Science.gov

Sample records for involuntary muscle movements

  1. Arousal facilitates involuntary eye movements.

    PubMed

    DiGirolamo, Gregory J; Patel, Neha; Blaukopf, Clare L

    2016-07-01

    Attention plays a critical role in action selection. However, the role of attention in eye movements is complicated as these movements can be either voluntary or involuntary, with, in some circumstances (antisaccades), these two actions competing with each other for execution. But attending to the location of an impending eye movement is only one facet of attention that may play a role in eye movement selection. In two experiments, we investigated the effect of arousal on voluntary eye movements (antisaccades) and involuntary eye movements (prosaccadic errors) in an antisaccade task. Arousal, as caused by brief loud sounds and indexed by changes in pupil diameter, had a facilitation effect on involuntary eye movements. Involuntary eye movements were both significantly more likely to be executed and significantly faster under arousal conditions (Experiments 1 and 2), and the influence of arousal had a specific time course (Experiment 2). Arousal, one form of attention, can produce significant costs for human movement selection as potent but unplanned actions are benefited more than planned ones. PMID:26928432

  2. Sensorimotor organization of a sustained involuntary movement

    PubMed Central

    De Havas, Jack; Ghosh, Arko; Gomi, Hiroaki; Haggard, Patrick

    2015-01-01

    Involuntary movements share much of the motor control circuitry used for voluntary movement, yet the two can be easily distinguished. The Kohnstamm phenomenon (where a sustained, hard push produces subsequent involuntary arm raising) is a useful experimental model for exploring differences between voluntary and involuntary movement. Both central and peripheral accounts have been proposed, but little is known regarding how the putative Kohnstamm generator responds to afferent input. We addressed this by obstructing the involuntary upward movement of the arm. Obstruction prevented the rising EMG pattern that characterizes the Kohnstamm. Importantly, once the obstruction was removed, the EMG signal resumed its former increase, suggesting a generator that persists despite peripheral input. When only one arm was obstructed during bilateral involuntary movements, only the EMG signal from the obstructed arm showed the effect. Upon release of the obstacle, the obstructed arm reached the same position and EMG level as the unobstructed arm. Comparison to matched voluntary movements revealed a preserved stretch response when a Kohnstamm movement first contacts an obstacle, and also an overestimation of the perceived contact force. Our findings support a hybrid central and peripheral account of the Kohnstamm phenomenon. The strange subjective experience of this involuntary movement is consistent with the view that movement awareness depends strongly on efference copies, but that the Kohnstamm generator does not produces efference copies. PMID:26283934

  3. Using voluntary motor commands to inhibit involuntary arm movements.

    PubMed

    Ghosh, Arko; Rothwell, John; Haggard, Patrick

    2014-11-01

    A hallmark of voluntary motor control is the ability to stop an ongoing movement. Is voluntary motor inhibition a general neural mechanism that can be focused on any movement, including involuntary movements, or is it mere termination of a positive voluntary motor command? The involuntary arm lift, or 'floating arm trick', is a distinctive long-lasting reflex of the deltoid muscle. We investigated how a voluntary motor network inhibits this form of involuntary motor control. Transcranial magnetic stimulation of the motor cortex during the floating arm trick produced a silent period in the reflexively contracting deltoid muscle, followed by a rebound of muscle activity. This pattern suggests a persistent generator of involuntary motor commands. Instructions to bring the arm down voluntarily reduced activity of deltoid muscle. When this voluntary effort was withdrawn, the involuntary arm lift resumed. Further, voluntary motor inhibition produced a strange illusion of physical resistance to bringing the arm down, as if ongoing involuntarily generated commands were located in a 'sensory blind-spot', inaccessible to conscious perception. Our results suggest that voluntary motor inhibition may be a specific neural function, distinct from absence of positive voluntary motor commands. PMID:25253453

  4. Voluntary motor commands reveal awareness and control of involuntary movement.

    PubMed

    De Havas, Jack; Ghosh, Arko; Gomi, Hiroaki; Haggard, Patrick

    2016-10-01

    The capacity to inhibit actions is central to voluntary motor control. However, the control mechanisms and subjective experience involved in voluntarily stopping an involuntary movement remain poorly understood. Here we examined, in humans, the voluntary inhibition of the Kohnstamm phenomenon, in which sustained voluntary contraction of shoulder abductors is followed by involuntary arm raising. Participants were instructed to stop the involuntary movement, hold the arm in a constant position, and 'release' the inhibition after ∼2s. Participants achieved this by modulating agonist muscle activity, rather than by antagonist contraction. Specifically, agonist muscle activity plateaued during this voluntary inhibition, and resumed its previous increase thereafter. There was no discernible antagonist activation. Thus, some central signal appeared to temporarily counter the involuntary motor drive, without directly affecting the Kohnstamm generator itself. We hypothesise a form of "negative motor command" to account for this novel finding. We next tested the specificity of the negative motor command, by inducing bilateral Kohnstamm movements, and instructing voluntary inhibition for one arm only. The results suggested negative motor commands responsible for inhibition are initially broad, affecting both arms, and then become focused. Finally, a psychophysical investigation found that the perceived force of the aftercontraction was significantly overestimated, relative to voluntary contractions with similar EMG levels. This finding is consistent with the hypothesis that the Kohnstamm generator does not provide an efference copy signal. Our results shed new light on this interesting class of involuntary movement, and provide new information about voluntary inhibition of action. PMID:27399155

  5. Subjective awareness of abnormal involuntary movements in schizophrenia.

    PubMed

    Sandyk, R; Kay, S R; Awerbuch, G I

    1993-01-01

    A wide majority of schizophrenic patients with Tardive dyskinesia, a neurological disorder produced by chronic neuroleptic therapy, lack awareness of their involuntary movements. This by contrast to patients with Parkinsonism who usually are aware of their abnormal movements. In the following communication we present a series of studies which are aimed at providing further insight into the issue of awareness of involuntary movements in schizophrenic patients with tardive dyskinesia. In addition, we investigated whether edentulosness, which may be a risk factor for orofacial dyskinesias in the elderly, is also a risk factor for neuroleptic-induced orofacial dyskinesias. We found that: (a) one's awareness of involuntary movements is related to some but not all muscle groups, (b) tardive dyskinesia may be associated with a significant distress, (c) lack of awareness may be a feature of frontal lobe dysfunction in schizophrenia, (d) patients who lack awareness of their involuntary movements have a higher prevalence of pineal calcification, and (e) edentulosness, which is related to deficits in the orofacial sensorimotor system, increases the risk for neuroleptic-induced orofacial dyskinesias. PMID:7916006

  6. Involuntary movements misdiagnosed as seizure during vitamin B12 treatment.

    PubMed

    Carman, Kursat Bora; Belgemen, Tugba; Yis, Uluc

    2013-11-01

    Seizures and epilepsy are a common problem in childhood. Nonepileptic paroxysmal events are conditions that can mimic seizure and frequent in early childhood. Nonepileptic paroxysmal events can be due to physiological or exaggerated physiological responses, parasomnias, movement disorders, behavioral or psychiatric disturbances, or to hemodynamic, respiratory, or gastrointestinal dysfunction. Vitamin B12 deficiency is a treatable cause of failure to thrive and developmental regression, involuntary movements, and anemia. Involuntary movements rarely may appear a few days after the initiation of vitamin B12 treatments and might be misdiagnosed as seizure. Here, we report 2 patients who presented with involuntary movements with his video image. PMID:24196096

  7. [Involuntary Movement of Bilateral Lower Limbs Caused by Epidural Anesthesia: A Case Report].

    PubMed

    Toki, Keiko; Yokose, Masashi; Miyashita, Tetsuya; Sato, Hitoshi; Fujimoto, Hiroko; Yamamoto, Sayoko; Goto, Takahisa

    2016-06-01

    Regional anesthesia, especially epidural anesthesia, rarely causes involuntary movement Here we present a case of a patient who demonstrated myoclonus-like involuntary movement of the lower limbs during continuous infusion of ropivacaine, fentanyl, and droperidol through the thoracic epidural catheter. This movement disappeared when the epidural infusion was stopped, but reappeared when the epidural infusion was restarted. Naloxone did not eliminate the movement The patient was thereafter discharged uneventfully. This case and other reports in the literature suggest that involuntary movement associated with regional anesthesia is rare and self-limiting. However, careful consideration should be given to exclude other, potentially dangerous complications. PMID:27483662

  8. Classification of involuntary movements in dogs: Tremors and twitches.

    PubMed

    Lowrie, Mark; Garosi, Laurent

    2016-08-01

    This review focuses on important new findings in the field of involuntary movements (IM) in dogs and illustrates the importance of developing a clear classification tool for diagnosing tremor and twitches. Developments over the last decade have changed our understanding of IM and highlight several caveats in the current tremor classification. Given the ambiguous association between tremor phenomenology and tremor aetiology, a more cautious definition of tremors based on clinical assessment is required. An algorithm for the characterisation of tremors is presented herein. The classification of tremors is based on the distinction between tremors that occur at rest and tremors that are action-related; tremors associated with action are divided into postural or kinetic. Controversial issues are outlined and thus reflect the open questions that are yet to be answered from an evidence base of peer-reviewed published literature. Peripheral nerve hyper-excitability (PNH; cramps and twitches) may manifest as fasciculations, myokymia, neuromyotonia, cramps, tetany and tetanus. It is anticipated that as we learn more about the aetiology and pathogenesis of IMs, future revisions to the classification will be needed. It is therefore the intent of this work to stimulate discussions and thus contribute to the development of IM research. PMID:27387736

  9. Movement - uncontrolled or slow

    MedlinePlus

    ... leg movements - uncontrollable; Slow involuntary movements of large muscle groups; Athetoid movements ... The slow twisting movements of muscles (athetosis) or jerky muscle ... including: Cerebral palsy Drug side effects Encephalitis ...

  10. Capturing Physiology of Emotion along Facial Muscles: A Method of Distinguishing Feigned from Involuntary Expressions

    NASA Astrophysics Data System (ADS)

    Khan, Masood Mehmood; Ward, Robert D.; Ingleby, Michael

    The ability to distinguish feigned from involuntary expressions of emotions could help in the investigation and treatment of neuropsychiatric and affective disorders and in the detection of malingering. This work investigates differences in emotion-specific patterns of thermal variations along the major facial muscles. Using experimental data extracted from 156 images, we attempted to classify patterns of emotion-specific thermal variations into neutral, and voluntary and involuntary expressions of positive and negative emotive states. Initial results suggest (i) each facial muscle exhibits a unique thermal response to various emotive states; (ii) the pattern of thermal variances along the facial muscles may assist in classifying voluntary and involuntary facial expressions; and (iii) facial skin temperature measurements along the major facial muscles may be used in automated emotion assessment.

  11. Dentatorubropallidoluysian atrophy without involuntary movement or dementia--a case report.

    PubMed

    Kasahata, Naoki; Iwasaki, Yasuo

    2010-10-01

    Recently, discussions about the clinical features of dentatorubropallidoluysian atrophy (DRPLA), especially the existence of an ataxo-choreoathetoid type, have increased. Traditionally, DRPLA patients have been thought to present with involuntary movements and dementia. Here, we report a patient that presented with ataxia, spasticity of the right lower extremity and mild sensory disturbances. He did not show either apparent involuntary movement or dementia. Mini-mental state examination demonstrated a score of 29/30. The cerebellar output system involving the dentate nuclei and superior cerebellar peduncles seemed to be atrophic yet the cerebellar input system involving the middle cerebellar peduncles was preserved on MRI. In addition, there was an expansion of the atrophin1 (ATN1) CAG repeat of chromosome 12p: 9/61. This seems to be the first case report of a genetically confirmed DRPLA patient presenting with clinical manifestations of Machado-Joseph disease (MJD/SCA3). PMID:20627552

  12. A case of vitamin B12 deficiency with involuntary movements and bilateral basal ganglia lesions.

    PubMed

    Kitamura, Taisuke; Gotoh, Seiji; Takaki, Hayato; Kiyuna, Fumi; Yoshimura, Sohei; Fujii, Kenichiro

    2016-07-28

    An 86-year-old woman with a one-year history of dementia was admitted to our hospital complaining of loss of appetite, hallucinations, and disturbance of consciousness. She gradually presented with chorea-like involuntary movements of the extremities. Diffusion-weighted magnetic resonance imaging (MRI) showed bilateral symmetrical hyperintense signals in the basal ganglia. The serum vitamin B12 level was below the lower detection limit of 50 pg/ml. The homocysteine level was markedly elevated at 115.8 nmol/ml. Anti-intrinsic factor and anti-parietal cell antibody tests were positive. Gastrointestinal endoscopy revealed atrophic gastritis. The patient was diagnosed with encephalopathy due to vitamin B12 deficiency caused by pernicious anemia. Involuntary movements and MRI abnormalities improved with parenteral vitamin B12 supplementation. Bilateral basal ganglia lesions are rare manifestations of adult vitamin B12 deficiency. The present case is considered valuable in identifying the pathophysiology of involuntary movement due to vitamin B12 deficiency. PMID:27356735

  13. Involuntary human hand movements due to FM radio waves in a moving van.

    PubMed

    Huttunen, P; Savinainen, A; Hänninen, Osmo; Myllylä, R

    2011-06-01

    Finland TRACT Involuntary movements of hands in a moving van on a public road were studied to clarify the possible role of frequency modulated radio waves on driving. The signals were measured in a direct 2 km test segment of an international road during repeated drives to both directions. Test subjects (n=4) had an ability to sense radio frequency field intensity variations of the environment. They were sitting in a minivan with arm movement detectors in their hands. A potentiometer was used to register the hand movements to a computer which simultaneously collected data on the amplitude of the RF signal of the local FM tower 30 km distance at a frequency of about 100 MHz. Involuntary hand movements of the test subjects correlated with electromagnetic field, i.e. FM radio wave intensity measured. They reacted also on the place of a geomagnetic anomaly crossing the road, which was found on the basis of these recordings and confirmed by the public geological maps of the area.In conclusion, RF irradiation seems to affect the human hand reflexes of sensitive persons in a moving van along a normal public road which may have significance in traffic safety. PMID:21616774

  14. The influence of involuntary facial movements on craniofacial anthropometry: a survey using a three-dimensional photographic system.

    PubMed

    Lübbers, Heinz-Theo; Medinger, Laurent; Kruse, Astrid L; Grätz, Klaus Wilhelm; Obwegeser, Joachim Anton; Matthews, Felix

    2012-03-01

    In the modern anthropometry of complex structures, such as the face, different technical approaches for acquisition of three-dimensional data have become increasingly more common. Results of meticulous evaluations have shown high degrees of precision and accuracy under both ideal and clinical circumstances. However, the question remains as to which level of accuracy is adequate to meet clinical needs. Apart from the measuring technique itself, potential sources of error must be identified and dealt with. Subjects' involuntary facial movements can potentially influence clinical reliability. The 3dMDface™ system was used clinically to investigate the influence of involuntary facial movements. Other factors of influence were systematically excluded. The mean technical error of the system (0.09mm) was investigated in a previous study and taken into account for interpretation of the data. The handling of the system was straightforward for both acquisition and analysis of data. Including technical error and the influence of involuntary facial movements, the mean global error was 0.41mm (range 0-3.3). Taking into account the technical error of the system known from the previous study, involuntary facial movements account for a mean error of 0.32mm. This range of involuntary facial movements clearly exceeds the known technical error of the three-dimensional photographic system used. Given this finding, future research should shift its focus from the analysis of the technical aspects of such systems to other influential factors. PMID:21236527

  15. Involuntary rhythmic leg movements time-locked with the respiratory cycle.

    PubMed

    Leal, A J; Calado, E

    2001-11-01

    Involuntary rhythmic leg movements in childhood is an uncommon condition, the generators of which remain unknown. We report on a male 3 years of age with distinct features providing important clues concerning the location of one of these generators. At the age of 7 months, the previously healthy young male started with low frequency, rhythmic, and continuous (both during wakefulness and sleep) flexion/extension movements of the lower limbs. Movements interfered significantly with gait acquisition, and, despite normal cognitive development, he was able to walk only at age 2 years, 4 months. The neurologic examination revealed the absence of automatic stepping in the neonatal period, but was otherwise normal. A polygraphic electroencephalogram/electromyogram (EEG/EMG) recording, at the age of 2 years, 9 months, revealed rhythmic and synchronous legs with EMG activity at 0.5 Hz. A more complete polygraphic recording at the age of 3 years, 10 months, showed a lower frequency (0.35 Hz) for the movements, which were time-locked with the respiratory cycle. Magnetic resonance imaging (MRI) of the brain revealed an increased T(2) signal in the upper medulla-lower pons regions. The generator of the rhythmic legs movements is postulated to be the respiratory center, connecting with the reticulospinal projecting neurons through an aberrant pathway. PMID:11744317

  16. A Genetic Mouse Model of Parkinson's Disease Shows Involuntary Movements and Increased Postsynaptic Sensitivity to Apomorphine.

    PubMed

    Brehm, N; Bez, F; Carlsson, T; Kern, B; Gispert, S; Auburger, G; Cenci, M A

    2015-12-01

    Alpha-synuclein (SNCA) protein aggregation plays a causal role in Parkinson's disease (PD). The SNCA protein modulates neurotransmission via the SNAP receptor (SNARE) complex assembly and presynaptic vesicle trafficking. The striatal presynaptic dopamine deficit is alleviated by treatment with levodopa (L-DOPA), but postsynaptic plastic changes induced by this treatment lead to a development of involuntary movements (dyskinesia). While this process is currently modeled in rodents harboring neurotoxin-induced lesions of the nigrostriatal pathway, we have here explored the postsynaptic supersensitivity of dopamine receptor-mediated signaling in a genetic mouse model of early PD. To this end, we used mice with prion promoter-driven overexpression of A53T-SNCA in the nigrostriatal and corticostriatal projections. At a symptomatic age (18 months), mice were challenged with apomorphine (5 mg/kg s.c.) and examined using both behavioral and molecular assays. After the administration of apomorphine, A53T-transgenic mice showed more severe stereotypic and dystonic movements in comparison with wild-type controls. Molecular markers of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and dephosphorylation, and Fos messenger RNA (mRNA), were examined in striatal tissue at 30 and 100 min after apomorphine injection. At 30 min, wild-type and transgenic mice showed a similar induction of phosphorylated ERK1/2, Dusp1, and Dusp6 mRNA (two MAPK phosphatases). At the same time point, Fos mRNA was induced more strongly in mutant mice than in wild-type controls. At 100 min after apomorphine treatment, the induction of both Fos, Dusp1, and Dusp6 mRNA was significantly larger in mutant mice than wild-type controls. At this time point, apomorphine caused a reduction in phospho-ERK1/2 levels specifically in the transgenic mice. Our results document for the first time a disturbance of ERK1/2 signaling regulation associated with apomorphine-induced involuntary movements

  17. A hand-held micro surgical device for contact force regulation against involuntary movements.

    PubMed

    Seulki Kyeong; Dongjune Chang; Yunjoo Kim; Gwang Min Gu; Seungkey Lee; Soohoa Jeong; Jung Kim

    2015-08-01

    Involuntary movements such as heart beating in surgical environment and surgeon's tremor disturb a micro surgical manipulation and cause a risk of patient wound. Although the delicate operation is performed by a skilled surgeon, the sensitivity of the surgeon is limited to quantify the range of safe contact forces. In this paper, we developed a compact hand-held surgical device to maintain a required contact force to maintain a required contact force using a custom force sensor and a linear delta mechanism. The custom optical force sensor measured the contact force of the device tip and the linear delta mechanism compensated undesired forces to maintain a consistent contact force. The proposed device is consisted of force sensing unit and actuating unit. The device was improved from our previous Linear Delta mechanism based prototype in terms of size, weight, and force sensing capability. The developed device was validated by investigation of contact force accuracy in a fixed condition and a hand-held condition. In hand-held condition, the visual feedback of the current contact force was provided, and the performance of the contact force regulation was investigated by comparing the root mean square (RMS) contact force errors and standard deviation in with and without control cases. The fluctuation (less than 50 mN) of the force regulation control of the device showed the feasibility of the device for the use in delicate operations. PMID:26736400

  18. The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor.

    PubMed

    Laine, Christopher M; Nagamori, Akira; Valero-Cuevas, Francisco J

    2016-01-01

    Voluntary control of force is always marked by some degree of error and unsteadiness. Both neural and mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly understood. In this study, we identify and characterize a previously undescribed neuromechanical interaction where the dynamics of voluntary force production suffice to generate involuntary tremor. Specifically, participants were asked to produce isometric force with the index finger and use visual feedback to track a sinusoidal target spanning 5-9% of each individual's maximal voluntary force level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS) muscle were recorded and their frequency content was analyzed as a function of target phase. Force variability in either the 1-5 or 6-15 Hz frequency ranges tended to be largest at the peaks and valleys of the target sinusoid. In those same periods, FDS EMG activity was synchronized with force fluctuations. We then constructed a physiologically-realistic computer simulation in which a muscle-tendon complex was set inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce phase-dependent modulation of tremor similar to that observed in humans. Further, the gain of afferent feedback from muscle spindles was critical for appropriately amplifying and shaping this tremor. We suggest that the experimentally-induced tremor may represent the response of a viscoelastic muscle-tendon system to dynamic drive, and therefore does not fall into known categories of tremor generation, such as tremorogenic descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical resonance. Our findings motivate future efforts to understand tremor from a perspective that considers neuromechanical coupling within the context of closed-loop control. The strategy of combining experimental recordings with physiologically-sound simulations will enable thorough exploration

  19. The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor

    PubMed Central

    Laine, Christopher M.; Nagamori, Akira; Valero-Cuevas, Francisco J.

    2016-01-01

    Voluntary control of force is always marked by some degree of error and unsteadiness. Both neural and mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly understood. In this study, we identify and characterize a previously undescribed neuromechanical interaction where the dynamics of voluntary force production suffice to generate involuntary tremor. Specifically, participants were asked to produce isometric force with the index finger and use visual feedback to track a sinusoidal target spanning 5–9% of each individual's maximal voluntary force level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS) muscle were recorded and their frequency content was analyzed as a function of target phase. Force variability in either the 1–5 or 6–15 Hz frequency ranges tended to be largest at the peaks and valleys of the target sinusoid. In those same periods, FDS EMG activity was synchronized with force fluctuations. We then constructed a physiologically-realistic computer simulation in which a muscle-tendon complex was set inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce phase-dependent modulation of tremor similar to that observed in humans. Further, the gain of afferent feedback from muscle spindles was critical for appropriately amplifying and shaping this tremor. We suggest that the experimentally-induced tremor may represent the response of a viscoelastic muscle-tendon system to dynamic drive, and therefore does not fall into known categories of tremor generation, such as tremorogenic descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical resonance. Our findings motivate future efforts to understand tremor from a perspective that considers neuromechanical coupling within the context of closed-loop control. The strategy of combining experimental recordings with physiologically-sound simulations will enable thorough

  20. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model.

    PubMed

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung; Kim, Kyoung-Shim; Kim, Mee Ree

    2016-08-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD. PMID:27574484

  1. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model

    PubMed Central

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung

    2016-01-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD. PMID:27574484

  2. Gamma-Band Modulation and Coherence in the EEG by Involuntary Eye Movements in Patients in Unresponsive Wakefulness Syndrome.

    PubMed

    Balazs, Susanne; Kermanshahi, Kazem; Binder, Heinrich; Rattay, Frank; Bodis-Wollner, Ivan

    2016-07-01

    Gamma power and coherence in the electroencephalogram increase in healthy individuals in association with voluntary eye movements, saccades. Patients with unresponsive wakefulness syndrome show repetitive involuntary eye movements that are similar to saccades but progress at a much lower speed. In the present study, we explored the changes in gamma power and coherence related to these eye movements and investigated whether any relationship to the patients' clinical status could be found that would indicate first neurophysiological signs of recovery. To this end, we assessed the clinical status and registered classical scalp electroencephalography with 19 surface electrodes and electro-oculogram of 45 consecutive patients at admission and at 4 weekly intervals. Slow gamma activity (in the frequency range of 37-40 Hz) was analyzed before, during, and after eye movements (pre, -intra and post-eye movement) by means of "continuous wavelet transform." We graded recovery using clinical behavioral scales, taking into account the variables, age, gender, recovery (yes or no), as well as the patients diagnoses (traumatic brain injury, hypoxia, hemorrhage, infection). Statistical evaluation was performed using DataLab, R, and Kruskal-Wallis methods. Based on the clinical status, we distinguished between recovering and chronic groups of patients. In comparison with the chronic group, the recovering group showed significantly higher gamma power over the posterior electrodes and significant higher values of coherence in the gamma-band activity during the presaccadic period of eye movements. We suggest that our findings on the onset of involuntary eye movements in the recovering group of patients with unresponsive wakefulness syndrome indicates a first neurophysiological sign of favorable prognosis. PMID:26346965

  3. Paradoxical muscle movement in human standing

    PubMed Central

    Loram, Ian D; Maganaris, Constantinos N; Lakie, Martin

    2004-01-01

    In human standing, gravity causes forward toppling about the ankle joint which is prevented by activity in the soleus and gastrocnemius muscles. It has long been assumed that when people sway forwards the calf muscles are stretched and conversely that they shorten with backward sway. Consequently, for many years, two explanations for standing stabilization have flourished. First, tonic muscle activity itself may generate adequate intrinsic ankle stiffness. Second, if intrinsic ankle stiffness is inadequate, the resistance to stretch of the calf muscles may be augmented by stretch reflexes or by central control. These explanations require that the passive tissue (Achilles' tendon, foot) transmitting the calf muscle tension is stiff. However, our recent measurements have indicated that this passive tissue is not stiff during standing. Accordingly, we predicted a counterintuitive mode of control where the muscles and body must, on average, move in opposite directions (paradoxical movements). Here we use dynamic ultrasound imaging in vivo with novel automated tracking of muscle length to test our hypothesis. We show that soleus and gastrocnemius do indeed move paradoxically, shortening when the body sways forward and lengthening when the body returns. This confirms that intrinsic ankle stiffness is too low to stabilize human standing. Moreover, it shows that the increase in active tension is associated with muscle shortening. This pattern cannot be produced by muscle stretch reflexes and can only arise from the anticipatory neural control of muscle length that is necessary for balance. PMID:15047776

  4. Identification and classification of involuntary leg muscle contractions in electromyographic records from individuals with spinal cord injury.

    PubMed

    Thomas, C K; Dididze, M; Martinez, A; Morris, R W

    2014-10-01

    Involuntary muscle contractions (spasms) are common after human spinal cord injury (SCI). Our aim was to compare how well two raters independently identified and classified different types of spasms in the same electromyographic records (EMG) using predefined rules. Muscle spasms were identified by the presence, timing and pattern of EMG recorded from paralyzed leg muscles of four subjects with chronic cervical SCI. Spasms were classified as one of five types: unit, tonic, clonus, myoclonus, mixed. In 48h of data, both raters marked the same spasms most of the time. More variability in the total spasm count arose from differences between muscles (84%; within subjects) than differences between subjects (6.5%) or raters (2.6%). Agreement on spasm classification was high (89%). Differences in spasm count, and classification largely occurred when EMG was marked as a single spasm by one rater but split into multiple spasms by the other rater. EMG provides objective measurements of spasm number and type in contrast to the self-reported spasm counts that are often used to make clinical decisions about spasm management. Data on inter-rater agreement and discrepancies on muscle spasm analysis can both drive the design and evaluation of software to automate spasm identification and classification. PMID:25023162

  5. Dynamic modeling of the neck muscles during horizontal head movement.

    PubMed

    Haapala, Stephenie A; Enderle, John D

    2002-01-01

    This paper presents modeling and simulation of superficial neck muscle movement in the horizontal plane (yaw). The parametric muscle model was constructed using Pro/Engineer 2000i Student Edition, Parametric Technologies Corp, and simulated using Pro/Mechanica. Pennation angles, force-tension, force-generation and rate of muscle activation data were obtained from anatomic and physiological studies. Saccadic eye movement models developed by G. Alexander Korentis and John Enderle also provided the basis for this model. PMID:12085608

  6. Patterns of arm muscle activation involved in octopus reaching movements.

    PubMed

    Gutfreund, Y; Flash, T; Fiorito, G; Hochner, B

    1998-08-01

    The extreme flexibility of the octopus arm allows it to perform many different movements, yet octopuses reach toward a target in a stereotyped manner using a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et al., 1996a). To study the neuronal control of these movements, arm muscle activation [electromyogram (EMG)] was measured together with the kinematics of reaching movements. The traveling bend is associated with a propagating wave of muscle activation, with maximal muscle activation slightly preceding the traveling bend. Tonic activation was occasionally maintained afterward. Correlation of the EMG signals with the kinematic variables (velocities and accelerations) reveals that a significant part of the kinematic variability can be explained by the level of muscle activation. Furthermore, the EMG level measured during the initial stages of movement predicts the peak velocity attained toward the end of the reaching movement. These results suggest that feed-forward motor commands play an important role in the control of movement velocity and that simple adjustment of the excitation levels at the initial stages of the movement can set the velocity profile of the whole movement. A simple model of octopus arm extension is proposed in which the driving force is set initially and is then decreased in proportion to arm diameter at the bend. The model qualitatively reproduces the typical velocity profiles of octopus reaching movements, suggesting a simple control mechanism for bend propagation in the octopus arm. PMID:9671683

  7. Effects of Local and Widespread Muscle Fatigue on Movement Timing

    PubMed Central

    Cowley, Jeffrey C.; Dingwell, Jonathan B.; Gates, Deanna H.

    2014-01-01

    Repetitive movements can cause muscle fatigue, leading to motor reorganization, performance deficits, and/or possible injury. The effects of fatigue may depend on the type of fatigue task employed, however. The purpose of this study was to determine how local fatigue of a specific muscle group versus widespread fatigue of various muscle groups affected the control of movement timing. Twenty healthy subjects performed an upper-extremity low-load work task similar to sawing for 5 continuous minutes both before and after completing a protocol that either fatigued all the muscles used in the task (widespread fatigue) or a protocol that selectively fatigued the primary muscles used to execute the pushing stroke of the sawing task (localized fatigue). Subjects were instructed to time their movements with a metronome. Timing error, movement distance, and speed were calculated for each movement. Data were then analyzed using a goal-equivalent manifold (GEM) approach to quantify changes in goal-relevant and non-goal-relevant variability. We applied detrended fluctuation analysis to each time series to quantify changes in fluctuation dynamics that reflected changes in the control strategies used. After localized fatigue, subjects made shorter, slower movements and exerted greater control over non-goal-relevant variability. After widespread fatigue, subjects exerted less control over non-goal-relevant variability and did not change movement patterns. Thus, localized and widespread muscle fatigue affected movement differently. Local fatigue may reduce the available motor solutions and therefore cause greater movement reorganization than widespread muscle fatigue. Subjects altered their control strategies but continued to achieve the timing goal after both fatigue tasks. PMID:25183157

  8. Effects of previous muscle contractions on cyclic movement dynamics.

    PubMed

    Jarić, S; Gavrilović, P; Ivancević, V

    1985-01-01

    In addition to muscle elastic energy, enhancement of movement performance in a stretch-shortening cycle could also be due to an increase in initial muscle force during the stretching phase. This hypothesis was tested by examining 9 male physical education students during maximum voluntary knee extensions performed with and without previous knee flexion. In both conditions movements were performed with various external loads. In addition, the force-velocity curve (FVC) parameters of the knee extensor muscles were also determined. As simple model of a muscle impulse was constructed in order to select independent biomechanical variables relevant to movement dynamics. The experimental results demonstrated that previous knee flexion enhanced the maximum angular velocity of knee extension. This effect decreased with increasing movement duration (i.e. increased external load), as well as giving positive correlation coefficients between the magnitude of this effect and the rate of development of knee extensor tension. These results are discussed in relation to a model of the dynamics. It is shown that previous muscle contractions performed during braking in the negative movement phase might play an important role in enhancing performance in cyclic movements. This role would be especially important in transient contractions of primarily slow twitch fiber muscles. PMID:4043051

  9. Energy-minimizing choices of muscles and patterns of movement.

    PubMed

    Alexander, R M

    2000-01-01

    Prilutsky (1999, target paper) reports that Crowninshield and Brand's (1981) criterion, minimization of the sum of the cubes of muscle stresses, works well as a predictor of the division of labor between muscles, for various tasks. However, no direct benefit from minimizing this particular sum is apparent, and it seems likely that it is merely a correlate of the criterion that actually drives muscle choice. In many tasks, there would be a clear, direct benefit from minimizing metabolic energy costs, as Prilutsky (1999) points out. Alexander (1997a, 1997b) and Minetti and Alexander (1997) have shown how the metabolic energy costs of muscle contraction can be estimated, and used to predict optimum muscle properties or optimal patterns of movement. This article explores the feasibility of using the same approach to predict optimum division of labor between one- and two-joint muscles. PMID:10675808

  10. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  11. Generating dynamic simulations of movement using computed muscle control.

    PubMed

    Thelen, Darryl G; Anderson, Frank C; Delp, Scott L

    2003-03-01

    Computation of muscle excitation patterns that produce coordinated movements of muscle-actuated dynamic models is an important and challenging problem. Using dynamic optimization to compute excitation patterns comes at a large computational cost, which has limited the use of muscle-actuated simulations. This paper introduces a new algorithm, which we call computed muscle control, that uses static optimization along with feedforward and feedback controls to drive the kinematic trajectory of a musculoskeletal model toward a set of desired kinematics. We illustrate the algorithm by computing a set of muscle excitations that drive a 30-muscle, 3-degree-of-freedom model of pedaling to track measured pedaling kinematics and forces. Only 10 min of computer time were required to compute muscle excitations that reproduced the measured pedaling dynamics, which is over two orders of magnitude faster than conventional dynamic optimization techniques. Simulated kinematics were within 1 degrees of experimental values, simulated pedal forces were within one standard deviation of measured pedal forces for nearly all of the crank cycle, and computed muscle excitations were similar in timing to measured electromyographic patterns. The speed and accuracy of this new algorithm improves the feasibility of using detailed musculoskeletal models to simulate and analyze movement. PMID:12594980

  12. Model-based estimation of muscle forces exerted during movements.

    PubMed

    Erdemir, Ahmet; McLean, Scott; Herzog, Walter; van den Bogert, Antonie J

    2007-02-01

    Estimation of individual muscle forces during human movement can provide insight into neural control and tissue loading and can thus contribute to improved diagnosis and management of both neurological and orthopaedic conditions. Direct measurement of muscle forces is generally not feasible in a clinical setting, and non-invasive methods based on musculoskeletal modeling should therefore be considered. The current state of the art in clinical movement analysis is that resultant joint torques can be reliably estimated from motion data and external forces (inverse dynamic analysis). Static optimization methods to transform joint torques into estimates of individual muscle forces using musculoskeletal models, have been known for several decades. To date however, none of these methods have been successfully translated into clinical practice. The main obstacles are the lack of studies reporting successful validation of muscle force estimates, and the lack of user-friendly and efficient computer software. Recent advances in forward dynamics methods have opened up new opportunities. Forward dynamic optimization can be performed such that solutions are less dependent on measured kinematics and ground reaction forces, and are consistent with additional knowledge, such as the force-length-velocity-activation relationships of the muscles, and with observed electromyography signals during movement. We conclude that clinical applications of current research should be encouraged, supported by further development of computational tools and research into new algorithms for muscle force estimation and their validation. PMID:17070969

  13. Muscle activity detection in electromyograms recorded during periodic movements.

    PubMed

    Spulák, Daniel; Cmejla, Roman; Bačáková, Radka; Kračmar, Bronislav; Satrapová, Lenka; Novotný, Petr

    2014-04-01

    Muscle coordination during periodic movements is often studied using the average envelope of the electromyographic (EMG) signal. We show that this method causes a loss of important information, and potentially gives rise to errors in analysis of muscle activity coordination. We created four simulated two-channel surface EMG signals, in order to compare the results of muscle onset/cessation detection, performed on the average EMG envelope and the EMG envelopes in every single movement cycle. Our results show that the common method using the average EMG envelope is unable to reveal certain important characteristics of the EMG signals, while the analysis performed on individual cycles accentuates this information. This ability was verified on 16-channel surface EMGs obtained during walking and cycling. By detecting muscle activity in individual movement cycles, we could observe fine changes in muscle coordination. Moreover, muscles with questionable reliability of activity detection were distinguished and highlighted in the presented summary figures. In the second part of the paper, our publicly available set of MATLAB files for surface EMG signal processing is described. PMID:24561347

  14. Muscle-contraction properties in overarm throwing movements.

    PubMed

    Grezios, Apostolos K; Gissis, Ioannis Th; Sotiropoulos, Aristomenis A; Nikolaidis, Dimitrios V; Souglis, Athanasios G

    2006-02-01

    On the basis of dynamic and kinematic data, this study identifies the type of muscle contraction in unloaded overarm throwing movements. An unloaded throw or nearly unloaded throw is defined as the throw in which the external resistance is too small (e.g., the team handball, baseball, and water polo throws as well as the tennis and badminton smashes). A special arm-force-measuring apparatus was constructed to imitate an overarm throw. Forty-two subjects were placed into 3 groups: untrained subjects, weight-trained athletes, and team handball players. The measured parameters included the velocity of the initial movement, the release velocity, the velocity of the first 50 milliseconds of the concentric phase, the force value at the moment of deceleration of the initial movement, and the impulse values during the eccentric and concentric phases of the test movement. Statistically significant higher values of the above parameters (p < 0.05) were determined in that test at which the initial speed of movement was higher. Also, the correlation coefficients of the parameters of the initial phase of the throw movement were very high (p < 0.001), especially the parameters related with the movement's first 50 milliseconds. The results support the thesis that the stretch-shortening cycle is the type of muscle contraction in unloaded overarm throws. Furthermore, it is possible to increase the throw velocity by increasing the velocity of the initial movement (i.e., by provoking higher inertia forces). PMID:16503670

  15. Speech Motor Development: Integrating Muscles, Movements, and Linguistic Units

    ERIC Educational Resources Information Center

    Smith, Anne

    2006-01-01

    A fundamental problem for those interested in human communication is to determine how ideas and the various units of language structure are communicated through speaking. The physiological concepts involved in the control of muscle contraction and movement are theoretically distant from the processing levels and units postulated to exist in…

  16. Reliability and clinical utility of a Portuguese version of the Abnormal Involuntary Movements Scale (AIMS) for tardive dyskinesia in Brazilian patients.

    PubMed

    Tonelli, H; Tonelli, D; Poiani, G R; Vital, M A B F; Andreatini, R

    2003-04-01

    The objective of the present study was to evaluate the reliability and clinical utility of a Portuguese version of the Abnormal Involuntary Movements Scale (AIMS). Videotaped interviews with 16 psychiatric inpatients treated with antipsychotic drugs for at least 5 years were evaluated. Reliability was assessed by the intraclass correlation coefficient (ICC) between three raters, two with and one without clinical training in psychopathology. Clinical utility was assessed by the difference between the scores of patients with (N = 11) and without (N = 5) tardive dyskinesia (TD). Patients with TD exhibited a higher severity of global evaluation by the AIMS (sum of scores: 4.2 +/- 0.9 vs 0.4 +/- 0.2; score on item 8: 2.3 +/- 0.3 vs 0.4 +/- 0.2, TD vs controls). The ICC for the global evaluation was fair between the two skilled raters (0.58-0.62) and poor between these raters and the rater without clinical experience (0.05-0.29). Thus, we concluded that the Portuguese version of the AIMS shows an acceptable inter-rater reliability, but only between clinically skilled raters, and that it is clinically useful. PMID:12700830

  17. Muscle spindle activity in man during voluntary fast alternating movements.

    PubMed Central

    Hagbarth, K E; Wallen, G; Löfstedt, L

    1975-01-01

    Single unit activity in primary spindle afferent nerve fibres from finger and foot flexors was recorded with tungsten microelectrodes inserted into the median and peroneal nerves of healthy subjects. During voluntary fast alternating finger and foot movements, simulating the tremor of Parkinsonism, two types of discharges were seen in the Ia afferent fibres: (1) stretch responses occurring during the flexor relaxation phases, and (2) discharges occurring during the flexor contraction phases. Contrary to the stretch responses the spindle contraction discharges could be eliminated by a partial lidocaine block of the muscle nerve proximal to the recording site, indicating that they resulted from fusimotor activation of intrafusal fibres. On the basis of the temporal relations between the beginning and end of individual EMG-bursts, the start of the spindle contraction discharges and the latency of the stretch reflex in the muscles concerned, the following conclusions were drawn: the recurrent extrafusal contractions in movements of this type are initiated by the fast direct alpha route, but individual contraction phases generally last long enough to be influenced subsequently by the coactivated fusimotor loop through the spindles. It is postulated that this gamma loop influence during alternating movements helps to keep flexor and extensor muscles working in a regular reciprocal fashion with contractions adjusted in strength to the external loads. Images PMID:125782

  18. RGS4 is involved in the generation of abnormal involuntary movements in the unilateral 6-OHDA-lesioned rat model of Parkinson's disease.

    PubMed

    Ko, Wai Kin D; Martin-Negrier, Marie-Laure; Bezard, Erwan; Crossman, Alan R; Ravenscroft, Paula

    2014-10-01

    Regulators of G-protein signalling (RGS) proteins are implicated in striatal G-protein coupled receptor (GPCR) sensitisation in the pathophysiology of l-DOPA-induced abnormal involuntary movements (AIMs), also known as dyskinesia (LID), in Parkinson's disease (PD). In this study, we investigated RGS protein subtype 4 in the expression of AIMs in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of LID. The effects of RGS4 antisense brain infusion on the behavioural and molecular correlates of l-DOPA priming in 6-OHDA-lesioned rats were assessed. In situ hybridisation revealed that repeated l-DOPA/benserazide treatment caused an elevation of RGS4 mRNA levels in the striatum, predominantly in the lateral regions. The increased expression of RGS4 mRNA in the rostral striatum was found to positively correlate with the behavioural (AIM scores) and molecular (pre-proenkephalin B, PPE-B expression) markers of LID. We found that suppressing the elevation of RGS4 mRNA in the striatum by continuous infusion of RGS4 antisense oligonucleotides, via implanted osmotic mini-pumps, during l-DOPA priming, reduced the induction of AIMs. Moreover, ex vivo analyses of the rostral dorsolateral striatum showed that RGS4 antisense infusion attenuated l-DOPA-induced elevations of PPE-B mRNA and dopamine-stimulated [(35)S]GTPγS binding, a marker used for measuring dopamine receptor super-sensitivity. Taken together, these data suggest that (i) RGS4 proteins play an important pathophysiological role in the development and expression of LID and (ii) suppressing the elevation of RGS4 mRNA levels in l-DOPA priming attenuates the associated pathological changes in LID, dampening its physiological expression. Thus, modulating RGS4 proteins could prove beneficial in the treatment of dyskinesia in PD. PMID:24969021

  19. The novel 5-HT1A receptor agonist, NLX-112 reduces l-DOPA-induced abnormal involuntary movements in rat: A chronic administration study with microdialysis measurements.

    PubMed

    McCreary, Andrew C; Varney, Mark A; Newman-Tancredi, Adrian

    2016-06-01

    Although l-DOPA alleviates the motor symptoms of Parkinson's disease (PD), it elicits troublesome l-DOPA-induced dyskinesia (LID) in a majority of PD patients after prolonged treatment. This is likely due to conversion of l-DOPA to dopamine as a 'false neurotransmitter' from serotoninergic neurons. The highly selective and efficacious 5-HT1A receptor agonist, NLX-112 (befiradol or F13640) shows potent activity in a rat model of LID (suppression of Abnormal Involuntary Movements, AIMs) but its anti-AIMs effects have not previously been investigated following repeated administration. Acute administration of NLX-112 (0.04 and 0.16 mg/kg i.p.) reversed l-DOPA (6 mg/kg)-induced AIMs in hemiparkinsonian rats with established dyskinesia. The activity of NLX-112 was maintained following repeated daily i.p. administration over 14 days and was accompanied by pronounced decrease of striatal 5-HT extracellular levels, as measured by in vivo microdialysis, indicative of the inhibition of serotonergic activity. A concurrent blunting of l-DOPA-induced surge in dopamine levels on the lesioned side of the brain was observed upon NLX-112 administration and these neurochemical responses were also seen after 14 days of treatment. NLX-112 also suppressed the expression of AIMs in rats that were being primed for dyskinesia by repeated l-DOPA administration. However, when treatment of these rats with NLX-112 was stopped, l-DOPA then induced AIMs with scores that resembled those of control rats. The present study shows that the potent anti-AIMs activity of NLX-112 is maintained upon repeated administration and supports the ongoing clinical development of NLX-112 as a novel antidyskinetic agent for PD patients receiving l-DOPA treatment. PMID:26777281

  20. The effect of involuntary motor activity on myoelectric pattern recognition: a case study with chronic stroke patients

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping

    2013-08-01

    Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.

  1. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  2. Types of muscle tissue (image)

    MedlinePlus

    ... appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow visceral organs, ... shaped, and are also under involuntary control. Skeletal muscle fibers occur in muscles which are attached to the ...

  3. Tonic central and sensory stimuli facilitate involuntary air-stepping in humans.

    PubMed

    Selionov, V A; Ivanenko, Y P; Solopova, I A; Gurfinkel, V S

    2009-06-01

    Air-stepping can be used as a model for investigating rhythmogenesis and its interaction with sensory input. Here we show that it is possible to entrain involuntary rhythmic movement patterns in healthy humans by using different kinds of stimulation techniques. The subjects lay on their sides with one or both legs suspended, allowing low-friction horizontal rotation of the limb joints. To evoke involuntary stepping of the suspended leg, either we used continuous muscle vibration, electrical stimulation of the superficial peroneal or sural nerves, the Jendrassik maneuver, or we exploited the postcontraction state of neuronal networks (Kohnstamm phenomenon). The common feature across all stimulations was that they were tonic. Air-stepping could be elicited by most techniques in about 50% of subjects and involved prominent movements at the hip and the knee joint (approximately 40-70 degrees). Typically, however, the ankle joint was not involved. Minimal loading forces (4-25 N) applied constantly to the sole (using a long elastic cord) induced noticeable (approximately 5-20 degrees) ankle-joint-angle movements. The aftereffect of a voluntary long-lasting (30-s) contraction in the leg muscles featured alternating rhythmic leg movements that lasted for about 20-40 s, corresponding roughly to a typical duration of the postcontraction activity in static conditions. The Jendrassik maneuver per se did not evoke air-stepping. Nevertheless, it significantly prolonged rhythmic leg movements initiated manually by an experimenter or by a short (5-s) period of muscle vibration. Air-stepping of one leg could be evoked in both forward and backward directions with frequent spontaneous transitions, whereas involuntary alternating two-legged movements were more stable (no transitions). The hypothetical role of tonic influences, contact forces, and bilateral coordination in rhythmogenesis is discussed. The results overall demonstrated that nonspecific tonic drive may cause air

  4. Corticospinal Excitability in the Hand Muscles is Decreased During Eye Movement with Visual Occlusion.

    PubMed

    Chujo, Yuta; Jono, Yasutomo; Tani, Keisuke; Nomura, Yoshifumi; Hiraoka, Koichi

    2016-02-01

    Corticospinal excitability in the hand muscles decreases during smooth pursuit eye movement. The present study tested a hypothesis that the decrease in corticospinal excitability in the hand muscles at rest during eye movement is not caused by visual feedback but caused by motor commands to the eye muscles. Healthy men (M age = 28.4 yr., SD = 5.2) moved their eyes to the right with visual occlusion (dark goggles) while their arms and hands remained at rest. The motor-evoked potential in the hand muscles was suppressed by 19% in the third quarter of the eye-movement period, supporting a view that motor commands to the eye muscles are the cause of the decrease in corticospinal excitability in the hand muscles. The amount of the suppression was not significantly different among the muscles, indicating that modulation of corticospinal excitability in one muscle induced by eye movement is not dependent on whether eye movement direction and the direction of finger movement when the muscle contracts are identical. Thus, the finding failed to support a hypothetical view that motor commands to the eye muscles concomittantly produce motor commands to the hand muscles. Moreover, the amount of the suppression was not significantly different between the forearm positions, indicating that the suppression was not affected by proprioception of the forearm muscles when visual feedback is absent. PMID:27420319

  5. Mechanistic role of movement and strain sensitivity in muscle contraction

    PubMed Central

    Davis, Julien S.; Epstein, Neal D.

    2009-01-01

    Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs the equilibrium constant directly to increase tension. Here, we show that a length jump functions quite differently. A step release (relative movement of thick and thin filaments) appears to release a steric constraint on an ensemble of noncompetent postphosphate release actomyosin cross-bridges, enabling them to generate tension, a concentration jump in effect. Structural studies [Taylor KA, et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell 99:421–431] that map to these kinetics indicate that both catalytic and lever arm domains of noncompetent myosin heads change angle on actin, whereas lever arm movement alone mediates the power stroke. Together, these kinetic and structural observations show a 13-nm overall interaction distance of myosin with actin, including a final 4- to 6-nm power stroke when the catalytic domain is fixed on actin. Raising fiber temperature with both perturbation techniques accelerates the forward, but slows the reverse rate constant of tension generation, kinetics akin to the unfolding/folding of small proteins. Decreasing strain, however, causes both forward and reverse rate constants to increase. Despite these changes in rate, the equilibrium constant is strain-insensitive. Activation enthalpy and entropy data show this invariance to be the result of enthalpy–entropy compensation. Reaction amplitudes confirm a strain-invariant equilibrium constant and thus a strain-insensitive ratio of pretension- to tension-generating states as work is done. PMID:19325123

  6. Mechanistic role of movement and strain sensitivity in muscle contraction.

    PubMed

    Davis, Julien S; Epstein, Neal D

    2009-04-14

    Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs the equilibrium constant directly to increase tension. Here, we show that a length jump functions quite differently. A step release (relative movement of thick and thin filaments) appears to release a steric constraint on an ensemble of noncompetent postphosphate release actomyosin cross-bridges, enabling them to generate tension, a concentration jump in effect. Structural studies [Taylor KA, et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca(2+)-activated contracting insect flight muscle. Cell 99:421-431] that map to these kinetics indicate that both catalytic and lever arm domains of noncompetent myosin heads change angle on actin, whereas lever arm movement alone mediates the power stroke. Together, these kinetic and structural observations show a 13-nm overall interaction distance of myosin with actin, including a final 4- to 6-nm power stroke when the catalytic domain is fixed on actin. Raising fiber temperature with both perturbation techniques accelerates the forward, but slows the reverse rate constant of tension generation, kinetics akin to the unfolding/folding of small proteins. Decreasing strain, however, causes both forward and reverse rate constants to increase. Despite these changes in rate, the equilibrium constant is strain-insensitive. Activation enthalpy and entropy data show this invariance to be the result of enthalpy-entropy compensation. Reaction amplitudes confirm a strain-invariant equilibrium constant and thus a strain-insensitive ratio of pretension- to tension-generating states as work is done. PMID:19325123

  7. DEFINITION AND CLASSIFICATION OF HYPERKINETIC MOVEMENTS IN CHILDHOOD

    PubMed Central

    Sanger, Terence D.; Chen, Daofen; Fehlings, Darcy L.; Hallett, Mark; Lang, Anthony E.; Mink, Jonathan W.; Singer, Harvey; Alter, Katharine; Ben-Pazi, Hilla; Butler, Erin; Chen, Robert; Collins, Abigail; Dayanidhi, Sudarshan; Forssberg, Hans; Fowler, Eileen; Gilbert, Donald L.; Gorman, Sharon L.; Gormley, Mark E.; Jinnah, H. A.; Kornblau, Barbara; Krosschell, Kristin; Lehman, Rebecca K.; MacKinnon, Colum; Malanga, C. J.; Mesterman, Ronit; Michaels, Margaret Barry; Pearson, Toni S.; Rose, Jessica; Russman, Barry; Sternad, Dagmar; Swoboda, Kathy; Valero-Cuevas, Francisco

    2010-01-01

    Hyperkinetic movements are unwanted or excess movements that are frequently seen in children with neurologic disorders. They are an important clinical finding with significant implications for diagnosis and treatment. However, the lack of agreement on standard terminology and definitions interferes with clinical treatment and research. We describe definitions of dystonia, chorea, athetosis, myoclonus, tremor, tics, and stereotypies that arose from a consensus meeting in June 2008 of specialists from different clinical and basic science fields. Dystonia is a movement disorder in which involuntary sustained or intermittent muscle contractions cause twisting and repetitive movements, abnormal postures, or both. Chorea is an ongoing random-appearing sequence of one or more discrete involuntary movements or movement fragments. Athetosis is a slow, continuous, involuntary writhing movement that prevents maintenance of a stable posture. Myoclonus is a sequence of repeated, often non-rhythmic, brief shock-like jerks due to sudden involuntary contraction or relaxation of one or more muscles. Tremor is a rhythmic back-and-forth or oscillating involuntary movement about a joint axis. Tics are repeated, individually recognizable, intermittent movements or movement fragments that are almost always briefly suppressible and are usually associated with awareness of an urge to perform the movement. Stereotypies are repetitive, simple movements that can be voluntarily suppressed. We provide recommended techniques for clinical examination and suggestions for differentiating between the different types of hyperkinetic movements, noting that there may be overlap between conditions. These definitions and the diagnostic recommendations are intended to be reliable and useful for clinical practice, communication between clinicians and researchers, and for the design of quantitative tests that will guide and assess the outcome of future clinical trials. PMID:20589866

  8. The Averaged EMGs Recorded from the Arm Muscles During Bimanual “Rowing” Movements

    PubMed Central

    Tomiak, Tomasz; Gorkovenko, Andriy V.; Tal'nov, Arkadii N.; Abramovych, Tetyana I.; Mishchenko, Viktor S.; Vereshchaka, Inna V.; Kostyukov, Alexander I.

    2015-01-01

    The main purpose was to analyze quantitatively the the average surface EMGs of the muscles that function around the elbow and shoulder joints of both arms in bimanual “rowing” movements, which were produced under identical elastic loads applied to the levers (“oars”). The muscles of PM group (“pulling” muscles: elbow flexors, shoulder extensors) generated noticeable velocity-dependent dynamic EMG components during the pulling and returning phases of movement and supported a steady-state activity during the hold phase. The muscles of RM group (“returning” muscles: elbow extensors, shoulder flexors) co-contracted with PM group during the movement phases and decreased activity during the hold phase. The dynamic components of the EMGs strongly depended on the velocity factor in both muscle groups, whereas the side and load factors and combinations of various factors acted only in PM group. Various subjects demonstrated diverse patterns of activity redistribution among muscles. We assume that central commands to the same muscles in two arms may be essentially different during execution of similar movement programs. Extent of the diversity in the EMG patterns of such muscles may reflect the subject's skilling in motor performance; on the other hand, the diversity can be connected with redistribution of activity between synergic muscles, thus providing a mechanism directed against development of the muscle fatigue. PMID:26640440

  9. The Averaged EMGs Recorded from the Arm Muscles During Bimanual "Rowing" Movements.

    PubMed

    Tomiak, Tomasz; Gorkovenko, Andriy V; Tal'nov, Arkadii N; Abramovych, Tetyana I; Mishchenko, Viktor S; Vereshchaka, Inna V; Kostyukov, Alexander I

    2015-01-01

    The main purpose was to analyze quantitatively the the average surface EMGs of the muscles that function around the elbow and shoulder joints of both arms in bimanual "rowing" movements, which were produced under identical elastic loads applied to the levers ("oars"). The muscles of PM group ("pulling" muscles: elbow flexors, shoulder extensors) generated noticeable velocity-dependent dynamic EMG components during the pulling and returning phases of movement and supported a steady-state activity during the hold phase. The muscles of RM group ("returning" muscles: elbow extensors, shoulder flexors) co-contracted with PM group during the movement phases and decreased activity during the hold phase. The dynamic components of the EMGs strongly depended on the velocity factor in both muscle groups, whereas the side and load factors and combinations of various factors acted only in PM group. Various subjects demonstrated diverse patterns of activity redistribution among muscles. We assume that central commands to the same muscles in two arms may be essentially different during execution of similar movement programs. Extent of the diversity in the EMG patterns of such muscles may reflect the subject's skilling in motor performance; on the other hand, the diversity can be connected with redistribution of activity between synergic muscles, thus providing a mechanism directed against development of the muscle fatigue. PMID:26640440

  10. [A clinical study on the relationship between chewing movements and masticatory muscle activities].

    PubMed

    Higashi, K

    1989-06-01

    Chewing movement is one of the most important functional and physiological jaw movements, and it is coordinated by the three elements of the functional occlusion system (teeth, TMJs and masticatory muscles). However, the relationship between chewing movement and these elements has not been clarified. The purpose of this study was to investigate the relationship between chewing movement and the activity of the masticatory muscles which directly control jaw movements. 25 subjects with normal stomatognathic function, 5 patients with MPD syndrome (muscle dysfunction group) and 5 patients with unilateral TMJ internal derangement (TMJ dysfunction group) were selected. 6 gums with different hardness were used as the test bolus. Sirognathograph Electromyograph Analysing System was used to simultaneously record chewing movements and electromyograms of the right and left masseter, anterior temporal, posterior temporal and anterior belly of digastric muscles. Using the analysing software which was developed for this study, chewing movements and muscle activities were analysed. The results were as follow; A. In normal subjects 1. Gum hardness influenced durations of the closing and occluding phases, maximum opening and closing speed, opening degree and deviation of opening and closing path. 2. Gum hardness influenced muscle activities except of the time factors of digastric bursts. 3. Durations of the closing and occluding phases were found to be related with the elevator muscle activities. Maximum closing speed was related with the masseter and anterior temporal muscle activities. Deviation of closing path was related with the anterior and posterior temporal muscle activities. B. In abnormal subjects 1. The changes mainly observed in the muscle activities were found to be significantly different between the muscle dysfunction group and normal group. Similarly, the changes mainly observed in the chewing movements were different between the TMJ dysfunction group and normal

  11. Extreme Performance and Functional Robustness of Movement are Linked to Muscle Architecture: Comparing Elastic and Nonelastic Feeding Movements in Salamanders.

