Science.gov

Sample records for involved field irradiation

  1. Involved-field irradiation in definitive chemoradiotherapy for T4 squamous cell carcinoma of the esophagus

    PubMed Central

    Li, M.; Zhao, F.; Zhang, X.; Shi, F.; Zhu, H.; Han, A.; Zhang, Y.; Kong, L.; Yu, J.

    2016-01-01

    Objectives Definitive concurrent chemoradiotherapy (ccrt) is currently a therapeutic option for locally advanced esophageal cancer. However, clinical practice differs with respect to the target volume for irradiation. The purpose of the present study was to analyze failure patterns and survival, and to determine the feasibility of using involved-field irradiation (ifi) with concurrent chemotherapy for T4 squamous cell carcinoma (scc) of the esophagus. Methods Between January 2003 and January 2013, 56 patients with clinical T4M0 scc of the esophagus received ccrt using ifi. The radiation field included the primary tumour and clinically involved lymph nodes. Target volumes and sites of failure were analyzed, as were treatment-related toxicity and survival time. Results In this 56-patient cohort, 13 patients (23.2%) achieved a complete response, and 21 (37.5%) achieved a partial response, for a total response rate of 60.7%. The major toxicities experienced were leucocytopenia and esophagitis, with 14 patients (25.0%) experiencing grade 3 toxicities. At a median follow-up of 34 months, 48 patients (85.7%) had experienced failure: 39 (69.6%) in-field, 7 (12.5%) elective nodal, and 19 (33.9%) distant. Only 1 patient (1.8%) experienced isolated elective nodal failure. The 1-, 2-, and 3-year survival rates were 39.3%, 21.4%, and 12.5% respectively. Conclusions For patients with T4M0 scc of the esophagus, definitive ccrt using ifi resulted in an acceptable rate of isolated elective nodal failure and an overall survival comparable to that achieved with elective nodal irradiation. A limited radiation therapy target volume, including only clinically involved lesions, would therefore be a feasible choice for this patient subgroup. PMID:27122981

  2. Radiation dose to the lymph drainage area in esophageal cancer with involved-field irradiation

    PubMed Central

    SHEN, WENBIN; GAO, HONGMEI; ZHU, SHUCHAI; LI, YOUMEI; LI, JUAN; LIU, ZHIKUN; SU, JINWEI

    2016-01-01

    The aim of this study was to quantify the radiation dose to the corresponding lymph drainage area in esophageal cancer using three-dimensional conformal radiation therapy (3D-CRT) with involvED-field IRradiation (IFI) and to analyze associated factors. A retrospective analysis oF 81 patients with esophageal cancer was conducted. According to the location of the lesions, the lymph drainage area was delineated and the dosimetric parameters were calculated. The 1-, 3-, 5- and 8-year survival rates of the patients were 67.90, 33.33, 20.99 and 11.11%, respectively. Based on the dose-volume histogram in the treatment plan, we calculated the volume percentage of the planning target volume including clinically positive lymph nodes (PTV-N) receiving radiation doses of 30, 35, 40, 45 and 50 Gy (VPTV-N30-50). The median values of VPTV-N30-50 were 73, 70, 67, 64 and 58%, respectively. The prescribed dose size exhibited no correlation with VPTV-N30-35, but did exhibit a significant correlation with VPTV-N40-50; the radiation field was not correlated with VPTV-N30-45, but exhibited a significant correlation with VPTV-N50; The length of the lesion on esophageal barium meal X-ray and the PTV were significantly correlated with VPTV-N30–50. The analysis of variance revealed that the VPTV-NX value in the upper thoracic segment was higher compared with that in the middle and lower thoracic segments; VPTV-N30-35 values differed significantly according to the different locations of the lesions, whereas VPTV-N40-50 values exhibited no significant differences. The value of VPTV-NX exerted no significant effect on long-term patient survival. Therefore, the corresponding lymph drainage area of esophageal cancer IS subjected to a certain Radiation dose when patients undergo 3D-CRT with IFI, which may play a role in the prevention of regional nodal metastasis. However, this hypothesis requires confirmation by further clinical studies. PMID:26870295

  3. Details of out-field regional recurrence after involved-field irradiation with concurrent chemotherapy for locally advanced esophageal squamous cell carcinoma

    PubMed Central

    Zhang, Xiaoli; Yu, Jinming; Li, Minghuan; Zhu, Hui

    2016-01-01

    Background The purpose of this study was to describe the patterns of out-field regional recurrence after involved-field irradiation (IFI) in definitive concurrent chemoradiotherapy (CCRT) for locally advanced esophageal squamous cell carcinoma (LA-ESCC) and identify the possible risk factors. Patients and methods Eighty patients with LA-ESCC who received CCRT with IFI between January 2003 and January 2009 at the Shandong Cancer Hospital were recruited and analyzed. Imaging scans demonstrating first sites of failure were compared with original computed tomography-based radiation treatment plans, and failure patterns were defined as in-field, outfield regional (failures in initially uninvolved regional nodes), and distant failures. Results After a median follow-up time of 52.6 months, 24 patients had evidence of out-field regional failure, 43 patients had evidence of in-field failure, and 33 patients had the evidence of distant failure. Multivariate analysis revealed that out-field regional failure was associated with clinical tumor status (T4 vs T1–3, odds ratio [OR] =6.547, P=0.002), tumor length (>8 cm vs ≤8 cm, OR =4.130, P=0.036), response to CCRT (complete response vs no complete response, OR =2.646, P=0.035), and in-field failure (no in-field failure vs in-field failure, OR =1.32, P=0.016). Survival analyses indicated that, compared to in-field failure or distant failure alone group, out-field regional failure alone group tended to have longer overall (P=0.006) and progression-free survival (P=0.164). Conclusion Our data suggested that the predominant failure pattern after IFI was not out-field regional failure, which also did not influence survival significantly, and that out-field regional failure did not shorten the time to disease recurrence, which also did not influence survival significantly. In addition, out-field regional failure was likely to appear later than in-field and distant failures. The relatively advanced local disease followed by poor

  4. Combination Short-Course Preoperative Irradiation, Surgical Resection, and Reduced-Field High-Dose Postoperative Irradiation in the Treatment of Tumors Involving the Bone

    SciTech Connect

    Wagner, Timothy D. Kobayashi, Wendy; Dean, Susan; Goldberg, Saveli I.; Kirsch, David G.; Suit, Herman D.; Hornicek, Francis J.; Pedlow, Francis X.; Raskin, Kevin A.; Springfield, Dempsey S.; Yoon, Sam S.; Gebhardt, Marc C.; Mankin, Henry J.; DeLaney, Thomas F.

    2009-01-01

    Purpose: To assess the feasibility and outcomes of combination short-course preoperative radiation, resection, and reduced-field (tumor bed without operative field coverage) high-dose postoperative radiation for patients with solid tumors mainly involving the spine and pelvis. Methods and Materials: Between 1982 and 2006, a total of 48 patients were treated using this treatment strategy for solid tumors involving bone. Radiation treatments used both photons and protons. Results: Of those treated, 52% had chordoma, 31% had chondrosarcoma, 8% had osteosarcoma, and 4% had Ewing's sarcoma, with 71% involving the pelvis/sacrum and 21% elsewhere in the spine. Median preoperative dose was 20 Gy, with a median of 50.4 Gy postoperatively. With 31.8-month median follow-up, the 5-year overall survival (OS) rate is 65%; 5-year disease-free survival (DFS) rate, 53.8%; and 5-year local control (LC) rate, 72%. There were no significant differences in OS, DFS, and LC according to histologic characteristics. Between primary and recurrent disease, there was no significant difference in OS rates (74.4% vs. 51.4%, respectively; p = 0.128), in contrast to DFS (71.5% vs. 18.3%; p = 0.0014) and LC rates (88.9% vs. 30.9%; p = 0.0011) favoring primary disease. After resection, 10 patients experienced delayed wound healing that did not significantly impact on OS, DFS, or LC. Conclusion: This approach is promising for patients with bone sarcomas in which resection will likely yield close/positive margins. It appears to inhibit tumor seeding with an acceptable rate of wound-healing complications. Dose escalation is accomplished without high-dose preoperative radiation (likely associated with higher rates of acute wound healing delays) or large-field postoperative radiation only (likely associated with late normal tissue toxicity). The LC and DFS rates are substantially better for patients with primary than recurrent sarcomas.

  5. Impact of Incidental Irradiation on Clinically Uninvolved Nodal Regions in Patients With Advanced Non-Small-Cell Lung Cancer Treated With Involved-Field Radiation Therapy: Does Incidental Irradiation Contribute to the Low Incidence of Elective Nodal Failure?

    SciTech Connect

    Kimura, Tomoki; Togami, Taro; Nishiyama, Yoshihiro; Ohkawa, Motoomi; Takashima, Hitoshi

    2010-06-01

    Purpose: To evaluate the incidental irradiation dose to elective nodal regions in the treatment of advanced non-small-cell lung cancer with involved-field radiation therapy (IF-RT) and the pattern of elective nodal failure (ENF). Methods and Materials: Fifty patients with advanced non-small-cell lung cancer, who received IF-RT at Kagawa University were enrolled. To evaluate the dose of incidental irradiation, we delineated nodal regions with a Japanese map and the American Thoracic Society map (levels 1-11) in each patient retrospectively and calculated the dose parameters such as mean dose, D95, and V95 (40 Gy as the prescribed dose of elective nodal irradiation). Results: Using the Japanese map, the median mean dose was more than 40 Gy in most of the nodal regions, except at levels 1, 3, and 7. In particular, each dosimetric parameter of level 1 was significantly lower than those at other levels, and each dosimetric parameter of levels 10 to 11 ipsilateral (11I) was significantly higher than those in other nodal regions. Using the American Thoracic Society map, basically, the results were similar to those of the Japanese map. ENF was observed in 4 patients (8%), five nodal regions, and no mean dose to the nodal region exceeded 40 Gy. On the Japanese map, each parameter of these five nodal region was significantly lower than those of the other nodal regions. Conclusions: These results show that a high dose of incidental irradiation may contribute to the low incidence of ENF in patients who have received IF-RT.

  6. CHOP-VP16 chemotherapy and involved field irradiation for high grade non-Hodgkin's lymphomas: a phase II multicentre study.

    PubMed Central

    Köppler, H.; Pflüger, K. H.; Eschenbach, I.; Pfab, R.; Lennert, K.; Wellens, W.; Schmidt, M.; Gassel, W. D.; Kolb, T.; Hässler, R.

    1989-01-01

    Sixty previously untreated patients with high grade non-Hodgkin's lymphomas stages II-IV received cyclophosphamide 750 mg m2 i.v., doxorubicin 50 mg m2 i.v., and vincristine 2 mg i.v. on day 1, prednisolone 100 mg p.o. on days 1-5 and etoposide 100 mg m2 i.v. on days 3-5 (CHOP-VP16). After four courses an involved field irradiation with a total dose of 25 Gy was employed and followed by two additional courses of CHOP-VP16. The overall response rate was 93%, with 49 patients (82%) achieving a complete remission (CR). Seven patients had a partial response and four patients showed no response. During a median follow-up period of 55 months, 22 of the 49 patients with CR relapsed, seven of them achieving a second complete remission with the same drug regimen. A maintained complete remission of up to 68 months was seen in 55% of all patients initially achieving CR. The median survival is 43 months. Mean side-effects of this drug regimen were alopecia (89%), nausea/vomiting (76%) and leukopenia (61%). No therapy-related deaths were seen. The results of this study demonstrate that this combined modality treatment produces high complete remission rates and that more than half of these patients achieve long-term disease-free survival. PMID:2679846

  7. Intensity-Modulated Proton Therapy for Elective Nodal Irradiation and Involved-Field Radiation in the Definitive Treatment of Locally Advanced Non-Small Cell Lung Cancer: A Dosimetric Study

    PubMed Central

    Kesarwala, Aparna H.; Ko, Christine J.; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E.; O’Meara, William P.; Simone, Charles B.; Rengan, Ramesh

    2015-01-01

    Background Photon involved-field radiation therapy (IFRT), the standard for locally advanced non-small cell lung cancer (LA-NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Given the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. Materials and Methods IMPT IFRT plans were generated to the same total dose of 66.6–72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 CGE to elective nodal (EN) planning treatment volumes (PTV) plus 24 CGE to involved field (IF)-PTVs. Results Proton IFRT and ENI both improved D95 involved field (IF)-PTV coverage by 4% (p<0.01) compared to photon IFRT. All evaluated dosimetric parameters improved significantly with both proton plans. Lung V20 and mean lung dose decreased 18% (p<0.01) and 36% (p<0.01), respectively, with proton IFRT and 11% (p=0.03) and 26% (p<0.01) with ENI. Mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all p<0.01). Conclusions This study demonstrates the feasibility of IMPT for LA-NSCLC ENI. Potential decreased toxicity indicates IMPT could allow ENI while maintaining a favorable therapeutic ratio compared to photon IFRT. PMID:25604729

  8. Test procedure for Hasselblad field irradiance

    NASA Technical Reports Server (NTRS)

    George, C.

    1975-01-01

    The procedure is defined for determining the uniformity of film plane illumination (field irradiance) of the Hasselblad cameras. The data source shall consist of photographs, with X-Y scans being taken for indication only. The accuracy requirement is 2.0%.

  9. Prostatic carcinoma: limited field irradiation

    SciTech Connect

    Rounsaville, M.C.; Green, J.P.; Vaeth, J.M.; Purdon, R.P.; Heltzel, M.M.

    1987-07-01

    This is a retrospective study of 251 patients with histologically proven adenocarcinoma treated primarily with limited field radiotherapy techniques, under the principle direction of authors JMV and JPG, between 1968 and 1981 in San Francisco, California. All patients are followed for a minimum of 3 years; mean follow-up is 7.3 years. Routine clinical staging procedures included: HandP, digital prostate exam, cystoscopy, biopsy, blood studies including serum acid phosphatase, and imaging studies including chest X ray, IVP, bone survey or radionucleotide bone scan, and in recent years, pelvic CT scans. Twelve patients are Stage A1, 37-Stage A2, 50-Stage B, 140-Stage C1 and 12-Stage C2. Ninety percent of all cases and 85% of Stage C patients were treated with limited fields to the prostate and periprostatic volume only. Total doses were prescribed at midplane or isocenter and were generally 6500-7000 cGy, daily doses of 180-200 cGy, 5 days per week. Actuarial 5- and 10-year survival rates are: entire population-69% and 47%; Stage A1-74% and 50%; Stage A2-81% and 67%; Stage B-84% and 53%; Stage C1-63% and 42%; Stage C2-32% and 11%. The 5- and 10-year disease-free actuarial survivals are: entire population-71% and 50%; Stage A1-89% and 74%; Stage A2-82% and 69%; Stage B-71% and 52%; Stage C1-67% and 44%; Stage C2-0%. Sites of recurrence, alone or as a component of the failure pattern are: 37 (15%) local, 11 (4%) symptomatic regional recurrence (lower extremity edema, pelvic pain/sciatica, hydroureteronephrosis), and 87 (35%) distant metastasis. Seven (3%) had unknown sites of failure. Local-regional failure occurred in 42% of Stage C2 patients.

  10. Techniques of magna-field irradiation

    SciTech Connect

    Shank, B.

    1983-12-01

    Total body irradiation (TBI) techniques have evolved over the years, with the basic goals remaining adequate immunosuppression and/or tumor eradication. TBI technique variables include: machine type and energy, prescription parameters (dose, number of fractions, dose/fraction, dose rate), patient position, therapy room and machine constraints (field size, distance) and beam modifiers (bolus, compensators, shields). Related variables include chemotherapy agents and schedules, and 'boost' radiotherapy. Seven representative institutions that treat a large number of TBI patients were surveyed for these variables. Homogeneity has been achieved generally within +/-10% with the use of these techniques. One 'sentinel' effect is discussed, namely interstitial pneumonitis, as a measure of normal tissue effects with varying techniques. There is an indication that more fractionated methods, used either daily or in a hyperfractionated fashion, are leading to a decreased incidence of pneumonitis.

  11. Blue irradiance intercomparison in the medical field

    NASA Astrophysics Data System (ADS)

    Ferreira, Antonio F. G.

    2012-10-01

    This work presents the results of a blue irradiance intercomparison among industrial laboratories of medical devices companies. This intercomparison aims to support the metrological issues of medical equipment manufactures regarding the blue irradiance infant phototherapy equipment requirements on the international standard IEC 60601-2-50:2000. The results showed a low agreement of participants' measurements according to normalized error criterion. The major explanation for this result is associated to an incorrect equipment choice and long recalibration period.

  12. Extended-Field Isocentric Irradiation for Hodgkin's Disease

    PubMed Central

    Kumar, P. Pradeep; Good, Roger R.; Jones, Ernest O.; Somers, James E.; McAnulty, Bruce E.; McCaul, Gayle F.; Rogers, Sally S.; Reeves, Michael A.; Sanders, Cheryl K.

    1987-01-01

    Extended-field therapeutic irradiation is the treatment of choice for the majority of patients diagnosed with pathologic stages I and II Hodgkin's disease, and total nodal irradiation can be effectively used to treat selected stage III Hodgkin's patients. Standard 100-cm source-to-axis distance extended-field isocentric technique and results are presented. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:3312619

  13. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    SciTech Connect

    Datta, T.; Yin Ming; Vargas, Jose

    2004-02-04

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kaehler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  14. Improved field emission property of graphene by laser irradiation

    NASA Astrophysics Data System (ADS)

    Cai, Wenbo; Zeng, Baoqing; Liu, Jianlong; Guo, Jing; Li, Nannan; Chen, Lei; Chen, Hongwei

    2013-11-01

    Graphene oxide (GO) can be reduced to graphene by either laser irradiation or thermal annealing. To improve the field emission (FE) property, a pulse CO2 laser has been employed to irradiate GO films prepared by electrophoretic deposition (EPD). By varying the laser irradiation time, we were able to fabricate emitters with varied field enhancement factor. It has been found that the FE properties of laser irradiated films with optimized time 15 s were better than that of thermal annealed samples. The turn-on field (Eto) at 0.01 mA/cm2 was reduced from 3.4 to 2.4 V/μm, and the threshold field (Eth) at 1 mA/cm2 was reduced from 6.8 to 5.1 V/μm. Scanning electron microscopy (SEM) was taken to reveal the change of morphology after laser ablation, and it shows that the laser irradiation made great deal of graphene edges vertical to the substrate, which remarkably enhanced the FE properties. This kind of effective and convenience method made the graphene films as a potential field emitter for vacuum microelectronic devices.

  15. Radiobiological considerations in magna-field irradiation

    SciTech Connect

    Evans, R.G.

    1983-12-01

    Radiobiological considerations are described for total body irradiation (TBI) as given to patients undergoing bone marrow transplantation (BMT). Although much progress has been made in the use of BMT for refractory leukemias, many patients still die from interstitial pneumonia and relapse. Fractionated TBI has been introduced in order to improve leukemic cell kill, while increasing the degree of normal tissue tolerance. Traditionally, bone marrow stem cells, leukemic cells and immunocytes have been considered as having a limited ability to repair radiation damage while cells of lung tissue and intestinal epithelial cells have a greater capacity. During fractionated radiation therapy or continuous low-dose rate exposure, repair of sublethal damage between fractions allows greater recovery in the cells of lung tissue to those in the bone marrow. Clinically, the potential benefit of six fractions over one fraction or low dose-rate TBI has yet to be proved, although there is suggestive evidence for a reduced incidence of interstitial pneumonitis. However, other extraneous factors such as doses to the lung, differences in conditioning regimens, effect of increased delay in BMT for patients receiving fractionated TBI, and the unmeasurable differences between institutions make definite conclusions impossible. Despite this, a consensus for dose fractionation has developed and most centers are moving away from the use of large single dose TBI.

  16. Supine Craniospinal Irradiation Setup with Two Spine Fields

    SciTech Connect

    Liu, Arthur K. Thornton, Dale; Backus, Jennifer; Dzingle, Wayne; Stoehr, Scott; Newman, Francis

    2009-10-01

    Craniospinal irradiation is an integral part of treatment for a number of cancers. Typically, patients are positioned prone, which allows visualization of field matches. However, a supine position allows better airway access for patients requiring anesthesia, and is more comfortable for patients. One potential difficulty with supine positioning occurs when the patient is tall and requires matching 2 spine fields. We describe a technique to match the spine fields using light fields on the bottom of the treatment table, and verified the approach on a phantom. The accuracy of the technique is demonstrated for the first 4 patients, with the majority of field gaps and overlaps below our clinical tolerance of 2 mm.

  17. Characterisation of radiation field for irradiation of biological samples at nuclear reactor-comparison of twin detector and recombination methods.

    PubMed

    Golnik, N; Gryziński, M A; Kowalska, M; Meronka, K; Tulik, P

    2014-10-01

    Central Laboratory for Radiological Protection is involved in achieving scientific project on biological dosimetry. The project includes irradiation of blood samples in radiation fields of nuclear reactor. A simple facility for irradiation of biological samples has been prepared at horizontal channel of the nuclear reactor MARIA in NCBJ in Poland. The radiation field, composed mainly of gamma radiation and thermal neutrons, has been characterised in terms of tissue kerma using twin-detector technique and recombination chambers. PMID:24366246

  18. Extractable proteins from irradiated field natural rubber latex

    NASA Astrophysics Data System (ADS)

    Rogero, Sizue O.; Lugão, Ademar B.; Yoshii, Fumio; Makuuchi, Keizo

    2003-06-01

    In this study field natural rubber latex was irradiated with different doses near a 60Co gamma source to reduce the water-soluble protein content in the final product. The protein content of the films obtained by casting method was extracted with phosphate buffer solution, pH 7 and was measured using Micro BCA Protein Assay kit. Also was measured protein in the serum samples of field NRL. The concentration of extractable proteins increased with increasing radiation dose.

  19. Involvement of DNA polymerase alpha in host cell reactivation of UV-irradiated herpes simplex virus

    SciTech Connect

    Nishiyama, Y.; Yoshida, S.; Maeno, K.

    1984-02-01

    Aphidicolin is a potent inhibitor of both host cell DNA polymerase alpha and herpes simplex virus (HSV)-induced DNA polymerase but has no effect on DNA polymerases beta and gamma of host cells. By using an aphidicolin-resistant mutant (Aphr) of HSV, a possible involvement of DNA polymerase alpha in host cell reactivation of UV-damaged HSV was studied. Plaque formation by UV-irradiated Aphr was markedly inhibited by 1 microgram of aphidicolin per ml, which did not affect the plating efficiency of nonirradiated Aphr. Aphidicolin added before 12 h postinfection inhibited plaque formation by irradiated Aphr, which became aphidicolin insensitive after 36 h postinfection. The results strongly suggest that host cell DNA polymerase alpha is involved in the repair of UV-irradiated HSV DNA.

  20. Evaluation of Field-in-Field Technique for Total Body Irradiation

    SciTech Connect

    Onal, Cem; Sonmez, Aydan; Arslan, Gungor; Sonmez, Serhat; Efe, Esma; Oymak, Ezgi

    2012-08-01

    Purpose: To evaluate the clinical use of a field-in-field (FIF) technique for total body irradiation (TBI) using a treatment-planning system (TPS) and to verify TPS results with in vivo dose measurements using metal-oxide-semiconductor field-effect transistor (MOSFET) detectors. Methods and Materials: Clinical and dosimetric data of 10 patients treated with TBI were assessed. Certain radiation parameters were measured using homogenous and regular phantoms at an extended distance of 380 cm, and the results were compared with data from a conventional standard distance of 100 cm. Additionally, dosimetric validation of TPS doses was performed with a Rando phantom using manual calculations. A three-dimensional computed tomography plan was generated involving 18-MV photon beams with a TPS for both open-field and FIF techniques. The midline doses were measured at the head, neck, lung, umbilicus, and pelvis for both open-field and FIF techniques. Results: All patients received planned TBI using the FIF technique with 18-MV photon energies and 2 Gy b.i.d. on 3 consecutive days. The difference in tissue maximum ratios between the extended and conventional distances was <2%. The mean deviation of manual calculations compared with TPS data was +1.6% (range, 0.1-2.4%). A homogenous dose distribution was obtained with 18-MV photon beams using the FIF technique. The mean lung dose for the FIF technique was 79.2% (9.2 Gy; range, 8.8-9.7 Gy) of the prescribed dose. The MOSFET readings and TPS doses in the body were similar (percentage difference range, -0.5% to 2.5%) and slightly higher in the shoulder and lung (percentage difference range, 4.0-5.5%). Conclusion: The FIF technique used for TBI provides homogenous dose distribution and is feasible, simple, and spares time compared with more-complex techniques. The TPS doses were similar to the midline doses obtained from MOSFET readings.

  1. Actuarial risk of isolated CNS involvement in Ewing's sarcoma following prophylactic cranial irradiation and intrathecal methotrexate

    SciTech Connect

    Trigg, M.E.; Makuch, R.; Glaubiger, D.

    1985-04-01

    Records of 154 patients with Ewing's sarcoma treated at the National Cancer Institute were reviewed to assess the incidence and risk of developing isolated central nervous system (CNS) Ewing's sarcoma. Sixty-two of the 154 patients had received CNS irradiation and intrathecal (i.t.) methotrexate as part of their initial therapy to prevent the occurrence of isolated CNS Ewing's sarcoma. The risk of developing isolate CNS Ewing's sarcoma was greatest within the first two years after diagnosis and was approximately 10%. The overall risk of CNS recurrence in the group of patients receiving DNS treatment was similar to the group receiving no therapy directed to the CNS. The occurrence of isolated CNS involvement was not prevented by the use of CNS irradiation and i.t. methotrexate. Because of a lack of efficacy to the CNS irradiation regimen, current treatment regimens do not include therapy directed to CNS.

  2. Electric field and temperature effects in irradiated MOSFETs

    NASA Astrophysics Data System (ADS)

    Silveira, M. A. G.; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A.; Aguiar, Vitor. A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H.

    2016-07-01

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices

  3. Inquiry-Based Field Studies Involving Teacher-Scientist Collaboration.

    ERIC Educational Resources Information Center

    Odom, Arthur Louis

    2001-01-01

    Describes a collaborative professional development program, Inquiry-Based Field Studies Involving Teacher-Scientist Collaboration, that uses scientist-teacher teams to improve teachers' understanding of scientific inquiry. Reports that the project allowed teachers to develop a deeper understanding on the nature of science. (Author/YDS)

  4. Oxidative damage of DNA induced by X-irradiation decreases the uterine endometrial receptivity which involves mitochondrial and lysosomal dysfunction

    PubMed Central

    Gao, Wei; Liang, Jin-Xiao; Liu, Shuai; Liu, Chang; Liu, Xiao-Fang; Wang, Xiao-Qi; Yan, Qiu

    2015-01-01

    X irradiation may lead to female infertility and the mechanism is still not clear. After X irradiation exposure, significantly morphological changes and functional decline in endometrial epithelial cells were observed. The mitochondrial and lysosomal dysfunction and oxidative DNA damage were noticed after X irradiation. In addition, pretreatment with NAC, NH4Cl or Pep A reduced the X irradiation induced damages. These studies demonstrate that the oxidative DNA damage which involved dysfunctional lysosomal and mitochondrial contribute to X irradiation-induced impaired receptive state of uterine endometrium and proper protective reagents can be helpful in improving endometrial function. PMID:26064230

  5. Involved-field radiotherapy for esophageal squamous cell carcinoma: theory and practice.

    PubMed

    Li, Minghuan; Zhang, Xiaoli; Zhao, Fen; Luo, Yijun; Kong, Li; Yu, Jinming

    2016-01-01

    Esophageal carcinoma (EC) is characterized by a high rate of lymph node metastasis and its spread pattern is not always predictable. Chemoradiotherapy has an important role in the treatment of EC in both the inoperable and the pre-operative settings. However, regarding the target volume for radiation, different clinical practices exist. Theoretically, in addition to the clinical target volume administered to the gross lesion, it might seem logical to deliver a certain dose to the uninvolved regional lymph node area at risk for microscopic disease. However, in practice, it is difficult because of the intolerance of normal tissue to radiotherapy (RT), particularly if all regions containing the cervical, mediastinal, and upper abdominal nodes are covered. To date, the use of elective nodal irradiation (ENI) is still controversial in the field of radiotherapy. Some investigators use involved-field radiotherapy (IFRT) in order to reduce treatment-related toxicities. It is thought that micrometastases can be controlled, to some extent, by chemotherapy and the abscopal effects of radiation. It is the presence of overtly involved lymph nodes rather than the micrometastatic nodes negatively affects survival in patients with EC. In another hand, lymph nodes stationed near primary tumors also receive considerable incidental irradiation doses that may contribute to the elimination of subclinical lesions. These data indicate that an irradiation volume covering only the gross tumor is appropriate. When using ENI or IFRT, very few patients experience solitary regional node failure and out-of-field lymph node failure is not common. Primary tumor recurrence and distant metastases, rather than regional lymph node failure, affect the overall survival in patients with EC. The available evidence indicates that the use of ENI seems to prevent or delay regional nodal relapse rather than improve survival. In a word, these data suggest that IFRT is feasible in EC patients. PMID:26846932

  6. Sparkling Geomagnetic Field: Involving Schools in Geomagnetic Research

    NASA Astrophysics Data System (ADS)

    Bailey, Rachel; Leonhardt, Roman; Leichter, Barbara

    2014-05-01

    Solar activity will be reaching a maximum in 2013/2014 as the sun reaches the end of its cycle, bringing with it an opportunity to study in greater detail the effect of solar wind or "space weather" on our planet's magnetic field. Heightened solar activity leads to a larger amount of clouds of energetic particles bombarding the Earth. Although the Earth's magnetic field shields us from most of these particles, the field becomes distorted and compacted by the solar wind, which leads to magnetic storms that we detect from the surface. These storms cause aurorae at higher latitudes and can lead to widespread disruption of communication and navigation equipment all over the Earth when sufficiently strong. This project, "Sparkling Geomagnetic Field," is a part of Austria's Sparkling Science programme, which aims to involve schools in active scientific research to encourage interest in science from a young age. Researchers from the Central Institute for Meteorology and Geodynamics (ZAMG) in Vienna have worked hand-in-hand with three schools across Austria to set up regional geomagnetic stations consisting of state-of-the-art scalar and vector magnetometers to monitor the effects of the solar wind on the geomagnetic field. The students have been an active part of the research team from the beginning, first searching for a suitable location to set up the stations as well as later overseeing the continued running of the equipment and analysing the data output. Through this project the students will gain experience in contemporary scientific methods: data processing and analysis, field work, as well as equipment setup and upkeep. A total of three stations have been established with schools in Innsbruck, Tamsweg and Graz at roughly equal distances across Austria to run alongside the already active station in the Conrad Observatory near Vienna. Data acquisition runs through a data logger and software developed to deliver data in near realtime. This network allows for

  7. Effects of hole doping by neutron irradiation of magnetic field induced electronic phase transitions in graphite

    SciTech Connect

    Singleton, John; Yaguchi, Hiroshi

    2008-01-01

    We have investigated effects of hole doping by fast-neutron irradiation on the magnetic-field induced phase transitions in graphite using specimens irradiated with fast neutrons. Resistance measurements have been done in magnetic fields of up to above 50 T and at temperatures down to about 1.5 K. The neutron irradiation creates lattice defects acting as acceptors, affecting the imbalance of the electron and hole densities and the Fermi level. We have found that the reentrant field from the field induced state back to the normal state shifts towards a lower field with hole doping, suggestive of the participation of electron subbands in the magnetic-field induced state.

  8. Field classes: key to involve and attract students to soils

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole; Cardoso, Irene Maria; da Silva Lopes, Angelica

    2015-04-01

    Soil genesis is a subject taught to students of Agrarian Sciences and Geography at the Federal University of Viçosa in Minas Gerais, Brazil. Each semester 200 to 250 students inscribe for it. It is organized as the first 60 hours course on soils for 1st and 2nd year's students. The course has a distinct pedagogical approach, which is based on Paulo Freire's education principles, known as socio constructivism. In such approach, learning environments and materials are prepared to stimulate dialogues and exchange of knowledge between students themselves, strengthening that their role is crucial to their own learning. During the course, students have different types of practical classes: indoors, in a class room or at the Earth Sciences museum and outdoors, in the field. In the class room they have the opportunity to handle materials -minerals, rocks, soils and maps-, follow demonstrations and perform small experiments. The classes given in the museum intend a broadening of the subjects approached in theoretical and practical classes. In the field classes the students are organized in small groups with the task to investigate soil formation by observation and description of geology, landscape, land use, soil expositions and some of the soil properties. Attracting students to soils involves looking at meanings and perceptions related to soils they bring with themselves and follow this up to sensitize and create awareness about their importance. With this aim, it is also included, as part of the evaluation, a final voluntary presentation that many of the students do. The presentation can be a song, a poem, a sketch or whatever they propose and create. Many of the presentations bring topics related to the new perception about soils they get during the semester and to ideas or questions raised in the field classes. A survey with the students showed that field classes are by far the preferred classes and they are considered more dynamic. Since students have less and less

  9. Powder modification under influence of heat, electric field and particle irradiation

    NASA Astrophysics Data System (ADS)

    Begrambekov, L.; Grunin, A.; Zakharov, A.

    2015-07-01

    Influence of heat, electric field and particle irradiation of powders of boron and tungsten are presented and discussed in the paper. It is shown that the particles of both powders are emitted from their surface when electric field applied normally to the powder surface exceeds some minimal magnitude. Simultaneous influence of electric field and irradiation by hydrogen- and argon plasma ions or by hydrogen atoms activates particle emission at the temperatures <1300 K. Hydrogen- and argon plasma ion irradiation in the temperature range 1300-1800 K stimulates a succession of powder modifications with the increase of powder temperature and power of ion irradiation. Driving forces and processes of powder modifications were found to be electric field forces, irradiation enhanced diffusion, interatomic forces, surface tension, sputtering by ion irradiation and ion induced stresses in the newly formed uniform layers.

  10. Involved-Field Radiation Therapy for Locoregionally Recurrent Ovarian Cancer

    PubMed Central

    Brown, Aaron P.; Jhingran, Anuja; Klopp, Ann H.; Schmeler, Kathleen M.; Ramirez, Pedro T.; Eifel, Patricia J.

    2015-01-01

    Objective To evaluate the effectiveness of definitive involved-field radiation therapy (IFRT) for selected patients with locoregionally-recurrent ovarian cancer. Methods We retrospectively reviewed records of 102 epithelial ovarian cancer patients treated with definitive IFRT (≥45 Gy). IFRT was directed to localized nodal (49%) and extranodal (51%) recurrences. Results The median time from diagnosis to IFRT was 36 months (range, 1–311), and the median follow-up after IFRT was 37 months (range, 1–123). Patients received a median of three chemotherapy courses before IFRT (range, 0–9). Five-year overall (OS) and progression-free survival (PFS) rates after IFRT were 40% and 24% respectively; the 5-year in-field disease control rate was 71%. Thirty-five patients (35%) had no evidence of disease at a median of 38 months after IFRT (range, 7–122), including 25 continuously without disease for a median of 61 months (range, 17–122) and 10 with salvage treatment following disease recurrence, disease-free for a median of 39 months after salvage treatment (range, 7–92). Eight clear cell carcinoma patients had higher 5-year OS (88% versus 37%; p=0.05) and PFS (75% versus 20%; p=0.01) rates than other patients. Patients sensitive to initial platinum chemotherapy had a higher 5-year OS rate than platinum-resistant patients (43% versus 27%, p=0.03). Patients who required chemotherapy for recurrence after IFRT often benefitted from longer chemotherapy-free intervals after than before IFRT. Conclusions Definitive IFRT can yield excellent local control, protracted disease-free intervals, and even cures in carefully selected patients. RT should be considered a tool in the curative management of locoregionally-recurrent ovarian cancer. PMID:23648467

  11. The investigation of fetal doses in mantle field irradiation.

    PubMed

    Karaçam, Songül Cavdar; Güralp, Onur Sahin; Oksüz, Didem Colpan; Koca, Ayse; Cepni, Ismail; Cepni, Kimia; Bese, Nuran

    2009-02-01

    To determine clinically the fetal dose from irradiation of Hodgkin's disease during pregnancy and to quantify the components of fetal dose using phantom measurements. The fetal dose was measured with phantom measurements using thermoluminescent dosemeters (TLDs). Phantom measurements were performed by simulating the treatment conditions on an anthropomorphic phantom. TLDs were placed on the phantom 41, 44, 46.5 and 49.5 cm from the centre of the treatment field. Two TLDs were placed on the surface of the phantom. The estimated total dose to all the TLDs ranged from 8.8 to 13.2 cGy for treatment with (60)Co and from 8.2 to 11.8 cGy for 4 MV photons. It was concluded that the doses in different sections were evaluated to investigate dose changes in different points and depths of fetal tissues in phantom. Precise planning and the use of supplemental fetal shielding may help reduce fetal exposure. PMID:19299479

  12. Parent and Community Involvement. Field Review Edition. Teacher's Manual.

    ERIC Educational Resources Information Center

    Decker, Larry E.; And Others

    The role of the classroom teacher in the success of parent and community involvement efforts in American public schools is this document's focus. Because schools need to discover new ways to foster parental and community involvement in education, this document outlines a new perspective concerning parental and community involvement that…

  13. Botryllus schlosseri (Tunicata) whole colony irradiation: Do senescent zooid resorption and immunological resorption involve similar recognition events

    SciTech Connect

    Rinkevich, B.; Weissman, I.L. )

    1990-02-01

    The colonial tunicate Botryllus schlosseri undergoes cyclic blastogenesis where feeding zooids are senescened and resorbed and a new generation of zooids takes over the colony. When non-identical colonies come into direct contact, they either reject each other or fuse. Fusion is usually followed by the resorption of one of the partners in the chimera (immunological resorption). The striking morphological similarities between the two resorption phenomena suggest that both may involve tissue destruction following self-nonself recognition events. Here we attempt to modify these two events by whole colony gamma irradiation assays. Three sets of experiments were performed: (1) different doses of whole colony irradiation for determination of irradiation effects (110 colonies); (2) pairs of irradiated-nonirradiated isografts of clonal replicates for the potential of reconstruction of the irradiated partners (23 pairs); (3) chimeras of irradiated-nonirradiated partners for analysis of resorption hierarchy. Mortality increased with the irradiation dose. All colonies exposed to more than 5,000 rads died within 19 days, while no colony died below 2,000 rads. The average mortality periods, in days, for doses of 6,000-8,000, 5,000, and 2,500-4,000 rads were 14.4 +/- 3.1 (n = 24), 19.8 +/- 6.0 (n = 15), and 19.6 + 5.1 (n = 22), respectively. Younger colonies (3-6 months old) may survive radiation better than older ones (more than 13 months). Many morphological alterations were recorded in irradiated colonies: ampullar contraction and/or dilation, accumulation of pigment cells within ampullae, abnormal bleeding from blood vessels, sluggish blood circulation, necrotic zones, reduction in bud number, and irregularities in zooid and system structures. With doses of 3,000-4,000 rads and above, irradiation arrested the formation of new buds and interrupted normal takeover.

  14. Involvement of DNA-PK(sub cs) in DSB Repair Following Fe-56 Ion Irradiation

    NASA Technical Reports Server (NTRS)

    O'Neill, Peter; Harper, Jane; Anderson, Jennifer a.; Cucinnota, Francis A.

    2007-01-01

    When cells are exposed to radiation, cellular lesions are induced in the DNA including double strand breaks (DSBs), single strand breaks and clustered DNA damage, which if not repaired with high fidelity may lead to detrimental biological consequences. Complex DSBs are induced by ionizing radiation and characterized by the presence of base lesions close to the break termini. They are believed to be one of the major causes of the biological effects of IR. The complexity of DSBs increases with the ionization density of the radiation and these complex DSBs are distinct from the damage induced by sparsely ionizing gamma-radiation. It has been hypothesized that complex DSBs produced by heavy ions in space pose problems to the DNA repair machinery. We have used imm uno-cyto-chemical staining of phosphorylated histone H2AX (gamma-H2AX) foci, as a marker of DSBs. We have investigated the formation and loss of gamma-H2AX foci and RAD51 foci (a protein involved in the homologous recombination pathway) in mammalian cells induced by low fluences of low-LET gamma-radiation and high-LET Fe-56 ions (1GeV/n, 151 keV/micron LET). M059J and M059K cells, which are deficient and proficient in DNA-PK(sub cs) activity respectively, were used to examine the role of DNA-PK(sub cs), a key protein in the non-homologous end joining (NHEJ) pathway of DSB repair, along with HF19 human fibroblasts. Followi ng irradiation with Fe-56 ions the rate of repair was slower in M059J cells compared with that in M059K, indicating a role for DNA-PK(sub cs) in the repair of DSB induced by Fe-56 ions. However a small percentage of DSBs induced are rejoined within 5 h although many DSBs still persist up to 24 h. When RAD51 was examined in M059J/K cells, RAD51 foci are visible 24 hours after irradiation in approximately 40% of M059J cells compared with <5% of M059K cells indicating that persistent DSBs or those formed at stalled replication forks recruit RAD51 in DNA-PK(sub cs) deficient cells. Following 1 Gy

  15. Improvement of depth dose distribution using multiple-field irradiation in boron neutron capture therapy.

    PubMed

    Fujimoto, N; Tanaka, H; Sakurai, Y; Takata, T; Kondo, N; Narabayashi, M; Nakagawa, Y; Watanabe, T; Kinashi, Y; Masunaga, S; Maruhashi, A; Ono, K; Suzuki, M

    2015-12-01

    It is important that improvements are made to depth dose distribution in boron neutron capture therapy, because the neutrons do not reach the innermost regions of the human body. Here, we evaluated the dose distribution obtained using multiple-field irradiation in simulation. From a dose volume histogram analysis, it was found that the mean and minimum tumor doses were increased using two-field irradiation, because of improved dose distribution for deeper-sited tumors. PMID:26282566

  16. [Successful treatment with total cranial irradiation for central nervous system involvement of Langerhans cell sarcoma during chemotherapy].

    PubMed

    Nakagawa, Noriharu; Yamazaki, Hirohito; Yamashita, Takeshi; Kondo, Yukio; Nakao, Shinji

    2016-01-01

    Langerhans cell sarcoma (LCS) is an extremely rare neoplasm of Langerhans cell origin characterized by systemic involvement and a poor prognosis. There are, however, few reports of LCS with central nervous system involvement. We experienced a patient with LCS recurrence in the brain that appeared during systemic chemotherapy. The brains lesions eventually responded to total cranial irradiation. A 60-year-old female presented with systemic lymphadenopathy. LCS was diagnosed based on neck lymph node biopsy findings. Two cycles of ESHAP induced marked regression of her lymphadenopathy, but FDG-PET/CT scan revealed new lesions in the central nervous system and her disorientation gradually worsened. We administered 37.5 Gy of total cranial irradiation which improved her consciousness and shrank the brain tumors as demonstrated by MRI. The patient's clinical course indicates that radiation therapy may be effective for central nervous system involvement of LCS even if the lesion is resistant to systemic chemotherapy. PMID:26861100

  17. The effects of professional irradiation, fields of research, results

    SciTech Connect

    Okladnikova, N.D.; Pesternikova, V.S.; Sumina, M.V.

    1993-12-31

    Main results of research of after effects of professional irradiation of the personnel of the first atomic power industry enterprise in the country ({open_quotes}Mayak{close_quotes}) are presented. The earliest determinated effects (chronic and acute radiation sickness, local radiation traumae, plutonium pneumosclerosis) and the late effects of external gamma-irradiation and combined (pu-239, tritium) radiation effect in a wide range of doses have been studied. The basis of the paper are the results of a complex medical research of the personnel: the state of haemopoietic, nerve, cardiovascular systems, alimentary canal, other organs and systems, immunity, somatic cells genome and the frequency of tumor and non-tumor diseases. The observation and research period covered is 40 years from the first contact with the ionized radiation source.

  18. Influence of high energy ion irradiation on the field emission characteristics of CVD diamond films

    NASA Astrophysics Data System (ADS)

    Koinkar, P. M.; Khairnar, R. S.; Khan, S. A.; Gupta, R. P.; Avasthi, D. K.; More, M. A.

    2006-03-01

    The field emission characteristics of ion-irradiated CVD diamond thin film deposited on silicon substrate has been studied. The diamond thin films, synthesized by hot filament chemical vapor deposition (HFCVD) method, were irradiated by high energy (100 MeV) silver ion (107Ag+ with charge state 9) in the fluence range of 3 × 1011-1 × 1013 ions/cm2. The CVD diamond films were characterized by Raman spectroscopy. The Raman spectra of irradiated samples clearly reveal structural damage due to ion irradiation, which is observed to be fluence dependent. However complete graphitization is not observed. The field emission current-voltage (I-V) characteristics were recorded in 'diode' configuration at base pressure ∼1 × 10-8 mbar. Upon ion irradiation the field emission current is observed to increase with the reduction in the threshold voltage, required to draw 1 μA current. The results indicate that ion irradiation leads to better emission characteristics and the structural damage caused by ion irradiation plays a significant role in emission behavior of CVD diamond films.

  19. Influence of spatiotemporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations

    NASA Astrophysics Data System (ADS)

    Bubolz, K.; Schenk, H.; Hirsch, T.

    2016-05-01

    Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.

  20. Postirradiation osteogenic sarcoma with unilateral metastatic spread within the field of irradiation

    SciTech Connect

    Young, J.W.; Liebscher, L.A.

    1982-08-01

    Osteogenic sarcoma is a rare but well documented complication of radiation therapy. To date, only 28 cases of radiation induced osteogenic sarcoma, following therapy for breast carcinoma, have been reported. Only one case of postirradiation sarcoma arising in the sternum has occurred and this followed irradiation to the neck. The subject of this article is therefore only the first reported case of osteosarcoma of the sternum, secondary to irradiation for breast carcinoma. A further unusual and unreported feature is the development of unilateral metastatic disease in the field of irradiation. Possible causes for this occurrence are discussed and the literature regarding postirradiation sarcoma is reviewed.

  1. Method of producing carbon monoxide and hydrogen by gasification of solid carbonaceous material involving microwave irradiation

    SciTech Connect

    Helm, J.L. Jr.

    1984-03-06

    A process is claimed for the gasification of carbon of solid carbonaceous material to form carbon monoxide and hydrogen by contacting the material with superheated steam and irradiating the product of said contacting with an amount of microwave energy sufficient to gasify said carbon, and apparatus therefor.

  2. A phase field model for segregation and precipitation induced by irradiation in alloys

    NASA Astrophysics Data System (ADS)

    Badillo, A.; Bellon, P.; Averback, R. S.

    2015-04-01

    A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.

  3. Survival and Neurocognitive Outcomes After Cranial or Craniospinal Irradiation Plus Total-Body Irradiation Before Stem Cell Transplantation in Pediatric Leukemia Patients With Central Nervous System Involvement

    SciTech Connect

    Hiniker, Susan M.; Agarwal, Rajni; Modlin, Leslie A.; Gray, Christine C.; Harris, Jeremy P.; Million, Lynn; Kiamanesh, Eileen F.; Donaldson, Sarah S.

    2014-05-01

    Purpose: To evaluate survival and neurocognitive outcomes in pediatric acute lymphoblastic leukemia (ALL) patients with central nervous system (CNS) involvement treated according to an institutional protocol with stem cell transplantation (SCT) and a component of craniospinal irradiation (CSI) in addition to total-body irradiation (TBI) as preparative regimen. Methods and Materials: Forty-one pediatric ALL patients underwent SCT with TBI and received additional cranial irradiation or CSI because of CNS leukemic involvement. Prospective neurocognitive testing was performed before and after SCT in a subset of patients. Cox regression models were used to determine associations of patient and disease characteristics and treatment methods with outcomes. Results: All patients received a cranial radiation boost; median total cranial dose was 24 Gy. Eighteen patients (44%) received a spinal boost; median total spinal dose for these patients was 18 Gy. Five-year disease-free survival (DFS) for all patients was 67%. Those receiving CSI had a trend toward superior DFS compared with those receiving a cranial boost alone (hazard ratio 3.23, P=.14). Patients with isolated CNS disease before SCT had a trend toward superior DFS (hazard ratio 3.64, P=.11, 5-year DFS 74%) compared with those with combined CNS and bone marrow disease (5-year DFS 59%). Neurocognitive testing revealed a mean post-SCT overall intelligence quotient of 103.7 at 4.4 years. Relative deficiencies in processing speed and/or working memory were noted in 6 of 16 tested patients (38%). Pre- and post-SCT neurocognitive testing revealed no significant change in intelligence quotient (mean increase +4.7 points). At a mean of 12.5 years after transplant, 11 of 13 long-term survivors (85%) had completed at least some coursework at a 2- or 4-year college. Conclusion: The addition of CSI to TBI before SCT in pediatric ALL with CNS involvement is effective and well-tolerated. Craniospinal irradiation plus TBI is worthy

  4. Far-Field Patterns from Dye-Doped Planar-Aligned Nematic Liquid Crystals Under nanosecond Laser Irradiation

    SciTech Connect

    Lukishova, S.G.; Lepeshkin, N.; Boyd, R.W.; Marshall, K.L.

    2006-08-18

    High-definition patterns were observed under 10-Hz-pulse-repetition-rate, nanosecond laser irradiation of azodye-doped planar-nematic liquid crystal layers at incident intensities I ~ 5-10 MW/cm^2 in a single beam configuration and without any feedback involved. An incident polarization parallel to the nematic director was used. Under periodic pulsed laser irradiation, far-field beam patterns at the output of a dye-doped liquid crystal layer changed kaleidoscopically from rings and stripes to multiple hexagons. This pattern-formation regime had a buildup time of several seconds to minutes. We explain the observed effect by diffraction of the laser beam on light-induced micrometer-size inhomogeneities inside the liquid crystal layer with absorption and refraction properties different from the surrounding area. Possible mechanisms of the formation of the inhomogeneities are discussed.

  5. Development of an expanded-field irradiation technique using a gimbaled x-ray head

    SciTech Connect

    Ono, Tomohiro; Miyabe, Yuki Yamada, Masahiro; Yokota, Kenji; Kaneko, Shuji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Sawada, Akira; Kokubo, Masaki

    2014-10-15

    Purpose: The Vero4DRT has a maximum field size of 150.0 × 150.0 mm. The purpose of the present study was to develop expanded-field irradiation techniques using the unique gimbaled x-ray head of the Vero4DRT and to evaluate the dosimetric characteristics thereof. Methods: Two techniques were developed. One features gimbal swing irradiation and multiple static segments consisting of four separate fields exhibiting 2.39° gimbal rotation around two orthogonal axes. The central beam axis for each piecewise-field is shifted 40 mm from the isocenters of the left–right (LR) and superior–inferior (SI) directions, and, thus, the irradiation field size is expanded to 230.8 × 230.8 mm. Adjacent regions were created at the isocenter (a center-adjacent expandedfield) and 20 mm from the isocenter (an off-adjacent expandedfield). The field gaps or overlaps of combined piecewise-fields were established by adjustment of gimbal rotation and movement of the multileaf collimator (MLC). Another technique features dynamic segment irradiation in which the beam is delivered while rotating the gimbal. The dose profile is controlled by a combination of gimbal swing motion and opening and closing of the MLC. This enabled the authors to expand the irradiation field on the LR axis because the direction of MLC motion is parallel to that axis. A field 220.6 × 150.0 mm in dimensions was configured and examined. To evaluate the dosimetric characteristics of the expandedfields, films inserted into water-equivalent phantoms at depths of 50, 100, and 150 mm were irradiated and field sizes, penumbrae, flatness, and symmetry analyzed. In addition, the expanded-field irradiation techniques were applied to intensity-modulated radiation therapy (IMRT). A head-and-neck IMRT field, created using a conventional Linac (the Varian Clinac iX), was reproduced employing an expanded-field of the Vero4DRT. The simulated dose distribution for the expanded-IMRT field was compared to the measured

  6. Effect of low frequency low energy pulsing electromagnetic field (PEMF) on X-ray-irradiated mice

    SciTech Connect

    Cadossi, R.; Hentz, V.R.; Kipp, J.; Eiverson, R.; Ceccherelli, G.; Zucchini, P.; Emilia, G.; Torelli, G.; Franceschi, C.; Cossarizza, A.

    1989-02-01

    C3H/Km flora-defined mice were used to investigate the effect of exposure to pulsing electromagnetic field (PEMF) after total body x-ray irradiation. Prolonged exposure to PEMF had no effect on normal nonirradiated mice. When mice irradiated with different doses of x-ray (8.5 Gy, 6.8 Gy, and 6.3 Gy) were exposed to PEMF 24 h a day, we observed a more rapid decline in white blood cells (WBC) in the peripheral blood of mice exposed to PEMF at all the x-ray dosages used. No effect of exposure to PEMF was observed on the survival of the mice irradiated with 6.3 Gy and 8.5 Gy; in mice irradiated with 6.8 Gy, 2 out of 12 survived when exposed to PEMF as compared to 10 out of 12 control mice that were irradiated only. At day 4 after irradiation autoradiographic studies performed on bone marrow and spleen of 8.5-Gy-irradiated mice showed no difference between controls and mice exposed to PEMF, whereas on 6.8-Gy mice the bone marrow labeling index was lower in mice exposed to PEMF. In mice irradiated to 6.3 Gy we observed that the recovery of WBC in the peripheral blood was slowed in mice exposed to PEMF and their body weight was significantly lower than in control mice that were irradiated only. The spleen and bone marrow of the mice irradiated to 6.3 Gy and sacrificed at days 4, 14, 20, and 25 after irradiation were analyzed by autoradiography to evaluate the labeling index. Half of the spleens from mice sacrificed at day 25 after irradiation were used to evaluate the RNA content. Autoradiography showed that in the spleen and bone marrow of control mice, there were more cells labeled with (3H)thymidine at days 4 and 14 and less at days 20 and 25 after irradiation in comparison with mice irradiated and exposed to PEMF.

  7. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    PubMed Central

    Helinski, Michelle EH; Hassan, Mo'awia M; El-Motasim, Waleed M; Malcolm, Colin A; Knols, Bart GJ; El-Sayed, Badria

    2008-01-01

    Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females. Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small

  8. Teachers as Secondary Players: Involvement in Field Trips to Natural Environments

    NASA Astrophysics Data System (ADS)

    Alon, Nirit Lavie; Tal, Tali

    2016-07-01

    This study focused on field trips to natural environments where the teacher plays a secondary role alongside a professional guide. We investigated teachers' and field trip guides' views of the teacher's role, the teacher's actual function on the field trip, and the relationship between them. We observed field trips, interviewed teachers and guides, and administered questionnaires. We found different levels of teacher involvement, ranging from mainly supervising and giving technical help, to high involvement especially in the cognitive domain and sometimes in the social domain. Analysis of students' self-reported outcomes showed that the more students believe their teachers are involved, the higher the self-reported learning outcomes.

  9. Supine Craniospinal Irradiation Using Intrafractional Junction Shifts and Field-in-Field Dose Shaping: Early Experience at Methodist Hospital

    SciTech Connect

    South, Michael C. Chiu, J. Kam; Teh, Bin S.; Bloch, Charles; Schroeder, Thomas M.; Paulino, Arnold C.

