgarpour

    2014-10-01

    Today, with nonstop improvement in computational power, Large-Eddy Simulation (LES) is a high demanding research tool for predicting engineering flows. Such flows on high pressure condition like diesel engines is extensively employed in ground and marine transportation, oblige the designer to control and predict toxic pollutants, while maintaining or improving their high thermal efficiency. This becomes one of the main challenging issues in decades. In the present work, numerical investigation of diffusion flame dynamics is performed in the near-field of high-Reynolds jet flow on high pressure condition encountered in diesel engine applications. This work discusses the implementation of Partially Stirred Reactor (PaSR) combustion model by the approaches of large eddy simulation (LES). The simulation results show that LES, in comparison with Reynolds-Averaged Navier-Stokes (RANS) simulation predicts and captures transient phenomena very well. These phenomena such as unsteadiness and curvature are inherent in the near-field of high Reynolds diffusion flame. The outcomes of this research are compared and validated by other researchers' results. Detailed comparisons of the statistics show good agreement with the corresponding experiments.

  14. Investigation of the temperature field in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Byers, Clayton; Hultmark, Marcus

    2015-11-01

    The scaling and evolution of a developing turbulent thermal boundary layer is investigated. By allowing the temperature differences in the fluid to remain small enough to treat temperature as a passive scalar, the analysis can be extended to any turbulent convection/diffusion problem. Mean temperature scaling is developed and analyzed by utilizing the ``Asymptotic Invariance Principle'' developed by George and Castillo (1997). Possible effects of the Reynolds and Prandtl number are discussed. The derived power law solution for the inner and outer scaling is then used to develop a ``heat transfer law'' for the wall heat flux, qw. Data collection is performed with a newly developed MEMS sensor, allowing improved performance and reduced spatial and temporal filtering of the signal. Integration with a PIV system will allow direct measurements of the turbulent heat flux - θv to investigate the extent of the overlap layer and validity of the proposed scaling laws. Temperature variance 1/2 θ2 will also be investigated, with a possible scaling proposed.

  15. Paramagnetic shimming for high-field MRI

    SciTech Connect

    Tomasi, D.; Tomasi, D.; Wang, R.L.

    2009-01-20

    The diamagnetism of biological tissues reduces the homogeneity of the magnetic field and may limit the number of samples in multi-sample gradient-recalled echo (GRE) experiments. This study aims to (1) evaluate the magnetic field distortions and signal loss artifacts in GRE images of proximal water samples, and (2) develop a passive shimming device to overcome this limitation. The magnetic field distribution produced by a diamagnetic H{sub 2}O sphere and a paramagnetic CuSO{sub 4} disk in a secondary phantom were mapped using GRE experiments and the phase reference method, and compared to the corresponding magnetostatics models. The water sphere produced a pronounced signal loss artifact in amplitude images. This artifact was significantly reduced when the paramagnetic disk was placed symmetrically between the water sphere and the secondary spherical phantom. The present study suggests that the use of paramagnetic shimming devices can help to minimize susceptibility-related MRI signal losses and to increase the number of samples in multi-sample MRI experiments. The volume susceptibility and the shape of paramagnetic shimming devices could be optimized for particular setups and samples accordingly.

  16. Complex Investigation of SBS Galaxies in Seven Selected Fields

    NASA Astrophysics Data System (ADS)

    Hakopian, Susanna

    2014-07-01

    It is known that the main criterion for the selection of active objects in the First Byurakan, otherwise Markarian survey was the presence of signs of UV-excess in their low-dispersion spectra. Using the presence of emission lines as the second criteria became real during the Second Byurakan survey because of its improved technique. Extended (not stellated) objects, selected with the use of this criterion, made the main part of the separate sample of SBS galaxies. Originally, this sample included 1286 objects, selected in 65 fields of the survey (16 square degree each), to which, with the help of other sources than the survey, there were later added some objects. We studied a subsample of SBS galaxies in seven selected fields (the deepest according to the V/Vmax criterion), including about the third of the whole sample. The first, already completed phase of this program was started with carrying out a follow-up slit spectroscopy of all, about 500 objects, based on observations with long-slit spectrographs with 6m telescope of SAO Russia and 2.6.m telescope of Byurakan. As a result redshifts were determined, as well as spectral classification was made for all of objects, using the scheme adapted to the spectral material. Besides other, obtained data allowed us to estimate the efficiency of used criteria for the selection of galaxies of different classes of starformation and nuclear activity along the full scale of the apparent magnitudes, including close to the limit values (18.5 < m pg < 19.5), etc. The fact that the total area of seven fields as the total number of objects in them comparable with these values for the survey as a whole, allows us to extrapolate the results to the whole sample of galaxies as an upper estimate. The second stage is to conduct detailed studies of individual galaxies in the first place, the most interesting in terms of morphology. They are based on panoramic spectroscopy obtained from observations at 6 m telescope of Russia and 2.6m