    PubMed

    Scales, Jeffrey A; Stinson, Charlotte M; Deban, Stephen M

    2016-07-01

    Muscle-powered movements are limited by the contractile properties of muscles and are sensitive to temperature changes. Elastic-recoil mechanisms can both increase performance and mitigate the effects of temperature on performance. Here, we compare feeding movements in two species of plethodontid salamanders, Bolitoglossa franklini and Desmognathus quadramaculatus, across a range of body temperatures (5-25°C) to better understand the mechanism of elastically powered, thermally robust movements. Bolitoglossa exhibited ballistic, elastically powered tongue projection with a maximum muscle mass specific power of 4,642 W kg(-1) while Desmognathus demonstrated nonballistic, muscle-powered tongue projection with a maximum power of 359 W kg(-1) . Tongue-projection performance in Bolitoglossa was more thermally robust than that of Desmognathus, especially below 15°C. The improved performance and thermal robustness of Bolitoglossa was associated with morphological changes in the projector muscle, including elaborated collagen aponeuroses and the absence of myofibers attaching directly to the tongue skeleton. The elongated aponeuroses likely increase the capacity for elastic energy storage, and the lack of myofibers inserting on the tongue skeleton permits ballistic projection. These results suggest that relatively simple changes in myofiber architecture and the amount of connective tissue can improve the performance and functional robustness of movements in the face of environmental challenges such as variable temperature. PMID:27320361

  12. Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement

    PubMed Central

    Vernooij, Carlijn A.; Reynolds, Raymond F.; Lakie, Martin

    2016-01-01

    People and animals can move freely, but they must also be able to stay still. How do skeletal muscles economically produce both movement and posture? Humans are well known to have motor units with relatively homogeneous mechanical properties. Thixotropic muscle properties can provide a solution by providing a temporary stiffening of all skeletal muscles in postural conditions. This stiffening is alleviated almost instantly when muscles start to move. In this paper, we probe this behaviour. We monitor both the neural input to a muscle, measured here as extensor muscle electromyography (EMG), and its output, measured as tremor (finger acceleration). Both signals were analysed continuously as the subject made smooth transitions between posture and movement. The results showed that there were marked changes in tremor which systematically increased in size and decreased in frequency as the subject moved faster. By contrast, the EMG changed little and reflected muscle force requirement rather than movement speed. The altered tremor reflects naturally occurring thixotropic changes in muscle behaviour. Our results suggest that physiological tremor provides useful and hitherto unrecognized insights into skeletal muscle's role in posture and movement. PMID:27293785

  13. Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement.

    PubMed

    Vernooij, Carlijn A; Reynolds, Raymond F; Lakie, Martin

    2016-05-01

    People and animals can move freely, but they must also be able to stay still. How do skeletal muscles economically produce both movement and posture? Humans are well known to have motor units with relatively homogeneous mechanical properties. Thixotropic muscle properties can provide a solution by providing a temporary stiffening of all skeletal muscles in postural conditions. This stiffening is alleviated almost instantly when muscles start to move. In this paper, we probe this behaviour. We monitor both the neural input to a muscle, measured here as extensor muscle electromyography (EMG), and its output, measured as tremor (finger acceleration). Both signals were analysed continuously as the subject made smooth transitions between posture and movement. The results showed that there were marked changes in tremor which systematically increased in size and decreased in frequency as the subject moved faster. By contrast, the EMG changed little and reflected muscle force requirement rather than movement speed. The altered tremor reflects naturally occurring thixotropic changes in muscle behaviour. Our results suggest that physiological tremor provides useful and hitherto unrecognized insights into skeletal muscle's role in posture and movement. PMID:27293785

  14. Abnormal Cortex-Muscle Interactions in Subjects with X-linked Kallmann's Syndrome and Mirror Movements

    ERIC Educational Resources Information Center

    Farmer, S. F.; Harrison, L. M.; Mayston, M. J.; Parekh, A.; James, L. M.; Stephens, J. A.

    2004-01-01

    X-linked Kallmann's (XKS) subjects, who display mirror movements, have abnormal corticospinal tracts which innervate motoneurons of the left and right distal muscles of the upper limb. The size of the abnormal ipsilateral projection is variable. We have used coherence and cumulant analysis between EEG and first dorsal interosseous muscle (1DI) EMG…

  15. Association of Orofacial Muscle Activity and Movement during Changes in Speech Rate and Intensity

    ERIC Educational Resources Information Center

    McClean, Michael D.; Tasko, Stephen M.

    2003-01-01

    Understanding how orofacial muscle activity and movement covary across changes in speech rate and intensity has implications for the neural control of speech production and the use of clinical procedures that manipulate speech prosody. The present study involved a correlation analysis relating average lower-lip and jaw-muscle activity to lip and…

  16. Local subcutaneous and muscle pain impairs detection of passive movements at the human thumb

    PubMed Central

    Weerakkody, N S; Blouin, J S; Taylor, J L; Gandevia, S C

    2008-01-01

    Activity in both muscle spindle endings and cutaneous stretch receptors contributes to the sensation of joint movement. The present experiments assessed whether muscle pain and subcutaneous pain distort proprioception in humans. The ability to detect the direction of passive movements at the interphalangeal joint of the thumb was measured when pain was induced experimentally in four sites: the flexor pollicis longus (FPL), the subcutaneous tissue overlying this muscle, the flexor carpi radialis (FCR) muscle and the subcutaneous tissue distal to the metacarpophalangeal joint of thumb. Tests were conducted when pain was at a similar subjective intensity. There was no significant difference in the ability to detect flexion or extension under any painful or non-painful condition. The detection of movement was significantly impaired when pain was induced in the FPL muscle, but pain in the FCR, a nearby muscle that does not act on the thumb, had no effect. Subcutaneous pain also significantly impaired movement detection when initiated in skin overlying the thumb, but not in skin overlying the FPL muscle in the forearm. These findings suggest that while both muscle and skin pain can disturb the detection of the direction of movement, the impairment is site-specific and involves regions and tissues that have a proprioceptive role at the joint. Also, pain induced in FPL did not significantly increase the perceived size of the thumb. Proprioceptive mechanisms signalling perceived body size are less disturbed by a relevant muscle nociceptive input than those subserving movement detection. The results highlight the complex relationship between nociceptive inputs and their influence on proprioception and motor control. PMID:18467366

  17. Trunk Muscle Activation at the Initiation and Braking of Bilateral Shoulder Flexion Movements of Different Amplitudes

    PubMed Central

    Eriksson Crommert, M.; Halvorsen, K.; Ekblom, M. M.

    2015-01-01

    The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement. PMID:26562017

  18. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    NASA Astrophysics Data System (ADS)

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2015-08-01

    Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.

  19. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    PubMed Central

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2016-01-01

    Objective The goal of this study was to develop a physiologically plausible, computationally robust model for the muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of 3 compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations. PMID:26087477

  20. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.

    PubMed

    Kudo, Naoki; Choi, Kyuheong; Kagawa, Takahiro; Uno, Yoji

    2016-05-01

    It is well known that planar reaching movements of the human shoulder and elbow joints have invariant features: roughly straight hand paths and bell-shaped velocity profiles. The optimal control models with the criteria of smoothness or precision, which determine a unique movement pattern, predict such features of hand trajectories. In this letter on expanding the research on simple arm reaching movements, we examine whether the smoothness criteria can be applied to whole-body reaching movements with many degrees of freedom. Determining a suitable joint trajectory in the whole-body reaching movement corresponds to the optimization problem with constraints, since body balance must be maintained during a motion task. First, we measured human joint trajectories and ground reaction forces during whole-body reaching movements, and confirmed that subjects formed similar movements with common characteristics in the trajectories of the hand position and body center of mass. Second, we calculated the optimal trajectories according to the criteria of torque and muscle-tension smoothness. While the minimum torque change trajectories were not consistent with the experimental data, the minimum muscle-tension change model was able to predict the stereotyped features of the measured trajectories. To explore the dominant effects of the extension from the torque change to the muscle-tension change, we introduced a weighted torque change cost function. Considering the maximum voluntary contraction (MVC) force of the muscle as the weighting factor of each joint torque, we formulated the weighted torque change cost as a simplified version of the minimum muscle-tension change cost. The trajectories owing to the minimum weighted torque change criterion also showed qualitative agreement with the common features of the measured data. Proper estimation of the MVC forces in the body joints is essential to reproduce human whole-body movements according to the minimum muscle-tension change

  1. Fusimotor influence on jaw muscle spindle activity during swallowing-related movements in the cat.

    PubMed Central

    Taylor, A; Hidaka, O; Durbaba, R; Ellaway, P H

    1997-01-01

    1. The activity patterns of muscle spindle afferents in jaw-closer muscles were studied during reflex swallowing movements in anaesthetized cats. Simultaneous records were made of the electromyogram (EMG) in masseter and anterior digastric muscles and of the unloaded jaw movements. The underlying patterns of fusimotor activity were deduced by comparing afferent discharges occurring during active swallowing with those occurring when exactly the same movements were imposed passively. The interpretation of spindle behaviour was greatly facilitated by characterizing the afferents according to the evidence for their contact with the various intrafusal muscle fibres, derived from testing with succinylcholine. It was also valuable to have two different types of afferent recorded simultaneously. 2. There was clear evidence of fusimotor activity occurring during active jaw closing so as to oppose the spindle silencing. This effect was most marked in b2c-type afferents (probably secondaries) and was therefore attributed to a modulation of static fusimotor discharge approximately in parallel with alpha-activity. 3. Afferents with evidence of bag1 fibre contacts (primaries) showed much greater sensitivity to muscle lengthening during active movement than when the movement was imposed. This difference was exaggerated when anaesthesia was deepened for the passive movements. This was interpreted as evidence for a higher level of dynamic fusimotor activity maintained during active movements than at rest. 4. The results support the view that for a variety of active jaw movements, static fusimotor neurone firing is modulated roughly in parallel with alpha-activity but leading it so as to counteract spindle unloading. Dynamic fusimotor neurone firing appears to be set at a raised level during active movements. Anaesthesia appears to depress activity in the alpha-motoneurones more than in gamma-motoneurones. PMID:9288683

  2. Management of involuntary childlessness.

    PubMed Central

    Himmel, W; Ittner, E; Kochen, M M; Michelmann, H W; Hinney, B; Reuter, M; Kallerhoff, M; Ringert, R H

    1997-01-01

    Any definition of involuntary childlessness has to consider the difference between sterility and subfertility. As the latter affects about 20-30% of all couples at least once in their lives, general practitioners (GPs) may be the first to be confronted with this problem. This review presents the most relevant diagnostic and therapeutic options in cases of female or male infertility, and discusses the new assisted reproductive technologies (such as insemination, in vitro fertilization, gamete transfer and intracytoplasmatic sperm injection) so that GPs may adequately inform their patients about these procedures and their risks and outcomes. Although controversial, involuntary childlessness and its clinical treatment seem to have a strong psychological impact on a couple's social, emotional and sexual life. Being available for discussion with childless couples and offering ongoing support may be the most important role for the GP in this context. PMID:9101672

  3. Charge movement in the membrane of striated muscle.

    PubMed Central

    Adrian, R H; Almers, W

    1976-01-01

    1. Non-linear polarization currents apparently due to permanent dipoles or mobile charges in the membrane can be measured by appropriate comparison of the transient currents required to produce small and large steps of membrane potential. Integration of these transient polarization currents estimates the charge transfer associated with the movement of membrane dipoles or charges. 2. Depolarization from -100 to 0 mV requires a charge transfer of 35 nC/muF in addition to the charge transfer predicted by linear extrapolation of the charge required for a small depolarization from -100 mV. Depolarizations of varying size give a charge-voltage relation which is sigmoid saturating beyond o mV and with a midpoint at about -50 mV. The ratnged depolarization reduces or removes charge movement detected by comparing currents for small and large voltage steps from -100 mV (Charge 1). However in depolarized fibres comparison of currents from a small potential step at +40 mV and a large hyperpolarizing potential step from -20 mV reveals large movements of a second charge (Charge 2). Movement of Charge 2 is less steeply dependent on voltage than movement of Charge 2 both in magnitude and in rate. 4. In size and voltage dependence these two kinds of charge movement correspond to measured voltage dependence of capacity in normally polarized and depolarized fibres (Adrian & Almers, 1976). PMID:1082509

  4. An Assessment of Six Muscle Spindle Models for Predicting Sensory Information during Human Wrist Movements

    PubMed Central

    Malik, Puja; Jabakhanji, Nuha; Jones, Kelvin E.

    2016-01-01

    Background: The muscle spindle is an important sensory organ for proprioceptive information, yet there have been few attempts to use Shannon information theory to quantify the capacity of human muscle spindles to encode sensory input. Methods: Computer simulations linked kinematics, to biomechanics, to six muscle spindle models that generated predictions of firing rate. The predicted firing rates were compared to firing rates of human muscle spindles recorded during a step-tracking (center-out) task to validate their use. The models were then used to predict firing rates during random movements with statistical properties matched to the ergonomics of human wrist movements. The data were analyzed for entropy and mutual information. Results: Three of the six models produced predictions that approximated the firing rate of human spindles during the step-tracking task. For simulated random movements these models predicted mean rates of 16.0 ± 4.1 imp/s (mean ± SD), peak firing rates <50 imp/s and zero firing rate during an average of 25% of the movement. The average entropy of the neural response was 4.1 ± 0.3 bits and is an estimate of the maximum information that could be carried by muscles spindles during ecologically valid movements. The information about tendon displacement preserved in the neural response was 0.10 ± 0.05 bits per symbol; whereas 1.25 ± 0.30 bits per symbol of velocity input were preserved in the neural response of the spindle models. Conclusions: Muscle spindle models, originally based on cat experiments, have predictive value for modeling responses of human muscle spindles with minimal parameter optimization. These models predict more than 10-fold more velocity over length information encoding during ecologically valid movements. These results establish theoretical parameters for developing neuroprostheses for proprioceptive function. PMID:26834618

  5. Contribution of the maxillary muscles to proboscis movement in hawkmoths (Lepidoptera: Sphingidae)--an electrophysiological study.

    PubMed

    Wannenmacher, G; Wasserthal, Lutz T

    2003-08-01

    The role of the maxillary muscles in the uncoiling and coiling movements of hawkmoths (Sphingidae) has been examined by electromyogram recordings, combined with video analysis. The maxillary muscles of adult Lepidoptera can be divided into two groups, galeal and stipital muscles. The galea contains two basal muscles and two series of oblique longitudinal muscles, which run through the entire length of the galea. Three muscles insert on the stipes, taking their origin on the tentorium and on parts of the cranium and gena, respectively. Proboscis extension is initiated by an elevation of the galea base caused by the basal galeal muscles. The actual uncoiling of the proboscis spiral is accompanied by rapid compressions of the stipites which are caused by two of the stipital muscles. The study provides strong support for the hypothesis that uncoiling is brought about by an increase of hemolymph pressure by the stipites forcing hemolymph into the galeae. Recoiling is caused by the contraction of both sets of oblique longitudinal galeal muscles supported by elasticity of the galea cuticle. Finally, the remaining stipital muscle pulls down the galea base which brings the coiled proboscis back to its resting position where it is held in the U-shaped groove of the labium without further muscle activity. PMID:12880657

  6. Prediction of muscle performance during dynamic repetitive movement

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2003-01-01

    BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.

  7. An EMG-level muscle model for a fast arm movement to target.

    PubMed

    Kilmer, W; Kroll, W; Congdon, V

    1982-01-01

    A model of human muscle action is presented for a maximally fast, large-amplitude forearm movement to target. The inputs to the model are approximately the biceps and triceps EMG envelopes over a single movement. The model's output gives the corresponding displacement angle of the forearm about a fixed elbow position as a function of time. The idea of the model is to conceive of both EMG input drives as successions of millisecond input pulses, with each pulse resulting in a muscle tension twitch. Every twitch is amplitude-scaled, parametrically-shaped, and duration-limited as a function of the muscle's contractile history thus far in the movement. The muscle tension at any time t is the sum of the residual tension levels of all twitches begun before t. The model was developed and tested with special reference to two subjects: one, according to the model dynamics, was a comparatively slow-twitch type and the other modelled as a fast-twitch type. Good agreement was found between model output and subject response data whenever the subject's EMG's were "synchronous". The model can be used to characterize each subject's responses by a suite of twitch characteristics. This will enable us to check the accepted but now suspect correlation between muscle biopsy- and performance-determined muscle twitch type. PMID:7093365

  8. Internal kinematics of the tongue in relation to muscle activity and jaw movement in the pig

    PubMed Central

    LIU, Z.-J.; SHCHERBATYY, V.; KAYALIOGLU, M.; SEIFI, A.

    2012-01-01

    SUMMARY To explore the coordinative characteristics of tongue deformation, muscle activity and jaw movement during feeding, six ultrasonic crystals were implanted into the tongue body of ten 12-week-old Yucatan minipigs 1 week before the recording. These crystals formed a wedge-shaped configuration to allow recording dimensional changes in lengths, anterior and posterior widths and posterior thicknesses of the tongue body during feeding. Wire electromyographic activities (EMG) of superior and inferior longitudinalis, verticalis/transversus, genioglossus, styloglossus, masseter and digastricus and jaw movements were recorded simultaneously. Signals from these three sources were synchronized for real-time analyses. The results indicate: (i) dimensional changes were stereotypical in relation to each cycle of all three feeding behaviours; (ii) during chewing, expansion of tongue widths mainly occurred in the occlusal phase of jaw movement and was less coupled with the activity of tongue muscles, but the expansions of length and thickness were seen in the opening and closing phases and were better coupled with the activity of tongue muscles (P < 0·05); (iii) ingestion was characterized by the two-phased jaw opening, early expansion of anterior width prior to the occlusal phase and strong associations between tongue deformation and muscle activity; (iv) during drinking, the duration of the opening and closing phases was significantly prolonged (P < 0·01), the durations of tongue widening and lengthening were significantly shortened (P < 0·05) and anterior widening was predominant in the opening rather than in the closing or occlusal phases as compared with chewing and ingestion; and (v) the intrinsic tongue muscles did not show more or stronger correlations with the tongue deformation than did the extrinsic tongue muscles. These results suggest that (i) regional widening, lengthening and thickening of the tongue body occurs sequentially in relation to jaw movement

  9. The combination of lithium and l-Dopa/Carbidopa reduces MPTP-induced abnormal involuntary movements (AIMs) via calpain-1 inhibition in a mouse model: Relevance for Parkinson׳s disease therapy.

    PubMed

    Lazzara, Carol A; Riley, Rebeccah R; Rane, Anand; Andersen, Julie K; Kim, Yong-Hwan

    2015-10-01

    Lithium has recently been suggested to have neuroprotective effects in several models of neurodegenerative disease including Parkinson׳s disease (PD). Levodopa (l-Dopa) replacement therapy remains the most common and effective treatment for PD, although it induces the complication of l-Dopa induced dyskinesia after years of use. Here we examined the potential use of lithium in combination with l-Dopa/Carbidopa for both reducing MPTP-induced abnormal involuntary movements (AIMs) as well as protecting against cell death in MPTP-lesioned mice. Chronic lithium administration (0.127% LiCl in the feed) in the presence of daily l-Dopa/Carbidopa injection for a period of 2 months was sufficient to effectively reduce MPTP-induced AIMs in mice. Mechanistically, lithium was found to suppress MPTP-induced calpain activities in vivo coinciding with down-regulation of calpain-1 but not calpain-2 expression in both the striatum (ST) and the brain stem (BS). Calpain inhibition has previously been associated with increased levels of the rate-limiting enzyme in dopamine synthesis, tyrosine hydroxylase (TH), which is probably mediated by the up-regulation of the transcription factors MEF-2A and 2D. Lithium was found to induce up-regulation of TH expression in the ST and the BS, as well as in N27 rat dopaminergic cells. Further, histone acetyltransferase (HAT) expression was substantially up-regulated by lithium treatment in vitro. These results suggest the potential use of lithium in combination with l-Dopa/Carbidopa not only as a neuroprotectant, but also for reducing AIMs and possibly alleviating potential side-effects associated with the current treatment for PD. PMID:26119916

  10. Task-specific stability in muscle activation space during unintentional movements.

    PubMed

    Falaki, Ali; Towhidkhah, Farzad; Zhou, Tao; Latash, Mark L

    2014-11-01

    We used robot-generated perturbations applied during position-holding tasks to explore stability of induced unintentional movements in a multidimensional space of muscle activations. Healthy subjects held the handle of a robot against a constant bias force and were instructed not to interfere with hand movements produced by changes in the external force. Transient force changes were applied leading to handle displacement away from the initial position and then back toward the initial position. Intertrial variance in the space of muscle modes (eigenvectors in the muscle activations space) was quantified within two subspaces, corresponding to unchanged handle coordinate and to changes in the handle coordinate. Most variance was confined to the former subspace in each of the three phases of movement, the initial steady state, the intermediate position, and the final steady state. The same result was found when the changes in muscle activation were analyzed between the initial and final steady states. Changes in the dwell time between the perturbation force application and removal led to different final hand locations undershooting the initial position. The magnitude of the undershot scaled with the dwell time, while the structure of variance in the muscle activation space did not depend on the dwell time. We conclude that stability of the hand coordinate is ensured during both intentional and unintentional actions via similar mechanisms. Relative equifinality in the external space after transient perturbations may be associated with varying states in the redundant space of muscle activations. The results fit a hierarchical scheme for the control of voluntary movements with referent configurations and redundant mapping between the levels of the hierarchy. PMID:25092272

  11. Chronic neck pain alters muscle activation patterns to sudden movements.

    PubMed

    Boudreau, Shellie A; Falla, Deborah

    2014-06-01

    The aim of this study was to assess the activation of the sternocleidomastoid (SCM) and splenius capitis (SC) muscles in response to unanticipated, full body perturbations in individuals with chronic neck pain (NP) and age-matched healthy controls (HC). Individuals with NP had a history of NP for 8.9 ± 7.8 years, rated the intensity of NP as 4.2 ± 2.0 (score out of 10), and scored 15.3 ± 6.5 on the Neck Disability Index. Participants stood on a moveable platform during which 32 randomized postural perturbations (eight repetitions of four perturbation types: 8 cm forward slide (FS), 8 cm backward slides, 10° forward tilt, and 10° backward tilt) with varying inter-perturbation time intervals were performed over a period of 5 min. Bilateral surface electromyography (EMG) from the SCM and SC was recorded, and the onset time and the average rectified value of the EMG signal was determined for epochs of 100 ms; starting 100 ms prior to and 500 ms after the perturbation onset. Individuals with NP, as compared to HC, demonstrated delayed onset times and reduced EMG amplitude of the SCM and SC muscles in response to all postural perturbations. Such findings were most pronounced following the FS postural perturbation (healthy vs. NP for SCM 83.3 ± 8.0 vs. 86.3 ± 4.4 and SC 75.6 ± 3.5 vs. 89.3 ± 4.2), which was also associated with the greatest change (expressed in % relative to baseline) in EMG amplitude (healthy vs. NP for SCM 206.6 ± 50.4 vs. 115.9 ± 15.7 and SC 83.4 ± 19.2 vs. 69.2 ± 10.9) across all postural perturbations types. Individuals with NP display altered neural control of the neck musculature in response to rapid, unanticipated full body postural perturbations. Although the relative timing of neck musculature activity in individuals with NP appears to be intact, simultaneous co-activation of the neck musculature emerges for unanticipated anterior-posterior postural perturbations. PMID:24632836

  12. Analysis of neck muscle activity and comparison of head movement and body movement during rotational motion.

    PubMed

    Sirikantharajah, Shahini; Valter McConville, Kristiina M; Zolfaghari, Nika

    2015-08-01

    The neck is a very delicate part of the body that is highly prone to whiplash injuries, during jerk. A lot of the research relating to whiplash injuries performed to date has been tested in environments with linear motions and have mostly applied their work to car collisions. Whiplash injuries can also affect disabled individuals during falls, bed transfers, and while travelling in wheelchairs. The primary objective of this paper was to focus on neck and body behaviour during rotational motion, rather than linear motion which has been often associated with car collisions. This paper takes the current motion signal processing technique a step further by computing the differential between head and body motion. Neck electromyogram (EMG) and angular velocity data of the head and body were acquired simultaneously from 20 subjects, as they were rotated 45 degrees in the forward pitch plane, with and without visual input, in a motion simulator. The centre of rotation (COR) on the simulator was located behind the subject Results showed that neck muscle behaviour was affected by the forward rotations, as well as visual input. Anterior neck muscles were most active during forward rotations and trials including VR. Maximum effective muscle power and activity of 10.54% and 55.72 (mV/mV)·s were reached respectively. Furthermore, during forward rotations the motion profiles started off with dominance in body motion, followed by dominance in head motion. PMID:26737049

  13. Automated regional analysis of B-mode ultrasound images of skeletal muscle movement

    PubMed Central

    Darby, John; Costen, Nicholas; Loram, Ian D.

    2012-01-01

    To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends. A Kanade-Lucas-Tomasi feature tracker was used to identify and track any distinctive and persistent features within the image sequences. A velocity field representation of local movement was then found and subdivided between fascicle and aponeurosis regions using segmentations from a multiresolution active shape model (ASM). Movement in each region was quantified by interpolating the effect of the fields on a set of probes. ASM segmentation results were compared with hand-labeled data, while aponeurosis and fascicle movement were compared with results from a previously documented cross-correlation approach. ASM provided good image segmentations (<1 mm average error), with fully automatic initialization possible in sequences from seven participants. Feature tracking provided similar length change results to the cross-correlation approach for small movements, while outperforming it in larger movements. The proposed method provides the potential to distinguish between active and passive changes in muscle shape and model strain distributions during different movements/conditions and quantify nonhomogeneous strain along aponeuroses. PMID:22033532

  14. The effect of arm weight support on upper limb muscle synergies during reaching movements

    PubMed Central

    2014-01-01

    Background Compensating for the effect of gravity by providing arm-weight support (WS) is a technique often utilized in the rehabilitation of patients with neurological conditions such as stroke to facilitate the performance of arm movements during therapy. Although it has been shown that, in healthy subjects as well as in stroke survivors, the use of arm WS during the performance of reaching movements leads to a general reduction, as expected, in the level of activation of upper limb muscles, the effects of different levels of WS on the characteristics of the kinematics of motion and of the activity of upper limb muscles have not been thoroughly investigated before. Methods In this study, we systematically assessed the characteristics of the kinematics of motion and of the activity of 14 upper limb muscles in a group of 9 healthy subjects who performed 3-D arm reaching movements while provided with different levels of arm WS. We studied the hand trajectory and the trunk, shoulder, and elbow joint angular displacement trajectories for different levels of arm WS. Besides, we analyzed the amplitude of the surface electromyographic (EMG) data collected from upper limb muscles and investigated patterns of coordination via the analysis of muscle synergies. Results The characteristics of the kinematics of motion varied across WS conditions but did not show distinct trends with the level of arm WS. The level of activation of upper limb muscles generally decreased, as expected, with the increase in arm WS. The same eight muscle synergies were identified in all WS conditions. Their level of activation depended on the provided level of arm WS. Conclusions The analysis of muscle synergies allowed us to identify a modular organization underlying the generation of arm reaching movements that appears to be invariant to the level of arm WS. The results of this study provide a normative dataset for the assessment of the effects of the level of arm WS on muscle synergies in stroke

  15. Coordinated alpha and gamma control of muscles and spindles in movement and posture

    PubMed Central

    Li, Si; Zhuang, Cheng; Hao, Manzhao; He, Xin; Marquez, Juan C.; Niu, Chuanxin M.; Lan, Ning

    2015-01-01

    Mounting evidence suggests that both α and γ motoneurons are active during movement and posture, but how does the central motor system coordinate the α-γ controls in these tasks remains sketchy due to lack of in vivo data. Here a computational model of α-γ control of muscles and spindles was used to investigate α-γ integration and coordination for movement and posture. The model comprised physiologically realistic spinal circuitry, muscles, proprioceptors, and skeletal biomechanics. In the model, we divided the cortical descending commands into static and dynamic sets, where static commands (αs and γs) were for posture maintenance and dynamic commands (αd and γd) were responsible for movement. We matched our model to human reaching movement data by straightforward adjustments of descending commands derived from either minimal-jerk trajectories or human EMGs. The matched movement showed smooth reach-to-hold trajectories qualitatively close to human behaviors, and the reproduced EMGs showed the classic tri-phasic patterns. In particular, the function of γd was to gate the αd command at the propriospinal neurons (PN) such that antagonistic muscles can accelerate or decelerate the limb with proper timing. Independent control of joint position and stiffness could be achieved by adjusting static commands. Deefferentation in the model indicated that accurate static commands of αs and γs are essential to achieve stable terminal posture precisely, and that the γd command is as important as the αd command in controlling antagonistic muscles for desired movements. Deafferentation in the model showed that losing proprioceptive afferents mainly affected the terminal position of movement, similar to the abnormal behaviors observed in human and animals. Our results illustrated that tuning the simple forms of α-γ commands can reproduce a range of human reach-to-hold movements, and it is necessary to coordinate the set of α-γ descending commands for accurate

  16. Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback.

    PubMed

    Kistemaker, Dinant A; Van Soest, Arthur J Knoek; Wong, Jeremy D; Kurtzer, Isaac; Gribble, Paul L

    2013-02-01

    Whereas muscle spindles play a prominent role in current theories of human motor control, Golgi tendon organs (GTO) and their associated tendons are often neglected. This is surprising since there is ample evidence that both tendons and GTOs contribute importantly to neuromusculoskeletal dynamics. Using detailed musculoskeletal models, we provide evidence that simple feedback using muscle spindles alone results in very poor control of joint position and movement since muscle spindles cannot sense changes in tendon length that occur with changes in muscle force. We propose that a combination of spindle and GTO afferents can provide an estimate of muscle-tendon complex length, which can be effectively used for low-level feedback during both postural and movement tasks. The feasibility of the proposed scheme was tested using detailed musculoskeletal models of the human arm. Responses to transient and static perturbations were simulated using a 1-degree-of-freedom (DOF) model of the arm and showed that the combined feedback enabled the system to respond faster, reach steady state faster, and achieve smaller static position errors. Finally, we incorporated the proposed scheme in an optimally controlled 2-DOF model of the arm for fast point-to-point shoulder and elbow movements. Simulations showed that the proposed feedback could be easily incorporated in the optimal control framework without complicating the computation of the optimal control solution, yet greatly enhancing the system's response to perturbations. The theoretical analyses in this study might furthermore provide insight about the strong physiological couplings found between muscle spindle and GTO afferents in the human nervous system. PMID:23100138

  17. Fish Swimming: Patternsin the Mechanical Energy Generation, Transmission and Dissipation from Muscle Activation to Body Movement

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Yu, Y. L.; Tong, B. G.

    2011-09-01

    The power consumption of the undulatory fish swimming is produced by active muscles. The mechanical energy generated by stimulated muscles is dissipated partly by the passive tissues of fish while it is being transmitted to the fluid medium. Furthermore, the effective energy, propelling fish movement, is a part of that delivered by the fish body. The process depends on the interactions of the active muscles, the passive tissues, and the water surrounding the fish body. In the previous works, the body-fluid interactions have been investigated widely, but it is rarely considered how the mechanical energy generates, transmits and dissipates in fish swimming. This paper addresses the regular patterns of energy transfer process from muscle activation to body movement for a cruising lamprey (LAMPREY), a kind of anguilliform swimmer. It is necessary to propose a global modelling of the kinematic chain, which is composed of active muscle force-moment model, fish-body dynamic model and hydrodynamic model in order. The present results show that there are traveling energy waves along the fish body from anterior to posterior, accompanied with energy storing and dissipating due to the viscoelastic property of internal tissues. This study is a preliminary research on the framework of kinematic chain coordination performance in fish swimming.

  18. Mapping the contribution of single muscles to facial movements in the Rhesus Macaque

    PubMed Central

    Waller, B.M.; Parr, L.A.; Gothard, K.M.; Burrows, A.M.; Fuglevand, A.J.

    2008-01-01

    The rhesus macaque (Macaca mulatta) is the most utilized primate model in the biomedical and psychological sciences. Expressive behavior is of interest to scientists studying these animals, both as a direct variable (modeling neuropsychiatric disease, where expressivity is a primary deficit), as an indirect measure of health and welfare, and also in order to understand the evolution of communication. Here, intramuscular electrical stimulation of facial muscles was conducted in the rhesus macaque in order to document the relative contribution of each muscle to the range of facial movements and to compare the expressive function of homologous muscles in humans and macaques. Despite published accounts that monkeys possess less differentiated and less complex facial musculature, the majority of muscles previously identified in humans were stimulated successfully in the rhesus macaque and caused similar appearance changes to human facial movements. These observations suggest that the facial muscular apparatus of the monkey has extensive homology to the human face. The muscles of the human face, therefore, do not represent a significant evolutionary departure from that of monkey species. Thus, facial expressions can be compared between humans and rhesus macaques at the level of the facial musculature, facilitating the systematic investigation of comparative facial communication. PMID:18582909

  19. Changes in muscle activation and force generation patterns during cycling movements because of low-intensity squat training with slow movement and tonic force generation.

    PubMed

    Tanimoto, Michiya; Arakawa, Hiroshi; Sanada, Kiyoshi; Miyachi, Motohiko; Ishii, Naokata

    2009-11-01

    Our previous studies showed that relatively low-load (approximately 50-60% 1 repetition maximum [1RM]) resistance training with slow movement and tonic force generation (LST) significantly increased muscle size and strength. However, LST is a very specific movement that differs from natural movements associated with sport activities and activities of daily life, and therefore, it might have some unfavorable effects on dynamic sport movement. We investigated the effects of LST on muscle activity and force generation patterns during cycling movement as a representative dynamic sports movement. Twenty-four healthy young men who were not in the habit of bicycle riding and did not have a history of regular resistance training were randomly assigned to the LST (approximately 60% 1RM load, 3-second lifting, and 3-second lowering movement without a relaxing phase: n = 8), a high-intensity exercise at normal speed (HM) group (85% 1RM load, 1-second lifting, 1-second lowering, and 1-second relaxed movement: n = 8), or sedentary control (CON, n = 8) group. Subjects in the training groups performed vertical squats by the assigned method. Exercise sessions consisted of 3 sets and were performed twice a week for 13 weeks. Pre- and posttraining muscle activation and force generation patterns during the cycling movements were evaluated by the coefficient of variation (CV) of the rectified electromyographic (EMG) wave from the vastus lateralis and CV of pedaling force. Both the CV of the rectified EMG and of pedaling force decreased significantly in the LST group (-21 and -18%, p < 0.05, respectively), whereas there were no significant changes in either the HN or the CON group. This decrease in CV in the LST group could mean that muscle activity and force generation during cycling movement have become more tonic. This result following LST may have an unfavorable effect on cycling movement and other dynamic sports movements. PMID:19826286

  20. Yeast actin filaments display ATP-dependent sliding movement over surfaces coated with rabbit muscle myosin.

    PubMed Central

    Kron, S J; Drubin, D G; Botstein, D; Spudich, J A

    1992-01-01

    The yeast Saccharomyces cerevisiae has been used to study the function of components of the actin cytoskeleton in vivo, mainly because it is easy to derive and characterize mutations affecting these proteins. In contrast, biochemical studies have generally used proteins derived from higher eukaryotes. We have devised a simple procedure to prepare, in high yield, homogeneous native actin from wild-type and act1 mutant yeast. Using intensified video fluorescence microscopy, we found that actin filaments polymerized from these preparations exhibit ATP-dependent sliding movement over surfaces coated with rabbit skeletal muscle myosin. The rates of sliding movement of the wild-type and mutant yeast actins were each about half that of rabbit skeletal muscle actin under similar conditions. We conclude that over the large evolutionary distance between yeast and mammals there has been significant conservation of actin function, specifically the ability to be moved by interaction with myosin. Images PMID:1533933

  1. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography.

    PubMed

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported. PMID:25289669

  2. Quantifying Forearm Muscle Activity during Wrist and Finger Movements by Means of Multi-Channel Electromyography

    PubMed Central

    Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo

    2014-01-01

    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported. PMID:25289669

  3. Facial Muscle Coordination in Monkeys During Rhythmic Facial Expressions and Ingestive Movements

    PubMed Central

    Shepherd, Stephen V.; Lanzilotto, Marco; Ghazanfar, Asif A.

    2012-01-01

    Evolutionary hypotheses regarding the origins of communication signals generally, and primate orofacial communication signals in particular, suggest that these signals derive by ritualization of noncommunicative behaviors, notably including ingestive behaviors such as chewing and nursing. These theories are appealing in part because of the prominent periodicities in both types of behavior. Despite their intuitive appeal, however, there are little or no data with which to evaluate these theories because the coordination of muscles innervated by the facial nucleus has not been carefully compared between communicative and ingestive movements. Such data are especially crucial for reconciling neurophysiological assumptions regarding facial motor control in communication and ingestion. We here address this gap by contrasting the coordination of facial muscles during different types of rhythmic orofacial behavior in macaque monkeys, finding that the perioral muscles innervated by the facial nucleus are rhythmically coordinated during lipsmacks and that this coordination appears distinct from that observed during ingestion. PMID:22553017

  4. Types of muscle tissue (image)

    MedlinePlus

    The 3 types of muscle tissue are cardiac, smooth, and skeletal. Cardiac muscle cells are located in the walls of the heart, appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow ...

  5. Two-stage muscle activity responses in decisions about leg movement adjustments during trip recovery.

    PubMed

    Potocanac, Zrinka; Pijnappels, Mirjam; Verschueren, Sabine; van Dieën, Jaap; Duysens, Jacques

    2016-01-01

    Studies on neural decision making mostly investigated fast corrective adjustments of arm movements. However, fast leg movement corrections deserve attention as well, since they are often required to avoid falling after balance perturbations. The present study aimed at elucidating the mechanisms behind fast corrections of tripping responses by analyzing the concomitant leg muscle activity changes. This was investigated in seven young adults who were tripped in between normal walking trials and took a recovery step by elevating the tripped leg over the obstacle. In some trials, a forbidden landing zone (FZ) was presented behind the obstacle, at the subjects' preferred foot landing position, forcing a step correction. Muscle activity of the tripped leg gastrocnemius medialis (iGM), tibialis anterior (iTA), rectus femoris (iRF), and biceps femoris (iBF) muscles was compared between normal trips presented before any FZ appearance, trips with a FZ, and normal trips presented in between trips with a FZ ("catch" trials). When faced with a real or expected (catch trials) FZ, subjects shortened their recovery steps. The underlying changes in muscle activity consisted of two stages. The first stage involved reduced iGM activity, occurring at a latency shorter than voluntary reaction, followed by reduced iTA and increased iBF and iGM activities occurring at longer latencies. The fast response was not related to step shortening, but longer latency responses clearly were functional. We suggest that the initial response possibly acts as a "pause," allowing the nervous system to integrate the necessary information and prepare the subsequent, functional movement adjustment. PMID:26561597

  6. Modeling Implantable Passive Mechanisms for Modifying the Transmission of Forces and Movements Between Muscle and Tendons.

    PubMed

    Homayouni, Taymaz; Underwood, Kelsey N; Beyer, Kamin C; Martin, Elon R; Allan, Christopher H; Balasubramanian, Ravi

    2015-09-01

    This paper explores the development of biomechanical models for evaluating a new class of passive mechanical implants for orthopedic surgery. The proposed implants take the form of passive engineered mechanisms, and will be used to improve the functional attachment of muscles to tendons and bone by modifying the transmission of forces and movement inside the body. Specifically, we present how two types of implantable mechanisms may be modeled in the open-source biomechanical software OpenSim. The first implant, which is proposed for hand tendon-transfer surgery, differentially distributes the forces and movement from one muscle across multiple tendons. The second implant, which is proposed for knee-replacement surgery, scales up the forces applied to the knee joint by the quadriceps muscle. This paper's key innovation is that such mechanisms have never been considered before in biomechanical simulation modeling and in surgery. When compared with joint function enabled by the current surgical practice of using sutures to make the attachment, biomechanical simulations show that the surgery with 1) the differential mechanism (tendon network) implant improves the fingers' ability to passively adapt to an object's shape significantly during grasping tasks (2.74× as measured by the extent of finger flexion) for the same muscle force, and 2) the force-scaling implant increases knee-joint torque by 84% for the same muscle force. The critical significance of this study is to provide a methodology for the design and inclusion of the implants into biomechanical models and validating the improvement in joint function they enable when compared with current surgical practice. PMID:25850081

  7. A modeling investigation of vowel-to-vowel movement planning in acoustic and muscle spaces

    NASA Astrophysics Data System (ADS)

    Zandipour, Majid

    The primary objective of this research was to explore the coordinate space in which speech movements are planned. A two dimensional biomechanical model of the vocal tract (tongue, lips, jaw, and pharynx) was constructed based on anatomical and physiological data from a subject. The model transforms neural command signals into the actions of muscles. The tongue was modeled by a 221-node finite element mesh. Each of the eight tongue muscles defined within the mesh was controlled by a virtual muscle model. The other vocal-tract components were modeled as simple 2nd-order systems. The model's geometry was adapted to a speaker, using MRI scans of the speaker's vocal tract. The vocal tract model, combined with an adaptive controller that consisted of a forward model (mapping 12-dimensional motor commands to a 64-dimensional acoustic spectrum) and an inverse model (mapping acoustic trajectories to motor command trajectories), was used to simulate and explore the implications of two planning hypotheses: planning in motor space vs. acoustic space. The acoustic, kinematic, and muscle activation (EMG) patterns of vowel-to-vowel sequences generated by the model were compared to data from the speaker whose acoustic, kinematic and EMG were also recorded. The simulation results showed that: (a) modulations of the motor commands effectively accounted for the effects of speaking rate on EMG, kinematic, and acoustic outputs; (b) the movement and acoustic trajectories were influenced by vocal tract biomechanics; and (c) both planning schemes produced similar articulatory movement, EMG, muscle length, force, and acoustic trajectories, which were also comparable to the subject's data under normal speaking conditions. In addition, the effects of a bite-block on measured EMG, kinematics and formants were simulated by the model. Acoustic planning produced successful simulations but motor planning did not. The simulation results suggest that with somatosensory feedback but no auditory

  8. Movement-related cortical potentials during muscle fatigue induced by upper limb submaximal isometric contractions.

    PubMed

    Guo, Feng; Wang, Ji-Ya; Sun, Yong-Jun; Yang, A-Li; Zhang, Ri-Hui

    2014-10-01

    The aim of this study was to examine the central neurophysiological mechanisms during fatigue induced by submaximal isometric contractions. A total of 23 individuals participated in the study and were assigned to fatigue and nonfatigue groups. Handgrip force, root mean square (RMS) of surface electromyography (sEMG) signal and movement-related cortical potentials during self-paced submaximal handgrip isometric contractions were assessed for each participant. The experimental data showed significant decreases in both maximal voluntary contraction [-24.3%; F(3, 42)=19.62, P<0.001, ηp=0.48] and RMS [-30.1%; F(3, 42)=19.01, P<0.001, ηp=0.57] during maximal voluntary contractions and a significant increase [F(3, 42)=14.27, P<0.001, ηp=0.50] in the average RMS of sEMG over four blocks in the fatigue group. There was no significant difference in the readiness potential between the fatigue and the nonfatigue groups at early stages, and at late stages, significant differences were observed only at the Fp1 and FC1 sites. Motor potential amplitudes were significantly higher in the fatigue group than in the nonfatigue group irrespective of block or electrode positions. Positive waveforms were observed in the prefrontal cortex in states without muscle fatigue, whereas a negative waveform pattern was observed with muscle fatigue. Significant within-subject correlations were observed between motor potential at the C1 site and RMS of sEMG (r=-0.439, P=0.02, ηp=0.11). Neurophysiological evidence indicates that cortical activity increases in the prefrontal cortex, primary motor cortex and supplementary motor cortex with muscle fatigue. Muscle fatigue appears to have considerable effects on the components of movement-related cortical potentials during movement execution, whereas the readiness potential before movement is sensitive to cognitive demands during prolonged exercise. Our results provide additional evidence for a link between central motor command during movement

  9. Muscle and eye movement artifact removal prior to EEG source localization.

    PubMed

    Hallez, Hans; Vergult, Anneleen; Phlypo, Ronald; Van Hese, Peter; De Clercq, Wim; D'Asseler, Yves; Van de Walle, Rik; Vanrumste, Bart; Van Paesschen, Wim; Van Huffel, Sabine; Lemahieu, Ignace

    2006-01-01

    Muscle and eye movement artifacts are very prominent in the ictal EEG of patients suffering from epilepsy, thus making the dipole localization of ictal activity very unreliable. Recently, two techniques (BSS-CCA and pSVD) were developed to remove those artifacts. The purpose of this study is to assess whether the removal of muscle and eye movement artifacts improves the EEG dipole source localization. We used a total of 8 EEG fragments, each from another patient, first unfiltered, then filtered by the BSS-CCA and pSVD. In both the filtered and unfiltered EEG fragments we estimated multiple dipoles using RAP-MUSIC. The resulting dipoles were subjected to a K-means clustering algorithm, to extract the most prominent cluster. We found that the removal of muscle and eye artifact results to tighter and more clear dipole clusters. Furthermore, we found that localization of the filtered EEG corresponded with the localization derived from the ictal SPECT in 7 of the 8 patients. Therefore, we can conclude that the BSS-CCA and pSVD improve localization of ictal activity, thus making the localization more reliable for the presurgical evaluation of the patient. PMID:17945615

  10. Eugenics and Involuntary Sterilization: 1907-2015.

    PubMed

    Reilly, Philip R

    2015-01-01

    In England during the late nineteenth century, intellectuals, especially Francis Galton, called for a variety of eugenic policies aimed at ensuring the health of the human species. In the United States, members of the Progressive movement embraced eugenic ideas, especially immigration restriction and sterilization. Indiana enacted the first eugenic sterilization law in 1907, and the US Supreme Court upheld such laws in 1927. State programs targeted institutionalized, mentally disabled women. Beginning in the late 1930s, proponents rationalized involuntary sterilization as protecting vulnerable women from unwanted pregnancy. By World War II, programs in the United States had sterilized approximately 60,000 persons. After the horrific revelations concerning Nazi eugenics (German Hereditary Health Courts approved at least 400,000 sterilization operations in less than a decade), eugenic sterilization programs in the United States declined rapidly. Simplistic eugenic thinking has faded, but coerced sterilization remains widespread, especially in China and India. In many parts of the world, involuntary sterilization is still intermittently used against minority groups. PMID:26322647

  11. On the relevance of structure preservation to simulations of muscle actuated movements.

    PubMed

    Maas, Ramona; Siebert, Tobias; Leyendecker, Sigrid

    2012-03-01

    In this work, we implement a typical nonlinear Hill-type muscle model in a structure-preserving simulation framework and investigate the differences to standard simulations of muscle-actuated movements with MATLAB/Simulink. The latter is a common tool to solve dynamical problems, in particular, in biomechanic investigations. Despite the simplicity of the examples used for comparison, it becomes obvious that the MATLAB/Simulink integrators artificially loose or gain energy and angular momentum during dynamic simulations. The relative energy error of the MATLAB/Simulink integrators related to a very low actual muscle work can naturally reach large values, even higher than 100%. But also during periods with large muscle work, the relative energy error reaches up to 2%. Even in simulations with very small time steps, energy and angular momentum errors are still present using MATLAB/Simulink and can (at least partially) be responsible for phase errors in long-term simulations. This typical behaviour of commercial integrators is known to increase for more complex models or for computations with larger time steps, whose use is crucial for efficiency, especially in the context of optimal control simulations. In contrast to that, time-stepping schemes being derived from a discrete variational principle yield discrete analogues of the Euler-Lagrange equations and Noethers theorem. This ensures that the structure of the system is preserved, i.e. the simulation results are symplectic and momentum consistent and exhibit a good energy behaviour (no drift). PMID:21748425

  12. Effects of isometric hip movements on electromyographic activities of the trunk muscles during plank exercises

    PubMed Central

    Kang, Min-Hyeok; Kim, Soo-Yong; Kang, Myoung-Joo; Yoon, So-Hee; Oh, Jae-Seop

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effect of isometric hip adduction and abduction on trunk muscle activity during plank exercises. [Subjects and Methods] Nineteen healthy male subjects were recruited for this study. All subjects performed the traditional plank exercise (TP), plank exercise with isometric hip adduction (PHAD), and plank exercise with isometric hip abduction (PHAB) by using an elastic band. Electromyographic (EMG) activities of the internal oblique (IO) and external oblique (EO) were measured during the 3 plank exercises by using an Electromyography system. [Results] Internal oblique and external oblique muscle activities were significantly greater during plank exercise with isometric hip adduction and plank exercise with isometric hip abduction than during traditional plank exercise. Internal oblique and external oblique muscle activities did not differ between the plank exercise with isometric hip adduction and plank exercise with isometric hip abduction conditions. [Conclusion] These findings demonstrate that loaded isometric hip movements may be a useful strategy to increase trunk muscle activity during plank exercises.

  13. Electric Eels Concentrate Their Electric Field to Induce Involuntary Fatigue in Struggling Prey.

    PubMed

    Catania, Kenneth C

    2015-11-16

    Nature is replete with predator venoms that immobilize prey by targeting ion channels. Electric eels (Electrophorus electricus) take a different tactic to accomplish the same end. Striking eels emit electricity in volleys of 1 ms, high-voltage pulses. Each pulse is capable of activating prey motor neuron efferents, and hence muscles. In a typical attack, eel discharges cause brief, immobilizing tetanus, allowing eels to swallow small prey almost immediately. Here I show that when eels struggle with large prey or fish held precariously, they commonly curl to bring their own tail to the opposite side of prey, sandwiching it between the two poles of their powerful electric organ. They then deliver volleys of high-voltage pulses. Shortly thereafter, eels juggle prey into a favorable position for swallowing. Recordings from electrodes placed within prey items show that this curling behavior at least doubles the field strength within shocked prey, most likely ensuring reliable activation of the majority of prey motor neurons. Simulated pulse trains, or pulses from an eel-triggered stimulator, applied to a prey muscle preparations result in profound muscle fatigue and loss of contractile force. Consistent with this result, video recordings show that formerly struggling prey are temporarily immobile after this form of attack, allowing the manipulation of prey that might otherwise escape. These results reveal a unique use of electric organs to a unique end; eels superimpose electric fields from two poles, ensuring maximal remote activation of prey efferents that blocks subsequent prey movement by inducing involuntary muscle fatigue. PMID:26521183

  14. Postural Control during Upper Body Locomotor-Like Movements: Similar Synergies Based on Dissimilar Muscle Modes

    PubMed Central

    Danna-Dos-Santos, Alessander; Shapkova, Elena Yu.; Shapkova, Alexandra L.; Degani, Adriana M.; Latash, Mark L.

    2009-01-01

    We studied the organization of leg and trunk muscles into groups (M-modes) and co-variation of M-mode involvement (M-mode synergies) during whole-body tasks associated with large variations of the moment of force about the vertical body axis. Our major questions were: (1) Can muscle activation patterns during such tasks be described with a few M-modes common across tasks and subjects? (2) Do these modes form the basis for synergies stabilizing MZ time pattern? (3) Will this organization differ between an explicit body rotation task and a task associated with locomotor-like alternating arm movements? Healthy subjects stood barefoot on the force platform and performed two motor tasks while paced by the metronome at 0.7, 1.0, and 1.4 Hz: Cyclic rotation of the upper body about the vertical body axis (body rotation task), and alternating rhythmic arm movements imitating those during running or quick walking (arm movement task). Principal component analysis was used to identify three M-modes within the space of integrated indices of muscle activity. The M-mode vectors showed clustering neither across subjects nor across frequencies. Variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect the average value of MZ shift ("good variance") and the other that did. An index was computed reflecting the relative amount of the "good variance"; positive values of this index have been interpreted as reflecting a multi-M-mode synergy stabilizing the MZ trajectory. On average, the index was positive for both tasks and across all frequencies studied. However, the magnitude of the index was smaller for the intermediate frequency (1 Hz). The results show that the organization of muscles into groups during relatively complex whole-body tasks can differ significantly across both task variations and subjects. Nevertheless, the central nervous system seems to be able to build MZ stabilizing synergies based on different sets of M

  15. Ankle morphology amplifies calcaneus movement relative to triceps surae muscle shortening

    PubMed Central

    Csapo, R.; Hodgson, J.; Kinugasa, R.; Edgerton, V. R.

    2013-01-01

    The present study investigated the mechanical role of the dorsoventral curvature of the Achilles tendon in the conversion of the shortening of the plantarflexor muscles into ankle joint rotation. Dynamic, sagittal-plane magnetic resonance spin-tagged images of the ankle joint were acquired in six healthy subjects during both passive and active plantarflexion movements driven by a magnetic resonance compatible servomotor-controlled foot-pedal device. Several points on these images were tracked to determine the 1) path and deformation of the Achilles tendon, 2) ankle's center of rotation, and 3) tendon moment arms. The degree of mechanical amplification of joint movement was calculated as the ratio of the displacements of the calcaneus and myotendinous junction. In plantarflexion, significant deflection of the Achilles tendon was evident in both the passive (165.7 ± 7.4°; 180° representing a straight tendon) and active trials (166.9 ± 8.8°). This bend in the dorsoventral direction acts to move the Achilles tendon closer to the ankle's center of rotation, resulting in an ∼5% reduction of moment arm length. Over the entire range of movement, the overall displacement of the calcaneus exceeded the displacement of the myotendinous junction by ∼37%, with the mechanical gains being smaller in dorsi- and larger in plantarflexed joint positions. This is the first study to assess noninvasively and in vivo using MRI the curvature of the Achilles tendon during both passive and active plantarflexion movements. The dorsoventral tendon curvature amplifies the shortening of the plantarflexor muscles, resulting in a greater displacement of the tendon's insertion into the calcaneus compared with its origin. PMID:23743400

  16. Task-dependent changes in cutaneous reflexes recorded from various muscles controlling finger movement in man.

    PubMed Central

    Evans, A L; Harrison, L M; Stephens, J A

    1989-01-01

    1. Cutaneous reflex responses have been recorded from muscles involved in the control of finger movement following electrical stimulation of the digital nerves of the fingers in man. 2. Recordings have been made while subjects performed various manual tasks. 3. Reflexes recorded while subjects performed a relatively isolated finger movement consisted of an initial short-latency increase in muscle electrical activity, followed by a decrease, followed by a prominent longer-latency increase. The long-latency excitatory component was smaller or absent during those grips used in the present study. 4. The short-latency excitatory (E1) and inhibitory (I1) components of the cutaneomuscular reflex response are mediated via spinal pathways. The second longer-latency excitatory component (E2) is of supraspinal origin, requiring the integrity of the dorsal columns, sensorimotor cortex and corticospinal tract (Jenner & Stephens, 1982). The results of the present study suggest that one or more of these supraspinal pathways is more active when a finger is used in a relatively isolated manner than when the same finger participates in any of the gripping manoeuvres used in the present experiments. PMID:2621613

  17. Muscle co-activity tuning in Parkinsonian hand movement: disease-specific changes at behavioral and cerebral level.

    PubMed

    van der Stouwe, A M M; Toxopeus, C M; de Jong, B M; Yavuz, P; Valsan, G; Conway, B A; Leenders, K L; Maurits, N M

    2015-01-01

    We investigated simple directional hand movements based on different degrees of muscle co-activity, at behavioral and cerebral level in healthy subjects and Parkinson's disease (PD) patients. We compared "singular" movements, dominated by the activity of one agonist muscle, to "composite" movements, requiring conjoint activity of multiple muscles, in a center-out (right hand) step-tracking task. Behavioral parameters were obtained by EMG and kinematic recordings. fMRI was used to investigate differences in underlying brain activations between PD patients (N = 12) and healthy (age-matched) subjects (N = 18). In healthy subjects, composite movements recruited the striatum and cortical areas comprising bilaterally the supplementary motor area and premotor cortex, contralateral medial prefrontal cortex, primary motor cortex, primary visual cortex, and ipsilateral superior parietal cortex. Contrarily, the ipsilateral cerebellum was more involved in singular movements. This striking dichotomy between striatal and cortical recruitment vs. cerebellar involvement was considered to reflect the complementary roles of these areas in motor control, in which the basal ganglia are involved in movement selection and the cerebellum in movement optimization. Compared to healthy subjects, PD patients showed decreased activation of the striatum and cortical areas in composite movement, while performing worse at behavioral level. This implies that PD patients are especially impaired on tasks requiring highly tuned muscle co-activity. Singular movement, on the other hand, was characterized by a combination of increased activation of the ipsilateral parietal cortex and left cerebellum. As singular movement performance was only slightly compromised, we interpret this as a reflection of increased visuospatial processing, possibly as a compensational mechanism. PMID:26300761

  18. Muscle co-activity tuning in Parkinsonian hand movement: disease-specific changes at behavioral and cerebral level

    PubMed Central

    van der Stouwe, A. M. M.; Toxopeus, C. M.; de Jong, B. M.; Yavuz, P.; Valsan, G.; Conway, B. A.; Leenders, K. L.; Maurits, N. M.