    2008-06-01

    Purpose: To describe our preliminary experience with supine craniospinal irradiation. The advantages of the supine position for craniospinal irradiation include patient comfort, easier access to maintain an airway for anesthesia, and reduced variability of the head tilt in the face mask. Methods and Materials: The cranial fields were treated with near lateral fields and a table angle to match their divergence to the superior edge of the spinal field. The collimator was rotated to match the divergence from the superior spinal field. The spinal fields were treated using a source to surface distance (SSD) technique with the couch top at 100 cm. When a second spinal field was required, the table and collimator were rotated 90{sup o} to allow for the use of the multileaf collimator and so the gantry could be rotated to match the divergence of the superior spinal field. The multileaf collimator was used for daily dynamic featherings and field-in-field dose control. Results: With a median follow-up of 20.2 months, five documented failures and no cases of radiation myelitis occurred in 23 consecutive patients. No failures occurred in the junctions of the spine-spine or brain-spine fields. Two failures occurred in the primary site alone, two in the spinal axis alone, and one primary site failure plus distant metastasis. The median time to recurrence was 17 months. Conclusion: The results of our study have shown that supine approach for delivering craniospinal irradiation is not associated with increased relapses at the field junctions. To date, no cases of radiation myelitis have developed.

  10. Simplified alternative to orthogonal field overlap when irradiating a tracheostomy stoma or the hypopharynx

    SciTech Connect

    Pezner, R.D.; Findley, D.O.

    1981-08-01

    Orthogonal field arrangements are usually employed to irradiate a tumor volume which includes a tracheostomy stoma or the hypopharynx. This approach may produce a significantly greater dose than intended to a small segment of the cervical spinal cord because of field overlap at depth from divergence of the beams. Various sophisticated approaches have been proposed to compensate for this overlap. All require marked precision in reproducing the fields on a daily basis. We propose a simplified approach of initially irradiating the entire treatment volume by anterior and posterior opposed fields. Opposed lateral fields that exclude the spinal cord would then provide local boost treatment. A case example and computer-generated isodose curves are presented.

  11. APPLICATION OF PHASE-FIELD MODELING TO IRRADIATION EFFECTS IN MATERIALS

    SciTech Connect

    Paul C Millett; Anter El-Azab; Michael Tonks

    2011-06-01

    This paper summarizes the recent advances in phase-field modeling in the field of radiation materials science. Conventional phase-field equations are first presented for the thermodynamic and kinetic description of irradiation-induced defects. Results of homogeneous and heterogeneous void and gas bubble evolution are then discussed, including gas bubble nucleation and growth, internal bubble gas density fluctuations, void lattice formation, and intergranular bubble dynamics. Finally, future directions for phase-field modeling in this field are addressed, with the intention of highlighting areas that require focused consideration that are necessary for the continued improvement and applicability of the method for radiation problems.

  12. Mechanism of irradiation creep initiated by the thermoelastic field of the cascade

    SciTech Connect

    Reznikova, N.P.

    1986-01-01

    This paper proposes a mechanism of irradiation creep initiated by the thermoelastic field of the cascade. The mechanism makes it possible to determine the qualitative nature of the dependence of creep rate on stress, temperature, and dislocation structure, and to evaluate this dependence quantitatively. The results of the evaluation are presented.

  13. Quantification of lacrimal function after D-shaped field irradiation for retinoblastoma.

    PubMed Central

    Imhof, S M; Hofman, P; Tan, K E

    1993-01-01

    To study the quantitative effects of megavoltage external beam irradiation in a D-shaped field in patients with retinoblastoma, biomicroscopy was performed in 61 patients and tear function tests (Schirmer-lactoferrin and lysozyme tests) on 45 eyes in 34 irradiated patients. The results were compared with those obtained in 25 non-irradiated control eyes. The Schirmer test was significantly diminished (p < 0.001) in irradiated eyes, as were the lactoferrin and lysozyme values (p < 0.001). A mild to severe keratitis was found in 17 of the 61 patients (28%). A significant correlation (p < 0.005) was found between the severe keratitis and the mean Schirmer values; the mean lactoferrin and lysozyme values were diminished in all patients but did not correlate significantly with the corneal abnormalities. These quantitative data, obtained in patients treated for retinoblastoma, affirm the qualitative data found in patients irradiated for other reasons such as orbital or sinus tumours. Irradiation for retinoblastoma is not a harmless treatment and serious late side effects have to be considered. PMID:8025043

  14. X-ray irradiation effects in top contact, pentacene based field effect transistors for space related applications

    SciTech Connect

    Devine, R.A.B.; Ling, M.-M.; Mallik, Abhijit Basu; Roberts, Mark; Bao, Zhenan

    2006-04-10

    Preliminary studies of the effect of x-ray irradiation, typically used to simulate radiation effects in space, on top contact, pentacene based field effect transistors have been carried out. Threshold voltage shifts in irradiated devices are consistent with positive charge trapping in the gate dielectric and a rebound effect is observed, independent of the sign of applied electric field during irradiation. Carrier mobility variations in positive electric field biased/irradiated devices are interpreted in terms of the effects of interface-state-like defects.

  15. Estimation of circular DNA size using gamma-irradiation and pulsed-field gel electrophoresis

    SciTech Connect

    Beverley, S.M. )

    1989-02-15

    A method is described for estimating the size of large circular DNAs found within complex chromosomal DNA preparations. DNAs are treated with low levels of gamma-irradiation, sufficient to introduce a single double-stranded break per circle, and the resulting linear DNA is sized by pulsed-field electrophoresis and blot hybridization. The method is fast, reproducible, and very conveniently applied to the agarose-enclosed chromosomal DNA preparations commonly used in pulsed field electrophoresis.

  16. Potentiating Effect of UVA Irradiation on Anticancer Activity of Carboplatin Derivatives Involving 7-Azaindoles

    PubMed Central

    Štarha, Pavel; Trávníček, Zdeněk; Dvořák, Zdeněk; Radošová-Muchová, Tereza; Prachařová, Jitka; Vančo, Ján; Kašpárková, Jana

    2015-01-01

    The moderate-to-high in vitro cytotoxicity against ovarian A2780 (IC50 = 4.7–14.4 μM), prostate LNCaP (IC50 = 18.7–30.8 μM) and prostate PC-3 (IC50 = 17.6–42.3 μM) human cancer cell lines of the platinum(II) cyclobutane-1,1'-dicarboxylato complexes [Pt(cbdc)(naza)2] (1–6; cbdc = cyclobutane-1,1'-dicarboxylate(2-); naza = halogeno-substituted 7-azaindoles), derived from the anticancer metallodrug carboplatin, are reported. The complexes containing the chloro- and bromo-substituted 7-azaindoles (1, 2, and 4–6) showed a significantly higher (p < 0.05) cytotoxicity against A2780 cell line as compared to cisplatin used as a reference drug. Addition of the non-toxic concentration (5.0 μM) of L-buthionine sulfoximine (L-BSO, an effective inhibitor of γ-glutamylcysteine synthase) markedly increases the in vitro cytotoxicity of the selected complex 3 against A2780 cancer cell line by a factor of about 4.4. The cytotoxicity against A2780 and LNCaP cells, as well as the DNA platination, were effectively enhanced by UVA light irradiation (λmax = 365 nm) of the complexes, with the highest phototoxicity determined for compound 3, resulting in a 4-fold decline in the A2780 cells viability from 25.1% to 6.1%. The 1H NMR and ESI-MS experiments suggested that the complexes did not interact with glutathione as well as their ability to interact with guanosine monophosphate. The studies also confirmed UVA light induced the formation of the cis [Pt(H2O)2(cbdc`)(naza)] intermediate, where cbdc` represents monodentate-coordinated cbdc ligand, which is thought to be responsible for the enhanced cytotoxicity. This is further supported by the results of transcription mapping experiments showing that the studied complexes preferentially form the bifunctional adducts with DNA under UVA irradiation, in contrast to the formation of the less effective monofunctional adducts in dark. PMID:25875850

  17. Potentiating effect of UVA irradiation on anticancer activity of Carboplatin derivatives involving 7-azaindoles.

    PubMed

    Štarha, Pavel; Trávníček, Zdeněk; Dvořák, Zdeněk; Radošová-Muchová, Tereza; Prachařová, Jitka; Vančo, Ján; Kašpárková, Jana

    2015-01-01

    The moderate-to-high in vitro cytotoxicity against ovarian A2780 (IC50 = 4.7-14.4 μM), prostate LNCaP (IC50 = 18.7-30.8 μM) and prostate PC-3 (IC50 = 17.6-42.3 μM) human cancer cell lines of the platinum(II) cyclobutane-1,1'-dicarboxylato complexes [Pt(cbdc)(naza)2] (1-6; cbdc = cyclobutane-1,1'-dicarboxylate(2-); naza = halogeno-substituted 7-azaindoles), derived from the anticancer metallodrug carboplatin, are reported. The complexes containing the chloro- and bromo-substituted 7-azaindoles (1, 2, and 4-6) showed a significantly higher (p < 0.05) cytotoxicity against A2780 cell line as compared to cisplatin used as a reference drug. Addition of the non-toxic concentration (5.0 μM) of L-buthionine sulfoximine (L-BSO, an effective inhibitor of γ-glutamylcysteine synthase) markedly increases the in vitro cytotoxicity of the selected complex 3 against A2780 cancer cell line by a factor of about 4.4. The cytotoxicity against A2780 and LNCaP cells, as well as the DNA platination, were effectively enhanced by UVA light irradiation (λmax = 365 nm) of the complexes, with the highest phototoxicity determined for compound 3, resulting in a 4-fold decline in the A2780 cells viability from 25.1% to 6.1%. The 1H NMR and ESI-MS experiments suggested that the complexes did not interact with glutathione as well as their ability to interact with guanosine monophosphate. The studies also confirmed UVA light induced the formation of the cis [Pt(H2O)2(cbdc`)(naza)] intermediate, where cbdc` represents monodentate-coordinated cbdc ligand, which is thought to be responsible for the enhanced cytotoxicity. This is further supported by the results of transcription mapping experiments showing that the studied complexes preferentially form the bifunctional adducts with DNA under UVA irradiation, in contrast to the formation of the less effective monofunctional adducts in dark. PMID:25875850

  18. Manipulation of transport hysteresis on graphene field effect transistors with Ga ion irradiation

    SciTech Connect

    Wang, Quan; Liu, Shuai; Ren, Naifei

    2014-09-29

    We have studied the effect of Ga ion irradiation on the controllable hysteretic behavior of graphene field effect transistors fabricated on Si/SO{sub 2} substrates. The various densities of defects in graphene were monitored by Raman spectrum. It was found that the Dirac point shifted to the positive gate voltage constantly, while the hysteretic behavior was enhanced first and then weakened, with the dose of ion irradiation increasing. By contrasting the trap charges density induced by dopant and the total density of effective trap charges, it demonstrated that adsorbate doping was not the decisive factor that induced the hysteretic behavior. The tunneling between the defect sites induced by ion irradiation was also an important cause for the hysteresis.

  19. Total dural irradiation: RapidArc versus static-field IMRT: A case study

    SciTech Connect

    Kelly, Paul J.

    2012-07-01

    The purpose of this study was to compare conventional fixed-gantry angle intensity-modulated radiation therapy (IMRT) with RapidArc for total dural irradiation. We also hypothesize that target volume-individualized collimator angles may produce substantial normal tissue sparing when planning with RapidArc. Five-, 7-, and 9-field fixed-gantry angle sliding-window IMRT plans were generated for comparison with RapidArc plans. Optimization and normal tissue constraints were constant for all plans. All plans were normalized so that 95% of the planning target volume (PTV) received at least 100% of the dose. RapidArc was delivered using 350 Degree-Sign clockwise and counterclockwise arcs. Conventional collimator angles of 45 Degree-Sign and 315 Degree-Sign were compared with 90 Degree-Sign on both arcs. Dose prescription was 59.4 Gy in 33 fractions. PTV metrics used for comparison were coverage, V{sub 107}%, D1%, conformality index (CI{sub 95}%), and heterogeneity index (D{sub 5}%-D{sub 95}%). Brain dose, the main challenge of this case, was compared using D{sub 1}%, Dmean, and V{sub 5} Gy. Dose to optic chiasm, optic nerves, globes, and lenses was also compared. The use of unconventional collimator angles (90 Degree-Sign on both arcs) substantially reduced dose to normal brain. All plans achieved acceptable target coverage. Homogeneity was similar for RapidArc and 9-field IMRT plans. However, heterogeneity increased with decreasing number of IMRT fields, resulting in unacceptable hotspots within the brain. Conformality was marginally better with RapidArc relative to IMRT. Low dose to brain, as indicated by V5Gy, was comparable in all plans. Doses to organs at risk (OARs) showed no clinically meaningful differences. The number of monitor units was lower and delivery time was reduced with RapidArc. The case-individualized RapidArc plan compared favorably with the 9-field conventional IMRT plan. In view of lower monitor unit requirements and shorter delivery time, Rapid

  20. Effect of irradiation on dispersal ability of male sweetpotato weevils (Coleoptera: Brentidae) in the field.

    PubMed

    Kumano, Norikuni; Kohama, Tsuguo; Ohno, Suguru

    2007-06-01

    We used the mark-and-recapture method in the field to test the effect of gamma radiation on the dispersal ability of the male sweetpotato weevil, Cylas formicarius elegantulus (Summers) (Coleoptera: Brentidae), a serious sweetpotato pest in Japan. To evaluate the dispersal ability of male sweetpotato weevil, we released 27,218 males (13,302 males irradiated with a dose of 200 Gy and 13,916 nonirradiated males) in two replications (September and October 2005). Each replication lasted 5 d from the release of weevils to the removal of traps, and male weevils were released twice (1 and 3 d before trap setting). Forty pheromone traps were placed in lines corresponding to eight compass directions and five distance classes (20, 50,100, 200, and 500 m) in each replication. We captured 2,263 irradiated males (17.0%) and 2,007 nonirradiated males (14.4%) in the two replications. Six irradiated and eight nonirradiated males were captured in the traps 500 m far from the release point. All parameters to evaluate the dispersal ability of irradiated male sweetpotato weevil (recapture rate, dispersal distance, and dispersal direction) were similar to nonirradiated males in three of the four trials. However, parameters were different between irradiated males and nonirradiated males in one trial. Because the majority of parameters consistently show that the similarity of the dispersal ability, we considered that male sweetpotato weevil irradiated with a dose of 200 Gy possessed equal dispersal ability to that of nonirradiated males in the field. PMID:17598532

  1. Morphological change of skin fibroblasts induced by UV Irradiation is involved in photoaging.

    PubMed

    Yamaba, Hiroyuki; Haba, Manami; Kunita, Mayumi; Sakaida, Tsutomu; Tanaka, Hiroshi; Yashiro, Youichi; Nakata, Satoru

    2016-08-01

    Human dermal fibroblasts (HDFs) are typically flattened or extensible shaped and play a critical role in the metabolism of extracellular matrix components. As the properties of fibroblasts in the dermis are considered to be influenced by their morphology, we investigated the morphological changes induced in fibroblasts by ultraviolet (UV) irradiation as well as the relationship between these changes and collagen metabolism. In this study, we showed that UVA exposure induced morphological changes and reduced collagen contents in HDFs. These morphological changes were accompanied a reduction in actin filaments and upregulation of the actin filament polymerization inhibitor, capping protein muscle Z-line ɑ1 (CAPZA1). External actin filament growth inhibitors also affected the shape of HDFs and reduced collagen levels. These results suggest that UVA exposure may inhibit the polymerization of actin filaments and induce morphological changes in skin fibroblasts. These morphological changes in fibroblasts may accelerate reductions in collagen synthesis. This mechanism may be one of the processes responsible for collagen reductions observed in photoaged skin. When natural materials that suppress these morphological changes in HDFs were evaluated, we found that an extract of Lilium 'Casa Blanca' (LCB) suppressed UVA-induced alterations in the shape of HDFs, which are typically followed by inhibition of collagen reduction. An analysis of the active compounds in LCB extract led to the identification of regaloside I, which had a structure of phenylpropanoid glycerol glucoside, as the active compound inhibiting the upregulation of CAPZA1. Therefore, inhibition of UVA-induced morphological changes in HDFs is considered to be promising way for the suppression of collagen reduction in photoaging. PMID:27539902

  2. Numerical simulation of temperature field in K9 glass irradiated by ultraviolet pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Fang, Xiaodong

    2015-10-01

    The optical component of photoelectric system was easy to be damaged by irradiation of high power pulse laser, so the effect of high power pulse laser irradiation on K9 glass was researched. A thermodynamic model of K9 glass irradiated by ultraviolet pulse laser was established using the finite element software ANSYS. The article analyzed some key problems in simulation process of ultraviolet pulse laser damage of K9 glass based on ANSYS from the finite element models foundation, meshing, loading of pulse laser, setting initial conditions and boundary conditions and setting the thermal physical parameters of material. The finite element method (FEM) model was established and a numerical analysis was performed to calculate temperature field in K9 glass irradiated by ultraviolet pulse laser. The simulation results showed that the temperature of irradiation area exceeded the melting point of K9 glass, while the incident laser energy was low. The thermal damage dominated in the damage mechanism of K9 glass, the melting phenomenon should be much more distinct.

  3. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    SciTech Connect

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  4. Ultrafast thermionic emission from metal irradiated using a femtosecond laser and an electric field in combination

    SciTech Connect

    Wang, Tingfeng; Guo, Jin; Shao, Junfeng; Wang, Dinan; Chen, Anmin E-mail: mxjin@jlu.edu.cn; Jin, Mingxing E-mail: mxjin@jlu.edu.cn

    2015-03-15

    Ultrafast thermionic emission from gold film irradiated with a femtosecond laser pulse in the presence of an additional electric field is analyzed using a two-temperature equation combined with a modified Richardson equation. The calculated results show that the duration of the emission is below 1 ps. Supplying an additional electric field is found to change the emission from the metal surface. Given the same laser fluence, this additional field reduces the work function of the metal, and thus improves the efficiency of thermionic emission. These results help to understand the mechanism and suggest ways to improve emissions in the context of ultrafast thermalized electron systems.

  5. Osteonecrosis of the Jaws in Dogs in Previously Irradiated Fields: 13 Cases (1989–2014)

    PubMed Central

    Nemec, Ana; Arzi, Boaz; Hansen, Katherine; Murphy, Brian G.; Lommer, Milinda J.; Peralta, Santiago; Verstraete, Frank J. M.

    2015-01-01

    The aim of this report was to characterize osteonecrosis of the jaws (ONJ) in previously irradiated fields in dogs that underwent radiotherapy (RT) for oral tumors. Osteoradionecrosis of the jaw (ORNJ) was further defined as osteonecrosis in a previously irradiated field in the absence of a tumor. Thirteen dogs clinically diagnosed with 15 ONJ lesions were included in this retrospective case series. Medical records were reviewed for: breed, sex, weight, and age of the patient, tumor type, location in the oral cavity and size, location of the ONJ, time from RT to ONJ onset, known duration of the ONJ, and tumor presence. Where available, histological assessment of tissues obtained from the primary tumor, and tissues obtained from the ONJ lesion, was performed, and computed tomographic (CT) images and dental radiographs were reviewed. RT and other treatment details were also reviewed. Twelve dogs developed ONJ in the area of the previously irradiated tumor or the jaw closest to the irradiated mucosal tumor. Recurrence of neoplasia was evident at the time of ONJ diagnosis in five dogs. Time from RT start to ONJ onset varied from 2 to 44 months. In three cases, ORNJ developed after dental extractions in the irradiated field. Dental radiographs mostly revealed a moth-eaten pattern of bone loss, CT mostly revealed osteolysis, and histopathology was consistent with osteonecrosis. To conclude, development of ONJ/ORNJ following RT is a rare, but potentially fatal complication. Patients undergoing RT may benefit from a comprehensive oral and dental examination and treatment prior to RT. PMID:26664934

  6. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively. PMID:27423022

  7. Image irradiance distribution in the 3MI wide field of view polarimeter

    NASA Astrophysics Data System (ADS)

    Gabrieli, Riccardo; Bartoli, Alessandro; Maiorano, Michele; Bruno, Umberto; Olivieri, Monica; Calamai, Luciano; Manolis, Ilias; Labate, Demetrio

    2015-09-01

    The Multi-Viewing, Multi-Channel, Multi-Polarisation Imager (3MI) is an imaging radiometer for the ESA/Eumetsat MeteOp-SG programme. Based on the heritage of the POLDER/PARASOL instrument, 3MI is designed to collect global observations of the top-of-atmosphere polarised bi-directional reflectance distribution function in 12 spectral bands, by observing the same target from multiple views using a pushbroom scanning concept. The demanding challenge of the 3MI optical design is represented by the polarisation and image irradiance fall-off (throughput uniformity) requirements. In a generic optical system, the image irradiance fall-off is a function of: target radiance distribution and polarisation, entrance pupil size and optical transmittance variations across the field of view (FOV), distortion and vignetting. In most applications these aspects can be considered as independent; however, when high image irradiance uniformity is required, they have to be considered as linked together. This is particularly true in case of a wide FOV polarimeter as 3MI is. In order to properly account for these aspects, an irradiance fall-off analytical model has been developed in the frame of 3MI Optics Pre-Development (OPD), whose aim is to mitigate any technological risks associated with the 3MI instrument development. It is shown how it is possible to control the image irradiance distribution acting on optical design parameters (e.g. distortion and entrance pupil size variation with FOV). Moreover, the impact of polarisation performances on irradiance fall-off is discussed.

  8. Development of a carbon nanotube field emission based microbeam cellular irradiator

    NASA Astrophysics Data System (ADS)

    Bordelon, David E.

    Microbeam irradiation has been a growing area of interest in recent years. Microbeam techniques provide radiobiology researchers with the capability of irradiating cells and even subcellular regions with precise doses over precise time intervals. A variety of systems exist using beams of various ions, X-rays, as well as electrons. Multiple locations are irradiated by scanning the particle or photon beam or by translating the cell targets over the beam. While each of these has its own advantages no one has yet demonstrated a multi-beam system, which could increase experimental efficiency and versatility. We have been working to develop a carbon nanotube (CNT) based multi-pixel cellular irradiator to demonstrate this as yet unfulfilled possibility. Formation of the microbeam via carbon nanotube field emission represents a great advantage in that the beam generation can take place in a compact area, has significant advantages over thermionic electron generation, and is readily scaleable using microfabrication methods. Use of CNT based electron field emission along with other microfabrication techniques will readily facilitate the development of a multi-pixel system and allows for a greater degree of miniaturization as compared to other systems, particularly those based on particle accelerators. The CNT based system provides reliable, controllable electron beams with excellent dose rate capabilities. With the potential for smaller, more accessible systems this project demonstrates a development that could make microbeam irradiation available to a broader group of scientists, accelerating the growth of knowledge about the effects and use of radiation on cells and the human body.

  9. Estimation of the radiation field homogeneity in 60Co blood irradiator

    NASA Astrophysics Data System (ADS)

    Urban, Tomas

    2014-11-01

    The aim of this work is to estimate the homogeneity of the radiation field in various configurations and relative activities of the “disposed” but still relatively highly active (approximately thousands of Curies, i.e. tens of TBq) sources for their potential use in irradiation of blood (or blood derivatives). Small dose rate, which is already unusable/inappropriate for the teletherapy, may be still utilized by simultaneous use of multiple sources or reducing the distance to the irradiated object (blood unit). To estimate the homogeneity of the radiation field a modeling approach has been chosen in which Monte Carlo code MCNP has been employed. (In-) homogeneity of the radiation field has been estimated on the basis of isodoses in the water phantom and for various configurations and relative activities of the 60Co sources. The results of simulations are also discussed with regard to further optimization (homogeneity of the sample irradiation, costs, radiation protection of service staff, availability of a sufficient number of resources, etc.).

  10. Characterization of neutron calibration fields at the TINT's 50 Ci americium-241/beryllium neutron irradiator

    NASA Astrophysics Data System (ADS)

    Liamsuwan, T.; Channuie, J.; Ratanatongchai, W.

    2015-05-01

    Reliable measurement of neutron radiation is important for monitoring and protection in workplace where neutrons are present. Although Thailand has been familiar with applications of neutron sources and neutron beams for many decades, there is no calibration facility dedicated to neutron measuring devices available in the country. Recently, Thailand Institute of Nuclear Technology (TINT) has set up a multi-purpose irradiation facility equipped with a 50 Ci americium-241/beryllium neutron irradiator. The facility is planned to be used for research, nuclear analytical techniques and, among other applications, calibration of neutron measuring devices. In this work, the neutron calibration fields were investigated in terms of neutron energy spectra and dose equivalent rates using Monte Carlo simulations, an in-house developed neutron spectrometer and commercial survey meters. The characterized neutron fields can generate neutron dose equivalent rates ranging from 156 μSv/h to 3.5 mSv/h with nearly 100% of dose contributed by neutrons of energies larger than 0.01 MeV. The gamma contamination was less than 4.2-7.5% depending on the irradiation configuration. It is possible to use the described neutron fields for calibration test and routine quality assurance of neutron dose rate meters and passive dosemeters commonly used in radiation protection dosimetry.

  11. Determination of the irradiation field at the research reactor TRIGA Mainz for BNCT.

    PubMed

    Nagels, S; Hampel, G; Kratz, J V; Aguilar, A L; Minouchehr, S; Otto, G; Schmidberger, H; Schütz, C; Vogtländer, L; Wortmann, B

    2009-07-01

    For the application of the BNCT for the excorporal treatment of organs at the TRIGA Mainz, the basic characteristics of the radiation field in the thermal column as beam geometry, neutron and gamma ray energies, angular distributions, neutron flux, as well as absorbed gamma and neutron doses must be determined in a reproducible way. To determine the mixed irradiation field thermoluminescence detectors (TLD) made of CaF(2):Tm with a newly developed energy-compensation filter system and LiF:Mg,Ti materials with different (6)Li concentrations and different thicknesses as well as thin gold foils were used. PMID:19380234

  12. Automatic cell detection in bright-field microscopy for microbeam irradiation studies

    NASA Astrophysics Data System (ADS)

    Georgantzoglou, A.; Merchant, M. J.; Jeynes, J. C. G.; Wéra, A.-C.; Kirkby, K. J.; Kirkby, N. F.; Jena, R.

    2015-08-01

    Automatic cell detection in bright-field illumination microscopy is challenging due to cells’ inherent optical properties. Applications including individual cell microbeam irradiation demand minimisation of additional cell stressing factors, so contrast-enhancing fluorescence microscopy should be avoided. Additionally, the use of optically non-homogeneous substrates amplifies the problem. This research focuses on the design of a method for automatic cell detection on polypropylene substrate, suitable for microbeam irradiation. In order to fulfil the relative requirements, the Harris corner detector was employed to detect apparent cellular features. These features-corners were clustered based on a dual-clustering technique according to the density of their distribution across the image. Weighted centroids were extracted from the clusters of corners and constituted the targets for irradiation. The proposed method identified more than 88% of the 1,738 V79 Chinese hamster cells examined. Moreover, a processing time of 2.6 s per image fulfilled the requirements for a near real-time cell detection-irradiation system.

  13. Effects of field orientation during 700-MHz radiofrequency irradiation of rats

    SciTech Connect

    Frei, M.R.; Jauchem, J.R.; Padilla, J.M. )

    1989-01-01

    Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 700-MHz continuous-wave radiofrequency radiation (RFR) in both E and H orientations. Irradiation was conducted at whole-body average specific absorption rates (SARs) of 9.2 and 13.0 W/kg (E and H, respectively) that resulted in approximately equivalent colonic specific heating rates (SHRs). Exposures were performed to repeatedly increase colonic temperature by 1 degree C (38.5 to 39.5 degrees C). Tympanic, tail, left and right subcutaneous (toward and away from RFR source), and colonic temperatures, arterial blood pressure, and respiratory rate were continuously recorded. In spite of equivalent colonic SHRs and the reduced E-orientation average SAR, the right subcutaneous, tympanic, and tail SARs, SHRs and absolute temperature increases were significantly greater in E than in H orientation. The cooling rate at all monitoring sites was also significantly greater in E than in H orientation. Heart rate and mean arterial blood pressure significantly increased during irradiation; however, changes between orientations were not different. Respiratory rate significantly increased during irradiation in H, but not in E orientation. These results indicate that during resonant frequency irradiation, differences occur in the pattern of heat deposition between E- and H-orientation exposure. When compared with previous investigations performed at supraresonant frequencies, the lower level of cardiovascular change in this study was probably related to the lower periphery-to-core thermal gradient.

  14. Effects of field orientation during 700-MHz radiofrequency irradiation of rats

    SciTech Connect

    Frei, M.R.; Jauchem, J.R.; Padilla, J.M.

    1989-01-01

    Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 700-MHz continuous-wave radiofrequency radiation (RFR) in both E and H orientations. Irradiation was conducted at whole-body average specific absorption rates (SARs) of 9.2 and 13.0 W/kg (E and H, respectively) that resulted in approximately equivalent colonic specific heating rates (SHRs). Exposures were performed to repeatedly increase colonic temperature by 1 deg C (38.5 to 39.5 deg C). Tympanic, tail, left and right subcutaneous (toward and away from RFR source), and colonic temperatures, arterial blood pressure, and respiratory rate were continuously recorded. In spite of equivalent colonic SHRs and the reduced E-orientation average SAR, the right subcutaneous, tympanic, and tail SARs, SHRs and absolute temperature increases were significantly greater in E than in H orientation. The cooling rate at all monitoring sites was also significantly greater in E than in H orientation. Heart rate and mean arterial blood pressure significantly increased during irradiation; however, changer between orientations were not different. Respiratory rate significantly increased during irradiation in H, but not in E orientation. These results indicate that during resonant frequency irradiation, differences occur in the pattern of heat deposition between E- and H-orientation exposure. When compared with previous investigations performed at supraresonant frequencies, the lower level of cardiovascular change in this study was probably related to the lower periphery-to-core thermal gradient.

  15. Automatic cell detection in bright-field microscopy for microbeam irradiation studies.

    PubMed

    Georgantzoglou, A; Merchant, M J; Jeynes, J C G; Wéra, A-C; Kirkby, K J; Kirkby, N F; Jena, R

    2015-08-21

    Automatic cell detection in bright-field illumination microscopy is challenging due to cells' inherent optical properties. Applications including individual cell microbeam irradiation demand minimisation of additional cell stressing factors, so contrast-enhancing fluorescence microscopy should be avoided. Additionally, the use of optically non-homogeneous substrates amplifies the problem. This research focuses on the design of a method for automatic cell detection on polypropylene substrate, suitable for microbeam irradiation. In order to fulfil the relative requirements, the Harris corner detector was employed to detect apparent cellular features. These features-corners were clustered based on a dual-clustering technique according to the density of their distribution across the image. Weighted centroids were extracted from the clusters of corners and constituted the targets for irradiation. The proposed method identified more than 88% of the 1,738 V79 Chinese hamster cells examined. Moreover, a processing time of 2.6 s per image fulfilled the requirements for a near real-time cell detection-irradiation system. PMID:26236995

  16. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  17. Radiation-Induced Oxidative Stress at Out-of-Field Lung Tissues after Pelvis Irradiation in Rats

    PubMed Central

    Najafi, Masoud; Fardid, Reza; Takhshid, Mohammad Ali; Mosleh-Shirazi, Mohammad Amin; Rezaeyan, Abol-Hassan; Salajegheh, Ashkan

    2016-01-01

    Objective The out-of-field/non-target effect is one of the most important phenomena of ionizing radiation that leads to molecular and cellular damage to distant non-irradiated tissues. The most important concern about this phenomenon is carcinogenesis many years after radiation treatment. In vivo mechanisms and consequences of this phenomenon are not known completely. Therefore, this study aimed to evaluate the oxidative damages to out-of-field lung tissues 24 and 72 hours after pelvic irradiation in rats. Materials and Methods In this experimentalinterventional study, Sprague-Dawleymale rats (n=49) were divided into seven groups (n=7/each group), including two groups of pelvis- exposed rats (out-of-field groups), two groups of whole bodyexposed rats (scatter groups), two groups of lung-exposed rats (direct irradiation groups), and one control sham group. Out- of-field groups were irradiated at a 2×2 cm area in the pelvis region with 3 Gy using 1.25 MeV cobalt-60 gamma-ray source, and subsequently, malondialdehyde (MDA) and glutathione (GSH) levels as well as superoxide dismutase (SOD) activity in out-of-field lung tissues were measured. Results were compared to direct irradiation, control and scatter groups at 24 and 72 hours after exposure. Data were analyzed using Mann-Whitney U test. Results SOD activity decreased in out-of-field lung tissue 24 and 72 hours after irradiation as compared with the controls and scatter groups. GSH level decreased 24 hours after exposure and increased 72 hours after exposure in the out-of-field groups as compared with the scatter groups. MDA level in out-of-field groups only increased 24 hours after irradiation. Conclusion Pelvis irradiation induced oxidative damage in distant lung tissue that led to a dramatic decrease in SOD activity. This oxidative stress was remarkable, but it was less durable as compared to direct irradiation. PMID:27602315

  18. Analysis of a teleportation scheme involving cavity field states in a linear superposition of Fock states

    NASA Astrophysics Data System (ADS)

    Carvalho, C. R.; Guerra, E. S.; Jalbert, Ginette

    2008-04-01

    We analyse a teleportation scheme of cavity field states. The experimental sketch discussed makes use of cavity quantum electrodynamics involving the interaction of Rydberg atoms with superconducting (micromaser) cavities as well as with classical microwave (Ramsey) cavities. In our scheme the Ramsey cavities and the atoms play the role of auxiliary systems used to teleport a field state, which is formed by a linear superposition of vacuum |∅> and the one-photon state |1>, from a micromaser cavity to another.

  19. Rayleigh-Taylor-induced magnetic fields in laser-irradiated plastic foils

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hu, S. X.; Betti, R.; Hager, J.; Meyerhofer, D. D.; Smalyuk, V.

    2012-08-15

    Experimental observations of magnetic fields generated by Rayleigh-Taylor growth in laser-irradiated planar foils are presented. X-ray and monoenergetic proton radiographic techniques were used to probe plastic foils with seeded surface perturbations at different times during the evolution. Protons deflected by fields in the target cause modulations in proton fluence at the seed wavelength of 120 {mu}m. Path-integrated magnetic-field strengths were inferred from modulations in proton fluence using a discrete-Fourier-transform analysis technique and found to increase from 10 to 100 T-{mu}m during linear growth. Electron thermal conduction was shown to be unaffected by Rayleigh-Taylor-induced magnetic fields during the linear growth phase.

  20. Rayleigh-Taylor-induced magnetic fields in laser-irradiated plastic foils

    NASA Astrophysics Data System (ADS)

    Manuel, M. J.-E.; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hu, S. X.; Betti, R.; Hager, J.; Meyerhofer, D. D.; Smalyuk, V.

    2012-08-01

    Experimental observations of magnetic fields generated by Rayleigh-Taylor growth in laser-irradiated planar foils are presented. X-ray and monoenergetic proton radiographic techniques were used to probe plastic foils with seeded surface perturbations at different times during the evolution. Protons deflected by fields in the target cause modulations in proton fluence at the seed wavelength of 120 μm. Path-integrated magnetic-field strengths were inferred from modulations in proton fluence using a discrete-Fourier-transform analysis technique and found to increase from 10 to 100 T-μm during linear growth. Electron thermal conduction was shown to be unaffected by Rayleigh-Taylor-induced magnetic fields during the linear growth phase.

  1. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    PubMed

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations. PMID:18196797

  2. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver

    SciTech Connect

    Bortolussi, S.; Altieri, S.

    2007-12-15

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ({phi}{sub max}/{phi}{sub min}) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a {phi}{sub max}/{phi}{sub min} ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations.

  3. Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles.

    PubMed

    Ge, Shijian; Agbakpe, Michael; Wu, Zhiyi; Kuang, Liyuan; Zhang, Wen; Wang, Xianqin

    2015-01-20

    Magnetophoretic separation is a promising and sustainable technology for rapid algal separation or removal from water. This work demonstrated the application of magnetic magnetite nanoparticles (MNPs) coated with a cationic polymer, polyethylenimine (PEI), toward the separation of Scenedesmus dimorphus from the medium broth. The influences of surface coating, UV irradiation, and magnetic field on the magnetophoretic separation were systematically examined. After PEI coating, zeta potential of MNPs shifted from −7.9 ± 2.0 to +39.0 ± 3.1 mV at a pH of 7.0, which improved MNPs-algae interaction and helped reduce the dose demand of MNPs (e.g., from 0.2 to 0.1 g·g(–1) while the harvesting efficiency (HE) of over 80% remained unchanged). The extended Derjaguin–Landau–Verwey–Overbeek theory predicted a strong attractive force between PEI-coated MNPs and algae, which supported the improved algal harvesting. Moreover, the HE was greater under the UV365 irradiation than that under the UV254, and increased with the irradiation intensity. Continuous application of the external magnetic field at high strength remarkably improved the algal harvesting. Finally, the reuse of MNPs for multiple cycles of algal harvesting was studied, which aimed at increasing the sustainability and lowering the cost. PMID:25486124

  4. NOTE: Intraoperative radiation therapy using a mobile electron linear accelerator: field matching for large-field electron irradiation

    NASA Astrophysics Data System (ADS)

    Beddar, A. S.; Briere, T. M.; Ouzidane, M.

    2006-09-01

    Intraoperative radiation therapy (IORT) consists of delivering a large, single-fraction dose of radiation to a surgically exposed tumour or tumour bed at the time of surgery. With the availability of a mobile linear accelerator in the OR, IORT procedures have become more feasible for medical centres and more accessible to cancer patients. Often the area requiring irradiation is larger than what the treatment applicators will allow, and therefore, two or more adjoining fields are used. Unfortunately, the divergence and scattering of the electron beams may cause significant dose variations in the region of the field junction. Furthermore, because IORT treatments are delivered in a large single fraction, the effects of underdosing or overdosing could be more critical when compared to fractionated external beam therapy. Proper matching of the fields is therefore an important technical aspect of treatment delivery. We have studied the matching region using the largest flat applicator available for three different possibilities: abutting the fields, leaving a small gap or creating an overlap. Measurements were done using film dosimetry for the available energies of 4, 6, 9 and 12 MeV. Our results show the presence of clinically significant cold spots for the low-energy beams when the fields are either gapped or abutted, suggesting that the fields should be overlapped. No fields should be gapped. The results suggest that an optimal dose distribution may be obtained by overlapping the fields at 4 and 6 MeV and simply abutting the fields at 9 and 12 MeV. However, due to uncertainties in the placement of lead shields during treatment delivery, one may wish to consider overlapping the higher energy fields as well.

  5. Evolution kinetics of interstitial loops in irradiated materials: a phase-field model

    SciTech Connect

    Hu, Shenyang Y.; Henager, Charles H.; Li, Yulan; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2012-01-01

    Interstitial loops are one of the principal evolving defects in irradiated materials. The evolution of interstitial loops, including spatial and size distributions, affects both vacancy and interstitial accumulations in the matrix, hence, void formation and volumetric swelling. In this work, a phase-field model to simulate the growth kinetics of interstitial loops in irradiated materials during aging is developed. The diffusion of vacancies and interstitials and the elastic interaction between interstitial loops and point defects are accounted in the model. The effects of interstitial concentration, chemical potential, and elastic interaction on the growth kinetics and stability of interstitial loops are investigated in two and three dimensions. It is found that the elastic interaction enhances the growth kinetics of interstitial loops. The elastic interaction also affects the stability of a small interstitial loop adjacent to a larger loop. The model predicts linear growth rates for interstitial loops that is in agreement with the previous theoretical predictions and experimental observations.

  6. Impact of total ionizing dose irradiation on electrical property of ferroelectric-gate field-effect transistor

    NASA Astrophysics Data System (ADS)

    Yan, S. A.; Xiong, Y.; Tang, M. H.; Li, Z.; Xiao, Y. G.; Zhang, W. L.; Zhao, W.; Guo, H. X.; Ding, H.; Chen, J. W.; Zhou, Y. C.

    2014-05-01

    P-type channel metal-ferroelectric-insulator-silicon field-effect transistors (FETs) with a 300 nm thick SrBi2Ta2O9 ferroelectric film and a 10 nm thick HfTaO layer on silicon substrate were fabricated and characterized. The prepared FeFETs were then subjected to 60Co gamma irradiation in steps of three dose levels. Irradiation-induced degradation on electrical characteristics of the fabricated FeFETs was observed after 1 week annealing at room temperature. The possible irradiation-induced degradation mechanisms were discussed and simulated. All the irradiation experiment results indicated that the stability and reliability of the fabricated FeFETs for nonvolatile memory applications will become uncontrollable under strong irradiation dose and/or long irradiation time.

  7. Field orientation effects during 5. 6-GHz radiofrequency irradiation of rats

    SciTech Connect

    Frei, M.R.; Jauchem, J.R.; Price, D.L.; Padilla, J.M. )

    1990-12-01

    Ketamine-anesthetized Sprague-Dawley rats were exposed in E and H orientations (long axis parallel to electric and magnetic fields, respectively) to far-field 5.6-GHz continuous-wave radio-frequency radiation (RFR). Power densities were used that resulted in equivalent whole-body average specific absorption rates of 14 W/kg in both orientations (90 mW/cm2 for E and 66 mW/cm2 for H). Irradiation was conducted to increase colonic temperature by 1 degree C (from 38.5 to 39.5 degrees C). During experimentation, arterial blood pressure and respiratory rate and colonic, tympanic, left and right subcutaneous (sides toward and away from RFR source), and tail temperatures were continuously recorded. Results showed no significant difference in the times required to cause a 1 degree C increase or to recover to the initial temperature when irradiation was stopped. Significant differences between E- and H-orientation exposure were seen in the patterns of localized heating. The tail and left subcutaneous temperature increases were significantly greater during E-orientation exposure, the tympanic site showed no difference, and the right subcutaneous temperature increase was significantly greater during H-orientation exposure. Under both exposure conditions, heart rate and mean arterial blood pressure significantly increased during irradiation; however, there were no significant differences between E and H orientation responses. These findings at 5.6 GHz are in contrast to the significant cardiovascular response differences between E- and H-orientation exposure noted during a previous study of irradiation at 2.45 GHz.

  8. Low-Dose Involved-Field Radiotherapy as Alternative Treatment of Nodular Lymphocyte Predominance Hodgkin's Lymphoma

    SciTech Connect

    Haas, Rick L.M. Girinsky, Theo; Aleman, Berthe; Henry-Amar, Michel; Boer, Jan-Paul de; Jong, Daphne de

    2009-07-15

    Purpose: Nodular lymphocyte predominance Hodgkin's lymphoma is a very rare disease, characterized by an indolent clinical course, with sometimes very late relapses occurring in a minority of all patients. Considerable discussion is ongoing on the treatment of primary and relapsed disease. Patients and Methods: A group of 9 patients were irradiated to a dose of 4 Gy on involved areas only. Results: After a median follow-up of 37 months (range, 6-66), the overall response rate was 89%. Six patients had complete remission (67%), two had partial remission (22%), and one had stable disease (11%). Of 8 patients, 5 developed local relapse 9-57 months after radiotherapy. No toxicity was noted. Conclusion: In nodular lymphocyte predominance Hodgkin's lymphoma, low-dose radiotherapy provided excellent response rates and lasting remissions without significant toxicity.

  9. Irradiation of prolate spheroidal models of humans and animals in the near field of a small loop antenna

    NASA Astrophysics Data System (ADS)

    Lakhtakia, A.; Iskander, M. F.; Durney, C. H.; Massoudi, H.

    1982-01-01

    Analysis of the near-field irradiation of prolate spheroidal models of humans and animals by a small coaxial loop antenna is described. The near fields of the antenna are known exactly and hence are used to identify the suitable field parameters involved in the near-field absorption in the spheroidal model. An integral equation is formulated in terms of the transverse dyadic Green's function, and the fields radiated by the current loop are expanded in terms of the vector spherical harmonics. The extended boundary condition method is then employed to solve the integral equation. The power distribution and the average specific absorption rate (SAR) are calculated and plotted, for different human and animal models, as a function of the separation distance from the loop. It is shown that for distances less than 5λ the average SAR values oscillate about the far-field value. In particular, for d/λ < 0.4 an increase in the average SAR values was generally observed. It is also shown that in spite of the complicated nature of the near fields the absorption characteristics can still be explained in terms of the incident radiation. Furthermore, from the calculated SAR distributions at different frequencies it is shown that at all frequencies, excessive heating occurs at the surface of the spheroid while a limited absorption occurs in the central region around the major axis. This result is of particular importance in hyperthermia, where extensive efforts are being directed toward achieving deep-tissue heating by a coaxial coil carrying RF power at about 27 MHz.

  10. Field Dependent Dopant Deactivation in Bipolar Devices at Elevated irradiation Temperatures

    SciTech Connect

    WITCZAK,STEVEN C.; LACOE,RONALD C.; SHANEYFELT,MARTY R.; MAYER,DONALD C.; SCHWANK,JAMES R.; WINOKUR,PETER S.

    2000-08-15

    Metal-oxide-silicon capacitors fabricated in a bi-polar process were examined for densities of oxide trapped charge, interface traps and deactivated substrate acceptors following high-dose-rate irradiation at 100 C. Acceptor neutralization near the Si surface occurs most efficiently for small irradiation biases in depletion. The bias dependence is consistent with compensation and passivation mechanisms involving the drift of H{sup +} ions in the oxide and Si layers and the availability of holes in the Si depletion region. Capacitor data from unbiased irradiations were used to simulate the impact of acceptor neutralization on the current gain of an npn bipolar transistor. Neutralized acceptors near the base surface enhance current gain degradation associated with radiation-induced oxide trapped charge and interface traps by increasing base recombination. The additional recombination results from the convergence of carrier concentrations in the base and increased sensitivity of the base to oxide trapped charge. The enhanced gain degradation is moderated by increased electron injection from the emitter. These results suggest that acceptor neutralization may enhance radiation-induced degradation of linear circuits at elevated temperatures.

  11. Thermal Decay and Reversal of Exchange Bias Field of CoFe/PtMn Bilayer after Ga+ Irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Guang-Hong; Zhu, Yu-Fu; Lin, Yue-Bin

    2011-05-01

    An applied field is used to perform Ga+ ion irradiation on a CoFe/PtMn bilayer. Effects of the applied field and energy transfer between Ga+ ions and antiferromagnetic (AFM) atoms on the exchange bias field Hex are investigated. A partially reversed Hex is found in CoFe/PtMn specimens irradiated at a dose of 1 × 1014 ions/cm2 with an applied field anti-parallel to the original exchange bias direction. We believe that the rapid energy transfer and local temperature increase originating from the interaction between Ga+ ions and AFM atoms result in spin reversal and the formation of reversed AFM domains when specimens are irradiated with anti-parallel fields. The decrease in Hex when annealing the film in a negative saturation field indicates a thermal decay process. The AFM moments are reversed by thermal activation over an energy barrier distribution, which may change in some way as the temperature increases.

  12. Waveguide evanescent field scattering microscopy: bacterial biofilms and their sterilization response via UV irradiation.

    PubMed

    Nahar, Qamrun; Fleißner, Frederik; Shuster, Jeremiah; Morawitz, Michael; Halfpap, Christopher; Stefan, Mihaela; Langbein, Uwe; Southam, Gordon; Mittler, Silvia

    2014-07-01

    Waveguide Evanescent Field Scattering (WEFS) microscopy is introduced as a new and simple tool for label-free, high contrast imaging of bacteria and bacteria sensors. Bacterial microcolonies and single bacteria were discriminated both by their bright field images and by their evanescent scattering intensity. By comparing bright field images with WEFS images, the proportion of planktonic: sessile (i.e., "floating": attached) bacteria were measured. Bacteria were irradiated with UV light, which limited their biofilm forming capability. A quantitative decrease in attachment of individual, sessile bacteria and in attached, microcolony occupied areas was easily determined within the apparent biofilms with increasing UV dose. WEFS microscopy is an ideal tool for providing rapid quantitative data on biofilm formation. PMID:24133004

  13. Collective-field-corrected strong field approximation for laser-irradiated metal clusters

    NASA Astrophysics Data System (ADS)

    Keil, Th; Bauer, D.

    2014-06-01

    The strong field approximation (SFA) formulated in terms of so-called ‘quantum orbits’ led to much insight into intense-laser driven ionization dynamics. In plain SFA, the emitted electron is treated as a free electron in the laser field alone. However, with improving experimental techniques and more advanced numerical simulations, it becomes more and more obvious that the plain SFA misses interesting effects even on a qualitative level. Examples are holographic side lobes, the low-energy structure, radial patterns in photoelectron spectra at low kinetic energies and strongly rotated angular distributions. For this reason, increasing efforts have been recently devoted to Coulomb corrections of the SFA. In the current paper, we follow a similar line but consider ionization of metal clusters. It is known that photoelectrons from clusters can be much more energetic than those emitted from atoms or small molecules, especially if the Mie resonance of the expanding cluster is evoked. We develop a SFA that takes the collective field inside the cluster via the simple rigid-sphere model into account. Our approach is based on field-corrected quantum orbits so that the acceleration process (or any other spectral feature of interest) can be investigated in detail.

  14. SU-E-T-404: Simple Field-In-Field Technique for Total Body Irradiation in Large Patients

    SciTech Connect

    Chi, P; Pinnix, C; Dabaja, B; Wang, C; Aristophanous, M; Tung, S

    2014-06-01

    Purpose: A simple Field-in-Field technique for Total Body Irradiation (TBI) was developed for traditional AP/PA TBI treatments to improve dosimetric uniformity in patients with large separation. Methods: TBI at our institution currently utilizes an AP/PA technique at an extended source-to-surface distance (SSD) of 380cm with patients in left decubitus position during the AP beam and in right decubitus during the PA beam. Patients who have differences in thickness (separation) between the abdomen and head greater than 10cm undergo CT simulation in both left and right decubitus treatment positions. One plan for each CT is generated to evaluate dose to patient midline with both AP and PA fields, but only corresponding AP fields will be exported for treatment for patient left decubitus position and PA fields for patient right decubitus position. Subfields are added by collimating with the x-ray jaws according to separation changes at 5–7% steps to minimize hot regions to less than 10%. Finally, the monitor units (MUs) for the plans are verified with hand calculation and water phantom measurements. Results: Dose uniformity (+/−10%) is achieved with field-in-field using only asymmetric jaws. It is dosimetrically robust with respect to minor setup/patient variations inevitable due to patient conditions. MUs calculated with Pinnacle were verified in 3 clinical cases and only a 2% difference was found compared to homogeneous calculation. In-vivo dosimeters were also used to verify doses received by each patient with and confirmed dose variations less than 10%. Conclusion: We encountered several cases with separation differences that raised uniformity concerns — based on a 1% dose difference per cm separation difference assumption. This could Resultin an unintended hot spot, often in the head/neck, up to 25%. This method allows dose modulation without adding treatment complexity nor introducing radiobiological variations, providing a reasonable solution for this unique

  15. Pseudoloma neurophilia Infection Combined with Gamma Irradiation Causes Increased Mortality in Adult Zebrafish (Danio rerio) Compared to Infection or Irradiation Alone: New Implications for Studies Involving Immunosuppression.

    PubMed

    Spagnoli, Sean T; Sanders, Justin L; Watral, Virginia; Kent, Michael L

    2016-07-01

    Gamma irradiation is commonly used as a bone marrow suppressant in studies of the immune system and hematopoiesis, most commonly in mammals. With the rising utility and popularity of the zebrafish (Danio rerio), gamma irradiation is being used for similar studies in this species. Pseudoloma neurophilia, a microparasite and common contaminant of zebrafish facilities, generally produces subclinical disease. However, like other microsporidia, P. neurophilia is a disease of opportunity and can produce florid infections with high morbidity and mortality, secondary to stress or immune suppression. In this study, we exposed zebrafish to combinations of P. neurophilia infection and gamma irradiation to explore the interaction between this immunosuppressive experimental modality and a normally subclinical infection. Zebrafish infected with P. neurophilia and exposed to gamma irradiation exhibited higher mortality, increased parasite loads, and increased incidences of myositis and extraneural parasite infections than fish exposed either to P. neurophilia or gamma irradiation alone. This experiment highlights the devastating effects of opportunistic diseases on immunosuppressed individuals and should caution researchers utilizing immunosuppressive modalities to carefully monitor their stocks to ensure that their experimental animals are not infected. PMID:27123755

  16. Involved-Field, Low-Dose Chemoradiotherapy for Early-Stage Anal Carcinoma

    SciTech Connect

    Hatfield, Paul; Cooper, Rachel; Sebag-Montefiore, David

    2008-02-01

    Purpose: To report the results of patients with early-stage anal cancer treated using a low-dose, reduced-volume, involved-field chemoradiotherapy protocol. Methods and Materials: Between June 2000 and June 2006, 21 patients were treated with external beam radiotherapy (30 Gy in 15 fractions within 3 weeks) and concurrent chemotherapy (bolus mitomycin-C 12 mg/m{sup 2} on Day 1 to a maximum of 20 mg followed by infusion 5-fluorouracil 1,000 mg/m{sup 2}/24 h on Days 1-4). Of the 21 patients, 18 underwent small-volume, involved-field radiotherapy and 3 were treated with anteroposterior-posteroanterior parallel-opposed pelvic fields. Of the 21 patients, 17 had had lesions that were excised with close (<1 mm) or involved margins, 1 had had microinvasive disease on biopsy, and 3 had had macroscopic tumor <2 cm in diameter (T1). All were considered to have Stage N0 disease radiologically. Results: After a median follow-up of 42 months, only 1 patient (4.7%) had experienced local recurrence and has remained disease free after local excision. No distant recurrences or deaths occurred. Only 1 patient could not complete treatment (because of Grade 3 gastrointestinal toxicity). Grade 3-4 hematologic toxicity occurred in only 2 patients (9.5%). No significant late toxicity was identified. Conclusion: The results of our study have shown that for patients with anal carcinoma who have residual microscopic or very-small-volume disease, a policy of low-dose, reduced-volume, involved-field chemoradiotherapy produces excellent local control and disease-free survival, with low rates of acute and late toxicity.

  17. Possible involvement of hippocampal immediate-early genes in contextual fear memory deficit induced by cranial irradiation.

    PubMed

    Son, Yeonghoon; Kang, Sohi; Kim, Jinwook; Lee, Sueun; Kim, Jong-Choon; Kim, Sung-Ho; Kim, Joong-Sun; Jo, Sung-Kee; Jung, Uhee; Youn, BuHyun; Shin, Taekyun; Yang, Miyoung; Moon, Changjong

    2016-09-01

    Cranial irradiation can trigger adverse effects on brain functions, including cognitive ability. However, the cellular and molecular mechanisms underlying radiation-induced cognitive impairments remain still unknown. Immediate-early genes (IEGs) are implicated in neuronal plasticity and the related functions (i.e., memory formation) in the hippocampus. The present study quantitatively assessed changes in the mRNA and protein levels of the learning-induced IEGs, including Arc, c-fos, and zif268, in the mouse hippocampus after cranial irradiation using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry, respectively. Mice (male, 8-week-old C57BL/6) received whole-brain irradiation with 0 or 10Gy of gamma-ray and, 2weeks later, contextual fear conditioning (CFC) was used to induce IEGs. In the CFC task, mice evaluated 2weeks after irradiation exhibited significant memory deficits compared with sham (0Gy)-irradiated controls. The levels of mRNA encoding IEGs were significantly upregulated in the hippocampus 10 and 30min after CFC training. The mRNA levels in the irradiated hippocampi were significantly lower than those in the sham-irradiated controls. The IEG protein levels were significantly increased in all hippocampal regions, including the hippocampal dentate gyrus, cornu ammonis (CA)1, and CA3, after CFC training. The CFC-induced upregulation of Arc and c-fos in 10Gy-irradiated hippocampi was significantly lower than that in sham-irradiated controls, although there were no significant differences in the protein levels of the learning-induced zif268 between sham-irradiated and 10Gy-irradiated hippocampi. Thus, cranial irradiation with 10Gy of gamma-ray impairs the induction of hippocampal IEGs (particularly Arc and c-fos) via behavioral contextual fear memory, and this disturbance may be associated with the memory deficits evident in mice after cranial irradiation, possibly through the dysregulation of neuronal

  18. Effect of low-energy laser irradiation on cytokine secretion from skeletal muscle cells: involvement of calcium in the process

    NASA Astrophysics Data System (ADS)

    Schwartz, Fidi; Adamek, Mariusz; Brodie, C.; Shainberg, Asher

    1997-12-01

    Low energy laser irradiation has an effect on Nerve Growth Factor and anti mitotic factors release from rat and mouse skeletal muscle cultures. It was found that there is a transient elevation of intracellular calcium in the myotubes immediately after irradiation. Calcium changes were detected by dynamic video imaging systems and with a photometric system. Pre incubation of the myotubes with photosensitizers enhance the elevation of both cytosolic calcium and cytokines release from the cells after Helium/Neon irradiation with energy of 3-10 J/cm2. These findings can lead to an hypothesis that transient changes in calcium can accelerate cytokines release from the myotubes.