  17. Echoes from the Field: An Ethnographic Investigation of Outdoor Science Field Trips

    NASA Astrophysics Data System (ADS)

    Boxerman, Jonathan Zvi

    As popular as field trips are, one might think they have been well-studied. Nonetheless, field trips have not been heavily studied, and little research has mapped what actually transpires during field trips. Accordingly, to address this research gap, I asked two related research questions. The first question is a descriptive one: What happens on field trips? The second question is explanatory: What field trip events are memorable and why? I employed design research and ethnographic methodologies to study learning in naturally occurring contexts. I collaborated with middle-school science teachers to design and implement more than a dozen field trips. The field trips were nested in particular biology and earth sciences focal units. Students were tasked with making scientific observations in the field and then analyzing this data during classroom activities. Audio and video recording devices captured what happened during the field trips, classroom activities and discussions, and the interviews. I conducted comparative microanalysis of videotaped interactions. I observed dozens of events during the field trips that reverberated across time and place. I characterize the features of these events and the objects that drew interest. Then, I trace the residue across contexts. This study suggests that field trips could be more than one-off experiences and have the potential to be resources to seed and enrich learning and to augment interest in the practice of science.

  18. An X-ray Investigation of the NGC 346 Field in the SMC (2): The Field Population

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Manfroid, J.; Marchenko, S.; Corcoran, M. F.; Moffat, A. F. J.; Skalkowski, G.

    2003-01-01

    We present results from a Chandra observation of the NGC 346 cluster, which is the ionizing source of N66, the most luminous HII region and the largest star formation region in the SMC. In the first part of this investigation, we have analysed the X-ray properties of the cluster itself and the remarkable star HD 5980. But the field contains additional objects of interest. In total, 79 X-ray point sources were detected in the Chandra observation: this is more than five times the number of sources detected by previous X-ray surveys. We investigate here their characteristics in detail. The sources possess rather high hardness ratios, and their cumulative luminosity function is steeper than that for the rest of the SMC at higher .luminosities. Their absorption columns suggest that most of the sources belong to NGC346. Using new UBV RI imaging with the ESO 2.2m telescope, we also discovered possible counterparts for 36 of these X-ray sources and estimated a B spectral type for a large number of these counterparts. This tends to suggest that most of the X-ray sources in the field are in fact X-ray binaries. Finally, some objects show X-ray and/or optical variability, with a need for further monitoring.

  19. Investigation of Hot Carrier Degradation in Shallow-Trench-Isolation-Based High-Voltage Laterally Diffused Metal-Oxide-Semiconductor Field-Effect Transistors by a Novel Direct Current Current-Voltage Technique

    NASA Astrophysics Data System (ADS)

    He, Yandong; Zhang, Ganggang

    2012-04-01

    Shallow trench isolation (STI) based laterally diffused metal-oxide-semiconductor (LDMOS) devices have become popular with its better tradeoff between breakdown voltage and on-resistance and its compatibility with the standard complementary metal-oxide-semiconductor (CMOS) process. A novel direct current current-voltage (DCIV) technique demonstrated with multiple sharp peak signals is proposed to characterize interface state generation in the channel and in the STI drift regions separately. Degradation of STI-based LDMOS transistors in various hot-carrier stress modes is investigated experimentally by proposed technique. A two-dimensional numerical device simulation is performed to obtain insight into the proposed technique and device degradation characteristics under hot-carrier stress conditions. The impact of interface state location on device electrical characteristics is analyzed from measurement and simulation. Our results show that the maximum Isub stress becomes the worst hot-carrier degradation mode in term of the on-resistance degradation, which is attributed to interface state generation under STI drift region.