    2015-01-01

    We investigated simple directional hand movements based on different degrees of muscle co-activity, at behavioral and cerebral level in healthy subjects and Parkinson's disease (PD) patients. We compared “singular” movements, dominated by the activity of one agonist muscle, to “composite” movements, requiring conjoint activity of multiple muscles, in a center-out (right hand) step-tracking task. Behavioral parameters were obtained by EMG and kinematic recordings. fMRI was used to investigate differences in underlying brain activations between PD patients (N = 12) and healthy (age-matched) subjects (N = 18). In healthy subjects, composite movements recruited the striatum and cortical areas comprising bilaterally the supplementary motor area and premotor cortex, contralateral medial prefrontal cortex, primary motor cortex, primary visual cortex, and ipsilateral superior parietal cortex. Contrarily, the ipsilateral cerebellum was more involved in singular movements. This striking dichotomy between striatal and cortical recruitment vs. cerebellar involvement was considered to reflect the complementary roles of these areas in motor control, in which the basal ganglia are involved in movement selection and the cerebellum in movement optimization. Compared to healthy subjects, PD patients showed decreased activation of the striatum and cortical areas in composite movement, while performing worse at behavioral level. This implies that PD patients are especially impaired on tasks requiring highly tuned muscle co-activity. Singular movement, on the other hand, was characterized by a combination of increased activation of the ipsilateral parietal cortex and left cerebellum. As singular movement performance was only slightly compromised, we interpret this as a reflection of increased visuospatial processing, possibly as a compensational mechanism. PMID:26300761

  19. Rat Whisker Movement after Facial Nerve Lesion: Evidence for Autonomic Contraction of Skeletal Muscle

    PubMed Central

    Heaton, James T.; Sheu, Shu-Hsien; Hohman, Marc H.; Knox, Christopher J.; Weinberg, Julie S.; Kleiss, Ingrid J.; Hadlock, Tessa A.

    2014-01-01

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10 weeks, and during intraoperative stimulation of the ION and facial nerves at ≥18 weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation

  20. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  1. Legal briefing: coerced treatment and involuntary confinement for contagious disease.

    PubMed

    Pope, Thaddeus Mason; Bughman, Heather Michelle

    2015-01-01

    This issue's "Legal Briefing" column covers recent legal developments involving coerced treatment and involuntary confinement for contagious disease. Recent high profile court cases involving measles, tuberculosis, human immunodeficiency virus, and especially Ebola, have thrust this topic back into the bioethics and public spotlights. This has reignited debates over how best to balance individual liberty and public health. For example, the Presidential Commission for the Study of Bioethical Issues has officially requested public comments, held open hearings, and published a 90-page report on "ethical considerations and implications" raised by "U.S. public policies that restrict association or movement (such as quarantine)." Broadly related articles have been published in previous issues of The Journal of Clinical Ethics. We categorize recent legal developments on coerced treatment and involuntary confinement into the following six categories: 1. Most Public Health Confinement Is Voluntary 2. Legal Requirements for Involuntary Confinement 3. New State Laws Authorizing Involuntary Confinement 4. Quarantine Must Be as Least Restrictive as Necessary 5. Isolation Is Justified Only as a Last Resort 6. Coerced Treatment after Persistent Noncompliance. PMID:25794297

  2. Real-time estimation of tongue movement based on suprahyoid muscle activity.

    PubMed

    Sasaki, M; Onishi, K; Arakawa, T; Nakayama, A; Stefanov, D; Yamaguchi, M

    2013-01-01

    In this study, we introduce a real-time method for tongue movement estimation based on the analysis of the surface electromyography (EMG) signals from the suprahyoid muscles, which usual function is to open the mouth and to control the position of the hyoid, the base of the tongue. Nine surface electrodes were affixed to the underside of the jaw and their signals were processed via multi-channel EMG system. The features of the EMG signals were extracted by using a root mean square (RMS) method. The dimension of the variables was reduced additionally from 108 to 10 by applying the Principal Component Analysis (PCA). The feature quantities of the reduced dimension set were associated with the tongue movements by using an artificial neural network. Results showed that the proposed method allows precise estimation of the tongue movements. For the test data set, the identification rate was greater than 97 % and the response time was less than 0.7 s. The proposed method could be implemented to facilitate novel approaches for alternative communication and control of assistive technology for supporting the independent living of people with severe quadriplegia. PMID:24110760

  3. Activation patterns of mono- and bi-articular arm muscles as a function of force and movement direction of the wrist in humans

    PubMed Central

    van Bolhuis, B M; Gielen, C C A M; van Ingen Schenau, G J

    1998-01-01

    In order to explain the task-dependent activation of muscles, we have investigated the hypothesis that mono- and bi-articular muscles have a different functional role in the control of multijoint movements. According to this hypothesis, bi-articular muscles are activated in a way to control the direction of external force. The mono-articular muscles are thought to be activated to contribute to joint torque mainly during shortening movements.To investigate this hypothesis, surface electromyographic (EMG) recordings were obtained from several mono- and bi-articular arm muscles during voluntary slow movements of the wrist in a horizontal plane against an external force. The direction of force produced at the wrist and the direction of movement of the wrist were varied independently.The results revealed distinct differences between the activation patterns of mono- and bi-articular muscles. The activation of the bi-articular muscles was not affected by movement direction, but appeared to vary exclusively with the direction of force.The mono-articular muscles showed significantly more EMG activity for movements in a specific direction, which equalled the movement direction corresponding to the largest shortening velocity of the muscle. The EMG activity decreased gradually for movements in other directions. This direction-dependent activation appeared to be independent of the direction of the external force. PMID:9490859

  4. Comparison of lower limb muscle activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults

    PubMed Central

    Kim, Min-Ju; Kim, Joong-Hwi

    2016-01-01

    [Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], adductor longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six muscles for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb muscle enhancement. PMID:26957762

  5. Comparison of lower limb muscle activation with ballet movements (releve and demi-plie) and general movements (heel rise and squat) in healthy adults.

    PubMed

    Kim, Min-Ju; Kim, Joong-Hwi

    2016-01-01

    [Purpose] The aim of this study was to demonstrate therapeutic grounds for rehabilitation exercise approach by comparing and analyzing muscular activities of Ballet movements: the releve movement (RM) and the demi-plie movement (DM). [Methods] Four types of movements such as RM vs. heel rise (HM) and DM vs. squat movement (SM) were randomized and applied in 30 healthy male and female individuals while measuring 10-s lower limb muscular activities (gluteus maximus [GMa], gluteus medius [GMe], rectus femoris [RF], adductor longus [AL], medial gastrocnemius [MG], and lateral gastrocnemius [LG]) by using surface electromyography (EMG). [Results] Significant differences were found in GMa, GMe, AL and MG activities for DM and in all of the six muscles for RM, in particular when the two groups were compared (RM vs HM and DM vs SM). [Conclusion] The RM and DM have a greater effect on lower limb muscular force activities compared to HM and SM and could be recommended as clinical therapeutic exercises for lower limb muscle enhancement. PMID:26957762

  6. FPL-64176 alters both charge movement and Ca2+ release properties in amphibian muscle fibres.

    PubMed

    Chawla, Sangeeta; Huang, Christopher L-H

    2004-03-01

    A number of recent reports have suggested that ryanodine receptor (RyR)-Ca2+ release channels are gated by tubular depolarization in skeletal muscle through their direct coupling to intramembrane dihydropyridine receptor (DHPR)-voltage sensors. The qgama charge movement, which is inhibited by DHPR antagonists, is often regarded as the electrical signature for the voltage sensing process, yet pharmacological modifications of the RyR produce reciprocal upstream kinetic effects on an otherwise conserved qgamma charge. This study investigates the effect of DHPR-specific agonists upon intramembrane charge and the release of intracellularly stored Ca2+. We empirically demonstrate kinetic effects of FPL-64176 upon charge movements that closely resemble the consequences of previous interventions directed instead at the RyR. Increases in extracellular FPL-64176 concentration from 10 to 40 microM converted delayed qgamma transients to monotonic decays indistinguishable from the exponential qbeta current component. Yet total steady-state intramembrane charge and the steepness of its dependence upon test potential closely resembled previous reports from untreated fibres. These changes accompanied an appearance of transient cytosolic [Ca2+] elevations in confocal line-scans in fluo-3-loaded fibres studied in 10mM K+ and 40, but not 10 microM, FPL-64176 that resembled elementary Ca2+ release events ('sparks'). Pharmacological manipulations of the DHPR whose effects on intramembrane charge resembled those from manoeuvres directed at the RyR can thus produce downstream effects upon Ca2+ release. PMID:15061146

  7. Magnitudes of gluteus medius muscle activation during standing hip joint movements in spiral-diagonal patterns using elastic tubing resistance.

    PubMed

    Youdas, James W; Adams, Kady E; Bertucci, John E; Brooks, Koel J; Steiner, Meghan M; Hollman, John H

    2015-01-01

    The aim of this study was to simultaneously quantify electromyographic (EMG) activation levels (% maximum voluntary isometric contraction [MVIC]) within the gluteus medius muscles on both moving and stance limbs across the performance of four proprioceptive neuromuscular facilitation (PNF) spiral-diagonal patterns in standing using resistance provided by elastic tubing. Differential EMG activity was recorded from the gluteus medius muscle of 26 healthy participants. EMG signals were collected with surface electrodes at a sampling frequency of 1000 Hz during three consecutive repetitions of each spiral-diagonal movement pattern. Significant differences existed among the four-spiral-diagonal movement patterns (F3,75 = 19.8; p < 0.001). The diagonal two flexion [D2F] pattern produced significantly more gluteus medius muscle recruitment (50 SD 29.3% MVIC) than any of the other three patterns and the diagonal one extension [D1E] (39 SD 37% MVIC) and diagonal two extension [D2E] (35 SD 29% MVIC) patterns generated more gluteus medius muscle recruitment than diagonal one flexion [D1F] (22 SD 21% MVIC). From a clinical efficiency standpoint, a fitness professional using the spiral-diagonal movement pattern of D2F and elastic tubing with an average peak tension of about 9% body mass may be able to concurrently strengthen the gluteus medius muscle on both stance and moving lower limbs. PMID:25625644

  8. Pioneers of eye movement research

    PubMed Central

    Wade, Nicholas J

    2010-01-01

    Recent advances in the technology affording eye movement recordings carry the risk of neglecting past achievements. Without the assistance of this modern armoury, great strides were made in describing the ways the eyes move. For Aristotle the fundamental features of eye movements were binocular, and he described the combined functions of the eyes. This was later given support using simple procedures like placing a finger over the eyelid of the closed eye and culminated in Hering's law of equal innervation. However, the overriding concern in the 19th century was with eye position rather than eye movements. Appreciating discontinuities of eye movements arose from studies of vertigo. The characteristics of nystagmus were recorded before those of saccades and fixations. Eye movements during reading were described by Hering and by Lamare in 1879; both used similar techniques of listening to sounds made during contractions of the extraocular muscles. Photographic records of eye movements during reading were made by Dodge early in the 20th century, and this stimulated research using a wider array of patterns. In the mid-20th century attention shifted to the stability of the eyes during fixation, with the emphasis on involuntary movements. The contributions of pioneers from Aristotle to Yarbus are outlined. PMID:23396982

  9. Corticospinal excitability modulation in resting digit muscles during cyclical movement of the digits of the ipsilateral limb.

    PubMed

    Muraoka, Tetsuro; Sakamoto, Masanori; Mizuguchi, Nobuaki; Nakagawa, Kento; Kanosue, Kazuyuki

    2015-01-01

    We investigated how corticospinal excitability of the resting digit muscles was modulated by the digit movement in the ipsilateral limb. Subjects performed cyclical extension-flexion movements of either the right toes or fingers. To determine whether corticospinal excitability of the resting digit muscles was modulated on the basis of movement direction or action coupling between ipsilateral digits, the right forearm was maintained in either the pronated or supinated position. During the movement, the motor evoked potential (MEP) elicited by transcranial magnetic stimulation (TMS) was measured from either the resting right finger extensor and flexor, or toe extensor and flexor. For both finger and toe muscles, independent of forearm position, MEP amplitude of the flexor was greater during ipsilateral digit flexion as compared to extension, and MEP amplitude of the extensor was greater during ipsilateral digit extension as compared to flexion. An exception was that MEP amplitude of the toe flexor with the supinated forearm did not differ between during finger extension and flexion. These findings suggest that digit movement modulates corticospinal excitability of the digits of the ipsilateral limb such that the same action is preferred. Our results provide evidence for a better understanding of neural interactions between ipsilateral limbs, and may thus contribute to neurorehabilitation after a stroke or incomplete spinal cord injury. PMID:26582985

  10. Corticospinal excitability modulation in resting digit muscles during cyclical movement of the digits of the ipsilateral limb

    PubMed Central

    Muraoka, Tetsuro; Sakamoto, Masanori; Mizuguchi, Nobuaki; Nakagawa, Kento; Kanosue, Kazuyuki

    2015-01-01

    We investigated how corticospinal excitability of the resting digit muscles was modulated by the digit movement in the ipsilateral limb. Subjects performed cyclical extension-flexion movements of either the right toes or fingers. To determine whether corticospinal excitability of the resting digit muscles was modulated on the basis of movement direction or action coupling between ipsilateral digits, the right forearm was maintained in either the pronated or supinated position. During the movement, the motor evoked potential (MEP) elicited by transcranial magnetic stimulation (TMS) was measured from either the resting right finger extensor and flexor, or toe extensor and flexor. For both finger and toe muscles, independent of forearm position, MEP amplitude of the flexor was greater during ipsilateral digit flexion as compared to extension, and MEP amplitude of the extensor was greater during ipsilateral digit extension as compared to flexion. An exception was that MEP amplitude of the toe flexor with the supinated forearm did not differ between during finger extension and flexion. These findings suggest that digit movement modulates corticospinal excitability of the digits of the ipsilateral limb such that the same action is preferred. Our results provide evidence for a better understanding of neural interactions between ipsilateral limbs, and may thus contribute to neurorehabilitation after a stroke or incomplete spinal cord injury. PMID:26582985

  11. Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe.

    PubMed

    Lin, Cheng-Feng; Lee, Wan-Chin; Chen, Yi-An; Hsue, Bih-Jen

    2016-08-01

    Fatigue in ballet dancers may lead to injury, particularly in the lower extremities. However, few studies have investigated the effects of fatigue on ballet dancers' performance and movement patterns. Thus, the current study examines the effect of fatigue on the balance, movement pattern, and muscle activities of the lower extremities in ballet dancers. Twenty healthy, female ballet dancers performed releve on demi-pointe before and after fatigue. The trajectory of the whole body movement and the muscle activities of the major lower extremity muscles were recorded continuously during task performance. The results show that fatigue increases the medial-lateral center of mass (COM) displacement and hip and trunk motion, but decreases the COM velocity and ankle motion. Moreover, fatigue reduces the activities of the hamstrings and tibialis anterior, but increases that of the soleus. Finally, greater proximal hip and trunk motions are applied to compensate for the effects of fatigue, leading to a greater COM movement. Overall, the present findings show that fatigue results in impaired movement control and may therefore increase the risk of dance injury. PMID:26955753

  12. Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe.

    PubMed

    Lin, Cheng-Feng; Lee, Wan-Chin; Chen, Yi-An; Hsue, Bih-Jen

    2016-08-01

    Fatigue in ballet dancers may lead to injury, particularly in the lower extremities. However, few studies have investigated the effects of fatigue on ballet dancers' performance and movement patterns. Thus, the current study examines the effect of fatigue on the balance, movement pattern, and muscle activities of the lower extremities in ballet dancers. Twenty healthy, female ballet dancers performed releve on demi-pointe before and after fatigue. The trajectory of the whole body movement and the muscle activities of the major lower extremity muscles were recorded continuously during task performance. The results show that fatigue increases the medial-lateral center of mass (COM) displacement and hip and trunk motion, but decreases the COM velocity and ankle motion. Moreover, fatigue reduces the activities of the hamstrings and tibialis anterior, but increases that of the soleus. Finally, greater proximal hip and trunk motions are applied to compensate for the effects of fatigue, leading to a greater COM movement. Overall, the present findings show that fatigue results in impaired movement control and may therefore increase the risk of dance injury. PMID:27622498

  13. The Movement- and Load-Dependent Differences in the EMG Patterns of the Human Arm Muscles during Two-Joint Movements (A Preliminary Study)

    PubMed Central

    Tomiak, Tomasz; Abramovych, Tetiana I.; Gorkovenko, Andriy V.; Vereshchaka, Inna V.; Mishchenko, Viktor S.; Dornowski, Marcin; Kostyukov, Alexander I.

    2016-01-01

    Slow circular movements of the hand with a fixed wrist joint that were produced in a horizontal plane under visual guidance during conditions of action of the elastic load directed tangentially to the movement trajectory were studied. The positional dependencies of the averaged surface EMGs in the muscles of the elbow and shoulder joints were compared for four possible combinations in the directions of load and movements. The EMG intensities were largely correlated with the waves of the force moment computed for a corresponding joint in the framework of a simple geometrical model of the system: arm - experimental setup. At the same time, in some cases the averaged EMGs exit from the segments of the trajectory restricted by the force moment singular points (FMSPs), in which the moments exhibited altered signs. The EMG activities display clear differences for the eccentric and concentric zones of contraction that are separated by the joint angle singular points (JASPs), which present extreme at the joint angle traces. We assumed that the modeled patterns of FMSPs and JASPs may be applied for an analysis of the synergic interaction between the motor commands arriving at different muscles in arbitrary two-joint movements. PMID:27375496

  14. The effect of phenylglyoxal on contraction and intramembrane charge movement in frog skeletal muscle.

    PubMed Central

    Etter, E F

    1990-01-01

    1. The effects of the arginine-specific protein-modifying reagent, phenylglyoxal, on contraction and intramembrane charge movement were studied in cut single fibres from frog skeletal muscle, using the double-Vaseline-gap voltage clamp technique. 2. The strength-duration curve for pulses which produced microscopically just-detectable contractions was shifted to more positive potentials and longer durations following treatment of fibres with phenylglyoxal. Caffeine-induced contractures were not blocked. 3. The amount of charge moved by large depolarizing pulses from -100 mV holding potential (charge 1) declined during the phenylglyoxal treatment with a single-exponential time course (tau = 7 min). Linear capacitance did not change significantly over the entire experiment. Inhibition of charge movement was predominantly irreversible. 4. Slow bumps (Q gamma) observed in charge movement current transients recorded before phenylglyoxal treatment, using either large test pulses or small steps superimposed on test pulses, were absent from currents recorded after treatment. The current removed by phenylglyoxal contained the bump (Q gamma) and a small fast transient (Q beta). 5. The amount of charge moved by large depolarizing pulses from -100 mV was reduced 20-50% following phenylglyoxal treatment. Charge moved by pulses to potentials more negative than -40 mV was relatively unaffected. The magnitude and voltage range of this inhibitory effect were the same whether the reagent was applied at -100 mV or at 0 mV holding potential. 6. A phenylglyoxal-sensitive component of charge was isolated which had a much steeper voltage dependence than the total charge movement or the charge remaining after treatment. 7. Charge recorded during hyperpolarizing pulses from 0 mV holding potential (charge 2) was reduced very little (less than 5%) at any potential by phenylglyoxal treatments at either 0 or -100 mV. 8. The phenylglyoxal reaction with charge 2 was kinetically different from the

  15. Software for determining lower extremity muscle-tendon kinematics and moment arm lengths during flexion/extension movements.

    PubMed

    Hawkins, D

    1992-01-01

    A computer program was developed to calculate lower extremity muscle-tendon (MT) kinematics and flexion/extension moment arm (MA) lengths for any subject performing movements constrained to occur in the sagittal plane. The program requires as input subject anthropometric and time series ankle, knee, and hip angle data. Using these data a lower extremity link-segment model is constructed for each time element. Muscle-tendon attachment data and a straight line muscle model are used to calculate MT and flexion/extension moment arm lengths. A finite difference technique is used to determine MT shortening velocity. The utility of this program is demonstrated by calculating MT kinematics and MA lengths for six muscles of a single subject both as a function of joint angles and during gait. PMID:1572164

  16. Semitendinosus snapping: analysis of movement, electromyographic activities, muscle strength and endurance, motor control and joint position sense

    PubMed Central

    Guney, Hande; Kaya, Defne; Yilgor, Caglar; Cilli, Murat; Aritan, Serdar; Yuksel, Inci; Doral, Mahmut Nedim

    2013-01-01

    Summary A female ballet with a history of two-years of semi-tendinosus (ST) snapping was assessed. On physical examination snapping was observed during hyperextension of the knee. Neither any history of trauma nor treatment was recalled. Magnetic resonance imaging (MRI), movement analysis, onset timing of ST and Bisceps Femoris (BF), motor control, isokinetic muscle strength and endurance, joint position sense (JPS) were assessed. The MRI findings were normal. There were abnormal oscillations observed during hyperextension of the snapping knee compared to healthy side. There were no isokinetic muscle strength nor do muscle endurance differences. The motor control and JPS deficits were greater on the snapping knee than the healthy side. ST onset timing was earlier than BF on the snapping side. Snapping of the semitendinosus tendon has an adverse affect on JPS, motor control and onset timing of the knee muscles. PMID:24367776

  17. A reconstruction of charge movement during the action potential in frog skeletal muscle.

    PubMed Central

    Huang, C. L.; Peachey, L. D.

    1992-01-01

    The transfer of intramembrane charge during an action potential at 4 degrees C was reconstructed for a model representing the electrical properties of frog skeletal muscle by a cylindrical surface membrane and 16 concentric annuli ("shells") of transverse tubular membrane of equal radial thickness. The lumina of the transverse tubules were separated from extracellular fluid by a fixed series resistance. The quantity, geometrical distribution and steady-state and kinetic properties of charge movement components were described by equations incorporating earlier experimental results. Introducing such nonlinear charge into the distributed model for muscle membrane diminished the maximum amplitude of the action potential within the transverse tubules by 2 mV but increased the maximum size of the after-depolarization by 3-5 mV and also its duration. However, these changes were small in comparison to the 135-mV deflection represented by the action potential. They therefore did not justify altering the values of the electrical parameters adopted by Adrian R.H., and L.D. Peachey (1973. J. Physiol. [Lond.]. 235:103-131.) and used in the present calculations. Cable properties significantly affected the time course and extent of charge movement in each shell during action potential propagation into the tubular system. Q beta charge moved relatively rapidly in all annuli, and did so without significant latency (approximately 0.3 ms) after the surface action potential upstroke. Its peak displacement varied between 53 and 58% (the range representing the difference fiber edge/fiber axis) of the total Q beta charge. This was attained at 5.4-7.3 ms after the stimulus, depending on depth within the tubules. In contrast, q gamma moved after a 1.7-2.9 ms latency and achieved a peak displacement of up to 22-34% of available charge. Both charge movement species could be driven by repetitive (47.7 Hz) action potentials without buildup of charge transfer. Such stimulus frequencies would

  18. The spinal reflex cannot be perceptually separated from voluntary movements.

    PubMed

    Ghosh, Arko; Haggard, Patrick

    2014-01-01

    Both voluntary and involuntary movements activate sensors in the muscles, skin, tendon and joints. As limb movement can result from a mixture of spinal reflexes and voluntary motor commands, the cortical centres underlying conscious proprioception might either aggregate or separate the sensory inputs generated by voluntary movements from those generated by involuntary movements such as spinal reflexes. We addressed whether healthy volunteers could perceive the contribution of a spinal reflex during movements that combined both reflexive and voluntary contributions. Volunteers reported the reflexive contribution in leg movements that were partly driven by the knee-jerk reflex induced by a patellar tendon tap and partly by voluntary motor control. In one condition, participants were instructed to kick back in response to a tendon tap. The results were compared to reflexes in a resting baseline condition without voluntary movement. In a further condition, participants were instructed to kick forwards after a tap. Volunteers reported the perceived reflex contribution by repositioning the leg to the perceived maximum displacement to which the reflex moved the leg after each tendon tap. In the resting baseline condition, the reflex was accurately perceived. We found a near-unity slope of linear regressions of perceived on actual reflexive displacement. Both the slope value and the quality of regression fit in individual volunteers were significantly reduced when volunteers were instructed to generate voluntary backward kicks as soon as they detected the tap. In the kick forward condition, kinematic analysis showed continuity of reflex and voluntary movements, but the reflex contribution could be estimated from electromyography (EMG) recording on each trial. Again, participants' judgements of reflexes showed a poor relation to reflex EMG, in contrast to the baseline condition. In sum, we show that reflexes can be accurately perceived from afferent information. However

  19. Intramuscular water movement during and after isometric muscle contraction: evaluation at different exercise intensities.

    PubMed

    Yanagisawa, Osamu; Kurihara, Toshiyuki

    2016-09-01

    We aimed at evaluating the effect of isometric muscle contraction on intramuscular water movement at different exercise intensities. Seven men performed 1-min isometric ankle dorsiflexion (20% and 50% maximal voluntary contractions [MVCs]) with a non-magnetic custom-made dynamometer, inside a magnetic resonance (MR) device. Axial diffusion-weighted images were obtained before, during and at 1-20 min (1-min interval) after the exercise to calculate the apparent diffusion coefficient (ADC) of the tibialis anterior. Under the same exercise condition, the concentration change of total haemoglobin (Hb) and myoglobin (Mb) (total Hb/Mb) within the tibialis anterior was assessed by performing near-infrared spectroscopy before, during and after the exercise outside the MR device. The 20% MVC exercise significantly increased the ADC only at 1 min postexercise (P<0·01), whereas the ADC significantly increased during and at 2-20 min after the 50% MVC exercise (P<0·01). The 20% MVC exercise decreased the total Hb/Mb during exercise (P<0·01), but the value significantly increased at 1 min postexercise (P<0·01). The total Hb/Mb significantly decreased during the 50% MVC exercise, but significantly increased at 1-5 min postexercise (P<0·01). One-minute moderate-intensity isometric exercise activates intramuscular water movement during and after the exercise. This activation was found even after a low-intensity exercise, but the effect was small and did not last long. The effect of intramuscular hyperaemia on the postexercise ADC elevation may be limited to the very early period after low- to moderate-intensity exercises. PMID:26147530

  20. 5 CFR 842.206 - Involuntary retirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Involuntary retirement. 842.206 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.206 Involuntary retirement... separates from the service involuntarily after completing 25 years of service, or after becoming age 50...

  1. Muscle spasms associated with Sudeck's atrophy after injury.

    PubMed Central

    Marsden, C D; Obeso, J A; Traub, M M; Rothwell, J C; Kranz, H; La Cruz, F

    1984-01-01

    Four patients developed abnormal involuntary movements of a limb after injury. All subsequently developed sympathetic algodystrophy with Sudeck's atrophy and then abnormal muscle spasms or jerks of the affected limb, lasting years. Sympathetic block in three patients did not relieve the abnormal movements. Two patients obtained partial recovery spontaneously, but the other two required surgery for relief. The pathophysiology of this condition remains to be determined but the evidence suggests that it is a distinct, disabling clinical syndrome. Images FIG 1 FIG 3 PMID:6198018

  2. Voluntary Movement Controlled by the Surface EMG Signal for Tissue-Engineered Skeletal Muscle on a Gripping Tool

    PubMed Central

    Kabumoto, Ken-ichiro; Hoshino, Takayuki; Akiyama, Yoshitake

    2013-01-01

    We have developed a living prosthesis consisting of a living muscle-powered device, which is controlled by neuronal signals to recover some of the functions of a lost extremity. A tissue-engineered skeletal muscle was fabricated with two anchorage points from a primary rat myoblast cultured in a collagen Matrigel mixed gel. Differentiation to the skeletal muscle was confirmed in the tissue-engineered skeletal muscle, and the contraction force increased with increasing frequency of electric stimulation. Then, the tissue-engineered skeletal muscle was assembled into a gripper-type microhand. The tissue-engineered skeletal muscle of the microhand was stimulated electrically, which was then followed by the voluntary movement of the subject's hand. The signal of the surface electromyogram from a subject was processed to mimic the firing spikes of a neuromuscular junction to control the contraction of the tissue-engineered skeletal muscle. The tele-operation of the microhand was demonstrated by optical microscope observations. PMID:23444880

  3. An improved method to determine neuromuscular properties using force laws - From single muscle to applications in human movements.

    PubMed

    Siebert, T; Sust, M; Thaller, S; Tilp, M; Wagner, H

    2007-04-01

    We evaluate an improved method for individually determining neuromuscular properties in vivo. The method is based on Hill's equation used as a force law combined with Newton's equation of motion. To ensure the range of validity of Hill's equation, we first perform detailed investigations on in vitro single muscles. The force-velocity relation determined with the model coincides well with results obtained by standard methods (r=.99) above 20% of the isometric force. In addition, the model-predicted force curves during work loop contractions very well agree with measurements (mean difference: 2-3%). Subsequently, we deduce theoretically under which conditions it is possible to combine several muscles of the human body to model muscles. This leads to a model equation for human leg extension movements containing parameters for the muscle properties and for the activation. To numerically determine these invariant neuromuscular properties we devise an experimental method based on concentric and isometric leg extensions. With this method we determine individual muscle parameters from experiments such that the simulated curves agree well with experiments (r=.99). A reliability test with 12 participants revealed correlations r=.72-.91 for the neuromuscular parameters (p<.01). Predictions of similar movements under different conditions show mean errors of about 5%. In addition, we present applications in sports practise and theory. PMID:17343950

  4. Movement.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on movement: movable art, relocating families, human rights, and trains and cars. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books, additional resources and activities (PEN)

  5. Experimental analysis of alternative models of charge movement in frog skeletal muscle.

    PubMed Central

    Huang, C L

    1983-01-01

    A series of pulse procedures was used to distinguish experimentally between a 'capacitative' (Schneider & Chandler, 1973) and a 'resistive' (Matthias, Levis & Eisenberg, 1980) model of 'charge movements' in skeletal muscle. A general condition describing the conservation of charge in a non-linear capacitor that was used as the basis for the experiments is derived in the Appendix. It was shown that earlier criteria concerning equality of 'on' and 'off' charge in response to large steps are insufficient to exclude resistive models. However, the capacitative, but not the resistive model successfully explained results bearing on charge conservation assessed through pulse procedures involving: (i) small, 10 mV voltage steps from a series of prepulse voltages, (ii) voltage steps to a fixed potential from a series of hyperpolarized voltages, (iii) pulse sequences incorporating a 'staircase' of voltage steps. It is concluded that the earlier use of 'on' and 'off' equality in response to large voltage steps is insufficient to exclude a resistive basis for the non-linear transient. However pulse procedures explicitly designed to distinguish the two models give results consistent with a capacitative model for the non-linear charge and at variance with a resistive one. PMID:6875919

  6. The anatomy and physiology of the muscle spindle, and its role in posture and movement: a review

    PubMed Central

    Fitz-Ritson, Don

    1982-01-01

    A detailed analysis of the anatomy of this precise sense organ of muscle is reviewed. This includes the innervation of the nuclear bag and chain fibres, with an introduction to the B-system innervation. The physiology assesses the response of the primary (Ia) and secondary (II) afferents along with the responses occurring in the alpha α and gamma γ motoneurones. The integrative function of the muscle spindle is realized when the dynamic bag 1, static bag 2 and nuclear chain fibres with their static gamma γ fibres is understood. This provides a basic background of some of the factors involved in the maintenance of posture and the generation and control of movement.

  7. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans

    PubMed Central

    Etheridge, Timothy; Rahman, Mizanur; Gaffney, Christopher J.; Shaw, Debra; Shephard, Freya; Magudia, Jignesh; Solomon, Deepak E.; Milne, Thomas; Blawzdziewicz, Jerzy; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L.; Vanapalli, Siva A.; Szewczyk, Nathaniel J.

    2015-01-01

    The integrin-adhesome network, which contains >150 proteins, is mechano-transducing and located at discreet positions along the cell-cell and cell-extracellular matrix interface. A small subset of the integrin-adhesome is known to maintain normal muscle morphology. However, the importance of the entire adhesome for muscle structure and function is unknown. We used RNA interference to knock down 113 putative Caenorhabditis elegans homologs constituting most of the mammalian adhesome and 48 proteins known to localize to attachment sites in C. elegans muscle. In both cases, we found >90% of components were required for normal muscle mitochondrial structure and/or proteostasis vs. empty vector controls. Approximately half of these, mainly proteins that physically interact with each other, were also required for normal sarcomere and/or adhesome structure. Next we confirmed that the dystrophy observed in adhesome mutants associates with impaired maximal mitochondrial ATP production (P < 0.01), as well as reduced probability distribution of muscle movement forces compared with wild-type animals. Our results show that the integrin-adhesome network as a whole is required for maintaining both muscle structure and function and extend the current understanding of the full complexities of the functional adhesome in vivo.—Etheridge, T., Rahman, M., Gaffney, C. J., Shaw, D., Shephard, F., Magudia, J., Solomon, D. E., Milne, T., Blawzdziewicz, J., Constantin-Teodosiu, D., Greenhaff, P. L., Vanapalli, S. A., Szewczyk, N. J. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans. PMID:25491313

  8. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus.

    PubMed

    Schwarz, Peter B; Mir, Saba; Peever, John H

    2014-08-15

    Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep-wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally. PMID:24860176

  9. [X-ray interferometry of the axial movement of myosin heads during muscle force generation initiated by T-jump].

    PubMed

    Kubasova, N A; Bershitskiĭ, S Iu; Ferenczi, M A; Panine, P; Narayanan, T; Tsaturian, A K

    2009-01-01

    The interference fine structure of the M3 reflection on the low-angle x-ray diffraction patterns of muscle fibres is used for the measurements of axial movements of myosin heads with a precision of 0.1-0.2 nm. We have measured changes in the M3 interference profile during tension rise induced by a 5 to 30 degrees C temperature jump in thin bundles of contracting fibers from rabbit skeletal muscle. Interpreting the data with a point diffractor model gives an estimate for the axial movement of the myosin heads during force rise of less than 0.6 nm. Modifications of the point diffractor model are discussed. We show that our experimental data can be explained by a model where myosin heads bind actin in a number of structurally different states. PMID:19807033

  10. The neural basis of involuntary episodic memories.

    PubMed

    Hall, Shana A; Rubin, David C; Miles, Amanda; Davis, Simon W; Wing, Erik A; Cabeza, Roberto; Berntsen, Dorthe

    2014-10-01

    Voluntary episodic memories require an intentional memory search, whereas involuntary episodic memories come to mind spontaneously without conscious effort. Cognitive neuroscience has largely focused on voluntary memory, leaving the neural mechanisms of involuntary memory largely unknown. We hypothesized that, because the main difference between voluntary and involuntary memory is the controlled retrieval processes required by the former, there would be greater frontal activity for voluntary than involuntary memories. Conversely, we predicted that other components of the episodic retrieval network would be similarly engaged in the two types of memory. During encoding, all participants heard sounds, half paired with pictures of complex scenes and half presented alone. During retrieval, paired and unpaired sounds were presented, panned to the left or to the right. Participants in the involuntary group were instructed to indicate the spatial location of the sound, whereas participants in the voluntary group were asked to additionally recall the pictures that had been paired with the sounds. All participants reported the incidence of their memories in a postscan session. Consistent with our predictions, voluntary memories elicited greater activity in dorsal frontal regions than involuntary memories, whereas other components of the retrieval network, including medial-temporal, ventral occipitotemporal, and ventral parietal regions were similarly engaged by both types of memories. These results clarify the distinct role of dorsal frontal and ventral occipitotemporal regions in predicting strategic retrieval and recalled information, respectively, and suggest that, although there are neural differences in retrieval, involuntary memories share neural components with established voluntary memory systems. PMID:24702453

  11. Effects of vibrotactile stimulation on the control of muscle tone and movement facilitation in children with cerebral injury.

    PubMed

    Katusić, Ana; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Afferent signals from the muscle's proprioceptors play important role in the control of muscle tone and in the facilitation of movements. Peripheral afferent pathway enables the restoration of connections with supraspinal structures and so includes mechanism of synaptic inhibition in the performance of normal movement. Different sensory stimuli, as vibrotactile stimulation, excite muscle's proprioceptors which then send sensorimotor information via spinal cord. In this way afferent signals promote cortical control and modulation of movements. The goal of this study is to evaluate the effects of vibrotactile stimulation on the spasticity and motor performance in children with cerebral injury. Subjects included in this study were 13 children who were developing the classification of spastic cerebral palsy. For all children perinatal brain damage was documented by medical reports and neonatal brain ultrasound scan. At the mean age of 3 years and 6 months subject underwent the assessment of motor development by Gross Motor Function Measurement (GMFM-88). Gross Motor Classification System (GMFCS) has been used to classify functions of lower extremities. Therapeutic intervention was conducted once a week during 3 months. All subjects were stimulated with vibrotactile stimuli of 40Hz in duration of 20 minutes in order to reduce spasticity. After the ending of the treatment subjects underwent second assessment of motor performance and the classification of lower extremities functions. The results have shown that there was a significant improvement in motor performance, what has been seen in the facilitation of rotations, better postural trunk stability and head control and in greater selectivity of movements. Further randomized, control trial investigations with bigger sample and included spasm scale are needed to gain better insight in the role of vibrotactile stimulation in the facilitation of normal movements. PMID:21648312

  12. Warm-up with weighted bat and adjustment of upper limb muscle activity in bat swinging under movement correction conditions.

    PubMed

    Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki

    2014-02-01

    The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions. PMID:24724516

  13. Center of Pressure Displacement of Standing Posture during Rapid Movements Is Reorganised Due to Experimental Lower Extremity Muscle Pain

    PubMed Central

    Shiozawa, Shinichiro; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas

    2015-01-01

    Background Postural control during rapid movements may be impaired due to musculoskeletal pain. The purpose of this study was to investigate the effect of experimental knee-related muscle pain on the center of pressure (CoP) displacement in a reaction time task condition. Methods Nine healthy males performed two reaction time tasks (dominant side shoulder flexion and bilateral heel lift) before, during, and after experimental pain induced in the dominant side vastus medialis or the tibialis anterior muscles by hypertonic saline injections. The CoP displacement was extracted from the ipsilateral and contralateral side by two force plates and the net CoP displacement was calculated. Results Compared with non-painful sessions, tibialis anterior muscle pain during the peak and peak-to-peak displacement for the CoP during anticipatory postural adjustments (APAs) of the shoulder task reduced the peak-to-peak displacement of the net CoP in the medial-lateral direction (P<0.05). Tibialis anterior and vastus medialis muscle pain during shoulder flexion task reduced the anterior-posterior peak-to-peak displacement in the ipsilateral side (P<0.05). Conclusions The central nervous system in healthy individuals was sufficiently robust in maintaining the APA characteristics during pain, although the displacement of net and ipsilateral CoP in the medial-lateral and anterior-posterior directions during unilateral fast shoulder movement was altered. PMID:26680777

  14. 42 CFR 460.164 - Involuntary disenrollment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Participant Enrollment and Disenrollment § 460.164 Involuntary disenrollment. (a)...

  15. 42 CFR 460.164 - Involuntary disenrollment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) PROGRAMS OF ALL-INCLUSIVE CARE FOR THE ELDERLY (PACE) Participant Enrollment and Disenrollment § 460.164 Involuntary disenrollment. (a)...

  16. Contemplated Suicide Among Voluntary and Involuntary Retirees

    ERIC Educational Resources Information Center

    Peretti, Peter O.; Wilson, Cedric

    1978-01-01

    This study explored anomic and egoistic dimensions of contemplated suicide among voluntary and involuntary retired males. Results indicated a direct relationship between anomie and egoism on the one hand, and contemplation of suicide on the other. (Author)

  17. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.

    PubMed

    Aguirre-Ollinger, Gabriel

    2015-01-01

    In this article, we analyze a novel strategy for assisting the lower extremities based on adaptive frequency oscillators. Our aim is to use the control algorithm presented here as a building block for the control of powered lower-limb exoskeletons. The algorithm assists cyclic movements of the human extremities by synchronizing actuator torques with the estimated net torque exerted by the muscles. Synchronization is produced by a nonlinear dynamical system combining an adaptive frequency oscillator with a form of adaptive Fourier analysis. The system extracts, in real time, the fundamental frequency component of the net muscle torque acting on a specific joint. Said component, nearly sinusoidal in shape, is the basis for the assistive torque waveform delivered by the exoskeleton. The action of the exoskeleton can be interpreted as a virtual reduction in the mechanical impedance of the leg. We studied the ability of human subjects to adapt their muscle activation to the assistive torque. Ten subjects swung their extended leg while coupled to a stationary hip joint exoskeleton. The experiment yielded a significant decrease, with respect to unassisted movement, of the activation levels of an agonist/antagonist pair of muscles controlling the hip joint's motion, which suggests the exoskeleton control has potential for assisting human gait. A moderate increase in swing frequency was observed as well. We theorize that the increase in frequency can be explained by the impedance model of the assisted leg. Per this model, subjects adjust their swing frequency in order to control the amount of reduction in net muscle torque. PMID:25655955

  18. How to make rapid eye movements "rapid": the role of growth factors for muscle contractile properties.

    PubMed

    Li, Tian; Feng, Cheng-Yuan; von Bartheld, Christopher S

    2011-03-01

    Different muscle functions require different muscle contraction properties. Saccade-generating extraocular muscles (EOMs) are the fastest muscles in the human body, significantly faster than limb skeletal muscles. Muscle contraction speed is subjected to plasticity, i.e., contraction speed can be adjusted to serve different demands, but little is known about the molecular mechanisms that control contraction speed. Therefore, we examined whether myogenic growth factors modulate contractile properties, including twitch contraction time (onset of force to peak force) and half relaxation time (peak force to half relaxation). We examined effects of three muscle-derived growth factors: insulin-like growth factor 1 (IGF1), cardiotrophin-1 (CT1), and glial cell line-derived neurotrophic factor (GDNF). In gain-of-function experiments, CT1 or GDNF injected into the orbit shortened contraction time, and IGF1 or CT1 shortened half relaxation time. In loss-of-function experiments with binding proteins or neutralizing antibodies, elimination of endogenous IGFs prolonged both contraction time and half relaxation time, while eliminating endogenous GDNF prolonged contraction time, with no effect on half relaxation time. Elimination of endogenous IGFs or CT1, but not GDNF, significantly reduced contractile force. Thus, IGF1, CT1, and GDNF have partially overlapping but not identical effects on muscle contractile properties. Expression of these three growth factors was measured in chicken and/or rat EOMs by real-time PCR. The "fast" EOMs express significantly more message encoding these growth factors and their receptors than skeletal muscles with slower contractile properties. Taken together, these findings indicate that EOM contractile kinetics is regulated by the amount of myogenic growth factors available to the muscle. PMID:21279379

  19. Muscle fatigue as an investigative tool in motor control: A review with new insights on internal models and posture-movement coordination.

    PubMed

    Monjo, Florian; Terrier, Romain; Forestier, Nicolas

    2015-12-01

    Muscle fatigue is a common phenomenon experienced in everyday life which affects both our force capacity and movement production. In this paper, we review works dealing with muscle fatigue and motor control and we attempt to demonstrate how the Central Nervous System deals with this particular state. We especially focus on how internal models--neural substrates which can estimate the current state as well as the future state of the body--face this internal perturbation. Moreover, we show that muscle fatigue is an interesting investigative tool in understanding the mechanisms involved in posture-movement coordination. PMID:26406972

  20. Effect of handedness on muscle synergies during upper limb planar movements.

    PubMed

    Duthilleul, N; Pirondini, E; Coscia, M; Micera, S

    2015-08-01

    Handedness is a prominent but poorly understood aspect of human motor performances. Despite it is generally accepted that it results from differences in the neural control of the arm, the mechanisms at the origin of the side-difference in motor performances are still unknown. In this work, we propose to deepen this aspect by investigating muscle synergies organization. We obtained muscle synergies through the factorization of the superficial electromyographical (EMG) activity related to fifteen upper limb muscles in the dominant and non-dominant side of 5 healthy young right and left dominant subjects, while executing planar wide and tight circular trajectories. Our preliminary results showed that right and left handed subjects performed the circular trajectories with a different muscle organization. Moreover, a task-related side-difference in muscle synergies was observed. Further investigations in a larger cohort of individuals are necessary to determine the neural mechanisms generating the differences in number and organization of muscle synergies between left and right handed individuals. PMID:26737035

  1. Problem: Thirst, Drinking Behavior, and Involuntary Dehydration

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1992-01-01

    The phenomenon of involuntary dehydration, the delay in full restoration of a body water deficit by drinking, has been described extensively but relatively little is known about its physiological mechanism. It occurs primarily in humans when they are exposed to various stresses including exercise, environmental heat and cold, altitude, water immersion, dehydration, and perhaps microgravity, singly and in various combinations. The level of involuntary dehydration is approximately proportional to the degree of total stress imposed on the body. Involuntary dehydration appears to be controlled by more than one factor including social customs that influence what is consumed, the capacity and rate of fluid absorption from the gastrointestinal system, the level of cellular hydration involving the osmotic-vasopressin interaction with sensitive cells or structures in the central nervous system, and, to a lesser extent, hypovolemic-angiotensin II stimuli. Since humans drink when there is no apparent physiological stimulus, the psychological component should always be considered when investigating the total mechanisms for drinking.

  2. Can fast-twitch muscle fibres be selectively recruited during lengthening contractions? Review and applications to sport movements.

    PubMed

    Chalmers, Gordon R

    2008-01-01

    Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude-frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225 degrees/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle. PMID:18341141

  3. In Vivo Monitoring of mRNA Movement in Drosophila Body Wall Muscle Cells Reveals the Presence of Myofiber Domains

    PubMed Central

    Pilgram, Gonneke S. K.; Fradkin, Lee G.; Noordermeer, Jasprina N.; Tanke, Hans J.; Jost, Carolina R.

    2009-01-01

    Background In skeletal muscle each muscle cell, commonly called myofiber, is actually a large syncytium containing numerous nuclei. Experiments in fixed myofibers show that mRNAs remain localized around the nuclei in which they are produced. Methodology/Principal Findings In this study we generated transgenic flies that allowed us to investigate the movement of mRNAs in body wall myofibers of living Drosophila embryos. We determined the dynamic properties of GFP-tagged mRNAs using in vivo confocal imaging and photobleaching techniques and found that the GFP-tagged mRNAs are not free to move throughout myofibers. The restricted movement indicated that body wall myofibers consist of three domains. The exchange of mRNAs between the domains is relatively slow, but the GFP-tagged mRNAs move rapidly within these domains. One domain is located at the centre of the cell and is surrounded by nuclei while the other two domains are located at either end of the fiber. To move between these domains mRNAs have to travel past centrally located nuclei. Conclusions/Significance These data suggest that the domains made visible in our experiments result from prolonged interactions with as yet undefined structures close to the nuclei that prevent GFP-tagged mRNAs from rapidly moving between the domains. This could be of significant importance for the treatment of myopathies using regenerative cell-based therapies. PMID:19684860

  4. Coordination of one- and two-joint muscles during voluntary movement: theoretical and experimental considerations.

    PubMed

    Herzog, W; Ait-Haddou, R

    2000-01-01

    The target article by Dr. Prilutsky is based on three incorrectly derived mathematical rules concerning force-sharing among synergistic muscles associated with a cost function that minimizes the sum of the cubed muscle stresses. Since these derived rules govern all aspects of Dr. Prilutsky's discussion and conclusion and form the basis for his proposed theory of coordination between one-and two-joint muscles, most of what is said in the target article is confusing or misleading at best or factually wrong at worst. The aim of our commentary is to sort right from wrong in Dr. Prilutsky's article within space limitations that do not allow for detailed descriptions of mathematical proofs and explicit discussions of the relevant experimental literature. PMID:10675812

  5. Correlation of primate red nucleus discharge with muscle activity during free-form arm movements.

    PubMed

    Miller, L E; van Kan, P L; Sinkjaer, T; Andersen, T; Harris, G D; Houk, J C

    1993-09-01

    1. We recorded from 239 neurons located in the magnocellular division of the red nucleus of four alert macaque monkeys. At the same time, we recorded electromyographic (EMG) signals from as many as twenty electrodes chronically implanted on muscles of the shoulder, arm, forearm and hand. We recorded EMG signals for periods ranging from several months to a year. 2. The monkeys were trained to perform three free-form food retrieval tasks, each of which activated all of the recorded muscles and most of the neurons. The 'prehension' task required simply that the monkey grasp a piece of food from a fixed point in space. The 'barrier' task required the monkey to reach around a small barrier to obtain the food, and the 'Kluver' task required that food be removed from small holes. During the prehension task, we found approximately equal numbers of neurons that were strongly active while the hand was being moved toward the target (70% of units), and while the food was being grasped (60%). Relatively few units were active as the hand was returned to the mouth (15%). 3. Data files of 1-2 min duration were collected while the monkey performed a single behavioural task. Whenever possible, we recorded files for all three tasks from each neuron. For each file we calculated long time-span analog cross-correlations (+/- 1.28 s) between instantaneous neuronal firing rate and each of the full-wave rectified, low-pass filtered EMG signals. We used the peak correlation and the time of the peak as two summary measures of the functional relation between modulation of neuronal activity and EMG. 4. The magnitude of the strongest correlations was between 0.4 and 0.5 (normalized to a perfect correlation of +/- 1.0). Distal muscles were the most frequently correlated, and extensors were more frequently correlated than flexors. For all monkeys, the lags for well correlated muscles were distributed broadly about a uni-modal value near 0 ms. Eighty five per cent of the correlations larger than

  6. Voluntary control of arm movement in athetotic patients

    PubMed Central

    Neilson, Peter D.

    1974-01-01

    Visual tracking tests have been employed to provide a quantitative description of voluntary control of arm movement in a group of patients suffering from athetoid cerebral palsy. Voluntary control was impaired in all patients in a characteristic manner. Maximum velocity and acceleration of arm movement were reduced to about 30-50% of their values in normal subjects and the time lag of the response to a visual stimulus was two or three times greater than in normals. Tracking transmission characteristics indicated a degree of underdamping which was not presnet in normal or spastic patients. This underdamping could be responsible for a low frequency (0·3-0·6 Hz) transient oscillation in elbow-angle movements associated with sudden voluntary movement. The maximum frequency at which patients could produce a coherent tracking response was only 50% of that in normal subjects and the relationship between the electromyogram and muscle contraction indicated that the mechanical load on the biceps muscle was abnormal, possibly due to increased stiffness of joint movement caused by involuntary activity in agonist and antagonist muscles acting across the joint. Images PMID:4362243

  7. MaqFACS: A Muscle-Based Facial Movement Coding System for the Rhesus Macaque

    PubMed Central

    Parr, L.A.; Waller, B.M.; Burrows, A.M.; Gothard, K.M.; Vick, S.J.

    2010-01-01

    Over 125 years ago, Charles Darwin suggested that the only way to fully understand the form and function of human facial expression was to make comparisons to other species. Nevertheless, it has been only recently that facial expressions in humans and related primate species have been compared using systematic, anatomically-based techniques. Through this approach, large scale evolutionary and phylogenetic analyses of facial expressions, including their homology, can now be addressed. Here, the development of a muscular-based system for measuring facial movement in rhesus macaques (Macaca mulatta) is described based on the well-known FACS (Facial Action Coding System) and ChimpFACS. These systems describe facial movement according to the action of the underlying facial musculature, which is highly conserved across primates. The coding systems are standardized, so their use is comparable across laboratories and study populations. In the development of MaqFACS, several species differences in the facial movement repertoire of rhesus macaques were observed in comparison to chimpanzees and humans, particularly with regard to brow movements, puckering of the lips, and ear movements. These differences do not appear to be the result of constraints imposed by morphological differences in the facial structure of these three species. It is more likely that they reflect unique specializations in the communicative repertoire of each species. PMID:20872742

  8. 32 CFR 584.9 - Involuntary allotments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the support and maintenance of a child. (3) Such notice must give the soldier's full name and SSN... National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY PERSONNEL FAMILY SUPPORT, CHILD... involuntary allotments from pay and allowances of soldiers on active duty as child, or child and...

  9. Factors Mediating the Adjustment to Involuntary Childlessness.

    ERIC Educational Resources Information Center

    Sabatelli, Ronald M.; And Others

    1988-01-01

    Explored stressors that accompany experience of involuntary childlessness and examined mediators of adjustment to infertility in married individuals. Data showed deleterious effect that coping with infertility can have on couple's sexual relationship. Findings suggest important relationship between self-esteem, marital commitment, and positive…

  10. A new mechanokinetic model for muscle contraction, where force and movement are triggered by phosphate release.

    PubMed

    Smith, David A

    2014-12-01

    The atomic structure of myosin-S1 suggests that its working stroke, which generates tension and shortening in muscle, is triggered by the release of inorganic phosphate from the active site. This mechanism is the basis of a new mechanokinetic model for contractility, using the biochemical actomyosin ATPase cycle, strain-dependent kinetics and dimeric myosins on buckling rods. In this model, phosphate-dependent aspects of contractility arise from a rapid reversible release of phosphate from the initial bound state (A.M.ADP.Pi), which triggers the stroke. Added phosphate drives bound myosin towards this initial state, and the transient tension response to a phosphate jump reflects the rate at which it detaches from actin. Predictions for the tensile and energetic properties of striated muscle as a function of phosphate level, including the tension responses to length steps and Pi-jumps, are compared with experimental data from rabbit psoas fibres at 10 °C. The phosphate sensitivity of isometric tension is maximal when the actin affinity of M.ADP.Pi is near unity. Hence variations in actin affinity modulate the phosphate dependence of isometric tension, and may explain why phosphate sensitivity is temperature-dependent or absent in different muscles. PMID:25319769

  11. Repeated tongue lift movement induces neuroplasticity in corticomotor control of tongue and jaw muscles in humans.

    PubMed

    Komoda, Yoshihiro; Iida, Takashi; Kothari, Mohit; Komiyama, Osamu; Baad-Hansen, Lene; Kawara, Misao; Sessle, Barry; Svensson, Peter

    2015-11-19

    This study investigated the effect of repeated tongue lift training (TLT) on the excitability of the corticomotor representation of the human tongue and jaw musculature. Sixteen participants performed three series of TLT for 41 min on each of 5 consecutive days. Each TLT series consisted of two pressure levels (5 kPa and 10 kPa). All participants underwent transcranial magnetic stimulation (TMS) and electromyographic (EMG) recordings of motor evoked potentials (MEPs) in four sessions: (1) before TLT on Day 1 (baseline), (2) after TLT on Day 1, (3) before TLT on Day 5, and (4) after TLT on Day 5. EMG recordings from the left and right tongue dorsum and masseter muscles were made at three pressure levels (5 kPa, 10 kPa, 100% tongue lift), and tongue, masseter, and first dorsal interosseous (FDI) MEPs were measured. There were no significant day-to-day differences in the tongue pressure during maximum voluntary contractions. The amplitudes and thresholds of tongue and masseter MEPs after TLT on Day 5 were respectively higher and lower than before TLT on Day 1 (P<0.005), and there was also a significant increase in tongue and masseter MEP areas; no significant changes occurred in MEP onset latencies. FDI MEP parameters (amplitude, threshold, area, latency) were not significantly different between the four sessions. Our findings suggest that repeated TLT can trigger neuroplasticity reflected in increased excitability of the corticomotor representation of not only the tongue muscles but also the masseter muscles. PMID:26399776

  12. Construction of standardized Arabic questionnaires for screening neurological disorders (dementia, stroke, epilepsy, movement disorders, muscle and neuromuscular junction disorders)

    PubMed Central

    El Tallawy, Hamdy N; Farghaly, Wafaa MA; Rageh, Tarek A; Saleh, Ahmed O; Mestekawy, Taha AH; Darwish, Manal MM; Abd El Hamed, Mohamed A; Ali, Anwar M; Mahmoud, Doaa M

    2016-01-01

    A screening questionnaire is an important tool for early diagnosis of neurological disorders, and for epidemiological research. This screening instrument must be both feasible and valid. It must be accepted by the community and must be sensitive enough. So, the aim of this study was to prepare different Arabic screening questionnaires for screening different neurological disorders. This study was carried out in three stages. During the first stage, construction of separate questionnaires designed for screening the five major neurological disorders: cerebrovascular stroke, dementias, epilepsy, movement disorders, and muscle and neuromuscular disorders were done. Validation of the screening questionnaires was carried out in the second stage. Finally, questionnaire preparation was done in the third stage. Questions with the accepted sensitivity and specificity in each questionnaire formed the refined separate questionnaires. PMID:27621635

  13. Construction of standardized Arabic questionnaires for screening neurological disorders (dementia, stroke, epilepsy, movement disorders, muscle and neuromuscular junction disorders).