  19. Satellite-derived photosynthetically available and total solar irradiance at the surface during FIFE's intensive field campaigns

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Mcpherson, J.

    1993-01-01

    Satellite-derived photosynthetically available and total solar irradiance at the surface during First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment's (FIFE) intensive field compaigns are addressed. Graphs showing photosynthetically available radiation (PAR) vs. Julian Day and insolation vs. Julian Day are included.

  20. Analytical model for out-of-field dose in photon craniospinal irradiation

    PubMed Central

    Taddei, Phillip J; Jalbout, Wassim; Howell, Rebecca M; Khater, Nabil; Geara, Fady; Homann, Kenneth; Newhauser, Wayne D

    2015-01-01

    Introduction The prediction of late effects after radiotherapy in organs outside a treatment field requires accurate estimations of out-of-field dose. However, out-of-field dose is not calculated accurately by commercial treatment planning systems (TPSs). The purpose of this study was to develop and test an analytical model for out-of-field dose during craniospinal irradiation (CSI) from photon beams produced by a linear accelerator. Materials & Methods In two separate evaluations of the model, we measured absorbed dose for a 6-MV CSI using thermoluminescent dosimeters placed throughout an anthropomorphic phantom and fit the measured data to an analytical model of absorbed dose versus distance outside of the composite field edge. These measurements were performed in two separate clinics—The University of Texas MD Anderson Cancer Center (MD Anderson) and the American University of Beirut Medical Center (AUBMC)—using the same phantom but different linear accelerators and TPSs commissioned for patient treatments. The measurement at AUBMC also included in-field locations. Measured dose values were compared to those predicted by TPSs and parameters were fit to the model in each setting. Results In each clinic, 95% of the measured data were contained within a factor of 0.2 and one root mean square deviation of the model-based values. The root mean square deviations of the mathematical model were 0.91 cGy/Gy and 1.67 cGy/Gy in the MD Anderson and AUBMC clinics, respectively. The TPS predictions agreed poorly with measurements in regions of sharp dose gradient, e.g., near the field edge. At distances greater than 1 cm from the field edge, the TPS underestimated the dose by an average of 14% ± 24% and 44% ± 19% in the MD Anderson and AUBMC clinics, respectively. The in-field measured dose values of the measurement at AUBMC matched the dose values calculated by the TPS to within 2%. Conclusions Dose algorithms in TPSs systematically underestimated the actual out-of-field

  1. Analytical model for out-of-field dose in photon craniospinal irradiation

    NASA Astrophysics Data System (ADS)

    Taddei, Phillip J.; Jalbout, Wassim; Howell, Rebecca M.; Khater, Nabil; Geara, Fady; Homann, Kenneth; Newhauser, Wayne D.

    2013-11-01

    The prediction of late effects after radiotherapy in organs outside a treatment field requires accurate estimations of out-of-field dose. However, out-of-field dose is not calculated accurately by commercial treatment planning systems (TPSs). The purpose of this study was to develop and test an analytical model for out-of-field dose during craniospinal irradiation (CSI) from photon beams produced by a linear accelerator. In two separate evaluations of the model, we measured absorbed dose for a 6 MV CSI using thermoluminescent dosimeters placed throughout an anthropomorphic phantom and fit the measured data to an analytical model of absorbed dose versus distance outside of the composite field edge. These measurements were performed in two separate clinics—the University of Texas MD Anderson Cancer Center (MD Anderson) and the American University of Beirut Medical Center (AUBMC)—using the same phantom but different linear accelerators and TPSs commissioned for patient treatments. The measurement at AUBMC also included in-field locations. Measured dose values were compared to those predicted by TPSs and parameters were fit to the model in each setting. In each clinic, 95% of the measured data were contained within a factor of 0.2 and one root mean square deviation of the model-based values. The root mean square deviations of the mathematical model were 0.91 cGy Gy-1 and 1.67 cGy Gy-1 in the MD Anderson and AUBMC clinics, respectively. The TPS predictions agreed poorly with measurements in regions of sharp dose gradient, e.g., near the field edge. At distances greater than 1 cm from the field edge, the TPS underestimated the dose by an average of 14% ± 24% and 44% ± 19% in the MD Anderson and AUBMC clinics, respectively. The in-field measured dose values of the measurement at AUBMC matched the dose values calculated by the TPS to within 2%. Dose algorithms in TPSs systematically underestimated the actual out-of-field dose. Therefore, it is important to use an

  2. Effect of light irradiation on the characteristics of organic field-effect transistors

    SciTech Connect

    Noh, Yong-Young; Ghim, Jieun; Kang, Seok-Ju; Baeg, Kang-Jun; Kim, Dong-Yu; Yase, Kiyoshi

    2006-11-01

    The effect of light irradiation on the characteristics of organic field-effect transistors containing sexithiophene (6-T) and pentacene was examined. Organic phototransistors (OPTs) in which 6-T and pentacene were incorporated were fabricated. Their response behaviors were investigated under conditions of irradiation by either modulated or continuous ultraviolet light with various intensities. Both devices showed two distinguishable responses, i.e., fast and slow responses from photoconductive and photovoltaic effects, respectively. The fast response is mainly the result of the generation of mobile carriers by the absorption of a photon energy higher than the band gap energy of the semiconductor and, subsequently, an increase in conductance via a greater flow of photogenerated mobile carriers into the channel layer. On the other hand, the slow response, which was confirmed by a light induced shift in the threshold voltage (V{sub th}) or the switch-on voltage (V{sub O}), is the result of a slow release of accumulated and trapped electrons in the semiconductor-gate dielectric interface. The V{sub O} is defined as the flatband voltage of devices. Below the V{sub O}, the channel current with the gate voltage is off current, and the channel current increases with the gate voltage above the V{sub O}. The speed of release of the accumulated charge was dependent on the type of semiconductor used. Pentacene OPTs showed a particularly long retention time. Even after storage for ten days, the shifted V{sub O} (or V{sub th}) for the pentacene OPTs by light irradiation was not restored to the original value of the fresh devices. We conclude that this long sustained V{sub th} shift renders them attractive for use in ''light-addressable nonvolatile memory devices.''.

  3. First Tests for the Detection of the LINAC Irradiation Field Using PIN Diodes

    SciTech Connect

    Nava, C. E. Ojeda; Ramirez-Jimenez, F. J.; Navarro, L. F. Villasenor; Cruz, M. Duran

    2008-08-11

    The employment of the technology of semiconductor detectors, in the medical physics environment is of great importance due to its versatility and dependability. In this work we present the first results and the experimental arrangement employed with PIN diodes that are conditioned for the measurement of the field of irradiation of a lineal accelerator (LINAC) used in radiotherapy. In our tests we used a PIN photodiode. In former experiments, this diode presented a response to the intensity of the applied field when it was exposed to an X-ray beam in medical and industrial radiography equipments. This diode is a low cost and easy acquisition one in the field. These characteristics transform it into a serious candidate as detector to be used in electronic arrangements for the detection of radiation fields in radio-therapy with X-rays. Experiments were designed to obtain the response of this diode when it was exposed to X-ray beams of a LINAC used in radiotherapy. Firstly the tests were carried out for a 6 MeV photon beam with a source to surface distance (SSD) of 100 cm, obtaining very encouraging results. We seek to carry out tests for more energy values in order to obtain the energy response of this detector as a radiation sensor device. This device could be applied in the design of working tools, for example, for the quality control in procedures of radiotherapy.

  4. Asymptotic and uncertainty analyses of a phase field model for void formation under irradiation

    SciTech Connect

    Nan Wang; Srujan Rokkam; Thomas Hochrainer; Michael Pernice; Anter El-Azab

    2014-06-01

    We perform asymptotic analysis and uncertainty quantification of a phase field model for void formation and evolution in materials subject to irradiation. The parameters of the phase field model are obtained in terms of the underlying material specific quantities by matching the sharp interface limit of the phase field model with the corresponding sharp interface theory for void growth. To evaluate the sensitivity of phase field simulations to uncertainties in input parameters we quantify the predictions using the stochastic collocation method. Uncertainties arising from material parameters are investigated based on available experimental and atomic scale data. The results of our analysis suggest that the uncertainty in the formation and migration energies of vacancies are found to have a strong influence on the void volume fraction (or porosity). In contrast, the uncertainty resulting from the void surface energy has minimal affect. The analysis also shows that the model is consistent in the sense that its predictions do not drastically change as a result of small variations of the model input parameters.

  5. First Tests for the Detection of the LINAC Irradiation Field Using PIN Diodes

    NASA Astrophysics Data System (ADS)

    Nava, C. E. Ojeda; Ramírez-Jiménez, F. J.; Navarro, L. F. Villaseñor; Cruz, M. Durán

    2008-08-01

    The employment of the technology of semiconductor detectors, in the medical physics environment is of great importance due to its versatility and dependability. In this work we present the first results and the experimental arrangement employed with PIN diodes that are conditioned for the measurement of the field of irradiation of a lineal accelerator (LINAC) used in radiotherapy. In our tests we used a PIN photodiode. In former experiments, this diode presented a response to the intensity of the applied field when it was exposed to an X-ray beam in medical and industrial radiography equipments. This diode is a low cost and easy acquisition one in the field. These characteristics transform it into a serious candidate as detector to be used in electronic arrangements for the detection of radiation fields in radio-therapy with X-rays. Experiments were designed to obtain the response of this diode when it was exposed to X-ray beams of a LINAC used in radiotherapy. Firstly the tests were carried out for a 6 MeV photon beam with a source to surface distance (SSD) of 100 cm, obtaining very encouraging results. We seek to carry out tests for more energy values in order to obtain the energy response of this detector as a radiation sensor device. This device could be applied in the design of working tools, for example, for the quality control in procedures of radiotherapy.

  6. Two-field versus three-field irradiation technique in the postoperative treatment of head-and-neck cancer

    SciTech Connect

    Yom, Sue S.; Morrison, William H.; Ang, K. Kian; Rosenthal, David I.; Perkins, George H.; Wong, Pei-Fong M.S.; Garden, Adam S. . E-mail: agarden@mdanderson.org

    2006-10-01

    Purpose: We have increasingly used a two-field noncoplanar 'caudal tilt' technique (CTT) for irradiating postlaryngectomy and pharyngectomy patients to avoid matchline problems that can be encountered with the classic three-field head-and-neck radiation technique (3FT). This report compares the clinical outcomes of patients treated with postoperative radiation (PORT) using either 3FT or CTT. Methods and Materials: We conducted a retrospective review of the medical records of all patients with laryngeal or hypopharyngeal cancers consecutively treated with PORT between 1997 and 2002. Three-dimensional dosimetric planning was carried out for all patients. Results: Of 91 patients, 39 were treated with 3FT and 52 with CTT. The median follow-up was 34 months. Estimated rates of 2-year locoregional control, disease-free survival, and overall survival for patients treated with 3FT and CTT were, respectively, 92% and 85% (p = 0.241), 62% and 55% (p = 0.497), and 77% and 72% (p = 0.616). There were no significant differences in the incidence of acute or late side effects in the two groups. Conclusions: 'Caudal tilt' technique is often used as an alternative to 3FT for postoperative radiotherapy in cases of greater medical and technical complexity. Despite its use in more challenging cases, CTT provides similar long-term clinical outcomes compared with standard 3FT, when computerized three-dimensional dosimetry is used to assure adequate dosimetry throughout the treated volume.

  7. Phase-field Modeling of Void Migration and Growth Kinetics in Materials under Irradiation and Temperature Field

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Gao, Fei; Henager, Charles H.; Khaleel, Mohammad A.

    2010-12-15

    A phase-field model is developed to investigate the migration of vacancies, interstitials, and voids as well as void growth kinetics in materials under radiation and temperature field. The model takes into account the generation of vacancies and interstitials associated with the irradiation damage, the recombination between vacancies and interstitials, defect diffusion, and defect sinks. The effect of void sizes, vacancy concentration, vacancy generation rate, recombination rate, and temperature gradient on a single void migration and growth kinetics is parametrically studied. The results demonstrate that the temperature gradient causes void migration and defect fluxes, i.e., the Soret effect, which affects void stability and growth kinetics. It is found that 1) the void migration mobility is independent of the void size, which is in agreement with the theoretical prediction with the assumption of bulk diffusion controlled migration; 2) the void migration mobility strongly depends on temperature gradient; and 3) the effect of defect concentration, generation rate, and recombination rate on void migration mobility is minor although they strongly influence the void growth kinetics.

  8. Development of an X-ray tube for irradiation experiments using a field emission electron gun

    NASA Astrophysics Data System (ADS)

    Kato, Hidetoshi; O`Rourke, Brian E.; Suzuki, Ryoichi; Wang, Jiayu; Ooi, Takashi; Nakajima, Hidetoshi

    2016-01-01

    A new X-ray tube using a ring-shaped emitter as a field emission electron source has been developed. By using a ring shaped cathode, X-rays can be extracted along the axial direction through the central hole. This cylindrically symmetrical design allows for the tube to be arranged in the axial direction with the high voltage target at one end and the X-ray beam at the other. The newly developed X-ray tube can operate at a tube voltage of more than 100 kV and at a tube current of more than 4 mA, and can be used for irradiation experiments with an irradiation dose range from mGy up to kGy. The X-ray tube can be used immediately after turning on (i.e. there is no stand-by time). In the experimental model, we demonstrated stable electron emission at a tube voltage of 100 kV and at a tube current of 4 mA during a 560 h continuous test.

  9. Numerical simulation of temperature field and thermal stress field in silicon-based positive-intrinsic-negative photodiode irradiated by multipulsed millisecond laser

    NASA Astrophysics Data System (ADS)

    Wei, Zhi; Jin, Guangyong; Tan, Yong; Zhao, Hongyu

    2015-10-01

    Laser induced morphological damage have been observed in silicon-based positive-intrinsic-negative photodiode. This paper adopted the methods of the theoretical calculation and finite element numerical simulation to model, then solved the temperature field and thermal stress field in silicon-based positive-intrinsic-negative photodiode irradiated by multipulsed millisecond laser, and researched the features and laws of the temperature field and thermal stress field. As for the thermal-mechanical problem of multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode, based on Fourier heat conduction and thermoelasticity theories, we established a two-dimensional axisymmetric mathematical model .Then adopted finite element method to simulate the transient temperature field and thermal stress field. The temperature dependences of the material parameters and the absorption coefficient were taken into account in the calculation. The results indicated that there was the heat accumulation effect when multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode. The morphological damage threshold were obtained numerically. The evolution of temperature at the central point of the top surface, the temperature distribution along the radial direction in the end of laser irradiation and the temperature distribution along the axial direction in the end of laser irradiation were considered. Meanwhile, the radial stress, hoop stress, axial stress on the top surface and the R=500μm axis were also considered. The results showed that the morphological damage threshold decreased with the increased of the pulse number. The results of this study have reference significance of researching the thermal and thermal stress effect evolution's features when multipulsed millisecond laser irradiating silicon-based positive-intrinsic-negative photodiode, then revealing the mechanism of interactions between millisecond laser and

  10. Adjuvant paclitaxel and carboplatin chemotherapy with involved field radiation in advanced endometrial cancer: A sequential approach

    SciTech Connect

    Lupe, Krystine; Kwon, Janice . E-mail: Janice.kwon@lhsc.on.ca; D'Souza, David; Gawlik, Christine; Stitt, Larry; Whiston, Frances; Nascu, Patricia; Wong, Eugene; Carey, Mark S.

    2007-01-01

    Purpose: To determine the feasibility of adjuvant paclitaxel and carboplatin chemotherapy interposed with involved field radiotherapy for women with advanced endometrial cancer. Methods and Materials: This was a prospective cohort study of women with Stage III and IV endometrial cancer. Adjuvant therapy consisted of 4 cycles of paclitaxel (175 mg/m{sup 2}) and carboplatin (350 mg/m{sup 2}) every 3 weeks, followed sequentially by external beam radiotherapy (RT) to the pelvis (45 Gy), followed by an additional two cycles of chemotherapy. Para-aortic RT and/or HDR vault brachytherapy (BT) were added at the discretion of the treating physician. Results: Thirty-three patients (median age, 63 years) received treatment between April 2002 and June 2005. Median follow-up was 21 months. Stage distribution was as follows: IIIA (21%), IIIC (70%), IVB (9%). Combination chemotherapy was successfully administered to 30 patients (91%) and 25 patients (76%), before and after RT respectively. Nine patients (27%) experienced acute Grade 3 or 4 chemotherapy toxicities. All patients completed pelvic RT; 19 (58%) received standard 4-field RT and 14 (42%) received intensity-modulated radiotherapy. Ten (30%) received extended field radiation. Four patients (12%) experienced acute Grade 3 or 4 RT toxicities. Six (18%) patients developed chronic RT toxicity. There were no treatment-related deaths. Two-year disease-free and overall survival rates were both 55%. There was only one pelvic relapse (3%). Conclusions: Adjuvant treatment with combination chemotherapy interposed with involved field radiation in advanced endometrial cancer was well tolerated. This protocol may be suitable for further evaluation in a clinical trial.

  11. Microstructural characterization of irradiated PWR steels using the atom probe field-ion microscope

    SciTech Connect

    Miller, M.K.; Burke, M.G.

    1987-08-01

    Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries.

  12. Phase-field simulations of gas density within bubbles under irradiation

    SciTech Connect

    Paul C. Millett; Anter El-Azab; Michael Tonks

    2011-05-01

    Phase-field simulations are used to study the evolution of gas density within irradiation-induced bubbles. In our simulations, the dpa rate, gas production rate, and defect diffusivities are systematically varied to understand their effect on bubble nucleation rates, bubble densities, and the distribution of gas concentration within bubbles and in the solid regions. We find that gas densities within bubbles fluctuate drastically in the early nucleation stages, when growth rates are highest, but converge to steady-state values during the later coarsening stages. The steady-state gas densities within bubbles correspond with the ratio of total accumulated vacancy content divided by the total accumulated gas content, in agreement with a thermodynamic analysis concerning free-energy minimization.

  13. Ferrofluid-based optical fiber magnetic field sensor fabricated by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Song, Yang; Yuan, Lei; Hua, Liwei; Zhang, Qi; Lei, Jincheng; Huang, Jie; Xiao, Hai

    2016-02-01

    Optofluid system has been more and more attractive in optical sensing applications such as chemical and biological analysis as it incorporates the unique features from both integrated optics and microfluidics. In recent years, various optofluid based structures have been investigated in/on an optical fiber platform which is referred to as "lab in/on a fiber". Among those integrated structures, femto-second laser micromaching technique plays an important role due to its high precision fabrication, flexible design, 3D capability, and compatible with other methods. Here we present a ferrofluid based optical fiber magnetic field sensor fabricated by femtosecond (fs) laser irradiation .With the help of fs laser micromaching technique, a micro-reservoir made by capillary tube assembled in a single mode optical fiber could be fabricated. The micro-reservoir functions as a fiber inline Fabry-Perot (FP) cavity which is filled by ferrofluid liquid. The refractive index of the ferrofluid varies as the surrounding magnetic field strength changes, which can be optically probed by the FP interferometer. A fringe visibility of up to 30 dB can be achieved with a detection limit of around 0.4 Gausses. Due to the fabrication, micro-reservoirs can be assembled with optical fiber and distinguished through a microwave-photonic interrogation system. A quasi-distributed magnetic field sensing application has been demonstrated with a high spatial resolution of around 10 cm.

  14. TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head

    SciTech Connect

    Ono, T; Miyabe, Y; Yamada, M; Kaneko, S; Monzen, H; Mizowaki, T; Hiraoka, M; Sawada, A; Kokubo, M

    2014-06-15

    Purpose: The Vero4DRT has a maximum field size of 150×150 mm{sup 2}. The purposes of this study were to develop an expanded field irradiation technique using a unique gimbaled x-ray head of Vero4DRT and to evaluate its dosimetric characteristic. Methods: The expanded field irradiation consisted of four separate fields with 2.39 degree gimbal rotation around orthogonal two axes. The central beam axis for each field shifted 40 mm from the isocenter for longitudinal and lateral directions, and thus, the field size was expanded up to 230×230 mm{sup 2}. Adjacent region were created at the isocenter (center-adjacent expanded-field) and 20 mm from isocenter (offadjacent expanded-field). To create flat dose distribution in the combined piecewise-fields, the overlapping and gaps regions on the isocenter plane were adjusted with the gimbal rotating and the MLC. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 50, 100 and 150 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expandedfield irradiation technique was applied to IMRT. A head and neck IMRT field, which was planned for the conventional linac (Varian Clinac iX), was reproduced with the expanded-field of the Vero4DRT. The simulated dose distribution for the expanded IMRT field was compared to the measured dose distribution. Results: The field size, penumbra, flatness and symmetry of center- and off- adjacent expanded-fields were 230.2–232.1 mm, 7.8–10.7 mm, 2.3–6.5% and –0.5–0.4% at 100 mm depth. The 82.1% area of the expanded IMRT dose distribution was within 5% difference between measurement and simulation, which was analyzed upper 50% dose area, and the 3%/3 mm gamma pass rate was 98.4%. Conclusions: The expandedfield technique was developed using the gimbaled x-ray head. To extend applied targets, such as whole breast irradiations or head and neck IMRT, the expanded-field technique

  15. Involvement of cyclic electron flow in irradiance stress responding and its potential regulation of the mechanisms in Pyropia yezoensis

    NASA Astrophysics Data System (ADS)

    Niu, Jianfeng; Feng, Jianhua; Xie, Xiujun; Gao, Shan; Wang, Guangce

    2016-07-01

    Pyropia yezoensis, belongs to the genus of Porphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh environment. Based on the photosynthetic parameters with or without the inhibitors determined by a Dual-PAM-100 apparatus, we investigated the photosynthetic performance and the changes in electron flow that occurred during the algae were stressed with different light intensities previously. When the irradiation saturation was approaching, the CEF around PS I became crucial since the addition of inhibitors usually led to an increase in non-photochemical quenching. The inhibitor experiments showed that there were at least three different CEF pathways in Py. yezoensis and these pathways compensated each other. In addition to maintaining a proper ratio of ATP/NAD(P)H to support efficient photosynthesis, the potential roles of CEF might also include the regulation of different photoprotective mechanisms in Py. yezoensis. Under the regulation of CEF, chlororespiration is thought to transport electrons from the reduced plastoquinone (PQ) pool to oxygen in order to mitigate the reduction in the electron transfer chain. When irradiation was up to the high-grade stress conditions, the relative value of CEF began to decrease, which implied that the NADP+ pool or PQ+ pool was very small and that the electrons were transferred from reduced PS I to oxygen. The scavenging enzymes might be activated and the water-water cycle probably became an effective means of removing the active oxygen produced by the irradiation stressed Py. yezoensis. We believe that the different mechanisms could make up the photoprotective network to allow Py. yezoensis for survival in a highly variable light stress habitat, which may enlighten scientists in future studies on irradiance stress in other algae species.

  16. Involvement of cyclic electron flow in irradiance stress responding and its potential regulation of the mechanisms in Pyropia yezoensis

    NASA Astrophysics Data System (ADS)

    Niu, Jianfeng; Feng, Jianhua; Xie, Xiujun; Gao, Shan; Wang, Guangce

    2015-11-01

    Pyropia yezoensis, belongs to the genus of Porphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh environment. Based on the photosynthetic parameters with or without the inhibitors determined by a Dual-PAM-100 apparatus, we investigated the photosynthetic performance and the changes in electron flow that occurred during the algae were stressed with different light intensities previously. When the irradiation saturation was approaching, the CEF around PS I became crucial since the addition of inhibitors usually led to an increase in non-photochemical quenching. The inhibitor experiments showed that there were at least three different CEF pathways in Py. yezoensis and these pathways compensated each other. In addition to maintaining a proper ratio of ATP/NAD(P)H to support efficient photosynthesis, the potential roles of CEF might also include the regulation of different photoprotective mechanisms in Py. yezoensis. Under the regulation of CEF, chlororespiration is thought to transport electrons from the reduced plastoquinone (PQ) pool to oxygen in order to mitigate the reduction in the electron transfer chain. When irradiation was up to the high-grade stress conditions, the relative value of CEF began to decrease, which implied that the NADP+ pool or PQ+ pool was very small and that the electrons were transferred from reduced PS I to oxygen. The scavenging enzymes might be activated and the water-water cycle probably became an effective means of removing the active oxygen produced by the irradiation stressed Py. yezoensis. We believe that the different mechanisms could make up the photoprotective network to allow Py. yezoensis for survival in a highly variable light stress habitat, which may enlighten scientists in future studies on irradiance stress in other algae species.

  17. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques

    PubMed Central

    Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li, Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva

    2011-01-01

    Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%–4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1–4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT

  18. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques

    SciTech Connect

    Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva

    2011-12-15

    Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE registered ). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to {approx}13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE registered system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by {approx}9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT{approx}18% and {approx}42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE registered and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from {approx}72% for the 40 mm field, down to {approx}55% for the 1 mm field. EBT and PRESAGE registered PDDs agreed within {approx}3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm

  19. Structuring of photosensitive material below diffraction limit using far field irradiation

    NASA Astrophysics Data System (ADS)

    Yadavalli, Nataraja Sekhar; Saphiannikova, Marina; Lomadze, Nino; Goldenberg, Leonid M.; Santer, Svetlana

    2013-11-01

    In this paper, we report on in-situ atomic force microscopy (AFM) studies of topographical changes in azobenzene-containing photosensitive polymer films that are irradiated with light interference patterns. We have developed an experimental setup consisting of an AFM combined with two-beam interferometry that permits us to switch between different polarization states of the two interfering beams while scanning the illuminated area of the polymer film, acquiring corresponding changes in topography in-situ. This way, we are able to analyze how the change in topography is related to the variation of the electrical field vector within the interference pattern. It is for the first time that with a rather simple experimental approach a rigorous assignment can be achieved. By performing in-situ measurements we found that for a certain polarization combination of two interfering beams [namely for the SP (↕, ↔) polarization pattern] the topography forms surface relief grating with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We believe that this relatively simple method could be extremely valuable to, for instance, produce structural features below the diffraction limit at high-throughput, and this could significantly contribute to the search of new fabrication strategies in electronics and photonics industry.

  20. Enhancement in field emission current density of Ni nanoparticles embedded in thin silica matrix by swift heavy ion irradiation

    SciTech Connect

    Sarker, Debalaya; Patra, Rajkumar; Srivastava, P.; Ghosh, S.; Kumar, H.; Kabiraj, D.; Avasthi, D. K.; Vayalil, Sarathlal K.; Roth, S. V.

    2014-05-07

    The field emission (FE) properties of nickel nanoparticles embedded in thin silica matrix irradiated with 100 MeV Au{sup +7} ions at various fluences are studied here. A large increase in FE current density is observed in the irradiated films as compared to their as deposited counterpart. The dependence of FE properties on irradiation fluence is correlated with surface roughness, density of states of valence band and size distribution of nanoparticles as examined with atomic force microscope, X-ray photoelectron spectroscopy, and grazing incidence small angle x-ray scattering. A current density as high as 0.48 mA/cm{sup 2} at an applied field 15 V/μm has been found for the first time for planar field emitters in the film irradiated with fluence of 5.0 × 10{sup 13} ions/cm{sup 2}. This significant enhancement in the current density is attributed to an optimized size distribution along with highest surface roughness of the same. This new member of field emission family meets most of the requirements of cold cathodes for vacuum micro/nanoelectronic devices.

  1. Three-Dimensional Magnetic Field Line Reconnection involving Magnetic Flux Ropes (Invited)

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; van Compernolle, B.; Lawrence, E.; Vincena, S. T.

    2010-12-01

    We report on two experiments in which three dimensional magnetic field line reconnection plays a role. Magnetic field line reconnection is a processes in which the magnetic field energy is converted to particle energy and heating accompanied by changes in the magnetic topology. In the first experiment two magnetic flux ropes are generated from initially adjacent pulsed current channels in a background magnetoplasma in the LAPD device at UCLA. The currents exert mutual jXB forces causing them to twist about each other and merge. The currents are not static but move towards or away from each other in time. In addition the currents are observed to filament after merging. Volumetric space-time data show multiple reconnection sites with time-dependent locations. The quasi-separatrix layer (QSL) is a narrow region between the flux ropes. Two field lines on either side of the QSL will have closely spaced foot-points at on end of the flux ropes, but a very different separation at the other end. Outside the QSL, neighboring field lines do not diverge. The QSL has been measured, for the first time in this experiment [1] and its three dimensional development will be shown in movies made from the data. A system involving the reconnection of three flux ropes will also be presented. Three flux ropes are generated by drawing currents through apertures in a carbon shield located in front of a 10 cm diameter cathode immersed in the background magnetoplasma. The currents are observed to twist about themselves, writhe about each other and thrash about due to kink the kink instability. Multiple reconnection regions (which are three dimensional) and a complex QSL are observed. The magnetic helicity is evaluated from volumetric data in both cases and its rate of change is used to estimate the plasma resistivity. These measurements lead one to suspect that magnetic field line reconnection is not an independent topic, which can be studied in isolation, but part of the phenomena associated

  2. Exterior field of slowly and rapidly rotating neutron stars: Rehabilitating spacetime metrics involving hyperextreme objects

    NASA Astrophysics Data System (ADS)

    Manko, V. S.; Ruiz, E.

    2016-05-01

    The 4-parameter exact solution presumably describing the exterior gravitational field of a generic neutron star is presented in a concise explicit form defined by only three potentials. In the equatorial plane, the metric functions of the solution are found to be given by particularly simple expressions that make them very suitable for the use in concrete applications. Following Pappas and Apostolatos, we perform a comparison of the multipole structure of the solution with the multipole moments of the known physically realistic Berti-Stergioulas numerical models of neutron stars to argue that the hyperextreme sectors of the solution are not less (but are possibly even more) important for the correct description of rapidly rotating neutron stars than the subextreme sector involving exclusively the black-hole constituents. We have also worked out in explicit form an exact analog of the well-known Hartle-Thorne approximate metric.

  3. Involved-field radiotherapy for patients in partial remission after chemotherapy for advanced Hodgkin's lymphoma

    SciTech Connect

    Aleman, Berthe M.P. . E-mail: b.aleman@nki.nl; Raemaekers, John M.M.; Tomisic, Radka; Baaijens, Margreet H.A.; Bortolus, Roberto; Lybeert, Marnix L.M.; Maazen, Richard W.M. van der; Girinsky, Theodore; Demeestere, Geertrui; Lugtenburg, Pieternella; Lievens, Yolande; Jong, Daphne de; Pinna, Antonella; Henry-Amar, Michel

    2007-01-01

    Purpose: The use of radiotherapy in patients with advanced Hodgkin's lymphoma (HL) is controversial. The purpose of this study was to describe the role of radiotherapy in patients with advanced HL who were in partial remission (PR) after chemotherapy. Methods: In a prospective randomized trial, patients <70 years old with previously untreated Stage III-IV HL were treated with six to eight cycles of mechlorethamine, vincristine, procarbazine, prednisone/doxorubicin, bleomycine, vinblastine hybrid chemotherapy. Patients in complete remission (CR) after chemotherapy were randomized between no further treatment and involved-field radiotherapy (IF-RT). Those in PR after six cycles received IF-RT (30 Gy to originally involved nodal areas and 18-24 Gy to extranodal sites with or without a boost). Results: Of 739 enrolled patients, 57% were in CR and 33% in PR after chemotherapy. The median follow-up was 7.8 years. Patients in PR had bulky mediastinal involvement significantly more often than did those in CR after chemotherapy. The 8-year event-free survival and overall survival rate for the 227 patients in PR who received IF-RT was 76% and 84%, respectively. These rates were not significantly different from those for CR patients who received IF-RT (73% and 78%) or for those in CR who did not receive IF-RT (77% and 85%). The incidence of second malignancies in patients in PR who were treated with IF-RT was similar to that in nonirradiated patients. Conclusion: Patients in PR after six cycles of mechlorethamine, vincristine, procarbazine, prednisone/doxorubicine, bleomycine, vinblastine treated with IF-RT had 8-year event-free survival and overall survival rates similar to those of patients in CR, suggesting a definite role for RT in these patients.

  4. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    PubMed

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  5. Therapy of infections in mice irradiated in mixed neutron/photon fields and inflicted with wound trauma: A review of current work. (Reannouncement with new availability information)

    SciTech Connect

    Ledney, G.D.; Madonna, G.S.; Elliott, T.B.; Moore, M.M.; Jackson, W.E.

    1991-12-31

    When host antimicrobial defenses are severely compromised by radiation or trauma in conjunction with radiation, death from sepsis results. To evaluate therapies for sepsis in radiation casualties, the authors developed models of acquired and induced bacterial infections in irradiated and irradiated-wounded mice. Animals were exposed to either a mixed radiation field of equal proportions of neutrons and gamma rays (n/gamma = 1) from a TRIGA reactor or pure gamma rays from 60 (Co sources). Skin wounds (15% of total body surface area) were inflicted under methoxyflurane anesthesia 1 h after irradiation. In all mice, wounding after irradiation decreased resistance to infection. Treatments with the immunomodulator synthetic trehalose dicorynomycolate (S-TDCM) before or after mixed neutron-gamma irradiation or gamma irradiation increased survival. Therapy with S-TDCM for mice irradiated with either a mixed field or gamma rays increased resistance to Klebsiella pneumoniae-induced infections.

  6. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    SciTech Connect

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  7. Radiation hardness of graphene and MoS{sub 2} field effect devices against swift heavy ion irradiation

    SciTech Connect

    Ochedowski, O.; Marinov, K.; Schleberger, M.; Wilbs, G.; Keller, G.; Tegude, F. J.; Scheuschner, N.; Maultzsch, J.; Severin, D.; Bender, M.

    2013-06-07

    We have investigated the deterioration of field effect transistors based on two-dimensional materials due to irradiation with swift heavy ions. Devices were prepared with exfoliated single layers of MoS{sub 2} and graphene, respectively. They were characterized before and after irradiation with 1.14 GeV U{sup 28+} ions using three different fluences. By electrical characterization, atomic force microscopy, and Raman spectroscopy, we show that the irradiation leads to significant changes of structural and electrical properties. At the highest fluence of 4 Multiplication-Sign 10{sup 11} ions/cm{sup 2}, the MoS{sub 2} transistor is destroyed, while the graphene based device remains operational, albeit with an inferior performance.

  8. Risk of Developing Cardiovascular Disease After Involved Node Radiotherapy Versus Mantle Field for Hodgkin Lymphoma

    SciTech Connect

    Maraldo, Maja V.; Brodin, Nils Patrik; Vogelius, Ivan R.; Aznar, Marianne C.; Munck af Rosenschoeld, Per; Petersen, Peter M.; Specht, Lena

    2012-07-15

    Purpose: Hodgkin lymphoma (HL) survivors are known to have increased cardiac mortality and morbidity. The risk of developing cardiovascular disease after involved node radiotherapy (INRT) is currently unresolved, inasmuch as present clinical data are derived from patients treated with the outdated mantle field (MF) technique. Methods and Materials: We included all adolescents and young adults with supradiaphragmatic, clinical Stage I-II HL treated at our institution from 2006 to 2010 (29 patients). All patients were treated with chemotherapy and INRT to 30 to 36 Gy. We then simulated a MF plan for each patient with a prescribed dose of 36 Gy. A logistic dose-response curve for the 25-year absolute excess risk of cardiovascular disease was derived and applied to each patient using the individual dose-volume histograms. Results: The mean doses to the heart, four heart valves, and coronary arteries were significantly lower for INRT than for MF treatment. However, the range in doses with INRT treatment was substantial, and for a subgroup of patients, with lymphoma below the fourth thoracic vertebrae, we estimated a 25-year absolute excess risk of any cardiac event of as much as 5.1%. Conclusions: Our study demonstrates a potential for individualizing treatment by selecting the patients for whom INRT provides sufficient cardiac protection for current technology; and a subgroup of patients, who still receive high cardiac doses, who would benefit from more advanced radiation technique.

  9. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink

  10. "Out-of-field" effects of head-localized proton irradiation on peripheral immune parameters.

    PubMed

    Pecaut, Michael J; Nelson, Gregory A; Moyers, Michael F; Rabin, Bernard; Gridley, Daila S

    2003-01-01

    The heads of Sprague-Dawley rats were irradiated with protons to total doses of 1.5, 3 and 4 Gy and euthanized 9-10 days later. Significant dose-dependent decreases were noted in thymus mass. Lymphocyte and platelet numbers were significantly reduced in blood. Flow cytometric analysis of blood and spleen showed that CD3+ T, CD3+/CD4+ TH, and CD3+/CD8+ TC cell numbers were low and proportions were significantly altered by radiation. CD4:CD8 ratios and CD45R+ B lymphocytes were unaffected. Spontaneous blastogenesis of blood and spleen leukocytes was significantly increased by radiation. Plasma TGF-beta 1 level in irradiated rats was consistently, but not significantly, higher than in non-irradiated animals. T and B cell proportions in lymph nodes from irradiated animals were similar to non-irradiated controls. Bone marrow from all irradiated groups had high CD90+/Gran+ cell numbers. The data show that head-localized proton irradiation at relatively modest doses can profoundly influence systemic distribution and composition of lymphocyte populations. The data also suggest that immune modulation induced by localized proton, as well as other forms of radiation, should be taken into consideration when evaluating adjunctive immunotherapies in patients receiving radiotherapy. PMID:14758715

  11. Characterization of a FEL lamp type source towards a blue light irradiance intercomparison in medical field

    NASA Astrophysics Data System (ADS)

    Ferreira, A. F. G., Jr.

    2011-01-01

    This work presents the characterization of modified FEL 1000W lamp housing to be used as a transference standard in the blue light irradiance intercomparison. It aims to support the metrological issues of medical equipment manufactures concerning the phototherapy treatment stated on the standard NBR/IEC 60601-2-50. The light source characterization consists of lamp seasoning, lamp short-term drift and lamp irradiance relative spatial distribution at the plane of measurement. The lamp seasoning is performed by a software developed in LabView® which measures the lamp voltage, current and irradiance at each 5 minutes during 25 hours of seasoning. The lamp short-term drift is evaluated by measuring the lamp irradiance during a sequence of 2 hours of lamp using. The lamp irradiance relative spatial distribution is verified using a radiometer head with a reduced aperture attached to an YZ positing system at each 2 mm in an interval of 24 mm. The lamp presented variation of about 0.1%/h during seasoning. Short-term drift for the lamp after a warm-up of 20 minutes was less than 0.9% for series of 4 lamp switching cycles. Lamp irradiance relative spatial distribution showed a variation of ±1.25% for a circular diameter of 20 mm. The overall uncertainty for lamp irradiance was 3.65%.

  12. Geometric and Dosimetric Approach to Determine Probability of Late Cardiac Mortality in Left Tangential Breast Irradiation: Comparison Between Wedged Beams and Field-in-Field Technique

    SciTech Connect

    Pili, Giorgio; Grimaldi, Luca; Fidanza, Christian; Florio, Elena T.; Petruzzelli, Maria F.; D'Errico, Maria P.; De Tommaso, Cristina; Tramacere, Francesco; Musaio, Francesca; Castagna, Roberta; Francavilla, Maria C.; Gianicolo, Emilio A.L.; Portaluri, Maurizio

    2011-11-01

    Purpose: To evaluate the probability of late cardiac mortality resulting from left breast irradiation planned with tangential fields and to compare this probability between the wedged beam and field-in-field (FIF) techniques and to investigate whether some geometric/dosimetric indicators can be determined to estimate the cardiac mortality probability before treatment begins. Methods and Materials: For 30 patients, differential dose-volume histograms were calculated for the wedged beam and FIF plans, and the corresponding cardiac mortality probabilities were determined using the relative seriality model. As a comparative index of the dose distribution uniformity, the planning target volume (PTV) percentages involved in 97-103% of prescribed dose were determined for the two techniques. Three geometric parameters were measured for each patient: the maximal length, indicates how much the heart contours were displaced toward the PTV, the angle subtended at the center of the computed tomography slice by the PTV contour, and the thorax width/thickness ratio. Results: Evaluating the differential dose-volume histograms showed that the gain in uniformity between the two techniques was about 1.5. With the FIF technique, the mean dose sparing for the heart, the left anterior descending coronary artery, and the lung was 15% (2.5 Gy vs. 2.2 Gy), 21% (11.3 Gy vs. 9.0 Gy), and 42% (8.0 Gy vs. 4.6 Gy) respectively, compared with the wedged beam technique. Also, the cardiac mortality probability decreased by 40% (from 0.9% to 0.5%). Three geometric parameters, the maximal length, angle subtended at the center of the computed tomography slice by the PTV contour, and thorax width/thickness ratio, were the determining factors (p = .06 for FIF, and p = .10 for wedged beam) for evaluating the cardiac mortality probability. Conclusion: The FIF technique seemed to yield a lower cardiac mortality probability than the conventional wedged beam technique. However, although our study

  13. Involvement of SULF2 in γ-irradiation-induced invasion and resistance of cancer cells by inducing IL-6 expression

    PubMed Central

    Jung, Chan-Hun; Ho, Jin-Nyoung; Park, Jong Kuk; Kim, Eun Mi; Hwang, Sang-Gu; Um, Hong-Duck

    2016-01-01

    Cancer cells that survive radiotherapy often display enhanced invasiveness and resistance to death stimuli. Previous findings have suggested that ionizing radiation (IR) induces such undesirable effects by stimulating the STAT3/Bcl-XL pathway. To identify novel cellular components that mediate these actions of IR, we irradiated lung cancer cells with sublethal doses of γ-rays and screened for the induction of IR-responsive genes by microarray analysis. The genes encoding 2 extracellular proteins, SULF2 and IL-6, were found to be upregulated, and these results were confirmed by polymerase chain reactions and western blot analyses. Because the IR-mediated induction of SULF2 was a novel finding, we also confirmed the phenomenon in vivo using xenograft tumors in mice. Analyses of signaling processes revealed that IR induced SULF2 expression via p53, which then promoted IL-6 expression by stabilizing β-catenin, followed by stimulation of the STAT3/Bcl-XL pathway. Consistently, both SULF2 and IL-6 mediated IR-induced invasion and resistance to death stimuli. To investigate whether SULF2 contributes to IR-induced tumor metastasis, we irradiated tumors in mice with sublethal doses of IR. This treatment promoted the entry of tumor cells into the blood stream (intravasation), which was abolished by downregulating SULF2 expression in tumor cells. These results demonstrated that SULF2 can mediate the detrimental effects of IR in vivo. Therefore, SULF2 may be potentially used as a therapeutic and diagnostic target to predict and overcome the malignant effects of IR, particularly in tumors expressing p53 wild-type. PMID:26895473

  14. Effects of low energy E-beam irradiation on graphene and graphene field effect transistors and raman metrology of graphene on split gate test structures

    NASA Astrophysics Data System (ADS)

    Rao, Gayathri S.

    2011-12-01

    Apart from its compelling performance in conventional nanoelectronic device geometries, graphene is an appropriate candidate to study certain interesting phenomenon (e.g. the Veselago lens effect) predicted on the basis of its linear electron dispersion relation. A key requirement for the observation of such phenomenon in graphene and for its use in conventional field-effect transistor (FET) devices is the need to minimize defects such as consisting of -- or resulting from -- adsorbates and lattice non-uniformities, and reduce deleterious substrate effects. Consequently the investigation of the origin and interaction of defects in the graphene lattice is essential to improve and tailor graphene-based device performance. In this thesis, optical spectroscopic studies on the influence of low-energy electron irradiation on adsorbate-induced defectivity and doping for substrate supported and suspended graphene were carried out along with spectroscopic and transport measurements on graphene FETs. A comparative investigation of the effects of single-step versus multi-step, low-energy electron irradiation (500 eV) on suspended, substrate supported graphene and on graphene FETs is reported. E-beam irradiation (single-step and multi-step) of substrate-supported graphene resulted in an increase in the Raman ID/IG ratio largely from hydrogenation due to radiolysis of the interfacial water layer between the graphene and the SiO2 substrate and from irradiated surface adsorbates. GFETs subjected to single and multi-step irradiation showed n-doping from CNP (charge neutrality point) shift of ˜ -8 and ˜ -16 V respectively. Correlation of this data with Raman analysis of suspended and supported graphene samples implied a strong role of the substrate and irradiation sequence in determining the level of doping. A correspondingly higher reduction in mobility per incident electron was also observed for GFETs subjected to multi-step irradiation compared to single step, in line with

  15. Conclusions from the last five years of experiments in the field of food irradiation in Hungary

    NASA Astrophysics Data System (ADS)

    Kálmán, B.

    For the beginning of the eighties Hungary was ready to introduce the radiation technology in the food industry and the authority of the country decided to establish a joint venture to use this technology in large scale. AGROSTER Co started to irradiate food packaging material and some type of spices for the meat industry. The policy of the AGROSTER was to increase the irradiated food items very slowly from one year to another and the same time using a good, marketing to convince of the all interested persons about the benefit of the food irradiation technology in Hungary. A gamma irradiator is used by this company which was built for application research since this plant was very useful in this initial stage in spite of the low source efficiency. It can be said the used step by step strategy of AGROSTER was very success because in the last year the radiation capacity of its gamma facility was used as much as possible to irradiate food items and the government of Hungary recognized the benefit of this technology and gives financial assistance to establish a large commercial gamma irradiator in Budapest.

  16. Craniospinal irradiation techniques

    NASA Astrophysics Data System (ADS)

    Scarlatescu, Ioana; Virag, Vasile; Avram, Calin N.

    2015-12-01

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  17. Craniospinal irradiation techniques

    SciTech Connect

    Scarlatescu, Ioana Avram, Calin N.; Virag, Vasile

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  18. SU-E-T-255: Optimized Supine Craniospinal Irradiation with Image-Guided and Field Matched Beams

    SciTech Connect

    Jiang, Z; Holupka, E; Naughton, J; Williams, H; Galper, S; Huang, K

    2014-06-01

    Purpose: Conventional craniospinal irradiation (CSI) challenges include dose inhomogeneity at field junctions and position uncertainty due to the field divergence, particular for the two spinal fields. Here we outline a new supine CSI technique to address these difficulties. Methods: Patient was simulated in supine position. The cranial fields had isocenter at C2/C3 vertebral and were matched with 1st spinal field. Their inferior border was chosen to avoid the shoulder, as well as chin from the 1st spine field. Their collimator angles were dependent on asymmetry jaw setting of the 1st spinal field. With couch rotation, the spinal field gantry angles were adjusted to ensure, the inferior border of 1st and superior border of 2nd spinal fields were perpendicular to the table top. The radio-opaque wire position for the spinal junction was located initially by the light field from an anterior setup beam, and was finalized by the portal imaging of the 1st spinal field. With reference to the spinal junction wire, the fields were matched by positioning the isocenter of the 2nd spinal field. A formula was derived to optimize supine CSI treatment planning, by utilizing the relationship among the Yjaw setting, the spinal field gantry angles, cranial field collimator angles, and the spinal field isocenters location. The plan was delivered with portal imaging alignment for the both cranial and spinal junctions. Results: Utilizing this technique with matching beams, and conventional technique such as feathering and forwarding planning, a homogenous dose distribution was achieved throughout the entire CSI treatment volume including the spinal junction. Placing the spinal junction wire visualized in both spinal portals, allows for precise determination and verification of the appropriate match line of the spine fields. Conclusion: This technique of optimization supine CSI achieved a homogenous dose distributions and patient localization accuracy with image-guided and matched beams.

  19. Conventional Craniospinal Irradiation with Patient Supine and Source-Skin Distance (SSD) 100 cm for Spinal Field

    SciTech Connect

    Liu Xijun; Yu Jinming; Yu Yonghua; Yin Yong; Wang Bing; Zhang Yong; Kong Lei; Han Dali; Huo Zhijun; Fu Lei

    2011-01-01

    We describe a method of craniospinal irradiation (CSI) in the supine position and at a source-skin distance (SSD) of 100 cm for the spinal fields. The procedure is carried out with a 100-cm isocenter linear accelerator and conventional simulator, and the treatment is delivered with 2 opposed lateral cranial fields at source-axis distance (SAD) of 100 cm and 1 or 2 direct posterior spinal fields at SSD, 100 cm. The half beam-blocked cranial fields with a collimator rotation is used to match the superior border of the spinal field at the level of C2 vertebral body. The length of the spinal field is fixed, and is the same if 2 spinal fields are used. The position of the isocenter of the spine field is defined by longitudinally moving the couch a distance from the isocenter of the cranial fields and adjusting the SSD = 100 cm to the surface of the couch with the gantry rotated to the angle of 180 Degree-Sign (posteroanterior position), and the distance can be calculated easily according to a few parameters. It only needs a simple calculation without couch rotation, extended SSD, or markers. The inferior and superior borders of the spinal field do not require visualization under fluoroscopy when it is beyond the visual field of the simulator. The entire simulation takes no more than 20 minutes. Supine craniospinal treatment using this technique may substitute the traditional prone position as a potentially beneficial alternative to CSI.

  20. Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating aluminium alloy plate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jin, Guangyong; Gu, Xiu-ying

    2014-12-01

    Based on Von Mises yield criterion and elasto-plastic constitutive equations, an axisymmetric finite element model of a Gaussian laser beam irradiating a metal substrate was established. In the model of finite element, the finite difference hybrid algorithm is used to solve the problem of transient temperature field and stress field. Taking nonlinear thermal and mechanical properties into account, transient distributions of temperature field and stress fields generated by the pulse train of long-pulse laser in a piece of aluminium alloy plate were computed by the model. Moreover,distributions as well as histories of temperature and stress fields were obtained. Finite element analysis software COMSOL is used to simulate the Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating 7A04 aluminium alloy plate. By the analysis of the results, it is found that Mises equivalent stress on the target surface distribute within the scope of the center of a certain radius. However, the stress is becoming smaller where far away from the center. Futhermore, the Mises equivalent stress almost does not effect on stress damage while the Mises equivalent stress is far less than the yield strength of aluminum alloy targets. Because of the good thermal conductivity of 7A04 aluminum alloy, thermal diffusion is extremely quick after laser irradiate. As a result, for the multi-pulsed laser, 7A04 aluminum alloy will not produce obvious temperature accumulation when the laser frequency is less than or equal to 10 Hz. The result of this paper provides theoretical foundation not only for research of theories of 7A04 aluminium alloy and its numerical simulation under laser radiation but also for long-pulse laser technology and widening its application scope.

  1. Irradiation of Spinal Metastases: Should We Continue to Include One Uninvolved Vertebral Body Above and Below in the Radiation Field?

    SciTech Connect

    Klish, Darren S.; Grossman, Patricia; Allen, Pamela K.; Rhines, Laurence D.; Chang, Eric L.

    2011-12-01

    Purpose: Historically, the appropriate target volume to be irradiated for spinal metastases is 1-2 vertebral bodies above and below the level of involvement for three reasons: (1) to avoid missing the correct level in the absence of simulation or (2) to account for the possibility of spread of disease to the adjacent level, and (3) to account for beam penumbra. In this study, we hypothesized that isolated failures occurring in the level adjacent to level treated with stereotactic body radiosurgery (SBRS) were infrequent and that with improved localization techniques with image-guided radiation therapy, treatment of only the involved level of spinal metastases may be more appropriate. Methods and Materials: Patients who had received SBRS treatments to only the involved level of the spine as part of a prospective trial for spinal metastases comprised the study population. Follow-up imaging with spine MRI was performed at 3-month intervals following initial treatment. Failures in the adjacent (V{+-}1, V{+-}2) and distant spine were identified and classified accordingly. Results: Fifty-eight patients met inclusion criteria for this study and harbored 65 distinct spinal metastases. At 18-month median follow-up, seven (10.7%) patients failed simultaneously at adjacent levels V{+-}1 and at multiple sites throughout the spine. Only two (3%) patients experienced isolated, solitary adjacent failures at 9 and 11 months, respectively. Conclusion: Isolated local failures of the unirradiated adjacent vertebral bodies may occur in <5% of patients with isolated spinal metastasis. On the basis of the data, the current practice of irradiating one vertebral body above and below seems unnecessary and could be revised to irradiate only the involved level(s) of the spine metastasis.

  2. Protein kinase C activation is involved in ultraviolet B irradiation-induced endothelial cell ICAM-1 up-regulation and lymphocyte-endothelium interaction in vitro.

    PubMed

    Funk, J O; Holler, E; Kohlhuber, F; Ueffing, M; Bornkamm, G W; Kind, P; Eissner, G

    1996-10-01

    Lymphocyte-endothelium interactions are pivotal steps in mediating inflammatory responses. The authors have analysed the influence of ultraviolet B (UVB) irradiation on intercellular adhesion molecule (ICAM)-1 expression on cells of the human microvascular endothelial cell line (HMEC)-1 and the intracellular signalling pathways involved. Flow cytometry revealed dose-dependent ICAM-1 up-regulation with maximum induced expression 24h after sublethal UVB irradiation of 10 mJ/cm2. While anti-tumour necrosis factor (TNF)-alpha antibodies or recombinant human interleukin (IL)-10 did not influence this response, anti-interferon (IFN)-gamma antibodies blocked the UVB-induced ICAM-1 up-regulation. Significant induction of intracellular/membrane-bound IFN-gamma was measured as early as 6 h post-UVB. Since previous work has shown a differential role of protein kinase C (PKC) in cytokine induced ICAM-1 expression, the effect of a selective bisindolylmaleimide-derived PKC-inhibitor (GF109203X) was studied. Ultraviolet B-induced ICAM-1 up-regulation was effectively blocked by the PKC-inhibitor, whereas a PKA-inhibitor was ineffective. Moreover, immunofluorescence analysis showed a radiation-induced membrane translocation of PKC-alpha, indicative of enzyme activation, in HMEC-1 cells already 30 min post-UVB. The functional relevance of the UVB-induced ICAM-1 expression and involvement of PKC in this process was demonstrated in an adhesion assay with peripheral blood mononuclear cells. In conclusion, UVB-induced ICAM-1 expression on human endothelial cells involves PKC-dependent pathways and can be prevented by a PKC-inhibitor. The use of PKC-inhibitors as additive modulators in immune reactions may bear clinical potential. The mechanisms of IFN-gamma induction in endothelial cells by UVB deserve further investigation. PMID:8845028

  3. Dosimetric and Clinical Outcomes of Involved-Field Intensity-Modulated Radiotherapy After Chemotherapy for Early-Stage Hodgkin's Lymphoma With Mediastinal Involvement

    SciTech Connect

    Lu Ningning; Li Yexiong; Wu Runye; Zhang Ximei; Wang Weihu; Jin Jing; Song Yongwen; Fang Hui; Ren Hua; Wang Shulian; Liu Yueping; Liu Xinfan; Chen Bo; Dai Jianrong; Yu Zihao

    2012-09-01

    Purpose: To evaluate the dosimetric and clinical outcomes of involved-field intensity-modulated radiotherapy (IF-IMRT) for patients with early-stage Hodgkin's lymphoma (HL) with mediastinal involvement. Methods and Materials: Fifty-two patients with early-stage HL that involved the mediastinum were reviewed. Eight patients had Stage I disease, and 44 patients had Stage II disease. Twenty-three patients (44%) presented with a bulky mediastinum, whereas 42 patients (81%) had involvement of both the mediastinum and either cervical or axillary nodes. All patients received combination chemotherapy followed by IF-IMRT. The prescribed radiation dose was 30-40 Gy. The dose-volume histograms of the target volume and critical normal structures were evaluated. Results: The median mean dose to the primary involved regions (planning target volume, PTV1) and boost area (PTV2) was 37.5 Gy and 42.1 Gy, respectively. Only 0.4% and 1.3% of the PTV1 and 0.1% and 0.5% of the PTV2 received less than 90% and 95% of the prescribed dose, indicating excellent PTV coverage. The median mean lung dose and V20 to the lungs were 13.8 Gy and 25.9%, respectively. The 3-year overall survival, local control, and progression-free survival rates were 100%, 97.9%, and 96%, respectively. No Grade 4 or 5 acute or late toxicities were reported. Conclusions: Despite the large target volume, IF-IMRT gave excellent dose coverage and a favorable prognosis, with mild toxicity in patients with early-stage mediastinal HL.