  20. First Investigation on the Radiation Field of the Spherical Hohlraum

    NASA Astrophysics Data System (ADS)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xuefei; Lan, Ke; Liu, Jie; Ren, Guoli; Li, Yongsheng; Liu, Yonggang; Jiang, Xiaohua; Yang, Dong; Li, Sanwei; Guo, Liang; Zhang, Huan; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Huang, Lizhen; Du, Kai; Zhao, Runchang; Li, Ping; Wang, Wei; Su, Jingqin; Ding, Yongkun; He, Xian-Tu; Zhang, Weiyan

    2016-07-01

    The first spherical hohlraum energetics experiment is accomplished on the SGIII-prototype laser facility. In the experiment, the radiation temperature is measured by using an array of flat-response x-ray detectors (FXRDs) through a laser entrance hole at four different angles. The radiation temperature and M -band fraction inside the hohlraum are determined by the shock wave technique. The experimental observations indicate that the radiation temperatures measured by the FXRDs depend on the observation angles and are related to the view field. According to the experimental results, the conversion efficiency of the vacuum spherical hohlraum is in the range from 60% to 80%. Although this conversion efficiency is less than the conversion efficiency of the near vacuum hohlraum on the National Ignition Facility, it is consistent with that of the cylindrical hohlraums used on the NOVA and the SGIII-prototype at the same energy scale.

  1. Results of investigation at the Ahuachapan Geothermal Field, El Salvador

    SciTech Connect

    Fink, J.B. )

    1990-04-01

    The Ahuachapan Geothermal Field (AGF) is a 95 megawatt geothemal-sourced power-plant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the past decade, as part of an effort to increase in situ thermal reserves in order to realize the full generation capacity of the AGF, extensive surface geophysical coverage has been obtained over the AGF and the prospective Chipilapa area to the east. The geophysical surveys were performed to determine physical property characteristics of the known reservoir and then to search for similar characteristics in the Chipilapa area. A secondary objective was to evaluate the surface recharge area in the highlands to the south of the AGF. The principal surface electrical geophysical methods used during this period were DC resistivity and magnetotellurics. Three available data sets have been reinterpreted using drillhole control to help form geophysical models of the area. The geophysical models are compared with the geologic interpretations.

  2. Simulation of radiolysis in the near field of a nuclear repository and the spectrophotometric investigation of the formation of radiolysis by-products by applying high energy beam-like experiments

    SciTech Connect

    Hartmann, T.; Paviet-Hartmann, P.; Wetteland, C. J.; Lu, N.; Ware, S. D.; Sage, S.

    2002-01-01

    In the event of inundation of a nuclear waste repository located in a geological salt formation, chloride brines in contact with nuclear waste will be exposed to different kind of radiation depending on waste-form conditions. Ionizing radiations, however, have the ability to significantly affect the groundwater chemistry of the brines through the formation of free radicals, ionic- and molecular species; among them the typical byproducts of a-radiolysis: hypochlorite (OC1-) and hypochlorous acid (HOCl). In the absence of effects which arc supposed to dominate the redox conditions in the repository (corrosion of metals, microbial activity) the presence of OC1- is known to increase the redox potential of the brines and further to influence the stability of actinide waste-forms by accelerating their dissolution arid - most importantly - to oxidize actinides to their higlier oxidation states, whicli are gcncrally the most soluble ones. We are presenting a new approach to determine the radiation-induced formation rates of hypochlorite and hypochlorous acid as a first step to assess long-term steady-state repository conditions. To ovt:rcome the serious constraints of conventional radiocheinical work with GBq activity levels, we are simulating a-irradiation of chloride brines by the adaptation of ion-beam-line experiments. Therefore, we irradiate liquid chloride brine targets with 5 MeV protons, and 5 MeV helium ions. The irradiation-induced formation rates of OCX- and HOC1 were determined by UV-Vis spectrophotometry. To give an example, the measured G values for the HOCl formation in 3.7 M MgC12.6H20, pW 4.42, irradiated by 5 MeV protons was determined to be 0.0374 {+-} 0.0022, and 0.0536 {+-} 49 by irradiating with 5 MeV helium. The distinguished ltnowledge about the radiation-induced production of oxo-chloride species is the first step towards the assumption of their steady-state concentrations in the irradiation field of the repository.

  3. Field investigation of FGD system chemistry. Final report

    SciTech Connect

    Litherland, S.T.; Colley, J.D.; Glover, R.L.; Maller, G.; Behrens, G.P.