    PubMed

    El Tallawy, Hamdy N; Farghaly, Wafaa Ma; Rageh, Tarek A; Saleh, Ahmed O; Mestekawy, Taha Ah; Darwish, Manal Mm; Abd El Hamed, Mohamed A; Ali, Anwar M; Mahmoud, Doaa M

    2016-01-01

    A screening questionnaire is an important tool for early diagnosis of neurological disorders, and for epidemiological research. This screening instrument must be both feasible and valid. It must be accepted by the community and must be sensitive enough. So, the aim of this study was to prepare different Arabic screening questionnaires for screening different neurological disorders. This study was carried out in three stages. During the first stage, construction of separate questionnaires designed for screening the five major neurological disorders: cerebrovascular stroke, dementias, epilepsy, movement disorders, and muscle and neuromuscular disorders were done. Validation of the screening questionnaires was carried out in the second stage. Finally, questionnaire preparation was done in the third stage. Questions with the accepted sensitivity and specificity in each questionnaire formed the refined separate questionnaires. PMID:27621635

  14. Muscle cramps.

    PubMed

    Miller, Timothy M; Layzer, Robert B

    2005-10-01

    Muscle cramps are a common problem characterized by a sudden, painful, involuntary contraction of muscle. These true cramps, which originate from peripheral nerves, may be distinguished from other muscle pain or spasm. Medical history, physical examination, and a limited laboratory screen help to determine the various causes of muscle cramps. Despite the "benign" nature of cramps, many patients find the symptom very uncomfortable. Treatment options are guided both by experience and by a limited number of therapeutic trials. Quinine sulfate is an effective medication, but the side-effect profile is worrisome, and other membrane-stabilizing drugs are probably just as effective. Patients will benefit from further studies to better define the pathophysiology of muscle cramps and to find more effective medications with fewer side-effects. PMID:15902691

  15. Central and peripheral contributors to skeletal muscle hyperemia: response to passive limb movement.

    PubMed

    McDaniel, John; Fjeldstad, Anette S; Ives, Steve; Hayman, Melissa; Kithas, Phil; Richardson, Russell S

    2010-01-01

    The central and peripheral contributions to exercise-induced hyperemia are not well understood. Thus, utilizing a reductionist approach, we determined the sequential peripheral and central responses to passive exercise in nine healthy men (33 +/- 9 yr). Cardiac output, heart rate, stroke volume, mean arterial pressure, and femoral blood flow of the passively moved leg and stationary (control) leg were evaluated second by second during 3 min of passive knee extension with and without a thigh cuff that occluded leg blood flow. Without the thigh cuff, significant transient increases in cardiac output (1.0 +/- 0.6 l/min, Delta15%), heart rate (7 +/- 4 beats/min, Delta12%), stroke volume (7 +/- 5 ml, Delta7%), passive leg blood flow (411 +/- 146 ml/min, Delta151%), and control leg blood flow (125 +/- 68 ml/min, Delta43%) and a transient decrease in mean arterial pressure (3 +/- 3 mmHg, 4%) occurred shortly after the onset of limb movement. Although the rise and fall rates of these variables differed, they all returned to baseline values within 45 s; therefore, continued limb movement beyond 45 s does not maintain an increase in cardiac output or net blood flow. Similar changes in the central variables occurred when blood flow to the passively moving leg was occluded. These data confirm the role of peripheral factors and reveal an essential supportive role of cardiac output in the hyperemia at the onset of passive limb movement. This cardiac output response provides an important potential link between the physiology of active and passive exercise. PMID:19910331

  16. Managing Lower Extremity Muscle Tone and Function in Children with Cerebral Palsy via Eight-Week Repetitive Passive Knee Movement Intervention

    ERIC Educational Resources Information Center

    Cheng, Hsin-Yi Kathy; Ju, Yan-Ying; Chen, Chia-Ling; Chang, Ya-Ju; Wong, Alice May-Kuen

    2013-01-01

    This study used a repeated measures design to assess the effect of an eight-week repetitive passive movement (RPM) intervention on lower extremity muscle tone and function in children with cerebral palsy (CP). Eighteen children (aged 9.5 [plus or minus] 2.1 years) with spastic CP were randomly assigned to a knee RPM intervention condition of 3…

  17. Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks

    PubMed Central

    2014-01-01

    This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator “AND” was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex. PMID:24602228

  18. Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks.

    PubMed

    Lattari, Eduardo; Arias-Carrión, Oscar; Monteiro-Junior, Renato Sobral; Mello Portugal, Eduardo Matta; Paes, Flávia; Menéndez-González, Manuel; Silva, Adriana Cardoso; Nardi, Antonio Egidio; Machado, Sergio

    2014-01-01

    This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator "AND" was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex. PMID:24602228

  19. Anchoring the "floating arm": Use of proprioceptive and mirror visual feedback from one arm to control involuntary displacement of the other arm.

    PubMed

    Brun, C; Guerraz, M

    2015-12-01

    Arm movement control takes advantage of multiple inputs, including those originating from the contralateral arm. In the mirror paradigm, it has been suggested that control of the unseen arm, hidden by the mirror, is facilitated by the reflection of the other, moving arm. Although proprioceptive feedback originating from the moving arm, (the image of which is reflected in the mirror), is always coupled with visual feedback in the mirror paradigm, the former has received little attention. We recently showed that the involuntary arm movement following a sustained, isometric contraction, known as the "floating arm" or "Kohnstamm phenomenon", was adjusted to the passive-motorized displacement of the other arm. However, provision of mirror feedback, that is, the reflection in the mirror of the passively moved arm, did not add to this coupling effect. Therefore, the interlimb coupling in the mirror paradigm may to a large extent have a proprioceptive origin rather than a visual origin. The objective of the present study was to decouple mirror feedback and proprioceptive feedback from the reflected, moving arm and evaluate their respective contributions to interlimb coupling in the mirror paradigm. First (in Experiment 1, under eyes-closed conditions), we found that masking the proprioceptive afferents of the passively moved arm (by co-vibrating the antagonistic biceps and triceps muscles) suppressed the interlimb coupling between involuntary displacement of one arm and passive displacement of the other. Next (in Experiment 2), we masked proprioceptive afferents of the passively moved arm and specifically evaluated mirror feedback. We found that interlimb coupling through mirror feedback (though significant) was weaker than interlimb coupling through proprioceptive feedback. Overall, the present results show that in the mirror paradigm, proprioceptive feedback is stronger and more consistent than visual-mirror feedback in terms of the impact on interlimb coupling. PMID

  20. Adaptation of lower limb movement patterns when maintaining performance in the presence of muscle fatigue.

    PubMed

    Mudie, Kurt L; Gupta, Amitabh; Green, Simon; Clothier, Peter J

    2016-08-01

    Adaptations in lower limb movement patterns were examined when performance was maintained during a fatiguing repetitive loading task. Forty recreationally active male and female participants performed single-leg hopping to volitional exhaustion at 2.2Hz to a submaximal height. Spatio-temporal characteristics, mechanical characteristics and variability of the knee-ankle and hip-knee joint couplings were determined at 20% increments during the duration of the hopping task. Variability of the knee-ankle and hip-knee couplings in the flexion/extension axis significantly increased during the loading and propulsion phases during the hopping task (p<0.05). Performance (vertical stiffness, hopping frequency and height) did not change significantly during the task (p>0.05), however foot contact time increased progressively during this task (p<0.05) and maximum hop height significantly decreased after the task (p<0.05). The observed increase in variability between adjoining lower limb segments demonstrated the ability of the neuromotor system to adapt and maintain performance even with the onset of fatigue. This finding highlights that during the performance of a rapid and repetitive loading activity, performance can be preserved when there is variability in the neuromotor system. PMID:27101562

  1. Rapid eye movements, muscle twitches and sawtooth waves in the sleep of narcoleptic patients and controls.

    PubMed

    Geisler, P; Meier-Ewert, K; Matsubayshi, K

    1987-12-01

    Seventeen unmedicated patients with narcolepsy-cataplexy and 17 age- and sex-matched controls were recorded polygraphically for 3 consecutive nights. Rapid eye movements (REMs), m. mentalis twitches and sawtooth waves in the EEG were visually scored. REM and twitch densities during REM sleep were significantly higher in the patients than in the controls. The distribution pattern of REMs and twitches was altered in the patients: twitch density peaked in the first REM period and density of REMs showed an even distribution across all the REM periods of the night. In the controls both REM and twitch density increased from the first to the second REM period. We therefore assume that in the narcoleptics phasic activity of REM sleep is disinhibited. Densities of REMs, twitches and sawtooth waves did not correlate with one another in patients and controls. They appear to be independently regulated. The REM periods of the patients contained 3 times as many waking epochs as those of the controls. This suggests that in narcolepsy the transition REM/waking is selectively facilitated. The REM/NREM ratio of twitch and sawtooth wave densities was the same in patients and controls. PMID:2445541

  2. Spinal Motion and Muscle Activity during Active Trunk Movements – Comparing Sheep and Humans Adopting Upright and Quadrupedal Postures

    PubMed Central

    Valentin, Stephanie; Licka, Theresia F.

    2016-01-01

    Sheep are used as models for the human spine, yet comparative in vivo data necessary for validation is limited. The purpose of this study was therefore to compare spinal motion and trunk muscle activity during active trunk movements in sheep and humans. Three-dimensional kinematic data as well as surface electromyography (sEMG) of spinal flexion and extension was compared in twenty-four humans in upright (UR) and 4-point kneeling (KN) postures and in 17 Austrian mountain sheep. Kinematic markers were attached over the sacrum, posterior iliac spines, and spinous and transverse processes of T5, T8, T11, L2 and L5 in humans and over the sacrum, tuber sacrale, T5, T8, T12, L3 and L7 in sheep. The activity of erector spinae (ES), rectus abdominis (RA), obliquus externus (OE), and obliquus internus (OI) were collected. Maximum sEMG (MOE) was identified for each muscle and trial, and reported as a percentage (MOE%) of the overall maximally observed sEMG from all trials. Spinal range of motion was significantly smaller in sheep compared to humans (UR / KN) during flexion (sheep: 6–11°; humans 12–34°) and extension (sheep: 4°; humans: 11–17°). During extension, MOE% of ES was greater in sheep (median: 77.37%) than UR humans (24.89%), and MOE% of OE and OI was greater in sheep (OE 76.20%; OI 67.31%) than KN humans (OE 21.45%; OI 19.34%), while MOE% of RA was lower in sheep (21.71%) than UR humans (82.69%). During flexion, MOE% of RA was greater in sheep (83.09%) than humans (KN 47.42%; UR 41.38%), and MOE% of ES in sheep (45.73%) was greater than KN humans (14.45%), but smaller than UR humans (72.36%). The differences in human and sheep spinal motion and muscle activity suggest that caution is warranted when ovine data are used to infer human spine biomechanics. PMID:26741136

  3. Muscle Recruitment and Coordination following Constraint-Induced Movement Therapy with Electrical Stimulation on Children with Hemiplegic Cerebral Palsy: A Randomized Controlled Trial

    PubMed Central

    Xu, Kaishou; He, Lu; Mai, Jianning; Yan, Xiaohua; Chen, Ying

    2015-01-01

    Objective To investigate changes of muscle recruitment and coordination following constraint-induced movement therapy, constraint-induced movement therapy plus electrical stimulation, and traditional occupational therapy in treating hand dysfunction. Methods In a randomized, single-blind, controlled trial, children with hemiplegic cerebral palsy were randomly assigned to receive constraint-induced movement therapy (n = 22), constraint-induced movement therapy plus electrical stimulation (n = 23), or traditional occupational therapy (n = 23). Three groups received a 2-week hospital-based intervention and a 6-month home-based exercise program following hospital-based intervention. Constraint-induced movement therapy involved intensive functional training of the involved hand during which the uninvolved hand was constrained. Electrical stimulation was applied on wrist extensors of the involved hand. Traditional occupational therapy involved functional unimanual and bimanual training. All children underwent clinical assessments and surface electromyography (EMG) at baseline, 2 weeks, 3 and 6 months after treatment. Surface myoelectric signals were integrated EMG, root mean square and cocontraction ratio. Clinical measures were grip strength and upper extremity functional test. Results Constraint-induced movement therapy plus electrical stimulation group showed both a greater rate of improvement in integrated EMG of the involved wrist extensors and cocontraction ratio compared to the other two groups at 3 and 6 months, as well as improving in root mean square of the involved wrist extensors than traditional occupational therapy group (p<0.05). Positive correlations were found between both upper extremity functional test scores and integrated EMG of the involved wrist as well as grip strength and integrated EMG of the involved wrist extensors (p<0.05). Conclusions Constraint-induced movement therapy plus electrical stimulation is likely to produce the best outcome in

  4. Involuntary mass spirit possession among the Miskitu.

    PubMed

    Wedel, Johan

    2012-01-01

    This paper seeks to understand the outbreaks and the development of grisi siknis, a form of mass spirit possession among the Miskitu of north-eastern Nicaragua. Earlier documented outbreaks typically involved a few adolescents, however, in recent years, violent large-scale epidemics have taken place, involving many people of all ages. This has coincided with recent developments in Miskitu society marked by conflicts, contradictions and tense social relations. The anthropological field technique of participant-observation was used. The research took place during 11 months from 2005 to 2008 in the port town of Puerto Cabezas. A total of 38 informants were interviewed. Group discussions, narratives and informal and semi-structured interviews were carried out, as well as participation in healing rituals. The paper shows that socio-economic, cultural, personal as well as environmental factors all contribute to outbreaks of grisi siknis. The affliction has previously been considered a 'culture-bound syndrome' only occurring among the Miskitu. However, when viewed in a more contemporary context and cross-cultural perspective, grisi siknis shows similarities with other forms of involuntary mass spirit possession, particularly in the ways it is manifested, experienced and appears to be spreading. The paper argues that the phenomenon should no longer be considered a 'culture-bound condition' but in fact a Miskitu version of involuntary mass spirit possession. Further research that seeks to understand other forms of involuntary mass spirit possession should emphasize the social, personal and environmental context as well as cross-cultural comparisons in order to encompass fully the role of culture in relation to illness and suffering. PMID:22746214

  5. Suicidality and Hostility following Involuntary Hospital Treatment

    PubMed Central

    Giacco, Domenico; Priebe, Stefan

    2016-01-01

    Background Psychiatric patients showing risk to themselves or others can be involuntarily hospitalised. No data is available on whether following hospitalisation there is a reduction in psychopathological indicators of risk such as suicidality and hostility. This study aimed to assess changes in suicidality and hostility levels following involuntary admission and their patient-level predictors. Methods A pooled analysis of studies on involuntary treatment, including 11 countries and 2790 patients was carried out. Suicidality and hostility were measured by the Brief Psychiatric Rating Scale. Results 2790 patients were included; 2129 followed-up after one month and 1864 after three months. 387 (13.9%) patients showed at least moderate suicidality when involuntarily admitted, 107 (5.0%) after one month and 97 (5.2%) after three months. Moderate or higher hostility was found in 1287 (46.1%) patients after admission, 307 (14.5%) after one month, and 172 (9.2%) after three months. Twenty-three (1.2%) patients showed suicidality, and 53 (2.8%) patients hostility at all time-points. Predictors of suicidality three months after admission were: suicidality at baseline, not having a diagnosis of psychotic disorder and being unemployed. Predictors of hostility were: hostility at baseline, not having a psychotic disorder, living alone, and having been hospitalized previously. Conclusions After involuntary hospital admission, the number of patients with significant levels of suicidality and hostility decreases substantially over time, and very few patients show consistently moderate or higher levels of these symptoms. In patients with psychotic disorders these symptoms are more likely to improve. Social factors such as unemployment and isolation could hamper suicidality and hostility reduction and may be targeted in interventions to reduce risk in involuntarily admitted patients. PMID:27171229

  6. Physiologic facial muscle uptake on 18F-FDG PET/CT by chewing-like habitual movement in patient with Sjögren syndrome.

    PubMed

    Lee, Dong Hyun; Yoon, Joon-Kee; Yoon, Seok-Ho; Lee, Su Jin; An, Young-Sil

    2015-03-01

    An 84-year-old female patient with known Sjögren syndrome underwent 18F-FDG PET/CT to detect recurrence of uterine cervix cancer. Sjögren syndrome is autoimmune disease that typically produces symptoms of dry mouth and eyes. We report a case of physiologic 18F-FDG uptake on facial muscles by chewing-like habitual movement, which was confused with salivary retention at first. The physiologic FDG uptake in oral cavity and facial muscles has to be reviewed carefully not to be confused with abnormal uptake. PMID:25608147

  7. Involuntary outpatient treatment (IOT) in Spain.

    PubMed

    Hernández-Viadel, M; Cañete-Nicolás, C; Bellido-Rodriguez, C; Asensio-Pascual, P; Lera-Calatayud, G; Calabuig-Crespo, R; Leal-Cercós, C

    2015-01-01

    In recent decades there have been significant legislative changes in Spain. Society develops faster than laws, however, and new challenges have emerged. In 2004, the Spanish Association of Relatives of the Mentally Ill (FEAFES) proposed amending the existing legislation to allow for the implementation of involuntary outpatient treatment (IOT) for patients with severe mental illness. Currently, and after having made several attempts at change, there is no specific legislation governing the application of this measure. Although IOT may be implemented in local programmes, we consider legal regulation to be needed in this matter. PMID:25896809

  8. Painful muscle spasms complicating algodystrophy: central or peripheral disease?

    PubMed Central

    Robberecht, W; Van Hees, J; Adriaensen, H; Carton, H

    1988-01-01

    A 21 year old female patient developed Südeck's atrophy of the right foot secondary to a chronic Achilles tendinitis. The condition was complicated by the occurrence of painful muscle spasms in the right leg and incontinence of urine. The spasms had characteristics of both a tonic ambulatory foot response and a spinal flexor reflex. The movements disappeared during sleep. Regional anaesthesia of the right leg made the spasms disappear both in and outside the region of anaesthesia. Backaveraging of the EEG showed the involuntary spasms to be preceded by a cortical potential similar to a readiness potential, indicating a cortical potential similar to a readiness potential, indicating a cortical component in the pathophysiology of the muscle spasms complicating Südeck's atrophy. PMID:3379430

  9. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  10. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  11. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  12. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  13. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  14. 43 CFR 426.14 - Involuntary acquisition of land.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Involuntary acquisition of land. 426.14 Section 426.14 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR ACREAGE LIMITATION RULES AND REGULATIONS § 426.14 Involuntary acquisition of land. (a) Definitions for purposes of this...

  15. 43 CFR 426.14 - Involuntary acquisition of land.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Involuntary acquisition of land. 426.14 Section 426.14 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR ACREAGE LIMITATION RULES AND REGULATIONS § 426.14 Involuntary acquisition of...

  16. Gender Differences in Coping with Involuntary White Collar Job Loss.

    ERIC Educational Resources Information Center

    Eby, Lillian T.; Buch, Kimberly

    Corporate restructuring has resulted in involuntary job loss for a significant number of white collar workers. This study investigated gender differences in reaction to involuntary job loss and tested a model of career gorwth through job loss. Former clients, 456 males and 62 females, of a nationwide outplacement firm completed a questionnaire…

  17. When Leaders Are Challenged: Dealing with Involuntary Members in Groups

    ERIC Educational Resources Information Center

    Schimmel, Christine J.; Jacobs, E.

    2011-01-01

    Leading groups can be challenging and difficult. Leading groups in which members are involuntary and negative increases the level of difficulty and creates new dynamics in the group leading process. This article proposes specific skills and strategies for dealing with three specific issues related to involuntary members in groups: groups where all…

  18. 12 CFR 709.5 - Payout priorities in involuntary liquidation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Payout priorities in involuntary liquidation. 709.5 Section 709.5 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS INVOLUNTARY LIQUIDATION OF FEDERAL CREDIT UNIONS AND ADJUDICATION OF CREDITOR CLAIMS INVOLVING FEDERALLY INSURED CREDIT UNIONS...

  19. Appraisals Generate Specific Configurations of Facial Muscle Movements in a Gambling Task: Evidence for the Component Process Model of Emotion

    PubMed Central

    Gentsch, Kornelia; Grandjean, Didier; Scherer, Klaus R.

    2015-01-01

    Scherer’s Component Process Model provides a theoretical framework for research on the production mechanism of emotion and facial emotional expression. The model predicts that appraisal results drive facial expressions, which unfold sequentially and cumulatively over time. In two experiments, we examined facial muscle activity changes (via facial electromyography recordings over the corrugator, cheek, and frontalis regions) in response to events in a gambling task. These events were experimentally manipulated feedback stimuli which presented simultaneous information directly affecting goal conduciveness (gambling outcome: win, loss, or break-even) and power appraisals (Experiment 1 and 2), as well as control appraisal (Experiment 2). We repeatedly found main effects of goal conduciveness (starting ~600 ms), and power appraisals (starting ~800 ms after feedback onset). Control appraisal main effects were inconclusive. Interaction effects of goal conduciveness and power appraisals were obtained in both experiments (Experiment 1: over the corrugator and cheek regions; Experiment 2: over the frontalis region) suggesting amplified goal conduciveness effects when power was high in contrast to invariant goal conduciveness effects when power was low. Also an interaction of goal conduciveness and control appraisals was found over the cheek region, showing differential goal conduciveness effects when control was high and invariant effects when control was low. These interaction effects suggest that the appraisal of having sufficient control or power affects facial responses towards gambling outcomes. The result pattern suggests that corrugator and frontalis regions are primarily related to cognitive operations that process motivational pertinence, whereas the cheek region would be more influenced by coping implications. Our results provide first evidence demonstrating that cognitive-evaluative mechanisms related to goal conduciveness, control, and power appraisals affect

  20. [Involuntary admission of addict during early pregnancy].

    PubMed

    Hondius, Adger J K; Stikker, Tineke E; Wennink, J M B Hanneke; Honig, Adriaan

    2012-01-01

    A 30-year-old cocaine-dependent woman was 16 weeks pregnant. Because of possible endangerment of the fetus, an involuntary provisional admission was authorized. Of particular interest is the application of the Dutch Act on Formal Admissions to Psychiatric Hospitals for the primary diagnosis 'addiction' and the fact that the fetus was regarded as a legal 'other'. In severe cases of addiction combined with pregnancy an earlier intervention is needed and arrangement of accelerated legal custody of the newborn before birth should be considered. For the protection of the unborn, we advocate a stricter application of the United Nations Convention on the Rights of the Child. Information for addicted women with preconception counselling can help prevent a compulsory admission. PMID:22258443

  1. Involuntary coping mechanisms: a psychodynamic perspective

    PubMed Central

    Vaillant, George E.

    2011-01-01

    Coping responses to stress can be divided into three broad categories. The first coping category involves voluntarily mobilizing social supports. The second category involves voluntary coping strategies like rehearsing responses to danger. The third coping category, like fever and leukocytosis, is involuntary. It entails deploying unconscious homeostatic mechanisms that reduce the disorganizing effects of sudden stress, DSM-5 offers a tentative hierarchy of defenses, from psychotic to immature to mature. The 70-year prospective Study of Development at Harvard provides a clinical validation of this hierarchy Maturity of coping predicted psychosocial adjustment to aging 25 years later, and was associated with not developing symptoms of post-traumatic stress disorder after very severe WWII combat. PMID:22034454

  2. On Becoming an Involuntary Member in the Antepartum Unit.

    PubMed

    Peterson, Brittany L

    2016-08-01

    In this essay, I articulate the ways in which my scholarship and personal life collided when I became an involuntary member in the antepartum unit of a major university hospital. I draw on research examples taken from my dissertation work in prison and my time in the hospital to illustrate the interconnectedness of these involuntary experiences. After I share these stories, I offer a brief interlude to reflect on the meaningfulness of approaching membership from a continuum-based perspective and the relative implications for health communication scholars, before ending with an articulation how this experience brought me to a more crystallized view of involuntary membership. PMID:26789353

  3. Paroxysmal movement disorders.

    PubMed

    Waln, Olga; Jankovic, Joseph

    2015-02-01

    Paroxysmal dyskinesias represent a group of episodic abnormal involuntary movements manifested by recurrent attacks of dystonia, chorea, athetosis, or a combination of these disorders. Paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, paroxysmal exertion-induced dyskinesia, and paroxysmal hypnogenic dyskinesia are distinguished clinically by precipitating factors, duration and frequency of attacks, and response to medication. Primary paroxysmal dyskinesias are usually autosomal dominant genetic conditions. Secondary paroxysmal dyskinesias can be the symptoms of different neurologic and medical disorders. This review summarizes the updates on etiology, pathophysiology, genetics, clinical presentation, differential diagnosis, and treatment of paroxysmal dyskinesias and other episodic movement disorders. PMID:25432727

  4. Extraocular muscle function testing

    MedlinePlus

    Extraocular muscle function testing examines the function of the eye muscles. A health care provider observes the movement of ... evaluate weakness or other problem in the extraocular muscles. These problems may result in double vision or ...

  5. Muscle Repositioning: a new verifiable approach to neuro-myofascial release?

    PubMed

    Bertolucci, Luiz Fernando

    2008-07-01

    The clinical observation of involuntary motor activity during application of a particular style of myofascial release (Muscle Repositioning-MR) has led to the hypothesis that this technique might evoke neurological reactions. Preliminary EMG recordings presented here show involuntary tonic cervical erector action during MR. Involuntary eye movements were also observed. This article presents these experimental data, along with clinical observations during the application of MR in the treatment of musculoskeletal conditions. The author hypothesizes that MR might constitute a novel manual technique: it produces unique palpatory sensations for the practitioner (e.g., a sense of firmness to the touch and the integration of bodily segments into a single block) that correspond to unique sensory experiences for the client. The article raises the possibility that MR's specific sensory input might activate the central nervous system, thus eliciting neural reactions. These reactions, in turn, might be related to the technique's efficacy. As the EMG objectively measures reactions contemporaneous with subjective palpatory phenomena, MR potentially brings the objective and subjective into congruence. EMG monitoring of touch could serve as an objective criterion in the development of treatment protocols, as well as a feedback tool for teaching. Greater objectivity, precision and reproducibility are all possible outcomes of such an approach. The author believes that MR can be used in various therapeutic settings--either as the principal approach, or as an adjunct to a variety of other approaches. PMID:19083677

  6. 26 CFR 1.168(i)-6 - Like-kind exchanges and involuntary conversions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... an involuntary conversion, including a like-kind exchange or an involuntary conversion of MACRS... acquired for other MACRS property in a like-kind exchange or an involuntary conversion. (2) Relinquished... involuntary conversion. (3) Time of disposition is when the disposition of the relinquished MACRS...

  7. 26 CFR 1.168(i)-6 - Like-kind exchanges and involuntary conversions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... an involuntary conversion, including a like-kind exchange or an involuntary conversion of MACRS... acquired for other MACRS property in a like-kind exchange or an involuntary conversion. (2) Relinquished... involuntary conversion. (3) Time of disposition is when the disposition of the relinquished MACRS...

  8. 26 CFR 1.168(i)-6 - Like-kind exchanges and involuntary conversions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... an involuntary conversion, including a like-kind exchange or an involuntary conversion of MACRS... acquired for other MACRS property in a like-kind exchange or an involuntary conversion. (2) Relinquished... involuntary conversion. (3) Time of disposition is when the disposition of the relinquished MACRS...

  9. 26 CFR 1.168(i)-6 - Like-kind exchanges and involuntary conversions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... an involuntary conversion, including a like-kind exchange or an involuntary conversion of MACRS... acquired for other MACRS property in a like-kind exchange or an involuntary conversion. (2) Relinquished... involuntary conversion. (3) Time of disposition is when the disposition of the relinquished MACRS...

  10. Hypoglossal-Facial Nerve Reconstruction Using a Y-Tube-Conduit Reduces Aberrant Synkinetic Movements of the Orbicularis Oculi and Vibrissal Muscles in Rats

    PubMed Central

    Kaya, Yasemin; Ozsoy, Umut; Turhan, Murat; Angelov, Doychin N.; Sarikcioglu, Levent

    2014-01-01

    The facial nerve is the most frequently damaged nerve in head and neck trauma. Patients undergoing facial nerve reconstruction often complain about disturbing abnormal synkinetic movements of the facial muscles (mass movements, synkinesis) which are thought to result from misguided collateral branching of regenerating motor axons and reinnervation of inappropriate muscles. Here, we examined whether use of an aorta Y-tube conduit during reconstructive surgery after facial nerve injury reduces synkinesis of orbicularis oris (blink reflex) and vibrissal (whisking) musculature. The abdominal aorta plus its bifurcation was harvested (N = 12) for Y-tube conduits. Animal groups comprised intact animals (Group 1), those receiving hypoglossal-facial nerve end-to-end coaptation alone (HFA; Group 2), and those receiving hypoglossal-facial nerve reconstruction using a Y-tube (HFA-Y-tube, Group 3). Videotape motion analysis at 4 months showed that HFA-Y-tube group showed a reduced synkinesis of eyelid and whisker movements compared to HFA alone. PMID:25574468

  11. 47 CFR 27.1252 - Involuntary Relocation Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Involuntary Relocation Procedures. 27.1252 Section 27.1252 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband...

  12. 47 CFR 27.1252 - Involuntary Relocation Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Involuntary Relocation Procedures. 27.1252 Section 27.1252 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband...

  13. 47 CFR 27.1252 - Involuntary Relocation Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Involuntary Relocation Procedures. 27.1252 Section 27.1252 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband...

  14. Muscle activity in the lower limbs during push-down movement with a new active-exercise apparatus for the leg

    PubMed Central

    Tanaka, Kenta; Kamada, Hiroshi; Shimizu, Yukiyo; Aikawa, Shizu; Irie, Shun; Ochiai, Naoyuki; Sakane, Masataka; Yamazaki, Masashi

    2016-01-01

    [Purpose] Lower-limb deep vein thrombosis is a complication of orthopedic surgery. A leg-exercise apparatus named “LEX” was developed as a novel active-exercise apparatus for deep vein thrombosis prevention. Muscle activity was evaluated to assess the effectiveness of exercise with LEX in the prevention. [Subjects] Eight healthy volunteers participated in this study. [Methods] Muscle activities were determined through electromyography during exercise with LEX [LEX (+)] and during active ankle movements [LEX (−)]. The end points were peak % maximum voluntary contraction and % integrated electromyogram of rectus femoris, vastus lateralis, biceps femoris, tibialis anterior, gastrocnemius, and soleus. [Results] LEX (+) resulted in higher average values in all muscles except the tibialis anterior. Significant differences were noted in the peak of the biceps femoris and gastrocnemius and in the integrated electromyogram of the rectus femoris, vastus lateralis, gastrocnemius, and soleus. The LEX (+)/LEX (−) ratio of the peak was 2.2 for the biceps femoris and 2.0 for the gastrocnemius . The integrated electromyogram was 1.8 for the gastrocnemius, 1.5 for the rectus femoris, 1.4 for the vastus lateralis, and 1.2 for the soleus. [Conclusion] Higher muscle activity was observed with LEX (+). LEX might be a good tool for increasing lower-limb blood flow and deep vein thrombosis prevention. PMID:27134410

  15. Muscle activity in the lower limbs during push-down movement with a new active-exercise apparatus for the leg.

    PubMed

    Tanaka, Kenta; Kamada, Hiroshi; Shimizu, Yukiyo; Aikawa, Shizu; Irie, Shun; Ochiai, Naoyuki; Sakane, Masataka; Yamazaki, Masashi

    2016-03-01

    [Purpose] Lower-limb deep vein thrombosis is a complication of orthopedic surgery. A leg-exercise apparatus named "LEX" was developed as a novel active-exercise apparatus for deep vein thrombosis prevention. Muscle activity was evaluated to assess the effectiveness of exercise with LEX in the prevention. [Subjects] Eight healthy volunteers participated in this study. [Methods] Muscle activities were determined through electromyography during exercise with LEX [LEX (+)] and during active ankle movements [LEX (-)]. The end points were peak % maximum voluntary contraction and % integrated electromyogram of rectus femoris, vastus lateralis, biceps femoris, tibialis anterior, gastrocnemius, and soleus. [Results] LEX (+) resulted in higher average values in all muscles except the tibialis anterior. Significant differences were noted in the peak of the biceps femoris and gastrocnemius and in the integrated electromyogram of the rectus femoris, vastus lateralis, gastrocnemius, and soleus. The LEX (+)/LEX (-) ratio of the peak was 2.2 for the biceps femoris and 2.0 for the gastrocnemius . The integrated electromyogram was 1.8 for the gastrocnemius, 1.5 for the rectus femoris, 1.4 for the vastus lateralis, and 1.2 for the soleus. [Conclusion] Higher muscle activity was observed with LEX (+). LEX might be a good tool for increasing lower-limb blood flow and deep vein thrombosis prevention. PMID:27134410

  16. Differential effects of age on involuntary and voluntary autobiographical memory.

    PubMed

    Schlagman, Simone; Kliegel, Matthias; Schulz, Jörg; Kvavilashvili, Lia

    2009-06-01

    Research on aging and autobiographical memory has focused almost exclusively on voluntary autobiographical memory. However, in everyday life, autobiographical memories often come to mind spontaneously without deliberate attempt to retrieve anything. In the present study, diary and word-cue methods were used to compare the involuntary and voluntary memories of 44 young and 38 older adults. The results showed that older adults reported fewer involuntary and voluntary memories than did younger adults. Additionally, the life span distribution of involuntary and voluntary memories did not differ in young adults (a clear recency effect) or in older adults (a recency effect and a reminiscence bump). Despite these similarities between involuntary and voluntary memories, there were also important differences in terms of the effects of age on some memory characteristics. Thus, older adults' voluntary memories were less specific and were recalled more slowly than those of young adults, but there were no reliable age differences in the specificity of involuntary memories. Moreover, older adults rated their involuntary memories as more positive than did young adults, but this positivity effect was not found for voluntary memories. Theoretical implications of these findings for research on autobiographical memory and cognitive aging are discussed. PMID:19485657

  17. Submental sEMG and Hyoid Movement during Mendelsohn Maneuver, Effortful Swallow, and Expiratory Muscle Strength Training

    ERIC Educational Resources Information Center

    Wheeler-Hegland, Karen M.; Rosenbek, John C.; Sapienza, Christine M.

    2008-01-01

    Purpose: This study investigated the concurrent biomechanical and electromyographic properties of 2 swallow-specific tasks (effortful swallow and Mendelsohn maneuver) and 1 swallow-nonspecific (expiratory muscle strength training [EMST]) swallow therapy task in order to examine the differential effects of each on hyoid motion and associated…

  18. How Were Eye Movements Recorded Before Yarbus?

    PubMed

    Wade, Nicholas J

    2015-01-01

    Alfred Yarbus introduced a new dimension of precision in recording how the eyes moved, either when attempts were made to keep them stationary or when scanning pictures. Movements of the eyes had been remarked upon for millennia, but recording how they move is a more recent preoccupation. Emphasis was initially placed on abnormalities of oculomotor function (like strabismus) before normal features were considered. The interest was in where the eyes moved to rather than determining how they got there. The most venerable technique for examining ocular stability involved comparing the relative motion between an afterimage and a real image. In the late 18th century, Wells compared afterimages generated before body rotation with real images observed following it when dizzy; he described both lateral and torsional nystagmus, thereby demonstrating the directional discontinuities in eye velocities. At around the same time Erasmus Darwin used afterimages as a means of demonstrating ocular instability when attempting to fixate steadily. However, the overriding concern in the 19th century was with eye position rather than eye movements. Thus, the characteristics of nystagmus were recorded before those of saccades and fixations. Eye movements during reading were described by Hering and by Lamare (working in Javal's laboratory) in 1879; both used similar techniques of listening (with tubes placed over the eyelids) to the sounds made during contractions of the extraocular muscles. Photographic records of eye movements during reading were made by Dodge early in the 20th century, and this stimulated research using a wider array of patterns. Eye movements over pictures were examined by Stratton and later by Buswell, who drew attention to the effects of instructions on the pattern of eye movements. In midcentury, attention shifted back to the stability of the eyes during fixation, with the emphasis on involuntary movements. The suction cap methods developed by Yarbus were applied

  19. Differential effects of sarcoplasmic reticular Ca(2+)-ATPase inhibition on charge movements and calcium transients in intact amphibian skeletal muscle fibres.

    PubMed

    Chawla, Sangeeta; Skepper, Jeremy N; Huang, Christopher L-H

    2002-03-15

    A hypothesis in which intramembrane charge reflects a voltage sensing process allosterically coupled to transitions in ryanodine receptor (RyR)-Ca(2+) release channels as opposed to one driven by release of intracellularly stored Ca(2+) would predict that such charging phenomena should persist in skeletal muscle fibres unable to release stored Ca(2+). Charge movement components were accordingly investigated in intact voltage-clamped amphibian fibres treated with known sarcoplasmic reticular (SR) Ca(2+)-ATPase inhibitors. Cyclopiazonic acid (CPA) pretreatment abolished Ca(2+) transients in fluo-3-loaded fibres following even prolonged applications of caffeine (10 mM) or K(+) (122 mM). Both CPA and thapsigargin (TG) transformed charge movements that included delayed (q(gamma)) "hump" components into simpler decays. However, steady-state charge-voltage characteristics were conserved to values (maximum charge, Q(max) approximately equal to 20-25 nC microF(-1); transition voltage, V* approximately equal to -40 to-50 mV; steepness factor, k approximately equal to 6-9 mV; holding voltage -90 mV) indicating persistent q(gamma) charge. The features of charge inactivation similarly suggested persistent q(beta) and q(gamma) charge contributions in CPA-treated fibres. Perchlorate (8.0 mM) restored the delayed kinetics shown by "on" q(gamma) charge movements, prolonged their "off" decays, conserved both Q(max) and k, yet failed to restore the capacity of such CPA-treated fibres for Ca(2+) release. Introduction of perchlorate (8.0 mM) or caffeine (0.2 mM) to tetracaine (2.0 mM)-treated fibres, also known to restore q(gamma) charge, similarly failed to restore Ca(2+) transients. Steady-state intramembrane q(gamma) charge thus persists with modified kinetics that can be restored to its normally complex waveform by perchlorate, even in intact muscle fibres unable to release Ca(2+). It is thus unlikely that q(gamma) charge movement is a consequence of SR Ca(2+) release rather than

  20. Dystonia and Paroxysmal Dyskinesias: Under-Recognized Movement Disorders in Domestic Animals? A Comparison with Human Dystonia/Paroxysmal Dyskinesias

    PubMed Central

    Richter, Angelika; Hamann, Melanie; Wissel, Jörg; Volk, Holger A.

    2015-01-01

    Dystonia is defined as a neurological syndrome characterized by involuntary sustained or intermittent muscle contractions causing twisting, often repetitive movements, and postures. Paroxysmal dyskinesias are episodic movement disorders encompassing dystonia, chorea, athetosis, and ballism in conscious individuals. Several decades of research have enhanced the understanding of the etiology of human dystonia and dyskinesias that are associated with dystonia, but the pathophysiology remains largely unknown. The spontaneous occurrence of hereditary dystonia and paroxysmal dyskinesia is well documented in rodents used as animal models in basic dystonia research. Several hyperkinetic movement disorders, described in dogs, horses and cattle, show similarities to these human movement disorders. Although dystonia is regarded as the third most common movement disorder in humans, it is often misdiagnosed because of the heterogeneity of etiology and clinical presentation. Since these conditions are poorly known in veterinary practice, their prevalence may be underestimated in veterinary medicine. In order to attract attention to these movement disorders, i.e., dystonia and paroxysmal dyskinesias associated with dystonia, and to enhance interest in translational research, this review gives a brief overview of the current literature regarding dystonia/paroxysmal dyskinesia in humans and summarizes similar hereditary movement disorders reported in domestic animals. PMID:26664992

  1. 5 CFR 550.706 - Criteria for meeting the requirement for involuntary separation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... involuntary separation. 550.706 Section 550.706 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL... requirement for involuntary separation. (a) An employee who resigns because he or she expects to be... receipt of the notice constitutes an involuntary separation for severance pay purposes. (b) Except...

  2. Involuntary autobiographical memories in dysphoric mood: a laboratory study.

    PubMed

    Kvavilashvili, Lia; Schlagman, Simone

    2011-05-01

    The frequency and characteristics of involuntary autobiographical memories were compared in 25 stable dysphoric and 28 non-dysphoric participants, using a new laboratory-based task (Schlagman & Kvavilashvili, 2008). Participants detected infrequent target stimuli (vertical lines) in a simple vigilance task and recorded any involuntary autobiographical memories that came to mind, mostly in response to irrelevant words presented on the screen. Dysphoric participants reported involuntary memories as frequently and as quickly as non-dysphoric participants and their memories were not repetitive intrusive memories of negative or traumatic events. Additional content analysis showed that dysphoric participants did not recall more memories of objectively negative events (e.g., accidents, illnesses, deaths) than non-dysphoric participants. However, significant group differences emerged in terms of a mood congruency effect whereby dysphoric participants rated their memories as more negative than non-dysphoric participants. Moreover, the proportion of negatively rated involuntary memories was related to lower mood ratings at the end of the session in the dysphoric but not in the non-dysphoric group. Finally, groups did not differ on several memory characteristics such as vividness, specificity (high in both groups) and rates of rehearsal (low in both groups). Theoretical and practical implications of these findings for research on depression and autobiographical memory are discussed. PMID:21678152

  3. 28 CFR 549.43 - Involuntary psychiatric treatment and medication.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... medication. 549.43 Section 549.43 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MEDICAL SERVICES Administrative Safeguards for Psychiatric Treatment and Medication § 549.43 Involuntary psychiatric treatment and medication. Title 18 U.S.C. 4241-4247 and federal...

  4. 47 CFR 101.75 - Involuntary relocation procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Involuntary relocation procedures. 101.75 Section 101.75 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers, Modifications, Conditions and Forfeitures § 101.75...

  5. 47 CFR 101.91 - Involuntary relocation procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Involuntary relocation procedures. 101.91 Section 101.91 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses Policies Governing Fixed Service Relocation from the 18.58-19.30 Ghz Band §...

  6. Cognitive Control of Involuntary Distraction by Deviant Sounds

    ERIC Educational Resources Information Center

    Parmentier, Fabrice B. R.; Hebrero, Maria

    2013-01-01

    It is well established that a task-irrelevant sound (deviant sound) departing from an otherwise repetitive sequence of sounds (standard sounds) elicits an involuntary capture of attention and orienting response toward the deviant stimulus, resulting in the lengthening of response times in an ongoing task. Some have argued that this type of…

  7. 47 CFR 101.91 - Involuntary relocation procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Involuntary relocation procedures. 101.91 Section 101.91 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses Policies Governing Fixed Service Relocation from the 18.58-19.30 Ghz Band §...

  8. 47 CFR 101.91 - Involuntary relocation procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Involuntary relocation procedures. 101.91 Section 101.91 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses Policies Governing Fixed Service Relocation from the 18.58-19.30 Ghz Band §...

  9. 47 CFR 101.75 - Involuntary relocation procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Involuntary relocation procedures. 101.75 Section 101.75 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers, Modifications, Conditions and Forfeitures § 101.75...

  10. Social Work Students' Attitudes about Working with Involuntary Clients

    ERIC Educational Resources Information Center

    Pope, Natalie D.; Kang, Byungdeok

    2011-01-01

    Social workers employed in areas such as public child welfare, substance abuse, and corrections often provide services to involuntary clients. These individuals do not seek social work services on their own volition and may be actively opposed to the services they are receiving. This study explores social work students' attitudes about working…

  11. 47 CFR 27.1252 - Involuntary Relocation Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... measured by the percent of time the bit error rate (BER) exceeds a desired value, and for analog or digital... Relocation Procedures for the 2150-2160/62 Mhz Band § 27.1252 Involuntary Relocation Procedures. (a) If no..., subject to a cap of two percent of the “hard” costs involved. Hard costs are defined as the actual...

  12. 47 CFR 27.1252 - Involuntary Relocation Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... measured by the percent of time the bit error rate (BER) exceeds a desired value, and for analog or digital... Relocation Procedures for the 2150-2160/62 Mhz Band § 27.1252 Involuntary Relocation Procedures. (a) If no..., subject to a cap of two percent of the “hard” costs involved. Hard costs are defined as the actual...

  13. 12 CFR 925.27 - Involuntary termination of membership.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Involuntary termination of membership. 925.27 Section 925.27 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK MEMBERS AND HOUSING... institution shall have no right to obtain any of the benefits of membership after that date, but shall...

  14. 12 CFR 709.5 - Payout priorities in involuntary liquidation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Payout priorities in involuntary liquidation. 709.5 Section 709.5 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING... Administration; (5) General creditors, and secured creditors (to the extent that their respective claims...

  15. Specific actions of gallium on contractile responses and /sup 45/Ca movements in rabbit aortic smooth muscle

    SciTech Connect

    Shetty, S.S.; Weiss, G.B.

    1986-03-01

    Gallium ion (Ga/sup + +/) dose-dependently (0.1-0.5 mM) inhibited contractions induced by norepinephrine (NE, 10/sup -6/ M) in rabbit aortic (and media-intimal) strips, but did not affect contractions elicited with high K/sup +/ (160 mM K/sup +/-substituted solution). The initial phasic portion of the NE-induced response was only slightly (< 10%) reduced, but the tonic portion of the response was completely inhibited by higher concentrations (0.3-0.5 mM) of Ga/sup + +/. In resting muscles, the equilibrated (90 min) /sup 45/Ca uptake was not altered by Ga/sup + +/. The effects of Ga/sup + +/ on /sup 45/Ca retained after a subsequent 60-min washout at 0.5/sup 0/C in an isosmotic (80.8 mM) La/sup + + +/ solution were also examined. Under conditions favoring low affinity Ca/sup + +/ uptake, /sup 45/Ca retention in control and K/sup +/-treated muscles was not changed by Ga/sup + +/, but the additional incremental /sup 45/Ca uptake associated with NE (in the presence of K/sup +/) was blocked. The efflux of /sup 45/Ca was transiently increased by Ga/sup + +/ only under conditions favoring detection of high affinity /sup 45/Ca release. High affinity La/sup + + +/-resistant /sup 45/Ca released by NE was not altered by Ga/sup + +/. Thus, Ga/sup + +/ appears to have a selective inhibitory action on NE-associated /sup 45/Ca uptake without affecting either resting and K/sup +/-induced /sup 45/Ca uptake or the /sup 45/Ca fraction released by Ne.

  16. Inducing involuntary and voluntary mental time travel using a laboratory paradigm.

    PubMed

    Cole, Scott N; Staugaard, Søren R; Berntsen, Dorthe

    2016-04-01

    Although involuntary past and future mental time travel (MTT) has been examined outside the laboratory in diary studies, MTT has primarily been studied in the context of laboratory studies using voluntary construction tasks. In this study, we adapted and extended a paradigm previously used to elicit involuntary and voluntary memories (Schlagman & Kvavilashvili in Memory & Cognition, 36, 920-932, 2008). Our aim was - for the first time - to examine involuntary and voluntary future MTT under controlled laboratory conditions. The involuntary task involved a monotonous task that included potential cues for involuntary MTT. Temporal direction was manipulated between participants whereas retrieval mode was manipulated within participants. We replicated robust past-future differences, such as the future positivity bias. Additionally, we replicated key voluntary-involuntary differences: Involuntary future representations had similar characteristics as involuntary memories in that they were elicited faster, were more specific, and garnered more emotional impact than their voluntary counterparts. We also found that the future and past involuntary MTT led to both positive and negative mood impact, and that the valence of the impact was associated with the emotional valence of the event. This study advances scientific understanding of involuntary future representations in healthy populations and validates a laboratory paradigm that can be flexibly and systematically utilized to explore different characteristics of voluntary and involuntary MTT, which has not been possible within naturalistic paradigms. PMID:26489747

  17. Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg. II. Correlation with rate of stretch of extensor muscles of the leg.

    PubMed

    Staines, W R; Brooke, J D; Misiaszek, J E; McIlroy, W E

    1997-06-01

    Attenuation of initial somatosensory evoked potential (SEP) gain becomes more pronounced with increased rates of movement. Manipulation of the range of movement also might alter the SEP gain. It could alter joint receptor discharge; it should alter the discharge of muscle stretch receptors. We hypothesized that: (1) SEP gain reduction correlates with both the range and the rate of movement, and (2) manipulation of range and rate of movement to achieve similar estimated rates of stretch of a leg extensor muscle group (the vasti) results in similar decreases in SEP gain. SEPs from Cz', referenced to Fpz' (2 cm caudal to Cz and Fpz, respectively, according to the International 10-20 System), along with soleus H-reflexes were elicited by electrical stimulation of the tibial nerve at the popliteal fossa. Stable magnitudes of small M-waves indicated stability of stimulation. A modified cycle ergometer with an adjustable pedal crank and electric motor was used to passively rotate the right leg over three ranges (producing estimated vasti stretch of 12, 24 and 48 mm) and four rates (0, 20, 40 and 80 rpm) of movement. Two experiments were conducted. Ranges and rates of pedalling movement were combined to produce two or three equivalent estimated rates of tissue stretch of the vasti muscles at each of 4, 16, 32 and 64 mm/s. Tibial nerve stimuli were delivered when the knee was moved through its most flexed position and the hip was nearing its most flexed position. Means of SEP, H-reflex and M-wave magnitudes were tested for rate and range effects (ANOVA). A priori contrasts compared means produced by equivalent estimated rates of vasti stretch. Increasing the rate of movement significantly increased the attenuation of SEP and H-reflex gain (P<0.05). Increasing the range of movement also significantly increased these gain attenuations (P<0.05). Combining these to achieve equivalent rates of stretch, through different combinations of rate and range, resulted in equivalent

  18. Myosin head movements during isometric contraction studied by X-ray diffraction of single frog muscle fibres.

    PubMed

    Reconditi, M; Dobbie, I; Irving, M; Diat, O; Boesecke, P; Linari, M; Piazzesi, G; Lombardi, V

    1998-01-01

    Time resolved X-ray diffraction experiments in single muscle fibres of the frog at 2.15 microns sarcomere length and 4 degrees C were performed at ID2 (SAXS), ESRF, Grenoble (France) to investigate the structural aspects of cross-bridge action during the development of the isometric tetanic tension (T0). Changes in the low angle myosin-based reflections were measured with 5 ms time resolution by signal averaging data collected with a 10 m camera length and a 2D gas-filled detector. Upon activation the intensity of the first order myosin layer line reflection, I(M1), and the intensity of the second order meridional reflection, I(M2), reduced practically to zero with a half-time which leads the tension rise by 15-20 ms. The complex changes of the intensity of the third order myosin meridional reflection, I(M3), and the increase of its axial spacing from 14.34 nm (at rest) to 14.57 nm (at T0) could be analysed by assuming that they were the result of the combination of the time dependent modulation in intensity of two closely spaced periodicities, one at 14.34 nm, characteristics of the myosin molecule at rest and the other at 14.57 nm, assumed by the myosin as a consequence of the activation and force production. I(14.34) drops monotonically in advance to isometric tension development with a half-time similar to that of I(M1) and I(M2), while I(14.57) rises from zero to a maximum in parallel with tension. PMID:9889838

  19. A Cycling Movement Based System for Real-Time Muscle Fatigue and Cardiac Stress Monitoring and Analysis

    PubMed Central

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chang, Ya-Ju; Chan, Hsiao-Lung; Chiu, Li-Yu

    2015-01-01

    In this study, we defined a new parameter, referred to as the cardiac stress index (CSI), using a nonlinear detrended fluctuation analysis (DFA) of heart rate (HR). Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG) signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE) scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases. PMID:26115515

  20. Simultaneous recording of intramembrane charge movement components and calcium release in wild-type and S100A1-/- muscle fibres.

    PubMed

    Prosser, Benjamin L; Hernández-Ochoa, Erick O; Zimmer, Danna B; Schneider, Martin F

    2009-09-15

    In the preceding paper, we reported that flexor digitorum brevis (FDB) muscle fibres from S100A1 knock-out (KO) mice exhibit a selective suppression of the delayed, steeply voltage-dependent component of intra-membrane charge movement current termed Q(gamma). Here, we use 50 microm of the Ca(2+) indicator fluo-4 in the whole cell patch clamp pipette, in addition to 20 mM EGTA and other constituents included for the charge movement studies, and calculate the SR Ca(2+) release flux from the fluo-4 signals during voltage clamp depolarizations. Ca(2+) release flux is decreased in amplitude by the same fraction at all voltages in fibres from S100A1 KO mice compared to fibres from wild-type (WT) littermates, but unchanged in time course at each pulse membrane potential. There is a strong correlation between the time course and magnitude of release flux and the development of Q(gamma). The decreased Ca(2+) release in KO fibres is likely to account for the suppression of Q(gamma) in these fibres. Consistent with this interpretation, 4-chloro-m-cresol (4-CMC; 100 microm) increases the rate of Ca(2+) release and restores Q(gamma) at intermediate depolarizations in fibres from KO mice, but does not increase Ca(2+) release or restore Q(gamma) at large depolarizations. Our findings are consistent with similar activation kinetics for SR Ca(2+) channels in both WT and KO fibres, but decreased Ca(2+) release in the KO fibres possibly due to shorter SR channel open times. The decreased Ca(2+) release at each voltage is insufficient to activate Q(gamma) in fibres lacking S100A1. PMID:19651766

  1. Cross-correlation studies of movement-related cortical potentials during unilateral and bilateral muscle contractions in humans.

    PubMed

    Oda, S; Moritani, T

    1996-01-01

    A useful method of studying the degree of association between two signals of varying amplitude in the time domain is to use cross-correlation analysis. We applied this to the movement-related cortical potentials digitally filtered so as to eliminate the low frequency component before applying it during maximal unilateral left (UL L), unilateral right (UL R) and bilateral (BL) contractions in 11 right-handed subjects. The recording electrode sites were over the right and left motor cortex areas (C3 and C4). The BL condition revealed higher cross-correlation levels of cortical activities between the two hemispheres than in UL L or UL R contraction [UL L, r = 0.68 (SEM 0.05); UL R, r = 0.73 (SEM 0.03); BL, r = 0.76 (SEM 0.02)]. The UL R revealed a positive phase difference [5 (SEM 2) ms] when the maximal cross-correlation coefficient was shown and UL L showed a negative phase difference [5 (SEM 3) ms]. However, BL revealed a smaller phase difference [2 (SEM 1) ms] than that for UL. It was concluded that during maximal BL contraction cortical cellular activities in both hemispheres was more synchronized in amplitude and time course compared with maximal UL contractions. Our data suggested that central common drive existed between the right and left motor areas during the maximal BL handgrip contractions and the amplitude of potentials of both hemispheres was modified by the interhemispheric inhibition mechanism as reported in other studies. PMID:8891497

  2. Involuntary masturbation and hemiballismus after bilateral anterior cerebral artery infarction.

    PubMed

    Bejot, Yannick; Caillier, Marie; Osseby, Guy-Victor; Didi, Roy; Ben Salem, Douraied; Moreau, Thibault; Giroud, Maurice

    2008-02-01

    Ischemia of the areas supplied by the anterior cerebral artery is relatively uncommon. In addition, combined hemiballismus and masturbation have rarely been reported in patients with cerebrovascular disease. We describe herein a 62-year-old right-handed man simultaneously exhibiting right side hemiballismus and involuntary masturbation with the left hand after bilateral infarction of the anterior cerebral artery territory. Right side hemiballismus was related to the disruption of afferent fibers from the left frontal lobe to the left subthalamic nucleus. Involuntary masturbation using the left hand was exclusively linked to a callosal type of alien hand syndrome secondary to infarction of the right side of the anterior corpus callosum. After 2 weeks, these abnormal behaviours were completely extinguished. This report stresses the wide diversity of clinical manifestations observed after infarction of the anterior cerebral artery territory. PMID:17961914

  3. Experiences of involuntary admission in an approved mental health centre.

    PubMed

    McGuinness, D; Dowling, M; Trimble, T

    2013-10-01

    The aim of this qualitative study was to gain an understanding of what it means to have an involuntary hospital admission. A sample of six people who were detained at an approved Irish mental health centre consented to recount their experiences were interviewed. The interview transcripts were analysed using Interpretative Phenomenological Analysis. Three superordinate themes were identified: 'The early days', 'Experiences of treatment' and 'Moving on?'. 'The early days' represented participants' initial feelings and opinions of the experience of coming into the approved centre. 'Experiences of treatment' refers to participants' experiences of medication and relationships with staff. Finally, the theme 'Moving on?' represented participants' views on how they adjusted to involuntary admission. 'Learning the way' was central to the participants' notion of moving on. The findings suggest that the meaning of detention is a varied one that evokes an array of emotional responses for participants and highlights the need for a renewed way of thinking and doing concerning those subject to involuntary. PMID:23106908

  4. Delineation of the movement disorders associated with FOXG1 mutations

    PubMed Central

    Papandreou, Apostolos; Schneider, Ruth B.; Augustine, Erika F.; Ng, Joanne; Mankad, Kshitij; Meyer, Esther; McTague, Amy; Ngoh, Adeline; Hemingway, Cheryl; Robinson, Robert; Varadkar, Sophia M.; Kinali, Maria; Salpietro, Vincenzo; O'Driscoll, Margaret C.; Basheer, S. Nigel; Webster, Richard I.; Mohammad, Shekeeb S.; Pula, Shpresa; McGowan, Marian; Trump, Natalie; Jenkins, Lucy; Elmslie, Frances; Scott, Richard H.; Hurst, Jane A.; Perez-Duenas, Belen; Paciorkowski, Alexander R.