  4. Signatures of field-induced intramolecular quantum interference in high-order harmonic generation by laser-irradiated homonuclear diatomics

    NASA Astrophysics Data System (ADS)

    Usachenko, Vladimir; Kim, Vyacheslav; Pyak, Pavel

    2015-05-01

    We report about the results of our theoretical study of the strong-field phenomenon of high-order harmonic generation (HHG) in homonuclear diatomics H2+ andH2 irradiated by a high-intensity laser field of mid-infrared wavelengths corresponding to intermediate values of the so-called Keldysh parameter (γ <= 1). The problem is addressed within the length-gauge (LG) formulation of strong-field approximation (SFA) additionally exploiting the density-functional-theory (DFT) method for numerical composition of initial (laser-free) molecular state using the routines of GAUSSIAN-03 code. The results of our present LG-VGA calculation well reproduce a pronounced interference-related minimum arising in high-frequency region of respective molecular HHG spectra and suggesting clear signatures of the field-induced intramolecular interference corresponding to photoelectron emission to intermediate continuum states from different atomic centers.

  5. Impact of Cranial Irradiation Added to Intrathecal Conditioning in Hematopoietic Cell Transplantation in Adult Acute Myeloid Leukemia With Central Nervous System Involvement

    SciTech Connect

    Mayadev, Jyoti S.; Douglas, James G.; Storer, Barry E.; Appelbaum, Frederick R.; Storb, Rainer

    2011-05-01

    Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patients had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.

  6. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  7. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Lee, Byung-Chul; Hwang, Sung-Yul; Kim, Heonil; Jun, Byung-Jin

    2007-05-01

    The HANARO neutron irradiation facility for various applications in the boron neutron capture therapy (BNCT) field was developed, and its characteristics were investigated. In order to obtain the sufficient thermal neutron flux with a low level of contamination by fast neutrons and gamma rays, a radiation filtering method was adopted. The radiation filter was designed by using a silicon single crystal, cooled by liquid nitrogen, and a bismuth crystal. The installation of the main components of the irradiation facility and the irradiation room was finished. Neutron beam characteristics were measured by using bare and cadmium-covered gold foils and wires. The in-phantom neutron flux distribution was measured for flux mapping inside the phantom. The gamma-ray dose was determined by using TLD-700 thermoluminescence dosimeters. The thermal and fast neutron fluxes and the gamma-ray dose were calculated by using the MCNP code, and they were compared with experimental data. The thermal neutron flux and Cd ratio available at this facility were confirmed to be 1.49 × 109 n cm-2 s-1 and 152, respectively. The maximum neutron flux inside the phantom was measured to be 2.79 × 109 n cm-2 s-1 at a depth of 3 mm in the phantom. The two-dimensional in-phantom neutron flux distribution was determined, and significant neutron irradiation was observed within 20 mm from the phantom surface. The gamma-ray dose rate for the free beam condition was expected to be about 80 cGy h-1. These experimental results were reasonably well supported by calculation using the facility design code. This HANARO thermal neutron facility can be used not only for clinical trials, but also for various pre-clinical studies in the BNCT field.

  8. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field.

    PubMed

    Kim, Myong-Seop; Lee, Byung-Chul; Hwang, Sung-Yul; Kim, Heonil; Jun, Byung-Jin

    2007-05-01

    The HANARO neutron irradiation facility for various applications in the boron neutron capture therapy (BNCT) field was developed, and its characteristics were investigated. In order to obtain the sufficient thermal neutron flux with a low level of contamination by fast neutrons and gamma rays, a radiation filtering method was adopted. The radiation filter was designed by using a silicon single crystal, cooled by liquid nitrogen, and a bismuth crystal. The installation of the main components of the irradiation facility and the irradiation room was finished. Neutron beam characteristics were measured by using bare and cadmium-covered gold foils and wires. The in-phantom neutron flux distribution was measured for flux mapping inside the phantom. The gamma-ray dose was determined by using TLD-700 thermoluminescence dosimeters. The thermal and fast neutron fluxes and the gamma-ray dose were calculated by using the MCNP code, and they were compared with experimental data. The thermal neutron flux and Cd ratio available at this facility were confirmed to be 1.49 x 10(9) n cm(-2) s(-1) and 152, respectively. The maximum neutron flux inside the phantom was measured to be 2.79 x 10(9) n cm(-2) s(-1) at a depth of 3 mm in the phantom. The two-dimensional in-phantom neutron flux distribution was determined, and significant neutron irradiation was observed within 20 mm from the phantom surface. The gamma-ray dose rate for the free beam condition was expected to be about 80 cGy h(-1). These experimental results were reasonably well supported by calculation using the facility design code. This HANARO thermal neutron facility can be used not only for clinical trials, but also for various pre-clinical studies in the BNCT field. PMID:17440252

  9. Transcriptome Analysis of Differentially Expressed Genes Involved in Proanthocyanidin Accumulation in the Rhizomes of Fagopyrum dibotrys and an Irradiation-Induced Mutant

    PubMed Central

    Chen, Caixia; Li, Ailian

    2016-01-01

    The rhizome of Fagopyrum dibotrys is a traditional Chinese medicine that has recently gained attention due to substantial findings regarding its bioactive proanthocyanidin (PA) compounds. However, the molecular mechanism underlying PA accumulation in F. dibotrys remains elusive. We previously obtained an irradiation-induced mutant (RM_R) of F. dibotrys that had a higher PA content compared to that of the wild-type (CK_R). The present study aimed to elucidate the molecular mechanism underlying PA accumulation in F. dibotrys by comparing the rhizome transcriptomes of the irradiation-induced mutant and wild-type using RNA-seq analysis. A total of 53,540 unigenes were obtained, of which 29,901 (55.84%) were annotated based on BLAST searches against public databases, and 501 unique sequences were differentially expressed between the two samples, which consisted of 204 up-regulated and 297 down-regulated unigenes. Further analysis showed that the expression patterns of some unigenes encoding enzymes involved in PAs biosynthesis in F. dibotrys rhizomes differed between RM_R and CK_R. In addition, we identified transcription factor families and several cytochrome P450s that may be involved in PA regulation in F. dibotrys. Finally, 12 unigenes that encode PA biosynthetic enzymes were confirmed by qRT-PCR analysis. This study sheds light on the molecular mechanism underlying radiation-mediated flavonoid accumulation and regulation in F. dibotrys rhizomes. These results will also provide a platform for further functional genomic research on this particular species. PMID:27047386

  10. Transcriptome Analysis of Differentially Expressed Genes Involved in Proanthocyanidin Accumulation in the Rhizomes of Fagopyrum dibotrys and an Irradiation-Induced Mutant.

    PubMed

    Chen, Caixia; Li, Ailian

    2016-01-01

    The rhizome of Fagopyrum dibotrys is a traditional Chinese medicine that has recently gained attention due to substantial findings regarding its bioactive proanthocyanidin (PA) compounds. However, the molecular mechanism underlying PA accumulation in F. dibotrys remains elusive. We previously obtained an irradiation-induced mutant (RM_R) of F. dibotrys that had a higher PA content compared to that of the wild-type (CK_R). The present study aimed to elucidate the molecular mechanism underlying PA accumulation in F. dibotrys by comparing the rhizome transcriptomes of the irradiation-induced mutant and wild-type using RNA-seq analysis. A total of 53,540 unigenes were obtained, of which 29,901 (55.84%) were annotated based on BLAST searches against public databases, and 501 unique sequences were differentially expressed between the two samples, which consisted of 204 up-regulated and 297 down-regulated unigenes. Further analysis showed that the expression patterns of some unigenes encoding enzymes involved in PAs biosynthesis in F. dibotrys rhizomes differed between RM_R and CK_R. In addition, we identified transcription factor families and several cytochrome P450s that may be involved in PA regulation in F. dibotrys. Finally, 12 unigenes that encode PA biosynthetic enzymes were confirmed by qRT-PCR analysis. This study sheds light on the molecular mechanism underlying radiation-mediated flavonoid accumulation and regulation in F. dibotrys rhizomes. These results will also provide a platform for further functional genomic research on this particular species. PMID:27047386

  11. Consumer Involvement in Evaluation and Quality Assurance Efforts: Review of Current Efforts in the Field of Developmental Disabilities.

    ERIC Educational Resources Information Center

    Ashline, Melissa

    This review of the professional and programmatic literature in the field of developmental disabilities focuses on ways in which individuals with developmental disabilities and their families are becoming increasingly involved in program evaluation and quality assurance efforts. Three major movements are having an impact on this activity: state and…

  12. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy

    SciTech Connect

    Qi, X. Sharon; Liu, Tian X.; Liu, Arthur K.; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y. Angie

    2014-10-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed-field

  13. Medulloblastoma: Long-term follow-up of patients treated with electron irradiation of the spinal field

    SciTech Connect

    Gaspar, L.E.; Dawson, D.J.; Tilley-Gulliford, S.A.; Banerjee, P. )

    1991-09-01

    Thirty-two patients with posterior fossa medulloblastoma underwent treatment with electron irradiation to the spinal field. The 5- and 10-year actuarial survival rates were 57% and 50%, respectively. Late complications observed in the 15 patients followed up for more than 5 years were short stature (six patients), decreased sitting-standing height ratio (four patients), scoliosis (two patients), poor school performance (seven patients), xerostomia (one patient), esophageal stricture (one patient), pituitary dysfunction (four patients), primary hypothyroidism (one patient), bilateral eighth-nerve deafness (one patient), and carcinoma of the thyroid (one patient). Complications following treatment with electrons to a spinal field are compared with reported complications following treatment with photons to the spinal field. Although short-term reactions were minimal, the authors found no difference in late complications. More sophisticated treatment planning may show such a long-term benefit in the future.

  14. Involved-Node and Involved-Field Volumetric Modulated Arc vs. Fixed Beam Intensity-Modulated Radiotherapy for Female Patients With Early-Stage Supra-Diaphragmatic Hodgkin Lymphoma: A Comparative Planning Study

    SciTech Connect

    Weber, Damien C.; Peguret, Nicolas; Dipasquale, Giovanna; Cozzi, Luca

    2009-12-01

    Purpose: A comparative treatment planning study was performed to compare volumetric-modulated arc (RA) to conventional intensity modulated (IMRT) for involved-field (IFRT) and involved-node (INRT) radiotherapy for Hodgkin lymphoma (HL). Methods and Materials: Plans for 10 early-stage HL female patients were computed for RA and IMRT. First, the planning target volume (PTV) coverage and organs at risk (OAR) dose deposition was assessed between the two modalities. Second, the OAR (lung, breast, heart, thyroid, and submandibular gland) dose-volume histograms were computed and compared for IFRT and INRT, respectively. Results: For IFRT and INRT, PTV coverage was equally homogeneous with both RA and IMRT. By and large, the OAR irradiation with IFRT planning was not significantly different between RA and IMRT. For INRT, doses computed for RA were, however, usually lower than those with IMRT, particularly so for the lung, breast, and thyroid. Regardless of RA and IMRT modalities, a significant 20-50% decrease of the OAR computed mean doses was observed with INRT when compared with IFRT (Breast D{sub Mean} 1.5 +- 1.1 vs. 2.6 +- 1.7 Gy, p < 0.01 and 1.6 +- 1.1 vs. 2.9 +- 1.9 Gy, p < 0.01 for RA and IMRT, respectively). Conclusions: RA and IMRT results in similar level of dose homogeneity. With INRT but not IFRT planning, the computed doses to the PTV and OAR were usually higher and lower with RA when compared to IMRT. Regardless of the treatment modality, INRT when compared with IFRT planning led to a significant decrease in OAR doses, particularly so for the breast and heart.

  15. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    SciTech Connect

    Albertazzi, B.; Chen, S. N.; Fuchs, J.; Antici, P.; Böker, J.; Swantusch, M.; Willi, O.; Borghesi, M.; Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D'Humières, E.; Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L.; Lancia, L.; Shepherd, R.; Sentoku, Y.; Starodubtsev, M.; and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  16. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  17. Field deployment of a scope for growth assay involving Gammarus pulex, a freshwater benthic invertebrate

    SciTech Connect

    Maltby, L.; Naylor, C.; Calow, P. )

    1990-06-01

    Scope for growth (SfG) is a measure of the energy balance of an animal (i.e., the difference between energy intake and metabolic output). The SfG of marine invertebrates, particularly the mussel Mytilus edulis, has been successfully used as the basis of a field bioassay to detect a range of stresses both natural (temperature, food, salinity) and anthropogenic (hydrocarbons, sewage sludge). SfG of the freshwater amphipod Gammarus pulex was found to be a sensitive indicator of stress under laboratory conditions and here we describe the field deployment of this technique and present data from three field trials. In every case, SfG was reduced at the downstream polluted site compared with that at an upstream reference site. This reduction in SfG was the result of a decrease in energy intake (absorption) rather than an increase in energy expenditure (respiration).

  18. Neural field simulator: two-dimensional spatio-temporal dynamics involving finite transmission speed

    PubMed Central

    Nichols, Eric J.; Hutt, Axel

    2015-01-01

    Neural Field models (NFM) play an important role in the understanding of neural population dynamics on a mesoscopic spatial and temporal scale. Their numerical simulation is an essential element in the analysis of their spatio-temporal dynamics. The simulation tool described in this work considers scalar spatially homogeneous neural fields taking into account a finite axonal transmission speed and synaptic temporal derivatives of first and second order. A text-based interface offers complete control of field parameters and several approaches are used to accelerate simulations. A graphical output utilizes video hardware acceleration to display running output with reduced computational hindrance compared to simulators that are exclusively software-based. Diverse applications of the tool demonstrate breather oscillations, static and dynamic Turing patterns and activity spreading with finite propagation speed. The simulator is open source to allow tailoring of code and this is presented with an extension use case. PMID:26539105

  19. TL behavior of topaz-glass composite in various irradiation fields.

    PubMed

    Sardar, M; Souza, D N; Tufail, M; Caldas, Linda V E; Antonio, P L; Carvalho, A B

    2013-08-01

    Topaz is a natural hard silicate mineral that has the potential to be used as a thermoluminescent dosimeter (TLD). It is difficult to manufacture chips of topaz and problematic to use its powder as TLDs. Topaz-glass composite (in the form of pellets) can be made easily and applied for radiation dosimetry. To produce pellets of topaz-glass composite in 2:1 wt (%), topaz powder was combined with commercial glass. The pellets with 6 mm diameter and 1 mm thickness were sintered in a furnace at 900°C for 1 h. The composite pellets were irradiated with x-ray and gamma photons and alpha and beta particles. The pellets yielded two peaks in the glow curve; Peak 1 at temperature range 150-160°C and Peak 2 at 250-260°C. The intensity of Peak 2 rose linearly with the increase in absorbed dose. The intensity of Peak 2 was comparable with peaks for photons and beta irradiation but relatively low for alpha exposure. The reproducibility of the intensity of Peak 2 was within 5-8%. Two months after irradiation of the pellets, the fading of the intensity of Peak 2 was found to be about 7%. The topaz-glass composite can be used effectively and efficiently for dosimetry of alpha, beta, and gamma radiation. PMID:23799499

  20. Monitoring the irradiation field of 12C and 16O SOBP beams using positron emitters produced through projectile fragmentation reactions

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Sato, Shinji

    2008-02-01

    In order to effectively utilize the prominent properties of heavy ions in radiotherapy, it is important to evaluate both the position of the field irradiated with incident ions and the absorbed dose distribution in a patient's body. One of the methods for this purpose is the utilization of the positron emitters produced through the projectile fragmentation reactions of stable heavy ions with target nuclei. In heavy-ion therapy, spread-out Bragg peak (SOBP) beams are used to achieve uniform biological dose distributions in the whole tumor volume. Therefore, in this study, we designed SOBP beams of 30 and 50 mm water-equivalent length (mmWEL) in width for 12C and 16O, and carried out irradiation experiments using them. Water, polyethylene and polymethyl methacrylate were selected as targets to simulate a human body. Pairs of annihilation gamma rays were detected by means of a limited-angle positron camera for 500 s, and annihilation gamma-ray distributions were obtained. The maximum likelihood estimation (MLE) method was applied to the detected distributions for evaluating the positions of the distal and proximal edges of the SOBP in a target. The differences between the positions evaluated with the MLE method and those derived from the measured dose distributions were less than 1.7 mm and 2.5 mm for the distal and the proximal edge, respectively, in all irradiation conditions. When the positions of both edges are determined with the MLE method, the most probable shape of the dose distribution in a target can be estimated simultaneously. The close agreement between the estimated and the measured distributions implied that the shape of the dose distribution in an irradiated target could be evaluated from the detected annihilation gamma-ray distribution.

  1. The solar irradiance registered at a flat- hemispherical field of view- bolometric oscillation sensor on board PICARD satellite

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Karatekin, Ozgur; van Ruymbeke, Michel; Dewitte, Steven; Thuillier, Gerard

    2014-05-01

    The value of the Total Solar Irradiance (TSI) is varying over the 11-year sunspot cycle. The cycle amplitude is about 0.1% solar constant, which could be traced with the absolute radiometers onboard dedicated space missions. The operating principle of the absolute radiometer is measuring the electrical heating power of the heat sensing unit during the closed and opened phase of each measurement cycle. The difference between the power integrated cross the closed phase and the power integrated cross the open phase gives the value of the solar irradiance. The cadence of the measurement is usually from one to several minutes. The final TSI value in physics unit is obtained after taking into account the electronic calibration, correction of the instruments effects, and normalizing to 1 AU. The Bolometric Oscillation Sensor on board PICARD microsatellite is a new designed remote sensing instrument. The BOS is operated continually with a 10 seconds cadence to fill the time gaps between open and close phases of the SOVAP absolute radiometer. The BOS has two sensing surfaces, the main one with a light mass is black coated, the second surface is white painted with a heavier mass. The sensor has a hemispherical field of view. The heat flux absorbed by the main detector is thermally conducted by a thin shunt to the heat sink. The principle of the measurements is that the sum of the power of the blacked coated surface and the power along the shunt is equal to the incoming electromagnetic radiation. However as the BOS has a HFOV, the incoming radiation caught by it, has three kinds of origin: the solar irradiance, the reflected solar visible light form the Earth and the terrestrial infrared radiation. In this work, we are going to discuss the solar irradiance isolated from the measurements of the BOS instrument as well as the comparison with the sunspot number and the TSI composite from the VIRGO/SOHO and TIM/SORCE experiments.

  2. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to Very High Temperatures

    SciTech Connect

    Blue, Thomas; Windl, Wolfgang; Dickerson, Bryan

    2013-01-03

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silica's optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and the

  3. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at

  4. The Impact of Field Trips and Family Involvement on Mental Models of the Desert Environment

    ERIC Educational Resources Information Center

    Judson, Eugene

    2011-01-01

    This study examined the mental models of the desert environment held by fourth- and seventh-grade students in the USA and whether those mental models could be affected by: (1) classroom field trips to a desert riparian preserve, and (2) interaction with family members at the same preserve. Results generally indicated that students in this study…

  5. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    SciTech Connect

    Lakeman, T; Wang, IZ

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  6. Single event effect in a ferroelectric-gate field-effect transistor under heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Shao-An; Tang, Ming-Hua; Zhao, Wen; Guo, Hong-Xia; Zhang, Wan-Li; Xu, Xin-Yu; Wang, Xu-Dong; Ding, Hao; Chen, Jian-Wei; Li, Zheng; Zhou, Yi-Chun

    2014-04-01

    The single event effect in ferroelectric-gate field-effect transistor (FeFET) under heavy ion irradiation is investigated in this paper. The simulation results show that the transient responses are much lower in a FeFET than in a conventional metal-oxide-semiconductor field-effect transistor (MOSFET) when the ion strikes the channel. The main reason is that the polarization-induced charges (the polarization direction here is away from the silicon surface) bring a negative surface potential which will affect the distribution of carriers and charge collection in different electrodes significantly. The simulation results are expected to explain that the FeFET has a relatively good immunity to single event effect.

  7. Characterization of phosphorus segregation in neutron-irradiated pressure vessel steels by atom probe field ion microscopy

    SciTech Connect

    Miller, M.K.; Jayaram, R.; Russell, K.F.

    1995-04-01

    An atom probe field ion microscopy characterization of A533B and Russian VVER 440 and 1000 pressure vessel steels has been performed to determine the phosphorus coverage of grain and lath boundaries. Field ion micrographs of grain and lath boundaries have revealed that they are decorated with a semi-continuous film of discrete brightly-imaging precipitates that were identified as molybdenum carbonitride precipitates. In addition, extremely high phosphorus levels were measured at the boundaries. The phosphorus segregation was found to be confined to an extremely narrow region indicative of monolayer-type segregation. The phosphorus coverages determined from the atom probe results of the unirradiated materials were in excellent agreement with predictions based on McLean`s equilibrium model of grain boundary segregation. The boundary phosphorus coverage of a neutron-irradiated weld material was significantly higher than that observed in the unirradiated material.

  8. Predicted Risk of Radiation-Induced Cancers After Involved Field and Involved Node Radiotherapy With or Without Intensity Modulation for Early-Stage Hodgkin Lymphoma in Female Patients

    SciTech Connect

    Weber, Damien C.; Johanson, Safora; Peguret, Nicolas; Cozzi, Luca; Olsen, Dag R.

    2011-10-01

    Purpose: To assess the excess relative risk (ERR) of radiation-induced cancers (RIC) in female patients with Hodgkin lymphoma (HL) female patients treated with conformal (3DCRT), intensity modulated (IMRT), or volumetric modulated arc (RA) radiation therapy. Methods and Materials: Plans for 10 early-stage HL female patients were computed for 3DCRT, IMRT, and RA with involved field RT (IFRT) and involvednode RT (INRT) radiation fields. Organs at risk dose--volume histograms were computed and inter-compared for IFRT vs. INRT and 3DCRT vs. IMRT/RA, respectively. The ERR for cancer induction in breasts, lungs, and thyroid was estimated using both linear and nonlinear models. Results: The mean estimated ERR for breast, lung, and thyroid were significantly lower (p < 0.01) with INRT than with IFRT planning, regardless of the radiation delivery technique used, assuming a linear dose-risk relationship. We found that using the nonlinear model, the mean ERR values were significantly (p < 0.01) increased with IMRT or RA compared to those with 3DCRT planning for the breast, lung, and thyroid, using an IFRT paradigm. After INRT planning, IMRT or RA increased the risk of RIC for lung and thyroid only. Conclusions: In this comparative planning study, using a nonlinear dose--risk model, IMRT or RA increased the estimated risk of RIC for breast, lung, and thyroid for HL female patients. This study also suggests that INRT planning, compared to IFRT planning, may reduce the ERR of RIC when risk is predicted using a linear model. Observing the opposite effect, with a nonlinear model, however, questions the validity of these biologically parameterized models.

  9. [New methodic approach to hygienic evaluation of electromagnetic energy absorption in near-field zone of irradiation source].

    PubMed

    Perov, S Yu; Bogachova, E V; Belaya, O V

    2015-01-01

    Nowadays, essential objective of hygienic evaluation of electromagnetic energy absorption of mobile radio-frequency devices is specification of new approach with consideration of russian and international regulation principles. This approach enables to ealuate correctly users' actual exposure conditions and consider energy absorption by human in near-field zone of the irradiation source. The work is aimed to study applicability of hypothesis on possible relations between magnetic part of electromagnetic field and specific absorbed capacity. This hypothesis is considered a basis for designing a new methodic approach to hygienic evaluation of individual mobile communication devices in near-field zone of the source. Analysis of the data obtained demonstrates that visible difference between suggested and classic methods decreases with higher frequency. Every studied source in its near-field zone can be characterized by optimal conditions for the suggested method usage with error less than 2 dB. The study results on relations between decreasing electromagnetic energy and specific absorbed capacity value make possible further improvement of methods controlling electromagnetic field levels in assessment of personal mobile radio communication devices. PMID:26470479

  10. Supine Craniospinal Irradiation Using a Proton Pencil Beam Scanning Technique Without Match Line Changes for Field Junctions

    SciTech Connect

    Lin, Haibo Ding, Xuanfeng; Kirk, Maura; Liu, Haoyang; Zhai, Huifang; Hill-Kayser, Christine E.; Lustig, Robert A.; Tochner, Zelig; Both, Stefan; McDonough, James

    2014-09-01

    Purpose: To propose and validate a craniospinal irradiation approach using a proton pencil beam scanning technique that overcomes the complexity of the planning associated with feathering match lines. Methods and Materials: Ten craniospinal irradiation patients had treatment planned with gradient dose optimization using the proton pencil beam scanning technique. The robustness of the plans was evaluated by shifting the isocenter of each treatment field by ±3 mm in the longitudinal direction and was compared with the original nonshifted plan with metrics of conformity number, homogeneity index, and maximal cord doses. An anthropomorphic phantom study using film measurements was carried out on a plan with 5-cm junction length. To mimic setup errors in the phantom study, fields were recalculated with isocenter shifts of 1, 3, 5, and 10 mm longitudinally, and compared with the original plans and measurements. Results: Uniform dose coverage to the entire target volumes was achieved using the gradient optimization approach with averaged junction lengths of 6.7 ± 0.5 cm. The average conformity number and homogeneity index equaled 0.78 ± 0.03 and 1.09 ± 0.01, respectively. Setup errors of 3 mm per field (6 mm in worst-case scenario) caused on average 4.6% lower conformity number 2.5% higher homogeneity index and maximal cord dose of 4216.1 ± 98.2 cGy. When the junction length was 5 cm or longer, setup errors of 6 mm resulted in up to 12% dosimetric deviation. Consistent results were reached between film measurements and planned dose profiles in the junction area. Conclusions: Longitudinal setup errors directly reduce the dosimetric accuracy of the proton craniospinal irradiation treatment with matched proton pencil beam scanning fields. The reported technique creates a slow dose gradient in the junction area, which makes the treatment more robust to longitudinal setup errors compared to conventional feathering methods.

  11. Two phenotypically distinct T cells are involved in ultraviolet-irradiated urocanic acid-induced suppression of the efferent delayed-type hypersensitivity response to herpes simplex virus, type 1 in vivo

    SciTech Connect

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.

    1987-09-01

    When UVB-irradiated urocanic acid, the putative photoreceptor/mediator for UVB suppression, is administered to mice it induces a dose-dependent suppression of the delayed-type hypersensitivity response to herpes simplex virus, type 1 (HSV-1), of similar magnitude to that induced by UV irradiation of mice. In this study, the efferent suppression of delayed-type hypersensitivity by UV-irradiated urocanic acid is demonstrated to be due to 2 phenotypically distinct T cells, (Thy1+, L3T4-, Ly2+) and (Thy1+, L3T4+, Ly2-). The suppression is specific for HSV-1. This situation parallels the generation of 2 distinct T-suppressor cells for HSV-1 by UV irradiation of mice and provides further evidence for the involvement of urocanic acid in the generation of UVB suppression.

  12. Field detection capability of immunochemical assays during criminal investigations involving the use of TNT.

    PubMed

    Romolo, Francesco Saverio; Ferri, Elida; Mirasoli, Mara; D'Elia, Marcello; Ripani, Luigi; Peluso, Giuseppe; Risoluti, Roberta; Maiolini, Elisabetta; Girotti, Stefano

    2015-01-01

    The capability to collect timely information about the substances employed on-site at a crime scene is of fundamental importance during scientific investigations in crimes involving the use of explosives. TNT (2,4,6-trinitrotoluene) is one of the most employed explosives in the 20th century. Despite the growing use of improvised explosives, criminal use and access to TNT is not expected to decrease. Immunoassays are simple and selective analytical tests able to detect molecules and their immunoreactions can occur in portable formats for use on-site. This work demonstrates the application of three immunochemical assays capable of detecting TNT to typical forensic samples from experimental tests: an indirect competitive ELISA with chemiluminescent detection (CL-ELISA), a colorimetric lateral flow immunoassay (LFIA) based on colloidal gold nanoparticles label, and a chemiluminescent-LFIA (CL-LFIA). Under optimised working conditions, the LOD of the colorimetric LFIA and CL-LFIA were 1 μg mL(-1) and 0.05 μg mL(-1), respectively. The total analysis time for LFIAs was 15 min. ELISA proved to be a very effective laboratory approach, showing very good sensitivity (LOD of 0.4 ng mL(-1)) and good reproducibility (CV value about 7%). Samples tested included various materials involved in controlled explosions of improvised explosive devices (IEDs), as well as hand swabs collected after TNT handling tests. In the first group of tests, targets covered with six different materials (metal, plastic, cardboard, carpet fabric, wood and adhesive tape) were fixed on top of wooden poles (180 cm high). Samples of soil from the explosion area and different materials covering the targets were collected after each explosion and analysed. In the second group of tests, hand swabs were collected with and without hand washing after volunteers simulated the manipulation of small charges of TNT. The small amount of solution required for each assay allows for several analyses. Results of

  13. Magna-field irradiation and autologous marrow rescue in the treatment of pediatric solid tumors

    SciTech Connect

    Munoz, L.L.; Wharam, M.D.; Kaizer, H.; Leventhal, B.G.; Ruymann, R.

    1983-12-01

    Marrow ablative therapy has been given to pediatric patients with a variety of disseminated tumors. Eight patients with advanced neuroblastoma received autologous marrow reinfusion after intensive therapy. Three of eight are in continuous complete remission from 7 to 60 months. An additional four patients received allogeneic marrow transplantation and two remain in continuous complete response at 21 and 39 months. Intensive therapy and autologous marrow reinfusion have been applied to Ewing's sarcoma, but only preliminary results are available. Six patients with disseminated rhabdomyosarcoma and extra-osseous Ewing's sarcoma received conventional chemotherapy followed by sequential hemi-body irradiation. Four of six patients received autologous marrow rescue. Their median disease-free survival is 17 months. This preliminary experience demonstrates the feasibility of using marrow ablative therapy with autologous marrow transplantation in the treatment of pediatric solid tumors. Continuing Phase II studies are required to substantiate its efficacy.

  14. A Technique for Verification of Isocenter Position in Tangential Field Breast Irradiation

    SciTech Connect

    Prabhakar, Ramachandran Pande, Manish; Harsh, Kumar; Julka, Pramod K.; Ganesh, Tharmar; Rath, Goura K.

    2009-04-01

    Treatment verification and reproducibility of the breast treatment portals play a very important role in breast radiotherapy. We propose a simple technique to verify the planned isocenter position during treatment using an electronic portal imaging device. Ten patients were recruited in this study and (CT) computed tomography-based planning was performed with a conventional tangential field technique. For verification purposes, in addition to the standard medial (F1) and lateral (F2) tangential fields, a field (F3) perpendicular to the medial field was used for verification of the treatment portals. Lead markers were placed along the central axis of the 2 defined fields (F1 and F3) and the separation between the markers was measured on the portal images and verified with the marker separation on the digitally reconstructed radiographs (DRRs). Any deviation will identify the shift in the planned isocenter position during treatment. The average deviation observed between the markers measured from the DRR and portal image was 1.6 and 2.1 mm, with a standard deviation of 0.4 and 0.9 mm for fields F1 and F3, respectively. The maximum deviation observed was 3.0 mm for field F3. This technique will be very useful in patient setup for tangential breast radiotherapy.

  15. Robotic repair of a vesicovaginal fistula in an irradiated field using a dehydrated amniotic allograft as an interposition patch.

    PubMed

    Price, David T; Price, Tina C

    2016-03-01

    We report the case of a 66 year old female with a supratrigonal vesicovaginal fistula (VVF) that developed after undergoing radical hysterectomy, chemotherapy and pelvic radiation therapy for advanced cervical cancer. VVF repairs in an irradiated field are known to be complicated procedures with significant morbidity and a high rate of failure due to the effect of radiation. Amniotic membranes have been demonstrated to improve healing rates in difficult to heal wounds. To decrease morbidity a minimally invasive robotic procedure was performed and a dehydrated amniotic allograft patch was used to augment tissue healing. The VVF was repaired using the da Vinci Surgical System and the amniotic membrane was used as an interposition patch over the repair. There were no operative or postoperative complications and the patient was discharged home on postoperative day one. A cystogram performed 3 weeks postoperatively demonstrated a healed fistula. Follow-up at 5 months revealed no incontinence. This is the first reported case of a robotic VVF repair performed in an irradiated pelvis and the first use of an amniotic membrane allograft in the repair a VVF. PMID:26661412

  16. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  17. Role of FDG-PET in the Definition of Involved-Field Radiation Therapy and Management for Pediatric Hodgkin's Lymphoma

    SciTech Connect

    Lang Robertson, Virginia; Anderson, Cynthia S.; Keller, Frank G.; Halkar, Raghuveer; Goodman, Michael; Marcus, Robert B.; Esiashvili, Natia

    2011-06-01

    Purpose: To evaluate positron emission tomography-computed tomography (PET-CT) influences in involved-field radiation therapy (IFRT) field design in pediatric Hodgkin's lymphoma (HL). Materials and Methods: From June 2003 to February 2008, 30 pediatric HL patients were treated at Children's Healthcare of Atlanta (CHOA) and Emory University Department of Radiation Oncology with both chemotherapy and IFRT. Diagnostic contrast-enhanced CT and PET-CT were coregistered using image fusion software. Both were reviewed for all potential sites of involvement and correlated to determine concordance and discordance. They were used in IFRT planning to determine the influence of PET-CT on target volumes and field design. Results: There were 546 regions analyzed by both PET and CT modalities. Image sets were concordant in 468 regions and discordant in 78, yielding 86% concordance overall. Analysis by weighted {kappa} statistic showed 'intermediate to good' fit overall and for nodal sites, but 'poor' agreement for extranodal sites. If discordant, a site was most likely PET+/CT-. Integration of PET information caused a change in staging in 15 (50%) patients, 7 upstaged and 8 downstaged. The IFRT volumes were adjusted on the basis of initial PET-CT finding in 21 (70%) patients, with 32 sites added and 15 excluded. There were four relapses, only one outside IFRT fields, but all were successfully salvaged. Conclusion: PET-CT represents an important tool in the management of pediatric patients with HL and has a substantial influence on both initial staging and radiation treatment target definition and field design.

  18. Enhancement of Efficiency of XUV Generation in Atomic Gases Irradiated by Intense Laser Fields

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Stremoukhov, S. Y.; Shoutova, O. A.

    We present the results of the theoretical study of the high-order harmonic generation (HHG) in atomic gases. It is shown that the photoemission spectra exhibit unusual behavior when the laser field strength approaches near-atomic values. In subatomic field strength the cut-off frequency increases linearly with laser pulse intensity. However, when the field strength approaches near-atomic region firstly cut-off frequency slows down and then saturates. To interpret such kind of photoemission spectrum behavior we have proposed the light-atom interaction theory based on the use of eigenfunctions of boundary value problem for "an atom in the external field" instead of the traditional basis of the "free atom" eigenfunctions.

  19. Dielectric strength, swelling and weight loss of the ITER Toroidal Field Model Coil insulation after low temperature reactor irradiation

    NASA Astrophysics Data System (ADS)

    Humer, K.; Weber, H. W.; Hastik, R.; Hauser, H.; Gerstenberg, H.

    2000-04-01

    The insulation system for the Toroidal Field Model Coil of ITER is a fiber reinforced plastic (FRP) laminate, which consists of a combined Kapton/R-glass-fiber reinforcement tape, vacuum-impregnated with an epoxy DGEBA system. Pure disk shaped laminates, FRP/stainless-steel sandwiches, and conductor insulation prototypes were irradiated at 5 K in a fission reactor up to a fast neutron fluence of 10 22 m -2 ( E>0.1 MeV) to investigate the radiation induced degradation of the dielectric strength of the insulation system. After warm-up to room temperature, swelling, weight loss, and the breakdown strength were measured at 77 K. The sandwich swells by 4% at a fluence of 5×10 21 m-2 and by 9% at 1×10 22 m-2. The weight loss of the FRP is 2% at 1×10 22 m-2. The dielectric strength remained unchanged over the whole dose range.

  20. Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser

    SciTech Connect

    Seok Hwang, Yong; Levitas, Valery I.

    2013-12-23

    Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q≤79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q≥300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95≤Q≤1290 K/ps without fitting of material parameters.

  1. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    SciTech Connect

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-04-28

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm{sup 2} was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm{sup 2} range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm{sup 2}. The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm{sup 2} to ∼5 kW/cm{sup 2})

  2. Long-term loss of osteoclasts and unopposed cortical mineral apposition following limited field irradiation.

    PubMed

    Oest, Megan E; Franken, Veerle; Kuchera, Timothy; Strauss, Judy; Damron, Timothy A

    2015-03-01

    Late-onset fragility fractures are a common complication following radiotherapy for metastatic disease and soft tissue sarcomas. Using a murine hindlimb focal irradiation model (RTx), we quantified time-dependent changes in osteoclasts and mineral apposition rate (MAR). Mice received either a single, unilateral 5 Gy exposure or four fractionated doses (4 × 5 Gy). Osteoclast numbers and MAR were evaluated histologically at 1, 2, 4, 8, 12, and 26 weeks post-RTx. Radiation induced an early, transient increase in osteoclasts followed by long-term depletion. Increased osteoclast numbers correlated temporally with trabecular resorption; the resorbed trabeculae were not later restored. Radiotherapy did not attenuate MAR at any time point. A transient, early increase in MAR was noted in both RTx groups, however, the 4 × 5 Gy group exhibited an unexpected spike in MAR eight weeks. Persistent depletion of osteoclasts permitted anabolic activity to continue unopposed, resulting in cortical thickening. These biological responses likely contribute to post-radiotherapy bone fragility via microdamage accumulation and matrix embrittlement in the absence of osteoclastic remodeling, and trabecular resorption-induced decrease in bone strength. The temporal distribution of osteoclast numbers suggests that anti-resorptive therapies may be of clinical benefit only if started prior to radiotherapy and continued through the following period of increased osteoclastic remodeling. PMID:25408493

  3. Long-Term Loss of Osteoclasts and Unopposed Cortical Mineral Apposition Following Limited Field Irradiation

    PubMed Central

    Oest, Megan E.; Franken, Veerle; Kuchera, Timothy; Strauss, Judy; Damron, Timothy A.

    2015-01-01

    Late-onset fragility fractures are a common complication following radiotherapy for metastatic disease and soft tissue sarcomas. Using a murine hindlimb focal irradiation model (RTx), we quantified time-dependent changes in osteoclasts and mineral apposition rate (MAR). Mice received either a single, unilateral 5 Gy exposure or four fractionated doses (4x5 Gy). Osteoclast numbers and MAR were evaluated histologically at 1, 2, 4, 8, 12, and 26 weeks post-RTx. Radiation induced an early, transient increase in osteoclasts followed by long-term depletion. Increased osteoclast numbers correlated temporally with trabecular resorption; the resorbed trabeculae were not later restored. Radiotherapy did not attenuate MAR at any time point. A transient, early increase in MAR was noted in both RTx groups, however, the 4x5 Gy group exhibited an unexpected spike in MAR eight weeks. Persistent depletion of osteoclasts permitted anabolic activity to continue unopposed, resulting in cortical thickening. These biological responses likely contribute to post-radiotherapy bone fragility via microdamage accumulation and matrix embrittlement in the absence of osteoclastic remodeling, and trabecular resorption-induced decrease in bone strength. The temporal distribution of osteoclast numbers suggests that anti-resorptive therapies may be of clinical benefit only if started prior to radiotherapy and continued through the following period of increased osteoclastic remodeling. PMID:25408493

  4. Compositional and Microstructural Evolution of Olivine During Pulsed Laser Irradiation: Insights Based on a FIB/Field-Emission TEM Study

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Baragiola, R. A.

    2015-01-01

    Introduction: The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation. Experimental Methods: We irradiated pressed-powder pellets of San Carlos olivine (Fo(sub 90)) with up to 99 rastered pulses of a GAM ArF excimer laser. The irradiated surface of the sample were characterized by SEM imaging and areas were selected for FIB cross sectioning for TEM study using an FEI Quanta dual-beam electron/focused ion beam instrument. FIB sections were characterized using a JEOL2500SE analytical field-emission scanning transmission electron microscope (FE-STEM) optimized for quantitative element mapping at less than 10 nm spatial resolutions. Results: In the SEM the 99 pulse pressed pellet sample shows a complex, inhomogeneous, distribution of laser-generated material, largely concentrated in narrow gaps and larger depressions between grains. Local concentrations of npFe0 spherules 0.1 to 1 micrometers in size are visible within these deposits in SEM back-scatter images. Fig. 1 shows bright-field STEM images of a FIB cross-section of a one of these deposits that continuously covers the top and sloping side of an

  5. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change.

    PubMed

    Zhu, Yefei; Wang, Chunlei; Chen, Xiaowu; Guan, Guijun

    2016-07-01

    We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf's role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels. PMID:27230579

  6. Stopping and Coulomb explosion of energetic carbon clusters in a plasma irradiated by an intense laser field

    NASA Astrophysics Data System (ADS)

    Wang, Guiqiu; Wang, Younian

    2015-09-01

    The interaction of a charged particle beam with a plasma is a very important subject of relevance for many fields of physics, such as inertial confinement fusion (ICF) driven by ion or electron beams, high energy density physics, and related astrophysical problems. Recently, a promising ICF scheme has been proposed, in which the plasma target is irradiated simultaneously by intense laser and ion beams. For molecular ion or cluster, slowing down process will company the Coulomb explosion phenomenon. In this paper, we present a study of the effects of intense radiation field (RF) on the interaction of energetic carbon clusters in a plasma. The emphasis is laid on the dynamic polarization and correlation effects of the constituent ions within the cluster in order to disclose the role of the vicinage effects on the Coulomb explosion and energy deposition of the clusters in plasma. On the other hand, affecting of a strong laser field on the cluster propagating in plasma is considered, the influence of a large range of laser parameters and plasma parameters on the Coulomb explosion and stopping power are discussed. This work is supported by the National Natural Science Foundation of China (11375034), and the Fundamental Research Funds for the Central Universities of China (3132015144, 3132014337).

  7. Nanomovement of azo polymers induced by metal tip enhanced near-field irradiation

    SciTech Connect

    Ishitobi, Hidekazu; Tanabe, Mamoru; Sekkat, Zouheir; Kawata, Satoshi

    2007-08-27

    Nanomovement of azo polymers induced by metal tip enhanced near-field illumination was studied. A protrusion with 47 nm full width at half maximum was induced with a resolution beyond the diffraction limit. At the top of the protrusion, an anisotropic movement occurs in a direction nearly parallel to the polarization of the incident light, and suggests the existence at the tip end of not only a longitudinal but also a lateral component of the electric field of light. The anisotropic photofluidity and the optical gradient force played important roles in the process of the light induced polymer movement.

  8. A Three-Isocenter Jagged-Junction IMRT Approach for Craniospinal Irradiation Without Beam Edge Matching for Field Junctions

    SciTech Connect

    Cao, Fred; Ramaseshan, Ramani; Corns, Robert; Harrop, Sheryl; Nuraney, Nimet; Steiner, Peter; Aldridge, Stephanie; Liu, Mitchell; Carolan, Hannah; Agranovich, Alex; Karvat, Anand

    2012-11-01

    Purpose: Traditionally craniospinal irradiation treats the central nervous system using two or three adjacent field sets. We propose a technique using a three-isocenter intensity-modulated radiotherapy (IMRT) plan (jagged-junction IMRT) which overcomes problems associated with field junctions and beam edge matching and improves planning and treatment setup efficiencies with homogenous target dose distribution. Methods and Materials: Treatments for 3 patients with a prescription of 36 Gy in 20 fractions were retrospectively planned with jagged-junction IMRT and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan used three field sets, each with a unique isocenter. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped, and the optimization process smoothly integrated the dose inside the overlapped junction. Results: For jagged-junction IMRT plans vs. conventional technique, the average homogeneity index equaled 0.08 {+-} 0.01 vs. 0.12 {+-} 0.02, respectively, and conformity number equaled 0.79 {+-} 0.01 vs. 0.47 {+-} 0.12, respectively. The 95% isodose surface covered (99.5 {+-} 0.3)% of the PTV vs. (98.1 {+-} 2.0)%, respectively. Both jagged-junction IMRT plans and the conventional plans had good sparing of organs at risk. Conclusions: Jagged-junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to organs at risk. Results from jagged-junction IMRT plans were better than or equivalent to those from the conventional technique. Jagged-junction IMRT optimization smoothly distributed dose in the junction between field sets. Because there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction, in contrast to conventional techniques. The planning process is also

  9. Conformal Locoregional Breast Irradiation with an Oblique Parasternal Photon Field Technique

    SciTech Connect

    Erven, Katrien; Petillion, Saskia; Weltens, Caroline; Van den Heuvel, Frank; Defraene, Gilles; Van Limbergen, Erik; Van den Bogaert, Walter

    2011-04-01

    We evaluated an isocentric technique for conformal irradiation of the breast, internal mammary, and medial supra-clavicular lymph nodes (IM-MS LN) using the oblique parasternal photon (OPP) technique. For 20 breast cancer patients, the OPP technique was compared with a conventional mixed-beam technique (2D) and a conformal partly wide tangential (PWT) technique, using dose-volume histogram analysis and normal tissue complication probabilities (NTCPs). The 3D techniques resulted in a better target coverage and homogeneity than did the 2D technique. The homogeneity index for the IM-MS PTV increased from 0.57 for 2D to 0.90 for PWT and 0.91 for OPP (both p < 0.001). The OPP technique was able to reduce the volume of heart receiving more than 30 Gy (V{sub 30}), the cardiac NTCP, and the volume of contralateral breast receiving 5 Gy (V{sub 5}) compared with the PWT plans (all p < 0.05). There is no significant difference in mean lung dose or lung NTCP between both 3D techniques. Compared with the PWT technique, the volume of lung receiving more than 20 Gy (V{sub 20}) was increased with the OPP technique, whereas the volume of lung receiving more than 40 Gy (V{sub 40}) was decreased (both p < 0.05). Compared with the PWT technique, the OPP technique can reduce doses to the contralateral breast and heart at the expense of an increased lung V{sub 20}.

  10. Mechanisms Involved in the Development of the Chronic Gastrointestinal Syndrome in Nonhuman Primates after Total-Body Irradiation with Bone Marrow Shielding.

    PubMed

    Shea-Donohue, Terez; Fasano, Alessio; Zhao, Aiping; Notari, Luigi; Yan, Shu; Sun, Rex; Bohl, Jennifer A; Desai, Neemesh; Tudor, Greg; Morimoto, Motoko; Booth, Catherine; Bennett, Alexander; Farese, Ann M; MacVittie, Thomas J

    2016-06-01

    In this study, nonhuman primates (NHPs) exposed to lethal doses of total body irradiation (TBI) within the gastrointestinal (GI) acute radiation syndrome range, sparing ∼5% of bone marrow (TBI-BM5), were used to evaluate the mechanisms involved in development of the chronic GI syndrome. TBI increased mucosal permeability in the jejunum (12-14 Gy) and proximal colon (13-14 Gy). TBI-BM5 also impaired mucosal barrier function at doses ranging from 10-12.5 Gy in both small intestine and colon. Timed necropsies of NHPs at 6-180 days after 10 Gy TBI-BM5 showed that changes in small intestine preceded those in the colon. Chronic GI syndrome in NHPs is characterized by continued weight loss and intermittent GI syndrome symptoms. There was a long-lasting decrease in jejunal glucose absorption coincident with reduced expression of the sodium-linked glucose transporter. The small intestine and colon showed a modest upregulation of several different pro-inflammatory mediators such as NOS-2. The persistent inflammation in the post-TBI-BM5 period was associated with a long-lasting impairment of mucosal restitution and a reduced expression of intestinal and serum levels of alkaline phosphatase (ALP). Mucosal healing in the postirradiation period is dependent on sparing of stem cell crypts and maturation of crypt cells into appropriate phenotypes. At 30 days after 10 Gy TBI-BM5, there was a significant downregulation in the gene and protein expression of the stem cell marker Lgr5 but no change in the gene expression of enterocyte or enteroendocrine lineage markers. These data indicate that even a threshold dose of 10 Gy TBI-BM5 induces a persistent impairment of both mucosal barrier function and restitution in the GI tract and that ALP may serve as a biomarker for these events. These findings have important therapeutic implications for the design of medical countermeasures. PMID:27223826

  11. Successful reconstruction of irradiated anterior skull base defect using the dual flap technique involving local pericranial flap and radial forearm free flap.

    PubMed

    Yeo, In Sung; Kim, Se-Hyuk; Park, Myong Chul; Lim, Hyoseob; Kim, Joo Hyoung; Lee, Il Jae

    2014-07-01

    Skull base reconstruction presents a challenging therapeutic problem requiring a multispecialty surgical approach and close cooperation between the neurosurgeon, head and neck surgeon, as well as plastic and reconstructive surgeon during all stages of treatment. The principal goal of skull base reconstruction is to separate the intracranial space from the nasopharyngeal and oropharyngeal cavities, creating support for the brain and providing a water-tight barrier against cerebrospinal fluid leakage and ascending infection. We present a case involving a 58-year-old man with anterior skull base defects (2.5 cm × 3 cm) secondary to the removal of olfactory neuroblastoma. The patient received conventional radiation therapy at 6000 cGy in 30 fractions approximately a month before tumor removal. The patient had radiation therapy before surgery and was planned to have postoperative radiation therapy, which would lead to a higher complication rate of reconstruction. Artificial dura was used for the packing of the dural defect, which was also suspected to increase the complication rate of reconstruction. For these reasons, we chose to apply the dual flap technique, which uses both local pericranial flap and de-epithelized radial forearm free flap for anterior skull base defect to promote wound healing. During 28 months of follow-up after coverage of the anterior skull base defect, the dual flap survived completely, as confirmed through follow-up magnetic resonance imaging. The patient was free of cerebrospinal fluid leakage, meningitis, and abscess, and there was minimal donor-site morbidity of the radial forearm free flap. Reconstruction of anterior skull base defects using the dual flap technique is safe, reliable, and associated with low morbidity, and it is ideal for irradiated wounds and low-volume defects. PMID:24902109

  12. Protective effect of paeoniflorin on irradiation-induced cell damage involved in modulation of reactive oxygen species and the mitogen-activated protein kinases.

    PubMed

    Li, Chun Rong; Zhou, Zhe; Zhu, Dan; Sun, Yu Ning; Dai, Jin Ming; Wang, Sheng Qi

    2007-01-01

    Ionizing radiation can induce DNA damage and cell death by generating reactive oxygen species (ROS). The objective of this study was to investigate the radioprotective effect of paeoniflorin (PF, a main bioactive component in the traditional Chinese herb peony) on irradiated thymocytes and discover the possible mechanisms of protection. We found 60Co gamma-ray irradiation increased cell death and DNA fragmentation in a dose-dependent manner while increasing intracellular ROS. Pretreatment of thymocytes with PF (50-200 microg/ml) reversed this tendency and attenuated irradiation-induced ROS generation. Hydroxyl-scavenging action of PF in vitro was detected through electron spin resonance assay. Several anti-apoptotic characteristics of PF, including the ability to diminish cytosolic Ca2+ concentration, inhibit caspase-3 activation, and upregulate Bcl-2 and downregulate Bax in 4Gy-irradiated thymocytes were determined. Extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 kinase were activated by 4Gy irradiation, whereas its activations were partly blocked by pretreatment of cells with PF. The presence of ERK inhibitor PD98059, JNK inhibitor SP600125 and p38 inhibitor SB203580 decreased cell death in 4Gy-irradiated thymocytes. These results suggest PF protects thymocytes against irradiation-induced cell damage by scavenging ROS and attenuating the activation of the mitogen-activated protein kinases. PMID:17097910

  13. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  14. Fabrication of a Near-Field Optical Fiber Probe Based on Electroless Nickel Plating under Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Mononobe, Shuji; Saito, Yuichi; Ohtsu, Motoichi; Honma, Hideo

    2004-05-01

    We present a method of fabricating a near-field optical probe with a nickel film whose thickness gradually decreases to a few tens of nanometers toward the apex. This method involves etching an optical fiber and electroless nickel plating with ultrasonic agitation. Using 1 MHz ceramic transducers, we have reproducibly fabricated the probe with a tip diameter of less than 40 nm. This reproducibility is high compared to those for Langevin-type transducers.

  15. Phase-field modeling of void evolution and swelling in materials under irradiation

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Gao, Fei; Henager, Charles H.; Khaleel, Mohammad A.

    2011-05-01

    Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we developed a phase-field model to simulate the void nucleation, growth, and the change of void volume fraction. Important material processes including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution have been taken into account in our phase-field model. The thermodynamic and kinetic properties such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials are generally expressed as functions of the temperature. The developed model enables one to parametrically study critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that the volume swelling displays a quasi-bell shape distribution with temperature that was often observed in experiments.

  16. Neutron field measurements of the CRNA OB26 irradiator using a Bonner sphere spectrometer for radiation protection purposes.

    PubMed

    Mazrou, H; Allab, M

    2012-08-01

    The present work deals with the Bonner sphere spectrometer (BSS) measurements performed, to support the authors' Monte-Carlo calculations, to estimate accurately the main characteristics of the neutron field of the (241)Am-Be-based OB26 irradiator acquired for radiation protection purposes by the Nuclear Research Centre of Algiers. The measurements were performed at a reference irradiation position selected at 150 cm from the geometrical centre of the neutron source. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter. The response matrix of the present spectrometer has been taken to be similar to the original Physikalisch-Technische Bundesanstalt (PTB) (Braunschweig, Germany) BSS's response matrix, with a five bins per decade energy group structure, as there is no significant difference in the BSS's physical characteristics. Thereafter, the authors' BSS measurements were used together with MCNP5 results to unfold the neutron spectrum by means of MAXED and GRAVEL computer codes from the U.M.G. 3.3 package, developed at PTB. Besides, sensitivity analysis has been performed to test the consistency of the unfolding procedure. It reveals that no significant discrepancy was observed in the total neutron fluence and total ambient dose values following the perturbation of some pertinent unfolding parameters except for the case where a 10 bins energy structure was assumed for the guess spectrum. In this latter case, a 5 % difference was observed in the ambient dose equivalent compared with the reference case. Finally, a comparative study performed between different counting systems together with MCNP5 and predictive formulas results shows that they were globally satisfactory, highlighting thereby the relevance of the unfolding procedure and the reliability of the obtained results. PMID:22345213

  17. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas.