    1984-12-01

    Three full-scale wet limestone FGD systems were investigated to gain a better understanding of FGD system operation and chemistry. The three plants which participated in the program were South Mississippi Electric Power Association's R. D. Morrow Station, Colorado-Ute Electric Association's Craig Station, and Central Illinois Light Company's Duck Creek Station. Each FGD system was characterized with respect to SO/sub 2/ removal, liquid and solid phase chemistry, and calcium sulfite and calcium sulfate relative saturation. Mist eliminator chemistry and performance were documented at Morrow and Duck Creek. Solutions to severe mist eliminator scaling and pluggage were demonstrated at Duck Creek. A technical and econ

  4. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    SciTech Connect

    Rosenzweig, J.

    1997-10-31

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published.

  5. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    SciTech Connect

    Tong Wang

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  6. Pulsed magnetic field measurement system based on colossal magnetoresistance-B-scalar sensors for railgun investigation.

    PubMed

    Stankevič, T; Medišauskas, L; Stankevič, V; Balevičius, S; Żurauskienė, N; Liebfried, O; Schneider, M

    2014-04-01

    A high pulsed magnetic field measurement system based on the use of CMR-B-scalar sensors was developed for the investigations of the electrodynamic processes in electromagnetic launchers. The system consists of four independent modules (channels) which are controlled by a personal computer. Each channel is equipped with a CMR-B-scalar sensor connected to the measurement device-B-scalar meter. The system is able to measure the magnitude of pulsed magnetic fields from 0.3 T to 20 T in the range from DC up to 20 kHz independently of the magnetic field direction. The measurement equipment circuit is electrically separated from the ground and shielded against low and high frequency electromagnetic noise. The B-scalar meters can be operated in the presence of ambient pulsed magnetic fields with amplitudes up to 0.2 T and frequencies higher than 1 kHz. The recorded signals can be transmitted to a personal computer in a distance of 25 m by means of a fiber optic link. The system was tested using the electromagnetic railgun RAFIRA installed at the French-German Research Institute of Saint-Louis, France. PMID:24784635

  7. Experimental Investigation of Porous-floor Effects on Cavity Flow Fields at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1990-01-01

    An experimental investigation was conducted to determine the effectiveness of a passive-venting system to modify the flow field characteristics of a rectangular-box cavity at supersonic speeds. The passive-venting system consists of a porous floor with a vent chamber beneath the floor. For certain cavity length-to-height ratios, this configuration allowed high-pressure air at the rear of the cavity to vent to the forward part of the cavity, thereby modifying the cavity flow field. The wind-tunnel model consisted of a flat plate that housed a cavity mounted on a balance such that only the cavity drag was measured. The cavity height remained constant, and the length varied with rectangular-block inserts. Both solid-and porous-floor cavities were tested for comparison at Mach numbers of 1.60, 1.90, 2.16, and 2.86. These results showed that the passive-venting system did modify the cavity flow field. In order to determine the type flow field which existed for the porous-floor configuration, pressures were measured inside the cavity at the same conditions and for the same configurations as those used in the drag tests. Pressure data were also obtained with stores mounted in the cavity. These results, along with Schlieren photographs and the tabulated data, are presented to document the porous-floor cavity flow field.

  8. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    SciTech Connect

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. ); Medina, V. . Unidad de Desarollo Geotermico)

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  9. Development of Point Doppler Velocimetry for Flow Field Investigations

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.; Meyers, James F.; Lee, Joseph W.

    2006-01-01

    A Point Doppler Velocimeter (pDv) has been developed using a vapor-limited iodine cell as the sensing medium. The iodine cell is utilized to directly measure the Doppler shift frequency of laser light scattered from submicron particles suspended within a fluid flow. The measured Doppler shift can then be used to compute the velocity of the particles, and hence the fluid. Since this approach does not require resolution of scattered light from individual particles, the potential exists to obtain temporally continuous signals that could be uniformly sampled in the manner as a hot wire anemometer. This leads to the possibility of obtaining flow turbulence power spectra without the limitations of fringe-type laser velocimetry. The development program consisted of a methodical investigation of the technology coupled with the solution of practical engineering problems to produce a usable measurement system. The paper outlines this development along with the evaluation of the resulting system as compared to primary standards and other measurement technologies.

  10. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.