    2016-01-01

    Objective: The primary objective of this research was to characterize the movement disorders associated with FOXG1 mutations. Methods: We identified patients with FOXG1 mutations who were referred to either a tertiary movement disorder clinic or tertiary epilepsy service and retrospectively reviewed medical records, clinical investigations, neuroimaging, and available video footage. We administered a telephone-based questionnaire regarding the functional impact of the movement disorders and perceived efficacy of treatment to the caregivers of one cohort of participants. Results: We identified 28 patients with FOXG1 mutations, of whom 6 had previously unreported mutations. A wide variety of movement disorders were identified, with dystonia, choreoathetosis, and orolingual/facial dyskinesias most commonly present. Ninety-three percent of patients had a mixed movement disorder phenotype. In contrast to the phenotype classically described with FOXG1 mutations, 4 patients with missense mutations had a milder phenotype, with independent ambulation, spoken language, and normocephaly. Hyperkinetic involuntary movements were a major clinical feature in these patients. Of the symptomatic treatments targeted to control abnormal involuntary movements, most did not emerge as clearly beneficial, although 4 patients had a caregiver-reported response to levodopa. Conclusions: Abnormal involuntary movements are a major feature of FOXG1 mutations. Our study delineates the spectrum of movement disorders and confirms an expanding clinical phenotype. Symptomatic treatment may be considered for severe or disabling cases, although further research regarding potential treatment strategies is necessary. PMID:27029630

  5. Effective one step-iterative fiducial marker-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Maier, Andreas; Berger, Martin; Fahrig, Rebecca

    2014-03-01

    We previously introduced three different fiducial marker-based correction methods (2D projection shifting, 2D projection warping, and 3D image warping) for patients' involuntary motion in the lower body during weight-bearing Carm CT scanning. The 3D warping method performed better than 2D methods since it could more accurately take into account the lower body motion in 3D. However, as the 3D warping method applies different rotational and translational movement to the reconstructed image for each projection frame, distance-related weightings were slightly twisted and thus result in overlaying background noise over the entire image. In order to suppress background noise and artifacts (e.g. metallic marker-caused streaks), the 3D warping method has been improved by incorporating bilateral filtering and a Landwebertype iteration in one step. A series of projection images of five healthy volunteers standing at various flexion angles were acquired using a C-arm cone-beam CT system with a flat panel. A horizontal scanning trajectory of the C-arm was calibrated to generate projection matrices. Using the projection matrices, the static reference marker coordinates in 3D were estimated and used for the improved 3D warping method. The improved 3D warping method effectively reduced background noise down below the noise level of 2D methods and also eliminated metal-generated streaks. Thus, improved visibility of soft tissue structures (e.g. fat and muscle) was achieved while maintaining sharp edges at bone-tissue interfaces. Any high resolution weight-bearing cone-beam CT system can apply this method for motion compensation.

  6. The relationship between the kinematics of passive movement, the stretch of extensor muscles of the leg and the change induced in the gain of the soleus H reflex in humans.

    PubMed

    Cheng, J; Brooke, J D; Misiaszek, J E; Staines, W R

    1995-02-20

    The gain of the H reflex attenuates during passive stepping and pedalling movements of the leg. We hypothesized that the kinematics of the movement indirectly reflect the receptor origin of this attenuation. In the first experiment, H reflexes were evoked in soleus at 26 points in the cycle of slow, passive pedalling movement of the leg and at 13 points with the leg static (the ankle was always immobilized). Maximum inhibition occurred as the leg moved through its most flexed position (P < 0.05). Inhibition observed in the static leg was also strongest at this position (P < 0.05). The increase in inhibition was gradual during flexion movement, with rapid reversal of this increase during extension. In the second experiment, the length of stretch of the vasti muscles was modelled. Variable pedal crank lengths and revolutions per minute (rpm) altered leg joint displacements and angular velocities. Equivalent rates of stretch of the vasti, achieved through different combinations of joint displacements and velocities, elicited equivalent attenuations of mean reflex magnitudes in the flexed leg. Reflex gain exponentially related to rate of stretch (R2 = 0.98 P < 0.01). The results imply that gain attenuation of this spinal sensorimotor path arises from spindle discharge in heteronymous extensor muscles of knee and/or hip, concomitant with movement. PMID:7749757

  7. The Low Proportion and Associated Factors of Involuntary Admission in the Psychiatric Emergency Service in Taiwan

    PubMed Central

    Wang, Jen-Pang; Chiu, Chih-Chiang; Yang, Tsu-Hui; Liu, Tzong-Hsien; Wu, Chia-Yi; Chou, Pesus

    2015-01-01

    Background The involuntary admission regulated under the Mental Health Act has become an increasingly important issue in the developed countries in recent years. Most studies about the distribution and associated factors of involuntary admission were carried out in the western countries; however, the results may vary in different areas with different legal and socio-cultural backgrounds. Aims The aim of this study was to investigate the proportion and associated factors of involuntary admission in a psychiatric emergency service in Taiwan. Methods The study cohort included patients admitted from a psychiatric emergency service over a two-year period. Demographic, psychiatric emergency service utilization, and clinical variables were compared between those who were voluntarily and involuntarily admitted to explore the associated factors of involuntary admission. Results Among 2,777 admitted patients, 110 (4.0%) were involuntarily admitted. Police referrals and presenting problems as violence assessed by psychiatric nurses were found to be associated with involuntary admission. These patients were more likely to be involuntarily admitted during the night shift and stayed longer in the psychiatric emergency service. Conclusions The proportion of involuntary admissions in Taiwan was in the lower range when compared to Western countries. Dangerous conditions evaluated by the psychiatric nurses and police rather than diagnosis made by the psychiatrists were related factors of involuntary admission. As it spent more time to admit involuntary patients, it was suggested that multidisciplinary professionals should be included in and educated for during the process of involuntary admission. PMID:26046529

  8. Hypoglycemia-induced spontaneous unilateral jerking movement in bilateral internal capsule posterior limb abnormalities.

    PubMed

    Nakajima, Nobuhito; Ueda, Masayuki; Nagayama, Hiroshi; Katayama, Yasuo

    2014-03-15

    We report an 89-year-old woman who developed consciousness disturbance associated with marked hypoglycemia, and showed involuntary movements manifested as spontaneous quick-jerking flexion followed by slow relaxation, in the right leg. Diffusion-weighted imaging revealed bilateral hyperintensities in the posterior limbs of the internal capsule (P-IC). She was treated with intravenous glucose supplementation, and her symptoms dramatically improved. The P-IC lesions are common abnormalities on MRI in hypoglycemia, and may cause paralysis. However involuntary movements associated with the lesions are rarely observed. The spontaneous jerking movements observed in this patient might result from transient impairment of the pyramidal tract associated with hypoglycemia. PMID:24411408

  9. Charge movement and SR calcium release in frog skeletal muscle can be related by a Hodgkin-Huxley model with four gating particles.

    PubMed Central

    Simon, B. J.; Hill, D. A.

    1992-01-01

    Charge movement currents (IQ) and calcium transients (delta[Ca2+]) were measured simultaneously in frog skeletal muscle fibers, voltage clamped in a double vaseline gap chamber, using Antipyrylazo III as the calcium indicator. The rate of release of calcium from the SR (Rrel) was calculated from the calcium transients using the removal model of Melzer, W., E. Rios, and M. F. Schneider (1987. Biophys. J. 51:849-863.). IQ and delta [Ca2+] were calculated for 100 ms depolarizing test pulses to membrane potentials from -30 to +20 mV. To eliminate an inactivating component of Rrel, each test pulse was preceded by a large, fixed prepulse to +20 mV. The resulting Rrel records, which represent the noninactivating component of Rrel, were compared with integral of IQdt.(Q), the total charge that moves. The voltage dependence of the steady state Rrel was steeper then that of Q and shifted to the right. During depolarization, the Rrel waveform was similar to that of Q but was delayed by several ms, while, during repolarization, Rrel preceded Q. All of these results could be explained with a Hodgkin-Huxley type model for E-C coupling in which four voltage sensors in the t-tubule membrane which give rise to IQ must all be in their activating positions for the calcium release channel in the SR membrane to open. his model is consistent with the structural architecture of the triadic junction in which four dihydropyridine receptors (the voltage sensors for E-C coupling) in the t-tubule membrane are closely associated with each ryanodine receptor(the calcium release channel) in the SR membrane [Block, B. A., T. Imagawa, K. P. Campbell, and C. Franzini-Armstrong. 1988. J.Cell. Biol. 107:2587-2600.]). Some aspects of this work have appeared in abstract form (Simon, B. J., and D. Hill. 1991. Biophys. J.59:64a. ([Abstr.]). PMID:1318090

  10. Healthcare professionals under pressure in involuntary admission processes.

    PubMed

    van den Hooff, Susanne; Leget, Carlo; Goossensen, Anne

    2015-10-01

    The main objective of this paper is to describe how quality of care may be improved during an involuntary admission process of patients suffering from Korsakoff's syndrome. It presents an empirically grounded analysis with different perspectives on 'doing good' during this process. Family carers', healthcare professionals' and legal professionals' ways of understanding and ordering this problematic situation appear very different. This could prevent patients from getting the proper care they need, with risk of more suffering and quality of life below the minimum acceptable. All this possibly lead to immoral dehumanizing situations. Firstly, the background of our empirical study is sketched. Secondly, the different perspectives on 'doing good' are summarized and compared. Thirdly, the tensions arising from the different conceptualizations of autonomy and different types of responsibilities of the actors are clarified. A common 'doing good' during involuntary admission necessitates removal of any tensions within the relational network by weighing and balancing the different perspectives on autonomy and the resulting responsibilities. With this in mind, we propose a renewed time/action table for involuntary admission, which tends to address all patients' needs at the right time. The solution presented might help healthcare professionals, who are squeezed in between patients, family carers, legal professionals and overall rules, to create practices in which patients suffering from Korsakoff's syndrome can maintain their dignity and receive the care they need. Earlier interventions, timely and adequate diagnosis, and diminishment of tensions between the different actors by fine-tuning their paradigmatic frameworks are suggested to be part of a solution. PMID:26058413

  11. The efficacy of involuntary outpatient treatment in Massachusetts.

    PubMed

    Geller, J; Grudzinskas, A J; McDermeit, M; Fisher, W H; Lawlor, T

    1998-01-01

    One means to address some of the unintended consequences of the shift of treatment for individuals with serious mental illness from hospitals to communities has been involuntary outpatient treatment (IOT). Using Massachusetts data, 19 patients with court orders for IOT were matched to all and to best fits on demographic and clinical variables, and then to individuals with the closest fit on utilization before the IOT date. Outcomes indicated the IOT group had significantly fewer admissions and hospital days after the court order. The full impact of IOT requires more study, particularly directed toward IOT's effects on insight and quality of life. PMID:9727222

  12. The Relationship of Saccadic Eye Movements to Reading Disabilities. Final Report.

    ERIC Educational Resources Information Center

    Ross, Alan O.

    Saccadic (small, rapid, and apparently involuntary) eye movements of 14 children (7- to 12-years-old) with reading difficulties and of 14 normal readers were compared before and after the problem readers underwent a 7-month individual tutoring program. At pretesting the problem readers showed a rate of eye movements that was markedly lower than…

  13. Destabilizing effects of visual environment motions simulating eye movements or head movements

    NASA Technical Reports Server (NTRS)

    White, Keith D.; Shuman, D.; Krantz, J. H.; Woods, C. B.; Kuntz, L. A.

    1991-01-01

    In the present paper, we explore effects on the human of exposure to a visual virtual environment which has been enslaved to simulate the human user's head movements or eye movements. Specifically, we have studied the capacity of our experimental subjects to maintain stable spatial orientation in the context of moving their entire visible surroundings by using the parameters of the subjects' natural movements. Our index of the subjects' spatial orientation was the extent of involuntary sways of the body while attempting to stand still, as measured by translations and rotations of the head. We also observed, informally, their symptoms of motion sickness.

  14. 14 CFR 323.14 - Temporary suspension authority for involuntary interruption of service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Temporary suspension authority for involuntary interruption of service. 323.14 Section 323.14 Aeronautics and Space OFFICE OF THE SECRETARY... REDUCTIONS OF SERVICE § 323.14 Temporary suspension authority for involuntary interruption of service....

  15. 14 CFR 323.14 - Temporary suspension authority for involuntary interruption of service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Temporary suspension authority for involuntary interruption of service. 323.14 Section 323.14 Aeronautics and Space OFFICE OF THE SECRETARY... REDUCTIONS OF SERVICE § 323.14 Temporary suspension authority for involuntary interruption of service....

  16. 14 CFR 323.14 - Temporary suspension authority for involuntary interruption of service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Temporary suspension authority for involuntary interruption of service. 323.14 Section 323.14 Aeronautics and Space OFFICE OF THE SECRETARY... REDUCTIONS OF SERVICE § 323.14 Temporary suspension authority for involuntary interruption of service....

  17. 14 CFR 323.14 - Temporary suspension authority for involuntary interruption of service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Temporary suspension authority for involuntary interruption of service. 323.14 Section 323.14 Aeronautics and Space OFFICE OF THE SECRETARY... REDUCTIONS OF SERVICE § 323.14 Temporary suspension authority for involuntary interruption of service....

  18. 14 CFR 323.14 - Temporary suspension authority for involuntary interruption of service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Temporary suspension authority for involuntary interruption of service. 323.14 Section 323.14 Aeronautics and Space OFFICE OF THE SECRETARY... REDUCTIONS OF SERVICE § 323.14 Temporary suspension authority for involuntary interruption of service....

  19. 47 CFR 64.1512 - Involuntary blocking of pay-per-call services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Involuntary blocking of pay-per-call services... CARRIER SERVICES (CONTINUED) MISCELLANEOUS RULES RELATING TO COMMON CARRIERS Interstate Pay-Per-Call and Other Information Services § 64.1512 Involuntary blocking of pay-per-call services. Nothing in...

  20. 37 CFR 2.132 - Involuntary dismissal for failure to take testimony.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Involuntary dismissal for failure to take testimony. 2.132 Section 2.132 Patents, Trademarks, and Copyrights UNITED STATES PATENT... Partes Proceedings § 2.132 Involuntary dismissal for failure to take testimony. (a) If the time...

  1. Involuntary Subordination and Its Relation to Personality, Mood, and Submissive Behavior

    ERIC Educational Resources Information Center

    Sturman, Edward D.

    2011-01-01

    According to social rank theory, involuntary subordination may be adaptive in species that compete for resources as a mechanism to switch off fighting behaviors when loss is imminent (thus saving an organism from injury). In humans, major depression is thought to occur when involuntary subordination becomes prolonged. The present study sought to…

  2. 32 CFR 634.38 - Involuntary extraction of bodily fluids in traffic cases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Involuntary extraction of bodily fluids in... Supervision § 634.38 Involuntary extraction of bodily fluids in traffic cases. (a) General. The procedures... cause exists to believe that such individual is intoxicated. Extractions of body fluids in...

  3. 32 CFR 634.38 - Involuntary extraction of bodily fluids in traffic cases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Involuntary extraction of bodily fluids in... Supervision § 634.38 Involuntary extraction of bodily fluids in traffic cases. (a) General. The procedures... cause exists to believe that such individual is intoxicated. Extractions of body fluids in...

  4. 32 CFR 634.38 - Involuntary extraction of bodily fluids in traffic cases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Involuntary extraction of bodily fluids in... Supervision § 634.38 Involuntary extraction of bodily fluids in traffic cases. (a) General. The procedures... cause exists to believe that such individual is intoxicated. Extractions of body fluids in...

  5. 32 CFR 634.38 - Involuntary extraction of bodily fluids in traffic cases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Involuntary extraction of bodily fluids in... Supervision § 634.38 Involuntary extraction of bodily fluids in traffic cases. (a) General. The procedures... cause exists to believe that such individual is intoxicated. Extractions of body fluids in...

  6. 32 CFR 634.38 - Involuntary extraction of bodily fluids in traffic cases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Involuntary extraction of bodily fluids in... Supervision § 634.38 Involuntary extraction of bodily fluids in traffic cases. (a) General. The procedures... cause exists to believe that such individual is intoxicated. Extractions of body fluids in...

  7. Treatment or Involuntary Euthanasia for Severely Handicapped Newborns: Issues of Philosophy and Public Policy.

    ERIC Educational Resources Information Center

    Powell, T. Hennessy; And Others

    1982-01-01

    Recent reports have indicated that parents and/or physicians occasionally decide not to provide life-sustaining treatment (referred to as involuntary euthanasia), thus ensuring that the severely handicapped newborn will die. The issues involved relative to treatment or involuntary euthanasia are reviewed from two opposing perspectives…

  8. The frequency of involuntary autobiographical memories and future thoughts in relation to daydreaming, emotional distress, and age.

    PubMed

    Berntsen, Dorthe; Rubin, David C; Salgado, Sinue

    2015-11-01

    We introduce a new scale, the Involuntary Autobiographical Memory Inventory (IAMI), for measuring the frequency of involuntary autobiographical memories and involuntary future thoughts. Using the scale in relation to other psychometric and demographic measures provided three important, novel findings. First, the frequency of involuntary and voluntary memories and future thoughts are similarly related to general measures of emotional distress. This challenges the idea that the involuntary mode is uniquely associated with emotional distress. Second, the frequency of involuntary autobiographical remembering does not decline with age, whereas measures of daydreaming, suppression of unwanted thoughts and dissociative experiences all do. Thus, involuntary autobiographical remembering relates differently to aging than daydreaming and other forms of spontaneous and uncontrollable thoughts. Third, unlike involuntary autobiographical remembering, the frequency of future thoughts does decrease with age. This finding underscores the need for examining past and future mental time travel in relation to aging and life span development. PMID:26241025

  9. To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences.

    PubMed

    Naish, Katherine R; Reader, Arran T; Houston-Price, Carmel; Bremner, Andrew J; Holmes, Nicholas P

    2013-03-01

    Recent evidence suggests that the mirror neuron system responds to the goals of actions, even when the end of the movement is hidden from view. To investigate whether this predictive ability might be based on the detection of early differences between actions with different outcomes, we used electromyography (EMG) and motion tracking to assess whether two actions with different goals (grasp to eat and grasp to place) differed from each other in their initial reaching phases. In a second experiment, we then tested whether observers could detect early differences and predict the outcome of these movements, based on seeing only part of the actions. Experiment 1 revealed early kinematic differences between the two movements, with grasp-to-eat movements characterised by an earlier peak acceleration, and different grasp position, compared to grasp-to-place movements. There were also significant differences in forearm muscle activity in the reaching phase of the two actions. The behavioural data arising from Experiments 2a and 2b indicated that observers are not able to predict whether an object is going to be brought to the mouth or placed until after the grasp has been completed. This suggests that the early kinematic differences are either not visible to observers, or that they are not used to predict the end-goals of actions. These data are discussed in the context of the mirror neuron system. PMID:23247469

  10. Nonemergency Involuntary Antipsychotic Medication in Prison: Effects on Prison Inpatient Days and Disciplinary Charges.

    PubMed

    Salem, Anasuya; Kushnier, Alexander; Dorio, Nicole; Reeves, Rusty

    2015-06-01

    We hypothesized that treating mentally ill inmates involuntarily with antipsychotic medication would reduce the number of prison inpatient days and the number of inmates who receive disciplinary charges. The subjects were 133 mentally ill inmates who were placed on the New Jersey Department of Corrections (NJ DOC) nonemergency involuntary medication protocol and received antipsychotic medication for at least one year. No difference was noted in an inmate's mean number of prison inpatient days in the year before versus the year during involuntary medication. Fewer inmates received serious disciplinary charges during the year of involuntary medication relative to the year before, when they were not medicated. In addition, there were decreases in mean instances and mean total number of charges during involuntary medication versus before. Neither an increased number of inpatient days nor depot medication accounted for the inmates who incurred no charges while receiving involuntary medication. PMID:26071504

  11. The Influence of Plantar Short Foot Muscle Exercises on Foot Posture and Fundamental Movement Patterns in Long-Distance Runners, a Non-Randomized, Non-Blinded Clinical Trial

    PubMed Central

    Sulowska, Iwona; Oleksy, Łukasz; Mika, Anna; Bylina, Dorota; Sołtan, Jarosław

    2016-01-01

    Background The objective of this study was to evaluate the influence of two kinds of plantar short foot muscles exercise on foot posture and fundamental movement patterns in long-distance runners. Design A parallel group non-blinded trial with 6-week follow-up. Methods Twenty five long-distance runners aged 22–35 years. They were divided into two groups. In group 1 (n = 13) subjects performed the exercise “Vele’s Forward Lean” and “Reverse Tandem Gait” and in Group 2 (n = 12) the “Short Foot Exercise.” The runners performed the exercises daily for 6 weeks. The Foot Posture Index (FPI-6) and The Functional Movement Screen (FMS) tests were performed twice: at baseline and after 6 weeks of the exercise. Results A significant improvement was observed in FPI -6 (talar head palpation in Group 1, and inversion/eversion of the calcaneus in Group 2). Also in Group 1 a significant improvement was noted in FMS tests: deep squat, active straight leg raise and in total score. Conclusions Short foot muscles strengthening exercises have beneficial effect on functional movement patterns and on foot posture, therefore they should be included as a part of daily training program of runners. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12615001200572 PMID:27336689

  12. Relationships between versional and vergent quick phases of the involuntary version-vergence nystagmus.

    PubMed

    Zhu, Mingxia; Hertle, Richard W; Yang, Dongsheng

    2008-01-01

    We used ground-plane motion stimuli displayed on a computer monitor positioned below eye level to induce involuntary version-vergence nystagmus (VVN). The VVN was recorded with a search coil system. It was shown that the VVN had both vertical versional and horizontal vergence components. The VVN induced by backward motion (toward subjects) had upward versional and divergence quick phases, whereas those induced by forward motion (away from subjects) had downward and biphasic divergence-convergence quick phases. The versional and vergence components of the VVN quick phases were analyzed. A temporal dissociation of about 20 ms between version velocity peak and convergence velocity peak was revealed, which supported a modified saccade-related vergence burst neuron (SVBN) model. We suggest that the temporal dissociation may be partly because of a lower-level OKN control mechanism. Vergence peak time was dependent on version peak time. Linear relationships between vergence peak velocity and versional saccadic peak velocity were demonstrated, which was in line with the new multiplicative model. Our data support the hypothesis that the vergence system and the saccadic system can act separately but interact with each other whenever their movements occur simultaneously. PMID:18831647

  13. A Conceptual Model Facilitating the Transition of Involuntary Migrant Families

    PubMed Central

    Samarasinghe, Kerstin Linnéa

    2011-01-01

    Refugee families face a complex transition due to the nature of involuntary migration and the process of acculturation. There are several risk factors to the family adaptation process during the transition period, which are sociocontextually environmental dependant. Facilitating a healthy transition for refugee families, therefore, requires the role of nursing to incorporate sociopolitics into the discipline. This paper introduces a sociopolitically oriented and community-driven assessment and intervention model which is based on a family systematic approach. Interventions that aid the families in their acculturation process as well as empowers them to a well-functioning daily life, as per the SARFI model, should be adopted. As such, the future of nursing may provide additional primary health care services for refugee families; this is through a team-led “family nurse” who provides quality care for the family unit in collaboration with other health care professionals and societal authorities. PMID:22191055

  14. Deaths in Canada from lung cancer due to involuntary smoking.

    PubMed Central

    Wigle, D T; Collishaw, N E; Kirkbride, J; Mao, Y

    1987-01-01

    Recently published evidence indicates that involuntary smoking causes an increased risk of lung cancer among nonsmokers. Information was compiled on the proportion of people who had never smoked among victims of lung cancer, the risk of lung cancer for nonsmokers married to smokers and the prevalence of such exposure. On the basis of these data we estimate that 50 to 60 of the deaths from lung cancer in Canada in 1985 among people who had never smoked were caused by spousal smoking; about 90% occurred in women. The total number of deaths from lung cancer attributable to exposure to tobacco smoke from spouses and other sources (mainly the workplace) was derived by applying estimated age- and sex-specific rates of death from lung cancer attributable to such exposure to the population of Canadians who have never smoked; about 330 deaths from lung cancer annually are attributable to such exposure. PMID:3567810

  15. Reassessing the high proportion of involuntary psychiatric hospital admissions in South Korea.

    PubMed

    Bola, John R; Park, Eon-Ha; Kim, Seong-Yeon

    2011-10-01

    The 2007 WHO-AIMS report on the mental health system of South Korea documented progress towards a national mental health plan, protection of human rights, and growth of community based services. Yet concern was expressed that the high proportion of involuntary to total psychiatric hospitalizations (92%) may indicate an excessively coercive system. Involuntary hospitalization in Korea rose from 117 to 132 (per 100,000) between 2000 and 2006. In 2000, the median rate in the European Union (EU) was 74 per 100,000 (Range: 6-218). While Korea's involuntary hospitalization rate is within the EU range, its proportion of involuntary hospitalizations is three times that of the highest EU country (30%, Sweden). Underdevelopment of voluntary psychiatric services and culturally mandated family referrals resulting in involuntary hospitalization are apparent reasons for the high proportion of involuntary hospitalizations. Population-based rates per 100,000 more accurately describe involuntary hospitalization than the proportion (ratio) measure used in the WHO-AIMS reports. PMID:21416122

  16. Involuntary motion tracking for medical dynamic infrared thermography using a template-based algorithm

    PubMed Central

    Herman, Cila

    2013-01-01

    In medical applications, Dynamic Infrared (IR) Thermography is used to detect the temporal variation of the skin temperature. Dynamic Infrared Imaging first introduces a thermal challenge such as cooling on the human skin, and then a sequence of hundreds of consecutive frames is acquired after the removal of the thermal challenge. As a result, by analyzing the temporal variation of the skin temperature over the image sequence, the thermal signature of skin abnormality can be examined. However, during the acquisition of dynamic IR imaging, the involuntary movements of patients are unavoidable, and such movements will undermine the accuracy of diagnosis. In this study, based on the template-based algorithm, a tracking approach is proposed to compensate the motion artifact. The affine warping model is adopted to estimate the motion parameter of the image template, and then the Lucas-Kanade algorithm is applied to search for the optimized parameters of the warping function. In addition, the weighting mask is also incorporated in the computation to ensure the robustness of the algorithm. To evaluate the performance of the approach, two sets of IR image sequences of a subject’s hand are analyzed: the steady-state image sequence, in which the skin temperature is in equilibrium with the environment, and the thermal recovery image sequence, which is acquired after cooling is applied on the skin for 60 seconds. By selecting the target region in the first frame as the template, satisfactory tracking results were obtained in both experimental trials, and the robustness of the approach can be effectively ensured in the recovery trial. PMID:24392205

  17. Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist-antagonist muscles

    NASA Astrophysics Data System (ADS)

    Kobravi, Hamid-Reza; Erfanian, Abbas

    2009-08-01

    A decentralized control methodology is designed for the control of ankle dorsiflexion and plantarflexion in paraplegic subjects with electrical stimulation of tibialis anterior and calf muscles. Each muscle joint is considered as a subsystem and individual controllers are designed for each subsystem. Each controller operates solely on its associated subsystem, with no exchange of information between the subsystems. The interactions between the subsystems are taken as external disturbances for each isolated subsystem. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed which is based on the synergistic combination of an adaptive nonlinear compensator with a sliding mode control and is referred to as an adaptive robust control. Extensive simulations and experiments on healthy and paraplegic subjects were performed to demonstrate the robustness against the time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, fast convergence, stability and tracking accuracy of the proposed method. The results indicate that the decentralized robust control provides excellent tracking control for different reference trajectories and can generate control signals to compensate the muscle fatigue and reject the external disturbance. Moreover, the controller is able to automatically regulate the interaction between agonist and antagonist muscles under different conditions of operating without any preprogrammed antagonist activities.

  18. Eye muscle repair

    MedlinePlus

    ... Your child's eyes should look normal a few weeks after the surgery. ... Surgical Approach to the Rectus Muscles. In: Tasman W, Jaeger EA, ... Hug D, Plummer LS, Stass-Isern M. Disorders of eye movement and ...

  19. Movement Disorders

    MedlinePlus

    ... t want them to. If you have a movement disorder, you experience these kinds of impaired movement. Dyskinesia ... movement and is a common symptom of many movement disorders. Tremors are a type of dyskinesia. Nerve diseases ...

  20. Fluid mechanics of muscle vibrations.

    PubMed Central

    Barry, D T; Cole, N M

    1988-01-01

    The pressure field produced by an isometrically contracting frog gastrocnemius muscle is described by the fluid mechanics equations for a vibrating sphere. The equations predict a pressure amplitude that is proportional to the lateral acceleration of the muscle, inversely proportional to the square of the distance from the muscle, and cosinusoidally related to the major axis of lateral movement. The predictions are confirmed by experiments that measure the pressure amplitude distribution and by photographs of muscle movement during contraction. The lateral movement of muscle has the appearance of an oscillating system response to a step function input--the oscillation may be at the resonant frequency of the muscle and therefore may provide a means to measure muscle stiffness without actually touching the muscle. PMID:3260803

  1. 78 FR 4164 - Renewal of Agency Information Collection for Appointed Counsel in Involuntary Indian Child...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... Proceedings in State Courts authorized by OMB Control Number 1076-0111. This information collection expires.... Data OMB Control Number: 1076-0111. Title: Payment for Appointed Counsel in Involuntary Indian...

  2. The Frequency of Voluntary and Involuntary Autobiographical Memories across the Lifespan

    PubMed Central

    Rubin, David C.; Berntsen, Dorthe

    2011-01-01

    Ratings of the memory of an important event from the last week on the frequency of voluntary and involuntary retrieval, belief in its accuracy, visual imagery, auditory imagery, setting, emotional intensity, valence, narrative coherence, and centrality to the life story were obtained from 988 adults whose age ranged from 15 to over 90. Another 992 adults provided the same ratings for a memory from their confirmation day when they were about age 14. The frequencies of involuntary and voluntary retrieval were similar. Both frequencies were predicted by emotional intensity and centrality to the life story. The results from this study, which is the first to measure the frequency of voluntary and involuntary retrieval for the same events, are counter to both cognitive and clinical theories, which consistently claim that involuntary memories are infrequent compared to voluntary memories. Age and gender differences are noted. PMID:19487759

  3. Movement - unpredictable or jerky

    MedlinePlus

    The doctor will perform a physical exam. This may include a detailed examination of the nervous and muscle systems. The doctor will ask about your medical history and symptoms, including: What kind of movement occurs? What part of the body is ...

  4. Involuntary cognitions in everyday life: exploration of type, quality, content, and function.

    PubMed

    Krans, Julie; de Bree, June; Moulds, Michelle L

    2015-01-01

    Psychological research into spontaneous or intrusive cognitions has typically focused on cognitions in one predefined domain, such as obsessional thoughts in OCD, intrusive memories in posttraumatic stress disorder and depression, or involuntary autobiographical memories and daydreaming in everyday life. Such studies have resulted in a wealth of knowledge about these specific cognitions. However, by focusing on a predefined type of cognition, other subtypes of cognition that may co-occur can be missed. In this exploratory study, we aimed to assess involuntary cognitions in everyday life without a pre-determined focus on any specific subtype of cognition. Seventy unselected undergraduate student participants were administered a questionnaire that assessed the presence of any involuntary cognitions in the past month, their quality, type, content, and potential function. In addition, participants provided self-descriptions and completed measures of psychopathology. Content analyses showed that involuntary cognitions were common, predominantly visual in nature, emotional, often about social relationships, and often related to a hypothetical function of emotional processing. About two-thirds of the cognitions that participants reported were memories. Non-memories included daydreams, imaginary worst case scenarios, imaginary future events, hypothetical reconstructions, and ruminations. Memories and non-memories were strikingly similar in their subjective experience of content and emotionality. Negative (but not positive) self-descriptions were associated with negative involuntary cognitions and psychopathology, suggesting a link between involuntary cognitions and the self. Overall, the findings suggest that people experience a wide variety of subtypes of involuntary cognitions in everyday life. Moreover, the specific subtype of involuntary cognition appears to be less important than its valence or content, at least to the subjective experience of the individual. PMID

  5. 32 CFR Appendix C to Part 113 - Sample DD Form 2653, “Involuntary Allotment Application”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Sample DD Form 2653, âInvoluntary Allotment Applicationâ C Appendix C to Part 113 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... Part 113—Sample DD Form 2653, “Involuntary Allotment Application” ER05JA95.002 ER05JA95.003...

  6. 32 CFR Appendix C to Part 113 - Sample DD Form 2653, “Involuntary Allotment Application”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Sample DD Form 2653, âInvoluntary Allotment Applicationâ C Appendix C to Part 113 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... Part 113—Sample DD Form 2653, “Involuntary Allotment Application” ER05JA95.002 ER05JA95.003...

  7. 32 CFR Appendix C to Part 113 - Sample DD Form 2653, “Involuntary Allotment Application”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Sample DD Form 2653, âInvoluntary Allotment Applicationâ C Appendix C to Part 113 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... Part 113—Sample DD Form 2653, “Involuntary Allotment Application” ER05JA95.002 ER05JA95.003...

  8. Involuntary Cognitions in Everyday Life: Exploration of Type, Quality, Content, and Function

    PubMed Central

    Krans, Julie; de Bree, June; Moulds, Michelle L.

    2015-01-01

    Psychological research into spontaneous or intrusive cognitions has typically focused on cognitions in one predefined domain, such as obsessional thoughts in OCD, intrusive memories in posttraumatic stress disorder and depression, or involuntary autobiographical memories and daydreaming in everyday life. Such studies have resulted in a wealth of knowledge about these specific cognitions. However, by focusing on a predefined type of cognition, other subtypes of cognition that may co-occur can be missed. In this exploratory study, we aimed to assess involuntary cognitions in everyday life without a pre-determined focus on any specific subtype of cognition. Seventy unselected undergraduate student participants were administered a questionnaire that assessed the presence of any involuntary cognitions in the past month, their quality, type, content, and potential function. In addition, participants provided self-descriptions and completed measures of psychopathology. Content analyses showed that involuntary cognitions were common, predominantly visual in nature, emotional, often about social relationships, and often related to a hypothetical function of emotional processing. About two-thirds of the cognitions that participants reported were memories. Non-memories included daydreams, imaginary worst case scenarios, imaginary future events, hypothetical reconstructions, and ruminations. Memories and non-memories were strikingly similar in their subjective experience of content and emotionality. Negative (but not positive) self-descriptions were associated with negative involuntary cognitions and psychopathology, suggesting a link between involuntary cognitions and the self. Overall, the findings suggest that people experience a wide variety of subtypes of involuntary cognitions in everyday life. Moreover, the specific subtype of involuntary cognition appears to be less important than its valence or content, at least to the subjective experience of the individual. PMID

  9. 32 CFR Appendix C to Part 113 - Sample DD Form 2653, “Involuntary Allotment Application”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Sample DD Form 2653, âInvoluntary Allotment Applicationâ C Appendix C to Part 113 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... Part 113—Sample DD Form 2653, “Involuntary Allotment Application” ER05JA95.002 ER05JA95.003...

  10. Design and Validation of a Periodic Leg Movement Detector

    PubMed Central

    Moore, Hyatt; Leary, Eileen; Lee, Seo-Young; Carrillo, Oscar; Stubbs, Robin; Peppard, Paul; Young, Terry; Widrow, Bernard; Mignot, Emmanuel

    2014-01-01

    Periodic Limb Movements (PLMs) are episodic, involuntary movements caused by fairly specific muscle contractions that occur during sleep and can be scored during nocturnal polysomnography (NPSG). Because leg movements (LM) may be accompanied by an arousal or sleep fragmentation, a high PLM index (i.e. average number of PLMs per hour) may have an effect on an individual’s overall health and wellbeing. This study presents the design and validation of the Stanford PLM automatic detector (S-PLMAD), a robust, automated leg movement detector to score PLM. NPSG studies from adult participants of the Wisconsin Sleep Cohort (WSC, n = 1,073, 2000–2004) and successive Stanford Sleep Cohort (SSC) patients (n = 760, 1999–2007) undergoing baseline NPSG were used in the design and validation of this study. The scoring algorithm of the S-PLMAD was initially based on the 2007 American Association of Sleep Medicine clinical scoring rules. It was first tested against other published algorithms using manually scored LM in the WSC. Rules were then modified to accommodate baseline noise and electrocardiography interference and to better exclude LM adjacent to respiratory events. The S-PLMAD incorporates adaptive noise cancelling of cardiac interference and noise-floor adjustable detection thresholds, removes LM secondary to sleep disordered breathing within 5 sec of respiratory events, and is robust to transient artifacts. Furthermore, it provides PLM indices for sleep (PLMS) and wake plus periodicity index and other metrics. To validate the final S-PLMAD, experts visually scored 78 studies in normal sleepers and patients with restless legs syndrome, sleep disordered breathing, rapid eye movement sleep behavior disorder, narcolepsy-cataplexy, insomnia, and delayed sleep phase syndrome. PLM indices were highly correlated between expert, visually scored PLMS and automatic scorings (r2 = 0.94 in WSC and r2 = 0.94 in SSC). In conclusion, The S-PLMAD is a robust and

  11. Sticky tunes: how do people react to involuntary musical imagery?

    PubMed

    Williamson, Victoria J; Liikkanen, Lassi A; Jakubowski, Kelly; Stewart, Lauren

    2014-01-01

    The vast majority of people experience involuntary musical imagery (INMI) or 'earworms'; perceptions of spontaneous, repetitive musical sound in the absence of an external source. The majority of INMI episodes are not bothersome, while some cause disruption ranging from distraction to anxiety and distress. To date, little is known about how the majority of people react to INMI, in particular whether evaluation of the experience impacts on chosen response behaviours or if attempts at controlling INMI are successful or not. The present study classified 1046 reports of how people react to INMI episodes. Two laboratories in Finland and the UK conducted an identical qualitative analysis protocol on reports of INMI reactions and derived visual descriptive models of the outcomes using grounded theory techniques. Combined analysis carried out across the two studies confirmed that many INMI episodes were considered neutral or pleasant, with passive acceptance and enjoyment being among the most popular response behaviours. A significant number of people, however, reported on attempts to cope with unwanted INMI. The most popular and effective behaviours in response to INMI were seeking out the tune in question, and musical or verbal distraction. The outcomes of this study contribute to our understanding of the aetiology of INMI, in particular within the framework of memory theory, and present testable hypotheses for future research on successful INMI coping strategies. PMID:24497938

  12. Sticky Tunes: How Do People React to Involuntary Musical Imagery?

    PubMed Central

    Williamson, Victoria J.; Liikkanen, Lassi A.; Jakubowski, Kelly; Stewart, Lauren

    2014-01-01

    The vast majority of people experience involuntary musical imagery (INMI) or ‘earworms’; perceptions of spontaneous, repetitive musical sound in the absence of an external source. The majority of INMI episodes are not bothersome, while some cause disruption ranging from distraction to anxiety and distress. To date, little is known about how the majority of people react to INMI, in particular whether evaluation of the experience impacts on chosen response behaviours or if attempts at controlling INMI are successful or not. The present study classified 1046 reports of how people react to INMI episodes. Two laboratories in Finland and the UK conducted an identical qualitative analysis protocol on reports of INMI reactions and derived visual descriptive models of the outcomes using grounded theory techniques. Combined analysis carried out across the two studies confirmed that many INMI episodes were considered neutral or pleasant, with passive acceptance and enjoyment being among the most popular response behaviours. A significant number of people, however, reported on attempts to cope with unwanted INMI. The most popular and effective behaviours in response to INMI were seeking out the tune in question, and musical or verbal distraction. The outcomes of this study contribute to our understanding of the aetiology of INMI, in particular within the framework of memory theory, and present testable hypotheses for future research on successful INMI coping strategies. PMID:24497938

  13. Genetics Home Reference: congenital fibrosis of the extraocular muscles

    MedlinePlus

    ... muscles that surround the eyes . These muscles control eye movement and the position of the eyes (for example, ... difficulty looking upward, and their side-to-side eye movement may also be limited. The eyes may be ...

  14. Modulation of Muscle Tone and Sympathovagal Balance in Cervical Dystonia Using Percutaneous Stimulation of the Auricular Vagus Nerve.

    PubMed

    Kampusch, Stefan; Kaniusas, Eugenijus; Széles, Jozsef C

    2015-10-01

    Primary cervical dystonia is characterized by abnormal, involuntary, and sustained contractions of cervical muscles. Current ways of treatment focus on alleviating symptomatic muscle activity. Besides pharmacological treatment, in severe cases patients may receive neuromodulative intervention such as deep brain stimulation. However, these (highly invasive) methods have some major drawbacks. For the first time, percutaneous auricular vagus nerve stimulation (pVNS) was applied in a single case of primary cervical dystonia. Auricular vagus nerve stimulation was already shown to modulate the (autonomous) sympathovagal balance of the body and proved to be an effective treatment in acute and chronic pain, epilepsy, as well as major depression. pVNS effects on cervical dystonia may be hypothesized to rely upon: (i) the alteration of sensory input to the brain, which affects structures involved in the genesis of motoric and nonmotoric dystonic symptoms; and (ii) the alteration of the sympathovagal balance with a sustained impact on involuntary movement control, pain, quality of sleep, and general well-being. The presented data provide experimental evidence that pVNS may be a new alternative and minimally invasive treatment in primary cervical dystonia. One female patient (age 50 years) suffering from therapy refractory cervical dystonia was treated with pVNS over 20 months. Significant improvement in muscle pain, dystonic symptoms, and autonomic regulation as well as a subjective improvement in motility, sleep, and mood were achieved. A subjective improvement in pain recorded by visual analog scale ratings (0-10) was observed from 5.42 to 3.92 (medians). Muscle tone of the mainly affected left and right trapezius muscle in supine position was favorably reduced by about 96%. Significant reduction of muscle tone was also achieved in sitting and standing positions of the patient. Habituation to stimulation leading to reduced stimulation efficiency was observed and

  15. The simultaneous perception of auditory-tactile stimuli in voluntary movement.

    PubMed

    Hao, Qiao; Ogata, Taiki; Ogawa, Ken-Ichiro; Kwon, Jinhwan; Miyake, Yoshihiro

    2015-01-01

    The simultaneous perception of multimodal information in the environment during voluntary movement is very important for effective reactions to the environment. Previous studies have found that voluntary movement affects the simultaneous perception of auditory and tactile stimuli. However, the results of these experiments are not completely consistent, and the differences may be attributable to methodological differences in the previous studies. In this study, we investigated the effect of voluntary movement on the simultaneous perception of auditory and tactile stimuli using a temporal order judgment task with voluntary movement, involuntary movement, and no movement. To eliminate the potential effect of stimulus predictability and the effect of spatial information associated with large-scale movement in the previous studies, we randomized the interval between the start of movement and the first stimulus, and used small-scale movement. As a result, the point of subjective simultaneity (PSS) during voluntary movement shifted from the tactile stimulus being first during involuntary movement or no movement to the auditory stimulus being first. The just noticeable difference (JND), an indicator of temporal resolution, did not differ across the three conditions. These results indicate that voluntary movement itself affects the PSS in auditory-tactile simultaneous perception, but it does not influence the JND. In the discussion of these results, we suggest that simultaneous perception may be affected by the efference copy. PMID:26441799

  16. The simultaneous perception of auditory–tactile stimuli in voluntary movement

    PubMed Central

    Hao, Qiao; Ogata, Taiki; Ogawa, Ken-ichiro; Kwon, Jinhwan; Miyake, Yoshihiro

    2015-01-01

    The simultaneous perception of multimodal information in the environment during voluntary movement is very important for effective reactions to the environment. Previous studies have found that voluntary movement affects the simultaneous perception of auditory and tactile stimuli. However, the results of these experiments are not completely consistent, and the differences may be attributable to methodological differences in the previous studies. In this study, we investigated the effect of voluntary movement on the simultaneous perception of auditory and tactile stimuli using a temporal order judgment task with voluntary movement, involuntary movement, and no movement. To eliminate the potential effect of stimulus predictability and the effect of spatial information associated with large-scale movement in the previous studies, we randomized the interval between the start of movement and the first stimulus, and used small-scale movement. As a result, the point of subjective simultaneity (PSS) during voluntary movement shifted from the tactile stimulus being first during involuntary movement or no movement to the auditory stimulus being first. The just noticeable difference (JND), an indicator of temporal resolution, did not differ across the three conditions. These results indicate that voluntary movement itself affects the PSS in auditory–tactile simultaneous perception, but it does not influence the JND. In the discussion of these results, we suggest that simultaneous perception may be affected by the efference copy. PMID:26441799

  17. Biomechanical analysis of jaw-closing movements.

    PubMed

    Koolstra, J H; van Eijden, T M

    1995-09-01

    This study concerns the complex interaction between active muscle forces and passive guiding structures during jaw-closing movements. It is generally accepted that the ligaments of the joint play a major role in condylar guidance during these movements. While these ligaments permit a wide range of motions, it was assumed that they are not primarily involved in force transmission in the joints. Therefore, it was hypothesized that muscle forces and movement constraints caused by the articular surfaces imply a necessary and sufficient condition to generate ordinary jaw-closing movements. This hypothesis was tested by biomechanical analysis. A dynamic six-degrees-of-freedom mathematical model of the human masticatory system has been developed for qualitative analysis of the contributions of the different masticatory muscles to jaw-closing movements, it was found that the normally observed movement, which includes a swing-slide condylar movement along the articular eminence, can be generated by various separate pairs of masticatory muscles, among which the different parts of the masseter as well as the medial pterygoid muscle appeared to be the most suitable to complete this action. The results seem to be in contrast to the general opinion that a muscle with a forward-directed force component may not be suitable for generating jaw movements in which the condyle moves backward. The results can be explained, however, by biomechanical analysis which includes not only muscle and joint forces as used in standard textbooks of anatomy, but also the torques generated by these forces. PMID:7560417

  18. Lifestyles and routine activities of South African teenagers at risk of being trafficked for involuntary prostitution.

    PubMed

    Lutya, Thozama Mandisa

    2010-12-01

    The United Nations estimates that 79% of teenage girls trafficked globally every year are forced into involuntary prostitution. About 247 000 South African children work in exploitative conditions; about 40 000 South African female teenagers work as prostitutes. This paper investigates lifestyles and routine activities of teenagers at risk of being trafficked for involuntary prostitution. The key concepts involuntary prostitution, intergenerational sex and exploitative conditions are defined in relation to the lifestyles and routine activities of South African female teenagers. Human trafficking for involuntary prostitution is described, based on a literature review. Lifestyle exposure and routine activities theories help to explain the potential victimisation of these teenagers in human trafficking for involuntary prostitution. Actual lifestyle and routine activities of South African teenagers and risky behaviours (substance abuse, intergenerational sex and child prostitution) are discussed as factors that make teens vulnerable to such trafficking. This paper recommends that human trafficking prevention efforts (awareness programmes and information campaigns) be directed at places frequented by human traffickers and teenagers in the absence of a capable guardian to reduce victimisation, as traffickers analyse the lifestyles and routine activities of their targets. South Africa should also interrogate entrenched practices such as intergenerational sex. PMID:25859767

  19. A microstructural study of sleep instability in drug-naive patients with schizophrenia and healthy controls: sleep spindles, rapid eye movements, and muscle atonia.

    PubMed

    Guénolé, Fabian; Chevrier, Elyse; Stip, Emmanuel; Godbout, Roger

    2014-05-01

    This study aimed at characterizing the functional stability of sleep in schizophrenia by quantifying dissociated stages of sleep (DSS), and to explore their correlation with psychopathology. The sleep of 10 first-break, drug-naive young adults with schizophrenia and 10 controls was recorded. Four basic DSS patterns were scored: 1) the transitional EEG-mixed intermediate stage (EMIS); 2) Rapid-eye-movement (REM) sleep without rapid eye movement (RSWR); 3) REM sleep without atonia (RSWA); and 4) non-REM sleep with rapid eye movements. An intermediate sleep (IS) score was calculated by summing EMIS and RSWR scores, and the durations of intra-REM sleep periods IS (IRSPIS) and IS scored "at the expense" of REM sleep (ISERS) were determined. Patients were administered the Brief Psychiatric Rating Scale (BPRS) at the time of recording. Proportions of each DSS variables over total sleep time and proportions of IRSPIS and ISERS over REM sleep duration were compared between patients and controls. Correlation coefficients between DSS variables and BPRS total scores were calculated. The proportion of total DSS did not differ between patients and controls. Among DSS subtypes, RSWA was significantly increased in patients while other comparisons showed no significant differences. Significant positive correlations were found between BPRS scores and proportions of DSS, IS, RSWR, IRSPIS and ISERS over total sleep and REM sleep durations. These results demonstrate the functional instability of REM sleep in first-break, drug naive young adults with schizophrenia and unveil a pattern reminiscent of REM sleep behavior disorder. The significant correlation suggests that schizophrenia and REM sleep share common neuronal control mechanisms. PMID:24725849

  20. Combining modules for movement.

    PubMed

    Bizzi, E; Cheung, V C K; d'Avella, A; Saltiel, P; Tresch, M

    2008-01-01

    We review experiments supporting the hypothesis that the vertebrate motor system produces movements by combining a small number of units of motor output. Using a variety of approaches such as microstimulation of the spinal cord, NMDA iontophoresis, and an examination of natural behaviors in intact and deafferented animals we have provided evidence for a modular organization of the spinal cord. A module is a functional unit in the spinal cord that generates a specific motor output by imposing a specific pattern of muscle activation. Such an organization might help to simplify the production of movements by reducing the degrees of freedom that need to be specified. PMID:18029291

  1. Does Involuntary Mental Time Travel Make Sense in Prospective Teachers' Feelings and Behaviors during Lessons?

    ERIC Educational Resources Information Center

    Eren, Altay; Yesilbursa, Amanda

    2013-01-01

    This study examined the effects of involuntary mental time travel into the past and into the future on prospective teachers' feelings and behaviors during the period of a class hour. A total of 110 prospective teachers participated voluntarily in the study. The results of the present study showed that (a) the involuntary mental time travel…

  2. 32 CFR Appendix D to Part 113 - Sample DD Form 2654, “Involuntary Allotment Notice and Processing”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Sample DD Form 2654, âInvoluntary Allotment Notice and Processingâ D Appendix D to Part 113 National Defense Department of Defense OFFICE OF THE..., App. D Appendix D to Part 113—Sample DD Form 2654, “Involuntary Allotment Notice and...

  3. 32 CFR Appendix D to Part 113 - Sample DD Form 2654, “Involuntary Allotment Notice and Processing”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Sample DD Form 2654, âInvoluntary Allotment Notice and Processingâ D Appendix D to Part 113 National Defense Department of Defense OFFICE OF THE..., App. D Appendix D to Part 113—Sample DD Form 2654, “Involuntary Allotment Notice and...

  4. 5 CFR 890.1112 - Denial of continuation of coverage due to involuntary separation for gross misconduct.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... involuntary separation for gross misconduct. 890.1112 Section 890.1112 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES HEALTH BENEFITS... involuntary separation for gross misconduct. (a) Notice of denial. (1) When an employing office...

  5. 5 CFR 890.1112 - Denial of continuation of coverage due to involuntary separation for gross misconduct.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... involuntary separation for gross misconduct. 890.1112 Section 890.1112 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES HEALTH BENEFITS... involuntary separation for gross misconduct. (a) Notice of denial. (1) When an employing office...

  6. 32 CFR Appendix D to Part 113 - Sample DD Form 2654, “Involuntary Allotment Notice and Processing”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Sample DD Form 2654, âInvoluntary Allotment Notice and Processingâ D Appendix D to Part 113 National Defense Department of Defense OFFICE OF THE..., App. D Appendix D to Part 113—Sample DD Form 2654, “Involuntary Allotment Notice and...

  7. 32 CFR Appendix D to Part 113 - Sample DD Form 2654, “Involuntary Allotment Notice and Processing”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Sample DD Form 2654, âInvoluntary Allotment Notice and Processingâ D Appendix D to Part 113 National Defense Department of Defense OFFICE OF THE..., App. D Appendix D to Part 113—Sample DD Form 2654, “Involuntary Allotment Notice and...

  8. 32 CFR Appendix D to Part 113 - Sample DD Form 2654, “Involuntary Allotment Notice and Processing”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Sample DD Form 2654, âInvoluntary Allotment Notice and Processingâ D Appendix D to Part 113 National Defense Department of Defense OFFICE OF THE..., App. D Appendix D to Part 113—Sample DD Form 2654, “Involuntary Allotment Notice and...

  9. More Than Ataxia: Hyperkinetic Movement Disorders in Childhood Autosomal Recessive Ataxia Syndromes

    PubMed Central

    Pearson, Toni S.

    2016-01-01

    Background The autosomal recessive ataxias are a heterogeneous group of disorders that are characterized by complex neurological features in addition to progressive ataxia. Hyperkinetic movement disorders occur in a significant proportion of patients, and may sometimes be the presenting motor symptom. Presentations with involuntary movements rather than ataxia are diagnostically challenging, and are likely under-recognized. Methods A PubMed literature search was performed in October 2015 utilizing pairwise combinations of disease-related terms (autosomal recessive ataxia, ataxia–telangiectasia, ataxia with oculomotor apraxia type 1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2), Friedreich ataxia, ataxia with vitamin E deficiency), and symptom-related terms (movement disorder, dystonia, chorea, choreoathetosis, myoclonus). Results Involuntary movements occur in the majority of patients with ataxia–telangiectasia and AOA1, and less frequently in patients with AOA2, Friedreich ataxia, and ataxia with vitamin E deficiency. Clinical presentations with an isolated hyperkinetic movement disorder in the absence of ataxia include dystonia or dystonia with myoclonus with predominant upper limb and cervical involvement (ataxia–telangiectasia, ataxia with vitamin E deficiency), and generalized chorea (ataxia with oculomotor apraxia type 1, ataxia-telangiectasia). Discussion An awareness of atypical presentations facilitates early and accurate diagnosis in these challenging cases. Recognition of involuntary movements is important not only for diagnosis, but also because of the potential for effective targeted symptomatic treatment. PMID:27536460

  10. Is non-recognition of choreic movements in Huntington disease always pathological?

    PubMed

    Justo, Damian; Charles, Perrine; Daunizeau, Jean; Delmaire, Christine; Gargiulo, Marcela; Hahn-Barma, Valérie; Naccache, Lionel; Durr, Alexandra

    2013-03-01

    Clinical experience and prior studies suggest that Huntington disease (HD) patients have low insight into their motor disturbances and poor real-time awareness (concurrent awareness) of chorea. This has been attributed to sensory deficits but, until now, concurrent awareness of choreic movements has not been compared to the degree of insight that presymptomatic carriers of the HD gene and healthy control subjects have into non-pathological involuntary movements. To further investigate loss of insight into motor dysfunction in HD patients, we administered a video-recorded interview and 4 experimental tasks to 68 subjects from the TRACK-HD cohort, including 28 high-functioning patients in early stages of HD, 28 premanifest mutation carriers and 12 controls. All underwent full neurological and neuropsychological evaluations and 3T MRI examinations. Subjects were asked to assess the presence, body location, frequency, practical consequences and probable causes of motor impairments, as well as the presence and body location of involuntary movements during 4 experimental tasks. The accuracy of their judgments, assessed by comparison with objective criteria, was used as a measure of their insight into motor disturbances and of their concurrent awareness of involuntary movements. Insight was poor in early HD patients: motor symptoms were nearly always underestimated. In contrast, concurrent awareness of involuntary movements, although also poor, was essentially indistinguishable across the 3 groups of subjects: non-pathological involuntary movements were as difficult to perceive by controls and premanifest carriers as was chorea for early HD patients. GLM analysis suggested that both concurrent awareness and perception of practical consequences of movement disorder had a positive effect on intellectual insight, and that mental flexibility is involved in concurrent awareness. Our results suggest that low insight into motor dysfunction in early HD, although marginally

  11. Bowel Movement

    MedlinePlus

    A bowel movement is the last stop in the movement of food through your digestive tract. Your stool passes out ... rectum and anus. Another name for stool is feces. It is made of what is left after ...

  12. The Management of Osteoarthritis in Movement Disorders: A Case Discussion

    PubMed Central

    Stafford, Giles H.; Howard, Robin S.; Lavelle, Jonathon

    2013-01-01

    Background A 37-year-old female with a hyperkinetic movement disorder due to chorea–acanthocytosis developed severe painful degenerative arthritis of her left knee as a consequence of repetitive involuntary flexion and extension dystonic and ballistic movements. Case Report Despite profound limitation in her mobility a total knee replacement was successfully undertaken. Discussion The case emphasizes that patients with progressive neurodegenerative disorders may derive relief or resolution of pain by joint replacement even if mobility does not improve following surgery. A multidisciplinary approach to care is essential. PMID:23858393

  13. Muscle hardness characteristics of the masseter muscle after repetitive muscle activation: comparison to the biceps brachii muscle.

    PubMed

    Kashima, Koji; Higashinaka, Shuichi; Watanabe, Naoshi; Maeda, Sho; Shiba, Ryosuke

    2004-10-01

    The purpose of this study was to compare hardness characteristics of the masseter muscle to those of the biceps brachii muscle during repetitive muscle movements. Seventeen asymptomatic female subjects participated in this study. Each subject, on separate days, undertook a 5-minute unilateral chewing gum task on the right side and a 5-minute flexion-extension exercise on the right hand with a 2kg dumbbell. Using a handheld hardness meter, muscle hardness was measured in the right masseter and in the biceps brachii muscle at eight time points (before the task, immediately after the task, and at 1, 3, 5, 10, 30, and 60 minutes after the task), and the data obtained before and after the task on each muscle were compared. Comparisons of the normalized data were also performed between the two muscles at each time point. As a result, a significant increase in muscle hardness was seen at 1 minute after the task in the biceps brachii muscle (p=0.0093). In contrast, the masseter muscle showed a tendency to lower hardness, with the lowest point of hardness occurring at 10 minutes after the task (p = 0.0160). Between the two muscles, there was a difference in the normalized data immediately after the task, and at 1, 5, and 10 minutes after the task (0.01 muscle hardness characteristics of the masseter muscle completely differed from those of the biceps brachii muscle after repetitive muscle activation. PMID:15532311

  14. Myosin-Induced Movement of αα, αβ, and ββ Smooth Muscle Tropomyosin on Actin Observed by Multisite FRET

    PubMed Central

    Bacchiocchi, Corrado; Graceffa, Philip; Lehrer, Sherwin S.