    PubMed

    Bellini, R; Medici, A; Puggioli, A; Balestrino, F; Carrieri, M

    2013-03-01

    The pilot field studies here presented are part of a long-term research program aimed to develop a cost-effective sterile insect technique (SIT) methodology to suppress Aedes albopictus (Skuse) populations. Aedes albopictus is a mosquito species mainly developing in man-made containers and with an island-like urban and suburban distribution. These two features make the application of the sterile insect technique a possible control strategy. Five trials have been performed in three small towns from 2005 to 2009 (Emilia-Romagna region, northern Italy). Reared male pupae, sexed by a sieving technique allowing the recovery of approximately 26-29% of males, were exposed to gamma rays and immediately released in the field. Adult population density was estimated based on a weekly monitoring of egg density in the ovitraps, whereas induced sterility was estimated by measuring the hatching percentage of weekly collected eggs in SIT and control areas. Results showed that sterile males released at the rate of 896-1,590 males/ha/wk induced a significant sterility level in the local population. In addition, when the sterility level achieved values in the range of 70-80%, a similar reduction also was found for the egg density in the ovitraps. We could estimate that the minimum egg sterility value of 81% should be maintained to obtain suppression of the local population. Immigration of mated females was not a main issue in the small villages where trials have been run. PMID:23540120

  18. Stage I/II follicular lymphoma: spread of bcl-2/IgH+ cells in blood and bone marrow from primary site of disease and possibility of clearance after involved field radiotherapy.

    PubMed

    Pulsoni, Alessandro; Starza, Irene Della; Frattarelli, Natalia; Ghia, Emanuela; Carlotti, Emanuela; Cavalieri, Elena; Matturro, Angela; Tempera, Settimio; Rambaldi, Alessandro; Foà, Robin

    2007-05-01

    Stage I/IIA follicular lymphoma (FL) is considered a localised disease that can be adequately treated with radiotherapy alone. Bone marrow (BM) and peripheral blood (PB) involvement in FL was investigated by polymerase chain reaction (PCR) in a series of 24 consecutive patients with histologically revised diagnosis and treated with involved field radiotherapy. Despite the limited stage, Bcl-2/IgH+ cells were found at diagnosis in PB and/or BM of 16 patients (66.6%). After treatment, in 9/15 Bcl-2/IgH positive evaluable patients, a disappearance of Bcl-2/IgH+ cells was observed, which persisted after a median follow-up of 43.5 months (range 11-70) in all but one patient. Quantitative PCR demonstrated the feasibility of clearing PB and BM Bcl-2+ cells after local irradiation of the primary site of the disease only when the basal number of lymphoma cells was <1:100 000. Patients with Bcl-2/IgH+ cells at diagnosis or after treatment had a higher likelihood of relapse. Thus, despite a negative BM biopsy, the majority of localised FL Bcl-2/IgH+ cells were found in the PB and BM. Lymphoma cells can reversibly spread from the affected lymph node to PB and BM and, in a proportion of cases, durably disappear after irradiation. The possibility of a persistent lymphoma cell clearance is proportional to the amount of cells detected at presentation by quantitative PCR. PMID:17408460

  19. Modulating Roles of Amiloride in Irradiation-Induced Antiproliferative Effects in Glioblastoma Multiforme Cells Involving Akt Phosphorylation and the Alternative Splicing of Apoptotic Genes

    PubMed Central

    Tang, Jen-Yang

    2013-01-01

    Apoptosis is a key mechanism for enhanced cellular radiosensitivity in radiation therapy. Studies suggest that Akt signaling may play a role in apoptosis and radioresistance. This study evaluates the possible modulating role of amiloride, an antihypertensive agent with a modulating effect to alternative splicing for regulating apoptosis, in the antiproliferative effects induced by ionizing radiation (IR) in glioblastoma multiforme (GBM) 8401 cells. Analysis of cell viability showed that amiloride treatment significantly inhibited cell proliferation in irradiated GBM8401 cells (p<0.05) in a time-dependent manner, especially in cells treated with amiloride with IR post-treatment. In comparison with GBM8401 cells treated with amiloride alone, with GBM8401 cells treated with IR alone, and with human embryonic lung fibroblast control cells (HEL 299), GBM8401 cells treated with IR combined with amiloride showed increased overexpression of phosphorylated Akt, regardless of whether IR treatment was performed before or after amiloride administration. The alternative splicing pattern of apoptotic protease-activating factor-1 (APAF1) in cells treated with amiloride alone, IR alone, and combined amiloride-IR treatments showed more consistent cell proliferation compared to that in other apoptosis-related genes such as baculoviral IAP repeat containing 5 (BIRC5), Bcl-X, and homeodomain interacting protein kinase-3 (HIPK3). In GBM8401 cells treated with amiloride with IR post-treatment, the ratio of prosurvival (-XL,-LC) to proapoptotic (-LN,-S) splice variants of APAF1 was lower than that seen in cells treated with amiloride with IR pretreatment, suggesting that proapoptotic splice variants of APAF1 (APAF1-LN,-S) were higher in the glioblastoma cells treated with amiloride with IR post-treatment, as compared to glioblastoma cells and fibroblast control cells that had received other treatments. Together, these results suggest that amiloride modulates cell radiosensitivity

  20. Rapid field identification of subjects involved in firearm-related crimes based on electroanalysis coupled with advanced chemometric data treatment.

    PubMed

    Cetó, Xavier; O'Mahony, Aoife M; Samek, Izabela A; Windmiller, Joshua R; del Valle, Manel; Wang, Joseph

    2012-12-01

    We demonstrate a novel system for the detection and discrimination of varying levels of exposure to gunshot residue from subjects in various control scenarios. Our aim is to address the key challenge of minimizing the false positive identification of individuals suspected of discharging a firearm. The chemometric treatment of voltammetric data from different controls using Canonical Variate Analysis (CVA) provides several distinct clusters for each scenario examined. Multiple samples were taken from subjects in controlled tests such as secondary contact with gunshot residue (GSR), loading a firearm, and postdischarge of a firearm. These controls were examined at both bare carbon and gold-modified screen-printed electrodes using different sampling methods: the 'swipe' method with integrated sampling and electroanalysis and a more traditional acid-assisted q-tip swabbing method. The electroanalytical fingerprint of each sample was examined using square-wave voltammetry; the resulting data were preprocessed with Fast Fourier Transform (FFT), followed by CVA treatment. High levels of discrimination were thus achieved in each case over 3 classes of samples (reflecting different levels of involvement), achieving maximum accuracy, sensitivity, and specificity values of 100% employing the leave-one-out validation method. Further validation with the 'jack-knife' technique was performed, and the resulting values were in good agreement with the former method. Additionally, samples from subjects in daily contact with relevant metallic constituents were analyzed to assess possible false positives. This system may serve as a potential method for a portable, field-deployable system aimed at rapidly identifying a subject who has loaded or discharged a firearm to verify involvement in a crime, hence providing law enforcement personnel with an invaluable forensic tool in the field. PMID:23121395

  1. Development of a %22solar patch%22 calculator to evaluate heliostat-field irradiance as a boundary condition in CFD models.

    SciTech Connect

    Khalsa, Siri Sahib; Ho, Clifford Kuofei

    2010-04-01

    A rigorous computational fluid dynamics (CFD) approach to calculating temperature distributions, radiative and convective losses, and flow fields in a cavity receiver irradiated by a heliostat field is typically limited to the receiver domain alone for computational reasons. A CFD simulation cannot realistically yield a precise solution that includes the details within the vast domain of an entire heliostat field in addition to the detailed processes and features within a cavity receiver. Instead, the incoming field irradiance can be represented as a boundary condition on the receiver domain. This paper describes a program, the Solar Patch Calculator, written in Microsoft Excel VBA to characterize multiple beams emanating from a 'solar patch' located at the aperture of a cavity receiver, in order to represent the incoming irradiance from any field of heliostats as a boundary condition on the receiver domain. This program accounts for cosine losses; receiver location; heliostat reflectivity, areas and locations; field location; time of day and day of year. This paper also describes the implementation of the boundary conditions calculated by this program into a Discrete Ordinates radiation model using Ansys{reg_sign} FLUENT (www.fluent.com), and compares the results to experimental data and to results generated by the code DELSOL.

  2. Development of a %22Solar Patch%22 calculator to evaluate heliostat-field irradiance as a boundary condition in CFD models.

    SciTech Connect

    Khalsa, Siri Sahib S.; Ho, Clifford Kuofei

    2010-05-01

    A rigorous computational fluid dynamics (CFD) approach to calculating temperature distributions, radiative and convective losses, and flow fields in a cavity receiver irradiated by a heliostat field is typically limited to the receiver domain alone for computational reasons. A CFD simulation cannot realistically yield a precise solution that includes the details within the vast domain of an entire heliostat field in addition to the detailed processes and features within a cavity receiver. Instead, the incoming field irradiance can be represented as a boundary condition on the receiver domain. This paper describes a program, the Solar Patch Calculator, written in Microsoft Excel VBA to characterize multiple beams emanating from a 'solar patch' located at the aperture of a cavity receiver, in order to represent the incoming irradiance from any field of heliostats as a boundary condition on the receiver domain. This program accounts for cosine losses; receiver location; heliostat reflectivity, areas and locations; field location; time of day and day of year. This paper also describes the implementation of the boundary conditions calculated by this program into a Discrete Ordinates radiation model using Ansys{reg_sign} FLUENT (www.fluent.com), and compares the results to experimental data and to results generated by the code DELSOL.

  3. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    SciTech Connect

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee; Choi, Hyeong-Jwa; Na, Tae-Young; Nemeno, Judee Grace E.; Lee, Jeong Ik; Yoon, Taek Joon; Choi, In-Soo; Lee, Minyoung; Lee, Jae-Seon; Kang, Young-Sun

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  4. Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation.

    PubMed

    Lee, Chia-Hua; Liao, Shih-Chieh; Lin, Tzy-Rong; Wang, Shing-Hoa; Lai, Dong-Yan; Chiu, Po-Kai; Lee, Jyh-Wei; Wu, Wen-Fa

    2016-08-01

    Photoresist and electron beam lithography techniques were used to fabricate embedded Ag bowtie and diabolo nanostructures with various apex angles on the surface of a TiO2 film. The reinforced localized surface plasmon resonance (LSPR) and electric field generated at both the Ag/TiO2 and air/TiO2 interfaces enabled high light absorbance in the TiO2 nanostructure. Results for both the bowtie and diabolo nanostructures showed that a reduction in the apex angle enhances both LSPR and Raman intensity. The maximum electric current density observed at the apex indicates that the strongest SPR confines at the tip gap of the bowtie and corners of the diabolo. In a long-wavelength region, as the apex angle increases, the resonant peak wavelength of the standing wave matches the increased length of the prism edges of the bowtie and diabolo to create a redshift. In a short-wavelength region, as the apex angle increases, the blueshift of the resonant peak wavelength is presumably attributable to the increase in the effective index of the local surface plasmon polariton standing wave mainly residing along both the bowtie and diabolo axes. The redshift and blueshift trend in the simulation results for the resonant peak wavelength agrees well with the experimental results. The fastest photocatalytic rate was obtained by placing the Ag/TiO2 bowtie at an apex angle of 30° in the methylene blue solution, revealing that the plasmonic photocatalysis causes the highest degradation efficiency. This is because the Schottky junction and LSPR can stimulate many valid radicals for the environmental improvement. PMID:27505725

  5. Irradiance gradients

    SciTech Connect

    Ward, G.J. Ecole Polytechnique Federale, Lausanne ); Heckbert, P.S. . School of Computer Science Technische Hogeschool Delft . Dept. of Technical Mathematics and Informatics)

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques.

  6. Minimizing the 1/r(2) perturbation for ideal fluence detectors in small source γ-irradiation fields.

    PubMed

    Bielajew, Alex F

    2014-08-21

    A technique for analyzing the effect of the geometrical shape of a source or a detector, using a quadrupole expansion, is described herein. It is shown that this method may be exploited to predict, optimize the geometry of a source, or a measurement device, and nearly eliminate, the departure from the 1/r(2) fall-off characteristic due to irradiation from small sources. We have investigated several simple shapes that have a vanishing Q2 quadrupole moment: a right circular cylinder with a diameter to depth ratio of √[2], a cone with a radius to height ratio of unity, and an oblate ellipsoid with a diameter to depth ratio of √[3/2]. These ideal shapes produce optimally small departures in a 1/r(2) field, nearly mimicking a point-like detector. We have also found a rotationally symmetric shape, intermediate to the other three, that has additionally, a vanishing Q4, the hexadecapole moment. This geometry further improves the 1/r(2)-perturbation characteristics and has an additional free parameter that may be adjusted to model the ideal cylinder, cone or oblate spheroid. PMID:25054611

  7. Effect of 4-hydroxypyrazolo (3,4-D) pyrimidine (allopurinol) on post-irradiation cerebral blood flow: implications of free-radical involvement

    SciTech Connect

    Cockerham, L.G.; Arroyo, C.M.; Hampton, J.D.

    1988-01-01

    Early transient incapacitation (ETI) is the complete cessation of motor performance, occurring transiently and within the first 30 min following exposure to supralethal doses of ionizing irradiation. Studies have reported severe decreases in regional cerebral blood flow (rCBF) in primates at the same postirradiation time after receiving supralethal doses of gamma irradiation. One study demonstrated a dramatic fall of total cerebral blood flow following a single, 25-Gy, Co exposure. Free radical interactions have been implicated in a large number of pathological conditions including irradiation injury, ischemia, microvascular injury, and cell membrane damage. The triphasic cerebral ischemic response seen after irradiation may be even more damaging than complete ischemia since reperfusion may lead to the formation of additional free radicals. A possible mode of pharmacologic intervention may be the introduction of superoxide dismutase or allopurinol since both were used to attenuate the biochemical and functional damage usually associated with free-radical production. This study was designed to determine whether the inhibition of free radical formation via the preirradiation administration of allopurinol would be successful in altering the postirradiation hypotension and reduced rCBF. The hippocampus and the hypothalamus, were selected for the determination of blood flow in this study since a dramatic, postirradiation decrease in blood flow has been reported in these areas.

  8. K-12 educator involvement in the Mars Pathfinder field trips in the Channeled Scabland of Washington and Idaho

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.

    2000-03-01

    In September 1995, thirteen K-12 educators were completely immersed in an activity in which they worked with engineers and scientists as they assessed potential hazards and previewed the possible geology of the site that had been selected for the July 1997 landing of Mars Pathfinder. This site, located in the Ares Vallis outflow channel on Mars, was expected to be quite similar to the terrain of the Channeled Scabland of Washington and Idaho. The 13 educators were tasked with bringing their first-hand experience back to their hometowns and sharing what they had learned with local students, colleagues, and families. In addition, the educators helped conduct public outreach and teacher-training activities in the towns encountered during the field trips. For a wider outreach, the trip activities were also documented for television and print media. For many of the 13 educators, their connection to the Mars mission continued for more than two years, and some remain involved with this type of activity today. For some, these events changed the course and/or outlook of their careers. These activities and events can serve as a model for others considering ways to connect educators, children, and communities to high-visibility geoscience research projects.

  9. Evidence for an involvement of thymidine kinase in the excision repair of ultraviolet-irradiated herpes simplex virus in human cells

    SciTech Connect

    Intine, R.V.; Rainbow, A.J. )

    1990-01-01

    A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in part at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair.

  10. Effects of ultraviolet irradiation, pulsed electric field, hot water and ethanol vapours treatment on functional properties of mung bean sprouts.

    PubMed

    Goyal, Ankit; Siddiqui, Saleem; Upadhyay, Neelam; Soni, Jyoti

    2014-04-01

    The present investigation was conducted with the objective to study the effects of various treatments and storage conditions on ascorbic acid, total phenols, antioxidant activity and polyphenol oxidase activity of mung bean sprouts. The sprouts subjected to various treatments viz., pulsed electric field (PEF) (10,000 V for 10 s), hot water dip (HWD) (50 °C for 2 min), ethanol vapours (1 h) and UV-Irradiation (10 kJm(-2) in laminar flow chamber for 1 h); and then stored at room (25 ± 1 °C) and low (7 ± 1 °C) temperature conditions. The sprouts were analyzed regularly at 24 h interval till end of shelf life. Different treatments given to sprouts resulted in differential effect on various parameters. The ascorbic acid, total phenols and antioxidant activity were highest in ethanol vapours treated sprouts. There was a general decrease in polyphenol oxidase activity by various treatments. During storage ascorbic acid, total phenols and antioxidant activity of sprouts first increased and then decreased significantly, however, for polyphenol oxidase activity a progressive increase with increase in storage period was observed. The trends were similar at room and low temperature storage conditions. Thus, it can be concluded that the ethanol vapours significantly improved the ascorbic acid content, total phenols and antioxidant activity of mung bean sprouts, both at room as well as low temperature conditions of storage. PMID:24741164

  11. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    PubMed

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-01

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology. PMID:25582678

  12. Mixed-Field Dosimetry of a Fast Neutron Beam at the Portuguese Research Reactor for the Irradiation of Electronic Circuits - Measurements and Calculations

    NASA Astrophysics Data System (ADS)

    Fernandes, A. C.; Gonçalves, I. C.; Marques, J. G.; Santos, J.; Ramalho, A. J. G.; Osvay, M.

    2003-06-01

    The neutron and photon fields present at the Fast Neutron Beam of RPI were simulated with MCNP-4C and measured with activation foils, TLDs and ionisation chambers. In general, there is a good agreement between calculations and measurements, although the model overestimates the thermal neutron component. Aluminum oxide TLDs were found to be promising for monitoring the photon dose in actual irradiations of circuits.

  13. ANDRILL: INVOLVING TEACHERS IN FIELD RESEARCH ENHANCES THE TRANSFER OF SCIENTIFIC KNOWLEDGE TO CLASSROOMS AND TO OTHER EDUCATORS

    NASA Astrophysics Data System (ADS)

    Cattadori, M.; Huffman, L. T.; Trummel, B.

    2009-12-01

    For most educators, the end of a field research experience is truly the beginning. From the knowledge gained and the excitement of living and working in a harsh environment like Antarctica, ARISE (ANDRILL Research Immersion for Science Educators) participants create enhanced learning experiences and resources for their students and for the professional development of other teachers. ANDRILL (Antarctic geological DRILLing) is an multi-national and interdisciplinary research project involving Italy, Germany , New Zealand, and USA. The core concept of its Education and Public Outreach Program is to embed educators as integral members on the science research teams, allowing them to participate in every phase of the mission. Their primary goal is to develop effective and innovative educational approaches for the communication of the scientific and technical aspects of the drilling program. ANDRILL has developed an exemplary teacher research experience model that differs from most by supporting a collaborative team of international educators rather than just one teacher. During the first two years of drilling projects, 2006 and 2007, ANDRILL took 16 educators from 4 countries to Antarctica. From those experiences, a growing collaborative network of polar science educators is nurtured, many valuable resources and examples of professional development have been created, and lessons have been learned and evaluated for future teacher research immersion experiences. An Italian ARISE participant and ANDRILL’s Education and Outreach Coordinator will present how ARISE has been at the core of developing transformational programs and resources in both countries including: [1] Flexhibit, a digital series of climate change materials designed for informal and formal learning environments that have been translated into Italian, German, French, Arabic, Spanish, and New Zealand English, (2) C2S2: Climate Change Student Summits, which provide professional development and resources for

  14. Highly effective local control and palliation of mantle cell lymphoma with involved-field radiation therapy (IFRT)

    SciTech Connect

    Rosenbluth, Benjamin D. . E-mail: rosenblb@mskcc.org; Yahalom, Joachim

    2006-07-15

    Purpose: Although radiosensitivity of mantle cell lymphoma (MCL) has been demonstrated in vitro, radiotherapy is rarely employed in treatment of MCL. We studied clinical responses of MCL patients treated with involved-field radiation therapy (IFRT) predominantly for local control and/or palliation. Methods and Materials: A total of 21 consecutive patients (38 sites) treated with IFRT for MCL were retrospectively analyzed. Median age was 68. Seventeen patients had Stage IV/relapsed disease, 1 had Stage II, and 3 had Stage I disease. Most patients received prior chemotherapy, with an average of two combinations per patient. Mean number of sites treated per patient was two. Mean total dose was 30 Gy. Results: Mean follow-up was 13 months. Overall local response rate was 100%. Complete response was obtained in 64% of the sites and partial response in 36%. Average time to response was 20 days. Twenty-eight sites had a response before radiation therapy was complete. Of 16 sites associated with pre-IFRT pain or discomfort, 15 exhibited post-IFRT relief. Thirteen sites (34%) exhibited local progression, with a median time to progression of 10 months, and an average response duration of 9 months. Five patients experienced Grade II radiation-related toxicity. No Grade III toxicity was reported. Twelve-month overall survival for patients receiving IFRT was 55%. Conclusions: Radiotherapy provided effective and lasting local responses in MCL patients and was associated with minimal toxicity. Radiation doses required for most lesions were relatively low and responses were noticed early in the course of treatment. Radiation therapy should be considered early in the course of relapsing, refractory, or localized MCL.

  15. Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol.

    PubMed

    Wilkins, Katie A; Bosch, Maurice; Haque, Tamanna; Teng, Nianjun; Poulter, Natalie S; Franklin-Tong, Vernonica E

    2015-03-01

    Self-incompatibility (SI) is an important genetically controlled mechanism to prevent inbreeding in higher plants. SI involves highly specific interactions during pollination, resulting in the rejection of incompatible (self) pollen. Programmed cell death (PCD) is an important mechanism for destroying cells in a precisely regulated manner. SI in field poppy (Papaver rhoeas) triggers PCD in incompatible pollen. During SI-induced PCD, we previously observed a major acidification of the pollen cytosol. Here, we present measurements of temporal alterations in cytosolic pH ([pH]cyt); they were surprisingly rapid, reaching pH 6.4 within 10 min of SI induction and stabilizing by 60 min at pH 5.5. By manipulating the [pH]cyt of the pollen tubes in vivo, we show that [pH]cyt acidification is an integral and essential event for SI-induced PCD. Here, we provide evidence showing the physiological relevance of the cytosolic acidification and identify key targets of this major physiological alteration. A small drop in [pH]cyt inhibits the activity of a soluble inorganic pyrophosphatase required for pollen tube growth. We also show that [pH]cyt acidification is necessary and sufficient for triggering several key hallmark features of the SI PCD signaling pathway, notably activation of a DEVDase/caspase-3-like activity and formation of SI-induced punctate actin foci. Importantly, the actin binding proteins Cyclase-Associated Protein and Actin-Depolymerizing Factor are identified as key downstream targets. Thus, we have shown the biological relevance of an extreme but physiologically relevant alteration in [pH]cyt and its effect on several components in the context of SI-induced events and PCD. PMID:25630437

  16. Impact of involved field radiotherapy in partial response after doxorubicin-based chemotherapy for advanced aggressive non-Hodgkin's lymphoma

    SciTech Connect

    Moser, Elizabeth C. . E-mail: e.c.moser@lumc.nl; Kluin-Nelemans, Hanneke C.; Carde, Patrice; Meerwaldt, Jacobus H.; Tirelli, Umberto; Aleman, Berthe M.P.; Baars, Joke; Thomas, Jose; Glabbeke, Martine van; Noordijk, Evert M.

    2006-11-15

    Purpose: Whether salvage therapy in patients with advanced aggressive non-Hodgkin's lymphoma (NHL) in partial remission (PR) should consist of radiotherapy or autologous stem-cell transplantation (ASCT) is debatable. We evaluated the impact of radiotherapy on outcome in PR patients treated in four successive European Organization for Research and Treatment of Cancer trials for aggressive NHL. Patients and Methods: Records of 974 patients (1980-1999) were reviewed regarding initial response, final outcome, and type and timing of salvage treatment. After 8 cycles of doxorubicin-based chemotherapy, 227 NHL patients were in PR and treated: 114 received involved field radiotherapy, 16 ASCT, 93 second-line chemotherapy, and 4 were operated. Overall survival (OS) and progression-free survival (PFS) after radiotherapy were estimated (Kaplan-Meier method) and compared with other treatments (log-rank). Impact on survival was evaluated by multivariate analysis (Cox proportional hazards model). Results: The median PFS in PR patients was 4.2 years and 48% remained progression-free at 5 years. Half of the PR patients converted to a complete remission. After conversion, survival was comparable to patients directly in complete remission. Radiotherapy resulted in better OS and PFS compared with other treatments, especially in patients with low to intermediate International Prognostic Index score, bulky disease, or nodal disease only. Correction by multivariate analysis for prognostic factors such as stage, bulky disease, and number of extranodal locations showed that radiotherapy was clearly the most significant factor affecting both OS and PFS. Conclusion: This retrospective analysis demonstrates that radiotherapy can be effective for patients in PR after fully dosed chemotherapy; assessment in a randomized trial (radiotherapy vs. ASCT) is justified.

  17. Characterization of unconventional electron fields for the treatment of mycosis fungoides using the total skin irradiation technique

    SciTech Connect

    González, M. A. Pagnan Mitsoura, E.; Oviedo, J.O. Hernández; Vázquez, D. R. Ruesga

    2014-11-07

    Mycosis fungoides is a cutaneous lymphoma that accounts for 2–3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electrons was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm{sup 2}. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm{sup 2}. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm{sup 2} was obtained, resulting to an effective maximum dose depth (Z{sub ref}) for electrons of 1.4±0.05cm. Using the same experimental data

  18. Characterization of unconventional electron fields for the treatment of mycosis fungoides using the total skin irradiation technique

    NASA Astrophysics Data System (ADS)

    Pagnan González, M. A.; Hernández Oviedo, J. O.; Mitsoura, E.; Ruesga Vázquez, D. R.

    2014-11-01

    Mycosis fungoides is a cutaneous lymphoma that accounts for 2-3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electrons was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm2. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm2. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm2 was obtained, resulting to an effective maximum dose depth (Zref) for electrons of 1.4±0.05cm. Using the same experimental data, horizontal and vertical

  19. Involved Field Radiation After Autologous Stem Cell Transplant for Diffuse Large B-Cell Lymphoma in the Rituximab Era

    SciTech Connect

    Biswas, Tithi; Dhakal, Sughosh; Chen Rui; Hyrien, Ollivier; Bernstein, Steven; Friedberg, Jonathan W.; Fisher, Richard I.; Liesveld, Jane; Phillips, Gordon; Constine, Louis S.

    2010-05-01

    Purpose: For patients with recurrent or refractory large B-cell non-Hodgkin's lymphoma, high-dose chemotherapy and autologous stem cell transplant (ASCT) is the treatment of choice. We evaluated the role of involved field radiation therapy (IFRT) post-ASCT for patients initially induced with cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP) or, more recently, rituximab-CHOP (R-CHOP). Materials and Methods: Between May 1992 and April 2005, 176 patients underwent ASCT for recurrent or refractory large B-cell non-Hodgkin's lymphoma; 164 patients were evaluable for endpoint analysis. Fifty percent of the CHOP group (n = 131), and 39% of the R-CHOP group (n = 33), received IFRT. Follow-up from the time of transplant was a median/mean of 1.7/3 years (range, 0.03-13 years). Results: The 5-year overall survival (OS) and disease-specific survival (DSS) improved with IFRT in both the R-CHOP (p = 0.006 and 0.02, respectively) and CHOP (p = 0.02 and p = 0.04, respectively) groups. IFRT was associated with a 10% (p = 0.17) reduction in local failure, alone or with a distant site. On univariate analysis, IFRT was associated with superior OS (hazard ratio [HR] = 0.50 [95% CI 0.32, 0.78]; p = 0.002) and DSS (HR = 0.53 [95% CI 0.33, 0.86]; p = 0.009). Presence of B symptoms was adverse (p = 0.03). On multivariate analysis, only IFRT was associated with significant improvement in OS (HR = 0.35 [0.18, 0.68]; p = 0.002) and DSS (HR = 0.39 [95% CI 0.18, 0.84]; p = 0.01). Conclusions: Recognizing that positive and negative patient selection bias exists for the use of IFRT post-ASCT, patients initially treated with CHOP or R-CHOP and who undergo ASCT for recurrent or refractory disease may benefit from subsequent IFRT presumably due to enhanced local control that can translate into a survival advantage.

  20. Use of CD-ROM-based tool for analyzing contouring variations in involved-field radiotherapy for Stage III NSCLC

    SciTech Connect

    Soernsen De Koste, John R. van . E-mail: j.vansornsendekoste@vumc.nl; Senan, Suresh; Underberg, Rene W.M.; Oei, Swie Swat; Elshove, Dionne; Slotman, Ben J.; Lagerwaard, Frank J.

    2005-10-01

    Background: Interclinician variability in defining target volumes is a problem in conformal radiotherapy. A CD-ROM-based contouring tool was used to conduct a dummy run in an international trial of involved-field chemoradiotherapy for Stage III non-small-cell lung cancer. Methods and Materials: The CT scan of an eligible patient was installed on an 'auto-run' CD-ROM incorporating a contouring program based on ImageJ for Windows, which runs on any personal computer equipped with a CD-ROM drive. This tool was initially piloted at four academic centers and was subsequently mailed, together with all relevant clinical, radiologic, and positron emission tomography findings, to all participating centers in the international trial. Clinicians were instructed to contour separate gross tumor volumes (GTVs) for the tumor and two enlarged nodes and a clinical target volume for the hilus. A reference 'consensus' target volume for each target was jointly generated by three other clinicians. Results: The data received from the four academic centers and 16 study participants were suitable for analysis. Data from one center was unsuitable for detailed analysis because the target volumes were contoured at 1.2-cm intervals. GTVs were available for a total of 21 tumors and 19 nodes, and 15 hilar clinical target volumes were available. The mean GTV of the primary tumor was 13.6 cm{sup 3} (SD, 5.2; median, 12.3; range, 8.3-26.9). The variation in the center of the mass relative to the mean center of the mass in the left-right, ventrodorsal, and craniocaudal axes was 1.5, 0.4, and 1.0 mm, respectively. The largest volume variation was observed for the right hilar clinical target volume (mean, 33.7 cm{sup 3}; SD, 31.2; median, 20.3; range, 4.8-109.9). Smaller variations were observed for the subcarinal node (mean, GTV, 1.9 cm{sup 3}; SD, 1.2; median, 1.7; range, 0.5-5.3), except caudally where the node was difficult to distinguish from the pericardium. The 'consensus' volumes for all

  1. Unraveling The Origin of Enhanced Field Emission from Irradiated FeCo-SiO2 Nanocomposites: A Combined Experimental and First-Principles Based Study.

    PubMed

    Sarker, Debalaya; Bhattacharya, Saswata; Rodriguez, Raul D; Sheremet, Evgeniya; Kabiraj, D; Avasthi, D K; Zahn, Dietrich R T; Schmidt, H; Srivastava, P; Ghosh, S

    2016-02-01

    This work is driven by the vision of engineering planar field emitters with ferromagnetic metal-insulator nanocomposite thin films, using swift heavy ion (SHI) irradiation method. FeCo nanoparticles inside SiO2 matrix, when subjected to SHI get elongated. Using this, we demonstrate here a planar field emitter with maximum current density of 550 μA/cm(2) at an applied field of 15 V/μm. The film, irradiated with 5 × 10(13) ions/cm(2) fluence (5e13) of 120 MeV Au(9+) ions, shows very high electron emitting quantum efficiency in comparison to its unirradiated counterpart. Surface enhanced Raman spectroscopy analysis of unirradiated and 5e13 films further confirms that the field emission (FE) enhancement is not only due to surface protrusions but also depends on the properties of entire matrix. We find experimental evidence of enhanced valence band density of states (VB DOS) for 5e13 film from XPS, which is verified in the electronic structure of a model FeCo cluster from first-principles based calculations combining density functional theory (DFT) and molecular dynamics (MD) simulations. The MD temperature is selected from the lattice temperature profile inside nanoparticles as deduced from thermal spike model. Increasing the irradiation fluence beyond 5e13, results in reduced VB DOS and melting of surface protrusions, thus causing reduction of FE current density. We finally conclude from theoretical analysis that change in fluence alters the co-ordination chemistry followed by the charge distribution and spin alignment, which influence the VB DOS and concurrent FE as evident from our experiment. PMID:26812580

  2. Photoionization of isooctane and n-octane in intense laser fields: The effect of irradiance on ionization rates and electron dynamics

    NASA Astrophysics Data System (ADS)

    Healy, Andrew T.

    Thin path length jets (60 mum) of liquid isooctane and n-octane have been photoionized with 36-70 fs pulses of 3.1 eV photons. The population of electrons ejected post ionization is investigated over a large range of ionizing irradiance, Iex, though transient absorption (TA) measurements at wavelengths in the range 570 nm (2.17 eV) to 1315 nm (0.94 eV). As Iex is varied over a range from 3 TW/cm2 to 410 TW/cm2, the dependence of the TA intensity on Iex at time delays 0.7 ps and 2.5 ps exhibits the periodic structure theoretically predicted to develop as a result of multiphoton channel closings. At low Iex (< 9 TW/cm2), TA intensity in isooctane is proportional to Inex where n = 3, consistent with non-resonant, near threshold ionization (liquid phase ionization potential = 8.6 eV). At I ex > 9 TW/cm2, n declines with increasing Iex up to Iex = 13 TW/cm2, at which point n abruptly increases to 4. The pattern is repeated at Iex > 13 TW/cm 2, albeit with n declining from 4 and then abruptly increasing to 5 as Iex becomes greater than 100 TW/cm2. A similar trend is observed in n-octane. The decay of the TA intensity in both liquids has been measured from 0.50 ps to 180 ps over the same range of irradiance. Via comparison of the two liquids, and electron quenching studies, the TA at wavelengths longer than 800 nm has been assigned to be predominantly due to absorption by the electron. At the lowest irradiances, where n = 3 photons are required for photoionization, the TA decay in isooctane is characteristic of a geminate ion pair decaying via diffusive recombination in a Coulomb field. As the irradiance is increased, an early time, rapid, exponential decay of the TA begins to develop until an irradiance is reached (≅ 13 TW/cm2) at which our studies indicate that the n = 3 channel closes. At this irradiance, the TA decay returns to purely diffusive-like. As the irradiance is further increased, there is a reappearance of the early time exponential decay until the n = 4

  3. PprA Protein Is Involved in Chromosome Segregation via Its Physical and Functional Interaction with DNA Gyrase in Irradiated Deinococcus radiodurans Bacteria

    PubMed Central

    Devigne, Alice; Guérin, Philippe; Lisboa, Johnny; Quevillon-Cheruel, Sophie; Armengaud, Jean; Sommer, Suzanne; Bouthier de la Tour, Claire

    2016-01-01

    ABSTRACT PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCE D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation

  4. Development of a High Irradiance LED Configuration for Small Field of View Motion Estimation of Fertilizer Particles

    PubMed Central

    Cool, Simon; Pieters, Jan G.; Mertens, Koen C.; Mora, Sergio; Cointault, Frédéric; Dubois, Julien; van de Gucht, Tim; Vangeyte, Jürgen

    2015-01-01

    Better characterization of the fertilizer spreading process, especially the fertilizer pattern distribution on the ground, requires an accurate measurement of individual particle properties and dynamics. Both 2D and 3D high speed imaging techniques have been developed for this purpose. To maximize the accuracy of the predictions, a specific illumination level is required. This paper describes the development of a high irradiance LED system for high speed motion estimation of fertilizer particles. A spectral sensitivity factor was used to select the optimal LED in relation to the used camera from a range of commercially available high power LEDs. A multiple objective genetic algorithm was used to find the optimal configuration of LEDs resulting in the most homogeneous irradiance in the target area. Simulations were carried out for different lenses and number of LEDs. The chosen configuration resulted in an average irradiance level of 452 W/m2 with coefficient of variation less than 2%. The algorithm proved superior and more flexible to other approaches reported in the literature and can be used for various other applications. PMID:26569261

  5. Development of a High Irradiance LED Configuration for Small Field of View Motion Estimation of Fertilizer Particles.

    PubMed

    Cool, Simon; Pieters, Jan G; Mertens, Koen C; Mora, Sergio; Cointault, Frédéric; Dubois, Julien; van de Gucht, Tim; Vangeyte, Jürgen

    2015-01-01

    Better characterization of the fertilizer spreading process, especially the fertilizer pattern distribution on the ground, requires an accurate measurement of individual particle properties and dynamics. Both 2D and 3D high speed imaging techniques have been developed for this purpose. To maximize the accuracy of the predictions, a specific illumination level is required. This paper describes the development of a high irradiance LED system for high speed motion estimation of fertilizer particles. A spectral sensitivity factor was used to select the optimal LED in relation to the used camera from a range of commercially available high power LEDs. A multiple objective genetic algorithm was used to find the optimal configuration of LEDs resulting in the most homogeneous irradiance in the target area. Simulations were carried out for different lenses and number of LEDs. The chosen configuration resulted in an average irradiance level of 452 W/m² with coefficient of variation less than 2%. The algorithm proved superior and more flexible to other approaches reported in the literature and can be used for various other applications. PMID:26569261

  6. Irradiation resistance of intravolume shading elements embedded in photomasks used for CD uniformity control by local intra-field transmission attenuation

    NASA Astrophysics Data System (ADS)

    Zait, Eitan; Ben-Zvi, Guy; Dmitriev, Vladimir; Oshemkov, Sergey; Pforr, Rainer; Hennig, Mario

    2006-05-01

    Intra-field CD variation is, besides OPC errors, a main contributor to the total CD variation budget in IC manufacturing. It is caused mainly by mask CD errors. In advanced memory device manufacturing the minimum features are close to the resolution limit resulting in large mask error enhancement factors hence large intra-field CD variations. Consequently tight CD Control (CDC) of the mask features is required, which results in increasing significantly the cost of mask and hence the litho process costs. Alternatively there is a search for such techniques (1) which will allow improving the intrafield CD control for a given moderate mask and scanner imaging performance. Currently a new technique (2) has been proposed which is based on correcting the printed CD by applying shading elements generated in the substrate bulk of the mask by ultrashort pulsed laser exposure. The blank transmittance across a feature is controlled by changing the density of light scattering pixels. The technique has been demonstrated to be very successful in correcting intra-field CD variations caused by the mask and the projection system (2). A key application criterion of this technique in device manufacturing is the stability of the absorbing pixels against DUV light irradiation being applied during mask projection in scanners. This paper describes the procedures and results of such an investigation. To do it with acceptable effort a special experimental setup has been chosen allowing an evaluation within reasonable time. A 193nm excimer laser with pulse duration of 25 ns has been used for blank irradiation. Accumulated dose equivalent to 100,000 300 mm wafer exposures has been applied to Half Tone PSM mask areas with and without CDC shadowing elements. This allows the discrimination of effects appearing in treated and untreated glass regions. Several intensities have been investigated to define an acceptable threshold intensity to avoid glass compaction or generation of color centers in

  7. Quasimonoenergetic Proton Bunch Generation by Dual-Peaked Electrostatic-Field Acceleration in Foils Irradiated by an Intense Linearly Polarized Laser

    NASA Astrophysics Data System (ADS)

    Zhuo, H. B.; Chen, Z. L.; Yu, W.; Sheng, Z. M.; Yu, M. Y.; Jin, Z.; Kodama, R.

    2010-08-01

    It is found that stable proton acceleration from a thin foil irradiated by a linearly polarized ultraintense laser can be realized for appropriate foil thickness and laser intensity. A dual-peaked electrostatic field, originating from the oscillating and nonoscillating components of the laser ponderomotive force, is formed around the foil surfaces. This field combines radiation-pressure acceleration and target normal sheath acceleration to produce a single quasimonoenergetic ion bunch. A criterion for this mechanism to be operative is obtained and verified by two-dimensional particle-in-cell simulation. At a laser intensity of ˜5.5×1022W/cm2, quasimonoenergetic GeV proton bunches are obtained with ˜100MeV energy spread, less than 4° spatial divergence, and ˜50% energy conversion efficiency from the laser.

  8. All-optical control in metal nanocomposites due to a reversible transition between local field enhancement and local field depression upon irradiation by ultrashort control-pulses of light

    NASA Astrophysics Data System (ADS)

    Im, Song-Jin; Ho, Gum-Song

    2014-04-01

    We theoretically study the non-perturbative effective nonlinear responses of metal nanocomposites based on the intrinsic third-order nonlinear response of metal nanoparticles. The large intrinsic third-order nonlinear susceptibility of metal nanoparticles and irradiation by an ultrashort control pulse of light with a sufficiently high peak intensity and moderate fluence can induce a local field depression and saturated plasmon bleaching in the metal nanoparticles. If the control pulse is on, the metal nanocomposites behave like a dielectric due to the local field depression, while if the control pulse is off, they behave like a metal, showing a high absorption due to the local field enhancement at the plasmon resonance. This phenomenon can be applied to the ultrafast and remote control of light in metal nanocomposites.

  9. Using sediment transport and river restoration to link research and education, and promote K-12 female involvement in STEM fields

    NASA Astrophysics Data System (ADS)

    Yager, E. M.; Bradley-Eitel, K.

    2011-12-01

    The focus of this CAREER award is to better understand and predict the mechanics of sediment transport, to link research and education through courses and shared field sites, and to increase female interest in STEM fields. To accomplish the education component of this proposal we have focused on the following three activities: 1) a Keystone course on the scientific method, 2) a Women Outside with Science (WOWS) camp and 3) a permanent field site for research and education on river processes. In the Keystone Course, students investigated the impact of roughness addition, in sediment-starved river reaches (e.g. downstream of dams), on the retention of gravel used for spawning. They developed research questions and hypotheses, designed and conducted a set of scaled laboratory flume experiments, analyzed their data and wrote a draft manuscript of their results. Student feedback was overwhelmingly positive on the merits of this course, which included hands-on learning of the following: basic sediment transport and fluvial geomorphology, applied statistics, laboratory methods, and scientific writing skills. Students sometimes struggled when flume experiments did not progress as planned, and in the analysis and interpretation of complex data. Some of the students in the course have reanalyzed data, conducted additional experiments and are currently rewriting the manuscript for submission to a peer-reviewed journal. Such a course fundamentally links research and teaching, and provides an introduction to research for advanced undergraduates or beginning graduate students. We have also run one summer WOWS camp, which was a ten day camping and inquiry based research experience for 20 female junior-high and high-school students. The girls studied climate change and water related issues, worked on a restoration project on the Little Salmon River, met with a fish biologist and did fish habitat surveys and studied water quality along the North Fork of the Payette River while on a

  10. Graduate student involvement with designing inquiry-based Earth science field projects for the secondary-level classroom

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Scherf, L.; Ward, S.; Cady, P.; Bromley, J.; Varner, R. K.; Froburg, E.

    2008-12-01

    In a secondary-level Earth System Science (ESS) curriculum, the most authentic learning is achieved through the inquiry-based application of real-world research methods in the context of modern understanding of the interconnected components of the Earth System (e.g. lithosphere, hydrosphere, atmosphere, and biosphere). Following the intensive ESST-1 summer institute at UNH, during which teachers enhance their ESS content knowledge via interactions with UNH faculty, staff, and graduate students, each participating teacher is paired with one graduate student fellow for the duration of the school year. This graduate fellow provides a continuing link between the secondary-level school teaching environment and university resources, facilitating the implementation of new content knowledge and current scientific research methodology into the classroom setting. According to the National Science Education Standards (1), scientific inquiry is the central strategy for teaching science. "In successful science classrooms, teachers and students collaborate in the pursuit of ideas... Students formulate questions and devise ways to answer them, they collect data and decide how to represent it, they organize data to generate knowledge, and they test the reliability of the knowledge they have generated. As they proceed, students explain and justify their work to themselves and to one another, learn to cope with problems such as the limitations of equipment, and react to challenges posed by the teacher and by classmates." To speak to these goals, an ongoing local wetland field study has been conceptualized and implemented in three example classrooms (seventh grade general science, ninth grade physical science and tenth grade biology) in two school systems (Oyster River Middle School in Durham, NH and Berlin High School in Berlin, NH). These field studies were conducted using authentic scientific equipment to collect data, including a Li-Cor 840 infrared CO2 analyzer and handmade

  11. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm‑2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  12. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2013-05-15

    Fission gas bubble is one of evolving microstructures, which affect thermal mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking, in operating nuclear fuels. Therefore, fundamental understanding of gas bubble evolution kinetics is essential to predict the thermodynamic property and performance changes of fuels. In this work, a generic phasefield model was developed to describe the evolution kinetics of intra-granular fission gas bubbles in UO2 fuels under post-irradiation thermal annealing conditions. Free energy functional and model parameters are evaluated from atomistic simulations and experiments. Critical nuclei size of the gas bubble and gas bubble evolution were simulated. A linear relationship between logarithmic bubble number density and logarithmic mean bubble diameter is predicted which is in a good agreement with experimental data.

  13. Total Body Irradiation, Toward Optimal Individual Delivery: Dose Evaluation With Metal Oxide Field Effect Transistors, Thermoluminescence Detectors, and a Treatment Planning System

    SciTech Connect

    Bloemen-van Gurp, Esther J. Mijnheer, Ben J.; Verschueren, Tom A.M.; Lambin, Philippe

    2007-11-15

    Purpose: To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. Methods and Materials: A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. Results: The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. Conclusions: The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.

  14. Factors involved in sustained use of point-of-use water disinfection methods: a field study from Flores Island, Indonesia.

    PubMed

    Roma, E; Bond, T; Jeffrey, P

    2014-09-01

    Many scientific studies have suggested that point-of-use water treatment can improve water quality and reduce the risk of infectious diseases. Despite the ease of use and relatively low cost of such methods, experience shows the potential benefits derived from provision of such systems depend on recipients' acceptance of the technology and its sustained use. To date, few contributions have addressed the problem of user experience in the post-implementation phase. This can diagnose challenges, which undermine system longevity and its sustained use. A qualitative evaluation of two household water treatment systems, solar disinfection (SODIS) and chlorine tablets (Aquatabs), in three villages was conducted by using a diagnostic tool focusing on technology performance and experience. Cross-sectional surveys and in-depth interviews were used to investigate perceptions of involved stakeholders (users, implementers and local government). Results prove that economic and functional factors were significant in using SODIS, whilst perceptions of economic, taste and odour components were important in Aquatabs use. Conclusions relate to closing the gap between factors that technology implementers and users perceive as key to the sustained deployment of point-of-use disinfection technologies. PMID:25252361

  15. Modification of hydrological properties in a fine textured soil following field application of pelletized biochar: investigation of the mechanism involved.

    NASA Astrophysics Data System (ADS)

    Costanza Andrenelli, Maria; Mocali, Stefano; Pellegrini, Sergio; Vignozzi, Nadia

    2016-04-01

    The application of pelletized biochar is seldom employed in field, and its effect on soil hydrological behaviour scarcely investigated. Biochar is usually added in powdered or granular form to improve the homogeneity of distribution, meanwhile favouring its interaction with soil matrix. In this study we evaluated the possibility of applying pelletized biochar as soil conditioner to enhance, during a single cropping season, the hydrological behaviour of a silty clay loam soil prone to structure degradation. For that purpose, the water retention curves (WRCs) were determined on undisturbed soil samples (0-15 cm) three months after the addition, at the rate of 14 Mg ha‑1, of two differently pyrolyzed biochars (B1 and B2). Starting from the WRCs the pore size distribution was determined. The gravimetric water content at both field capacity (-10 kPa) and wilting point (-1,500 kPa) was also measured on biochar samples to assess their available water capacity (AWC). In both the treatments, soil bulk density (BD) was significantly lower compared to control, apparently as direct consequence of the addition of low density pellets. Actually, excluding the intrinsic biochar porosity from soil bulk density calculation, BD values of the treated soils remain lower of around 10% over control. Such findings suggest that a modification of soil structural characteristics might have been induced by pellet addition. Data of the WRCs indicate a significant increase of transmission (500-50 micron), storage (50-0.5 micron) and AWC pores (30-0.2 micron) in the amended soils. The two biochars affected the AWC by direct pore contribution, but the extent of such effect was related to the biochar type: the tested pelletized biomass seems to have positive effects provided that the pyrolysis temperature does not exceed 800°C, as in the case of B1. The overall hydrological improvement might be correlated to both the inherent biochar retention capacity and a merely mechanical process of

  16. Observations on cattle schistosomiasis in the Sudan, a study in comparative medicine. III. Field testing of an irradiated Schistosoma bovis vaccine

    SciTech Connect

    Majid, A.A.; Bushera, H.O.; Saad, A.M.; Hussein, M.F.; Taylor, M.G.; Dargie, J.D.; Marshall, T.F.; Nelson, G.S.

    1980-05-29

    Previous work has shown that cattle can acquire a strong resistance to Schistosoma bovis infection following repeated natural exposure. Partial resistance to a laboratory challenge with S. bovis has also been demonstrated in calves after immunization with an irradiated schistosomular or cercarial vaccine. The aim of the present study was to see whether this type of caccine could protect calves under the very different conditions of natural exposure to S. bovis in the field. Thirty 6- to 9-month-old calves were each immunized with 10,000 irradiated S. bovis schistosomula by intramuscular injection and 8 weeks later were released into an enzootic area along with 30 unvaccinated animals. The calves were followed up for 10 months, during which period protection was evidenced by a lower mortality rate, a slower rate of acquisition of infection, and lower fecal egg counts in the vaccinated calves. Necropsy of the survivors showed 60 to 70% reductions in worm and tissue egg counts of the vaccinated calves as compared to those not vaccinated.

  17. Numerical solution to the Bloch equations: paramagnetic solutions under wideband continuous radio frequency irradiation in a pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Jun; Ma, Hong; Yu, De; Zeng, Xiao-Hu

    2016-08-01

    A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic fields, and can dramatically improve the utilization of the pulsed field. The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloch equations. In the numerical simulation, the applied magnetic field is a pulsed magnetic field up to 80 T, and the wideband continuous radio frequency (RF) excitation is a band-limited (0.68–3.40 GHz) white noise. Furthermore, the influences of some experimental parameters, such as relaxation time, applied magnetic field strength and wideband continuous RF power, on the WB-CW-NMR signal are analyzed briefly. Finally, a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed, and the basic requirements of this experimental system are discussed. Meanwhile, the amplitude of the NMR signal, the level of noise and RF interference in WB-CW-NMR experiments are estimated, and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference. Supported by National Natural Science Foundation of China (11475067), the Innovative Research Foundation of Huazhong University of Science and Technology (2015 ZDTD017) and the Experimental Apparatus Research Project of Wuhan Pulsed High Magnetic Field Center (2015KF17)

  18. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    SciTech Connect

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-08-28

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals.

  19. Photocatalytic CO2 reduction over B4C/C3N4 with internal electric field under visible light irradiation.

    PubMed

    Zhang, Xiaojie; Wang, Lei; Du, Quanchao; Wang, Zhiyong; Ma, Shuguo; Yu, Miao

    2016-02-15

    Boron carbide/graphitic carbon nitride (B4C/g-C3N4) p-n hetero-junction photocatalyst with an internal electric field was synthesized by a facile solvent evaporation method and characterized by field emission scanning electron microscope (FESEM), UV-Vis diffuse reflectance spectra (UV-Vis DRS), photoluminescence spectra (PL), etc. Photocatalytic activity of the composite B4C/g-C3N4 loaded with Pt co-catalyst was evaluated using CO2 conversion to CH4 with H2 as the hydrogen source and reductant under visible light irradiation. The coupling of p-type B4C with n-type g-C3N4 significantly improved the performance of photocatalytic CO2 reduction; with the optimum B4C mass fraction of 1/6, the composite photocatalyst showed approximately 6 and 8 times higher CH4 generation rate than g-C3N4 and B4C, respectively. The enhancement was attributed to efficient photo-excited electron/hole separation due to the formation of internal electric field at the p-B4C/n-C3N4 interface. PMID:26609927

  20. Influence of an in-plane magnetic field in the off-resonance magnetoresistance spike in irradiated ultraclean 2DES

    SciTech Connect

    Iñarrea, J.

    2013-12-04

    We report on theoretical studies of a recently discovered strong radiation-induced magnetoresistance spike obtained in ultraclean two-dimensional electron systems at low temperatures. The most striking feature of this spike is that it shows up on the second harmonic of the cyclotron resonance. We apply the radiation-driven electron orbits model in the ultraclean scenario to offer a theoretical approach of this striking effect. We explain the effect of an in-plane magnetic field on the spike which consists in a vanishing effect when this field increases.

  1. Advances in the implementation of helical tomotherapy-based total marrow irradiation with a novel field junction technique

    SciTech Connect

    Zeverino, Michele; Agostinelli, Stefano; Taccini, Gianni; Cavagnetto, Francesca; Garelli, Stefania; Gusinu, Marco; Vagge, Stefano; Barra, Salvina; Corvo, Renzo

    2012-10-01

    Given the limitations in the travel ability of the helical tomotherapy (HT) couch, total marrow irradiation (TMI) has to be split in 2 segments, with the lower limbs treated with feet first orientation. The aim of this work is to present a planning technique useful to reduce the dose inhomogeneity resulting from the matching of the 2 helical dose distributions. Three HT plans were generated for each of the 18 patients enrolled. Upper TMI (UTMI) and lower TMI (LTMI) were planned onto the whole-body computed tomography (CT) and on the lower-limb CT, respectively. A twin lower TMI plan (tLTMI) was designed on the whole-body CT. Agreement between LTMI and tLTMI plans was assessed by computing for each dose-volume histogram (DVH) structure the {gamma} index scored with 1% of dose and volume difference thresholds. UTMI and tLTMI plans were summed together on the whole-body CT, enabling the evaluation of dose inhomogeneity. Moreover, a couple of transition volumes were used to improve the dose uniformity in the abutment region. For every DVH, a number of points >99% passed the {gamma} analysis, validating the method used to generate the twin plan. The planned dose inhomogeneity at the junction level resulted within {+-}10% of the prescribed dose. Median dose reduction to organs at risk ranged from 30-80% of the prescribed dose. Mean conformity index was 1.41 (range 1.36-1.44) for the whole-body target. The technique provided a 'full helical' dose distribution for TMI treatments, which can be considered effective only if the dose agreement between LTMI and tLTMI plans is met. The planning of TMI with HT for the whole body with adequate dose homogeneity and conformity was shown to be feasible.

  2. Advances in the implementation of helical tomotherapy-based total marrow irradiation with a novel field junction technique.

    PubMed

    Zeverino, Michele; Agostinelli, Stefano; Taccini, Gianni; Cavagnetto, Francesca; Garelli, Stefania; Gusinu, Marco; Vagge, Stefano; Barra, Salvina; Corvò, Renzo

    2012-01-01

    Given the limitations in the travel ability of the helical tomotherapy (HT) couch, total marrow irradiation (TMI) has to be split in 2 segments, with the lower limbs treated with feet first orientation. The aim of this work is to present a planning technique useful to reduce the dose inhomogeneity resulting from the matching of the 2 helical dose distributions. Three HT plans were generated for each of the 18 patients enrolled. Upper TMI (UTMI) and lower TMI (LTMI) were planned onto the whole-body computed tomography (CT) and on the lower-limb CT, respectively. A twin lower TMI plan (tLTMI) was designed on the whole-body CT. Agreement between LTMI and tLTMI plans was assessed by computing for each dose-volume histogram (DVH) structure the γ index scored with 1% of dose and volume difference thresholds. UTMI and tLTMI plans were summed together on the whole-body CT, enabling the evaluation of dose inhomogeneity. Moreover, a couple of transition volumes were used to improve the dose uniformity in the abutment region. For every DVH, a number of points >99% passed the γ analysis, validating the method used to generate the twin plan. The planned dose inhomogeneity at the junction level resulted within ±10% of the prescribed dose. Median dose reduction to organs at risk ranged from 30-80% of the prescribed dose. Mean conformity index was 1.41 (range 1.36-1.44) for the whole-body target. The technique provided a "full helical" dose distribution for TMI treatments, which can be considered effective only if the dose agreement between LTMI and tLTMI plans is met. The planning of TMI with HT for the whole body with adequate dose homogeneity and conformity was shown to be feasible. PMID:22326734

  3. Test reactor irradiation coordination

    SciTech Connect

    Heartherly, D.W.; Siman Tov, I.I.; Sparks, D.W.