    2004-01-01

    The interaction of the αα, ββ, and αβ smooth muscle tropomyosin (Tm) isoforms with F-actin was systematically studied in the absence and in the presence of myosin subfragment 1 (S1) using multifrequency phase/modulation Förster resonance energy transfer (FRET). A Gaussian double distance distribution model was adopted to fit FRET data between a 5-(2-iodoacetyl-amino-ethyl-amino)naphthalene-1-sulfonic acid donor at either Cys-36 of the β-chain or Cys-190 of the α-chain and a 4-dimethylaminophenylazophenyl 4′-maleimide acceptor at Cys-374 of F-actin. Experimental data were obtained for singly and doubly labeled αβ Tm (donor only at α, only at β, or both) and for doubly labeled αα or ββ Tm. Data for singly labeled αβTm were combined in a global analysis with doubly labeled αβTm. In all doubly labeled isoforms, upon S1 binding, one donor-acceptor “apparent” distance increased slightly by 0.5–2 Å, whereas the other decreased by 6–9 Å. These changes are consistent with a uniform “rolling” motion of Tm over the F-actin surface. The analysis indicates that Tm occupies relatively well-defined positions, with some flexibility, in both the predominantly closed (−S1) and open (+S1) thin-filament states. The results for the αβTm heterodimer indicate that the local twofold symmetry of αα or ββ Tm is effectively broken in αβTm bound to F-actin, which implies a difference between the α- and β-chains in terms of their interaction with F-actin. PMID:15041668

  15. 26 CFR 1.1033(a)-1 - Involuntary conversions; nonrecognition of gain.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of real property held either for productive use in trade or business or for investment and occurring... TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Common Nontaxable Exchanges § 1.1033(a)-1 Involuntary conversions; nonrecognition of gain. (a) In general. Section 1033 applies to cases where...

  16. Neural Networks Involved in Voluntary and Involuntary Vocal Pitch Regulation in Experienced Singers

    ERIC Educational Resources Information Center

    Zarate, Jean Mary; Wood, Sean; Zatorre, Robert J.

    2010-01-01

    In an fMRI experiment, we tested experienced singers with singing tasks to investigate neural correlates of voluntary and involuntary vocal pitch regulation. We shifted the pitch of auditory feedback (plus or minus 25 or 200 cents), and singers either: (1) ignored the shift and maintained their vocal pitch or (2) changed their vocal pitch to…

  17. 47 CFR 64.1512 - Involuntary blocking of pay-per-call services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Involuntary blocking of pay-per-call services. 64.1512 Section 64.1512 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) MISCELLANEOUS RULES RELATING TO COMMON CARRIERS Interstate Pay-Per-Call and Other Information Services § 64.1512...

  18. Involuntary Mental Time Travel and Its Effect on Prospective Teachers' Situational Intrinsic Motivations

    ERIC Educational Resources Information Center

    Eren, Altay

    2010-01-01

    Recent cognitive psychological research has argued that involuntary mental time travel is an important individual difference variable that has the potential to affect an individual's motivation. However, this issue has not been empirically investigated in educational settings such as teacher education. Therefore, this study aimed to explore the…

  19. Beyond the Mechanics of Infertility: Perspectives on the Social Psychology of Infertility and Involuntary Childlessness.

    ERIC Educational Resources Information Center

    Matthews, Anne Martin; Matthews, Ralph

    1986-01-01

    Examines the social and social psychological implications of infertility and involuntary childlessness. Examines the clinical and popular literature on the correlates and causes of infertility and the social psychological consequences of infertility. Suggests ways that family practitioners and researchers might overcome some of the limitations.…

  20. 26 CFR 1.168(i)-6 - Like-kind exchanges and involuntary conversions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Like-kind exchanges and involuntary conversions. 1.168(i)-6 Section 1.168(i)-6 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.168(i)-6 Like-kind exchanges...

  1. Why Am I Remembering This Now? Predicting the Occurrence of Involuntary (Spontaneous) Episodic Memories

    ERIC Educational Resources Information Center

    Berntsen, Dorthe; Staugaard, Soren Rislov; Sorensen, Louise Maria Torp

    2013-01-01

    Involuntary episodic memories are memories of events that come to mind spontaneously, that is, with no preceding retrieval attempts. They are common in daily life and observed in a range of clinical disorders in the form of negative, intrusive recollections or flashbacks. However, little is known about their underlying mechanisms. Here we report a…

  2. 26 CFR 1.1321-1 - Involuntary liquidation of lifo inventories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Involuntary Liquidation and Replacement of Lifo Inventories... the taxpayer of his income tax return for the year of the liquidation. However, if the liquidation... shall be increased to the extent of such difference. Any deficiency in the income or excess profits...

  3. Coping with Terrorism: Age and Gender Differences in Effortful and Involuntary Responses to September 11th

    ERIC Educational Resources Information Center

    Wadsworth, Martha E.; Gudmundsen, Gretchen R.; Raviv, Tali; Ahlkvist, Jarl A.; McIntosh, Daniel N.; Kline, Galena H.; Rea, Jacqueline; Burwell, Rebecca A.

    2004-01-01

    This study examined age and gender differences and similarities in stress responses to September 11th. Adolescents, young adults, and adults reported using a variety of strategies to cope with the terrorist attacks including acceptance, positive thinking, and emotional expression. In addition, involuntary stress responses such as physiological…

  4. 75 FR 7514 - Renewal of Agency Information Collection for Appointed Counsel in Involuntary Indian Child...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Register on October 30, 2009 (74 FR 56208) requesting public comments on the proposed information... currently authorized by OMB Control Number 1076-0111, which expires February 28, 2010. DATES: Written...: 1076-0111. Title: Payment for Appointed Counsel in Involuntary Indian Child Custody Proceedings...

  5. Involuntary Departure of Public School Principals in the State of Texas

    ERIC Educational Resources Information Center

    Davila, Elva Jimenez

    2010-01-01

    Few studies have examined the reasons for ineffective public school leadership. The study examined the factors associated with the involuntary departure of public school principals in the state of Texas and aimed to reveal the ineffective behaviors that erode the public school principal's leadership. The study also indirectly pointed out to…

  6. Involuntary Unemployment Reconsidered: Second-Best Contracting with Heterogeneous Firms and Workers.

    ERIC Educational Resources Information Center

    Nalebuff, Barry; Zeckhauser, Richard

    The implicit contract theory, a new explanation for the phenomena of involuntary unemployment, does not capture the salient characteristics of real work employment. By building on implicit contract theory, this paper takes into account circumstances ignored in the traditional model: (1) institutional characteristics of the labor market enhance…

  7. The paradoxical increase in involuntary admissions after the revision of the Civil Commitment Law in Belgium.

    PubMed

    Lecompte, D

    1995-01-01

    The revision in 1990 of the Mental Health Commitment Law in Belgium, which was initially intended to decrease the use of civil commitment, has resulted in a paradoxical increase in involuntary hospital admissions. To understand the reasons for this increase, the relative importance of the various factors involved, notably the criteria of mental illness, dangerousness and clinical treatability, is examined. PMID:7666748

  8. The New Gateway, an Old Paradox: Immigrants and Involuntary Americans in North Carolina History Textbooks

    ERIC Educational Resources Information Center

    Hilburn, Jeremy; Fitchett, Paul G.

    2012-01-01

    The authors conducted a content analysis of North Carolina history textbooks to explore how the definition of immigration has changed over the last century. They also examined how immigrant groups and involuntary Americans have been portrayed throughout the state's history. Findings suggest that as a burgeoning gateway state for immigrants, North…

  9. 32 CFR Appendix C to Part 113 - Sample DD Form 2653, “Involuntary Allotment Application”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Sample DD Form 2653, âInvoluntary Allotment Applicationâ C Appendix C to Part 113 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN INDEBTEDNESS PROCEDURES OF MILITARY PERSONNEL Pt. 113, App. C Appendix C...

  10. The Short-Term Impact of Involuntary Migration in China's Three Gorges: A Prospective Study

    ERIC Educational Resources Information Center

    Hwang, Sean-Shong; Cao, Yue; Xi, Juan

    2011-01-01

    The aim of this study is to measure the short-term impact of involuntary migration resulting from China's Three Gorges Dam project on the 1.3 million persons being displaced. We focus on the social, economic, and mental and physical health impact using three sets of indicators. Using a prospective research design, we gathered information about…

  11. Innovations Applied to the Classroom for Involuntary Groups: Implications for Social Work Education

    ERIC Educational Resources Information Center

    Chovanec, Michael

    2008-01-01

    There is an increasing demand for social work students to be prepared to work with a wide range of involuntary groups including the more traditional court-ordered programs in domestic abuse and chemical dependency, as well as groups in mental health and schools that provide outreach to high-risk client populations. This paper introduces three…

  12. Evaluation of CHANGE, an Involuntary Cognitive Program for High-Risk Inmates

    ERIC Educational Resources Information Center

    Hogan, Nancy L.; Lambert, Eric G.; Barton-Bellessa, Shannon M.

    2012-01-01

    Prison violence is a major concern in most correctional institutions. One intervention frequently used to reduce violent behavior is cognitive therapy. An involuntary cognitive program at a Midwestern state prison was evaluated for its impact on official misconduct. A total of 213 inmates were randomly assigned to the treatment (CHANGE) group (n =…

  13. Periodic Limb Movement Disorder (PLMD) and Restless Legs Syndrome (RLS)

    MedlinePlus

    ... Smoking Obesity Many people with narcolepsy or rapid eye movement (REM) behavior disorder move their legs periodically during ... brain activity, heart rate, breathing, muscle activity, and eye movements are monitored while people sleep. People may also ...

  14. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy. Disuse atrophy occurs from a lack of physical activity. In most people, muscle atrophy is caused by not using the ...

  15. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  16. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  17. [A case of multiple sclerosis manifesting piano playing movement].

    PubMed

    Nagano, T; Mizoi, R; Watanabe, I; Tomi, H; Sunohara, N

    1993-04-01

    We report a case of 33-year-old man with multiple sclerosis, showing piano playing movement in both hands. His course of multiple sclerosis was remittent/progressive during 2 years and the clinical manifestation suggested the spinal cord involvement. On July 15, 1991, he was admitted with numbness of the right limbs, and then developed piano playing movement in both hands, more marked in the right side. Neurological examination revealed mild weakness in the right upper extremity, and rough touch, pain, and temperature sensation were slightly decreased. However, there was no deep sensory abnormalities, such as vibration, fine touch, and position senses. Vibration sense was lost below ilium. CSF examination showed elevation of IgG index (1.6), three oligoclonal bands and myelin basic protein content of 2.4 ng/ml. There was no HTLV-I antibody in CSF. SSEP, elicited by median nerve stimulation at the right wrist, showed no N13 and low amplitude of N20. T2-weighted images of cervical MRI revealed area of high signal intensity at the C3-C4 level. The piano playing movement gradually improved and disappeared by the initiation of steroid hormone therapy. It was considered that involuntary movement in this patient was due to the spinal cord lesion caused by multiple sclerosis. These findings suggested that the involuntary movement like pseudoathetosis could present without deep sensory abnormalities. PMID:8370208

  18. Genetics Home Reference: spinocerebellar ataxia type 1

    MedlinePlus

    ... spasticity), and weakness in the muscles that control eye movement (ophthalmoplegia). Eye muscle weakness leads to rapid, involuntary eye movements (nystagmus). Individuals with SCA1 may have difficulty processing, ...

  19. Corticospinal Modulations during Bimanual Movement with Different Relative Phases

    PubMed Central

    Nomura, Yoshifumi; Jono, Yasutomo; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2016-01-01

    The purpose of this study was to investigate corticospinal modulation of bimanual (BM) movement with different relative phases (RPs). The participants rhythmically abducted and adducted the right index finger (unimanual (UM) movement) or both index fingers (BM movement) with a cyclic duration of 1 s. The RP of BM movement, defined as the time difference between one hand movement and the other hand movement, was 0°, 90°, or 180°. Motor evoked potentials (MEPs) in the right flexor dorsal interosseous muscle elicited by transcranial magnetic stimulation (TMS) were obtained during UM or BM movement. Corticospinal excitability in the first dorsal interosseous muscle during BM movement with 90° RP was higher than that during UM movement or BM movement with 0° or 180° RP. The correlation between muscle activity level and corticospinal excitability during BM movement with 90° RP was smaller than that during UM movement or BM movement with 0° or 180° RP. The higher corticospinal excitability during BM movement with 90° RP may be caused by the greater effort expended to execute a difficult task, the involvement of interhemispheric interaction, a motor binding process, or task acquisition. The lower dependency of corticospinal excitability on the muscle activity level during BM movement with 90° RP may reflect the minor corticospinal contribution to BM movement with an RP that is not in the attractor state. PMID:27014026

  20. Imagery in the aftermath of viewing a traumatic film: Using cognitive tasks to modulate the development of involuntary memory

    PubMed Central

    Deeprose, Catherine; Zhang, Shuqi; DeJong, Hannah; Dalgleish, Tim; Holmes, Emily A.

    2012-01-01

    Background and objectives Involuntary autobiographical memories that spring unbidden into conscious awareness form part of everyday experience. In psychopathology, involuntary memories can be associated with significant distress. However, the cognitive mechanisms associated with the development of involuntary memories require further investigation and understanding. Since involuntary autobiographical memories are image-based, we tested predictions that visuospatial (but not other) established cognitive tasks could disrupt their consolidation when completed post-encoding. Methods In Experiment 1, participants watched a stressful film then immediately completed a visuospatial task (complex pattern tapping), a control-task (verbal task) or no-task. Involuntary memories of the film were recorded for 1-week. In Experiment 2, the cognitive tasks were administered 30-min post-film. Results Compared to both control and no-task conditions, completing a visuospatial task post-film reduced the frequency of later involuntary memories (Expts 1 and 2) but did not affect voluntary memory performance on a recognition task (Expt 2). Limitations Voluntary memory was assessed using a verbal recognition task and a broader range of memory tasks could be used. The relative difficulty of the cognitive tasks used was not directly established. Conclusions An established visuospatial task after encoding of a stressful experience selectively interferes with sensory-perceptual information processing and may therefore prevent the development of involuntary autobiographical memories. PMID:22104657

  1. Nuclear positioning in muscle development and disease

    PubMed Central

    Folker, Eric S.; Baylies, Mary K.

    2013-01-01

    Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals, myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives: from that of the nuclei and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease. PMID:24376424

  2. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization

    PubMed Central

    Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F.; Pal, Saikat; McWalter, Emily J.; Beaupré, Gary S.; Maier, Andreas

    2013-01-01

    Purpose: Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. Methods: An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers’ location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4–12) and

  3. The muscle spindle as a feedback element in muscle control

    NASA Technical Reports Server (NTRS)

    Andrews, L. T.; Iannone, A. M.; Ewing, D. J.

    1973-01-01

    The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.

  4. Cortical Activation During Levitation and Tentacular Movements of Corticobasal Syndrome.

    PubMed

    Onofrj, Marco; Bonanni, Laura; Delli Pizzi, Stefano; Caulo, Massimo; Onofrj, Valeria; Thomas, Astrid; Tartaro, Armando; Franciotti, Raffaella

    2015-11-01

    Levitation and tentacular movements (LTM) are considered specific, yet rare (30%), features of Corticobasal Syndrome (CBS), and are erroneously classified as alien hand. Our study focuses on these typical involuntary movements and aims to highlight possible neural correlates.LTM were recognizable during functional magnetic resonance imaging (fMRI) in 4 of 19 CBS patients. FMRI activity was evaluated with an activation recognition program for movements, during LTM, consisting of levitaton and finger writhing, and compared with the absence of movement (rest) and voluntary movements (VM), similar to LTM, of affected and unaffected arm-hand. FMRI acquisition blocks were balanced in order to match LTM blocks with rest and VM conditions. In 1 of the 4 patients, fMRI was acquired only during LTM and with a different equipment.Despite variable intensity and range of involuntary movements, evidenced by videos, fMRI showed, during LTM, a significant (P<0.05-0.001) activation only of the contralateral primary motor cortex (M1). Voluntary movements of the affected and unaffected arm elicited the known network including frontal, supplementary, sensory-motor cortex, and cerebellum. Willed movements of the LTM-affected arm induced higher and wider activation of contralateral M1 compared with the unaffected arm.The isolated activation of M1 suggests that LTM is a cortical disinhibition symptom, not involving a network. Higher activation of M1 during VM confirms that M1 excitability changes occur in CBS. Our study calls, finally, attention to the necessity to separate LTM from other alien hand phenomena. PMID:26559277

  5. Cortical Activation During Levitation and Tentacular Movements of Corticobasal Syndrome

    PubMed Central

    Onofrj, Marco; Bonanni, Laura; Pizzi, Stefano Delli; Caulo, Massimo; Onofrj, Valeria; Thomas, Astrid; Tartaro, Armando; Franciotti, Raffaella

    2015-01-01

    Abstract Levitation and tentacular movements (LTM) are considered specific, yet rare (30%), features of Corticobasal Syndrome (CBS), and are erroneously classified as alien hand. Our study focuses on these typical involuntary movements and aims to highlight possible neural correlates. LTM were recognizable during functional magnetic resonance imaging (fMRI) in 4 of 19 CBS patients. FMRI activity was evaluated with an activation recognition program for movements, during LTM, consisting of levitaton and finger writhing, and compared with the absence of movement (rest) and voluntary movements (VM), similar to LTM, of affected and unaffected arm-hand. FMRI acquisition blocks were balanced in order to match LTM blocks with rest and VM conditions. In 1 of the 4 patients, fMRI was acquired only during LTM and with a different equipment. Despite variable intensity and range of involuntary movements, evidenced by videos, fMRI showed, during LTM, a significant (P<0.05–0.001) activation only of the contralateral primary motor cortex (M1). Voluntary movements of the affected and unaffected arm elicited the known network including frontal, supplementary, sensory-motor cortex, and cerebellum. Willed movements of the LTM-affected arm induced higher and wider activation of contralateral M1 compared with the unaffected arm. The isolated activation of M1 suggests that LTM is a cortical disinhibition symptom, not involving a network. Higher activation of M1 during VM confirms that M1 excitability changes occur in CBS. Our study calls, finally, attention to the necessity to separate LTM from other alien hand phenomena. PMID:26559277

  6. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  7. The involuntary nature of music-evoked autobiographical memories in Alzheimer's disease.

    PubMed

    El Haj, Mohamad; Fasotti, Luciano; Allain, Philippe

    2012-03-01

    The main objective of this paper was to examine the involuntary nature of music-evoked autobiographical memories. For this purpose, young adults, older adults, and patients with a clinical diagnosis of probable Alzheimer's disease (AD) were asked to remember autobiographical events in two conditions: after being exposed to their own chosen music, and in silence. Compared to memories evoked in silence, memories evoked in the "Music" condition were found to be more specific, accompanied by more emotional content and impact on mood, and retrieved faster. In addition, these memories engaged less executive processes. Thus, with all these characteristics and the fact that they are activated by a perceptual cue (i.e., music), music-evoked autobiographic memories have all the features to be considered as involuntary memories. Our paper reveals several characteristics of music-evoked autobiographical memories in AD patients and offers a theoretical background for this phenomenon. PMID:22265372

  8. From mind wandering to involuntary retrieval: Age-related differences in spontaneous cognitive processes.

    PubMed

    Maillet, David; Schacter, Daniel L

    2016-01-01

    The majority of studies that have investigated the effects of healthy aging on cognition have focused on age-related differences in voluntary and deliberately engaged cognitive processes. Yet many forms of cognition occur spontaneously, without any deliberate attempt at engaging them. In this article we review studies that have assessed age-related differences in four such types of spontaneous thought processes: mind-wandering, involuntary autobiographical memory, intrusive thoughts, and spontaneous prospective memory retrieval. These studies suggest that older adults exhibit a reduction in frequency of both mind-wandering and involuntary autobiographical memory, whereas findings regarding intrusive thoughts have been more mixed. Additionally, there is some preliminary evidence that spontaneous prospective memory retrieval may be relatively preserved in aging. We consider the roles of age-related differences in cognitive resources, motivation, current concerns and emotional regulation in accounting for these findings. We also consider age-related differences in the neural correlates of spontaneous cognitive processes. PMID:26617263

  9. Classics in psychiatry and the law: Francis Wharton on involuntary confessions.

    PubMed

    Weiss, Kenneth J

    2012-01-01

    Philadelphia attorney Francis Wharton was a key intellectual figure in linking the sciences of medicine and law. In 1860, he published a monograph on involuntary confessions, which represented the closing chapter of Wharton and Stillé's Treatise on Medical Jurisprudence. He had already published A Monograph on Mental Unsoundness in 1855, the first book of the Treatise in its first edition. Wharton was convinced that many criminals had an inner compulsion to confess or to be caught, explained as divine jurisprudence. His remarks on confessions include a typology spanning psychodynamics to police tactics, using contemporaneous, historical, and literary examples. This remarkable document provides insight into the dynamics of unintended and involuntary confessions and is compatible, in part, with current scholarship. The author contrasts Wharton's schema with those of his English predecessor Jeremy Bentham, the psychoanalyst Theodore Reik, and others, and concludes that it represents an important transition toward a psychological approach to the criminology of confessions. PMID:22396344

  10. An involuntary stereotypical grasp tendency pervades voluntary dynamic multifinger manipulation

    PubMed Central

    Rácz, Kornelius; Brown, Daniel

    2012-01-01

    We used a novel apparatus with three hinged finger pads to characterize collaborative multifinger interactions during dynamic manipulation requiring individuated control of fingertip motions and forces. Subjects placed the thumb, index, and middle fingertips on each hinged finger pad and held it—unsupported—with constant total grasp force while voluntarily oscillating the thumb's pad. This task combines the need to 1) hold the object against gravity while 2) dynamically reconfiguring the grasp. Fingertip force variability in this combined motion and force task exhibited strong synchrony among normal (i.e., grasp) forces. Mechanical analysis and simulation show that such synchronous variability is unnecessary and cannot be explained solely by signal-dependent noise. Surprisingly, such variability also pervaded control tasks requiring different individuated fingertip motions and forces, but not tasks without finger individuation such as static grasp. These results critically extend notions of finger force variability by exposing and quantifying a pervasive challenge to dynamic multifinger manipulation: the need for the neural controller to carefully and continuously overlay individuated finger actions over mechanically unnecessary synchronous interactions. This is compatible with—and may explain—the phenomenology of strong coupling of hand muscles when this delicate balance is not yet developed, as in early childhood, or when disrupted, as in brain injury. We conclude that the control of healthy multifinger dynamic manipulation has barely enough neuromechanical degrees of freedom to meet the multiple demands of ecological tasks and critically depends on the continuous inhibition of synchronous grasp tendencies, which we speculate may be of vestigial evolutionary origin. PMID:22956798

  11. Multipulse control of saccadic eye movements

    NASA Technical Reports Server (NTRS)

    Lehman, S. L.; Stark, L.

    1981-01-01

    We present three conclusions regarding the neural control of saccadic eye movements, resulting from comparisons between recorded movements and computer simulations. The controller signal to the muscles is probably a multipulse-step. This kind of signal drives the fastest model trajectories. Finally, multipulse signals explain differences between model and electrophysiological results.

  12. Longitudinal Follow-Up of Mirror Movements after Stroke: A Case Study

    PubMed Central

    Ohtsuka, Hiroyuki; Matsuzawa, Daisuke; Ishii, Daisuke; Shimizu, Eiji

    2015-01-01

    Mirror movement (MM), or visible involuntary movements of a relaxed hand during voluntary fine finger movements of an activated opposite hand, can be observed in the hand that is on the unaffected side of patients with stroke. In the present study, we longitudinally examined the relationship between voluntary movement of the affected hand and MM in the unaffected hand in a single case. We report a 73-year-old woman with a right pontine infarct and left moderate hemiparesis. MM was observed as an extension movement of the unaffected right index finger during extension movement of the affected left index finger. The affected right index movement was found to increase, while MM of the unaffected left index finger was observed to decrease with time. These results indicate that the assessment of MM might be useful for studying the process of motor recovery in patients with stroke. PMID:26649211

  13. The role of resilience in involuntary chief nursing officer job loss.

    PubMed

    Hamilton, Ellen K

    2015-01-01

    The purpose of this article is to discuss the role resilience plays for chief nursing officers who have experienced involuntary loss of their positions. Various definitions of resilience based on 3 stages of resilience inquiry that have evolved over time and the "Broaden-and-Build Theory" of positive emotions are presented. Based on this foundation, recommendations are presented to help these chief nursing officers develop or enhance their resilience to move forward to a successful future. PMID:25714951

  14. Mirror Movements After Stroke Suggest Facilitation From Nonprimary Motor Cortex: A Case Presentation.

    PubMed

    Caronni, Antonio; Sciumé, Luciana; Ferpozzi, Valentina; Blasi, Valeria; Castellano, Antonella; Falini, Andrea; Perucca, Laura; Cerri, Gabriella

    2016-05-01

    When stroke occurs in adulthood, mirror movements (MMs; involuntary movements occurring in 1 hand when performing unilateral movements with the contralateral hand) in the paretic hand rarely occur. We present a case of an apparently healthy 54-year-old man presenting with MMs in his left (nondominant) hand. Further evaluation revealed diminished strength and dexterity in left hand, increased spinal excitability, decreased corticospinal excitability, occurrence of ipsilateral motor responses, enlarged cortical motor representation, and imaging findings consistent with a previously undiagnosed right-subcortical stroke. MMs and ipsilateral motor responses may reflect the increased spinal motor neurons' excitability sustained by the spared nonprimary ipsilesional motor areas. PMID:26514789

  15. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  16. Muscle disorder

    MedlinePlus

    Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs of a muscle disorder, tests such as an electromyogram , ...

  17. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  18. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  19. Psychogenic Movement

    MedlinePlus

    ... also look for marked improvement in symptoms following psychotherapy, use of a placebo (a medicine with no ... multi-therapy approach to treating psychogenic movement includes psychotherapy, placebo, or suggestion; antidepressants for symptoms related to ...

  20. Movement - uncoordinated

    MedlinePlus

    Lack of coordination; Loss of coordination; Coordination impairment; Ataxia; Clumsiness; Uncoordinated movement ... are passed through families (such as congenital cerebellar ataxia, Friedreich ataxia , ataxia - telangiectasia , or Wilson disease ) Multiple ...

  1. An electrooptical muscle contraction sensor.

    PubMed

    Chianura, Alessio; Giardini, Mario E

    2010-07-01

    An electrooptical sensor for the detection of muscle contraction is described. Infrared light is injected into the muscle, the backscattering is observed, and the contraction is detected by measuring the change, that occurs during muscle contraction, between the light scattered in the direction parallel and perpendicular to the muscle cells. With respect to electromyography and to optical absorption-based sensors, our device has the advantage of lower invasiveness, of lower sensitivity to electromagnetic noise and to movement artifacts, and of being able to distinguish between isometric and isotonic contractions. PMID:20490943

  2. Joint Impedance Decreases during Movement Initiation

    PubMed Central

    Ludvig, Daniel; Antos, Stephen A.; Perreault, Eric J.

    2013-01-01

    The mechanical properties of the joint influence how we interact with our environment and hence are important in the control of both posture and movement. Many studies have investigated how the mechanical properties—specifically the impedance—of different joints vary with different postural tasks. However, studies on how joint impedance varies with movement remain limited. The few studies that have investigated how impedance varies with movement have found that impedance is lower during movement than during posture. In this study we investigated how impedance changed as people transitioned from a postural task to a movement task. We found that subjects’ joint impedances decreased at the initiation of movement, prior to increasing at the cessation of movement. This decrease in impedance occurred even though the subjects’ torque and EMG levels increased. These findings suggest that during movement the central nervous system may control joint impedance independently of muscle activation. PMID:23366632

  3. A rare paroxysmal movement disorder: mixed type of paroxysmal dyskinesia.

    PubMed

    Sen, Aysu; Atakli, Dilek; Guresci, Bahar; Arpaci, Baki

    2014-11-30

    Paroxysmal dyskinesias are rare, heterogeneous group of disorders characterised by recurrent attacks of involuntary movements. The four classic categories of paroxysmal dyskinesias are kinesigenic, nonkinesigenic, exercise-induced and hypnogenic. There are some patients that do not fit in these four groups of paroxysmal dyskinesia and are termed as "mixed type". We describe a 13-year-old girl who had features of both paroxysmal kinesigenic dyskinesia and paroxysmal nonkinesigenic dyskinesia that was misdiagnosed as refractory epilepsy. She improved substantially with a combination of carbamazepine and clonazepame. It is important to recognize the clinical presentation of paroxysmal dyskinesias and distinguish these movement disorders from other disorders, such as psychogenic disorders and epilepsia, for deciding the treatment and prognosis of the patients. This case highlights the importance of the recognition of a rare paroxysmal movement disorders. PMID:25720246

  4. Impact of Levodopa Priming on Dopamine Neuron Transplant Efficacy and Induction of Abnormal Involuntary Movements in Parkinsonian Rats

    PubMed Central

    Steece-Collier, Kathy; Soderstrom, Katherine; Collier, Timothy; Sortwell, Caryl E.; Lad, Eleonora Maries

    2010-01-01

    Clinical trials of neural grafting for Parkinson's disease (PD) have produced variable, but overall, disappointing results. One particular disappointment has been the development of aberrant motor complications following dopamine (DA) neuron grafting. Despite a lack of consistent benefit, the utility of dopamine neuron replacement remains supported by clinical and basic data. In a continued effort to elucidate factors that might improve this therapy, we used a parkinsonian rat model to examine whether pre-graft chronic levodopa impacted graft efficacy and/or graft-induced dyskinesia (GID) induction. Indeed, all grafted PD patients to date have had a pre-graft history of long-term levodopa. It is well established that long-term levodopa results in a plethora of long-lasting neurochemical alterations, and genomic changes indicative of altered structural and synaptic plasticity. Thus, therapeutic dopamine terminal replacement in a striatal environment complicated by such changes could be expected to lead to abnormal or inappropriate connections between graft and host brain, and contribute to suboptimal efficacy and/or post-graft GID behaviors. To investigate the impact of pre-graft levodopa, one group of parkinsonian rats received levodopa for 4 weeks prior to grafting. A second levodopa naïve group was grafted and grafts allowed to mature for nine weeks prior to introducing chronic levodopa. We report here that in parkinsonian rats, pre-exposure to chronic levodopa significantly reduces behavioral and neurochemical efficacy of embryonic dopamine grafts. Further, dopamine terminal replacement prior to introduction of chronic levodopa is highly effective at preventing development of levodopa-induced dyskinesias, and GID-like behaviors occur regardless of pre-graft levodopa status. PMID:19399877

  5. Does retrieval intentionality really matter? Similarities and differences between involuntary memories and directly and generatively retrieved voluntary memories.

    PubMed

    Barzykowski, Krystian; Staugaard, Søren Risløv

    2016-08-01

    Theories of autobiographical memory distinguish between involuntary and voluntary retrieval as a consequence of conscious intention (i.e., wanting to remember). Another distinction can be made between direct and generative retrieval, which reflects the effort involved (i.e., trying to remember). However, it is unclear how intention and effort interacts. For example, involuntary memories and directly retrieved memories have been used interchangeably in the literature to refer to the same phenomenon of effortless, non-strategic retrieval. More recent theoretical advances suggest that they are separate types of retrieval, one unintentional (involuntary), another intentional and effortless (direct voluntary retrieval), and a third intentional and effortful (generative voluntary retrieval). Whether this also entails differing phenomenological characteristics, such as vividness, rehearsal, or emotional valence, has not been previously investigated. In the current study, participants reported memories in an experimental paradigm designed to elicit voluntary and involuntary memories and rated them on a number of characteristics. If intention affects the retrieval process, then we should expect differences between the characteristics of involuntary and directly retrieved memories. The results imply that retrieval intention seems to differentiate how a memory appears in a person's mind. Furthermore, we argue that these differences in part could result from differences in encoding and consolidation. PMID:26514399

  6. Effects of voluntary and involuntary exercise on cognitive functions, and VEGF and BDNF levels in adolescent rats.

    PubMed

    Uysal, N; Kiray, M; Sisman, A R; Camsari, U M; Gencoglu, C; Baykara, B; Cetinkaya, C; Aksu, I

    2015-01-01

    Regular treadmill running during adolescence improves learning and memory in rats. During adolescence, the baseline level of stress is thought to be greater than during other periods of life. We investigated the effects of voluntary and involuntary exercise on the prefrontal cortex and hippocampus, vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF) levels, and spatial learning, memory and anxiety in adolescent male and female rats. The voluntary exercise group was given free access to a running wheel for 6 weeks. The involuntary exercise group was forced to run on a treadmill for 30 min at 8 m/min 5 days/week for 6 weeks. Improved learning was demonstrated in both exercise groups compared to controls. Neuron density in the CA1 region of the hippocampus, dentate gyrus and prefrontal cortex were increased. Hippocampal VEGF and BDNF levels were increased in both exercise groups compared to controls. In females, anxiety and corticosterone levels were decreased; BDNF and VEGF levels were higher in the voluntary exercise group than in the involuntary exercise group. The adolescent hippocampus is affected favorably by regular exercise. Although no difference was found in anxiety levels as a result of involuntary exercise in males, females showed increased anxiety levels, and decreased VEGF and BDNF levels in the prefrontal cortex after involuntary exercise. PMID:25203492

  7. [Evaluating the implementation of involuntary hospitalization procedures: a profile of people, audits and recommendations].

    PubMed

    LeBlanc, Line

    2014-01-01

    Since the 1990s, legislative reforms have been undertaken in many Western countries to reduce involuntary hospitalization. Studies examining fluctuation rates before and after the legislative reform show a general trend toward an increase rather than a decrease in involuntary hospitalization rates (de Stefano & Ducci, 2008). In Quebec, many reports have shown that consent for psychiatric evaluation and hospitalisation for people who present an imminent danger to themselves or to others is difficult to obtain due to clinical, legal, and ethical considerations. To facilitate this process, a new protocol was developed and implemented following the training of 335 health workers and 85 medical doctors in 6 hospitals. Our study evaluated this protocol and established a profile of people who had been hospitalized against their will. Using a retrospective analysis, we examined the files of 179 patients who underwent a psychiatric evaluation process during an involuntary hospitalization. This file analysis allowed us to develop a better profile of these people and determine whether the required forms were present and how adequately they were filled out by the professionals. We also conducted a study with the professionals responsible for applying the new protocol to get a better idea of its characteristics (relative advantage, compatibility, simplicity, reversibility and observability) as well as the principles of consent and the obstacles to its implementation.Our study showed that that half of the patients were diagnosed with schizophrenia or another psychosis. Fifty-four point two percent (54.2%) of the patients were males, 79% were single or separated and only 18,4% were working. At the time of their crisis situation, 30,7% were brought to the hospital by police officers and 19% were already hospitalized. The remaining patients were brought in by ambulance, family members or they came in by themselves. Professional opinion of the new protocol was positive however they

  8. Multi-finger interaction during involuntary and voluntary single finger force changes

    PubMed Central

    Martin, J.R.; Zatsiorsky, V.M.; Latash, M.L.

    2011-01-01

    Two types of finger interaction are characterized by positive co-variation (enslaving) or negative co-variation (error compensation) of finger forces. Enslaving reflects mechanical and neural connections among fingers, while error compensation results from synergic control of fingers to stabilize their net output. Involuntary and voluntary force changes by a finger were used to explore these patterns. We hypothesized that synergic mechanisms will dominate during involuntary force changes, while enslaving will dominate during voluntary finger force changes. Subjects pressed with all four fingers to match a target force that was 10% of their maximum voluntary contraction (MVC). One of the fingers was unexpectedly raised 5.0 mm at a speed of 30.0 mm/s. During finger raising the subject was instructed “not to intervene voluntarily”. After the finger was passively lifted and a new steady-state achieved, subjects pressed down with the lifted finger, producing a pulse of force voluntarily. The data were analyzed in terms of finger forces and finger modes (hypothetical commands to fingers reflecting their intended involvement). The target finger showed an increase in force during both phases. In the involuntary phase, the target finger force changes ranged between 10.71 ± 1.89% MVC (I-finger) and 16.60 ± 2.26% MVC (L-finger). Generally, non-target fingers displayed a force decrease with a maximum amplitude of −1.49 ± 0.43% MVC (L-finger). Thus, during the involuntary phase, error compensation was observed – non-lifted fingers showed a decrease in force (as well as in mode magnitude). During the voluntary phase, enslaving was observed – non-target fingers showed an increase in force and only minor changes in mode magnitude. The average change in force of non-target fingers ranged from 21.83 ± 4.47% MVC for R-finger (M-finger task) to 0.71 ± 1.10 % MVC for L-finger (I-finger task). The average change in mode of non-target fingers was between −7.34 ± 19

  9. Intramuscular calcium movements: Experiments from the Soviet Biosatellite Biocosmos

    NASA Astrophysics Data System (ADS)

    Goblet, C.; Holy, X.; Mounier, Y.

    Experiments have been performed in skeletal muscle fibres from the lateral head of gastrocnemius muscle of female rats. Changes in intramuscular calcium movements due to microgravity conditions have been tested by tension measurements in chemically skinned muscle fibres. Our results show that microgravity induces i) a decrease in maximal muscle strength developped by contractile proteins ii) a decrease of intensity and rate of both Ca release and Ca uptake by the sarcoplasmic reticulum.

  10. Muscle biopsy

    MedlinePlus

    ... that affect the muscles (such as trichinosis or toxoplasmosis ) Muscle disorders such as muscular dystrophy or congenital ... nodosa Polymyalgia rheumatica Polymyositis - adult Thyrotoxic periodic paralysis Toxoplasmosis Trichinosis Update Date 9/8/2014 Updated by: ...

  11. Muscle Disorders

    MedlinePlus

    ... cause weakness, pain or even paralysis. Causes of muscle disorders include Injury or overuse, such as sprains or strains, cramps or tendinitis A genetic disorder, such as muscular dystrophy Some ... muscles Infections Certain medicines Sometimes the cause is not ...

  12. Microgravity effects on 'postural' muscle activity patterns

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1994-01-01

    Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using electromyography (EMG) to monitor 'postural' muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.

  13. Acid-base balance in ducks (Anas platyrhynchos) during involuntary submergence.

    PubMed

    Shimizu, M; Jones, D R

    1987-02-01

    Measurements of all the major independent variables [arterial CO2 tension (PaCO2); strong-ion difference ([SID]), and total protein content, which approximate total weak acid concentration in plasma] are essential for understanding changes in acid-base balance in plasma. During involuntary submergence of 1, 2, or 4 min, PaCO2 in ducks increased and arterial pH (pHa) decreased. During 1-min dives there were no significant changes in any strong ions. In both 2- and 4-min dives, there was a significant increase in [lactate-], but because of an increase in equal magnitude of [Na+], [SID] did not change. During recovery from all dives the plasma remained acidotic for several minutes, although PaCO2 fell below predive levels in less than 1 min. [Lactate-] increased in the recovery period. There were no changes in total protein content during submergence or recovery. Breathing 100% O2 before 2-min dives caused a reduction in [lactate-] production and release during and after the dive, although due to a marked increased in PaCO2, pHa fell as low as in 4-min dives after breathing air. After 1 min of recovery, pHa returned to normal along with the restoration of the predive level of PaCO2. We conclude that the acidosis during involuntary submergence is due solely to an increase in PaCO2, whereas in recovery it is caused by decreased [SID]. PMID:3101522

  14. Which values are important for patients during involuntary treatment? A qualitative study with psychiatric inpatients.

    PubMed

    Valenti, Emanuele; Giacco, Domenico; Katasakou, Christina; Priebe, Stefan

    2014-12-01

    Involuntary hospital treatment is practised throughout the world. Providing appropriate treatment in this context is particularly challenging for mental health professionals, who frequently face ethical issues as they have to administer treatments in the absence of patient consent. We have explored the views of 59 psychiatric patients who had been involuntarily admitted to hospital treatment across England. Moral deliberation theory, developed in the field of clinical bioethics, was used to assess ethical issues. Interviews were audio recorded and transcribed verbatim, and analysed through thematic content analysis. We have detected a number of circumstances in the hospital that were perceived as potentially conflictual by patients. We have established which patient values should be considered by staff when deliberating on ethically controversial issues in these circumstances. Patients regarded as important having freedom of choice and the feeling of being safe during their stay in the hospital. Patients also valued non-paternalistic and respectful behaviour from staff. Consideration of patient values in moral deliberation is important to manage ethical conflicts. Even in the ethically challenging context of involuntary treatment, there are possibilities to increase patient freedoms, enhance their sense of safety and convey respect. PMID:24129367

  15. Involuntary memory chains: what do they tell us about autobiographical memory organisation?

    PubMed

    Mace, John H; Clevinger, Amanda M; Bernas, Ronan S

    2013-04-01

    Involuntary memory chains are spontaneous recollections of the past that occur as a sequence of associated memories. This memory phenomenon has provided some insights into the nature of associations in autobiographical memory. For example, it has shown that conceptually associated memories (memories sharing similar content, such as the same people or themes) are more prevalent than general-event associated memories (memories from the same extended event period, such as a trip). This finding has suggested that conceptual associations are a central organisational principle in the autobiographical memory system. This study used involuntary memories chains to gain additional insights into the associative structure of autobiographical memory. Among the main results, we found that general-event associations have higher rates of forgetting than conceptual associations, and in long memory chains (i.e., those with more than two memories) conceptually associated memories were more likely to activate memories in their associative class, whereas general-event associated memories were less likely to activate memories in their associative class. We interpret the results as further evidence that conceptual associations are a major organising principle in the autobiographical memory system, and attempt to explain why general-event associations have shorter lifespans than conceptual associations. PMID:23016577

  16. The speed of our mental soundtracks: Tracking the tempo of involuntary musical imagery in everyday life.

    PubMed

    Jakubowski, Kelly; Farrugia, Nicolas; Halpern, Andrea R; Sankarpandi, Sathish K; Stewart, Lauren

    2015-11-01

    The study of spontaneous and everyday cognitions is an area of rapidly growing interest. One of the most ubiquitous forms of spontaneous cognition is involuntary musical imagery (INMI), the involuntarily retrieved and repetitive mental replay of music. The present study introduced a novel method for capturing temporal features of INMI within a naturalistic setting. This method allowed for the investigation of two questions of interest to INMI researchers in a more objective way than previously possible, concerning (1) the precision of memory representations within INMI and (2) the interactions between INMI and concurrent affective state. Over the course of 4 days, INMI tempo was measured by asking participants to tap to the beat of their INMI with a wrist-worn accelerometer. Participants documented additional details regarding their INMI in a diary. Overall, the tempo of music within INMI was recalled from long-term memory in a highly veridical form, although with a regression to the mean for recalled tempo that parallels previous findings on voluntary musical imagery. A significant positive relationship was found between INMI tempo and subjective arousal, suggesting that INMI interacts with concurrent mood in a similar manner to perceived music. The results suggest several parallels between INMI and voluntary imagery, music perceptual processes, and other types of involuntary memories. PMID:26122757

  17. Involuntary attentional orienting in the absence of awareness speeds up early sensory processing.

    PubMed

    Schettino, Antonio; Rossi, Valentina; Pourtois, Gilles; Müller, Matthias M

    2016-01-01

    A long-standing controversy in the field of human neuroscience has revolved around the question whether attended stimuli are processed more rapidly compared to unattended stimuli. We conducted two event-related potential (ERP) experiments employing a temporal order judgment procedure in order to assess whether involuntary attention accelerates sensory processing, as indicated by latency modulations of early visual ERP components. A non-reportable exogenous cue could precede the first target with equal probability at the same (compatible) or opposite (incompatible) location. The use of non-reportable cues promoted automatic, bottom-up attentional capture, and ensured the elimination of any confounds related to the use of stimulus features that are common to both cue and target. Behavioral results confirmed involuntary exogenous orienting towards the unaware cue. ERP results showed that the N1pc, an electrophysiological measure of attentional orienting, was smaller and peaked earlier in compatible as opposed to incompatible trials, indicating cue-dependent changes in magnitude and speed of first target processing in extrastriate visual areas. Complementary Bayesian analysis confirmed the presence of this effect regardless of whether participants were actively looking for the cue (Experiment 1) or were not informed of it (Experiment 2), indicating purely automatic, stimulus-driven orienting mechanisms. PMID:26673944

  18. Multi-curve spectrum representation of facial movements and expressions

    NASA Astrophysics Data System (ADS)

    Pei, Li; Zhang, Zhijiang; Chen, Zhixiang; Zeng, Dan

    2009-07-01

    This paper presents a method of multi-curve spectrum representation of facial movements and expressions. Based on 3DMCF (3D muscle-controlled facial) model, facial movements and expressions are controlled by 21 virtual muscles. So, facial movements and expressions can be described by a group of time-varying curves of normalized muscle contraction, called multi-curve spectrum. The structure and basic characters of multi-curve spectrum is introduced. The performance of the proposed method is among the best. This method needs small quantity of data, and is easy to apply. It can also be used to transplant facial animation between different faces.

  19. Paralyzed Patients Regain Voluntary Movement | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Spinal Cord Stimulation Paralyzed Patients Regain Voluntary Movement Past Issues / ... Groundbreaking NIH study spurs hope for those with spinal cord injury Flex a muscle, any muscle? Certainly, it's ...

  20. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  1. Strategies to maintain skeletal muscle mass in the injured athlete: nutritional considerations and exercise mimetics.

    PubMed

    Wall, Benjamin T; Morton, James P; van Loon, Luc J C

    2015-01-01

    The recovery from many injuries sustained in athletic training or competition often requires an extensive period of limb immobilisation (muscle disuse). Such periods induce skeletal muscle loss and consequent declines in metabolic health and functional capacity, particularly during the early stages (1-2 weeks) of muscle disuse. The extent of muscle loss during injury strongly influences the level and duration of rehabilitation required. Currently, however, efforts to intervene and attenuate muscle loss during the initial two weeks of injury are minimal. Mechanistically, muscle disuse atrophy is primarily attributed to a decline in basal muscle protein synthesis rate and the development of anabolic resistance to food intake. Dietary protein consumption is of critical importance for stimulating muscle protein synthesis rates throughout the day. Given that the injured athlete greatly reduces physical activity levels, maintaining muscle mass whilst simultaneously avoiding gains in fat mass can become challenging. Nevertheless, evidence suggests that maintaining or increasing daily protein intake by focusing upon the amount, type and timing of dietary protein ingestion throughout the day can restrict the loss of muscle mass and strength during recovery from injury. Moreover, neuromuscular electrical stimulation may be applied to evoke involuntary muscle contractions and support muscle mass maintenance in the injured athlete. Although more applied work is required to translate laboratory findings directly to the injured athlete, current recommendations for practitioners aiming to limit the loss of muscle mass and/or strength following injury in their athletes are outlined herein. PMID:25027662

  2. Genetics Home Reference: fatty acid hydroxylase-associated neurodegeneration

    MedlinePlus

    ... nerves ) and difficulties with the muscles that control eye movement. Affected individuals may have a loss of sharp ... look in the same direction (strabismus), rapid involuntary eye movements (nystagmus), or difficulty moving the eyes intentionally (supranuclear ...

  3. Muscle wasting: an overview of recent developments in basic research.

    PubMed

    Palus, Sandra; von Haehling, Stephan; Springer, Jochen

    2014-09-01

    The syndrome of cachexia, i.e., involuntary weight loss in patients with underlying diseases, sarcopenia, i.e., loss of muscle mass due to aging, and general muscle atrophy from disuse and/or prolonged bed rest have received more attention over the last decades. All lead to a higher morbidity and mortality in patients, and therefore, they represent a major socio-economic burden for the society today. This mini-review looks at recent developments in basic research that are relevant to the loss of skeletal muscle. It aims to cover the most significant publication of last 3 years on the causes and effects of muscle wasting, new targets for therapy development, and potential biomarkers for assessing skeletal muscle mass. The targets include the following: (1) E-3 ligases TRIM32, SOCS1, and SOCS3 by involving the elongin BC ubiquitin-ligase, Cbl-b, culling 7, Fbxo40, MG53 (TRIM72), and the mitochondrial Mul1; (2) the kinase MST1; and (3) the G-protein Gαi2. D(3)-creatine has the potential to be used as a novel biomarker that allows to monitor actual change in skeletal muscle mass over time. In conclusion, significant development efforts are being made by academic groups as well as numerous pharmaceutical companies to identify new target and biomarker muscles, as muscle wasting represents a great medical need, but no therapies have been approved in the last decades. PMID:25163459

  4. Muscle wasting: an overview of recent developments in basic research.

    PubMed

    Palus, Sandra; von Haehling, Stephan; Springer, Jochen

    2014-10-20

    The syndrome of cachexia, i.e. involuntary weight loss in patients with underlying diseases, sarcopenia, i.e. loss of muscle mass due to ageing, and general muscle atrophy from disuse and/or prolonged bed rest have received more attention over the last decades. All lead to a higher morbidity and mortality in patients and therefore, they represent a major socio-economic burden for the society today. This mini-review looks at recent developments in basic research that are relevant to the loss of skeletal muscle. It aims to cover the most significant publication of last three years on the causes and effects of muscle wasting, new targets for therapy development and potential biomarkers for assessing skeletal muscle mass. The targets include 1) E-3 ligases: TRIM32, SOCS1 and SOCS3 by involving the elongin BC ubiquitin-ligase, Cbl-b, culling 7, Fbxo40, MG53 (TRIM72) and the mitochondrial Mul1, 2) the kinase MST1 and 3) the G-protein Gαi2. D(3)-creatine has the potential to be used as a novel biomarker that allows to monitor actual change in skeletal muscle mass over time. In conclusion, significant development efforts are being made by academic groups as well as numerous pharmaceutical companies to identify new targets and biomarkers muscle, as muscle wasting represents a great medical need, but no therapies have been approved in the last decades. PMID:25205489

  5. Graves' ophthalmopathy evaluated by infrared eye-movement recordings

    SciTech Connect

    Feldon, S.E.; Unsoeld, R.

    1982-02-01

    Thirteen patients with varying degrees of Graves' ophthalmopathy were examined using high-resolution infrared oculography to determine peak velocities for horizontal eye movements between 3 degrees and 30 degrees. As severity of the orbital disease increased, peak velocities became substantially lower. Vertical-muscle surgery failed to have any effect on peak velocity of horizontal eye movements. In contrast, orbital decompression caused notable improvement in peak velocity of eye movements. Eye-movement recordings, which provide a measure of extraocular muscle function rather than structure, may provide a safe, sensitive, and accurate method for classifying and following up patients with Graves' ophthalmopathy.

  6. Therapeutic relationships and involuntary treatment orders: service users' interactions with health-care professionals on the ward.

    PubMed

    Wyder, Marianne; Bland, Robert; Blythe, Andrew; Matarasso, Beth; Crompton, David

    2015-04-01

    There is increasing evidence that an involuntary hospital admission and treatment can undermine the therapeutic relationship. While good relationships with staff are important factors influencing long-term recovery, there is little information on how people experience their relationships with staff while under an involuntary treatment order (ITO). Twenty-five involuntary inpatients were interviewed about their experiences of an ITO. The interviews were analysed by a general inductive approach. Participants described the following themes: (i) the ITO admission was a daunting and frightening experience; (ii) staff behaviours and attitudes shaped their experiences in hospital; (iii) importance of staff listening to their concerns; (iv) importance of having a space to make sense of their experiences; (v) importance of staff ability to look beyond their illness and diagnosis; and (vi) importance of staff working in partnership. These findings highlight that when using recovery principles, such as an empathic engagement with the patients' lived experience, forging partnerships with patients in treatment decision-making to enhance agency, an involuntary treatment order does not have to limit the ability to establish positive relationships. PMID:25628260

  7. 25 CFR 23.13 - Payment for appointed counsel in involuntary Indian child custody proceedings in state courts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT Notice of Involuntary Child Custody Proceedings..., together with a statement that complies with 25 CFR 2.7 and that informs the applicant that the decision... subsection in accordance with 25 CFR 2.20 (c) through (e). Appeal procedures shall be as set out in part 2...

  8. 25 CFR 23.13 - Payment for appointed counsel in involuntary Indian child custody proceedings in state courts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT Notice of Involuntary Child Custody Proceedings..., together with a statement that complies with 25 CFR 2.7 and that informs the applicant that the decision... subsection in accordance with 25 CFR 2.20 (c) through (e). Appeal procedures shall be as set out in part 2...

  9. 25 CFR 23.13 - Payment for appointed counsel in involuntary Indian child custody proceedings in state courts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT Notice of Involuntary Child Custody Proceedings..., together with a statement that complies with 25 CFR 2.7 and that informs the applicant that the decision... subsection in accordance with 25 CFR 2.20 (c) through (e). Appeal procedures shall be as set out in part 2...

  10. 25 CFR 23.13 - Payment for appointed counsel in involuntary Indian child custody proceedings in state courts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT Notice of Involuntary Child Custody Proceedings..., together with a statement that complies with 25 CFR 2.7 and that informs the applicant that the decision... subsection in accordance with 25 CFR 2.20 (c) through (e). Appeal procedures shall be as set out in part 2...

  11. 25 CFR 23.13 - Payment for appointed counsel in involuntary Indian child custody proceedings in state courts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT Notice of Involuntary Child Custody Proceedings..., together with a statement that complies with 25 CFR 2.7 and that informs the applicant that the decision... subsection in accordance with 25 CFR 2.20 (c) through (e). Appeal procedures shall be as set out in part 2...

  12. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  13. 26 CFR 1.1033(b)-1 - Basis of property acquired as a result of an involuntary conversion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Basis of property acquired as a result of an involuntary conversion. 1.1033(b)-1 Section 1.1033(b)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Common Nontaxable Exchanges §...

  14. 26 CFR 1.1033(c)-1 - Disposition of excess property within irrigation project deemed to be involuntary conversion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... irrigation project deemed to be involuntary conversion. 1.1033(c)-1 Section 1.1033(c)-1 Internal Revenue... (CONTINUED) Common Nontaxable Exchanges § 1.1033(c)-1 Disposition of excess property within irrigation... irrigation project or division in order to conform to acreage limitations of the Federal reclamation...

  15. 26 CFR 1.1033(c)-1 - Disposition of excess property within irrigation project deemed to be involuntary conversion.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... irrigation project deemed to be involuntary conversion. 1.1033(c)-1 Section 1.1033(c)-1 Internal Revenue... (CONTINUED) Common Nontaxable Exchanges § 1.1033(c)-1 Disposition of excess property within irrigation... irrigation project or division in order to conform to acreage limitations of the Federal reclamation...

  16. 26 CFR 1.1033(a)-2 - Involuntary conversion into similar property, into money or into dissimilar property.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., into money or into dissimilar property. 1.1033(a)-2 Section 1.1033(a)-2 Internal Revenue INTERNAL...) Common Nontaxable Exchanges § 1.1033(a)-2 Involuntary conversion into similar property, into money or... recognized. Such nonrecognition of gain is mandatory. (c) Conversion into money or into dissimilar...

  17. 26 CFR 1.1033(a)-2 - Involuntary conversion into similiar property, into money or into dissimilar property.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., into money or into dissimilar property. 1.1033(a)-2 Section 1.1033(a)-2 Internal Revenue INTERNAL...) Common Nontaxable Exchanges § 1.1033(a)-2 Involuntary conversion into similiar property, into money or... recognized. Such nonrecognition of gain is mandatory. (c) Conversion into money or into dissimilar...

  18. 26 CFR 1.1033(a)-2 - Involuntary conversion into similar property, into money or into dissimilar property.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., into money or into dissimilar property. 1.1033(a)-2 Section 1.1033(a)-2 Internal Revenue INTERNAL...) Common Nontaxable Exchanges § 1.1033(a)-2 Involuntary conversion into similar property, into money or... recognized. Such nonrecognition of gain is mandatory. (c) Conversion into money or into dissimilar...

  19. 26 CFR 1.1033(b)-1 - Basis of property acquired as a result of an involuntary conversion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 11 2011-04-01 2011-04-01 false Basis of property acquired as a result of an involuntary conversion. 1.1033(b)-1 Section 1.1033(b)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Common Nontaxable Exchanges § 1.1033(b)-1 Basis of...

  20. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  1. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  2. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  3. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  4. Locomotion as an emergent property of muscle contractile dynamics.

    PubMed

    Biewener, Andrew A

    2016-01-01

    Skeletal muscles share many common, highly conserved features of organization at the molecular and myofilament levels, giving skeletal muscle fibers generally similar and characteristic mechanical and energetic properties; properties well described by classical studies of muscle mechanics and energetics. However, skeletal muscles can differ considerably in architectural design (fiber length, pinnation, and connective tissue organization), as well as fiber type, and how they contract in relation to the timing of neuromotor activation and in vivo length change. The in vivo dynamics of muscle contraction is, therefore, crucial to assessing muscle design and the roles that muscles play in animal movement. Architectural differences in muscle-tendon organization combined with differences in the phase of activation and resulting fiber length changes greatly affect the time-varying force and work that muscles produce, as well as the energetic cost of force generation. Intrinsic force-length and force-velocity properties of muscles, together with their architecture, also play important roles in the control of movement, facilitating rapid adjustments to changing motor demands. Such adjustments complement slower, reflex-mediated neural feedback control of motor recruitment. Understanding how individual fiber forces are integrated to whole-muscle forces, which are transmitted to the skeleton for producing and controlling locomotor movement, is therefore essential for assessing muscle design in relation to the dynamics of movement. PMID:26792341

  5. Environmental and mental conditions predicting the experience of involuntary musical imagery: An experience sampling method study.

    PubMed

    Floridou, Georgia A; Müllensiefen, Daniel

    2015-05-01

    An experience sampling method (ESM) study on 40 volunteers was conducted to explore the environmental factors and psychological conditions related to involuntary musical imagery (INMI) in everyday life. Participants reported 6 times per day for one week on their INMI experiences, relevant contextual information and associated environmental conditions. The resulting data was modeled with Bayesian networks and led to insights into the interplay of factors related to INMI experiences. The activity that a person is engaged was found to play an important role in the experience of mind wandering, which in turn enables the experience of INMI. INMI occurrence is independent of the time of the day while the INMI trigger affects the subjective evaluation of the INMI experience. The results are compared to findings from earlier studies based on retrospective surveys and questionnaires and highlight the advantage of ESM techniques in research on spontaneous experiences like INMI. PMID:25800098

  6. Involuntary and Persistent Environmental Noise Influences Health and Hearing in Beirut, Lebanon

    PubMed Central

    Fooladi, Marjaneh M.

    2012-01-01

    Objective. This study was conducted to assess the effects of involuntary and persistent noise exposure on health and hearing among Lebanese adults in Beirut, Lebanon, where people are exposed to noise from construction sites, power generators, honking cars, and motorcycles. Methods. Using a descriptive and exploratory design with mixed methods, participants were surveyed, interviewed, and tested for hearing while street noise levels were measured near their residents and work places. Results. Self-reports of 83 Lebanese adult, who lived and worked in Beirut, helped identify common patterns in experiences such as irritability, anger, headaches, and sleep disturbances due to noise annoyance. Of those tested, 30% suffered from high-frequency hearing impairment. Our results showed that environmental sound dB had increased by 12% and sound intensity by 400% above the maximum standard level when compared to the WHO report of 1999. Conclusion. Environmental noise contributes to premature hearing loss and potentiates systemic diseases among Lebanese. PMID:22013454

  7. Job burnout is associated with dysfunctions in brain mechanisms of voluntary and involuntary attention.

    PubMed

    Sokka, Laura; Leinikka, Marianne; Korpela, Jussi; Henelius, Andreas; Ahonen, Lauri; Alain, Claude; Alho, Kimmo; Huotilainen, Minna

    2016-05-01

    Individuals with job burnout symptoms often report having cognitive difficulties, but related electrophysiological studies are scarce. We assessed the impact of burnout on performing a visual task with varying memory loads, and on involuntary attention switch to distractor sounds using scalp recordings of event-related potentials (ERPs). Task performance was comparable between burnout and control groups. The distractor sounds elicited a P3a response, which was reduced in the burnout group. This suggests burnout-related deficits in processing novel and potentially important events during task performance. In the burnout group, we also observed a decrease in working-memory related P3b responses over posterior scalp and increase over frontal areas. These results suggest that burnout is associated with deficits in cognitive control needed to monitor and update information in working memory. Successful task performance in burnout might require additional recruitment of anterior regions to compensate the decrement in posterior activity. PMID:26926255

  8. Aftermath of 3/11: earthquakes and involuntary attentional orienting to sudden ambient sounds.

    PubMed

    Kimura, Motohiro; Ueda, Mari; Takeda, Yuji; Sugimoto, Fumie; Katayama, Jun'ichi

    2013-10-01

    Due to the Great East Japan Earthquake on 11 March 2011 and the following long-term earthquake swarm, many people living in the earthquake-affected areas have developed mental stress, even though clinically-diagnosable symptoms may not be apparent. Concurrently, many unusual reports have emerged in which persons complain of abnormally increased sensitivity to sudden ambient sounds during their daily lives (e.g., the sound of the washing machine on spin cycle). By recording event-related potentials to various sudden ambient sounds from young adults living in the affected areas, we found that the level of earthquake-induced mental stress, as indexed by the hyperarousal symptoms of posttraumatic stress disorder, was positively related to the magnitude of P3a to sudden ambient sounds. These results reveal a strong relationship between mental stress and enhanced involuntary attentional orienting in a large majority of trauma-exposed people without diagnosable symptoms. PMID:24007812

  9. Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2010-03-01

    Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.

  10. Is muscle spindle proprioceptive function spared in muscular dystrophies? A muscle tendon vibration study.

    PubMed

    Ribot-Ciscar, Edith; Tréfouret, Sylvie; Aimonetti, Jean-Marc; Attarian, Shahram; Pouget, Jean; Roll, Jean-Pierre

    2004-06-01

    Muscular dystrophies (MDs) are characterized by the degeneration of skeletal muscle fibers. The aim of the present study was to determine whether the intrafusal fibers of muscle spindles are also affected in MD. The functional integrity of muscle spindles was tested by analyzing their involvement in the perception of body segment movements and in the control of posture. Twenty MD patients (4 with dystrophinopathy, 5 with myotonic dystrophies, 5 with fascioscapulohumeral MD, and 6 with limb-girdle dystrophies) and 10 healthy subjects participated in the study. The MD patients perceived passive movements and experienced illusory movements similar to those perceived by healthy subjects in terms of their direction and velocity. Vibratory stimulation applied to the neck and ankle muscle tendons induced postural responses in MD patients with spatial and temporal characteristics similar to those produced by healthy subjects. These results suggest that the proprioceptive function of muscle spindles is spared in muscular dystrophies. PMID:15170619

  11. Gravitoinertial force level influences arm movement control

    NASA Technical Reports Server (NTRS)

    Fisk, J.; Lackner, J. R.; DiZio, P.

    1993-01-01

    1. The ability to move the forearm between remembered elbow joint angles immediately after rapid increases or decreases of the background gravitoinertial force (G) level was measured. The movements had been well-practiced in a normal 1G environment before the measurements in high-(1.8G) and low-force (0G) environments. The forearm and upper arm were always unsupported to maximize the influence of altered G-loading and to minimize extraneous cues about arm position. 2. Horizontal and vertical movement planes were studied to measure the effects of varying the G load in the movement plane within a given G background. Rapid and slow movements were studied to assess the role of proprioceptive feedback. 3. G level did not affect the amplitude of rapid movements, indicating that subjects were able to plan and to generate appropriate motor commands for the new G loading of the arm. The amplitude of slow movements was affected by G level, indicating that proprioceptive feedback is influenced by G level. 4. The effects of G level were similar for horizontal and vertical movements, indicating that proprioceptive information from supporting structures, such as the shoulder joint and muscles, had a role in allowing generation of the appropriate motor commands. 5. The incidence and size of dynamic overshoots were greater in 0G and for rapid movements. This G-related change in damping suggests a decrease in muscle spindle activity in 0G. A decrease in muscle spindle activity in 0G and an increase in 1.8G are consistent with the results of our prior studies on the tonic vibration reflex, locomotion, and perception of head movement trajectory in varying force backgrounds.

  12. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.

    PubMed

    Kamke, Marc R; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality. PMID:24920945

  13. Jobless now, sick later? Investigating the long-term consequences of involuntary job loss on health.

    PubMed

    Schröder, Mathis

    2013-03-01

    In the light of the current economic crises which in many countries lead to business closures and mass lay-offs, the consequences of job loss are important on various dimensions. They have to be investigated not only in consideration of a few years, but with a long-term perspective as well, because early life course events may prove important for later life outcomes. This paper uses data from SHARELIFE to shed light on the long-term consequences of involuntary job loss on health. The paper distinguishes between two different reasons for involuntary job loss: plant closures, which in the literature are considered to be exogenous to the individual, and lay-offs, where the causal direction of health and unemployment is ambiguous. These groups are separately compared to those who never experienced a job loss. The paper uses eleven different measures of health to assess long-term health consequences of job loss, which has to have occurred at least 25 years before the current interview. As panel data cannot be employed, a large body of variables, including childhood health and socio-economic conditions, is used to control for the initial conditions. The findings suggest that individuals with an exogenous job loss suffer in the long run: men are significantly more likely to be depressed and they have more trouble knowing the current date. Women report poorer general health and more chronic conditions and are also affected in their physical health: they are more likely to be obese or overweight, and to have any limitations in their (instrumental) activities of daily living. In the comparison group of laid-off individuals, controlling for the initial conditions reduces the effects of job loss on health - proving that controlling for childhood conditions is important. PMID:24797463

  14. Postural adjustments associated with rapid voluntary arm movements 1. Electromyographic data.

    PubMed Central

    Friedli, W G; Hallett, M; Simon, S R

    1984-01-01

    Normal subjects made bilaterally symmetric rapid elbow flexions or extensions ("focal movement") while free standing or when supported by being strapped to a firm wall behind them (different "postural set"). In some trials a load opposed the movement two thirds of the way into its course. Electromyographic activity in leg and trunk muscles ("associated postural adjustments") demonstrated specific patterns for each type of movement. Activity in these muscles began prior to activity in the arm muscles and demonstrated a distal-to-proximal order of activation. The EMG patterns were characterised by alternating activity in the antagonist pairs similar to the triphasic pattern seen in the arm muscles. When the movement type was changed change of the pattern of the postural muscles occurred over several trials. It is concluded that the associated postural adjustments are pre-programmed motor activity linked to the focal movement, specific for the focal movement including anticipated events and the postural set. PMID:6736995

  15. Fetal-muscle type nicotinic acetylcholine receptor activation in TE-671 cells, and inhibition of fetal movement in a day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coniine is an optically active toxic piperidine alkaloid and nicotinic acetylcholine receptor (nAChR) agonist found in poison hemlock (Conium maculatum L.). Coniine teratogenicity is hypothesized to be due to the binding, activation, and prolonged desensitization of fetal muscle-type nAChR which re...

  16. Movement disorders.

    PubMed

    Stoessl, A Jon; Mckeown, Martin J

    2016-01-01

    Movement disorders can be hypokinetic (e.g., parkinsonism), hyperkinetic, or dystonic in nature and commonly arise from altered function in nuclei of the basal ganglia or their connections. As obvious structural changes are often limited, standard imaging plays less of a role than in other neurologic disorders. However, structural imaging is indicated where clinical presentation is atypical, particularly if the disorder is abrupt in onset or remains strictly unilateral. More recent advances in magnetic resonance imaging (MRI) may allow for differentiation between Parkinson's disease and atypical forms of parkinsonism. Functional imaging can assess regional cerebral blood flow (functional MRI (fMRI), positron emission tomography (PET), or single-photon emission computed tomography (SPECT)), cerebral glucose metabolism (PET), neurochemical and neuroreceptor status (PET and SPECT), and pathologic processes such as inflammation or abnormal protein deposition (PET) (Table 49.1). Cerebral blood flow can be assessed at rest, during the performance of motor or cognitive tasks, or in response to a variety of stimuli. In appropriate situations, the correct imaging modality and/or combination of modalities can be used to detect early disease or even preclinical disease, and to monitor disease progression and the effects of disease-modifying interventions. Various approaches are reviewed here. PMID:27430452

  17. Voluntary eye movements direct attention on the mental number space.

    PubMed

    Ranzini, Mariagrazia; Lisi, Matteo; Zorzi, Marco

    2016-05-01

    Growing evidence suggests that orienting visual attention in space can influence the processing of numerical magnitude, with leftward orienting speeding up the processing of small numbers relative to larger ones and the converse for rightward orienting. The manipulation of eye movements is a convenient way to direct visuospatial attention, but several aspects of the complex relationship between eye movements, attention orienting and number processing remain unexplored. In a previous study, we observed that inducing involuntary, reflexive eye movements by means of optokinetic stimulation affected number processing only when numerical magnitude was task relevant (i.e., during magnitude comparison, but not during parity judgment; Ranzini et al., in J Cogn Psychol 27, 459-470, (2015). Here, we investigated whether processing of task-irrelevant numerical magnitude can be modulated by voluntary eye movements, and whether the type of eye movements (smooth pursuit vs. saccades) would influence this interaction. Participants tracked with their gaze a dot while listening to a digit. The numerical task was to indicate whether the digit was odd or even through non-spatial, verbal responses. The dot could move leftward or rightward either continuously, allowing tracking by smooth pursuit eye movements, or in discrete steps across a series of adjacent locations, triggering a sequence of saccades. Both smooth pursuit and saccadic eye movements similarly affected number processing and modulated response times for large numbers as a function of direction of motion. These findings suggest that voluntary eye movements redirect attention in mental number space and highlight that eye movements should play a key factor in the investigation of number-space interactions. PMID:26838166

  18. Bio-inspired Hybrid Carbon Nanotube Muscles.

    PubMed

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D; Baughman, Ray H; Kang, Tong Mook; Kim, Seon Jeong

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems. PMID:27220918

  19. Bio-inspired Hybrid Carbon Nanotube Muscles

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  20. Bio-inspired Hybrid Carbon Nanotube Muscles

    PubMed Central

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems. PMID:27220918

  1. Respiratory muscle activity and oxygenation during sleep in patients with muscle weakness.

    PubMed

    White, J E; Drinnan, M J; Smithson, A J; Griffiths, C J; Gibson, G J

    1995-05-01

    Patients with respiratory muscle weakness show nocturnal hypoventilation, with oxygen desaturation particularly during rapid eye movement (REM) sleep, but evidence in individuals with isolated bilateral diaphragmatic paresis (BDP) is conflicting. The effect of sleep on relative activity of the different respiratory muscles of such patients and, consequently, the precise mechanisms causing desaturation have not been clarified. We have studied eight patients, four with generalized muscle weakness and four with isolated BDP during nocturnal sleep with measurements including oxygen saturation and surface electromyographic (EMG) activity of various respiratory muscle groups. Nocturnal oxygenation correlated inversely with postural fall in vital capacity, an index of diaphragmatic strength. During REM sleep, hypopnoea and desaturation occurred particularly during periods of rapid eye movements (phasic REM sleep). In most subjects, such events were "central" in type and associated with marked suppression of intercostal muscle activity, but two subjects had recurrent desaturation due to "obstructive" hypopnoea and/or apnoea. Expiratory activity of the external oblique muscle was present whilst awake and during non-rapid eye movement (NREM) sleep in seven of the eight subjects in the semirecumbent posture. This probably represents an "accessory inspiratory" effect, which aids passive caudal diaphragmatic motion as the abdominal muscles relax at the onset of inspiration. Expiratory abdominal muscle activity was suppressed in phasic REM sleep, suggesting that loss of this "accessory inspiratory" effect may contribute to "central" hypopnoea. We conclude that, in patients with muscle weakness, nocturnal oxygenation correlates with diaphragmatic strength.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7656954

  2. Impairment of Gradual Muscle Adjustment during Wrist Circumduction in Parkinson's Disease

    PubMed Central

    Toxopeus, Carolien M.; de Jong, Bauke M.; Valsan, Gopal; Conway, Bernard A.; van der Hoeven, Johannes H.; Leenders, Klaus L.; Maurits, Natasha M.

    2011-01-01

    Purposeful movements are attained by gradually adjusted activity of opposite muscles, or synergists. This requires a motor system that adequately modulates initiation and inhibition of movement and selectively activates the appropriate muscles. In patients with Parkinson's disease (PD) initiation and inhibition of movements are impaired which may manifest itself in e.g. difficulty to start and stop walking. At single-joint level, impaired movement initiation is further accompanied by insufficient inhibition of antagonist muscle activity. As the motor symptoms in PD primarily result from cerebral dysfunction, quantitative investigation of gradually adjusted muscle activity during execution of purposeful movement is a first step to gain more insight in the link between impaired modulation of initiation and inhibition at the levels of (i) cerebrally coded task performance and (ii) final execution by the musculoskeletal system. To that end, the present study investigated changes in gradual adjustment of muscle synergists using a manipulandum that enabled standardized smooth movement by continuous wrist circumduction. Differences between PD patients (N = 15, off-medication) and healthy subjects (N = 16) concerning the relation between muscle activity and movement performance in these groups were assessed using kinematic and electromyographic (EMG) recordings. The variability in the extent to which a particular muscle was active during wrist circumduction – defined as muscle activity differentiation - was quantified by EMG. We demonstrated that more differentiated muscle activity indeed correlated positively with improved movement performance, i.e. higher movement speed and increased smoothness of movement. Additionally, patients employed a less differentiated muscle activity pattern than healthy subjects. These specific changes during wrist circumduction imply that patients have a decreased ability to gradually adjust muscles causing a decline in movement

  3. Renal vascular responses to static handgrip: role of muscle mechanoreflex

    NASA Technical Reports Server (NTRS)

    Momen, Afsana; Leuenberger, Urs A.; Ray, Chester A.; Cha, Susan; Handly, Brian; Sinoway, Lawrence I.

    2003-01-01

    During exercise, the sympathetic nervous system is activated, which causes vasoconstriction. The autonomic mechanisms responsible for this vasoconstriction vary based on the particular tissue being studied. Attempts to examine reflex control of the human renal circulation have been difficult because of technical limitations. In this report, the Doppler technique was used to examine renal flow velocity during four muscle contraction paradigms in conscious humans. Flow velocity was divided by mean arterial blood pressure to yield an index of renal vascular resistance (RVR). Fatiguing static handgrip (40% of maximal voluntary contraction) increased RVR by 76%. During posthandgrip circulatory arrest, RVR remained above baseline (2.1 +/- 0.2 vs. 2.8 +/- 0.2 arbitrary units; P < 0.017) but was only 40% of the end-grip RVR value. Voluntary biceps contraction increased RVR within 10 s of initiation of contraction. This effect was not associated with an increase in blood pressure. Finally, involuntary biceps contraction also raised RVR. We conclude that muscle contraction evokes renal vasoconstriction in conscious humans. The characteristic of this response is consistent with a primary role for mechanically sensitive afferents. This statement is based on the small posthandgrip circulatory arrest response and the vasoconstriction that was observed with involuntary biceps contraction.

  4. The adaptive changes in muscle coordination following lumbar spinal fusion.

    PubMed

    Wang, Ting-Yun; Pao, Jwo-Luen; Yang, Rong-Sen; Jang, Jyh-Shing Roger; Hsu, Wei-Li

    2015-04-01

    Limited back motion and damage of paraspinal muscles after spinal fusion surgery may lead to abnormal compensatory movements of the body. Whether neuromuscular control changes after surgery remains unclear. The purpose of the study was to identify the muscle activation patterns employed before and after lumbar spinal fusion. Nineteen patients having low back pain and undergoing minimally invasive lumbar spinal fusion were evaluated at 1 day before and 1 month after fusion surgery. Nineteen matched healthy participants were recruited as controls. Patients' pain severity and daily activity functioning were recorded. All participants were instructed to perform forward reaching, and the muscle activities were monitored using surface electromyography (EMG) with sensors placed on both sides of their trunk and lower limbs. The muscle activation patterns were identified using the principal component analysis (PCA). All patients had significant improvements in pain intensity and daily activity functioning after surgery, but exhibited an adaptive muscle activation pattern during forward reaching movement compared with the controls. Significant loading coefficients in the dominant movement pattern (reflected in the first principal component) were observed in back muscles for controls whereas in leg muscles for patients, both pre- and postoperatively. Despite substantial improvements in pain intensity and daily activity functioning after surgery, the patients exhibited decreased paraspinal muscle activities and adaptive muscle coordination patterns during forward reaching. They appeared to rely mainly on their leg muscles to compensate for their insufficient paraspinal muscle function. Early intervention focusing on training paraspinal muscles should be considered after spinal fusion surgery. PMID:25625813

  5. Dynamic simulation of the mastication muscles

    NASA Astrophysics Data System (ADS)

    Weingaertner, Tim; Albrecht, Jochen

    1998-05-01

    The purpose of a simulated operation system in craniofacial surgery is to evaluate and visualize the results of operations on the overall facial shape of the patient and on the functionality of his jaw. This paper presents the analyzation of muscle movements in the mastication system by applying real jaw movements to the simulation. With this method an accurate modeling of the mastication muscles can be performed which is a prerequisite for a realistic simulation and precise intra- operative registration. According to this results a large- scale musculoskeletal model of the mastication system is generated including kinematic and dynamic parameters. By integrating distance sensors in the simulation of a segmented CT (computer tomograph) image of the maxilla and mandible the motions of the masticatory muscles during different kinds of jaw movements have been analyzed. The data for this motions have been recorded by a commercial system (CONDYLOCOMP LR3) on a test person and transformed to the graphical simulation system. This method for the first time allows to observe the dynamics of the mastication muscles and their different parameters like muscle length ratio and velocity. The integration of a kinematic model for the jaw movement makes it possible to analyze non traced movements.

  6. Brain anatomical substrates of mirror movements in Kallmann syndrome.

    PubMed

    Manara, R; Salvalaggio, A; Citton, V; Palumbo, V; D'Errico, A; Elefante, A; Briani, C; Cantone, E; Ottaviano, G; Pellecchia, M T; Greggio, N A; Weis, L; D'Agosto, G; Rossato, M; De Carlo, E; Napoli, E; Coppola, G; Di Salle, F; Brunetti, A; Bonanni, G; Sinisi, A A; Favaro, A

    2015-01-01

    Among male patients affected by Kallmann syndrome, a genetically determined disease due to defective neural migration leading to hypogonadropic hypogonadism and hypo/anosmia, about 40% present the peculiar phenomenon of mirror movements, i.e. involuntary movements mirroring contralateral voluntary hand movements. Several pathogenic hypotheses have been proposed, but the ultimate neurological mechanisms are still elusive. The aim of the present study was to investigate brain anatomical substrates of mirror movements in Kallmann syndrome by means of a panel of quantitative MRI analyses. Forty-nine male Kallmann syndrome patients underwent brain MRI. The study protocol included 3D-T1-weighted gradient echo, fluid attenuated inversion recovery and diffusion tensor imaging. Voxel-based morphometry, sulcation, curvature and cortical thickness analyses and tract based spatial statistics were performed using SPM8, Freesurfer and FSL. All patients underwent a complete physical and neurological examination including the evaluation of mirror movements (according to the Woods and Teuber criteria). Kallmann syndrome patients presenting with mirror movements (16/49, 32%) displayed the following brain changes: 1) increased gray matter density in the depth of the left precentral sulcus behind the middle frontal gyrus; 2) decreased cortical thickness in the precentral gyrus bilaterally, in the depth of right precentral sulcus and in the posterior portion of the right superior frontal gyrus; and 3) decreased fractional anisotropy in the left hemisphere involving the temporal lobe and peritrigonal white matter. No differences were shown by cortical curvature and sulcation analyses. The composite array of brain changes observed in Kallmann syndrome patients with mirror movements likely represents the anatomical-structural underpinnings leading to the peculiar derangement of the complex circuitry committed to unilateral hand voluntary movements. PMID:25300200

  7. Changes in the Relationship Between Movement Velocity and Movement Distance in Primary Focal Hand Dystonia

    PubMed Central

    Prodoehl, Janey; Corcos, Daniel M.; Leurgans, Sue; Comella, Cynthia L.; Weis-McNulty, Annette; MacKinnon, Colum D.

    2009-01-01

    The authors examined the relationship between movement velocity and distance and the associated muscle activation patterns in 18 individuals with focal hand dystonia (FHD) compared with a control group of 18 individuals with no known neuromuscular condition. Participants performed targeted voluntary wrist and elbow flexion movements as fast as possible across 5 movement distances. Individuals with FHD were slower than controls across all distances, and this difference was accentuated for longer movements. Muscle activation patterns were triphasic in the majority of individuals with FHD, and muscle activation scaled with distance in a similar manner to controls. Cocontraction did not explain movement slowing in individuals with dystonia, but there was a trend toward underactivation of the 1st agonist burst in the dystonic group. The authors concluded that slowness is a consistent feature of voluntary movement in FHD and is present even in the absence of dystonic posturing. Underactivation of the 1st agonist burst appears to be the most likely reason to explain slowing. PMID:18628107

  8. Involuntary euthanasia of severely ill newborns: is the Groningen Protocol really dangerous?

    PubMed

    Voultsos, P; Chatzinikolaou, F

    2014-01-01

    Advances in medicine can reduce active euthanasia of newborns with severe anomalies or unusual prematurity, but they cannot eliminate it. In the Netherlands, voluntary active euthanasia among adults and adolescents has been allowed since 2002, when the so-called Groningen Protocol (GP) was formulated as an extension of the law on extremely premature and severely ill newborns. It is maintained that, at bioethical level, it serves the principle of beneficence. Other European countries do not accept the GP, including Belgium. Admissibility of active euthanasia is a necessary, though inadequate, condition for acceptance of the GP. Greece generally prohibits euthanasia, although the legal doctrine considers some of the forms of euthanasia permissible, but not active or involuntary euthanasia. The wide acceptance of passive newborns euthanasia, especially when the gestational age of the newborns is 22-25 weeks ("grey zone"), admissibility of practices within the limits between active and passive euthanasia (e.g., withholding/withdrawing), of "indirect active euthanasia" and abortion of the late fetus, the tendency to accept after-birth-abortion (infanticide) in the bioethical theory, the lower threshold for application of withdrawing in neonatal intensive care units compared with pediatric intensive care units, all the above advocate wider acceptance of the GP. However, the GP paves the way for a wide application of involuntary (or pseudo-voluntary) euthanasia (slippery slope) and contains some ambiguous concepts and requirements (e.g., "unbearable suffering"). It is suggested that the approach to the sensitive and controversial ethical dilemmas concerning the severely ill newborns is done not through the GP, but rather, through a combination of virtue bioethics (especially in the countries of the so-called "Mediterranean bioethical zone") and of the principles of principlism which is enriched, however, with the "principle of mutuality" (enhancement of all values and

  9. Attention to language: Novel MEG paradigm for registering involuntary language processing in the brain

    PubMed Central

    Shtyrov, Yury; Smith, Marie L.; Horner, Aidan J.; Henson, Richard; Nathan, Pradeep J.; Bullmore, Edward T.; Pulvermüller, Friedemann

    2012-01-01

    Previous research indicates that, under explicit instructions to listen to spoken stimuli or in speech-oriented behavioural tasks, the brain’s responses to senseless pseudowords are larger than those to meaningful words; the reverse is true in non-attended conditions. These differential responses could be used as a tool to trace linguistic processes in the brain and their interaction with attention. However, as previous studies relied on explicit instructions to attend or ignore the stimuli, a technique for automatic attention modulation (i.e., not dependent on explicit instruction) would be more advantageous, especially when cooperation with instructions may not be guaranteed (e.g., neurological patients, children etc). Here we present a novel paradigm in which the stimulus context automatically draws attention to speech. In a non-attend passive auditory oddball sequence, rare words and pseudowords were presented among frequent non-speech tones of variable frequency and length. The low percentage of spoken stimuli guarantees an involuntary attention switch to them. The speech stimuli, in turn, could be disambiguated as words or pseudowords only in their end, at the last phoneme, after the attention switch would have already occurred. Our results confirmed that this paradigm can indeed be used to induce automatic shifts of attention to spoken input. At ∼250 ms after the stimulus onset, a P3a-like neuromagnetic deflection was registered to spoken (but not tone) stimuli indicating an involuntary attention shift. Later, after the word-pseudoword divergence point, we found a larger oddball response to pseudowords than words, best explained by neural processes of lexical search facilitated through increased attention. Furthermore, we demonstrate a breakdown of this orderly pattern of neurocognitive processes as a result of sleep deprivation. The new paradigm may thus be an efficient way to assess language comprehension processes and their dynamic interaction with

  10. [Involuntary admission to psychiatric care of people with mild intellectual disability: missed chances in the Dutch Care and Coercion Act].

    PubMed

    Frederiks, Brenda J M

    2014-01-01

    The aim of the Dutch Care and Coercion Act (Wet Zorg en Dwang) is to improve the legal position of people with an intellectual disability in cases of involuntary admission to psychiatric care. The present law, the Dutch Psychiatric Act (Wet BOPZ), only offers legal protection to clients who are admitted involuntarily to specific institutions. The Care and Coercion Act will lead to significant changes in the care of people with an intellectual disability and a much larger group of clients with an intellectual disability will fall under the range of this Act. Limitations to freedom - referred to as 'involuntary admission' within the new law - must meet the same criteria for each client. The legislator, however, seems to have paid little attention to those clients with a mild intellectual disability. PMID:25387981

  11. The scoring of movements in sleep.

    PubMed

    Walters, Arthur S; Lavigne, Gilles; Hening, Wayne; Picchietti, Daniel L; Allen, Richard P; Chokroverty, Sudhansu; Kushida, Clete A; Bliwise, Donald L; Mahowald, Mark W; Schenck, Carlos H; Ancoli-Israel, Sonia

    2007-03-15

    The International Classification of Sleep Disorders (ICSD-2) has separated sleep-related movement disorders into simple, repetitive movement disorders (such as periodic limb movements in sleep [PLMS], sleep bruxism, and rhythmic movement disorder) and parasomnias (such as REM sleep behavior disorder and disorders of partial arousal, e.g., sleep walking, confusional arousals, night terrors). Many of the parasomnias are characterized by complex behaviors in sleep that appear purposeful, goal directed and voluntary but are outside the conscious awareness of the individual and therefore inappropriate. All of the sleep-related movement disorders described here have specific polysomnographic findings. For the purposes of developing and/or revising specifications and polysomnographic scoring rules, the AASM Scoring Manual Task Force on Movements in Sleep reviewed background literature and executed evidence grading of 81 relevant articles obtained by a literature search of published articles between 1966 and 2004. Subsequent evidence grading identified limited evidence for reliability and/or validity for polysomnographic scoring criteria for periodic limb movements in sleep, REM sleep behavior disorder, and sleep bruxism. Published scoring criteria for rhythmic movement disorder, excessive fragmentary myoclonus, and hypnagogic foot tremor/alternating leg muscle activation were empirical and based on descriptive studies. The literature review disclosed no published evidence defining clinical consequences of excessive fragmentary myoclonus or hypnagogic foot tremor/alternating leg muscle activation. Because of limited or absent evidence for reliability and/or validity, a standardized RAND/UCLA consensus process was employed for recommendation of specific rules for the scoring of sleep-associated movements. PMID:17557425

  12. Muscle cramps

    MedlinePlus

    ... The most common cause of muscle cramps during sports activity is not getting enough fluids. Often, drinking ... alone does not always help. Salt tablets or sports drinks, which also replenish lost minerals, can be ...

  13. Muscle aches

    MedlinePlus

    ... be done include: Complete blood count (CBC) Other blood tests to look at muscle enzymes (creatine kinase) and possibly a test for Lyme disease or a connective tissue disorder Physical therapy may be helpful.

  14. Involuntary outpatient treatment as "desintitutionalized coercion": the net-widening concerns.

    PubMed

    Geller, Jeffrey L; Fisher, William H; Grudzinskas, Albert J; Clayfield, Jonathan C; Lawlor, Ted

    2006-01-01

    In American jurisprudence, two justifications have traditionally been put forth to support the government's social control of persons with mental illness: police power and parens patriae. As public mental hospitals became less available as loci in which to exercise these functions, governments sought alternative means to achieve the same ends. One prominent but quite controversial means is involuntary outpatient treatment (IOT). While the concerns about IOT have been myriad, one often alluded to but never documented is that of "net-widening." That is, once IOT became available, it would be applied to an ever greater number of individuals, progressively expanding the margins of the designated population to whom it is applied, despite the formal standard for its application remaining constant. We tested the net-widening belief in a naturalistic experiment in Massachusetts. We found that net-widening did not occur, despite an environment strongly conducive to that expansion. At this time, whatever the arguments against IOT might be, net-widening should not be one of them. PMID:17097143

  15. Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials

    PubMed Central

    Eimer, Martin; Kiss, Monika

    2008-01-01

    To find out whether attentional capture by irrelevant but salient visual objects is an exogenous bottom-up phenomenon, or can be modulated by current task set, two experiments were conducted where the N2pc component was measured as an electrophysiological marker of attentional selection in response to spatially uninformative colour singleton cues that preceded target arrays. When observers had to report the orientation of a uniquely coloured target bar among distractor bars (colour task), behavioural spatial cueing effects were accompanied by an early cue-induced N2pc, indicative of rapid attentional capture by colour singleton cues. In contrast, when they reported the orientation of target bars presented without distractors (onset task), no behavioural cueing effects were found, and no early N2pc was triggered to physically identical cue arrays. Experiment 2 ruled out an alternative interpretation of these N2pc differences in terms of distractor inhibition. These results do not support previous claims that attentional capture is initially unaffected by top-down intention, and demonstrate the central role of task set in involuntary attentional orienting. PMID:18303979

  16. Factors Affecting the Agreement Between Emergency Psychiatrists and General Practitioners Regarding Involuntary Psychiatric Hospitalizations.

    PubMed

    Geoffroy, Pierre Alexis; Duhamel, Alain; Behal, Hélène; Zouitina-Lietaert, Nadia; Duthilleul, Julie; Marquette, Louise; Ducrocq, François; Vaiva, Guillaume; Rolland, Benjamin

    2016-01-01

    Important discrepancies exist between physicians in deciding when to perform involuntary hospitalization measures (IHMs). The factors underlying these differences are poorly known.We conducted a two-year single-center retrospective study in France on patients who were referred to the emergency department (ED) with an IHM certificate written by a private-practice General Practitioner (GP). For each consultation, the official IHM motive was categorized into four groups: Suicide; Psychosis, Mania, or Melancholia (PMM); Agitation; and Other. The alcohol status of the patient was also noted. The factors underlying the ED psychiatrists' confirmation of the use of IHMs were determined using a logistic regression model. One hundred eighty-nine cases were found (165 patients; 44.2 ± 16 years, 41.3% women). The ED psychiatrists confirmed the use of IHMs in 123 instances (65.1% agreement rate). Multivariate analyses found that IHM disagreement was significantly associated with patient alcohol status and the reason for referral. Specifically, there was an increased risk of IHM disagreement when the patient had an alcohol-positive status (OR = 15.80; 95% CI [6.45-38.67]; p < 0.0001) and when the motive for IHM was "agitation" compared with "suicide" (OR = 11.44; 95% CI[3.38-38.78]; p < 0.0001). These findings reflect significant disparities between GPs and ED psychiatrists regarding the decision to proceed to an IHM. PMID:27324574

  17. Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise.

    PubMed

    Döbrössy, Máté D; Dunnett, Stephen B

    2006-12-01

    Environmental enrichment (EE) and exercise have been implicated in influencing behaviour and altering neuronal processes associated with cellular morphology in both 'normal' and injured states of the CNS. Using a rodent model of Huntington's disease, we investigated whether prolonged EE or involuntary exercise can induce morphological and cellular changes within embryonic striatal transplants. Adult rats were trained on the Staircase test--requiring fine motor control to reach and collect reward pellets--prior to being lesioned unilaterally in the dorsal neostriatum with quinolinic acid. The lesioned animals received E15 whole ganglionic eminence cell suspension grafts followed by housing in EE or standard cages. Half of the animals in standard cages received daily forced exercise on a treadmill. The grafted animals showed significant functional recovery on both the Staircase test and in drug-induced rotation. Neither the housing conditions nor the training had an impact on the behaviour, with the exception of the treadmill reducing the ipsilateral drug-induced rotation observed amongst the lesioned animals. However, the animals housed in the EE had significantly increased striatal brain-derived neurotrophic factor (BDNF) levels, and graft neurons in these animals exhibited both greater spine densities and larger cell volumes. Animals on forced exercise regime had reduced BDNF levels and grafted cells with sparser spines. The study suggests that the context of the animal can affect the plasticity of transplanted cells. Appropriately exploiting the underlying, and yet unknown, mechanisms could lead the way to improved anatomical and potentially functional integration of the graft. PMID:17156383

  18. Commercial sex and condom use among involuntary bachelors: an exploratory survey in rural China.

    PubMed

    Yang, Xueyan; Attané, Isabelle; Li, Shuzhuo

    2014-05-01

    In the present context of the Chinese male marriage squeeze, commercial sex is becoming an important way for bachelors to meet their sexual needs. Using data from a survey conducted in a rural district of Anhui province, China, this study analyzes commercial sex experiences and condom use among involuntary bachelors and compares usage in this population to that observed in married men in the same age groups. Our findings indicate that, for both first and most recent sexual intercourse, the prevalence of commercial sex among unmarried men is significantly higher than that reported among married men; indeed, marital status was the only variable that was consistently related to rates of commercial sex for both first and most recent sexual intercourse. The vast majority of sexual intercourse was still unprotected, and the rate of condom use was not only lower among unmarried men than among married men, but was also significantly related to knowledge of sexually transmitted diseases, as well as age, education, and income. Because of their lower condom use, unmarried men face much higher risks of contracting and spreading sexually transmitted diseases than married men do. This situation poses a severe threat to public health. PMID:24128671

  19. From mind-pops to hallucinations? A study of involuntary semantic memories in schizophrenia.

    PubMed

    Elua, Ia; Laws, Keith R; Kvavilashvili, Lia

    2012-04-30

    Involuntary semantic memories or mind-pops consist of isolated fragments of one's semantic knowledge (e.g., a word or a sentence, proper name, image or a melody) that come to mind unexpectedly, without any deliberate attempt to recall them. They can be experienced as alien and uncontrollable, and may share some phenomenological similarities with hallucinations. The aim of the present study was to investigate the nature and frequency of mind-pops in people with schizophrenia (N=37), as well as clinically depressed (N=31) and non-clinical controls (N=31). Results showed that schizophrenia patients reported experiencing mind-pops more frequently than both depressed and non-clinical controls. Schizophrenia patients also reported a wider range of different types of mind-pops than non-clinical controls. The depressed group did not differ from non-clinical controls in the frequency and range of mind-pops, indicating that mind-pops are not characteristic of clinical populations in general, but may be particularly prevalent in patients with schizophrenia. The possible implications of this finding to current models of auditory verbal hallucinations are discussed and the need for future research in this area is emphasized. PMID:22424894

  20. The involuntary excluder effect: those included by an excluder are seen as exclusive themselves.

    PubMed

    Critcher, Clayton R; Zayas, Vivian

    2014-09-01

    People are highly vigilant for and alarmed by social exclusion. Previous research has focused largely on the emotional and motivational consequences of being unambiguously excluded by others. The present research instead examines how people make sense of a more ambiguous dynamic, 1-person exclusion--situations in which one person (the excluder) excludes someone (the rejected) while including someone else (the included). Using different methodological paradigms, converging outcome measures, and complementary comparison standards, 5 studies present evidence of an involuntary excluder effect: Social perceivers are quick to see included persons as though they are excluders themselves. Included individuals are seen as belonging to an exclusive alliance with the excluder, as liking the excluder more than the rejected, and as likely to perpetuate future exclusion against the rejected. Behavioral evidence reinforced these findings: The included was approached with caution and suspicion. Notably, such perceptions of the included as an excluder were drawn by the rejected themselves and outside observers alike, did not reflect the attitudes and intentions of included persons or those who simulated 1-person exclusion from the vantage point of the included, applied specifically to the included (but not someone who simply witnessed the rejected's rejection), and arose as a consequence of intentional acts of exclusion (and thus, not just because 2 individuals shared an exclusive experience). Consistencies with and contributions to literatures on balance theory, minimal groups, group entitativity, and the ostracism detection system literatures are discussed. PMID:25133726

  1. Skeletal Muscle Autophagy: A New Metabolic Regulator

    PubMed Central

    Neel, Brian A.; Lin, Yuxi; Pessin, Jeffrey E.

    2013-01-01

    Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Proper autophagic flux is vital for both functional skeletal muscle, which controls support and movement of the skeleton, and muscle metabolism. The role of autophagy as a metabolic regulator in muscle has been previously studied; however, the underlying molecular mechanisms that control autophagy in skeletal muscle have only just begun to emerge. Here, we review recent literature on the molecular pathways controlling skeletal muscle autophagy, and discuss how they connect autophagy to metabolic regulation. We also focus on the implications these studies hold for understanding metabolic and muscle wasting diseases. PMID:24182456

  2. Density of muscle spindles in prosimian shoulder muscles reflects locomotor adaptation.

    PubMed

    Higurashi, Yasuo; Taniguchi, Yuki; Kumakura, Hiroo

    2006-01-01

    We examined the correlation between the density of muscle spindles in shoulder muscles and the locomotor mode in three species of prosimian primates: the slow loris (Nycticebus coucang), Garnett's galago (Otolemur garnettii), and the ring-tailed lemur (Lemur catta). The shoulder muscles (supraspinatus, infraspinatus, teres major, teres minor, and subscapularis) were embedded in celloidin and cut into transverse serial thin sections (40 microm); then, every tenth section was stained using the Azan staining technique. The relative muscle weights and the density of the muscle spindles were determined. The slow loris muscles were heavier and had sparser muscle spindles, as compared to Garnett's galago. These features suggest that the shoulder muscles of the slow loris are more adapted to generating propulsive force and stabilizing the shoulder joint during locomotion and play a less controlling role in forelimb movements. In contrast, Garnett's galago possessed smaller shoulder muscles with denser spindles that are suitable for the control of more rapid locomotor movements. The mean relative weight and the mean spindle density in the shoulder muscles of the ring-tailed lemur were between those of the other primates, suggesting that the spindle density is not simply a consequence of taxonomic status. PMID:17361082

  3. Noninvasive analysis of human neck muscle function

    NASA Technical Reports Server (NTRS)

    Conley, M. S.; Meyer, R. A.; Bloomberg, J. J.; Feeback, D. L.; Dudley, G. A.

    1995-01-01

    STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few

  4. Force enhancement and force depression in a modified muscle model used for muscle activation prediction.

    PubMed

    Kosterina, Natalia; Wang, Ruoli; Eriksson, Anders; Gutierrez-Farewik, Elena M

    2013-08-01

    This article introduces history-dependent effects in a skeletal muscle model applied to dynamic simulations of musculoskeletal system motion. Force depression and force enhancement induced by active muscle shortening and lengthening, respectively, represent muscle history effects. A muscle model depending on the preceding contractile events together with the current parameters was developed for OpenSim software, and applied in simulations of standing heel-raise and squat movements. Muscle activations were computed using joint kinematics and ground reaction forces recorded from the motion capture of seven individuals. In the muscle-actuated simulations, a modification was applied to the computed activation, and was compared to the measured electromyography data. For the studied movements, the history gives a small but visible effect to the muscular force trace, but some parameter values must be identified before the exact magnitude can be analysed. The muscle model modification improves the existing muscle models and gives a more accurate description of underlying forces and activations in musculoskeletal system movement simulations. PMID:23561824

  5. Exaggerated haemodynamic and neural responses to involuntary contractions induced by whole-body vibration in normotensive obese versus lean women.

    PubMed

    Dipla, Konstantina; Kousoula, Dimitra; Zafeiridis, Andreas; Karatrantou, Konstantina; Nikolaidis, Michalis G; Kyparos, Antonios; Gerodimos, Vassilis; Vrabas, Ioannis S

    2016-06-01

    What is the central question of this study? In obesity, the exaggerated blood pressure response to voluntary exercise is linked to hypertension, yet the mechanisms are not fully elucidated. We examined whether involuntary contractions elicit greater haemodynamic responses and altered neural control of blood pressure in normotensive obese versus lean women. What is the main finding and its importance? During involuntary contractions induced by whole-body vibration, there were augmented blood pressure and spontaneous baroreflex responses in obese compared with lean women. This finding is suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. Passive contractions did not elicit differential heart rate responses in obese compared with lean women, implying other mechanisms for the blunted heart rate response reported during voluntary exercise in obesity. In obesity, the exaggerated blood pressure (BP) response to exercise is linked to hypertension, yet the mechanisms are not fully elucidated. In this study, we examined whether involuntary mechanical oscillations, induced by whole-body vibration (WBV), elicit greater haemodynamic responses and altered neural control of BP in obese versus lean women. Twenty-two normotensive, premenopausal women (12 lean and 10 obese) randomly underwent a passive WBV (25 Hz) and a control protocol (similar posture without WVB). Beat-by-beat BP, heart rate, stroke volume, systemic vascular resistance, cardiac output, parasympathetic output (evaluated by heart rate variability) and spontaneous baroreceptor sensitivity (sBRS) were assessed. We found that during WBV, obese women exhibited an augmented systolic BP response compared with lean women that was correlated with body fat percentage (r = 0.77; P < 0.05). The exaggerated BP rise was driven mainly by the greater increase in cardiac output index in obese versus lean women, associated with a greater stroke volume index in obese women

  6. Benign and periodic movement disorders in 2 children with Down syndrome.

    PubMed

    Purpura, Giulia; Bozza, Margherita; Bargagna, Stefania

    2014-10-01

    Children with Down syndrome show hypotonia and ligamentous laxity that are associated with motor development delay. Neurologic disorders are common in children with Down syndrome; however, in literature the presence of periodic movement disorders has not yet been described. We report 2 different types of periodic movement disorders in 2 infants with Down syndrome. In the first case, we described an 8-month-old girl with involuntary head nodding and absence of any other neurologic or ophthalmologic abnormalities. In the second case, we described a 6-month-old boy with abnormal but painless head rotation and inclination, alternating from side to side. Episodes of head tilting were often associated with a state of general uneasiness. Neurologic examination between attacks was normal. The aim of this paper is to provide practical information on recognition and management of movement disorders in Down syndrome. PMID:24309245

  7. Reorganization of muscle synergies during multidirectional reaching in the horizontal plane with experimental muscle pain

    PubMed Central

    Muceli, Silvia; Falla, Deborah

    2014-01-01

    Muscle pain induces a complex reorganization of the motor strategy which cannot be fully explained by current theories. We tested the hypothesis that the neural control of muscles during reaching in the presence of nociceptive input is determined by a reorganization of muscle synergies with respect to control conditions. Muscle pain was induced by injection of hypertonic saline into the anterior deltoid muscle of eight men. Electromyographic (EMG) signals were recorded from 12 upper limb muscles as subjects performed a reaching task before (baseline) and after the injection of hypertonic (pain) saline, and after the pain sensation vanished. The EMG envelopes were factorized in muscle synergies, and activation signals extracted for each condition. Nociceptive stimulation resulted in a complex muscle reorganization without changes in the kinematic output. The anterior deltoid muscle activity decreased in all subjects while the changes in other muscles were subject specific. Three synergies sufficed to describe the EMG patterns in each condition, suggesting that reaching movements remain modular in the presence of experimental pain. Muscle reorganization in all subjects was accompanied by a change in the activation signals compatible with a change in the central drive to muscles. One, two or three synergies were shared between the baseline and painful conditions, depending on the subject. These results indicate that nociceptive stimulation may induce a reorganization of modular control in reaching. We speculate that such reorganization may be due to the recruitment of synergies specific to the painful condition. PMID:24453279

  8. Non-invasive muscle contraction assay to study rodent models of sarcopenia

    PubMed Central

    2011-01-01

    Background Age-related sarcopenia is a disease state of loss of muscle mass and strength that affects physical function and mobility leading to falls, fractures, and disability. The need for therapies to treat age-related sarcopenia has attracted intensive preclinical research. To facilitate the discovery of these therapies, we have developed a non-invasive rat muscle functional assay system to efficiently measure muscle force and evaluate the efficacy of drug candidates. Methods The lower leg muscles of anesthetized rats are artificially stimulated with surface electrodes on the knee holders and the heel support, causing the lower leg muscles to push isometric pedals that are attached to force transducers. We developed a stimulation protocol to perform a fatigability test that reveals functional muscle parameters like maximal force, the rate of fatigue, fatigue-resistant force, as well as a fatigable muscle force index. The system is evaluated in a rat aging model and a rat glucocorticoid-induced muscle loss model Results The aged rats were generally weaker than adult rats and showed a greater reduction in their fatigable force when compared to their fatigue-resistant force. Glucocorticoid treated rats mostly lost fatigable force and fatigued at a higher rate, indicating reduced force from glycolytic fibers with reduced energy reserves. Conclusions The involuntary contraction assay is a reliable system to assess muscle function in rodents and can be applied in preclinical research, including age-related sarcopenia and other myopathy. PMID:22035016

  9. A Neuro-Fuzzy System for Characterization of Arm Movements

    PubMed Central

    Balbinot, Alexandre; Favieiro, Gabriela

    2013-01-01

    The myoelectric signal reflects the electrical activity of skeletal muscles and contains information about the structure and function of the muscles which make different parts of the body move. Advances in engineering have extended electromyography beyond the traditional diagnostic applications to also include applications in diverse areas such as rehabilitation, movement analysis and myoelectric control of prosthesis. This paper aims to study and develop a system that uses myoelectric signals, acquired by surface electrodes, to characterize certain movements of the human arm. To recognize certain hand-arm segment movements, was developed an algorithm for pattern recognition technique based on neuro-fuzzy, representing the core of this research. This algorithm has as input the preprocessed myoelectric signal, to disclosed specific characteristics of the signal, and as output the performed movement. The average accuracy obtained was 86% to 7 distinct movements in tests of long duration (about three hours). PMID:23429579

  10. Mapping phantom movement representations in the motor cortex of amputees.

    PubMed

    Mercier, Catherine; Reilly, Karen T; Vargas, Claudia D; Aballea, Antoine; Sirigu, Angela

    2006-08-01

    Limb amputation results in plasticity of connections between the brain and muscles, with the cortical motor representation of the missing limb seemingly shrinking, to the presumed benefit of remaining body parts that have cortical representations adjacent to the now-missing limb. Surprisingly, the corresponding perceptual representation does not suffer a similar fate but instead persists as a phantom limb endowed with sensory and motor qualities. How can cortical reorganization after amputation be reconciled with the maintenance of a motor representation of the phantom limb in the brain? In an attempt to answer this question we explored the relationship between the cortical representation of the remaining arm muscles and that of phantom movements. Using transcranial magnetic stimulation (TMS) we systematically mapped phantom movement perceptions while simultaneously recording stump muscle activity in three above-elbow amputees. TMS elicited sensations of movement in the phantom hand when applied over the presumed hand area of the motor cortex. In one subject the amplitude of the perceived movement was positively correlated with the intensity of stimulation. Interestingly, phantom limb movements that the patient could not produce voluntarily were easily triggered by TMS, suggesting that the inability to voluntarily move the phantom is not equivalent to a loss of the corresponding movement representation. We suggest that hand movement representations survive in the reorganized motor area of amputees even when these cannot be directly accessed. The activation of these representations is probably necessary for the experience of phantom movement. PMID:16844715

  11. Redox control of skeletal muscle atrophy.

    PubMed

    Powers, Scott K; Morton, Aaron B; Ahn, Bumsoo; Smuder, Ashley J

    2016-09-01

    Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown. PMID:26912035

  12. Beyond face value: does involuntary emotional anticipation shape the perception of dynamic facial expressions?

    PubMed

    Palumbo, Letizia; Jellema, Tjeerd

    2013-01-01

    Emotional facial expressions are immediate indicators of the affective dispositions of others. Recently it has been shown that early stages of social perception can already be influenced by (implicit) attributions made by the observer about the agent's mental state and intentions. In the current study possible mechanisms underpinning distortions in the perception of dynamic, ecologically-valid, facial expressions were explored. In four experiments we examined to what extent basic perceptual processes such as contrast/context effects, adaptation and representational momentum underpinned the perceptual distortions, and to what extent 'emotional anticipation', i.e. the involuntary anticipation of the other's emotional state of mind on the basis of the immediate perceptual history, might have played a role. Neutral facial expressions displayed at the end of short video-clips, in which an initial facial expression of joy or anger gradually morphed into a neutral expression, were misjudged as being slightly angry or slightly happy, respectively (Experiment 1). This response bias disappeared when the actor's identity changed in the final neutral expression (Experiment 2). Videos depicting neutral-to-joy-to-neutral and neutral-to-anger-to-neutral sequences again produced biases but in opposite direction (Experiment 3). The bias survived insertion of a 400 ms blank (Experiment 4). These results suggested that the perceptual distortions were not caused by any of the low-level perceptual mechanisms (adaptation, representational momentum and contrast effects). We speculate that especially when presented with dynamic, facial expressions, perceptual distortions occur that reflect 'emotional anticipation' (a low-level mindreading mechanism), which overrules low-level visual mechanisms. Underpinning neural mechanisms are discussed in relation to the current debate on action and emotion understanding. PMID:23409112

  13. Internally generated conscious contents: interactions between sustained mental imagery and involuntary subvocalizations

    PubMed Central

    Cho, Hyein; Godwin, Christine A.; Geisler, Mark W.; Morsella, Ezequiel

    2014-01-01

    The conscious field includes not only representations about external stimuli (e.g., percepts), but also conscious contents associated with internal states, such as action-related intentions (e.g., urges). Although understudied, the latter may provide unique insights into the nature of consciousness. To illuminate these phenomena, in a new experimental paradigm [Reflexive Imagery Task (RIT)], participants were instructed to not subvocalize the names of visually-presented objects. Each object was presented for 10 s on a screen. Participants indicated whenever they involuntarily subvocalized the object name. Research has revealed that it is difficult to suppress such subvocalizations, which occur on over 80% of the trials. Can the effect survive if one intentionally generates a competing (internally-generated) conscious content? If so, this would suggest that intentional and unintentional contents can co-exist simultaneously in consciousness in interesting ways. To investigate this possibility, in one condition, participants were instructed to reiteratively subvocalize a speech sound (“da, da, da”) throughout the trial. This internally generated content is self-generated and intentional. Involuntary subvocalizations of object names still arose on over 80% of the trials. One could hypothesize that subvocalizations occurred because of the pauses between the intended speech sounds, but this is inconsistent with the observation that comparable results arose even when participants subvocalized a continuous, unbroken hum (“daaa….”) throughout the trial. Regarding inter-content interactions, the continuous hum and object name seem to co-exist simultaneously in consciousness. This intriguing datum requires further investigation. We discuss the implications of this new paradigm for the study of internally-generated conscious contents. PMID:25566126

  14. Factors Affecting the Agreement Between Emergency Psychiatrists and General Practitioners Regarding Involuntary Psychiatric Hospitalizations

    PubMed Central

    Geoffroy, Pierre Alexis; Duhamel, Alain; Behal, Hélène; Zouitina-Lietaert, Nadia; Duthilleul, Julie; Marquette, Louise; Ducrocq, François; Vaiva, Guillaume; Rolland, Benjamin

    2016-01-01

    Important discrepancies exist between physicians in deciding when to perform involuntary hospitalization measures (IHMs). The factors underlying these differences are poorly known. We conducted a two-year single-center retrospective study in France on patients who were referred to the emergency department (ED) with an IHM certificate written by a private-practice General Practitioner (GP). For each consultation, the official IHM motive was categorized into four groups: Suicide; Psychosis, Mania, or Melancholia (PMM); Agitation; and Other. The alcohol status of the patient was also noted. The factors underlying the ED psychiatrists’ confirmation of the use of IHMs were determined using a logistic regression model. One hundred eighty-nine cases were found (165 patients; 44.2 ± 16 years, 41.3% women). The ED psychiatrists confirmed the use of IHMs in 123 instances (65.1% agreement rate). Multivariate analyses found that IHM disagreement was significantly associated with patient alcohol status and the reason for referral. Specifically, there was an increased risk of IHM disagreement when the patient had an alcohol-positive status (OR = 15.80; 95% CI [6.45–38.67]; p < 0.0001) and when the motive for IHM was “agitation” compared with “suicide” (OR = 11.44; 95% CI[3.38–38.78]; p < 0.0001). These findings reflect significant disparities between GPs and ED psychiatrists regarding the decision to proceed to an IHM. PMID:27324574

  15. The Effects of Instruction on the Frequency and Characteristics of Involuntary Autobiographical Memories.

    PubMed

    Barzykowski, Krystian; Niedźwieńska, Agnieszka

    2016-01-01

    The present study investigated the effects of experimental instruction on the retrieval of involuntary autobiographical memories (IAMs). In previous studies of IAMs, participants were either instructed to record only memories (henceforth, the restricted group) or any thoughts (henceforth, the unrestricted group). However, it is unknown whether these two different types of instructions influence the retrieval of IAMs. The most recent study by Vannucci and her colleagues directly addressed this question and demonstrated that the frequency and phenomenological characteristics of IAMs strongly depended on the type of instruction received. The goal of the present study was to replicate these results while addressing some limitations of the Vannucci et al. study and to test three possible mechanisms proposed to explain the effect of instructions on the retrieval of IAMs. Our results accord well with the data presented by Vannucci et al. When participants were instructed to record only IAMs (the restricted group), they reported more memories and rated them as being retrieved in a more goal-oriented fashion. Their memories also were less clear, vivid, detailed and were less frequently accompanied by physiological reactions, compared to memories reported by the participants in the unrestricted group. In addition, the events to which the memories referred were rated as more unusual and personal by the restricted group. These results are consistent with the assumption that retrieval of IAMs depends on the type of instructions used in a study. In addition, our results suggest that one of the main mechanisms underlying the higher frequency of IAMs in the restricted group may be participants' ability to monitor the stream of consciousness and to extract autobiographical content from this flow. Further implications of the effect of instructions for IAMs research are discussed. PMID:27294408

  16. The Effects of Instruction on the Frequency and Characteristics of Involuntary Autobiographical Memories

    PubMed Central

    Niedźwieńska, Agnieszka

    2016-01-01

    The present study investigated the effects of experimental instruction on the retrieval of involuntary autobiographical memories (IAMs). In previous studies of IAMs, participants were either instructed to record only memories (henceforth, the restricted group) or any thoughts (henceforth, the unrestricted group). However, it is unknown whether these two different types of instructions influence the retrieval of IAMs. The most recent study by Vannucci and her colleagues directly addressed this question and demonstrated that the frequency and phenomenological characteristics of IAMs strongly depended on the type of instruction received. The goal of the present study was to replicate these results while addressing some limitations of the Vannucci et al. study and to test three possible mechanisms proposed to explain the effect of instructions on the retrieval of IAMs. Our results accord well with the data presented by Vannucci et al. When participants were instructed to record only IAMs (the restricted group), they reported more memories and rated them as being retrieved in a more goal-oriented fashion. Their memories also were less clear, vivid, detailed and were less frequently accompanied by physiological reactions, compared to memories reported by the participants in the unrestricted group. In addition, the events to which the memories referred were rated as more unusual and personal by the restricted group. These results are consistent with the assumption that retrieval of IAMs depends on the type of instructions used in a study. In addition, our results suggest that one of the main mechanisms underlying the higher frequency of IAMs in the restricted group may be participants’ ability to monitor the stream of consciousness and to extract autobiographical content from this flow. Further implications of the effect of instructions for IAMs research are discussed. PMID:27294408

  17. The number and choice of muscles impact the results of muscle synergy analyses

    PubMed Central

    Steele, Katherine M.; Tresch, Matthew C.; Perreault, Eric J.