    1995-10-01

    This task was established to supply and coordinate irradiation services needed by NRC contractors other than ORNL. These services include the design and assembly of irradiation capsules as well as arranging for their exposure, disassembly, and return of specimens. During this period, the final design of the facility and specimen baskets was determined through an iterative process involving the designers and thermal analysts. The resulting design should permit the irradiation of all test specimens to within 5{degrees}C of their desired temperature. Detailing of all parts is ongoing and should be completed during the next reporting period. Procurement of the facility will also be initiated during the next review period.

  4. Alaskan Commodities Irradiation Project

    SciTech Connect

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.; Das, D.K.; Lewis, C.E.; Workman, W.G.; Tumeo, M.A.; Hok, C.I.; Birklid, C.A.; Bennett, F.L.

    1988-12-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology. 40 refs., 50 figs., 53 tabs.

  5. Electric-Field Enhancement by Nodular Defects in Multilayer Coatings Irradiated at Normal and 45 (degree) Incidence

    SciTech Connect

    Stolz, C J; Genin, F Y; Pistor,T V

    2003-09-18

    The standing-wave electric-field profile within multilayer coatings is significantly perturbated by a nodular defect. The intensity, which is proportional to the electric field squared, is increased in the high index material by {>=}3x at normal incidence and {>=}12x at 45 degrees incidence angle. Therefore it is not surprising that nodular defects are initiation sites of laser-induced damage. In this study, the impact of reflectance-band centering and incident angle are explored for a 1 {micro}m diameter nodular defect seed overcoated with a 24 layer high-reflector constructed of quarter-wave thick alternating layers of hafnia and silica. The modeling was performed using a three-dimensional finite-element analysis code.

  6. Efficient rotational echo double resonance recoupling of a spin-1/2 and a quadrupolar spin at high spinning rates and weak irradiation fields

    NASA Astrophysics Data System (ADS)

    Nimerovsky, Evgeny; Goldbourt, Amir

    2010-09-01

    A modification of the rotational echo (adiabatic passage) double resonance experiments, which allows recoupling of the dipolar interaction between a spin-1/2 and a half integer quadrupolar spin is proposed. We demonstrate efficient and uniform recoupling at high spinning rates ( ν r), low radio-frequency (RF) irradiation fields ( ν1), and high values of the quadrupolar interaction ( ν q) that correspond to values of α=ν12/νqνr, the adiabaticity parameter, which are down to less than 10% of the traditional adiabaticity limit for a spin-5/2 (α = 0.55). The low-alpha rotational echo double resonance curve is obtained when the pulse on the quadrupolar nucleus is extended to full two rotor periods and beyond. For protons (spin-1/2) and aluminum (spin-5/2) species in the zeolite SAPO-42, a dephasing curve, which is significantly better than the regular REAPDOR experiment (pulse length of one-third of the rotor period) is obtained for a spinning rate of 13 kHz and RF fields down to 10 and even 6 kHz. Under these conditions, α is estimated to be approximately 0.05 based on an average quadrupolar coupling in zeolites. Extensive simulations support our observations suggesting the method to be robust under a large range of experimental values.

  7. Origin of the dimpled critical-current-versus-magnetic-field-angle relation in YBa2Cu3O7 films studied using sub-MeV ion irradiation

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Ootsuka, T.; Ogiso, H.; Yamasaki, H.; Sohma, M.; Yamaguchi, I.; Kumagai, T.; Manabe, T.

    2016-06-01

    In high-temperature superconductor (HTSC) films, the magnetic-field-angle (θ) dependence of critical current density (J c) is often observed to have a characteristic local maximum at intermediate θ between H||ab and H||c. This local maximum appears as a ‘shoulder’ when J c(θ) has a predominant peak at H||c, and when such a peak is absent, it appears as a ‘dimple edge’ in a very broad dome-like J c(θ) that is centered and dimpled at H||c. Despite such common observation, there is still no consensus on the physical origin of this anomalous J c(θ). In this work, to determine this physical origin. we measured the temperature and microstructure dependence of J c(B, θ) in YBa2Cu3O7 films irradiated with 3 MeV Au, 500 keV Si, and 200 keV B ions (where B is magnetic induction). The film microstructure was controlled by varying the mass of irradiation ions (M i) known to alter the size and spacing of collision cascades. Results revealed two observations: (i) the dimple structure diminishes with decreasing temperature, and (ii) the maximum pinning force density in a θ profile, which is recorded at the dimple edge, systematically becomes more B-dependent with decreasing M i. Both experimental findings suggest that the sharp-shaped anomaly in J c(θ) in HTSC films originates from flux-line-lattice shear and electron mass anisotropy.

  8. Effects of ultraviolet irradiation, pulsed electric field, hot water dip and ethanol vapours treatment on keeping and sensory quality of mung bean (Vigna radiata L. Wilczek) sprouts.

    PubMed

    Goyal, Ankit; Siddiqui, Saleem

    2014-10-01

    The objective of this research work was to evaluate the effects of UV- irradiation, pulsed electric field (PEF), hot water dip (HWD) and ethanol vapours on the quality and storage life of mung bean sprouts (Vigna radiata L. Wilczek). The sprouts were subjected to various treatments viz., UV-Irradiation (10 kJm(-2) in laminar flow chamber for 1 h), PEF (10,000 V for 10s), HWD (50 °C for 2 min) and ethanol vapours (1 h); and then stored in thermocol cups wrapped with perforated cling films at room (25 ± 1 °C) and low (7 ± 1 °C) temperature conditions. The sprouts were analyzed regularly at 24 h interval for sprout length, sprout weight, total soluble solids (TSS), titratable acidity, non-enzymatic browning, total plate count and overall acceptability. Sprout length and weight increased during storage. There was no significant effect of various treatments on sprout length and weight, except in ethanol treatment, where suppression was observed. HWD showed higher TSS and acidity than that of control. The least browning was observed in ethanol treatment. The total plate count was not significantly affected by various treatments. Overall acceptability under various treatments decreased during storage period both at room and low temperature. Hot water and ethanol vapour treated sprouts showed higher acceptability than other treatments. However, the acceptability scores for sprouts remained within the acceptable range (≥6) up to 72 h at room temperature and 120 h at low temperature conditions. PMID:25328209

  9. Risk of a Second Malignant Neoplasm After Cancer in Childhood Treated With Radiotherapy: Correlation With the Integral Dose Restricted to the Irradiated Fields

    SciTech Connect

    Nguyen, France Rubino, Carole; Guerin, Sylvie; Diallo, Ibrahima; Samand, Akthar; Hawkins, Mike; Oberlin, Odile; Lefkopoulos, Dimitri; De Vathaire, Florent

    2008-03-01

    Purpose: After successful treatment of cancers in childhood, the occurrence of second malignant neoplasm (SMN) came to the fore. Few studies have considered the relationship between the radiation dose received and the risk of developing an SMN. To take into account the heterogeneity of the dose distribution so as to evaluate the overall risk of an SMN after a childhood cancer, we therefore focused on the integral dose restricted to the irradiated fields. Methods and Materials: The study was performed in a cohort of 4,401 patients who were 3-year survivors of all types of childhood cancer treated between 1947 and 1986 in France and Great Britain. For each patient, the integral dose was estimated for the volume inside the beam edges. Results: We found a significant dose-response relationship between the overall risk of an SMN and the estimated integral dose. The excess relative risk for each incremental unit of the integral dose was only 0.008 in a linear model and 0.017 when a negative exponential term was considered, when adjusted for chemotherapy. The risk of SMN occurrence was 2.6 times higher in the case of irradiation. However among patients who had received radiotherapy, only those who had received the highest integral dose actually had a higher risk. Conclusions: The integral dose in our study cannot be considered as a good predictor of later risks. However other studies with the same study design are obviously needed to evaluate the use of the integral dose as a tool for decision making concerning different radiotherapy techniques.

  10. Improvement of field emission properties of α-Fe{sub 2}O{sub 3} nanoflakes due to the lowered back contact barrier after high energy X-ray irradiation

    SciTech Connect

    Wu, J. Q.; Deng, S. Z.; Xu, N. S.; Chen, Jun; Wang, B.; Yi, F. T.

    2013-11-14

    Improvement in the field emission properties of α-Fe{sub 2}O{sub 3} nanoflakes is observed after high energy X-ray irradiation from synchrotron radiation. Field emission threshold field of α-Fe{sub 2}O{sub 3} nanoflakes is found to decrease from 10.1 to 7.8 MV/m after X-ray irradiation with the dose of 9.0 × 10{sup 14} phs/cm{sup 2}. Electrical measurement reveals that the potential barrier at the back contact between the α-Fe{sub 2}O{sub 3} layer and the iron substrate changes after X-ray irradiation. The observed threshold field decrease is well explained by the changes in potential barrier at the back contact of α-Fe{sub 2}O{sub 3} nanoflakes, which indicates the back contact plays an important role in controlling the field emission properties of α-Fe{sub 2}O{sub 3} nanoflakes. Our study shows that the α-Fe{sub 2}O{sub 3} nanoflakes are a promising material for the application as field emitter under X-ray environment.

  11. The interrelationship of research in the laboratory and the field to assess hydration status and determine mechanisms involved in water regulation during physical activity.

    PubMed

    Stachenfeld, Nina S

    2014-05-01

    Changes in skin blood and sweating are the primary mechanisms for heat loss in humans. A hot, humid environment concomitant with dehydration limits the ability to increase skin blood flow for the purpose of transferring heat from the body core to skin surface and evaporate sweat to maintain core temperature within safe limits during exercise. Adequate hydration improves thermoregulation by maintaining blood volume to support skin blood flow and sweating. Humans rely on fluid intake to maintain total body water and blood volume, and have developed complex mechanisms to sense changes in the amount and composition of fluid in the body. This paper addresses the interrelationship of research in the laboratory and the field to assess hydration status involved in body water and temperature regulation during exercise. In the controlled setting of a research laboratory, investigators are able to investigate the contributions of volume and tonicity of fluid in the plasma to body water and temperature regulation during exercise and recovery. For example, laboratory studies have shown that tonicity in a rehydration beverage maintains the thirst mechanism (and stimulates drinking), and contributes to the ongoing stimulation of renal fluid retention hormones, ultimately leading to a more complete rehydration. Research in the field cannot control the environment precisely, but these studies provide a natural, 'real-life' setting to study fluid and temperature regulation during exercise. The conditions encountered in the field are closest to the environment during competition, and data collected in the field can have an immediate impact on performance and safety during exercise. There is an important synergy between these two methods of collecting data that support performance and protect athletes from harm during training and improve performance during competition. PMID:24791921

  12. Irradiation-Induced Nanostructures

    SciTech Connect

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  13. Efficacy of abbreviated Stanford V chemotherapy and involved-field radiotherapy in early-stage Hodgkin lymphoma: mature results of the G4 trial†

    PubMed Central

    Advani, R. H.; Hoppe, R. T.; Baer, D.; Mason, J.; Warnke, R.; Allen, J.; Daadi, S.; Rosenberg, S. A.; Horning, S. J.

    2013-01-01

    Introduction To assess the efficacy of an abbreviated Stanford V regimen in patients with early-stage Hodgkin lymphoma (HL). Patients and methods Patients with untreated nonbulky stage I–IIA supradiaphragmatic HL were eligible for the G4 study. Stanford V chemotherapy was administered for 8 weeks followed by radiation therapy (RT) 30 Gy to involved fields (IF). Freedom from progression (FFP), disease-specific survival (DSS) and overall survival (OS) were estimated. Results All 87 enrolled patients completed the abbreviated regimen. At a median follow-up of 10 years, FFP, DSS and OS are 94%, 99% and 94%, respectively. Therapy was well tolerated with no treatment-related deaths. Conclusions Mature results of the abbreviated Stanford V regimen in nonbulky early-stage HL are excellent and comparable to the results from other contemporary therapies. PMID:23136225

  14. Dosimetric Comparison of Involved-Field Three-Dimensional Conformal Photon Radiotherapy and Breast-Sparing Proton Therapy for the Treatment of Hodgkin's Lymphoma in Female Pediatric Patients

    SciTech Connect

    Andolino, David L.; Hoene, Ted; Xiao, Lu; Buchsbaum, Jeffrey; Chang, Andrew L.

    2011-11-15

    Purpose: To assess the potential reduction in breast dose for young girls with Hodgkin's lymphoma (HL) treated with breast-sparing proton therapy (BS-PT) as compared with three-dimensional conformal involved-field photon radiotherapy (3D-CRT). Methods and Materials: The Clarian Health Cancer Registry was queried for female pediatric patients with the diagnosis of HL who received radiotherapy at the Indiana University Simon Cancer Center during 2006-2009. The original CT simulation images were obtained, and 3D-CRT and BS-PT plans delivering 21 Gy or cobalt gray equivalent (CGE) in 14 fractions were created for each patient. Dose-volume histogram data were collected for both 3D-CRT and BS-PT plans and compared by paired t test for correlated samples. Results: The cancer registry provided 10 female patients with Ann Arbor Stage II HL, aged 10-18 years at the time of treatment. Both mean and maximum breast dose were significantly less with BS-PT compared with 3D-CRT: 0.95 CGE vs. 4.70 Gy (p < 0.001) and 21.07 CGE vs. 23.11 Gy (p < 0.001), respectively. The volume of breast receiving 1.0 Gy/CGE and 5.0 Gy/CGE was also significantly less with BS-PT, 194 cm{sup 3} and 93 cm{sup 3}, respectively, compared with 790 cm{sup 3} and 360 cm{sup 3} with 3D-CRT (p = 0.009, 0.013). Conclusion: Breast-sparing proton therapy has the potential to reduce unnecessary breast dose in young girls with HL by as much as 80% relative to involved-field 3D-CRT.

  15. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation.

    PubMed

    Zhang, Ke K; Xiang, Menglan; Zhou, Lun; Liu, Jielin; Curry, Nathan; Heine Suñer, Damian; Garcia-Pavia, Pablo; Zhang, Xiaohua; Wang, Qin; Xie, Linglin

    2016-03-15

    Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation. We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny. PMID:26744331

  16. A binary AxB1-x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Yin, Shu; Xue, Dongfeng

    2014-12-01

    A new ``combinatorial transition-metal cation pseudocapacitor'' was demonstrated by designing combinatorial transition-metal cation pseudocapacitors with binary AxB1-x salt electrodes involving manganese, iron, cobalt, and nickel cations in an alkaline aqueous electrolyte. Binary multi-valence cations were crystallized in the colloidal state through an in situ coprecipitation under an electric field. These electroactive colloids absorbed by carbon black and the PVDF matrix are highly redox-reactive with high specific capacitance values, where the specific electrode configuration can create short ion diffusion paths to enable fast and reversible Faradaic reactions. This work shows huge promise for developing high-performance electrical energy storage systems via designing the colloidal state of electroactive cations. Multiple redox cations in the colloidal state can show high redox activities, making them more suitable for potential application in pseudocapacitor systems.A new ``combinatorial transition-metal cation pseudocapacitor'' was demonstrated by designing combinatorial transition-metal cation pseudocapacitors with binary AxB1-x salt electrodes involving manganese, iron, cobalt, and nickel cations in an alkaline aqueous electrolyte. Binary multi-valence cations were crystallized in the colloidal state through an in situ coprecipitation under an electric field. These electroactive colloids absorbed by carbon black and the PVDF matrix are highly redox-reactive with high specific capacitance values, where the specific electrode configuration can create short ion diffusion paths to enable fast and reversible Faradaic reactions. This work shows huge promise for developing high-performance electrical energy storage systems via designing the colloidal state of electroactive cations. Multiple redox cations in the colloidal state can show high redox activities, making them more suitable for potential application in pseudocapacitor systems. Electronic supplementary

  17. Large-field, external beam irradiation as a surgical adjuvant for node-positive colon carcinoma: an Eastern Cooperative Oncology Group Pilot Study (PA285).

    PubMed

    Merrick, H W; Turner, S S; Dobelbower, R R; Bennett, J M; Haller, D

    2000-08-01

    The Eastern Cooperative Oncology Group (ECOG) PA-285 study was designed as a pilot study to evaluate the effect of large-field, external beam abdominal irradiation as an adjuvant treatment for resectable stage C1 to C2 colon cancer. Eligible patients received 45 Gy directed to the tumor bed and periaortic lymph nodes, as well as 30 Gy to the liver. Patients were followed up for time to recurrence and for survival. Fourteen patients were enrolled. One elected not to have radiation after surgery; one died of acute hepatic radiation toxicity after a major deviation from protocol. Of the 12 remaining patients, seven survived longer than 10 years for a survival rate of 58%. Other than the fatal hepatic toxicity, side effects from radiation were moderate and of short duration. One patient failed to complete therapy because of ascites, had two episodes of partial bowel obstruction (successfully treated conservatively), and subsequently survived more than 10 years. Two of three patients with stage C1 tumors, four of eight with C2 tumors, and one with a C3 tumor were long-term survivors. This study demonstrates the feasibility and acceptable toxicity of this adjuvant regimen. The numbers are too limited to evaluate survival, but all seven survivors have lived more than 10 years. PMID:10955858

  18. Relaxation along a fictitious field (RAFF) and Z-spectroscopy using alternating-phase irradiation (ZAPI) in permanent focal cerebral ischemia in rat.

    PubMed

    Jokivarsi, Kimmo T; Liimatainen, Timo; Kauppinen, Risto A; Gröhn, Olli H J; Närväinen, Johanna

    2013-01-01

    Cerebral ischemia alters the molecular dynamics and content of water in brain tissue, which is reflected in NMR relaxation, diffusion and magnetization transfer (MT) parameters. In this study, the behavior of two new MRI contrasts, Relaxation Along a Fictitious Field (RAFF) and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI), were quantified together with conventional relaxation parameters (T1, T2 and T1ρ) and MT ratios in acute cerebral ischemia in rat. The right middle cerebral artery was permanently occluded and quantitative MRI data was acquired sequentially for the above parameters for up to 6 hours. The following conclusions were drawn: 1) Time-dependent changes in RAFF and T1ρ relaxation are not coupled to those in MT. 2) RAFF relaxation evolves more like transverse, rather than longitudinal relaxation. 3) MT measured with ZAPI is less sensitive to ischemia than conventional MT. 4) ZAPI data suggest alterations in the T2 distribution of macromolecules in acute cerebral ischemia. It was shown that both RAFF and ZAPI provide complementary MRI information from acute ischemic brain tissue. The presented multiparametric MRI data may aid in the assessment of brain tissue status early in ischemic stroke. PMID:23874898

  19. Relaxation Along a Fictitious Field (RAFF) and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI) in Permanent Focal Cerebral Ischemia in Rat

    PubMed Central

    Jokivarsi, Kimmo T.; Liimatainen, Timo; Kauppinen, Risto A.; Gröhn, Olli H. J.; Närväinen, Johanna

    2013-01-01

    Cerebral ischemia alters the molecular dynamics and content of water in brain tissue, which is reflected in NMR relaxation, diffusion and magnetization transfer (MT) parameters. In this study, the behavior of two new MRI contrasts, Relaxation Along a Fictitious Field (RAFF) and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI), were quantified together with conventional relaxation parameters (T1, T2 and T1ρ) and MT ratios in acute cerebral ischemia in rat. The right middle cerebral artery was permanently occluded and quantitative MRI data was acquired sequentially for the above parameters for up to 6 hours. The following conclusions were drawn: 1) Time-dependent changes in RAFF and T1ρ relaxation are not coupled to those in MT. 2) RAFF relaxation evolves more like transverse, rather than longitudinal relaxation. 3) MT measured with ZAPI is less sensitive to ischemia than conventional MT. 4) ZAPI data suggest alterations in the T2 distribution of macromolecules in acute cerebral ischemia. It was shown that both RAFF and ZAPI provide complementary MRI information from acute ischemic brain tissue. The presented multiparametric MRI data may aid in the assessment of brain tissue status early in ischemic stroke. PMID:23874898

  20. High-field critical current enhancement by irradiation induced correlated and random defects in (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2}

    SciTech Connect

    Kihlstrom, K. J.; Crabtree, G. W.; Fang, L.; Jia, Y.; Shen, B.; Koshelev, A. E.; Welp, U.; Kwok, W.-K.; Kayani, A.; Zhu, S. F.; Wen, H.-H.

    2013-11-11

    Mixed pinning landscapes in superconductors are emerging as an effective strategy to achieve high critical currents in high, applied magnetic fields. Here, we use heavy-ion and proton irradiation to create correlated and point defects to explore the vortex pinning behavior of each and combined constituent defects in the iron-based superconductor Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} and find that the pinning mechanisms are non-additive. The major effect of p-irradiation in mixed pinning landscapes is the generation of field-independent critical currents in very high fields. At 7 T ‖ c and 5 K, the critical current density exceeds 5 MA/cm{sup 2}.

  1. Influence of random point defects introduced by proton irradiation on the flux creep rates and magnetic field dependence of the critical current density J c of co-evaporated GdBa2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Kim, Jeehoon; Suárez, S.; Lee, Jae-Hun; Moon, S. H.

    2015-12-01

    We report the influence of random point defects introduced by 3 MeV proton irradiation (doses of 0.5 × 1016, 1 × 1016, 2 × 1016 and 6 × 1016 cm-2) on the vortex dynamics of co-evaporated 1.3 μm thick, GdBa2Cu3O7-δ coated conductors. Our results indicate that the inclusion of additional random point defects reduces the low field and enhances the in-field critical current densities J c. The main in-field J c enhancement takes place below 40 K, which is in agreement with the expectations for pinning by random point defects. In addition, our data show a slight though clear increase in flux creep rates as a function of irradiation fluence. Maley analysis indicates that this increment can be associated with a reduction in the exponent μ characterizing the glassy behavior.

  2. Methyl tunnelling sidebands in the low-field NMR spectrum of 3-pentanone: Driving A-E transitions using rf irradiation.

    PubMed

    Zhang, Bo; Horsewill, Anthony J

    2015-09-01

    Using magnetic field-cycling at cryogenic temperatures, low-field dipole-dipole driven NMR spectra have been recorded on 3-pentanone (CH3CH2C(O)CH2CH3). The spectra are characterised by tunnelling sidebands arising from the quantum dynamics of the methyl (CH3) rotors. From the sideband frequencies, the CH3 tunnelling frequency is determined to be νt=3.05±0.01MHz. The tunnelling sidebands are characterised by A-E transitions in nuclear spin-symmetry, involving simultaneous changes in tunnelling and nuclear spin states. To gain further insight, a theoretical analysis of the spin Hamiltonian matrix has been used to calculate the sideband transition probabilities. These are subsequently used in a thermodynamic model to simulate the low-field NMR spectrum which is compared with experiment. The level-crossings encountered as part of the magnetic field-cycling NMR sequence are found to play an essential role in determining the tunnelling sideband intensities. PMID:26183303

  3. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions.

    PubMed

    Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R L

    2016-01-01

    Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after

  4. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions

    PubMed Central

    Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R. L.

    2016-01-01

    Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after

  5. Low-Dose Involved-Field Radiation in the Treatment of Non-Hodgkin Lymphoma: Predictors of Response and Treatment Failure

    SciTech Connect

    Russo, Andrea L.; Chen, Yu-Hui; Martin, Neil E.; Vinjamoori, Anant; Luthy, Sarah K.; Freedman, Arnold; Michaelson, Evan M.; Silver, Barbara; Mauch, Peter M.; Ng, Andrea K.

    2013-05-01

    Purpose: To investigate clinical and pathologic factors significant in predicting local response and time to further treatment after low-dose involved-field radiation therapy (LD-IFRT) for non-Hodgkin lymphoma (NHL). Methods and Materials: Records of NHL patients treated at a single institution between April 2004 and September 2011 were retrospectively reviewed. Low-dose involved-field radiation therapy was given as 4 Gy in 2 fractions over 2 consecutive days. Treatment response and disease control were determined by radiographic studies and/or physical examination. A generalized estimating equation model was used to assess the effect of tumor and patient characteristics on disease response. A Cox proportional hazards regression model was used to assess time to further treatment. Results: We treated a total of 187 sites in 127 patients with LD-IFRT. Histologies included 66% follicular, 9% chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma, 10% marginal zone, 6% mantle cell lymphoma (MCL), and 8% other. Median follow-up time was 23.4 months (range, 0.03-92.2 months). The complete response, partial response, and overall response rates were 57%, 25%, and 82%, respectively. A CLL histology was associated with a lower response rate (odds ratio 0.2, 95% confidence interval 0.1-0.5, P=.02). Tumor size, site, age at diagnosis, and prior systemic therapy were not associated with response. The median time to first recurrence was 13.6 months. Those with CLL and age ≤50 years at diagnosis had a shorter time to further treatment for local failures (hazard ratio [HR] 3.63, P=.01 and HR 5.50, P=.02, respectively). Those with CLL and MCL had a shorter time to further treatment for distant failures (HR 11.1 and 16.3, respectively, P<.0001). Conclusions: High local response rates were achieved with LD-IFRT across most histologies. Chronic lymphocytic leukemia and MCL histologies and age ≤50 years at diagnosis had a shorter time to further treatment after LD-IFRT.

  6. MACOP-B and Involved-Field Radiotherapy Is an Effective and Safe Therapy for Primary Mediastinal Large B Cell Lymphoma

    SciTech Connect

    De Sanctis, Vitaliana; Finolezzi, Erica; Osti, Mattia Falchetto; Grapulin, Lavinia; Alfo, Marco; Pescarmona, Edoardo; Berardi, Francesca; Natalino, Fiammetta; Moleti, Maria Luisa; Di Rocco, Alice; Enrici, Riccardo Maurizi; Foa, Robin; Martelli, Maurizio

    2008-11-15

    Purpose: To report the clinical findings and long-term results of front-line, third-generation MACOP-B (methotrexate, doxorubicin, cyclophosphamide, vincristine, prednisone, and bleomycin) chemotherapy and mediastinal involved-field radiotherapy (IFRT) in 85 consecutive, previously untreated patients with primary mediastinal large B cell lymphoma (PMLBCL) diagnosed and managed at a single institution. Methods and Materials: Between 1991 and April 2004, 92 consecutive, untreated patients with PMLBCL were treated at our institution. The median age was 33 years (range, 15-61 years), 46 patients (50%) showed a mediastinal syndrome at onset; 52 patients (57%) showed a low/low-intermediate (0 to 1) and 40 patients (43%) an intermediate-high/high (2 to 3) International Prognostic Index (IPI) score. Eighty-five patients were treated with standard chemotherapy (MACOP-B), and 80 underwent mediastinal IFRT at a dose of 30-36 Gy. Results: After a MACOP-B regimen, the overall response rate was 87% and the partial response rate 9%. After chemotherapy, {sup 67}Ga scintigraphy/positron emission tomography results were positive in 43 of 52 patients (83%), whereas after IFRT 11 of 52 patients (21%) remained positive (p < 0.0001). After a median follow-up of 81 months (range, 2-196 months), progression or relapse was observed in 15 of 84 patients (18%). The projected 5-year overall survival and progression-free survival rates were 87% and 81%, respectively. The 5-year overall survival and progression-free survival rates were better for patients with an IPI of 0 to 1 than for those with an IPI of 2 to 3 (96% vs. 73% [p = 0.002] and 90% vs. 67% [p = 0.007], respectively). Conclusions: Combined-modality treatment with intensive chemotherapy plus mediastinal IFRT induces high response and lymphoma-free survival rates. Involved-field RT plays an important role in inducing negative results on {sup 67}Ga scintigraphy/positron emission tomography in patients responsive to chemotherapy.

  7. Does the Addition of Involved Field Radiotherapy to High-Dose Chemotherapy and Stem Cell Transplantation Improve Outcomes for Patients With Relapsed/Refractory Hodgkin Lymphoma?

    SciTech Connect

    Kahn, Shannon; Flowers, Christopher; Xu Zhiheng; Esiashvili, Natia

    2011-09-01

    Purpose: To evaluate the value of adding involved field radiotherapy (IFRT) to patients with relapsed/refractory Hodgkin lymphoma (HL) undergoing high-dose chemotherapy (HDCT) and stem cell transplantation (SCT). Methods and Materials: Ninety-two patients with relapsed/refractory HL undergoing HDCT and SCT from 1995 to 2008 were analyzed in a case-control design. Forty-six HL patients treated with IFRT within 2 months of SCT were matched to 46 HL patients who did not receive IFRT based on age, stage at relapse, timing of relapse, histology, and year of SCT. All were evaluated for response, survival, and toxicity with a median followup of 63.5 months. Results: There was a trend for better disease control in patients receiving IFRT. Specifically, 10/46 IFRT patients (22%) relapsed/progressed after SCT compared with 17/46 control patients (37%). Of the failures after IFRT, 70% were inside the radiation field, all in sites of bulky disease. In patients with nonbulky disease, IFRT also resulted in significantly improved outcomes (failure rate 6% vs. 33%, respectively). When stratified by disease bulk, the use of IFRT was found to significantly improve DFS (p = 0.032), but did not affect OS. In addition, IFRT and nonbulky disease were found to be positive prognostic indicators for DFS with hazard ratios of 0.357 (p = 0.032) and 0.383 (p = 0.034), respectively. Grade IV/V toxicities were significantly higher in the IFRT vs. non-IFRT group (28% vs. 2%; p < 0.001), observed only in patients receiving a busulfan-based conditioning regimen. Conclusion: Patients with refractory or relapsed HL undergoing HDCT and SCT have a high risk of relapse in sites of prior disease involvement, especially in sites of bulky disease. The use of IFRT is associated with a lower risk of disease progression in these sites; however bulky disease sites are still difficult to control. Toxicity risk is significant, particularly when busulfan-based conditioning is combined with IFRT, and alternative

  8. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations

    PubMed Central

    Vernet, Marine; Quentin, Romain; Chanes, Lorena; Mitsumasu, Andres; Valero-Cabré, Antoni

    2014-01-01

    The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed. PMID:25202241

  9. Neurobehavioral and neurometabolic (SPECT) correlates of paranormal information: involvement of the right hemisphere and its sensitivity to weak complex magnetic fields.

    PubMed

    Roll, W G; Persinger, M A; Webster, D L; Tiller, S G; Cook, C M

    2002-02-01

    Experiments were designed to help elucidate the neurophysiological correlates for the experiences reported by Sean Harribance. For most of his life he has routinely experienced "flashes of images" of objects that were hidden and of accurate personal information concerning people with whom he was not familiar. The specificity of details for target pictures of people was correlated positively with the proportion of occipital alpha activity. Results from a complete neuropsychological assessment, Single Photon Emission Computed Tomography (SPECT), and screening electroencephalography suggested that his experiences were associated with increased activity within the parietal lobe and occipital regions of the right hemisphere. Sensed presences (subjectively localized to his left side) were evoked when weak, magnetic fields, whose temporal structure simulated long-term potentiation in the hippocampus, were applied over his right temporoparietal lobes. These results suggest that the phenomena attributed to paranormal or "extrasensory" processes are correlated quantitatively with morphological and functional anomalies involving the right parietotemporal cortices (or its thalamic inputs) and the hippocampal formation. PMID:12325407

  10. Magneto-optical imaging of magnetic domain pattern produced by intense femtosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Sinha, Jaivarhan; Mohan, Shyam; Banerjee, S. S.; Kahaly, S.; Kumar, G. Ravindra

    2009-03-01

    An important and intriguing area of research is laser plasma generated giant magnetic field pulses. Interaction of ultrashort high intensity laser pulses with matter involves several mechanisms for generating ultrastrong magnetic fields. By irradiating a magnetic recordable tape constituting of γ-Fe2O3 particles with an intense p-polarized femtosecond laser pulses (˜ 10^16 W cm-2, 100fs), we have found complex magnetic field patterns stored in the tape. We image the local magnetic field distribution around the irradiated region [1] using the high sensitivity magneto-optical imaging technique. We understand the complex magnetic domains patterns recoded on the tape in terms of interesting instabilities [1] generated in the plasma produced during the irradiation of the tape with intense laser pulses. [0pt] [1] Jaivardhan Sinha, Shyam Mohan, S. S Banerjee, S. Kahaly, G. Ravindra Kumar, Phys. Rev. E 77, 046118(2008). *satyajit@iitk.ac.in

  11. Food irradiation: research and technology, preface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many interesting and exciting developments have occurred in the field of food irradiation since the publication of the first edition of Food Irradiation: Research and Technology in 2006. The 2nd edition of the book reviews our latest knowledge on food irradiation, highlights the current developments...

  12. Primary Mediastinal Large B-Cell Lymphoma: Results of Intensive Chemotherapy Regimens (MACOP-B/VACOP-B) Plus Involved Field Radiotherapy on 53 Patients. A Single Institution Experience

    SciTech Connect

    Mazzarotto, Renzo . E-mail: renzo.mazzarotto@unipd.it; Boso, Caterina; Vianello, Federica; Aversa, Maria Savina; Chiarion-Sileni, Vanna; Trentin, Livio; Zambello, Renato; Muzzio, Pier Carlo; Fiore, Davide; Sotti, Guido

    2007-07-01

    Purpose: The optimal therapy for primary mediastinal large B-cell lymphoma (PMLBCL) remains undefined. The superiority of intensive chemotherapy regimens (Methotrexate, Doxorubicin, Cyclophosphamide, Vincristine, Prednisone, Bleomycin [MACOP-B]/Etoposide, Doxorubicin, Cyclophosphamide, Vincristine, Prednisone, Bleomycin [VACOP-B]) over Cyclophosphamide, Doxorubicin, Vincristine, Prednisone (CHOP)-like chemotherapy is upheld by some authors. The role of radiotherapy is still debated. In the absence of randomized trials, we report clinical findings and treatment response in 53 consecutive patients treated with intensive chemotherapy and mediastinal involved-field radiation therapy (IFRT). Methods and Material: Fifty-three consecutive patients with PMLBCL were retrospectively analyzed. Planned treatment consisted of induction chemotherapy (I-CT; Prednisone, Methotrexate, Doxorubicin, Cyclophosphamide, Etoposide-Mechloroethamine, Vincristine, Procarbazine, Prednisone [ProMACE-MOPP] in the first 2 patients, MACOP-B in the next 11, and VACOP-B in the last 40) followed by IFRT. Planned treatment was concluded in 43 of 53 patients; in 10 patients, I-CT was not immediately followed by IFRT. Among these 10 patients, 6 received high-dose chemotherapy (HD-CT) followed by IFRT, 2 received HD-CT, and 2 received no further treatment. Results: After a median follow-up of 93.9 months (range, 6-195 months), 45 of 53 patients (84.9%) were alive without disease. Eight patients died: 7 of PMLBCL and 1 of toxicity during HD-CT. The 5-year disease-free survival (DFS) and overall survival rates were 93.42% and 86.6%, respectively. The response rates after I-CT were complete response (CR) in 20 (37.73%) and partial response (PR) in 30 (56.60%); 3 patients (5.66%) were considered nonresponders. Among patients in PR after chemotherapy, 92% obtained a CR after IFRT. Conclusions: Our report confirms the efficacy of intensive chemotherapy plus mediastinal IFRT. IFRT plays a pivotal role in

  13. [Food irradiation].

    PubMed

    Migdał, W

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by Codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and the World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Institute of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19MeV, 1 kW) and an industrial unit Elektronika (10MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permission for irradiation for: spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. PMID:8619113

  14. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  15. Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: A planning comparison study

    SciTech Connect

    Sakanaka, Katsuyuki; Mizowaki, Takashi; Sato, Sayaka; Ogura, Kengo; Hiraoka, Masahiro

    2013-07-01

    This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor units were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.

  16. Compositional and Microstructural Evolution of Olivine Under Multiple-Cycle Pulsed Laser Irradiation as Revealed by FIB/Field-Emission TEM

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Keller, L. P.; Baragiola, R. A.

    2016-01-01

    The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical SEM and TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation.

  17. Effect of O{sub 2}{sup +}, H{sub 2}{sup +}+ O{sub 2}{sup +}, and N{sub 2}{sup +}+ O{sub 2}{sup +} ion-beam irradiation on the field emission properties of carbon nanotubes

    SciTech Connect

    Acuna, J. J. S.; Alvarez, F.; Escobar, M.; Goyanes, S. N.; Candal, R. J.; Zanatta, A. R.

    2011-06-01

    The effect of O{sub 2}{sup +}, H{sub 2}{sup +}+ O{sub 2}{sup +}, and N{sub 2}{sup +}+ O{sub 2}{sup +} ion-beam irradiation of carbon nanotubes (CNTs) films on the chemical and electronic properties of the material is reported. The CNTs were grown by the chemical vapor deposition technique (CVD) on silicon TiN coated substrates previously decorated with Ni particles. The Ni decoration and TiN coating were successively deposited by ion-beam assisted deposition (IBAD) and afterwards the nanotubes were grown. The whole deposition procedure was performed in situ as well as the study of the effect of ion-beam irradiation on the CNTs by x-ray photoelectron spectroscopy (XPS). Raman scattering, field-effect emission gun scanning electron microscopy (FEG-SEM), and field emission (FE) measurements were performed ex situ. The experimental data show that: (a) the presence of either H{sub 2}{sup +} or N{sub 2}{sup +} ions in the irradiation beam determines the oxygen concentration remaining in the samples as well as the studied structural characteristics; (b) due to the experimental conditions used in the study, no morphological changes have been observed after irradiation of the CNTs; (c) the FE experiments indicate that the electron emission from the CNTs follows the Fowler-Nordheim model, and it is dependent on the oxygen concentration remaining in the samples; and (d) in association with FE results, the XPS data suggest that the formation of terminal quinone groups decreases the CNTs work function of the material.

  18. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    SciTech Connect

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M. )

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice.

  19. Prophylactic immunization against experimental leishmaniasis. III. Protection against fatal Leishmania tropica infection induced by irradiated promastigotes involves Lyt-1/sup +/2/sup -/ T cells that do not mediate cutaneous DTH

    SciTech Connect

    Liew, F.Y.; Howard, J.G.; Hale, C.

    1984-01-01

    Protective immunity against fatal L. tropica infection in genetically vulnerable BALB/c mice can be induced by prophylactic immunization with irradiated promastigotes even when heat-killed. Such immunity is adoptively transferable transiently into intact or durably into sub-lethally irradiated (200 or 550 rad) syngeneic recipients by splenic T but not B cells. The effector T cells are of the Lyt-1/sup +/2/sup -/ phenotype, devoid of demonstrable cytotoxic activity. The immune splenic T cell population expresses specific helper activity for antibody synthesis. A causal role for helper T cells in this capacity, however, seems unlikely, because it was shown that antibody does not determine the protective immunity against L. tropica. The immunized donors show no detectable cutaneous DTH or its early memory recall in response to live or killed promastigotes or a soluble L. tropica antigen preparation. Spleen, lymph node, and peritoneal exudate cells from protectively immunized donors similarly fail to transfer DTH locally or systemically. These cells also lack demonstrable suppressive activity against the expression or induction of DTH to L. tropica. Thus, protection against L. tropica induced by prophylactic i.v. immunization with irradiated promastigotes appears to be conferred by Lyt-1/sup +/2/sup -/ T cells that are distinguishable from T cells mediating either both DTH and T help, or cytotoxicity.

  20. Irradiation subassembly

    DOEpatents

    Seim, O.S.; Filewicz, E.C.; Hutter, E.

    1973-10-23

    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  1. Skin Injuries Reduce Survival and Modulate Corticosterone, C-Reactive Protein, Complement Component 3, IgM, and Prostaglandin E2 after Whole-Body Reactor-Produced Mixed Field (n + γ-Photons) Irradiation

    PubMed Central

    Kiang, Juliann G.; Ledney, G. David

    2013-01-01

    Skin injuries such as wounds or burns following whole-body γ-irradiation (radiation combined injury (RCI)) increase mortality more than whole-body γ-irradiation alone. Wound-induced decreases in survival after irradiation are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to systemic bacterial infection. Among these factors, radiation-induced increases in interleukin-6 (IL-6) concentrations in serum were amplified by skin wound trauma. Herein, the IL-6-induced stress proteins including C-reactive protein (CRP), complement 3 (C3), immunoglobulin M (IgM), and prostaglandin E2 (PGE2) were evaluated after skin injuries given following a mixed radiation environment that might be found after a nuclear incident. In this report, mice received 3 Gy of reactor-produced mixed field (n + γ-photons) radiations at 0.38 Gy/min followed by nonlethal skin wounding or burning. Both wounds and burns reduced survival and increased CRP, C3, and PGE2 in serum after radiation. Decreased IgM production along with an early rise in corticosterone followed by a subsequent decrease was noted for each RCI situation. These results suggest that RCI-induced alterations of corticosterone, CRP, C3, IgM, and PGE2 cause homeostatic imbalance and may contribute to reduced survival. Agents inhibiting these responses may prove to be therapeutic for RCI and improve related survival. PMID:24175013

  2. Irradiated foods

    MedlinePlus

    ... it reduces the risk of food poisoning . Food irradiation is used in many countries. It was first approved in the U.S. to prevent sprouts on white potatoes, and to control insects on wheat and in certain spices and seasonings.

  3. Parent Involvement.

    ERIC Educational Resources Information Center

    LaCrosse, Ed

    The paper discusses the rationale and guidelines for parent involvement in HCEEP (Handicapped Children's Early Education Program) projects. Ways of assessing parents' needs are reviewed, as are four types of services to meet the identified needs: parent education, direct participation, parent counseling, and parent provided programs. Materials and…

  4. Effects of irradiation and mechanical stress on the superconducting properties of candidate magnet conductors

    SciTech Connect

    Snead, Jr, C L; Luhman, T

    1980-01-01

    The effects of radiation damage on the superconducting critical properties of candidate magnet materials are reviewed. Neutron, and charged-particle irradiation results are covered. The discussion is restricted to effects in NbTi and the A15-compound superconductors. The utility of these conductors in radiation fields is first explored by defining the magnitude of critical-property changes with the fluence of various irradiating particles. The physical mechanisms that couple the irradiation defects to the observed critical-property changes are discussed. Annealing/recovery data on irradiated materials are included where they pertain to the understanding of the physical mechanisms involved, and thereby to the desirability of magnet annealing in actual operating circumstances.

  5. Magnetic field effects on electron transfer reactions involving sextet-spin ( S = 5/2) intermediates generated on photoexcitation of a Cr(III)-porphyrin complex

    NASA Astrophysics Data System (ADS)

    Mori, Yukie; Hoshino, Mikio; Hayashi, Hisaharu

    The excited trip-sextet ( 6 T 1 ) state of chloro-(3-methylimidazol)-( meso -tetraphenylporphyrinato) chromium(III) (Cr III P) is quenched by 1,1 '-dibenzyl-4,4 '-bipyridinium (BV 2+ ) in acetonitrile through electron transfer to give 5 (Cr III P .+ ) and 2 BV .+ . The intermediate is a geminate ion pair in the sextet (Sx) state 6 [ 5 (Cr III P .+ ) 2 BV .+ ], which decays through either the escape from a solvent cage to give the free ions or the spin conversion to the quartet (Qa) state followed by back electron transfer. The free ion yield ( ΦFI ) increased with increasing magnetic field from 0 to 4 T and then slightly decreased from 4 T to 10 T. These magnetic field effects are explained as follows. Under low fields where the Zeeman splitting of the spin sublevels is lower than or comparable with the electron spin dipole-dipole interaction within 5 (Cr III P .+ ), this interaction effectively induces the Sx ⇔Qa conversion of [ 5 (Cr III P .+ ) 2 BV + ] to result in low ΦFI values. Under high fields where the Zeeman splitting is larger than the dipole-dipole interaction, the Sx Qa conversion is decreased with increasing field to cause higher ΦFI values. The slight decrease in ΦFI above 4 T may be due to the Δg mechanism.

  6. Motexafin-Gadolinium and Involved Field Radiation Therapy for Intrinsic Pontine Glioma of Childhood: A Children's Oncology Group Phase 2 Study

    SciTech Connect

    Bradley, Kristin A.; Zhou Tianni; McNall-Knapp, Rene Y.; Jakacki, Regina I.; Pollack, Ian F.

    2013-01-01

    Purpose: To evaluate the effects on 1-year event-free survival (EFS) and overall survival (OS) of combining motexafin and gadolinium (MGd), a potent radiosensitizer, with daily fractionated radiation therapy in children with newly diagnosed intrinsic pontine gliomas. Methods and Materials: Patients with newly diagnosed intrinsic pontine glioma were treated with MGd daily for 5 consecutive days each week, for a total of 30 doses. Patients received a 5- to 10-min intravenous bolus of MGd, 4.4 mg/kg/day, given 2 to 5 h prior to standard dose irradiation. Radiation therapy was administered at a daily dose of 1.8 Gy for 30 treatments over 6 weeks. The total dose was 54 Gy. Results: Sixty eligible children received MGd daily, concurrent with 6 weeks of radiation therapy. The estimated 1-year EFS was 18% {+-} 5%, and the estimated 1-year OS was 53% {+-} 6.5%. The most common grade 3 to 4 toxicities were lymphopenia, transient elevation of liver transaminases, and hypertension. Conclusions: Compared to historical controls, the addition of MGd to a standard 6-week course of radiation did not improve the survival of pediatric patients with newly diagnosed intrinsic pontine gliomas.

  7. Commercial implementation of food irradiation

    NASA Astrophysics Data System (ADS)

    Welt, M. A.

    In July 1981, the first specifically designed multi-purpose irradiation facility for food irradiation was put into service by the Radiation Technology, Inc. subsidiary Process Technology, Inc. in West Memphis, Arkansas. The operational experience gained, resulted in an enhanced design which was put into commercial service in Haw River, North Carolina, by another subsidiary, Process Technology (N.C.), Inc. in October 1983. These facilities have enabled the food industry to assess the commercial viability of food irradiation. Further impetus towards commercialization of food irradiation was gained in March 1981 with the filing in the Federal Register, by the FDA, of an Advanced Proposed Notice of Rulemaking for Food Irradiation. Two years later in July 1983, the FDA approved the first food additive regulation involving food irradiation in nineteen years, when they approved the Radiation Technology, Inc. petition calling for the sanitization of spices, onion powder and garlic powder at a maximum dosage of 10 kGy. Since obtaining the spice irradiation approval, the FDA has accepted four additional petitions for filing in the Federal Register. One of the petitions which extended spice irradiation to include insect disinfestation has issued into a regulation while the remaining petitions covering the sanitization of herbs, spice blends, vegetable seasonings and dry powdery enzymes as well as the petition to irradiate hog carcasses and pork products for trichinae control at 1 kGy, are expected to issue either before the end of 1984 or early in 1985. More recently, food irradiation advocates in the United States received another vote of confidence by the announcement that a joint venture food irradiation facility to be constructed in Hawaii by Radiation Technology, is backed by a contractual committment for the processing of 40 million pounds of produce per year. Another step was taken when the Port of Salem, New Jersey announced that the Radiation Technology Model RT-4104

  8. Induction of Lipocalin2 in a Rat Model of Lung Irradiation.

    PubMed

    Sultan, Sadaf; Ahmad, Shakil; Rave-Fränk, Margret; Malik, Ihtzaz Ahmed; Hess, Clemens F; Christiansen, Hans; Cameron, Silke

    2016-01-01

    Previously, we showed that lipocalin2 (LCN2) serum levels increased after liver irradiation and during acute-phase conditions. Here, we evaluate LCN2 expression and serum levels after single-dose lung irradiation with 25 Gy, percutaneously administered to the lung of randomly-paired male Wistar rats. Due to the concave anatomy of the lung recesses, the irradiation field included the upper part of the liver. No rat died due to irradiation. In control tissue, lung immunohistochemistry showed a high constitutive expression of LCN2+ granulocytes. LCN2 mRNA levels in lung tissue increased up to 24 h (9 ± 2.3-fold) after irradiation. However, serum LCN2 levels remained undetectable after lung irradiation. LCN2 expression in the upper part of the liver increased up to 4.2-fold after lung irradiation, but the lower liver showed an early decrease. Acute-phase cytokines (IL-1β and TNF-α) showed a significant increase on transcript level in both lung and upper liver, whilst the lower liver did not show any considerable increase. In conclusion, constitutive expression of LCN2 in local immune cells demonstrates its local role during stress conditions in the lung. The absence of LCN2 in the serum strengthens our previous findings that the liver is the key player in secreting LCN2 during stress conditions with liver involvement. PMID:27136530

  9. Induction of Lipocalin2 in a Rat Model of Lung Irradiation

    PubMed Central

    Sultan, Sadaf; Ahmad, Shakil; Rave-Fränk, Margret; Malik, Ihtzaz Ahmed; Hess, Clemens F.; Christiansen, Hans; Cameron, Silke

    2016-01-01

    Previously, we showed that lipocalin2 (LCN2) serum levels increased after liver irradiation and during acute-phase conditions. Here, we evaluate LCN2 expression and serum levels after single-dose lung irradiation with 25 Gy, percutaneously administered to the lung of randomly-paired male Wistar rats. Due to the concave anatomy of the lung recesses, the irradiation field included the upper part of the liver. No rat died due to irradiation. In control tissue, lung immunohistochemistry showed a high constitutive expression of LCN2+ granulocytes. LCN2 mRNA levels in lung tissue increased up to 24 h (9 ± 2.3-fold) after irradiation. However, serum LCN2 levels remained undetectable after lung irradiation. LCN2 expression in the upper part of the liver increased up to 4.2-fold after lung irradiation, but the lower liver showed an early decrease. Acute-phase cytokines (IL-1β and TNF-α) showed a significant increase on transcript level in both lung and upper liver, whilst the lower liver did not show any considerable increase. In conclusion, constitutive expression of LCN2 in local immune cells demonstrates its local role during stress conditions in the lung. The absence of LCN2 in the serum strengthens our previous findings that the liver is the key player in secreting LCN2 during stress conditions with liver involvement. PMID:27136530

  10. A Collaborative FP7 Effort towards the First European Comprehensive SOLar Irradiance Data Exploitation (SOLID)

    NASA Astrophysics Data System (ADS)

    Haberreiter, Margit; Dasi, Maria; Delouille, Veronique; Del Zanna, Giulio; Dudok de Wit, Thierry; Ermolli, Ilaria; Kretzschmar, Matthieu; Krivova, Natalie; Mason, Helen; Qahwaji, Rami; Schmutz, Werner; Solanki, Sami; Thuillier, Gerard; Tourpali, Kleareti; Unruh, Yvonne; Verbeeck, Cis; Weber, Mark; Woods, Tom

    2013-04-01

    Variations of solar irradiance are the most important natural factor in the terrestrial climate and as such, the time dependent spectral solar irradiance is a crucial input to any climate modelling. There have been previous efforts to compile solar irradiance but it is still uncertain by how much the spectral and total solar irradiance changed on yearly, decadal and longer time scales. Observations of irradiance data exist in numerous disperse data sets. Therefore, it is important to bring together the European expertise in the field to analyse and merge the complete set of European irradiance data, complemented by archive data that include data from non-European missions. We report on the initiation of a collaborative effort to unify representatives from all European solar space experiments and European teams specialized in multi-wavelength solar image processing. It is intended to include the European groups involved in irradiance modelling and reconstruction. They will work with two different state of the art approaches to produce reconstructed spectral and total solar irradiance data as a function of time. These results will be used to bridge gaps in time and wavelength coverage of the observational data. This will allow the proposing SOLID team to reduce the uncertainties in the irradiance time series - an important requirement by the climate community - and to provide uniform data sets of modelled and observed solar irradiance data from the beginning of the space era to the present including proper error and uncertainty estimates. Climate research needs these data sets and therefore, the primary benefit is for the climate community, but the stellar community, planetary, lunar, and ionospheric researchers are also interested in having at their disposition incident radiation of the Sun. The proposing team plans to realize a wide international synergy in solar physics from 7 European countries, and collaborators from the US, complemented by representatives from

  11. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  12. Characterization by restriction fragment length polymorphism and sequence analysis of field and vaccine strains of infectious laryngotracheitis virus involved in severe outbreaks.

    PubMed

    Chacon, Jorge Luis; Mizuma, Matheus Y; Piantino Ferreira, Antonio J

    2010-12-01

    At the end of 2002 and throughout 2003, there was a severe outbreak of infectious laryngotracheitis (ILT) in an intensive production area of commercial hens in the Sao Paulo State of Brazil. ILT virus was isolated from 28 flocks, and 21 isolates were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using four genes and eight restriction enzymes, and by partial sequencing of the infected cell protein 4 (ICP4) and thymidine kinase (TK) genes. Three groups resulted from the combinations of PCR-RFLP patterns: 19 field isolates formed Group I, and the remaining two isolates together with the chicken embryo origin (CEO) vaccine strains formed Group II. Group III comprised the tissue-culture origin (TCO) vaccine strain by itself. The PCR-RFLP results agreed with the sequencing results of two ICP4 gene fragments. The ICP4 gene sequence analysis showed that the 19 field isolates classified into Group I by RFLP-PCR were identical among themselves, but were different to the TCO and CEO vaccines. The two Group II isolates could not be distinguished from one of the CEO vaccines. The nucleotide and amino acid sequence analyses discriminated between the Brazilian and non-Brazilian isolates, as well as between the TCO and CEO vaccines. Sequence analysis of the TK gene enabled classification of the field isolates (Group I) as virulent and non-vaccine. This work shows that the severe ILT outbreak was caused by a highly virulent, non-vaccine strain. PMID:21154050

  13. Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation

    NASA Astrophysics Data System (ADS)

    Farah, K.; Kuntz, F.; Kadri, O.; Ghedira, L.

    2004-09-01

    Several undyed and dyed polymer films are commercially available for dosimetry in intense radiation fields, especially for radiation processing of food and sterilisation of medical devices. The effects of temperature during irradiation and post-irradiation stability, on the response of these dosimeters are of importance to operators of irradiation facilities. The present study investigates the effects of temperature during irradiation by 2.2 MeV electrons beam accelerator and post irradiation storage on the response of several types of dosimeter films. All dosimeters showed a significant effect of temperature during irradiation and post-irradiation storage.