    2013-01-01

    One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG) from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF) by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small subset of muscles

  18. Effects of External Loads on Human Head Movement Control Systems

    NASA Technical Reports Server (NTRS)

    Nam, M. H.; Choi, O. M.

    1984-01-01

    The central and reflexive control strategies underlying movements were elucidated by studying the effects of external loads on human head movement control systems. Some experimental results are presented on dynamic changes weigh the addition of aviation helmet (SPH4) and lead weights (6 kg). Intended time-optimal movements, their dynamics and electromyographic activity of neck muscles in normal movements, and also in movements made with external weights applied to the head were measured. It was observed that, when the external loads were added, the subject went through complex adapting processes and the head movement trajectory and its derivatives reached steady conditions only after transient adapting period. The steady adapted state was reached after 15 to 20 seconds (i.e., 5 to 6 movements).

  19. Muscle repositioning: combining subjective and objective feedbacks in the teaching and practice of a reflex-based myofascial release technique.

    PubMed

    Bertolucci, Luiz Fernando

    2010-01-01

    Muscle Repositioning (MR) is a new style of myofascial release that elicits involuntary motor reactions detectable by electromyography. This article describes the principal theoretical and practical concepts of MR, and summarizes a workshop presented October 31, 2009, after the Second International Fascia Research Congress, held at Vrije Universitiet, Amsterdam.The manual mechanical input of MR integrates the client's body segments into a block, which is evident as a result of the diagnostic manual oscillations the practitioner imparts to the client's body. Segmental integration is achieved when the client's body responds as a unit to the oscillatory assessment. It appears that manually sustaining the condition of segmental integration evokes involuntary muscle reactions, which reactions might correspond to mechanisms that maintain homeostasis, such as pandiculation. It might be that these reactions are part of the MR mechanism of action and underlie its clinically observed efficacy in the treatment of musculoskeletal disorders.For the practitioner and the client alike, segmental integration provides unique sensations. In teaching MR, these paired sensations can be used as kinesthetic feedback resources, because quality of touch can be guided by the client's reported sensations, which should match the practitioner's sensations. Another form of feedback with respect to quality of touch is the visually discernable degree of segmental integration. Finally, because the involuntary motor activity elicited by the MR touch can be objectively monitored through electromyography and possibly other instrumented measurements, the MR approach might yield objectivity, precision, and reproducibility-features seldom found in manual therapies. PMID:21589699

  20. Movement Disorders Following Cerebrovascular Lesions in Cerebellar Circuits

    PubMed Central

    Choi, Seong-Min

    2016-01-01

    Cerebellar circuitry is important to controlling and modifying motor activity. It conducts the coordination and correction of errors in muscle contractions during active movements. Therefore, cerebrovascular lesions of the cerebellum or its pathways can cause diverse movement disorders, such as action tremor, Holmes’ tremor, palatal tremor, asterixis, and dystonia. The pathophysiology of abnormal movements after stroke remains poorly understood. However, due to the current advances in functional neuroimaging, it has recently been described as changes in functional brain networks. This review describes the clinical features and pathophysiological mechanisms in different types of movement disorders following cerebrovascular lesions in the cerebellar circuits. PMID:27240809

  1. Movement Disorders Following Cerebrovascular Lesions in Cerebellar Circuits.

    PubMed

    Choi, Seong-Min

    2016-05-01

    Cerebellar circuitry is important to controlling and modifying motor activity. It conducts the coordination and correction of errors in muscle contractions during active movements. Therefore, cerebrovascular lesions of the cerebellum or its pathways can cause diverse movement disorders, such as action tremor, Holmes' tremor, palatal tremor, asterixis, and dystonia. The pathophysiology of abnormal movements after stroke remains poorly understood. However, due to the current advances in functional neuroimaging, it has recently been described as changes in functional brain networks. This review describes the clinical features and pathophysiological mechanisms in different types of movement disorders following cerebrovascular lesions in the cerebellar circuits. PMID:27240809

  2. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  3. Creutzfeldt-Jakob Disease

    MedlinePlus

    ... damage leads to rapid decline in thinking and reasoning as well as involuntary muscle movements, confusion, difficulty ... been tested but have not shown any benefit. Clinical studies of potential CJD treatments are complicated by ...

  4. Gerstmann-Straussler-Scheinker Disease

    MedlinePlus

    ... dementia. Other symptoms may include dysarthria (slurring of speech), nystagmus (involuntary movements of the eyes), spasticity (rigid muscle tone), and visual disturbances, sometimes leading to blindness. Deafness also can ...

  5. Indirect Estimates of Jaw Muscle Tension in Children with Suspected Hypertonia, Children with Suspected Hypotonia, and Matched Controls

    ERIC Educational Resources Information Center

    Connaghan, Kathryn P.; Moore, Christopher A.

    2013-01-01

    Purpose: In this study, the authors compared indirect estimates of jaw-muscle tension in children with suspected muscle-tone abnormalities with age- and gender-matched controls. Method: Jaw movement and muscle activation were measured in children (ages 3 years, 11 months, to 10 years) with suspected muscle-tone abnormalities (Down syndrome or…

  6. Approaches to involuntary admission of the mentally ill in the People’s Republic of China: Changes in legislation from 2002 to 2012

    PubMed Central

    Shao, Y; Xie, B

    2015-01-01

    Because a systematic analysis of laws on involuntary admission of the mentally ill in China does not exist, this paper explored the trajectory of the legislation on involuntary admission of the mentally ill in China; the social and cultural factors underlying these changes are also discussed. By describing and analyzing the differences or similarities of current legal frameworks and procedures for involuntary admission of the mentally ill across the seven local mental health regulations and the National Mental Health Act, one can see a trajectory of gradually more stringent legislation for involuntary admission during the past 10 years of China. The compromise, reversals, and circuitous paths during the legislation process reflect the difficulty the government faces in balancing the benefits between society and individuals, and explores the transformation of the mode of mental health services. The approach in the 2012 National Mental Health Act, despite some weaknesses, is an important step to standardize the diverse practices in involuntary admission of the mentally ill in China. Further research on the influence of the National Act on mental health services is clearly needed. PMID:25770277

  7. A model for learning human reaching movements.

    PubMed

    Karniel, A; Inbar, G F

    1997-09-01

    Reaching movement is a fast movement towards a given target. The main characteristics of such a movement are straight path and a bell-shaped speed profile. In this work a mathematical model for the control of the human arm during ballistic reaching movements is presented. The model of the arm contains a 2 degrees of freedom planar manipulator, and a Hill-type, non-linear mechanical model of six muscles. The arm model is taken from the literature with minor changes. The nervous system is modeled as an adjustable pattern generator that creates the control signals to the muscles. The control signals in this model are rectangular pulses activated at various amplitudes and timings, that are determined according to the given target. These amplitudes and timings are the parameters that should be related to each target and initial conditions in the work-space. The model of the nervous system consists of an artificial neural net that maps any given target to the parameter space of the pattern generator. In order to train this net, the nervous system model includes a sensitivity model that transforms the error from the arm end-point coordinates to the parameter coordinates. The error is assessed only at the termination of the movement from knowledge of the results. The role of the non-linearity in the muscle model and the performance of the learning scheme are analysed, illustrated in simulations and discussed. The results of the present study demonstrate the central nervous system's (CNS) ability to generate typical reaching movements with a simple feedforward controller that controls only the timing and amplitude of rectangular excitation pulses to the muscles and adjusts these parameters based on knowledge of the results. In this scheme, which is based on the adjustment of only a few parameters instead of the whole trajectory, the dimension of the control problem is reduced significantly. It is shown that the non-linear properties of the muscles are essential to achieve

  8. Are muscle synergies useful for neural control?

    PubMed

    de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J

    2013-01-01

    The observation that the activity of multiple muscles can be well approximated by a few linear synergies is viewed by some as a sign that such low-dimensional modules constitute a key component of the neural control system. Here, we argue that the usefulness of muscle synergies as a control principle should be evaluated in terms of errors produced not only in muscle space, but also in task space. We used data from a force-aiming task in two dimensions at the wrist, using an electromyograms (EMG)-driven virtual biomechanics technique that overcomes typical errors in predicting force from recorded EMG, to illustrate through simulation how synergy decomposition inevitably introduces substantial task space errors. Then, we computed the optimal pattern of muscle activation that minimizes summed-squared muscle activities, and demonstrated that synergy decomposition produced similar results on real and simulated data. We further assessed the influence of synergy decomposition on aiming errors (AEs) in a more redundant system, using the optimal muscle pattern computed for the elbow-joint complex (i.e., 13 muscles acting in two dimensions). Because EMG records are typically not available from all contributing muscles, we also explored reconstructions from incomplete sets of muscles. The redundancy of a given set of muscles had opposite effects on the goodness of muscle reconstruction and on task achievement; higher redundancy is associated with better EMG approximation (lower residuals), but with higher AEs. Finally, we showed that the number of synergies required to approximate the optimal muscle pattern for an arbitrary biomechanical system increases with task-space dimensionality, which indicates that the capacity of synergy decomposition to explain behavior depends critically on the scope of the original database. These results have implications regarding the viability of muscle synergy as a putative neural control mechanism, and also as a control algorithm to restore

  9. Direct control of paralysed muscles by cortical neurons.

    PubMed

    Moritz, Chet T; Perlmutter, Steve I; Fetz, Eberhard E

    2008-12-01

    A potential treatment for paralysis resulting from spinal cord injury is to route control signals from the brain around the injury by artificial connections. Such signals could then control electrical stimulation of muscles, thereby restoring volitional movement to paralysed limbs. In previously separate experiments, activity of motor cortex neurons related to actual or imagined movements has been used to control computer cursors and robotic arms, and paralysed muscles have been activated by functional electrical stimulation. Here we show that Macaca nemestrina monkeys can directly control stimulation of muscles using the activity of neurons in the motor cortex, thereby restoring goal-directed movements to a transiently paralysed arm. Moreover, neurons could control functional stimulation equally well regardless of any previous association to movement, a finding that considerably expands the source of control signals for brain-machine interfaces. Monkeys learned to use these artificial connections from cortical cells to muscles to generate bidirectional wrist torques, and controlled multiple neuron-muscle pairs simultaneously. Such direct transforms from cortical activity to muscle stimulation could be implemented by autonomous electronic circuitry, creating a relatively natural neuroprosthesis. These results are the first demonstration that direct artificial connections between cortical cells and muscles can compensate for interrupted physiological pathways and restore volitional control of movement to paralysed limbs. PMID:18923392

  10. Different corticospinal control between discrete and rhythmic movement of the ankle

    PubMed Central

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement. PMID:25126066

  11. [Body movements during sleep in Lennox syndrome].

    PubMed

    Iwakawa, Y; Ogiso, M; Toyoda, M; Hosaka, S; Niwa, T; Dan, T; Segawa, M

    1984-03-01

    In Lennox syndrome the brainstem which plays important roles in regulating sleep and its parameters is thought to be disturbed. In order to clarify the importance of the dysfunction of the brainstem in Lennox syndrome, polygraphic examination were studied and their findings were assessed with prognosis. 8 patients aged from 6 to 17 years were subjected to this study. They were divided into two groups according to their prognosis. Group 1 showed good prognosis. Seizures were easily controllable and have not occurred for more than 24 months. In group 2 seizures were intractable and were uncontrollable by medication. In 4 normal children ranging in age from 4 to 10 years, the same studies were performed. Recordings were performed on two consecutive nights and the second night recordings were used for analysis. Polygraph consisted of EEG from C4 and P4, bipolar EOG from electrode attached to outer canthus, surface EMG from submental muscle and 5 or 6 other muscles including trunk and limbs. Sleep stages were determined in each minute according to the standard of APSS. Body movements were classified into two types on the basis of their distribution over body parts and on duration of movements. Gross movements (GM) involved the body trunk and lasted for more than two seconds. Twitch movements (TM) were localized in one muscle on surface EMG recordings lasting less than 0.5 seconds. In normal children, the rate of GM in sleep stage 1 and REM are significantly higher than slow wave sleep. And this is the same in TM of all muscles.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6331476

  12. Nylon-muscle-actuated robotic finger

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; Jung de Andrade, Monica; Rome, Richard S.; Haines, Carter; Lima, Marcio D.; Baughman, Ray H.; Tadesse, Yonas

    2015-04-01

    This paper describes the design and experimental analysis of novel artificial muscles, made of twisted and coiled nylon fibers, for powering a biomimetic robotic hand. The design is based on circulating hot and cold water to actuate the artificial muscles and obtain fast finger movements. The actuation system consists of a spring and a coiled muscle within a compliant silicone tube. The silicone tube provides a watertight, expansible compartment within which the coiled muscle contracts when heated and expands when cooled. The fabrication and characterization of the actuating system are discussed in detail. The performance of the coiled muscle fiber in embedded conditions and the related characteristics of the actuated robotic finger are described.

  13. Development of software for human muscle force estimation.

    PubMed

    Tang, Gang; Qian, Li-wei; Wei, Gao-feng; Wang, Hong-sheng; Wang, Cheng-tao

    2012-01-01

    Muscle force estimation (MFE) has become more and more important in exploring principles of pathological movement, studying functions of artificial muscles, making surgery plan for artificial joint replacement, improving the biomechanical effects of treatments and so on. At present, existing software are complex for professionals, so we have developed a new software named as concise MFE (CMFE). CMFE which provides us a platform to analyse muscle force in various actions includes two MFE methods (static optimisation method and electromyographic-based method). Common features between these two methods have been found and used to improve CMFE. A case studying the major muscles of lower limb of a healthy subject walking at normal speed has been presented. The results are well explained from the effect of the motion produced by muscles during movement. The development of this software can improve the accuracy of the motion simulations and can provide a more extensive and deeper insight in to muscle study. PMID:21607886

  14. Losing dexterity: patterns of impaired coordination of finger movements in musician’s dystonia

    PubMed Central

    Furuya, Shinichi; Tominaga, Kenta; Miyazaki, Fumio; Altenmüller, Eckart

    2015-01-01

    Extensive training can bring about highly-skilled action, but may also impair motor dexterity by producing involuntary movements and muscular cramping, as seen in focal dystonia (FD) and tremor. To elucidate the underlying neuroplastic mechanisms of FD, the present study addressed the organization of finger movements during piano performance in pianists suffering from the condition. Principal component (PC) analysis identified three patterns of fundamental joint coordination constituting finger movements in both patients and controls. The first two coordination patterns described less individuated movements between the “dystonic” finger and key-striking fingers for patients compared to controls. The third coordination pattern, representing the individuation of movements between the middle and ring fingers, was evident during a sequence of strikes with these fingers in controls, which was absent in the patients. Consequently, rhythmic variability of keystrokes was more pronounced during this sequence of strikes for the patients. A stepwise multiple-regression analysis further identified greater variability of keystrokes for individuals displaying less individuated movements between the affected and striking fingers. The findings suggest that FD alters dexterous joint coordination so as to lower independent control of finger movements, and thereby degrades fine motor control. PMID:26289433

  15. Eye movements reset visual perception

    PubMed Central

    Paradiso, Michael A.; Meshi, Dar; Pisarcik, Jordan; Levine, Samuel

    2012-01-01

    Human vision uses saccadic eye movements to rapidly shift the sensitive foveal portion of our retina to objects of interest. For vision to function properly amidst these ballistic eye movements, a mechanism is needed to extract discrete percepts on each fixation from the continuous stream of neural activity that spans fixations. The speed of visual parsing is crucial because human behaviors ranging from reading to driving to sports rely on rapid visual analysis. We find that a brain signal associated with moving the eyes appears to play a role in resetting visual analysis on each fixation, a process that may aid in parsing the neural signal. We quantified the degree to which the perception of tilt is influenced by the tilt of a stimulus on a preceding fixation. Two key conditions were compared, one in which a saccade moved the eyes from one stimulus to the next and a second simulated saccade condition in which the stimuli moved in the same manner but the subjects did not move their eyes. We find that there is a brief period of time at the start of each fixation during which the tilt of the previous stimulus influences perception (in a direction opposite to the tilt aftereffect)—perception is not instantaneously reset when a fixation starts. Importantly, the results show that this perceptual bias is much greater, with nearly identical visual input, when saccades are simulated. This finding suggests that, in real-saccade conditions, some signal related to the eye movement may be involved in the reset phenomenon. While proprioceptive information from the extraocular muscles is conceivably a factor, the fast speed of the effect we observe suggests that a more likely mechanism is a corollary discharge signal associated with eye movement. PMID:23241264

  16. Eye movements reset visual perception.

    PubMed

    Paradiso, Michael A; Meshi, Dar; Pisarcik, Jordan; Levine, Samuel

    2012-01-01

    Human vision uses saccadic eye movements to rapidly shift the sensitive foveal portion of our retina to objects of interest. For vision to function properly amidst these ballistic eye movements, a mechanism is needed to extract discrete percepts on each fixation from the continuous stream of neural activity that spans fixations. The speed of visual parsing is crucial because human behaviors ranging from reading to driving to sports rely on rapid visual analysis. We find that a brain signal associated with moving the eyes appears to play a role in resetting visual analysis on each fixation, a process that may aid in parsing the neural signal. We quantified the degree to which the perception of tilt is influenced by the tilt of a stimulus on a preceding fixation. Two key conditions were compared, one in which a saccade moved the eyes from one stimulus to the next and a second simulated saccade condition in which the stimuli moved in the same manner but the subjects did not move their eyes. We find that there is a brief period of time at the start of each fixation during which the tilt of the previous stimulus influences perception (in a direction opposite to the tilt aftereffect)--perception is not instantaneously reset when a fixation starts. Importantly, the results show that this perceptual bias is much greater, with nearly identical visual input, when saccades are simulated. This finding suggests that, in real-saccade conditions, some signal related to the eye movement may be involved in the reset phenomenon. While proprioceptive information from the extraocular muscles is conceivably a factor, the fast speed of the effect we observe suggests that a more likely mechanism is a corollary discharge signal associated with eye movement. PMID:23241264

  17. Decoding upper limb residual muscle activity in severe chronic stroke

    PubMed Central

    Ramos-Murguialday, Ander; García-Cossio, Eliana; Walter, Armin; Cho, Woosang; Broetz, Doris; Bogdan, Martin; Cohen, Leonardo G; Birbaumer, Niels

    2015-01-01

    Objective Stroke is a leading cause of long-term motor disability. Stroke patients with severe hand weakness do not profit from rehabilitative treatments. Recently, brain-controlled robotics and sequential functional electrical stimulation allowed some improvement. However, for such therapies to succeed, it is required to decode patients' intentions for different arm movements. Here, we evaluated whether residual muscle activity could be used to predict movements from paralyzed joints in severely impaired chronic stroke patients. Methods Muscle activity was recorded with surface-electromyography (EMG) in 41 patients, with severe hand weakness (Fugl-Meyer Assessment [FMA] hand subscores of 2.93 ± 2.7), in order to decode their intention to perform six different motions of the affected arm, required for voluntary muscle activity and to control neuroprostheses. Decoding of paretic and nonparetic muscle activity was performed using a feed-forward neural network classifier. The contribution of each muscle to the intended movement was determined. Results Decoding of up to six arm movements was accurate (>65%) in more than 97% of nonparetic and 46% of paretic muscles. Interpretation These results demonstrate that some level of neuronal innervation to the paretic muscle remains preserved and can be used to implement neurorehabilitative treatments in 46% of patients with severe paralysis and extensive cortical and/or subcortical lesions. Such decoding may allow these patients for the first time after stroke to control different motions of arm prostheses through muscle-triggered rehabilitative treatments. PMID:25642429

  18. Movement - unpredictable or jerky

    MedlinePlus

    ... Pregnancy (chorea gravidarum) Stroke Systemic lupus erythematosus Tardive dyskinesia (a condition that can be caused by medicines ... uncontrolled); Hyperkinetic movements References Jankovic J, Lang AE. Movement disorders. In: Daroff RB, Fenichel GM, Jankovic J, Mazziotta ...

  19. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  20. Eye Movement Disorders

    MedlinePlus

    ... t work properly. There are many kinds of eye movement disorders. Two common ones are Strabismus - a disorder ... of the eyes, sometimes called "dancing eyes" Some eye movement disorders are present at birth. Others develop over ...

  1. Extraocular muscle: cellular adaptations for a diverse functional repertoire.

    PubMed

    Porter, John D

    2002-04-01

    Oculomotor control systems are considerably more complex and diverse than are spinal skeletomotor systems. Moreover, individual skeletal muscles are frequently functional role-specific, while all extraocular muscles operate across a very wide dynamic range. We contend that the novel phenotype of the extraocular muscles is a direct consequence of the functional demands imposed upon this muscle group by the central eye movement controllers. This review highlights five basic themes of extraocular muscle biology that set them apart from more typical skeletal muscles, specifically, the (a) novel innervation pattern, (b) heterogeneity in contractile proteins, (c) structural and functional compartmentalization of the rectus and oblique muscles, (d) diversity of extraocular muscle fiber types, and (e) relationship between the novel muscle phenotype and the differential response of these muscles in neuromuscular and endocrine disease. Finally, new data from broad genome-wide profiling studies are reviewed, with global gene expression patterns lending substantial support to the notion that the extraocular muscles are fundamentally different from traditional skeletal muscle. This novel eye muscle phenotype represents an adaptation that exploits the full range of variability in skeletal muscle to meet the needs of visuomotor systems. PMID:11960789

  2. Effect of protein intake on bone and muscle mass in the elderly.

    PubMed

    Genaro, Patrícia de Souza; Martini, Lígia Araújo

    2010-10-01

    The aging process is frequently characterized by an involuntary loss of muscle (sarcopenia) and bone (osteoporosis) mass. Both chronic diseases are associated with decreased metabolic rate, increased risk of falls/fracture, and, as a result, increased morbidity and loss of independence in the elderly. The quality and quantity of protein intake affects bone and muscle mass in several ways and there is evidence that increased essential amino acid or protein availability can enhance muscle protein synthesis and anabolism, as well as improve bone homeostasis in older subjects. A thorough evaluation of renal function is important, since renal function decreases with age. Finally, protein and calcium intake should be considered in the prevention or treatment of the chronic diseases osteoporosis and sarcopenia. PMID:20883419

  3. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  4. Linking Literacy and Movement

    ERIC Educational Resources Information Center

    Pica, Rae

    2010-01-01

    There are many links between literacy and movement. Movement and language are both forms of communication and self-expression. Rhythm is an essential component of both language and movement. While people may think of rhythm primarily in musical terms, there is a rhythm to words and sentences as well. Individuals develop an internal rhythm when…

  5. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  6. Capillary muscle.

    PubMed

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-05-19

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This "hyperbolic" force-velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136-195]. Hill's heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973-976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971-973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928-935]. Here, we develop a capillary analog of the sarcomere obeying Hill's equation and discuss its analogy with muscles. PMID:25944938

  7. Muscle Sensor Model Using Small Scale Optical Device for Pattern Recognitions

    PubMed Central

    Tamee, Kreangsak; Chaiwong, Khomyuth; Yothapakdee, Kriengsak; Yupapin, Preecha P.

    2013-01-01

    A new sensor system for measuring contraction and relaxation of muscles by using a PANDA ring resonator is proposed. The small scale optical device is designed and configured to perform the coupling effects between the changes in optical device phase shift and human facial muscle movement, which can be used to form the relationship between optical phase shift and muscle movement. By using the Optiwave and MATLAB programs, the results obtained have shown that the measurement of the contraction and relaxation of muscles can be obtained after the muscle movements, in which the unique pattern of individual muscle movement from facial expression can be established. The obtained simulation results, that is, interference signal patterns, can be used to form the various pattern recognitions, which are useful for the human machine interface and the human computer interface application and discussed in detail. PMID:24222730

  8. The wrong end of the telescope: neuromuscular mimics of movement disorders (and vice versa).

    PubMed

    Bloem, B R; Voermans, N C; Aerts, M B; Bhatia, K P; van Engelen, B G M; van de Warrenburg, B P

    2016-08-01

    The rapid advances in modern neurology have led to increased specialisation in clinical practice. Being an expert in a neurology subspecialty offers advantages for diagnosing and managing specific disorders. However, specialisation also risks tunnel vision: interpreting symptoms and signs within one's own framework of reference, while ignoring differential diagnostic options from other subspecialties. This is particularly relevant when the patient's presentation potentially belongs to different neurological subspecialties. We illustrate this challenge by highlighting a series of clinical features that partially overlap between two common subspecialties: movement disorders and neuromuscular disorders. An overlap in clinical presentation is not rare, and includes, for example, involuntary eyelid closure (which could be active eye closure due to blepharospasm, or ptosis due to weakness). Other overlapping features include abnormal postures, involuntary movements and gait changes. We describe two of these overlapping features in more detail and emphasise the possible consequences of 'looking through the wrong end of the telescope' in such patients, as this may lead to a wrong differential diagnosis, unnecessary investigations and a delayed treatment start. PMID:26965497

  9. Agonist mediated fetal muscle-type nicotinic acetylcholine receptor desensitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The exposure of a developing embryo or fetus to teratogenic alkaloids from plants has the potential to cause developmental defects in livestock due to the inhibition of fetal movement by alkaloids. The mechanism behind the inhibition of fetal movement is the desensitization of fetal muscle-type nico...

  10. Modeling the biomechanics of fetal movements.

    PubMed

    Verbruggen, Stefaan W; Loo, Jessica H W; Hayat, Tayyib T A; Hajnal, Joseph V; Rutherford, Mary A; Phillips, Andrew T M; Nowlan, Niamh C

    2016-08-01

    Fetal movements in the uterus are a natural part of development and are known to play an important role in normal musculoskeletal development. However, very little is known about the biomechanical stimuli that arise during movements in utero, despite these stimuli being crucial to normal bone and joint formation. Therefore, the objective of this study was to create a series of computational steps by which the forces generated during a kick in utero could be predicted from clinically observed fetal movements using novel cine-MRI data of three fetuses, aged 20-22 weeks. A custom tracking software was designed to characterize the movements of joints in utero, and average uterus deflection of [Formula: see text] mm due to kicking was calculated. These observed displacements provided boundary conditions for a finite element model of the uterine environment, predicting an average reaction force of [Formula: see text] N generated by a kick against the uterine wall. Finally, these data were applied as inputs for a musculoskeletal model of a fetal kick, resulting in predicted maximum forces in the muscles surrounding the hip joint of approximately 8 N, while higher maximum forces of approximately 21 N were predicted for the muscles surrounding the knee joint. This study provides a novel insight into the closed mechanical environment of the uterus, with an innovative method allowing elucidation of the biomechanical interaction of the developing fetus with its surroundings. PMID:26534772

  11. Early, Involuntary Top-Down Guidance of Attention From Working Memory

    ERIC Educational Resources Information Center

    Soto, David; Heinke, Dietmar; Humphreys, Glyn W.; Blanco, Manuel J.

    2005-01-01

    Four experiments explored the interrelations between working memory, attention, and eye movements. Observers had to identify a tilted line amongst vertical distractors. Each line was surrounded by a colored shape that could be precued by a matching item held in memory. Relative to a neutral baseline, in which no shapes matched the memory item,…

  12. Oculomotor nerve and muscle abnormalities in congenital fibrosis of the extraocular muscles.

    PubMed

    Engle, E C; Goumnerov, B C; McKeown, C A; Schatz, M; Johns, D R; Porter, J D; Beggs, A H

    1997-03-01

    Congenital fibrosis of the extraocular muscles is an autosomal dominant congenital disorder characterized by bilateral ptosis, restrictive external ophthalmoplegia with the eyes partially or completely fixed in an infraducted (downward) and strabismic position, and markedly limited and aberrant residual eye movements. It has been generally thought that these clinical abnormalities result from myopathic fibrosis of the extraocular muscles. We describe the intracranial and orbital pathology of 1 and the muscle pathology of 2 other affected members of a family with chromosome 12-linked congenital fibrosis of the extraocular muscles. There is an absence of the superior division of the oculomotor nerve and its corresponding alpha motor neurons, and abnormalities of the levator palpebrae superioris and rectus superior (the muscles innervated by the superior division of the oculomotor nerve). In addition, increased numbers of internal nuclei and central mitochondrial clumping are found in other extraocular muscles, suggesting that the muscle pathology extends beyond the muscles innervated by the superior division of cranial nerve III. This report presents evidence that congenital fibrosis of the extraocular muscles results from an abnormality in the development of the extraocular muscle lower motor neuron system. PMID:9066352

  13. Involuntary memories after a positive film are dampened by a visuospatial task: unhelpful in depression but helpful in mania?

    PubMed

    Davies, Charlotte; Malik, Aiysha; Pictet, Arnaud; Blackwell, Simon E; Holmes, Emily A

    2012-01-01

    Spontaneous negative mental images have been extensively researched due to the crucial role they play in conditions such as post-traumatic stress disorder. However, people can also experience spontaneous positive mental images, and these are little understood. Positive images may play a role in promoting healthy positive mood and may be lacking in conditions such as depression. However, they may also occur in problematic states of elevated mood, such as in bipolar disorder. Can we apply an understanding of spontaneous imagery gained by the study of spontaneous negative images to spontaneous positive images? In an analogue of the trauma film studies, 69 volunteers viewed an explicitly positive (rather than traumatic) film. Participants were randomly allocated post-film either to perform a visuospatial task (the computer game 'Tetris') or to a no-task control condition. Viewing the film enhanced positive mood and immediately post-film increased goal setting on a questionnaire measure. The film was successful in generating involuntary memories of specific scenes over the following week. As predicted, compared with the control condition, participants in the visuospatial task condition reported significantly fewer involuntary memories from the film in a diary over the subsequent week. Furthermore, scores on a recognition memory test at 1 week indicated an impairment in voluntary recall of the film in the visuospatial task condition. Clinical implications regarding the modulation of positive imagery after a positive emotional experience are discussed. Generally, boosting positive imagery may be a useful strategy for the recovery of depressed mood. PMID:22570062

  14. The separate roles of the reflective mind and involuntary inhibitory control in gatekeeping paranormal beliefs and the underlying intuitive confusions.

    PubMed

    Svedholm, Annika M; Lindeman, Marjaana

    2013-08-01

    Intuitive thinking is known to predict paranormal beliefs, but the processes underlying this relationship, and the role of other thinking dispositions, have remained unclear. Study 1 showed that while an intuitive style increased and a reflective disposition counteracted paranormal beliefs, the ontological confusions suggested to underlie paranormal beliefs were predicted by individual differences in involuntary inhibitory processes. When the reasoning system was subjected to cognitive load, the ontological confusions increased, lost their relationship with paranormal beliefs, and their relationship with weaker inhibition was strongly accentuated. These findings support the argument that the confusions are mainly intuitive and that they therefore are most discernible under conditions in which inhibition is impaired, that is, when thinking is dominated by intuitive processing. Study 2 replicated the findings on intuitive and reflective thinking and paranormal beliefs. In Study 2, ontological confusions were also related to the same thinking styles as paranormal beliefs. The results support a model in which both intuitive and non-reflective thinking styles and involuntary inhibitory processes give way to embracing culturally acquired paranormal beliefs. PMID:23848383

  15. The give and take of freedom: The role of involuntary hospitalization and treatment in recovery from mental illness.

    PubMed

    Danzer, Graham; Wilkus-Stone, Asha

    2015-01-01

    The authors reviewed and synthesized scholarly literature on the topic of involuntary confinement and treatment for severely mentally ill adults. Objectively, all facets of the issue are reported, including recurrent positive outcomes, negative outcomes, and patient experiences in common. Patient experiences are organized into related subthemes of autonomy, patient satisfaction, relationships with staff, perceived coercion, traumatization, and humiliation. The literature suggests that short-term involuntary hospitalization is sometimes necessary in order to prevent the mentally ill from psychiatrically decompensating or harming themselves or others. Understandably, hospitalization is often experienced by the mentally ill as a demoralizing violation of their rights and tends to lead them to disengage further from the professional help they need in order to recover. In turn, disengagement leads to further decompensation and resulting risk for rehospitalization. In order to intervene in this cycle and instill severely mentally ill patients with hope in the recovery process, the use of coercive tactics must be decreased in favor of cooperative engagement measures to the greatest extent possible. Patients must be empowered to make choices within the limits of their illnesses through positive interactions with staff, particularly in potentially negative, autonomy-compromising situations. Cooperative measures may help to minimize the potentially traumatic and humiliating effects of being involuntarily hospitalized and medicated. In turn, trusting patient-provider relationships may develop. Thereafter, the severely mentally ill may become more likely to seek professional help on their own volition in the future. PMID:26366982

  16. Feasible muscle activation ranges based on inverse dynamics analyses of human walking.

    PubMed

    Simpson, Cole S; Sohn, M Hongchul; Allen, Jessica L; Ting, Lena H

    2015-09-18

    Although it is possible to produce the same movement using an infinite number of different muscle activation patterns owing to musculoskeletal redundancy, the degree to which observed variations in muscle activity can deviate from optimal solutions computed from biomechanical models is not known. Here, we examined the range of biomechanically permitted activation levels in individual muscles during human walking using a detailed musculoskeletal model and experimentally-measured kinetics and kinematics. Feasible muscle activation ranges define the minimum and maximum possible level of each muscle's activation that satisfy inverse dynamics joint torques assuming that all other muscles can vary their activation as needed. During walking, 73% of the muscles had feasible muscle activation ranges that were greater than 95% of the total muscle activation range over more than 95% of the gait cycle, indicating that, individually, most muscles could be fully active or fully inactive while still satisfying inverse dynamics joint torques. Moreover, the shapes of the feasible muscle activation ranges did not resemble previously-reported muscle activation patterns nor optimal solutions, i.e. static optimization and computed muscle control, that are based on the same biomechanical constraints. Our results demonstrate that joint torque requirements from standard inverse dynamics calculations are insufficient to define the activation of individual muscles during walking in healthy individuals. Identifying feasible muscle activation ranges may be an effective way to evaluate the impact of additional biomechanical and/or neural constraints on possible versus actual muscle activity in both normal and impaired movements. PMID:26300401

  17. Is movement organization in cat paw shake response optimal?

    NASA Astrophysics Data System (ADS)

    Prilutsky, Boris; Klishko, Alexander

    2008-03-01

    Animal musculoskeletal systems are highly redundant: they have more kinematic degrees of freedom and muscles than strictly necessary to execute a given motor task. Such redundancy gives the animal many choices in selecting kinematic and muscle activity patterns to achieve movement goal. Given a stereotypic execution of cat paw shake response (very fast periodic oscillations of the paw) among deferent cats despite the motor redundancy, we hypothesized that the movement strategy in this reflex is optimal. The goal of this study was to test several physiologically plausible cost functions, optimizations of which could explain the functional significance of chosen movement strategy in paw shake. A 2D, 5 degrees-of-freedom forward dynamics cat hindlimb model was developed. The model has 5 body segments, 4 frictionless hinge joints, 11 muscles with realistic muscle and activation dynamics. Muscle activations were computed using a simulated annealing optimization algorithm and several cost functions. The best match between simulated and experimentally recorded muscle activity patterns was obtained when peak paw acceleration was maximized.

  18. How robust is human gait to muscle weakness?

    PubMed Central

    van der Krogt, Marjolein M.; Delp, Scott L.; Schwartz, Michael H.

    2015-01-01

    Humans have a remarkable capacity to perform complex movements requiring agility, timing, and strength. Disuse, aging, and disease can lead to a loss of muscle strength, which frequently limits the performance of motor tasks. It is unknown, however, how much weakness can be tolerated before normal daily activities become impaired. This study examines the extent to which lower limb muscles can be weakened before normal walking is affected. We developed muscle-driven simulations of normal walking and then progressively weakened all major muscle groups, one at the time and simultaneously, to evaluate how much weakness could be tolerated before execution of normal gait became impossible. We further examined the compensations that arose as a result of weakening muscles. Our simulations revealed that normal walking is remarkably robust to weakness of some muscles but sensitive to weakness of others. Gait appears most robust to weakness of hip and knee extensors, which can tolerate weakness well and without a substantial increase in muscle stress. In contrast, gait is most sensitive to weakness of plantarflexors, hip abductors, and hip flexors. Weakness of individual muscles results in increased activation of the weak muscle, and in compensatory activation of other muscles. These compensations are generally inefficient, and generate unbalanced joint moments that require compensatory activation in yet other muscles. As a result, total muscle activation increases with weakness as does the cost of walking. By clarifying which muscles are critical to maintaining normal gait, our results provide important insights for developing therapies to prevent or improve gait pathology. PMID:22386624

  19. Kinematic parameters of hand movement during a disparate bimanual movement task in children with unilateral Cerebral Palsy.

    PubMed

    Rudisch, Julian; Butler, Jenny; Izadi, Hooshang; Zielinski, Ingar Marie; Aarts, Pauline; Birtles, Deirdre; Green, Dido

    2016-04-01

    Children with unilateral Cerebral Palsy (uCP) experience problems performing tasks requiring the coordinated use of both hands (bimanual coordination; BC). Additionally, some children with uCP display involuntary symmetrical activation of the opposing hand (mirrored movements). Measures, used to investigate therapy-related improvements focus on the functionality of the affected hand during unimanual or bimanual tasks. None however specifically address spatiotemporal integration of both hands. We explored the kinematics of hand movements during a bimanual task to identify parameters of BC. Thirty-seven children (aged 10.9±2.6years, 20 male) diagnosed with uCP participated. 3D kinematic motion analysis was performed during the task requiring opening of a box with their affected- (AH) or less-affected hand (LAH), and pressing a button inside with the opposite hand. Temporal and spatial components of data were extracted and related to measures of hand function and level of impairment. Total task duration was correlated with the Jebsen-Taylor Test of Hand Function in both conditions (either hand leading with the lid-opening). Spatial accuracy of the LAH when the box was opened with their AH was correlated with outcomes on the Children's Hand Use Experience Questionnaire. Additionally, we found a subgroup of children displaying non-symmetrical movement interference associated with greater movement overlap when their affected hand opened the box. This subgroup also demonstrated decreased use of the affected hand during bimanual tasks. Further investigation of bimanual interference, which goes beyond small scaled symmetrical mirrored movements, is needed to consider its impact on bimanual task performance following early unilateral brain injury. PMID:26803675

  20. Robotic Powered Transfer Mechanism modeling on Human Muscle Structure

    NASA Astrophysics Data System (ADS)

    Saito, Yukio

    It is considered in engineering that one power source can operate one joint. However, support movement mechanism of living organism is multi joint movement mechanism. Considerably different from mechanical movement mechanism, two pairs of uni-articular muscles and a pair of bi-articular muscles are involved in it. In leg, movements observed in short run including leg idling, heel contact and toeing are operated by bi-articular muscles of the thigh showing strong legs to support body weight. Pursuit of versatility in welfare robot brings its comparison with conventional machinery or industrial robot to the fore. Request for safety and technology allowing elderly people to operate the robot is getting stronger in the society. The robot must be safe when it is used together with other welfare equipment and simpler system avoiding difficult operation has to be constructed. Appearance of recent care and assistance robot is getting similar to human arm in comparison with industrial robot. Being easily able to imagine from industrial robot, mid-heavyweight articulated robot to support 60-70kgf combined with large output motor and reduction gears is next to impossible to be installed in the bath room. This research indicated that upper limb arm and lower limb thigh of human and animals are holding coalitional muscles and movement of uni-artcular muscle and bi-articular muscle conjure the image of new actuators.

  1. Muscle disease.

    PubMed

    Tsao, Chang-Yong

    2014-02-01

    On the basis of strong research evidence, Duchenne muscular dystrophy (DMD), the most common severe childhood form of muscular dystrophy, is an X-linked recessive disorder caused by out-of-frame mutations of the dystrophin gene. Thus, it is classified asa dystrophinopathy. The disease onset is before age 5 years. Patients with DMD present with progressive symmetrical limb-girdle muscle weakness and become wheelchair dependent after age 12 years. (2)(3). On the basis of some research evidence,cardiomyopathy and congestive heart failure are usually seen in the late teens in patients with DMD. Progressive scoliosis and respiratory in sufficiency often develop once wheelchair dependency occurs. Respiratory failure and cardiomyopathy are common causes of death, and few survive beyond the third decade of life. (2)(3)(4)(5)(6)(7). On the basis of some research evidence, prednisone at 0.75 mg/kg daily (maximum dose, 40 mg/d) or deflazacort at 0.9 mg/kg daily (maximum dose, 39 mg/d), a derivative of prednisolone (not available in the United States), as a single morning dose is recommended for DMD patients older than 5 years, which may prolong independent walking from a few months to 2 years. (2)(3)(16)(17). Based on some research evidence, treatment with angiotensin-converting enzyme inhibitors, b-blockers, and diuretics has been reported to be beneficial in DMD patients with cardiac abnormalities. (2)(3)(5)(18). Based on expert opinion, children with muscle weakness and increased serum creatine kinase levels may be associated with either genetic or acquired muscle disorders (Tables 1 and 3). (14)(15) PMID:24488829

  2. Regulating the contraction of insect flight muscle.

    PubMed

    Bullard, Belinda; Pastore, Annalisa

    2011-12-01

    The rapid movement of the wings in small insects is powered by the indirect flight muscles. These muscles are capable of contracting at up to 1,000 Hz because they are activated mechanically by stretching. The mechanism is so efficient that it is also used in larger insects like the waterbug, Lethocerus. The oscillatory activity of the muscles occurs a low concentration of Ca(2+), which stays constant as the muscles contract and relax. Activation by stretch requires particular isoforms of tropomyosin and the troponin complex on the thin filament. We compare the tropomyosin and troponin of Lethocerus and Drosophila with that of vertebrates. The characteristics of the flight muscle regulatory proteins suggest ways in which stretch-activation works. There is evidence for bridges between troponin on thin filaments and myosin crossbridges on the thick filaments. Recent X-ray fibre diffraction results suggest that a pull on the bridges activates the thin filament by shifting tropomyosin from a blocking position on actin. The troponin bridges are likely to contain extended sequences of tropomyosin or troponin I (TnI). Flight muscle has two isoforms of TnC with different Ca(2+)-binding properties: F1 TnC is needed for stretch-activation and F2 TnC for isometric contractions. In this review, we describe the structural changes in both isoforms on binding Ca(2+) and TnI, and discuss how the steric model of muscle regulation can apply to insect flight muscle. PMID:22105701

  3. Psychogenic Movement Disorders

    PubMed Central

    Morgante, Francesca; Edwards, Mark J.; Espay, Alberto J.

    2013-01-01

    Purpose of Review This review describes the main clinical features of psychogenic (functional) movement disorders and reports recent advances in diagnosis, pathophysiology, and treatment. Recent Findings The terminology and definition of patients with psychogenic movement disorders remain subjects of controversy; the term “functional” has been used more frequently in the literature in recent years regarding the neurobiological substrate underpinning these disorders. Correct diagnosis of psychogenic movement disorders should rely not on the exclusion of organic disorders or the sole presence of psychological factors but on the observation or elicitation of clinical features related to the specific movement disorder (ie, a positive or inclusionary rather than exclusionary diagnosis). Sudden onset, spontaneous remissions, and variability over time or during clinical examination are useful “red flags” suggestive of a psychogenic movement disorder. Imaging studies have demonstrated impaired connectivity between limbic and motor areas involved in movement programming and hypoactivity of a brain region that compares expected data with actual sensory data occurring during voluntary movement. Treatment of psychogenic movement disorders begins with ensuring the patient’s acceptance of the diagnosis during the initial debriefing and includes nonpharmacologic (cognitive-behavioral therapy, physiotherapy) and pharmacologic options. Summary Psychogenic movement disorders represent a challenging disorder for neurologists to diagnose and treat. Recent advances have increased understanding of the neurobiological mechanism of psychogenic movement disorders. Treatment with cognitive strategies and physical rehabilitation can benefit some patients. As short duration of disease correlates with better prognosis, early diagnosis and initiation of treatment are critical. PMID:24092294

  4. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M.; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions

  5. Electromyography of symmetrical trunk movements and trunk position sense in chronic stroke patients

    PubMed Central

    Liao, Chien-Fen; Liaw, Lih-Jiun; Wang, Ray-Yau; Su, Fong-Chin; Hsu, Ar-Tyan

    2015-01-01

    [Purpose] To explore the differences in bilateral trunk muscle activation between chronic stroke patients and healthy controls, this study investigated the symmetry index and cross-correlation of trunk muscles during trunk flexion and extension movements. This study also assessed the differences in trunk reposition error between groups and the association between trunk reposition error and bilateral trunk muscle activation. [Subjects and Methods] Fifteen stroke patients and 15 age- and gender-matched healthy subjects participated. Bilateral trunk muscle activations were collected by electromyography during trunk flexion and extension. Trunk reposition errors in trunk flexion and extension directions were recorded by a Qualisys motion capture system. [Results] Compared with the healthy controls, the stroke patients presented lower symmetrical muscle activation of the bilateral internal oblique and lower cross-correlation of abdominal muscles during trunk flexion, and lower symmetry index and cross-correlation of erector spinae in trunk extension. They also showed a larger trunk extension reposition error. A smaller trunk reposition error was associated with higher cross-correlation of bilateral trunk muscles during trunk movements in all subjects. [Conclusion] Trunk muscle function during symmetrical trunk movements and trunk reposition sense were impaired in the chronic stroke patients, and trunk position sense was associated with trunk muscle functions. Future studies should pay attention to symmetrical trunk movements as well as trunk extension position sense for patients with chronic stroke. PMID:26504267

  6. Optical induction of muscle contraction at the tissue scale through intrinsic cellular amplifiers.

    PubMed

    Yoon, Jonghee; Choi, Myunghwan; Ku, Taeyun; Choi, Won Jong; Choi, Chulhee

    2014-08-01

    The smooth muscle cell is the principal component responsible for involuntary control of visceral organs, including vascular tonicity, secretion, and sphincter regulation. It is known that the neurotransmitters released from nerve endings increase the intracellular Ca(2+) level in smooth muscle cells followed by muscle contraction. We herein report that femtosecond laser pulses focused on the diffraction-limited volume can induce intracellular Ca(2+) increases in the irradiated smooth muscle cell without neurotransmitters, and locally increased intracellular Ca(2+) levels are amplified by calcium-induced calcium-releasing mechanisms through the ryanodine receptor, a Ca(2+) channel of the endoplasmic reticulum. The laser-induced Ca(2+) increases propagate to adjacent cells through gap junctions. Thus, ultrashort-pulsed lasers can induce smooth muscle contraction by controlling Ca(2+), even with optical stimulation of the diffraction-limited volume. This optical method, which leads to reversible and reproducible muscle contraction, can be used in research into muscle dynamics, neuromuscular disease treatment, and nanorobot control. PMID:23650149

  7. Intentional and unintentional multi-joint movements: their nature and structure of variance.

    PubMed

    Zhou, T; Zhang, L; Latash, M L

    2015-03-19

    We tested predictions of a hierarchical scheme on the control of natural movements with referent body configurations. Subjects occupied an initial hand position against a bias force generated by a HapticMaster robot. A smooth force perturbation was applied to the hand consisting of an increase in the bias force, keeping it at a new level for 5s, and decreasing it back to the bias value. When the force returned to the bias value, the arm stopped at a position different from the initial one interpreted as an involuntary movement. We then asked subjects to make voluntary movements to targets corresponding to the measured end-position of the unintentional movements. No target for hand orientation was used. The joint configuration variance was compared between intentional and unintentional movements within the framework of the uncontrolled manifold hypothesis. Our central hypothesis was that both unintentional and intentional movements would be characterized by structure of joint configuration variance reflecting task-specific stability of salient performance variables, such as hand position and orientation. The analysis confirmed that most variance at the final steady states was compatible with unchanged values of both hand position and orientation following both intentional and unintentional movements. We interpret unintentional movements as consequences of back-coupling between the actual and referent configurations at the task level. The results suggested that both intentional and unintentional movements resulted from shifts of the body referent configuration produced intentionally or as a result of the hypothesized back-coupling. Inter-trial variance signature reflects similar task-specific stability properties of the system following both types of movements, intentional and unintentional. PMID:25596318

  8. Methods to Assess Subcellular Compartments of Muscle in C. elegans

    PubMed Central

    Gaffney, Christopher J.; Bass, Joseph J.; Barratt, Thomas F.; Szewczyk, Nathaniel J.

    2014-01-01

    Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism. PMID:25489753

  9. Human-Computer Interface Controlled by Horizontal Directional Eye Movements and Voluntary Blinks Using AC EOG Signals

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yusuke; Murata, Hiroaki; Kimura, Haruhiko; Abe, Koji

    As a communication support tool for cases of amyotrophic lateral sclerosis (ALS), researches on eye gaze human-computer interfaces have been active. However, since voluntary and involuntary eye movements cannot be distinguished in the interfaces, their performance is still not sufficient for practical use. This paper presents a high performance human-computer interface system which unites high quality recognitions of horizontal directional eye movements and voluntary blinks. The experimental results have shown that the number of incorrect inputs is decreased by 35.1% in an existing system which equips recognitions of horizontal and vertical directional eye movements in addition to voluntary blinks and character inputs are speeded up by 17.4% from the existing system.

  10. How muscles deal with real-world loads: the influence of length trajectory on muscle performance.

    PubMed

    Marsh, R L

    1999-12-01

    The performance of skeletal muscles in vivo is determined by the feedback received when the muscle interacts with the external environment via various morphological structures. This interaction between the muscle and the 'real-world load' forces us to reconsider how muscles are adapted to suit their in vivo function. We must consider the co-evolution of the muscles and the morphological structures that 'create' the load in concert with the properties of the external environment. This complex set of interactions may limit muscle performance acutely and may also constrain the evolution of morphology and physiology. The performance of skeletal muscle is determined by the length trajectory during movement and the pattern of stimulation. Important features of the length trajectory include its amplitude, frequency, starting length and shape (velocity profile). Many of these parameters interact. For example, changing the velocity profile during shortening may change the optimum values of the other parameters. The length trajectory that maximizes performance depends on the task to be performed. During cyclical work, muscles benefit from using asymmetric cycles with longer shortening than lengthening phases. Modifying this 'sawtooth' cycle by increasing the velocity during shortening may further increase power by augmenting force output and speeding deactivation. In contrast, when accelerating an inertial load, as in jumping, the predicted 'optimal' velocity profile has two peak values, one early and one late in shortening. During level running at constant speed, muscles perform tasks other than producing work and power. Producing force to support the body weight is performed with nearly isometric contractions in some of the limb muscles of vertebrates. Muscles also play a key role in producing stability during running, and the intrinsic properties of the musculoskeletal system may be particularly important in stabilizing rapid running. Recently, muscles in running

  11. [Sleep related movement disorders].

    PubMed

    Suzuki, Keisuke; Miyamoto, Masayuki; Miyamoto, Tomoyuki; Hirata, Koichi

    2015-06-01

    Sleep related movement disorders (SRMD) are characterized by simple, stereotyped movements occur during sleep, with the exception of restless legs syndrome (RLS). RLS has the following essential features; an urge to move the legs usually accompanied by uncomfortable sensation in the legs, improvement of symptoms after movement (non-stereotypical movements, such as walking and stretching, to reduce symptoms), and symptoms occur or worsen during periods of rest and in the evening and night. However, RLS is closely associated with periodic limb movement, which shows typical stererotyped limb movements. In the International Classification of Sleep Disorders, 3rd edition, sleep disturbances or daytime symptoms are prerequiste for a diagnosis of SRMD. We here review diagnosis and treatment of SRMD. PMID:26065126

  12. Congenital mirror movements.

    PubMed Central

    Schott, G D; Wyke, M A

    1981-01-01

    In this report are described seven patients assessed clinically and neuropsychologically in whom mirror movements affecting predominantly the hands occurred as a congenital disorder. These mirror movements, representing a specific type of abnormal synkinesia, may arise as a hereditary condition, in the presence of a recognisable underlying neurological abnormality, and sporadically, and the seven patients provide more or less satisfactory examples of each of these three groups. Despite the apparent uniformity of the disorder, the heterogeneity and variability may be marked, examples in some of our patients including the pronounced increase in tone that developed with arm movement, and the capacity for modulation of the associated movement by alteration of neck position and bio-feedback. Various possible mechanisms are considered; these include impaired cerebral inhibition of unwanted movements, and functioning of abnormal motor pathways. Emphasis has been placed on the putative role of the direct, crossed corticomotoneurone pathways and on the unilateral and bilateral cerebral events that precede movement. PMID:7288446

  13. Multimodal Movement Prediction - Towards an Individual Assistance of Patients

    PubMed Central

    Kirchner, Elsa Andrea; Tabie, Marc; Seeland, Anett

    2014-01-01

    Assistive devices, like exoskeletons or orthoses, often make use of physiological data that allow the detection or prediction of movement onset. Movement onset can be detected at the executing site, the skeletal muscles, as by means of electromyography. Movement intention can be detected by the analysis of brain activity, recorded by, e.g., electroencephalography, or in the behavior of the subject by, e.g., eye movement analysis. These different approaches can be used depending on the kind of neuromuscular disorder, state of therapy or assistive device. In this work we conducted experiments with healthy subjects while performing self-initiated and self-paced arm movements. While other studies showed that multimodal signal analysis can improve the performance of predictions, we show that a sensible combination of electroencephalographic and electromyographic data can potentially improve the adaptability of assistive technical devices with respect to the individual demands of, e.g., early and late stages in rehabilitation therapy. In earlier stages for patients with weak muscle or motor related brain activity it is important to achieve high positive detection rates to support self-initiated movements. To detect most movement intentions from electroencephalographic or electromyographic data motivates a patient and can enhance her/his progress in rehabilitation. In a later stage for patients with stronger muscle or brain activity, reliable movement prediction is more important to encourage patients to behave more accurately and to invest more effort in the task. Further, the false detection rate needs to be reduced. We propose that both types of physiological data can be used in an and combination, where both signals must be detected to drive a movement. By this approach the behavior of the patient during later therapy can be controlled better and false positive detections, which can be very annoying for patients who are further advanced in rehabilitation, can be

  14. The mathematics of movement

    USGS Publications Warehouse

    Johnson, D.H.

    1999-01-01

    Review of: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Peter Turchin. 1998. Sinauer Associates, Sunderland, MA. 306 pages. $38.95 (paper).

  15. Two-joint muscles offer the solution, but what was the problem?

    PubMed

    Bobbert, M F; van Soest, A J

    2000-01-01

    Prilutsky's paper is mainly concerned with the coordination of one- and two-joint muscles. This commentary on the paper addresses the question why we have two-joint muscles in the first place. From an evolutionary point of view, two-joint muscles must have contributed to fitness by presenting a solution to problems that could not be solved with musculoskeletal systems comprising only one-joint muscles. One such problem, not mentioned by Prilutsky, is the following. In a system equipped with only one-joint muscles, satisfying directional constraints would demand, in certain phases of movements, deactivation of muscles that are shortening. Consequently, the work output of these muscles would be limited. The incorporation of two-joint muscles helps to overcome this problem. The reason is that it offers the possibility to redistribute energy across joints, thereby making it possible to accomplish more successfully the difficult task of producing work while steering the movement. PMID:10675809

  16. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2015-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  17. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women

    PubMed Central

    Machann, Juergen; Blatzonis, Konstantinos; Rapp, Kilian

    2016-01-01

    The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years) was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628), leg push power (r = 0.550), isometric quadriceps strength (r = 0.442), hand grip strength (r = 0.367), fast gait speed (r = 0.291), habitual gait speed (r = 0.256), body mass index (r = 0.411) and age (r = -0.392). Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power. PMID:27315060

  18. Eye muscle repair - discharge

    MedlinePlus

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  19. Eye muscle repair - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000111.htm Eye muscle repair - discharge To use the sharing features on ... enable JavaScript. You or your child had eye muscle repair surgery to correct eye muscle problems that ...

  20. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...