  14. A Small Physiological Electric Field Mediated Responses of Extravillous Trophoblasts Derived from HTR8/SVneo Cells: Involvement of Activation of Focal Adhesion Kinase Signaling

    PubMed Central

    Zhang, Juan; Ren, Rongmei; Luo, Xuefeng; Fan, Ping; Liu, Xinghui; Liang, Shanshan; Ma, Lei; Yu, Ping; Bai, Huai

    2014-01-01

    Moderate invasion of trophoblast cells into endometrium is essential for the placental development and normal pregnancy. Electric field (EF)-induced effects on cellular behaviors have been observed in many cell types. This study was to investigate the effect of physiological direct current EF (dc EF) on cellular responses such as elongation, orientation and motility of trophoblast cells. Immortalized first trimester extravillous trophoblast cells (HTR-8/SVneo) were exposed to the dc EF at physiological magnitude. Cell images were recorded and analyzed by image analyzer. Cell lysates were used to detect protein expression by Western blot. Cultured in the dc EFs the cells showed elongation, orientation and enhanced migration rate compared with non-EF stimulated cells at field strengths of 100 mV/mm to 200 mV/mm. EF exposure increased focal adhesion kinase (FAK) phosphorylation in a time-dependent manner and increased expression levels of MMP-2. Pharmacological inhibition of FAK impaired the EF-induced responses including motility and abrogated the elevation of MMP-2 expression. However, the expression levels of integrins like integrin α1, α5, αV and β1 were not affected by EF stimulation. Our results demonstrate the importance of FAK activation in migration/motility of trophobalst cells driven by EFs. In addition, it raises the feasibility of using applied EFs to promote placentation through effects on trophoblast cells. PMID:24643246

  15. Involvement of protein kinase C in the modulation of morphine-induced analgesia and the inhibitory effects of exposure to 60-hz magnetic fields in the land snail, Cepaea nemoralis

    SciTech Connect

    Kavaliers, M.; Ossenkopp, K.P. )

    1990-02-26

    One of the more consistent and dramatic effects of exposure to magnetic fields is the attenuation of morphine-induced analgesia. Results of previous studies have implicated alterations in calcium channel functioning and Ca{sup ++} flux in the mediation of these effects. It is generally accepted that Ca{sup ++}-activated-phospholipid-dependent protein kinase (Protein kinase C; PKC) plays an important role in relaying trans-membrane signaling in diverse Ca{sup ++} dependent cellular processes. In experiment 1 we observed that morphine-induced analgesia in the land snail, Cepaea nemoralis, as measured by the latency of an avoidance behavior to a warmed surface, was reduced by the PKC activator, SC-9, and was enhanced by the PKC inhibitors, H-7 and H-9. In contrast, HA-10004, a potent inhibitor of other protein kinases, but only a very weak inhibitor of PKC, had no effect on morphine-induced analgesia. In experiment 2 exposure of snails for 30 minutes to a 1.0 gauss (rms) 60-Hz magnetic field reduced morphine-induced analgesia. This inhibitory effect of the magnetic field was reduced by the PKC inhibitors, H-7 and H-9, and was augmented by the PKC activator SC-9. These results suggest that: (i) PKC is involved in the modulation of morphine-induced analgesia and, (ii) the inhibitory effects of magnetic fields involve PKC.

  16. Involvement of membrane proteins and ion channels on the self-rotation of human cells in a non-rotating AC electric field.

    PubMed

    Vaillier, Clarisse; Honegger, Thibault; Kermarrec, Frédérique; Gidrol, Xavier; Peyrade, David

    2015-05-01

    Dielectrophoresis is a force that has been exploited in microsystems for label-free characterization and separation of cells, when their electrical signature is known. However, the polarization effect of cells at the transmembrane protein level is not well established. In this work, we have use the self-rotation effect of cells in a non-rotating field, known as the "Quincke effect," in order to measure the maximum rotation frequency (frotmax ) of different cell populations when modifying the composition of their membrane. We investigated the influence of active ionic transportation of membrane protein concentration on frotmax of HEK cells. Our results show that ionic transportation is responsible for the reduction of conductivity within the cytoplasm, which results in higher frotmax . However, the influence of the concentration of proteins in the membrane, achieved by silencing gene expression in cancer cells, changes significantly frotmax , which is not explained by the changes of ionic conductivity within the cell. PMID:25808576

  17. An investigation into the accuracy of the albedo dosimeter DVGN-01 in measuring personnel irradiation doses in the fields of neutron radiation at nuclear power installations of the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Beskrovnaya, L. G.; Goroshkova, E. A.; Mokrov, Yu. V.

    2010-05-01

    The calculated results of research into the accuracy of an individual albedo dosimeter DVGN-01 as it corresponds to the personal equivalent dose for neutrons H p (10) and to the effective dose for neutrons E eff in the neutron fields at Joint Institute for Nuclear Research Nuclear Power Installations (JNPI) upon different geometries of irradiations are presented. It has been shown that correction coefficients are required for the specific estimation of doses by the dosimeter. These coefficients were calculated using the energy sensitivity curve of the dosimeter and the known neutron spectra at JNPI. By using the correction factors, the uncertainties of both doses will not exceed the limits given to the personnel according to the standards.

  18. The effect of an extended source-to-skin distance in the treatment of the spinal field in children receiving craniospinal irradiation

    SciTech Connect

    Koshy, Mary; Paulino, Arnold C.; Marcus, Robert B.; Ting, Joseph

    2004-03-31

    In this study, we compared a single extended source-to-skin difference (SSD) spinal field and the alternative 2-field gapped approach at 100 SSD on dose to surrounding normal tissues. Five female patients ranging in age from 3 to 20 years underwent computed tomography (CT) simulation for treatment planning of the craniospinal axis, which was treated in its entirety to 36 Gy. For each slice, the clinical target volume (thecal sac and contents), mandible, thyroid gland, esophagus, heart, lungs, liver, and ovaries were contoured. Technique A employed the use of a single posterior spinal field delivered at SSD = 140 cm (140 SSD), and Technique B employed the use of 2 gapped spinal fields using a traditional SSD of 100 cm (100 SSD). Dose-volume histograms (DVHs) were obtained for each organ contoured and for each technique used. In all patients, the average mean dose to all surrounding structures was increased with the use of a single extended SSD (Technique A) when compared to the 2 spinal fields prescribed at 100 SSD (Technique B). The average mean doses to the mandible, thyroid gland, esophagus, and heart were 78%, 19%, 6%, and 16%, respectively, higher with Technique A as compared to Technique B. In addition, the average mean doses to the lungs, liver, and ovaries were 53%, 33% and 69%, respectively, higher as compared to Technique B. However, the clinical target volume at the spinal junction site received a less homogenous dose with Technique B as compared to Technique A. We conclude that although the use of a single-field extended SSD delivered a more homogenous dose to the spine, a higher dose to the ovaries, thyroid gland, mandible, lungs, liver, and heart was seen.

  19. Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels

    PubMed Central

    Buckner, Carly A.; Buckner, Alison L.; Koren, Stan A.; Persinger, Michael A.; Lafrenie, Robert M.

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca2+ influx which could be blocked by inhibitors of voltage-gated T-type Ca2+ channels. Blocking Ca2+ uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca2+ influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy. PMID:25875081

  20. Free-Free Transitions of the e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident-Electron Energies

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen atom in ground state when a low-energy electron (external) is injected into hydrogenic plasma in the presence of an external homogenous, monochromatic, and linearly polarized laser field. The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption or emission and no-photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  1. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  2. Coupled phase field, heat conduction, and elastodynamic simulations of kinetic superheating and nanoscale melting of aluminum nanolayer irradiated by picosecond laser.

    PubMed

    Hwang, Yong Seok; Levitas, Valery I

    2015-12-21

    An advanced continuum model for nanoscale melting and kinetic superheating of an aluminum nanolayer irradiated by a picosecond laser is formulated. Barrierless nucleation of surface premelting and melting occurs, followed by a propagation of two solid-melt interfaces toward each other and their collision. For a slow heating rate of Q = 0.015 K ps(-1) melting occurs at the equilibrium melting temperature under uniaxial strain conditions T = 898.1 K (i.e., below equilibrium melting temperature Teq = 933.67 K) and corresponding biaxial stresses, which relax during melting. For a high heating rate of Q = 0.99-84 K ps(-1), melting occurs significantly above Teq. Surprisingly, an increase in heating rate leads to temperature reduction at the 3 nm wide moving interfaces due to fast absorption of the heat of fusion. A significant, rapid temperature drop (100-500 K, even below melting temperature) at the very end of melting is revealed, which is caused by the collision of two finite-width interfaces and accelerated melting in about the 5 nm zone. For Q = 25-84 K ps(-1), standing elastic stress waves are observed in a solid with nodal points at the moving solid-melt interfaces, which, however, do not have a profound effect on melting time or temperatures. When surface melting is suppressed, barrierless bulk melting occurs in the entire sample, and elastodynamic effects are more important. Good correspondence with published, experimentally-determined melting time is found for a broad range of heating rates. Similar approaches can be applied to study various phase transformations in different materials and nanostructures under high heating rates. PMID:26561920

  3. A prospective study of reduced-dose three-course CHOP followed by involved-field radiotherapy for patients 70 years old or more with localized aggressive non-Hodgkin's lymphoma

    SciTech Connect

    Shikama, Naoto . E-mail: shikama@hsp.md.shinshu-u.ac.jp; Oguchi, Masahiko; Isobe, Koichi; Nakamura, Katsumasa; Tamaki, Yoshio; Hasegawa, Masatoshi; Kodaira, Takeshi; Sasaki, Shigeru; Kagami, Yoshikazu

    2006-09-01

    Purpose: We conducted a multicenter prospective study to evaluate the efficacy and safety of reduced-dose three-course CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone) followed by involved-field radiotherapy for elderly patients with localized aggressive non-Hodgkin's lymphoma. The primary endpoint was compliance with the combined modality. Methods and Materials: This study included untreated patients, {>=}70 years old, with diffuse aggressive lymphoma, Stage IA or contiguous nonbulky Stage IIA. 80%-CHOP (cyclophosphamide 600 mg/m{sup 2}, doxorubicin 40 mg/m{sup 2}, vincristine 1.1 mg/m{sup 2}, and prednisolone at 80 mg/day for 5 days) was repeated every 3 weeks. After three cycles of chemotherapy, involved-field radiotherapy was performed with a radiation dose of 30-50 Gy in 15-28 fractions. Results: Twenty-four patients with a median age of 75 years (range, 70-84 years) were enrolled. The compliance rate of the protocol study was 87.5% (95% confidence interval [CI], 67.6-97.3). Three patients received only two cycles of chemotherapy because of toxicity or second neoplasm. There were no deaths caused by severe toxicity. The 3-year progression-free and overall survival rates were 83.1% (95% CI, 75.4-90.8) and 82.9% (95% CI, 75.1-90.6), respectively. Conclusion: Three-course 80%-CHOP followed by involved-field radiotherapy may be safe for administration to elderly patients over 70 years old. The next step is to evaluate three-course 80%-CHOP and rituximab followed by radiotherapy in elderly patients with localized disease.

  4. Significance of primary irradiation creep in graphite

    NASA Astrophysics Data System (ADS)

    Erasmus, Christiaan; Kok, Schalk; Hindley, Michael P.

    2013-05-01

    Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux fields and constant stress fields, but it does not allow for the effect of movement of stress locations around a graphite component during life, nor does it allow primary creep to be applied rate-dependently to graphite components subject to lower fast neutron flux. This paper shows that a differential form of primary irradiation creep in graphite combined with the secondary creep formulation proposed by Kennedy et al. performs well when predicting creep behaviour in experimental samples. The significance of primary irradiation creep in particular in regions with lower flux is investigated. It is shown that in low flux regions with a realistic operating lifetime primary irradiation creep is significant and is larger than secondary irradiation creep.

  5. Weibel-mediated collisionless shocks in laser-irradiated dense plasmas: Prevailing role of the electrons in generating the field fluctuations

    SciTech Connect

    Ruyer, C. Gremillet, L.; Bonnaud, G.

    2015-08-15

    We present a particle-in-cell simulation of the generation of a collisionless strong shock in a dense plasma driven by an ultra-intense, plane-wave laser pulse. A linear theory analysis, based on a multi-waterbag model of the particle distributions, highlights the role of the laser-heated electrons in triggering the Weibel-like instability causing shock formation. It is demonstrated that the return-current electrons play a major role in the instability development as well as in the determination of the saturated magnetic field. By contrast, the ions are found of minor importance in driving the instability and the magnetic field fluctuations responsible for their isotropization. Finally, we show that a Weibel-mediated shock can also be generated by a focused laser pulse of large enough spot size.

  6. Theory and simulation of high-brightness electron beam production from laser-irradiated photocathodes in the presence of dc and rf electric fields

    SciTech Connect

    Jones, M.E.; Peter, W.

    1986-01-01

    To take advantage of properties of laser-controlled photodiodes to produce electron beams, a new set of diode design criteria are needed. An analytical and numerical study of the geometrical and temporal factors that affect the design of high-brightness electron beams is presented. This study extends our previous work on this concept to include the effects of laser pulse shape, and emittance effects in the presence of rf fields. In general, the diode will not be space-charge limited. Therefore, the conventional Pierce electrode shapes are not appropriate. Furthermore, the finite temporal profile of the electron beams introduces a time-dependent space charge into the design problem. The approach taken here to minimize the emittance growth from the temporal profile of the space charge is to operate at low perveance. To obtain high currents, large electric fields are required. We exploit the fact that the electron emission is controlled by the laser and is independent of the voltage on the diode. The diode can then be driven by an rf field. In principle, operating at higher frequency allows higher breakdown limits, so the perveance can be made very small. However, operating at too high an rf frequency introduces other detrimental effects.

  7. High-dose Extended-Field Irradiation and High-Dose-Rate Brachytherapy With Concurrent Chemotherapy for Cervical Cancer With Positive Para-Aortic Lymph Nodes

    SciTech Connect

    Kim, Young Seok; Kim, Jong Hoon; Ahn, Seung Do; Lee, Sang-wook; Shin, Seong Soo; Nam, Joo-Hyun; Kim, Young-Tak; Kim, Yong-Man; Kim, Jong-Hyeok; Choi, Eun Kyung

    2009-08-01

    Purpose: To determine the efficacy and toxicity of extended-field radiotherapy (RT) with concurrent platinum-based chemotherapy in patients with uterine cervical carcinoma and positive para-aortic nodes. Methods and Materials: We retrospectively reviewed the results for 33 women with Stage IB-IVB cervical cancer. Each patient had received 59.4 Gy, including a three-dimensional conformal boost to the para-aortic lymph nodes and 41.4-50.4 Gy of external beam radiotherapy to the pelvis. Each patient also underwent six or seven applications of high-dose-rate brachytherapy (median, 5 Gy to point A at each session). Results: The median follow-up period of surviving patients was 39 months. The most common acute toxicity was hematologic, observed in 23 women. Severe acute and late gastrointestinal toxicity was observed in 3 and 4 patients, respectively. More than three-quarters of patients showed a complete response, encompassing the primary mass, metastatic pelvic, and para-aortic lymph nodes. Of the 33 women, 15 had no evidence of disease, 6 had persistent disease, 4 developed in-field failures, and 6 developed distant failures. The 5-year overall and disease-free survival rate was 47% and 42%, respectively. Conclusion: Concurrent chemoradiotherapy with extended-field radiotherapy is feasible in women with uterine cervical carcinoma and positive para-aortic lymph nodes, with acceptable late morbidity and a high survival rate, although it was accompanied by substantial acute toxicity.

  8. Use of Irradiated Foods

    NASA Technical Reports Server (NTRS)

    Brynjolfsson, A.

    1985-01-01

    The safety of irradiated foods is reviewed. Guidelines and regulations for processing irradiated foods are considered. The radiolytic products formed in food when it is irradiated and its wholesomeness is discussed. It is concluded that food irradiation processing is not a panacea for all problems in food processing but when properly used will serve the space station well.

  9. Elective ilioingunial lymph node irradiation

    SciTech Connect

    Henderson, R.H.; Parsons, J.T.; Morgan, L.; Million, R.R.

    1984-06-01

    Most radiologists accept that modest doses of irradiation (4500-5000 rad/4 1/2-5 weeks) can control subclinical regional lymph node metastases from squamous cell carcinomas of the head and neck and adenocarcinomas of the breast. There have been few reports concerning elective irradiation of the ilioinguinal region. Between October 1964 and March 1980, 91 patients whose primary cancers placed the ilioinguinal lymph nodes at risk received elective irradiation at the University of Florida. Included are patients with cancers of the vulva, penis, urethra, anus and lower anal canal, and cervix or vaginal cancers that involved the distal one-third of the vagina. In 81 patients, both inguinal areas were clinically negative; in 10 patients, one inguinal area was positive and the other negative by clinical examination. The single significant complication was a bilateral femoral neck fracture. The inguinal areas of four patients developed mild to moderate fibrosis. One patient with moderate fibrosis had bilateral mild leg edema that was questionably related to irradiation. Complications were dose-related. The advantages and dis-advantages of elective ilioinguinal node irradiation versus elective inguinal lymph node dissection or no elective treatment are discussed.

  10. A comparative dosimetric study of volumetric-modulated arc therapy vs. fixed field intensity-modulated radiotherapy in postoperative irradiation of stage IB-IIA high-risk cervical cancer

    PubMed Central

    QIAO, LILI; CHENG, JIAN; LIANG, NING; XIE, JIAN; LUO, HUI; ZHANG, JIANDONG

    2016-01-01

    The aim of the present study was to compare the dosimetry features of volumetric-modulated arc therapy (VMAT) and fixed field intensity-modulated radiotherapy (f-IMRT) in postoperative irradiation of stage IB-IIA high-risk cervical cancer. Fifteen patients exhibiting stage IB-IIA high-risk cervical cancer, who had been treated with postoperative adjuvant concurrent radiochemotherapy, were selected. The clinical target volume (CTV) and organs at risk (OARs) were delineated according to contrast computed tomography images. The planning target volume (PTV) was subsequently produced by using 1 cm uniform expansion of the CTV. The treatment plans were intended to deliver 50 Gy in 25 fractions. The OARs that were contoured included the bladder, rectum, small bowel and femoral heads. Dose volume histograms were used to evaluate the dose distribution in the PTV and OARs. VMAT and f-IMRT treatment plans resulted in similar dose coverage of the PTV. VMAT was superior to f-IMRT in conformity (P<0.05), and resulted in a reduction of OARs irradiated at high dose levels (V40 and V50) compared with f-IMRT (P<0.05), particularly for the bladder. However, the doses of low levels (V10 and V20) delivered to OARs with f-IMRT were slightly reduced compared with VMAT (P<0.05). For ambilateral femoral heads, VMAT demonstrated improved sparing compared with f-IMRT, with regard to D5 (P<0.05). Furthermore, VMAT treatment plans revealed a significant reduction in monitor units (MU) and treatment time. VMAT techniques exhibited similar PTV coverage compared with f-IMRT. At doses of high levels delivered to OARs, VMAT demonstrated improved sparing compared with f-IMRT, particularly for the bladder, while significantly reducing treatment time and MU number. PMID:26893675

  11. Detection of irradiated liquor

    NASA Astrophysics Data System (ADS)

    Shengchu, Qi; Jilan, Wu; Rongyao, Yuan

    D-2,3-butanediol is formed by irradiation processes in irradiated liquors. This radiolytic product is not formed in unirradiated liquors and its presence can therefore be used to identify whether a liquor has been irradiated or not. The relation meso/dl≈1 for 2,3-butanediol and the amount present in irradiated liquors may therefore be used as an indication of the dose used in the irradiation.

  12. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  13. Small-arc volumetric-modulated arc therapy: A new approach that is superior to fixed-field IMRT in optimizing dosimetric and treatment-relevant parameters for patients undergoing whole-breast irradiation following breast-conserving surgery.

    PubMed

    Yu, Jing; Hu, Tao; Chen, Yeshan

    2016-08-01

    Volumetric-modulated arc therapy (VMAT) is considered to deliver a better dose distribution and to shorten treatment time. There is a lack of research regarding breast irradiation after breast-conserving surgery (BCS) using VMAT with prone positioning. We developed a new small-arc VMAT methodology and compared it to conventional (fixed-field) intensity-modulated radiation therapy (IMRT) in the dosimetric and treatment relevant parameters for breast cancer patients in the prone position.Ten early-stage breast cancer patients were included in this exploratory study. All patients underwent computed tomography (CT) simulation scan in the prone position and for each patient, IMRT and VMAT plans were generated using the Monaco planning system. Two symmetrical partial arcs were applied in the VMAT plans. The angle ranges of the 2 arcs were set to approximately 60° to 100° and 220° to 260°, with small adjustments to maximize target coverage, while minimizing lung and heart exposure. The IMRT plans used 4 fixed fields. Prescribed doses were 50 Gy in 25 fractions. The target coverage, homogeneity, conformity, dose to organs at risk (OAR), treatment time, and monitor units (MU) were evaluated.Higher median conformal index (CI) and lower homogeneity index (HI) of the planning target volume (PTV) were respectively observed in VMAT and plans group (CI, 95% vs 91%; HI, 0.09 vs 0.12; P < 0.001). The volumes of ipsilateral lung receiving 30, 20, 10, and 5 Gy were lower for VMAT (P < 0.01), being 10%, 14.9%, 25.9%, and 44.9%, respectively, compared to 11.79%, 17.32%, 30.27%, and 50.58% for the IMRT plans. The mean lung dose was also reduced from 10.6 ± 1.8 to 9.6 ± 1.4 Gy (P = 0.001). The volumes of the heart receiving 30 and 40 Gy were similar for the 2 methods. In addition, the median treatment time (161 vs 412 seconds; P < 0.001) and the mean MU (713 vs 878; P < 0.001) were lower for VMAT.Small-arc VMAT plan improved CI and HI for the

  14. The effect of irradiation on the magnetic properties of rock and synthetic samples: Implications to irradiation of extraterrestrial materials in space

    NASA Astrophysics Data System (ADS)

    Bezaeva, N. S.; Gattacceca, J.; Rochette, P.; Duprat, J.; Rizza, G.; Vernazza, P.; Trukhin, V. I.; Skripnik, A. Ya.

    2015-05-01

    We report here the results of laboratory analog experiments to consider the potential effects of solar energetic particles (SEP or solar-flare-associated particles) and galactic cosmic rays (GCR) on the magnetic properties of extraterrestrial materials. We carried out proton bombardment experiments (with irradiation energies E 1=400, E 2 =850 keV and three irradiation fluences in 1014-1016 p/cm2 range) and lead-ion bombardment experiments ( E =1 GeV) on (previously demagnetized by 120 mT alternating magnetic field) rock and synthetic samples with the following magnetic carriers: metallic iron and nickel iron, Ti-rich and Ti-free magnetite, pyrrhotite. Irradiation experiments resulted in either further demagnetization or magnetization of irradiated samples depending on the type of magnetic mineralogy and type of ionizing radiation involved. Apart for the formation of radiation-induced remanent magnetization (RIRM), we observed major changes in bulk magnetic properties, i.e., a moderate to dramatic decrease (up to 93%) in the coercivity of remanence B cr for all iron-bearing phases (iron-in-epoxy and Bensour meteorite samples). Contrary to iron-bearing samples, several magnetite-bearing samples experienced a radiation-induced magnetic hardening (increase in B cr ). Magnetic hardening was also observed for Ar2+ ion-irradiated nickel iron-bearing HED meteorites, measured for comparison with the previously stated results. Therefore, the combined effect of SEP with GCR may magnetically soften iron-bearing materials and harden magnetite-bearing materials. In order to answer the question wether RIRM may account for natural remanent magnetization of meteorites and lunar samples, physical mechanism of RIRM formation and potential dependence of RIRM intensity on the background magnetic field present during irradiation event should be investigated.

  15. AGC-1 Irradiation Experiment Test Plan

    SciTech Connect

    R. L. Bratton

    2006-05-01

    The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200°C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

  16. Mild Toxicity and Favorable Prognosis of High-Dose and Extended Involved-Field Intensity-Modulated Radiotherapy for Patients With Early-Stage Nasal NK/T-Cell Lymphoma

    SciTech Connect

    Wang Hua; Li Yexiong; Wang Weihu; Jin Jing; Dai Jianrong; Wang Shulian; Liu Yueping; Song Yongwen; Wang Zhaoyang; Liu Qingfeng; Fang Hui; Qi Shunan; Liu Xinfan; Yu Zihao

    2012-03-01

    Purpose: The value of intensity-modulated radiotherapy (IMRT) for early-stage nasal NK/T-cell lymphoma has not been previously reported. The aim of the present study was to assess the dosimetric parameters, toxicity, and treatment outcomes of patients with nasal NK/T-cell lymphoma. Methods and Materials: Between 2003 and 2008, 42 patients with early-stage nasal NK/T-cell lymphoma underwent definitive high-dose and extended involved-field IMRT with or without combination chemotherapy. The median radiation dose to the primary tumor was 50 Gy. The dose-volume histograms of the target volume and critical normal structures were evaluated in all patients. The locoregional control, overall survival, and progression-free survival were calculated using the Kaplan-Meier method. Results: The average mean dose delivered to the planning target volume was 55.5 Gy. Only 1.3% and 2.5% of the planning target volume received <90% and 95% of the prescribed dose, respectively, indicating excellent planning target volume coverage. The mean dose and average dose to the parotid glands was 15 Gy and 14 Gy, respectively. With a median follow-up time of 27 months, the 2-year locoregional control, overall survival, and progression-free survivalrate was 93%, 78%, and 74%, respectively. No Grade 4 or 5 acute or late toxicity was reported. Conclusions: High-dose and extended involved-field IMRT for patients with early-stage nasal NK/T-cell lymphoma showed favorable locoregional control, overall survival, and progression-free survival, with mild toxicity. The dose constraints of IMRT for the parotid glands can be limited to <20 Gy in these patients.

  17. Viability of full-thickness skin grafts used for correction of cicatricial ectropion of lower eyelid in previously irradiated field in the periocular region

    PubMed Central

    Kim, Hee Joon; Hayek, Brent; Nasser, Qasiem; Esmaeli, Bita

    2013-01-01

    good quality photos were available had improvement in the degree of cicatrical lower eyelid ectropion as measured by the amount of inferior scleral show and tarsal conjunctival eversion, although 11 patients had some residual ectropion. All 20 had either good or excellent result in the appearance of their skin grafts. Conclusions Our findings suggest that full thickness skin grafts are a nice option for correction of cicatricial lower eyelid ectropion in a previously radiated field; 100% of the grafts survived. The majority of patients had improvement of ocular surface damage and symptoms, with a decreased dependence on topical lubricants. All evaluable patients had improvement in the degree of cicatrical lower eyelid ectropion, although close to one-half of patients had some mild residual ectropion. The majority of patients had excellent appearance of the skin graft. PMID:22287483

  18. Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L.

    2014-01-01

    We present an extensive irradiation study involving five state-of-the-art Nb3Sn wires which were subjected to sequential neutron irradiation up to a fast neutron fluence of 1.6 × 1022 m-2 (E > 0.1 MeV). The volume pinning force of short wire samples was assessed in the temperature range from 4.2 to 15 K in applied fields of up to 7 T by means of SQUID magnetometry in the unirradiated state and after each irradiation step. Pinning force scaling computations revealed that the exponents in the pinning force function differ significantly from those expected for pure grain boundary pinning, and that fast neutron irradiation causes a substantial change in the functional dependence of the volume pinning force. A model is presented, which describes the pinning force function of irradiated wires using a two-component ansatz involving a point-pinning contribution stemming from radiation induced pinning centers. The dependence of this point-pinning contribution on fast neutron fluence appears to be a universal function for all examined wire types.

  19. Investigation of irradiated soil byproducts.

    PubMed

    Brey, R R; Rodriguez, R; Harmon, J F; Winston, P

    2001-01-01

    The high dose irradiation of windblown soil deposited onto the surface of spent nuclear fuel is of concern to long-term fuel storage stability. Such soils could be exposed to radiation fields as great as 1.08 x 10(-3) C/kg-s (15,000 R/hr) during the 40-year anticipated period of interim dry storage prior to placement at the proposed national repository. The total absorbed dose in these cases could be as high as 5 x 10(7) Gy (5 x 10(9) rads). This investigation evaluated the potential generation of explosive or combustible irradiation byproducts during this irradiation. It focuses on the production of radiolytic byproducts generated within the pore water of surrogate clays that are consistent with those found on the Idaho National Engineering and Environmental Laboratory. Synthesized surrogates of localized soils containing combinations of clay, water, and aluminum samples, enclosed within a stainless steel vessel were irradiated and the quantities of the byproducts generated measured. Two types of clays, varying primarily in the presence of iron oxide, were investigated. Two treatment levels of irradiation and a control were investigated. An 18-Mev linear accelerator was used to irradiate samples. The first irradiation level provided an absorbed dose of 3.9 x 10(5)+/-1.4 x 10(5)Gy (3.9 x 10(7)+/-1.4 x 10(7) rads) in a 3-h period. At the second irradiation level, 4.8 x 10(5)+/-2.0 x 10(5)Gy (4.8 x 10(7)+/-2.0 x 10(7) rads) were delivered in a 6-h period. When averaged over all treatment parameters, irradiated clay samples with and without iron (III) oxide (moisture content = 40%) had a production rate of hydrogen gas that was a strong function of radiation-dose. A g-value of 5.61 x 10(-9)+/-1.56 x 10(-9) mol/J (0.054+/-0.015 molecules/100-eV) per mass of pore water was observed in the clay samples without iron (III) oxide for hydrogen gas production. A g-value of 1.07 x 10(-8)+/-2.91 x 10(-9) mol/J (0.103+0.028 molecules/100-eV) per mass of pore water was observed

  20. AGR-1 Post Irradiation Examination Final Report

    SciTech Connect

    Demkowicz, Paul Andrew

    2015-08-01

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests to simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building

  1. Applicability of the Sunna dosimeter for food irradiation control

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.; Miller, S.; Murphy, M.; McLaughlin, W. L.; Slezsák, I.; Kovács, A. I.

    2002-03-01

    The quick development concerning the commercial application of food irradiation in the USA recently resulted in growing marketing of irradiated red meat as well as irradiated fresh and dried fruits. These gamma and electron irradiation technologies require specific dosimetry systems for process control. The new version of the Sunna dosimeter has been characterized in gamma, electron and bremsstrahlung radiation fields by measuring the optically stimulated luminescence (osl) at 530 nm both below and above 1 kGy, i.e. for disinfestation and for meat irradiation purposes. No humidity and no significant dose rate effect on the green osl signal was observed. The temperature coefficient was determined from 0°C up to about 40°C and to stabilize the osl signal after irradiation a heat treatment method was introduced. Based on these investigations the Sunna 'gamma' film is a suitable candidate for dose control below and above 1 kGy for food irradiation technologies.

  2. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    NASA Astrophysics Data System (ADS)

    Bruhn, D. F.; Frank, S. M.; Roberto, F. F.; Pinhero, P. J.; Johnson, S. G.

    2009-02-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 × 10 3 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments.

  3. Microbial Biofilm Growth on Irradiated, Spent Nuclear Fuel Cladding

    SciTech Connect

    S.M. Frank

    2009-02-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 × 103 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments.

  4. Neoplasia in fast neutron-irradiated beagles

    SciTech Connect

    Bradley, E.W.; Zook; B.C.; Casarett, G.W.

    1981-09-01

    One hundred fifty-one beagle dogs were irradiated with either photons or fast neutrons (15 MeV) to one of three dose-limiting normal tissues - spinal cord, lung, or brain. The radiation was given in four fractions per week for 5 weeks (spinal cord), 6 weeks (lung), 7 weeks (brain) to total doses encompassing those given clinically for cancer management. To date, no nonirradiated dogs or photon-irradiated dogs have developed neoplasms within the irradiated field. Of the neutron-irradiated dogs at risk, the incidence of neoplasia was 15%. The latent period for radiation-induced cancers has varied from 1 to 4 1/2 years at this time in the study.

  5. Neoplasia in fast neutron-irradiated beagles

    SciTech Connect

    Bradley, E.W.; Zook, B.C.; Casarett, G.W.; Deye, J.A.; Adoff, L.M.; Rogers, C.C.

    1981-09-01

    One hundred fifty-one beagle dogs were irradiated with either photons or fast neutrons (15 MeV) to one of three dose-limiting normal tissues--spinal cord, lung, or brain. The radiation was given in four fractions per week for 5 weeks (spinal cord), 6 weeks (lung), or 7 weeks (brain) to total doses encompassing those given clinically for cancer management. To date, no nonirradiated dogs or photon-irradiated dogs have developed any neoplasms. Seven dogs receiving fast neutrons have developed 9 neoplasms within the irradiated field. Of the neutron-irradiated dogs at risk, the incidence of neoplasia was 15%. The latent period for radiation-induced cancers has varied from 1 to 4 1/2 years at this time in the study.

  6. Food irradiation in Hungary: commercial processing and development work

    NASA Astrophysics Data System (ADS)

    Kalman, B.; Szikra, L.; Ferencz, P.

    2000-03-01

    The result of an experiment with irradiated frozen poultry meat is presented. The purpose of the experiment was to prove the benefit of irradiation treatment for elimination of pathogenic bacteria such as Salmonella and Campylobacter. We found that an average dose of 4.5 kGy kills the bacteria in the meat. Agroster was involved in an EU project on the identification of irradiation treatment of spices and data from this project are presented. Commercial irradiation of spices has been used for more than 15 years in Hungary, proving the benefit of this technology

  7. NOTE: Blood irradiation with accelerator produced electron beams

    NASA Astrophysics Data System (ADS)

    Butson, M. J.; Cheung, T.; Yu, P. K. N.; Stokes, M. J.

    2000-11-01

    Blood and blood products are irradiated with gamma rays to reduce the risk of graft versus host disease (GVHD). A simple technique using electron beams produced by a medical linear accelerator has been studied to evaluate irradiation of blood and blood products. Variations in applied doses for a single field 20 MeV electron beam are measured in a phantom study. Doses have been verified with ionization chambers and commercial diode detectors. Results show that the blood product volume can be given a relatively homogeneous dose to within 6% using 20 MeV electrons without the need to rotate the blood bags or the beam entry point. The irradiation process takes approximately 6.5 minutes for 30 Gy applied dose to complete as opposed to 12 minutes for a dual field x-ray field irradiation at our centre. Electron beams can be used to satisfactorily irradiate blood and blood products in a minimal amount of time.

  8. Therapeutic postprostatectomy irradiation.

    PubMed

    Youssef, Emad; Forman, Jeffrey D; Tekyi-Mensah, Samuel; Bolton, Susan; Hart, Kim

    2002-06-01

    involvement, pathological stage, surgical margin, and perineural invasion. Upon multivariate analysis, only preradiation therapy PSA (P < 0.001) and the PSA trend during radiation therapy (P < 0.001) were significant factors. The results of therapeutic radiation for patients with elevated postprostatectomy PSA levels are sufficiently poor; other strategies should be explored as alternatives, including early adjuvant postprostatectomy irradiation or the use of combined hormonal and radiation therapy in the salvage situation. PMID:15046710

  9. Effects of irradiation on platelet function

    SciTech Connect

    Rock, G.; Adams, G.A.; Labow, R.S.

    1988-09-01

    Current medical practice involves the irradiation of blood components, including platelet concentrates, before their administration to patients with severe immunosuppression. The authors studied the effect of irradiation on in vitro platelet function and the leaching of plasticizers from the bag, both immediately and after 5 days of storage. The platelet count, white cell count, pH, glucose, lactate, platelet aggregation and release reaction, and serotonin uptake were not altered by the irradiation of random-donor or apheresis units with 2000 rads carried out at 0 and 24 hours and 5 days after collection. The leaching of di(2-ethylhexyl)phthalate from the plastic bags followed by the conversion to mono(2-ethylhexyl)phthalate was not increased by irradiation. Therefore, it is possible to irradiate platelet concentrates on the day of collection and subsequently store them for at least 5 days while maintaining in vitro function. This procedure could have considerable benefit for blood banks involved in the provision of many platelet products.

  10. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  11. Microwave Irradiation of Nanohydroxyapatite from Chicken Eggshells and Duck Eggshells

    PubMed Central

    Sajahan, Nor Adzliana; Wan Ibrahim, Wan Mohd Azhar

    2014-01-01

    Due to similarity in composition to the mineral component of bones and human hard tissues, hydroxyapatite with chemical formula Ca10(PO4)6(OH)2 has been widely used in medical field. Both chicken and duck eggshells are mainly composed of calcium carbonate. An attempt has been made to fabricate nanohydroxyapatite (nHA) by chicken (CES) and duck eggshells (DES) as calcium carbonate source (CaCO3). CES and DES were reacted with diammonium hydrogen [(NH4)2HPO4] solution and subjected to microwave heating at 15 mins. Under the effect of microwave irradiation, nHA was produced directly in the solution and involved in crystallographic transformation. Sample characterization was done using by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). PMID:25383364

  12. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  13. Consequences of Cytoplasmic Irradiation: Studies from Microbeam

    PubMed Central

    Zhou, Hongning; Hong, Mei; Chai, Yunfei; Hei, Tom K.

    2013-01-01

    The prevailing dogma for radiation biology is that genotoxic effects of ionizing radiation such as mutations and carcinogenesis are attributed mainly to direct damage to the nucleus. However, with the development of microbeam that can target precise positions inside the cells, accumulating evidences have shown that energy deposit by radiation in nuclear DNA is not required to trigger the damage, extra-nuclear or extra-cellular radiation could induce the similar biological effects as well. This review will summarize the biological responses after cytoplasm irradiated by microbeam, and the possible mechanisms involved in cytoplasmic irradiation. PMID:19346686

  14. Passive field reflectance measurements

    NASA Astrophysics Data System (ADS)

    Weber, Christian; Schinca, Daniel C.; Tocho, Jorge O.; Videla, Fabian

    2008-10-01

    The results of reflectance measurements performed with a three-band passive radiometer with independent channels for solar irradiance reference are presented. Comparative operation between the traditional method that uses downward-looking field and reference white panel measurements and the new approach involving duplicated downward- and upward-looking spectral channels (each latter one with its own diffuser) is analyzed. The results indicate that the latter method performs in very good agreement with the standard method and is more suitable for passive sensors under rapidly changing atmospheric conditions (such as clouds, dust, mist, smog and other scatterers), since a more reliable synchronous recording of reference and incident light is achieved. Besides, having separate channels for the reference and the signal allows a better balancing of gains in the amplifiers for each spectral channel. We show the results obtained in the determination of the normalized difference vegetation index (NDVI) corresponding to the period 2004-2007 field experiments concerning weed detection in soybean stubbles and fertilizer level assessment in wheat. The method may be used to refine sensor-based nitrogen fertilizer rate recommendations and to determine suitable zones for herbicide applications.

  15. Effect of gamma irradiation on Korean traditional multicolored paintwork

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-10-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.

  16. Home Fires Involving Grills

    MedlinePlus

    ... fires were fueled by gas while 13% used charcoal or other solid fuel. Gas grills were involved ... structure fires and 4,300 outdoor fires annually. Charcoal or other solid-fueled grills were involved in ...

  17. The Total Irradiance Monitors

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2015-08-01

    The first Total Irradiance Monitor (TIM) launched on NASA’s Solar Radiation and Climate Experiment in 2003 and quickly proved to be the most accurate and stable instrument on orbit for measuring the total solar irradiance (TSI). The TIM’s design improvements over the older classical radiometers helped its selection on many subsequent missions, including NASA’s Glory, NOAA’s TSI Calibration Transfer Experiment, and the series of NASA’s Total and Spectral Solar Irradiance Sensor instruments currently underway. I will summarize the status of and differences between each of the TIMs currently on-orbit or in production.

  18. Investigation of thermal annealing by gamma irradiation at room temperature in LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Bajor, Andrzej L.; Kaczmarek, Slawomir M.; Pracka, Izabella; Swirkowicz, Marek; Wronska, Teresa

    2001-08-01

    An interesting phenomenon of thermal annealing in gamma irradiated undoped, and photorefractive Cu- and Fe-doped, Z- oriented LiNbO3 crystal has been observed. Prior and after each gamma irradiation the crystals were thermally annealed in the air at 800 degrees C for a couple of hours. Optical homogeneity was investigated on the entire area of LiNbO3 wafers by measuring distributions of birefringence, the principal azimuth, transmission, and parameters associated with birefringence dispersion, and also by measurements of additional absorption in a few wafers' points. It has been rather unexpectedly observed that the classical thermal annealing can lead to a decease in optical homogeneity in the majority of cases. It is attributed to generation of an internal electric field by the pyroelectric effect, and to the electrooptic effect involved thereafter. On the other hand, the secondary electrons generated by gamma irradiation are believed to increase the optical homogeneity by increasing the crystal's conductivity and dissipating this field. A uniform temperature heating across the wafer generated by this irradiation is also a helpful factor in this gamma- annealing. It has been found that this effect at room temperature by this irradiation is also a helpful factor in this gamma-annealing. It has been found that this effect at room temperature is small for gamma irradiation of 105 Gy, while increasing the doses to 106 Gy and 107 Gy can profile in a considerable reduction of the optical inhomogeneity. A certain influence of Cu-doping on this effect has also been observed.

  19. Involving Latino Parents.

    ERIC Educational Resources Information Center

    Quezada, Reyes L.; Diaz, Delia M.; Sanchez, Maria

    2003-01-01

    Describes barriers to Latino parent involvement in educational activities, factors to consider when involving Latino parents, and two examples of Latino involvement programs in California: Family Literacy Workshop at James Monroe Elementary School, Madera Unified School District, and Parents Take P.A.R.T. (Parent Assisted Reading Training) at…

  20. Affective Involvement Instrument.

    ERIC Educational Resources Information Center

    Lemlech, Johanna K.

    1970-01-01

    The Affective Involvement Instrument (AII) describes and classifies affective involvement in the process of decision-making as it occurs during classroom activities such as role-playing or group discussions. The thirty-celled instrument behaviorizes the six processes involved in decision-making and combines them with the taxonomic levels of the…

  1. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  2. Electron irradiation of modern solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.

    1977-01-01

    A number of modern solar cell types representing 1976 technology (as well as some older types) were irradiated with 1 MeV electrons (and a limited number with 2 MeV electrons and 10 MeV protons). After irradiation, the cells were annealed, with I-V curves measured under AMO at 30 C. The purpose was to provide data to be incorporated in the revision of the solar cell radiation handbook. Cell resistivities ranged from 2 to 20 ohm-cm, and cell thickness from 0.05 to 0.46 mm. Cell types examined were conventional, shallow junction, back surface field (BSF), textured, and textured with BSF.

  3. Food irradiation in perspective

    NASA Astrophysics Data System (ADS)

    Henon, Y. M.

    1995-02-01

    Food irradiation already has a long history of hopes and disappointments. Nowhere in the world it plays the role that it should have, including in the much needed prevention of foodborne diseases. Irradiated food sold well wherever consumers were given a chance to buy them. Differences between national regulations do not allow the international trade of irradiated foods. While in many countries food irradiation is still illegal, in most others it is regulated as a food additive and based on the knowledge of the sixties. Until 1980, wholesomeness was the big issue. Then the "prerequisite" became detection methods. Large amounts of money have been spent to design and validate tests which, in fact, aim at enforcing unjustified restrictions on the use of the process. In spite of all the difficulties, it is believed that the efforts of various UN organizations and a growing legitimate demand for food safety should in the end lead to recognition and acceptance.

  4. Economics of food irradiation.

    PubMed

    Deitch, J

    1982-01-01

    This article examines the cost competitiveness of the food irradiation process. An analysis of the principal factors--the product, physical plant, irradiation source, and financing--that impact on cost is made. Equations are developed and used to calculate the size of the source for planned product throughput, efficiency factors, power requirements, and operating costs of sources, radionuclides, and accelerators. Methods of financing and capital investment are discussed. A series of tables show cost breakdowns of sources, buildings, equipment, and essential support facilities for both a cobalt-60 and a 10-MeV electron accelerator facility. Additional tables present irradiation costs as functions of a number of parameters--power input, source size, dose, and hours of annual operation. The use of the numbers in the tables are explained by examples of calculations of the irradiation costs for disinfestation of grains and radicidation of feed. PMID:6759046

  5. Irradiation of biliary carcinoma

    SciTech Connect

    Herskovic, A.; Heaston, D.; Engler, M.J.; Fishburn, R.I.; Jones, R.S.; Noell, K.T.

    1981-04-01

    External and interstitial irradiation have effected the disappearance of biliary lesions. The use of indwelling catheters in the biliary tract makes the technique more appealing. Iridium 192 implants were used.

  6. Ion irradiation effects on metallic nanocrystals

    NASA Astrophysics Data System (ADS)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C. S.; Foran, G. J.; Cookson, D. J.; Byrne, A. P.; Ridgway, M. C.

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  7. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C.

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  8. Health protection and food preservation by gamma irradiation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of several major studies on food systems for space missions beginning with Apollo 12 through Apollo-Soyuz and investigations of the application of irradiation to food for manned space flight are reported. The study of flight food systems involved the application of radurization (pasteurizing levels) doses of gamma irradiation to flour and bread supplied by Pepperidge Farms in advance of the missions. All flights from Apollo 12 through 17 carried irradiated fresh bread. On Apollo 17, cooperation with Natick Laboratories permitted the introduction of a ham sandwich using irradiated bread and irradiated sterile ham. Investigations centered on irradiated bread were conducted during the course of these missions. Studies were applied to the concept of improving fresh bread from the point of view of mold inhibition. The studies considered how irradiation could best be applied at what levels and on a variety of bread types. Throughout the studies of the application of gamma irradiation the emphasis was placed upon using low levels of irradiation in the pasteurizing or radurizing doses--under a Megarad. The primary goal was to determine if a public health benefit could be demonstrated using radurization along with food preservation and food quality improvements. The public health benefit would be parallel to that of pasteurization of milk as a concept. Publications are included providing the details of these observations, one dealing with the flour characteristics and the other dealing with the influence on fresh bread types. These demonstrate the major findings noted during the period of the studies examining bread.

  9. Precompaction irradiation of meteorites

    SciTech Connect

    Caffee, M.W.

    1986-01-01

    In the four meteorites studied, the nonirradiated grains show the nominal amount of spallogenic Ne and Ar expected from recent galactic cosmic ray exposure. Two conclusions follow from these observations: (1) the quality of spallogenic Ne and Ar in the irradiated grains is far more than can be explained by reasonable precompaction exposures to galactic cosmic rays. If the pre-compaction irradiation occurred in a regolith, the exposure to galactic cosmic rays would have to last several hundred m.y. for some of the grains. Similarly long ages would result if the source of the protons were solar flares with a particle flux similar to modern-day solar flares. These exposure durations are incompatible with current models for the pre-compaction irradiation of gas rich meteorites. (2) There is always a correlation between solar flare tracks and precompaction spallogenic Ne and Ar. This correlation is surprising, considering the difference in range of these two effects. Galactic cosmic rays have a range of meters whereas solar flare heavy ions have a range of less than a millimeter. This difference should largely decouple these two effects, as was shown in studies on lunar soil 60009, where both irradiated and non-irradiated grains contain large quantities of spallogenic Ne. If galactic cosmic rays are responsible for the spallogenic Ne and Ar in the irradiated grains, the authors would similarly expect the nonirradiated grains to contain large amounts of spallogenic Ne and Ar.

  10. Total lymphoid irradiation

    SciTech Connect

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  11. Blood irradiation: Rationale and technique

    SciTech Connect

    Lewis, M.C. )

    1990-01-01

    Upon request by the local American Red Cross, the Savannah Regional Center for Cancer Care irradiates whole blood or blood components to prevent post-transfusion graft-versus-host reaction in patients who have severely depressed immune systems. The rationale for blood irradiation, the total absorbed dose, the type of patients who require irradiated blood, and the regulations that apply to irradiated blood are presented. A method of irradiating blood using a linear accelerator is described.

  12. Gray Matters: The Power of Grandparent Involvement.

    ERIC Educational Resources Information Center

    McCluskey, Ken; McCluskey, Andrea

    2000-01-01

    Reviews the positive impact of cross-generational contact among children, parents, and grandparents. Draws on research in this field and blends theory with experiences, using personal examples to illustrate concepts of cross-generational involvement. (Author/JDM)

  13. Prospects for Irradiation in Cellulosic Ethanol Production

    PubMed Central

    Saini, Anita; Aggarwal, Neeraj K.; Sharma, Anuja; Yadav, Anita

    2015-01-01

    Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol. PMID:26839707

  14. Precipitation during irradiation: an experimental example

    SciTech Connect

    Gelles, D.S.

    1981-01-01

    Neutron damage can significantly alter the process of precipitation from supersaturated solid solution. This is demonstrated by a series of experiments using a precipitation strengthened superalloy, Nimonic PE16 irradiated with fast neutrons over the temperature 400 to 650/sup 0/C. In disagreement with earlier predictions, precipitate development is found to be controlled by the competing processes of Ostwald coarsening and solute segregation due to drag by point defects to point defect sinks. Analysis of the kinetics of Ostwald coarsening reveals significant enhancement of diffusion rates due to irradiation in agreement with predictions and involving an activation energy on the order of one quarter that of thermal diffusion. Unusual precipitate morphologies were observed such as void shells, linear precipitate arrays and Archimedes' screw configurations. However, predicted temperature dependencies for solute segregation are not obeyed. An explanation is presented involving the coupling of the Ostwald coarsening mechanism with the solute segregation process.

  15. Prospects for Irradiation in Cellulosic Ethanol Production.

    PubMed

    Saini, Anita; Aggarwal, Neeraj K; Sharma, Anuja; Yadav, Anita

    2015-01-01

    Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol. PMID:26839707

  16. High Involvement Work Teams.

    ERIC Educational Resources Information Center

    1996

    These three papers were presented at a symposium on high-involvement work teams moderated by Michael Leimbach at the 1996 conference of the Academy of Human Resource Development. "Beyond Training to the New Learning Environment: Workers on the High-Involvement Frontline" (Joseph Anthony Ilacqua, Carol Ann Zulauf) shows the link between an…

  17. Parent Involvement Handbook.

    ERIC Educational Resources Information Center

    Caplan, Arna

    This handbook on parent involvement, designed to be used with preschool programs, was developed by the Jefferson County Public Schools in Lakewood, Colorado. Included are: (1) a general statement about parent involvement in an early childhood program, (2) a description of the Jefferson County Early Childhood Program, (3) a description of the…

  18. Commericial Involvement in Intramurals.

    ERIC Educational Resources Information Center

    Maas, Gerry

    Sport in general has long had ties with commercial interests, the most popular and widespread involving publicity. Intramural sports programs, however, have not cultivated many commercial involvements in publicity. The approach in intramural sports advertising is simple. A commercial interest pays for space or time in a given communication media…

  19. [Families Involved in Learning.

    ERIC Educational Resources Information Center

    Ashby, Nicole, Ed.

    2001-01-01

    This issue of "Community Update" focuses on families involved in learning. The first article briefly discusses the "Ready to Read, Ready to Learn" White House summit that highlighted new research on early childhood learning. The center spread of this issue offers "Priming the Primary Educator: A Look at L. A. County's Parent Involvement Programs"…

  20. Conversational Involvement and Loneliness.

    ERIC Educational Resources Information Center

    Bell, Robert A.

    1985-01-01

    Assessed the relationship of conversational involvement and loneliness among college students. Found that lonely participants in this study had lower rates of talkativeness, interruptions, and attention than the nonlonely; they were also perceived as less involved and less interpersonally attractive. (PD)

  1. Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States

    SciTech Connect

    Lave, Matthew; Hayes, William; Pohl, Andrew; Hansen, Clifford W.

    2015-02-02

    We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decomposition models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.

  2. Monitoring pathogens from irradiated agriculture products

    NASA Astrophysics Data System (ADS)

    Butterweck, Joseph S.

    The final food and environmental safety assessment of agriculture product irradiation can only be determined by product history. Product history will be used for future research and development, regulations, commercial practices and implementation of agriculture and food irradiation on a regional basis. The commercial irradiator treats large varieties and amounts of products that are used in various environments. It, in time, will generate a large data base of product history. Field product monitoring begins when food irradiation progresses from the pilot/demonstration phase to the commercial phase. At that time, it is important that there be in place a monitoring system to collect and analyze field data. The systems managers, public health authorities and exotic disease specialists will use this information to assess the reduction of food pathogens on the populace and the environment. The common sources of monitoring data are as follows: 1) Host Monitoring a) Medical Diagnosis b) Autopsy c) Serology Surveys 2) Environmental Monitoring a) Sentinel b) Pest Surveys/Microbial Counts c) Sanitary Inspections 3) Food Industries Quality Assurance Monitoring a) End Product Inspection b) Complaints c) Continual Use of the Product

  3. Total scalp irradiation using helical tomotherapy

    SciTech Connect

    Orton, Nigel . E-mail: nporton@facstaff.wisc.edu; Jaradat, Hazim; Welsh, James; Tome, Wolfgang

    2005-09-30

    Homogeneous irradiation of the scalp poses technical and dosimetric challenges due to the extensive, superficial, curved treatment volume. Conventional treatments on a linear accelerator use multiple matched electron fields or a combination of electron and photon fields. Problems with these techniques include dose heterogeneity in the target due to varying source-to-skin distance (SSD) and angle of beam incidence, significant dose to the brain, and the potential for overdose or underdose at match lines between the fields. Linac-based intensity-modulated radiation therapy (IMRT) plans have similar problems. This work presents treatment plans for total scalp irradiation on a helical tomotherapy machine. Helical tomotherapy is well-suited for scalp irradiation because it has the ability to deliver beamlets that are tangential to the scalp at all points. Helical tomotherapy also avoids problems associated with field matching and use of more than one modality. Tomotherapy treatment plans were generated and are compared to plans for treatment of the same patient on a linac. The resulting tomotherapy plans show more homogeneous target dose and improved critical structure dose when compared to state-of-the-art linac techniques. Target equivalent uniform dose (EUD) for the best tomotherapy plan was slightly higher than for the linac plan, while the volume of brain tissue receiving over 30 Gy was reduced by two thirds. Furthermore, the tomotherapy plan can be more reliably delivered than linac treatments, because the patient is aligned prior to each treatment based on megavoltage computed tomography (MVCT)

  4. [Dosimetry of total skin electron irradiation

    PubMed

    Kontra, Gábor; Horváth, Akos; Bajcsay, András; Németh, György

    2000-07-01

    Elaboration of such a simple technique for total skin electron irradiation which ensures good dose homogeneity and minimal x-ray background dose. MATERIALS AND METHODS: We started large electron field irradiations with the Neptun 10p linear accelerator in the National Institute of Oncology -Budapest in 1986. After the installation of the Siemens Mevatron KD linear accelerator it was possible to introduce the modified Stanford technique. This technique satisfies better the requirements given in the objective. The required field size of 200x75 cm is produced as a result of two fields with 30 degrees angular separation (dual field) at a source skin distance of 465 cm. The patient's body is exposed to six dual electron fields. The electron energy is 6 MeV. Despite the long source skin distance the treatment time is relatively short due to the high dose rate (940 mu/min) capability of our Mevatron KD. The in air dose profiles were measured in miniphantom with semiconductor detector. Depth dose curves were measured in water and in polystyrene phantom with semiconductor detector and with films. RESULTS: The measured dose homogeneity of the 6 MeV energy dual field with 30 degrees angular separation is within +/- 5%in a 200x75cm plane field. The depth of dose maximum of the resulting dose distribution of six dual field irradiation is between 2 mm and 5 mm, while the depth of 80% isodose curve is about 8 mm. The total body x-ray background dose is less than 1% of the skin dose. CONCLUSION: The modified Stanford technique adapted to our Mevatron KD linear accelerator is suitable for total skin electron beam therapy. PMID:12050758

  5. Mechanism of genotoxicity induced by targeted cytoplasmic irradiation

    PubMed Central

    Hong, M; Xu, A; Zhou, H; Wu, L; Randers-Pehrson, G; Santella, R M; Yu, Z; Hei, T K

    2010-01-01

    Background: Direct damage to DNA is generally accepted as the main initiator of mutation and cancer induced by environmental carcinogens or ionising radiation. However, there is accumulating evidence suggesting that extracellular/extranuclear targets may also have a key role in mediating the genotoxic effects of ionising radiation. As the possibility of a particle traversal through the cytoplasm is much higher than through the nuclei in environmental radiation exposure, the contribution to genotoxic damage from cytoplasmic irradiation should not be ignored in radiation risk estimation. Although targeted cytoplasmic irradiation has been shown to induce mutations in mammalian cells, the precise mechanism(s) underlying the mutagenic process is largely unknown. Methods: A microbeam that can target the cytoplasm of cells with high precision was used to study mechanisms involved in mediating the genotoxic effects in irradiated human–hamster hybrid (AL) cells. Results: Targeted cytoplasmic irradiation induces oxidative DNA damages and reactive nitrogen species (RNS) in AL cells. Lipid peroxidation, as determined by the induction of 4-hydroxynonenal was enhanced in irradiated cells, which could be suppressed by butylated hydroxyl toluene treatment. Moreover, cytoplasmic irradiation of AL cells increased expression of cyclooxygenase-2 (COX-2) and activation of extracellular signal-related kinase (ERK) pathway. Conclusion: We herein proposed a possible signalling pathway involving reactive oxygen/nitrogen species and COX-2 in the cytoplasmic irradiation-induced genotoxicity effect. PMID:20842121

  6. Lipase inactivation in wheat germ by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar; Kudachikar, V. B.; Kumar, Sourav

    2013-05-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0-30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy.

  7. (Alaskan commodities irradiation project: An options analysis study)

    SciTech Connect

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.; Das, D.K.; Lewis, C.E.; Workman, W.G.; Tumeo, M.A.; Hok, C.I.; Birklind, C.A.; Bennett, F.L. . Inst. of Northern Engineering)

    1989-09-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology.

  8. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma

    PubMed Central

    Seol, Ki Ho

    2016-01-01

    Purpose To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Materials and Methods Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4–72 Gy (39.6–45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. Results The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. Conclusion No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC. PMID:27104162

  9. FOOD IRRADIATION REACTOR

    DOEpatents

    Leyse, C.F.; Putnam, G.E.

    1961-05-01

    An irradiation apparatus is described. It comprises a pressure vessel, a neutronic reactor active portion having a substantially greater height than diameter in the pressure vessel, an annular tank surrounding and spaced from the pressure vessel containing an aqueous indium/sup 1//sup 1//sup 5/ sulfate solution of approximately 600 grams per liter concentration, means for circulating separate coolants through the active portion and the space between the annular tank and the pressure vessel, radiator means adapted to receive the materials to be irradiated, and means for flowing the indium/sup 1//sup 1//sup 5/ sulfate solution through the radiator means.

  10. Fuel or irradiation subassembly

    DOEpatents

    Seim, O.S.; Hutter, E.

    1975-12-23

    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

  11. A reconstruction of solar irradiance using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2013-04-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1610.

  12. A reconstruction of solar irradiance using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie

    2012-07-01

    Solar irradiance is one of the important drivers of the Earth's global climate, but it has only been measured for the past 33 years. Its reconstructions are therefore crucial to study longer term variations relevant to climate timescales. Most successful in reproducing the measured irradiance variations have being the models that are based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field. Our SATIRE-S model is one of these, which uses solar full-disc magnetograms as an input, and these are available for less than four decades. To reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. The concept of overlapping ephemeral region cycles is used to describe the secular change in the irradiance.

  13. Modelling total solar irradiance using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2014-05-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1700.

  14. Eye Involvement in TSC

    MedlinePlus

    ... what we see to the brain via the optic nerve. Retinal and optic nerve involvement in TSC are well known today, ... hamartomas (non-cancerous tumors) of the retina or optic nerve. The most common type of retinal hamartoma ...

  15. Effects of clouds on erythemal and total irradiance as derived from data of the Argentine Network

    NASA Astrophysics Data System (ADS)

    Cede, Alexander; Blumthaler, Mario; Luccini, Eduardo; Piacentini, Rubén D.; Nuñez, Liliana

    2002-12-01

    Ultraviolet (UV) erythemal and total (300-3000 nm) irradiance measurements of the Argentine Servicio Meteorológico Nacional Network were related to ground-based cloud observations. No geographical dependence was observed in the effects of each cloud-type on the irradiance, from tropical to Antarctic regions. For overcast conditions, median transmittance percentages with respect to the clearsky situation of 81%, 44% and 36% at high, medium and low clouds respectively for erythemal irradiance, and 83%, 30% and 23% for total irradiance were determined, similar to results at mid-latitudes of the Northern Hemisphere. Irradiance enhancement by broken cloud fields is more pronounced from 5 to 7 octas cloud coverage and can last even hours, with peak instantaneous values of 113% for erythemal and 133% for total irradiance, with respect to the very clean clearsky situation. In each case, the total irradiance is usually more attenuated and also more enhanced by clouds than the erythemal irradiance.

  16. Update on meat irradiation

    SciTech Connect

    Olson, D.G.

    1997-12-01

    The irradiation of meat and poultry in the United States is intended to eliminate pathogenic bacteria from raw product, preferably after packaging to prevent recontamination. Irradiation will also increase the shelf life of raw meat and poultry products approximately two to three times the normal shelf life. Current clearances in the United States are for poultry (fresh or frozen) at doses from 1.5 to 3.0 kGy and for fresh pork at doses from 0.3 to 1.0 kGy. A petition for the clearance of all red meat was submitted to the Food and Drug Administration (FDA) in July 1994. The petition is for clearances of fresh meat at doses from 1.5 to 4.5 kGy and for frozen meat at {approximately}2.5 to 7.5 kGy. Clearance for red meat is expected before the end of 1997. There are 28 countries that have food irradiation clearances, of which 18 countries have clearances for meat or poultry. However, there are no uniform categories or approved doses for meat and poultry among the countries that could hamper international trade of irradiated meat and poultry.

  17. Irradiating insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...

  18. Phytosanitary applications of irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytosanitary treatments are used to disinfest agricultural commodities of quarantine pests so the commodities can be shipped across quarantine barriers to trade. Ionizing irradiation is a promising treatment that is increasing in use. Almost 19,000 tons of sweet potatoes and several fruits, plus ...

  19. Generic phytosanitary irradiation treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zeala...

  20. NSUF Irradiated Materials Library

    SciTech Connect

    Cole, James Irvin

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  1. A Longitudinal Evaluation of Partial Lung Irradiation in Mice by Using a Dedicated Image-Guided Small Animal Irradiator

    SciTech Connect

    Granton, Patrick V.; Dubois, Ludwig; Elmpt, Wouter van; Hoof, Stefan J. van; Lieuwes, Natasja G.; De Ruysscher, Dirk

    2014-11-01

    Purpose: In lung cancer radiation therapy, the dose constraints are determined mostly by healthy lung toxicity. Preclinical microirradiators are a new tool to evaluate treatment strategies closer to clinical irradiation devices. In this study, we quantified local changes in lung density symptomatic of radiation-induced lung fibrosis (RILF) after partial lung irradiation in mice by using a precision image-guided small animal irradiator integrated with micro-computed tomography (CT) imaging. Methods and Materials: C57BL/6 adult male mice (n=76) were divided into 6 groups: a control group (0 Gy) and groups irradiated with a single fraction of 4, 8, 12, 16, or 20 Gy using 5-mm circular parallel-opposed fields targeting the upper right lung. A Monte Carlo model of the small animal irradiator was used for dose calculations. Following irradiation, all mice were imaged at regular intervals over 39 weeks (10 time points total). Nonrigid deformation was used to register the initial micro-CT scan to all subsequent scans. Results: Significant differences could be observed between the 3 highest (>10 Gy) and 3 lowest irradiation (<10 Gy) dose levels. A mean difference of 120 ± 10 HU between the 0- and 20-Gy groups was observed at week 39. RILF was found to be spatially limited to the irradiated portion of the lung. Conclusions: The data suggest that the severity of RILF in partial lung irradiation compared to large field irradiation in mice for the same dose is reduced, and therefore higher doses can be tolerated.

  2. A nanotube based electron microbeam cellular irradiator for radiobiology research

    SciTech Connect

    Bordelon, David E.; Zhang Jian; Graboski, Sarah; Cox, Adrienne; Schreiber, Eric; Chang, Sha; Zhou, Otto Z.

    2008-12-15

    A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiotherapy cancer treatment outcomes. In this paper, initial results of the system development are reported. The relationship between field emission current, the dose rate, and the dose distribution has been investigated. A beam size of 23 {mu}m has been achieved with variable dose rates of 1-100 Gy/s, and the system dosimetry has been measured using a radiochromic film. Cell irradiation has been demonstrated by the visualization of H2AX phosphorylation at DNA double-strand break sites following irradiation in a rat fibroblast cell monolayer. The prototype single beam cellular irradiator is a preliminary step to a multipixel cell irradiator that is under development.

  3. A nanotube based electron microbeam cellular irradiator for radiobiology research

    NASA Astrophysics Data System (ADS)

    Bordelon, David E.; Zhang, Jian; Graboski, Sarah; Cox, Adrienne; Schreiber, Eric; Zhou, Otto Z.; Chang, Sha

    2008-12-01

    A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiotherapy cancer treatment outcomes. In this paper, initial results of the system development are reported. The relationship between field emission current, the dose rate, and the dose distribution has been investigated. A beam size of 23 μm has been achieved with variable dose rates of 1-100 Gy/s, and the system dosimetry has been measured using a radiochromic film. Cell irradiation has been demonstrated by the visualization of H2AX phosphorylation at DNA double-strand break sites following irradiation in a rat fibroblast cell monolayer. The prototype single beam cellular irradiator is a preliminary step to a multipixel cell irradiator that is under development.

  4. Development and dosimetry of a small animal lung irradiation platform

    PubMed Central

    McGurk, Ross; Hadley, Caroline; Jackson, Isabel L.; Vujaskovic, Zeljko

    2015-01-01

    Advances in large scale screening of medical counter measures for radiation-induced normal tissue toxicity are currently hampered by animal irradiation paradigms that are both inefficient and highly variable among institutions. Here, we introduce a novel high-throughput small animal irradiation platform for use in orthovoltage small animal irradiators. We used radiochromic film and metal oxide semiconductor field effect transistor detectors to examine several parameters, including 2D field uniformity, dose rate consistency, and shielding transmission. We posit that this setup will improve efficiency of drug screens by allowing for simultaneous, targeted irradiation of multiple animals, improving efficiency within a single institution. Additionally, we suggest that measurement of the described parameters in all centers conducting counter measure studies will improve the translatability of findings among institutions. We also investigated the use of tissue equivalent phantoms in performing dosimetry measurements for small animal irradiation experiments. Though these phantoms are commonly used in dosimetry, we recorded a significant difference in both the entrance and target tissue dose rates between euthanized rats and mice with implanted detectors and the corresponding phantom measurement. This suggests that measurements using these phantoms may not provide accurate dosimetry for in vivo experiments. Based on these measurements, we propose that this small animal irradiation platform can increase the capacity of animal studies by allowing for more efficient animal irradiation. We also suggest that researchers fully characterize the parameters of whatever radiation setup is in use in order to facilitate better comparison among institutions. PMID:23091878

  5. A nanotube based electron microbeam cellular irradiator for radiobiology research.

    PubMed

    Bordelon, David E; Zhang, Jian; Graboski, Sarah; Cox, Adrienne; Schreiber, Eric; Zhou, Otto Z; Chang, Sha

    2008-12-01

    A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiotherapy cancer treatment outcomes. In this paper, initial results of the system development are reported. The relationship between field emission current, the dose rate, and the dose distribution has been investigated. A beam size of 23 mum has been achieved with variable dose rates of 1-100 Gy/s, and the system dosimetry has been measured using a radiochromic film. Cell irradiation has been demonstrated by the visualization of H2AX phosphorylation at DNA double-strand break sites following irradiation in a rat fibroblast cell monolayer. The prototype single beam cellular irradiator is a preliminary step to a multipixel cell irradiator that is under development. PMID:19123587

  6. Characterization of an orthovoltage biological irradiator used for radiobiological research

    PubMed Central

    Azimi, Rezvan; Alaei, Parham; Spezi, Emiliano; Hui, Susanta K.

    2015-01-01

    Orthovoltage irradiators are routinely used to irradiate specimens and small animals in biological research. There are several reports on the characteristics of these units for small field irradiations. However, there is limited knowledge about use of these units for large fields, which are essential for emerging large-field irregular shape irradiations, namely total marrow irradiation used as a conditioning regimen for hematological malignancies. This work describes characterization of a self-contained Orthovoltage biological irradiator for large fields using measurements and Monte Carlo simulations that could be used to compute the dose for in vivo or in vitro studies for large-field irradiation using this or a similar unit. Percentage depth dose, profiles, scatter factors, and half-value layers were measured and analyzed. A Monte Carlo model of the unit was created and used to generate depth dose and profiles, as well as scatter factors. An ion chamber array was also used for profile measurements of flatness and symmetry. The output was determined according to AAPM Task Group 61 guidelines. The depth dose measurements compare well with published data for similar beams. The Monte Carlo–generated depth dose and profiles match our measured doses to within 2%. Scatter factor measurements indicate gradual variation of these factors with field size. Dose rate measured by placing the ion chamber atop the unit's steel plate or solid water indicate enhanced readings of 5 to 28% compared with those measured in air. The stability of output over a 5-year period is within 2% of the 5-year average. PMID:25694476

  7. Characterization of an orthovoltage biological irradiator used for radiobiological research.

    PubMed

    Azimi, Rezvan; Alaei, Parham; Spezi, Emiliano; Hui, Susanta K

    2015-05-01

    Orthovoltage irradiators are routinely used to irradiate specimens and small animals in biological research. There are several reports on the characteristics of these units for small field irradiations. However, there is limited knowledge about use of these units for large fields, which are essential for emerging large-field irregular shape irradiations, namely total marrow irradiation used as a conditioning regimen for hematological malignancies. This work describes characterization of a self-contained Orthovoltage biological irradiator for large fields using measurements and Monte Carlo simulations that could be used to compute the dose for in vivo or in vitro studies for large-field irradiation using this or a similar unit. Percentage depth dose, profiles, scatter factors, and half-value layers were measured and analyzed. A Monte Carlo model of the unit was created and used to generate depth dose and profiles, as well as scatter factors. An ion chamber array was also used for profile measurements of flatness and symmetry. The output was determined according to AAPM Task Group 61 guidelines. The depth dose measurements compare well with published data for similar beams. The Monte Carlo-generated depth dose and profiles match our measured doses to within 2%. Scatter factor measurements indicate gradual variation of these factors with field size. Dose rate measured by placing the ion chamber atop the unit's steel plate or solid water indicate enhanced readings of 5 to 28% compared with those measured in air. The stability of output over a 5-year period is within 2% of the 5-year average. PMID:25694476

  8. Surface, structural and tensile properties of proton beam irradiated zirconium

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  9. Irradiation creep and swelling of various austenitic alloys irradiated in PFR and FFTF

    SciTech Connect

    Garner, F.A.; Toloczko, M.B.

    1996-10-01

    In order to use data from surrogate neutron spectra for fusion applications, it is necessary to analyze the impact of environmental differences on property development. This is of particular importance in the study of irradiation creep and its interactions with void swelling, especially with respect to the difficulty of separation of creep strains from various non-creep strains. As part of an on-going creep data rescue and analysis effort, the current study focuses on comparative irradiations conducted on identical gas-pressurized tubes produced and constructed in the United States from austenitic steels (20% CW 316 and 20% CW D9), but irradiated in either the Prototype Fast Reactor (PFR) in the United Kingdom or the Fast Flux Test Facility in the United States. In PFR, Demountable Subassemblies (DMSA) serving as heat pipes were used without active temperature control. In FFTF the specimens were irradiated with active ({+-}{degrees}5C) temperature control. Whereas the FFTF irradiations involved a series of successive side-by-side irradiation, measurement and reinsertion of the same series of tubes, the PFR experiment utilized simultaneous irradiation at two axial positions in the heat pipe to achieve different fluences at different flux levels. The smaller size of the DMSA also necessitated a separation of the tubes at a given flux level into two groups (low-stress and high-stress) at slightly different axial positions, where the flux between the two groups varied {le}10%. Of particular interest in this study was the potential impact of the two types of separation on the derivation of creep coefficients.

  10. Musculoskeletal involvement in sarcoidosis*, **

    PubMed Central

    Nessrine, Akasbi; Zahra, Abourazzak Fatima; Taoufik, Harzy

    2014-01-01

    Sarcoidosis is a multisystem inflammatory disorder of unknown cause. It most commonly affects the pulmonary system but can also affect the musculoskeletal system, albeit less frequently. In patients with sarcoidosis, rheumatic involvement is polymorphic. It can be the presenting symptom of the disease or can appear during its progression. Articular involvement is dominated by nonspecific arthralgia, polyarthritis, and Löfgren's syndrome, which is defined as the presence of lung adenopathy, arthralgia (or arthritis), and erythema nodosum. Skeletal manifestations, especially dactylitis, appear mainly as complications of chronic, multiorgan sarcoidosis. Muscle involvement in sarcoidosis is rare and usually asymptomatic. The diagnosis of rheumatic sarcoidosis is based on X-ray findings and magnetic resonance imaging findings, although the definitive diagnosis is made by anatomopathological study of biopsy samples. Musculoskeletal involvement in sarcoidosis is generally relieved with nonsteroidal anti-inflammatory drugs or corticosteroids. In corticosteroid-resistant or -dependent forms of the disease, immunosuppressive therapy, such as treatment with methotrexate or anti-TNF-α, is employed. The aim of this review was to present an overview of the various types of osteoarticular and muscle involvement in sarcoidosis, focusing on their diagnosis and management. PMID:24831403

  11. Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, K. W.; Choi, D. M.; Noh, S. J.; Kim, H. S.; Lee, Cheol Eui

    2016-02-01

    Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.

  12. Ion irradiation effects on the exchange bias in IrMn/Co films

    SciTech Connect

    Schafer, D.; Grande, P. L.; Pereira, L. G.; Geshev, J.

    2011-01-15

    The present work reports on the influence of ion irradiation in exchange-coupled bilayers. Magnetron-sputtered IrMn{sub 4}/Co films were irradiated with 40 keV He{sup +} ions and the dependence of their magnetic properties was studied as function of ion fluence and current used during the irradiations. The effects of ion damage and electronic excitation were also studied through additional irradiations with H{sup +} and Ne{sup +} ions. The results show a clear dependence of the exchange-bias field on the defects caused by the ion bombardment. No correlations with other irradiation effects were observed.

  13. Optical Field Ionization of Atoms and Ions Using Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Fittinghoff, David Neal

    This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-nm laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He^{+2}, Ne ^{+2} and Ar^ {+2}. The ion yields for He^ {+1}, Ne^{+1} and Ar^{+1} agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser -matter interactions and production of high-density plasmas. This work involved: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-nm ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields (number of ions produced versus irradiance) for three noble gases using linear, circular and elliptical polarizations of laser pulses.

  14. Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction.

    PubMed

    Kamochi, Noriyuki; Nakashima, Masahiro; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Sugihara, Hajime; Toda, Shuji; Kudo, Sho

    2008-12-01

    The irradiated fibroblast-induced response of non-irradiated neighboring cells is called 'radiation-induced bystander effect', but it is unclear in non-irradiated human squamous cell carcinoma (SCC) cells. The present study shows that irradiated fibroblasts promoted the invasive growth of T3M-1 SCC cells, but not their apoptosis, more greatly than non-irradiated fibroblasts, using collagen gel invasion assay, immunohistochemistry and Western blot. The number of irradiated fibroblasts decreased to about 30% of that of non-irradiated fibroblasts, but irradiated fibroblasts increased the growth marker ki-67 display of SCC cells more greatly than non-irradiated fibroblasts. Irradiated fibroblasts did not affect the apoptosis marker ss-DNA expression of SCC cells. Irradiated fibroblasts enhanced the display of the following growth-, invasion- and motility-related molecules in SCC cells more greatly than non-irradiated fibroblasts: c-Met, Ras, mitogen-activated protein kinase (MAPK) cascade (Raf-1, MEK-1 and ERK-1/2), matrix metalloproteinase-1 and -9, laminin 5 and filamin A. Irradiated fibroblasts, but not non-irradiated ones, formed irradiation-induced foci (IRIF) of the genomic instability marker p53-binding protein 1 (53BP1) and expressed transforming growth factor-beta1 (TGF- beta1). Irradiated fibroblasts in turn enabled SCC cells to enhance 53BP1 IRIF formation more extensively than non-irradiated fibroblasts. Finally, effects of irradiated fibroblasts on growth and apoptosis of another HEp-2 SCC cell type were similar to those of T3M-1. These results suggest that irradiated fibroblasts promotes invasion and growth of SCC cells by enhancement of invasive growth-related molecules above through TGF- beta1-mediated bystander mechanism, in which irradiated fibroblast-induced genomic instability of SCC cells may be involved. PMID:19018771

  15. Complex Y-linked translocations in Delia antiqua produced by irradiation of a fertile Y-linked translocation.

    PubMed

    Robinson, A S; van Heemert, K

    1981-02-01

    In the onion fly, Delia antiqua, a fertile, Y-linked translocation involving chromosomes Y and 2 was irradiated with fast neutrons to induce new complexes involving the Y-chromosome. This chromosome is male determining in the onion fly. Such complexes can be used for the development of genetic sexing systems and also for the introduction of sterility into field populations following release. Irradiation reduced egg fertility by 54 per cent and significantly reduced larval survival but it had no effect on the F1 sex ratio. By measuring the fertility of 807 F1 males following outcrossing, 112 semi-sterile progenies were isolated of which 11 were lost, 29 showed no inheritance of the semi-sterility, 59 were new autosomal translocations and 13 were new complex Y-linked translocations. This classification was accomplished by checking the fertilities of outcrossed F2 males and females. Following cytological observation it was revealed that one of these new complexes involved four chromosome pairs, the remainder involved three. There appeared to be no correlation between the fertility of the translocation and the complexity of the rearrangement. The utilization of these rearrangements in the development of the genetic sexing technique for the onion fly is discussed, together with an assessment of their use for fertility reduction in natural populations. PMID:7263278

  16. Evidence for involvement of phytochrome in tumor development on plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1988-01-01

    The regulation of nonpathogenic tumorous growths on tomato plants by red and far-red radiation was studied using leaf discs floated on water and irradiated from beneath. It was found that red light (600-700 nanometers) was required for the induction of tumors on tomato (Lycopersicon hirsutum Humb. & Bonpl. Plant Introduction LA 1625), while both blue (400-500 nanometers) and green (500-600 nanometers) light had little effect on tumor development. Detailed studies with red light demonstrated that tumor development increased with increasing photon flux and duration, though duration was the more significant factor. It was observed that tumor development could be prevented by the addition of far-red irradiance to red irradiance or by providing far-red irradiance immediately following red irradiance. The effectiveness of red and far-red irradiance in the regulation of tumor development indicates phytochrome involvement in this response. These findings should provide additional insight into the multiplicity of physiological factors regulating the development of nonpathogenic tumorous growths in plants.

  17. Why Parental Involvement?

    ERIC Educational Resources Information Center

    Manno, Bruno V.

    Analysis of values, values transmission, human development, and Catholic social theory can increase effectiveness of parental involvement in Catholic education. Values are interpreted to include fundamental criteria which give meaning and order to life. Although values are transmitted by numerous sources including the family, social groups,…

  18. Involvement or Engagement?

    ERIC Educational Resources Information Center

    Ferlazzo, Larry

    2011-01-01

    To create the kinds of school-family partnerships that raise student achievement, improve local communities, and increase public support, schools need to understand the difference between family involvement and family engagement. Schools that emphasize the latter tend toward doing with families, rather than doing to families. These schools do more…

  19. Getting Parents Involved.

    ERIC Educational Resources Information Center

    Butts, Vickie; Finch, Patty A.

    1985-01-01

    Describes a parental involvement program in reading, writing, and human education. The project consists of caring for Clifford, a stuffed toy dog, on a rotated basis by first grade students. Books and pet care items accompany Clifford and provide an opportunity for parent and child to work together. (ML)

  20. Job Involvement of Teachers.

    ERIC Educational Resources Information Center

    Knoop, Robert

    This study investigated the relationship between job involvement and three sets of variables: nine personal (age, sex, marital status, education, overall experience, nonteaching experience, present school experience, income, and locus of control), three structural (size of school, location of school, and hierarchical position), and eight job…

  1. Strengthening Parent Involvement.

    ERIC Educational Resources Information Center

    Williams, David L., Jr.; Chavkin, Nancy Feyl

    1986-01-01

    Recent studies have verified Secretary of Education William Bennett's observation on the importance of home and family life. The most successful students are those whose parents become actively engaged in the educational process at home and at school. To capitalize on potential parent involvement, principals need to understand the kinds of…

  2. Precipitation during irradiation: an experimental example

    SciTech Connect

    Gelles, D.S.

    1981-01-01

    Neutron damage can significantly alter the process of precipitation from supersaturated solid solution. This is demonstrated by a series of experiments using a precipitation strengthened superalloy, Nimonic PE16 irradiated with fast neutrons over the temperature 400 to 650/sup 0/C. In disagreement with earlier predictions, precipitate development is found to be controlled by the competing processes of Ostwald coarsening and solute segregation due to drag by point defects to point defect sinks. Analysis of the kinetics of Ostwald coarsening reveals significant enhancement of diffusion rates due to irradiation in agreement with predictions and involving an activation energy on the order of one quarter that of thermal diffusion. Unusual precipitate morphologies were observed such as void shells, linear precipitate arrays and Archimedes' screw configurations. However, predicted temperature dependencies for solute segregation are not obeyed.

  3. Cadmium Nanowire Formation Induced by Ion Irradiation

    SciTech Connect

    Jiang, Weilin; Weber, William J.; Wang, Chong M.; Young, James S.; Boatner, Lynn A.; Lian, Jie; Wang, Lumin; Ewing, Rodney C.

    2005-07-04

    One-dimensional nanostructures, such as nanowires, of semiconductors and metals are of great technological interest due to their potential for many advanced technology applications. Utilization of these materials versus their bulk counterparts will not only allow for device miniaturisation, but also may improve device performance or create new functions. Here we report a novel method for the synthesis of crystalline Cd-nanowires without involving either templates or a “seeded” structure. Ion irradiation at low temperatures (≤ 295 K) has been used to induce material decomposition and phase segregation in a cadmium niobate pyrochlore (Cd2Nb2O7) wafer. During the formation and rupture of the gas-filled blisters in the material, soft metallic Cd is extruded/extracted as nanowires through pores in the exfoliated layer. The entire process may be readily controlled by changing the ion irradiation conditions (e.g., ion species, dose and energy) with minimal thermal constraints.

  4. Fall 2010 Total Solar Irradiance Calibration Workshop

    NASA Astrophysics Data System (ADS)

    Morrill, J. S.; Socker, D. G.; Willson, R. C.; Kopp, G.

    2010-12-01

    As part of a NASA-Sponsored program to understand the differences in Total Solar Irradiance (TSI) results reported by various space-based radiometers, the Naval Research Laboratory is hosting a Total Solar Irradiance Calibration Workshop. This workshop is a follow-on meeting to a similar workshop hosted by the National Institute for Standards and Technology in 2005. These workshops have been attended by many of the PI teams of the past and current TSI measuring instruments. The discussions at these workshops have addressed calibration methods and the numerous instrumental differences that need to be understood in order to bring the complete ensemble of results onto a common scale. In this talk we will present an overview of the NRL Calibration Workshop which will include results of recent calibration studies at various laboratories and have involved several TSI instruments.

  5. Laser Assisted Cancer Immunotherapy: Surface Irradiation

    NASA Astrophysics Data System (ADS)

    Wilson, Joshua; Chen, Hsin-Wei; Bandyopadhyay, Pradip

    2006-03-01

    Experiments in our laboratory incorporate a non-invasive approach to treat superficial tumors in animal models. Based on the concept of Laser Assisted Cancer Immunotherapy, surface irradiation provides good information to compare to invasive alternatives. The procedure involves injecting an immunoadjuvant (Glycated Chitosan) as well as a light absorbing dye (Indocyanine Green) directly into the tumor (5 to 7 mm in diameter). The temperature of the tumor is raised using an infrared diode laser operating at 804 nm, with a silica fiber tip placed a set distance away from the surface of the tumor. We monitor the surface temperature using non-invasive (infrared detector probe) as well as the internal temperature of the tumor using invasive (micro thermocouples) methods. This study aims at the success of the surface irradiation mode to treat solid tumors. * This work is supported by a grant from The National Institute of Health.

  6. Polyethylene welding by pulsed visible laser irradiation

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Caridi, F.; Visco, A. M.; Campo, N.

    2011-01-01

    Laser welding of plastics is a relatively new process that induces locally a fast polymer heating. For most applications, the process involves directing a pulsed beam of visible light at the weld joint by going through one of the two parts. This is commonly referred to as “through transmission visible laser welding”. In this technique, the monochromatic visible light source uses a power ns pulsed laser in order to irradiate the joint through one part and the light is absorbed in the vicinity of the other part. In order to evaluate the mechanical resistance of the welded joint, mass quadrupole spectrometry, surface profilometry, microscopy techniques and mechanical shear tests were employed. The welding effect was investigated as a function of the laser irradiation time, nature of the polyethylene materials and temperature.

  7. ELECTRON IRRADIATION OF SOLIDS

    DOEpatents

    Damask, A.C.

    1959-11-01

    A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

  8. Irradiation direction from texture

    NASA Astrophysics Data System (ADS)

    Koenderink, Jan J.; Pont, Sylvia C.

    2003-10-01

    We present a theory of image texture resulting from the shading of corrugated (three-dimensional textured) surfaces, Lambertian on the micro scale, in the domain of geometrical optics. The derivation applies to isotropic Gaussian random surfaces, under collimated illumination, in normal view. The theory predicts the structure tensors from either the gradient or the Hessian of the image intensity and allows inferences of the direction of irradiation of the surface. Although the assumptions appear prima facie rather restrictive, even for surfaces that are not at all Gaussian, with the bidirectional reflectance distribution function far from Lambertian and vignetting and multiple scattering present, we empirically recover the direction of irradiation with an accuracy of a few degrees.

  9. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  10. Physical approach to depth dose distributions in a water phantom irradiated by a teleisotope photon beam

    SciTech Connect

    Ahuja, S.D.; Stroup, S.L.; Bolin, M.G.; Gibbs, S.J.

    1980-03-01

    The physical basis of deposition of radiation dose within a homogeneous phantom irradiated by a monoenergetic photon beam has been studied in terms of photon attenuation and energy-absorption properties of the phantom material. A semi-empirical model based on the Klein--Nishina formula for Compton scattering, and the ratio of multiply scattered to singly scattered photon fluences, has been developed for the scatter dose component within a realistic phantom to determine the central-axial percent depth dose (PDD) and off-central-axis ratios (OCR). Differences between the predicted and measured values of PDD and OCR for cobalt-60 and cesium-137 beams are less than 3% for fields of equivalent-square-side less than 20 cm, and less than 5% for larger fields. Beam profiles of all field sizes can be well simulated by this model and reasonable agreement has been found between the predicted and tabulated values of scatter functions and the backscatter factor for cobalt-60 beams. This formulation involves no variable parameters, and is valid for all values of the source-to-surface distance, field length and width, and field shape. However, the algorithm developed is not suitable for routine multiple-field treatment planning because it requires large computer memory size.

  11. Forecasting solar extreme and far ultraviolet irradiance

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Hock, R. A.; Schooley, A. K.; Toussaint, W. A.; White, S. M.; Arge, C. N.

    2015-03-01

    A new method is presented to forecast the solar irradiance of selected wavelength ranges within the extreme ultraviolet (EUV) and far ultraviolet (FUV) bands. The technique is similar to a method recently published by Henney et al. (2012) to predict solar 10.7 cm (2.8 GHz) radio flux, abbreviated F10.7, utilizing advanced predictions of the global solar magnetic field generated by a flux transport model. In this and the previous study, we find good correlation between the absolute value of the observed photospheric magnetic field and selected EUV/FUV spectral bands. By evolving solar magnetic maps forward 1 to 7 days with a flux transport model, estimations of the Earth side solar magnetic field distribution are generated and used to forecast irradiance. For example, Pearson correlation coefficient values of 0.99, 0.99, and 0.98 are found for 1 day, 3 day, and 7 day predictions, respectively, of the EUV band from 29 to 32 nm. In the FUV, for example, the 160 to 165 nm spectral band, correlation values of 0.98, 0.97, and 0.96 are found for 1 day, 3 day, and 7 day predictions, respectively. In the previous study, the observed F10.7 signal is found to correlate well with strong magnetic field (i.e., sunspot) regions. Here we find that solar EUV and FUV signals are significantly correlated with the weaker magnetic fields associated with plage regions, suggesting that solar magnetic indices may provide an improved indicator (relative to the widely used F10.7 signal) of EUV and FUV nonflaring irradiance variability as input to ionospheric and thermospheric models.

  12. Exploiting time-resolved magnetic field effects for determining radical ion reaction rates

    NASA Astrophysics Data System (ADS)

    Bessmertnykh, A. O.; Borovkov, V. I.; Bagryansky, V. A.; Molin, Yu N.

    2016-07-01

    The capabilities of the method of time-resolved magnetic field effect in determining the rates of charge transfer reactions between radical ions and molecules on a nanosecond time scale have been investigated. The approach relies on the electron spin coherence in radical pair's partners generated by ionizing radiation. The spin evolution of the pair is sensitive to the reaction since the latter results in changing magnetic interactions of the unpaired electron. This process can be monitored by magnetic-field-sensitive fluorescence from an irradiated sample that is illustrated using reactions involving alkane radical cations. The accuracy and limitations of the approach are discussed.

  13. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2004-01-01

    A system to provide radiometric calibration of remote sensing imaging instruments on-orbit using the Moon has been developed by the US Geological Survey RObotic Lunar Observatory (ROLO) project. ROLO has developed a model for lunar irradiance which treats the primary geometric variables of phase and libration explicitly. The model fits hundreds of data points in each of 23 VNIR and 9 SWIR bands; input data are derived from lunar radiance images acquired by the project's on-site telescopes, calibrated to exoatmospheric radiance and converted to disk-equivalent reflectance. Experimental uncertainties are tracked through all stages of the data processing and modeling. Model fit residuals are ???1% in each band over the full range of observed phase and libration angles. Application of ROLO lunar calibration to SeaWiFS has demonstrated the capability for long-term instrument response trending with precision approaching 0.1% per year. Current work involves assessing the error in absolute responsivity and relative spectral response of the ROLO imaging systems, and propagation of error through the data reduction and modeling software systems with the goal of reducing the uncertainty in the absolute scale, now estimated at 5-10%. This level is similar to the scatter seen in ROLO lunar irradiance comparisons of multiple spacecraft instruments that have viewed the Moon. A field calibration campaign involving NASA and NIST has been initiated that ties the ROLO lunar measurements to the NIST (SI) radiometric scale.

  14. Feasibility of Helical Tomotherapy for Debulking Irradiation Before Stem Cell Transplantation in Malignant Lymphoma

    SciTech Connect

    Chargari, Cyrus; Vernant, Jean-Paul; Tamburini, Jerome; Zefkili, Sofia; Fayolle, Maryse; Campana, Francois; Fourquet, Alain; Kirova, Youlia M.

    2011-11-15

    Purpose: Preliminary clinical experience has suggested that radiation therapy (RT) may be effectively incorporated into conditioning therapy before transplant for patients with refractory/relapsed malignant lymphoma. We investigated the feasibility of debulking selective lymph node irradiation before autologous and/or allogeneic stem cell transplantation (SCT) using helical tomotherapy (HT). Methods and Materials: Six consecutive patients with refractory malignant lymphoma were referred to our institution for salvage HT before SCT. All patients had been previously heavily treated but had bulky residual tumor despite chemotherapy (CT) intensification. Two patients had received previous radiation therapy. HT delivered 30-40 Gy in the involved fields (IF), using 6 MV photons, 2 Gy per daily fraction. Total duration of treatment was 28 to 35 days. Results: Using HT, doses to critical organs (heart, lungs, esophagu, and parotids) were significantly decreased and highly conformational irradiation could be delivered to all clinical target volumes. HT delivery was technically possible, even in patients with lesions extremely difficult to irradiate in other conditions or in patients with previous radiation therapy. No Grade 2 or higher toxicity occurred. Four months after the end of HT, 5 patients experienced complete clinical, radiologic, and metabolic response and were subsequently referred for SCT. Conclusions: By more effectively sparing critical organs, HT may contribute to improving the tolerance of debulking irradiation before allograft. Quality of life may be preserved, and doses to the heart may be decreased. This is particularly relevant in heavily treated patients who are at risk for subsequent heart disease. These preliminary results require further prospective assessment.

  15. Hodgkin's disease: thyroid dysfunction following external irradiation

    SciTech Connect

    Tamura, K.; Shimaoka, K.

    1981-01-01

    The thyroid gland is commonly included in the field of radiation therapy for patients with malignant lymphoma and with head and neck tumors. The radiation dose for malignant diseases varies considerably depending on the purpose of treatment and the institutional policies. A substantial number of these patients are developing subclinical and clinical hypothyroidism. The risk of developing hypothyroidism after a moderate radiation dose of 2000 to 4500 rads has been reported to be 10 to 20 percent. In addition, subclinical hypothyroidism is induced further in one third of the patients. There are also suggestions that external irradiation of the thyroid gland in patients with malignant lymphomas, as well as internal irradiation with radioiodine of the normal and hyperthyroid human thyroid glands, would induce elevations of serum antithyroid autoantibody titers. However, only a few cases of Graves disease following irradiation to the thyroid gland have been reported. We encountered a young woman who received radiation therapy to the mantle field for her Hodgkin's disease and developed hypothyroxinemia without overt signs and symptoms of hypothyroidism, followed by appearance of nodular goiter and then full-blown Graves disease.

  16. Getting involved in research.

    PubMed

    Banner, Davina; Grant, Lyle G

    2011-01-01

    The need for quality nursing research to promote evidence-based practice and optimize patient care is well recognized. This is particularly pertinent in cardiovascular nursing, where cardiovascular disease continues to be the leading cause of morbidity and mortality worldwide (World Health Organization, 2007). Across the spectrum of academic, clinical, and health care administration nursing roles, research remains fundamental to bridging theory, practice, and education (LoBiondo-Wood, Haber, Cameron, & Singh, 2009). Despite recognition of the importance of nursing research, the gap between research and practice continues to be an ongoing issue (Funk, Tornquist, & Champagne, 1995; Pettengill, Gillies, & Clark, 1994; Rizzuto, Bostrom, Suterm, & Chenitz, 1994; Rolfe, 1998). Nurses are appropriately situated to contribute to research that improves clinical outcomes and health service delivery. However, the majority of nurses in clinical practice do not have a significant research component structured into their nursing role. In this research column, the authors outline the importance of nurses being engaged in research and present some different levels of involvement that nurses may assume. A continuum of nursing research involvement includes asking researchable questions, being a savvy consumer of research evidence, finding your own level of research involvement, and aspiring to lead. PMID:21361237

  17. Fractal vector optical fields.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485

  18. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  19. Postoperative irradiation impairs or enhances wound strength depending on time of administration

    SciTech Connect

    Vegesna, V.; McBride, W.H.; Withers, H.R.

    1995-08-01

    Irradiation can complicate surgical wound healing, yet little is known of the importance of the time between surgery and irradiation on this process. This study investigated the impact of post-operative irradiation on gain in wound tensile strength in a murine skin model. Irradiation on the same day as wounding or to 2-day-old wounds reduced wound tensile strength. In contrast, postoperative irradiation delivered at 7, 9 and 14 days transiently enhanced wound tensile strength, as measure d 3 but not 4 or 5 weeks later. This effect was independent of the inclusion (hemi-body) or exclusion (skin alone) of the hematopoietic system in the field of irradiation. Radiation-enhanced wound tensile strength was greater and occurred earlier after higher radiation doses. Even though the effect of irradiation in enhancing wound tensile strength is transitory, it could be important in assisting early wound healing. 14 refs., 3 figs., 1 tab.

  20. Post-irradiation effects in polyethylenes irradiated under various atmospheres

    NASA Astrophysics Data System (ADS)

    Suljovrujic, E.

    2013-08-01

    If a large amount of polymer free radicals remain trapped after irradiation of polymers, the post-irradiation effects may result in a significant alteration of physical properties during long-term shelf storage and use. In the case of polyethylenes (PEs) some failures are attributed to the post-irradiation oxidative degradation initiated by the reaction of residual free radicals (mainly trapped in crystal phase) with oxygen. Oxidation products such as carbonyl groups act as deep traps and introduce changes in carrier mobility and significant deterioration in the PEs electrical insulating properties. The post-irradiation behaviour of three different PEs, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) was studied; previously, the post-irradiation behaviour of the PEs was investigated after the irradiation in air (Suljovrujic, 2010). In this paper, in order to investigate the influence of different irradiation media on the post-irradiation behaviour, the samples were irradiated in air and nitrogen gas, to an absorbed dose of 300 kGy. The annealing treatment of irradiated PEs, which can substantially reduce the concentration of free radicals, is used in this study, too. Dielectric relaxation behaviour is related to the difference in the initial structure of PEs (such as branching, crystallinity etc.), to the changes induced by irradiation in different media and to the post-irradiation changes induced by storage of the samples in air. Electron spin resonance (ESR), differential scanning calorimetry (DSC), infra-red (IR) spectroscopy and gel measurements were used to determine the changes in the free radical concentration, crystal fraction, oxidation and degree of network formation, respectively.

  1. Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation

    PubMed Central

    2013-01-01

    Background Cranial reirradiation is clinically appropriate in some cases but cumulative radiation dose to critical normal structures remains a practical concern. The authors developed a simple technique in 3D conformal proton craniospinal irradiation (CSI) to block organs at risk (OAR) while minimizing underdosing of adjacent target brain tissue. Methods Two clinical cases illustrate the use of proton therapy to provide salvage CSI when a previously irradiated OAR required sparing from additional radiation dose. The prior radiation plan was coregistered to the treatment planning CT to create a planning organ at risk volume (PRV) around the OAR. Right and left lateral cranial whole brain proton apertures were created with a small block over the PRV. Then right and left lateral “inverse apertures” were generated, creating an aperture opening in the shape of the area previously blocked and blocking the area previously open. The inverse aperture opening was made one millimeter smaller than the original block to minimize the risk of dose overlap. The inverse apertures were used to irradiate the target volume lateral to the PRV, selecting a proton beam range to abut the 50% isodose line against either lateral edge of the PRV. Together, the 4 cranial proton fields created a region of complete dose avoidance around the OAR. Comparative photon treatment plans were generated with opposed lateral X-ray fields with custom blocks and coplanar intensity modulated radiation therapy optimized to avoid the PRV. Cumulative dose volume histograms were evaluated. Results Treatment plans were developed and successfully implemented to provide sparing of previously irradiated critical normal structures while treating target brain lateral to these structures. The absence of dose overlapping during irradiation through the inverse apertures was confirmed by film. Compared to the lateral X-ray and IMRT treatment plans, the proton CSI technique improved coverage of target brain tissue

  2. Dislocation loop evolution under ion irradiation in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Etienne, A.; Hernández-Mayoral, M.; Genevois, C.; Radiguet, B.; Pareige, P.

    2010-05-01

    A solution annealed 304 and a cold worked 316 austenitic stainless steels were irradiated from 0.36 to 5 dpa at 350 °C using 160 keV Fe ions. Irradiated microstructures were characterized by transmission electron microscopy (TEM). Observations after irradiation revealed the presence of a high number density of Frank loops. Size and number density of Frank loops have been measured. Results are in good agreement with those observed in the literature and show that ion irradiation is able to simulate dislocation loop microstructure obtained after neutron irradiation. Experimental results and data from literature were compared with predictions from the cluster dynamic model, MFVIC (Mean Field Vacancy and Interstitial Clustering). It is able to reproduce dislocation loop population for neutron irradiation. Effects of dose rate and temperature on the loop number density are simulated by the model. Calculations for ion irradiations show that simulation results are consistent with experimental observations. However, results also show the model limitations due to the lack of accurate parameters.

  3. Does the Earth's Magnetic Field Influence Climate?

    NASA Astrophysics Data System (ADS)

    Fluteau, F.; Courtillot, V.; Gallet, Y.; Le Mouel, J.; Genevey, A.

    2006-12-01

    Much of the observed increase in global surface temperature over the past 150 years occurred prior to the 1940's and after the 1980's. The main agents which are invoked are solar variability, changes in atmospheric greenhouse gas content or sulfur, due to natural or anthropogenic action, or internal variability of the coupled ocean-atmosphere system. Magnetism has seldom been invoked, and evidence for connections between climate and magnetic field variations have received little attention. We review evidence for such connections, starting with suggested correlations, on three time scales: recent secular variation (10-100 years), historical and archeomagnetic change (100-5000 years) and excursions and reversals (1000-1 million years). We attempt to suggest which mechanisms could account for observed correlations. Evidence for correlations in field intensity changes, excursions and reversals, which invoke Milankovic forcing in the core, either directly or through changes in ice distribution and moments of inertia of the Earth, is still tenuous. Correlation between decadal changes in amplitude of geomagnetic variations of external origin, solar irradiance and global temperature is stronger. The correlation applies until the 1980's, suggesting that solar irradiance is the prime forcing function of climate until then, when the correlation breaks and anomalous warming may emerge from the signal. Indeed, only solar flux of energy and particles can jointly explain parallel variations in temperature and external magnetic field. The most intriguing feature may be recently proposed archeomagnetic jerks (see abstract by Gallet et al). These seem to correlate with significant climatic events. A proposed mechanism involves tilt of the dipole to low latitudes, resulting in enhanced cosmic-ray induced nucleation of clouds. Intense data acquisition over a broad range of durations is required to further probe these indications that the Earth's and Sun's magnetic fields may have

  4. Total lymphoid irradiation for multiple sclerosis

    SciTech Connect

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  5. Promoting vital involvement.

    PubMed

    Kivnick, Helen Q; Stoffel, Sharon A

    2002-09-01

    Health care for the elderly generally focuses on health problems. This approach ignores the strengths and resources that maximize a person's autonomy, integrity, and ability to make contributions to society; and it exacerbates poor health. Vital involvement practice (VIP) is an approach to caring for the elderly that emphasizes an individual's capabilities by exploring factors both internal and external to the individual. VIP is identified as a model for health care providers that will improve the health and quality of life of elderly patients. PMID:12387120

  6. Breakdown of silicon particle detectors under proton irradiation

    SciTech Connect

    Vaeyrynen, S.; Raeisaenen, J.; Kassamakov, I.; Tuominen, E.

    2009-11-15

    Silicon particle detectors made on Czochralski and float zone silicon materials were irradiated with 7 and 9 MeV protons at a temperature of 220 K. During the irradiations, the detectors were biased up to their operating voltage. Specific values for the fluence and flux of the irradiation were found to cause a sudden breakdown in the detectors. We studied the limits of the fluence and the flux in the breakdown as well as the behavior of the detector response function under high flux irradiations. The breakdown was shown to be an edge effect. Additionally, the buildup of an oxide charge is suggested to lead to an increased localized electric field, which in turn triggers a charge carrier multiplication. Furthermore, we studied the influences of the type of silicon material and the configuration of the detector guard rings.

  7. Separation of transuranium elements from irradiated targets

    SciTech Connect

    Wham, R.M.; Benker, D.E.; Felker, L.K.; Chattin, F.R.

    1993-12-31

    Aluminum targets containing curium/americium oxide are irradiated to produce the transcurium actinides einsteinium, fermium, berkelium, and californium. Recovery of recycle curium/americium and the transcurium elements involves several chemical processing steps to selectively recover those elements and remove fission products. Chemical processing steps developed at the Radiochemical Engineering Development Center (REDC) include aluminum dejacketing, solvent extraction to remove bulk impurities, solvent extraction to remove plutonium, anion exchange to partition curium and transcurium elements from the rare earths, and a second anion exchange cycle to separate americium/curium from the transcurium elements.

  8. Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-reactor Materials

    SciTech Connect

    El-Azab, Anter

    2012-05-28

    This report contains a summary of progress made on the subtask area on phase field model development for microstructure evolution in irradiated materials, which was a part of the Computational Materials Science Network (CMSN) project entitled: Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-reactor Materials. The model problem chosen has been that of void nucleation and growth under irradiation conditions in single component systems.

  9. 'GREENER' SOLVENT-FREE CHEMICAL SYNTHESIS USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Solvent-free approach that involves microwave (MW) irradiation of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage...

  10. EXPEDITIOUS SOLVENT-FREE ORGANIC SYNTHESES USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocol...

  11. Endocannabinoid involvement in endometriosis

    PubMed Central

    Dmitrieva, Natalia; Nagabukuro, Hiroshi; Resuehr, David; Zhang, Guohua; McAllister, Stacy L.; McGinty, Kristina A.; Mackie, Ken; Berkley, Karen J.

    2010-01-01

    Endometriosis is a disease common in women that is defined by abnormal extrauteral growths of uterine endometrial tissue and associated with severe pain. Partly because how the abnormal growths become associated with pain is poorly understood, the pain is difficult to alleviate without resorting to hormones or surgery, which often produce intolerable side effects or fail to help. Recent studies in a rat model and women showed that sensory and sympathetic nerve fibers sprout branches to innervate the abnormal growths. This situation, together with knowledge that the endocannabinoid system is involved in uterine function and dysfunction and that exogenous cannabinoids were once used to alleviate endometriosis-associated pain, suggests that the endocannabinoid system is involved in both endometriosis and its associated pain. Here, using a rat model, we found that CB1 cannabinoid receptors are expressed on both the somata and fibers of both the sensory and sympathetic neurons that innervate endometriosis’s abnormal growths. We further found that CB1 receptor agonists decrease, whereas CB1 receptor antagonists increase, endometriosis-associated hyperalgesia. Together these findings suggest that the endocannabinoid system contributes to mechanisms underlying both the peripheral innervation of the abnormal growths and the pain associated with endometriosis, thereby providing a novel approach for the development of badly-needed new treatments. PMID:20833475

  12. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  13. Alteration of an annealed and irradiated lunar fines sample by adsorbed water

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Agron, P. A.; Eichler, E.; Fuller, E. L., Jr.; Okelley, G. D.; Gammage, R. B.

    1975-01-01

    Apollo 12 lunar fines sample 12070,403 was annealed at 1000 C and subsequently irradiated with a beam of 130 MeV Fe(9+) ions. Adsorptions of nitrogen and water were measured before and after the irradiation. Prior to the irradiation, the fines were nonporous and water had no effect on the physical characteristics of the lunar fines. In contrast, after the irradiation, the interaction with water caused an increase in the specific surface area and created a pore system. These results are definitive evidence that the interaction of water with damage tracks is the prime factor involved in the alteration of lunar fines by adsorbed water.

  14. Post-irradiation mechanical properties of an AlMgSi alloy

    NASA Astrophysics Data System (ADS)

    Ismail, Z. H.; Birt, B.

    1995-03-01

    The effect of fast-neutron irradiation on the tensile properties and hardness of the age-hardenable alloy AlMgSi is investigated. Post-irradiation tensile tests are carried out in the temperature range 298 to 628 K. The results show that the degree of irradiation-produced hardening is dependent upon the initial condition of the alloy. The alloy in its soft condition exhibits a higher degree of irradiation hardening compared with that in the hard condition. The implication of the results is discussed in terms of the variation in the microstructures involved and compared with previosly published data.

  15. Computed tomography–based distribution of involved lymph nodes in patients with upper esophageal cancer

    PubMed Central

    Li, M.; Liu, Y.; Xu, L.; Huang, Y.; Li, W.; Yu, J.; Kong, L.

    2015-01-01

    Background Delineating the nodal clinical target volume (ctvn) remains a challenging task in patients with cervical or upper thoracic esophageal carcinoma (ec). In particular, the extent of the lymph area that should be included in the irradiation field remains controversial. In the present study, the extent of the ctvn was determined based on the incidence of lymph node involvement mapped by computed tomography (ct) imaging. Methods Our study included 468 patients who were diagnosed with cervical and upper thoracic ec and who received staging information between June 2005 and April 2011. The anatomic distribution of metastatic regional lymph nodes was mapped using ct images and grouped using the levels established by the Radiation Therapy Oncology Group. The probability of the various groups being involved was examined. If a lymph node group had a probability of 10% or more of being involved, it was considered at high risk for metastasis, and elective treatment as part of the ctvn was recommended. Results Lymph node involvement was mapped by ct in 256 patients (54.7%). Not all lymph node groups should be included in the ctvn. For cervical lesions, the involved lymph nodes were located mainly between the hyoid bone and the arcus aortae; the recommended ctvn should consist of the neck lymph nodes at levels iii and iv (supraclavicular group) and thoracic groups 2 and 3P. In upper thoracic ec patients, most of the involved lymph nodes were distributed between the cricoid cartilage and the subcarinal area; the ctvn should cover the supraclavicular group and thoracic nodal groups 2, 3P, 4, 5, and 7. Conclusions Our ct-based study indicates a specific distribution and incidence of metastatic lymph node groups in patients with cervical and upper thoracic ec. The results suggest that regional lymph node groups should be electively included in the ctvn for precise radiation administration. PMID:26089729

  16. Food irradiation and sterilization

    NASA Astrophysics Data System (ADS)

    Josephson, Edward S.

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25-70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning is achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70-80°C (bacon to 53°C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40°C to -20°C). Radappertozed foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for "wholesomeness" (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effecys of radappertization on the "wholesomeness" characteristics of these foods.

  17. Parental Involvement to Parental Engagement: A Continuum

    ERIC Educational Resources Information Center

    Goodall, Janet; Montgomery, Caroline

    2014-01-01

    Based on the literature of the field, this article traces a continuum between parental involvement with schools, and parental engagement with children's learning. The article seeks to shed light on an area of confusion; previous research has shown that different stakeholder groups understand "parental engagement" in different ways.…

  18. Results of a randomized Phase-3 trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer

    SciTech Connect

    Porter, A.T. ); McEwan, A.J.B.; McGowan, D.G. ); Powe, J.E.; Reid, R. ); Lukka, H.; Sathyanarayana, J.R.; Yakemchuk, V.N. ); Thomas, G.M.; Erlich, L.E. ); Crook, J.; Gulenchyn, K.Y. ); Hong, K.E.; Wesolowski, C. ); Yardley, J. )

    1993-04-02

    A large proportion of the practice of radiotherapy in the management of metastatic adenocarcinoma of the prostate is associated with palliation of pain from osseous metastases and improving quality of life. Strontium-89 is a systemic radionuclide that has clinical efficacy in the palliation of pain from bony metastases. The study was a Phase-3 randomized placebo control trial performed in eight Canadian Cancer Centers to evaluate the effectiveness of strontium-89 as an adjunct to local field radiotherapy. Patients with endocrine refractory metastatic prostate cancer received local field radiotherapy and either strontium-89 as a single injection of 10.8 mCi or placebo. One hundred twenty-six patients were recruited. No significant differences in survival or in relief of pain at the index site were noted. Intake of analgesics over time demonstrated a significant reduction in the arm treated with strontium-89. Progression of pain as measured by sites of new pain or the requirement for radiotherapy showed statistically significant differences between the arms in favor of strontium-89. Tumor markers including prostate specific antigen, acid phosphatase, and alkaline phosphatase were also reduced in patients receiving strontium-89. A Quality-of-Life analysis was performed as a multivariate data set and demonstrated an overall superiority of strontium-89 with alleviation of pain and improvement in physical activity being statistically significant. Toxicity was evaluated and demonstrated increased hematological toxicity in the group receiving strontium-89. It is concluded that the addition of strontium-89 is an effective adjuvant therapy to local field radiotherapy reducing progression of disease as evidenced by new sites of pain and the requirement of further radiotherapy and improving quality-of-life and need for analgesic support in this group of patients. 24 refs., 7 figs., 2 tabs.

  19. Consumer acceptance of irradiated poultry.

    PubMed

    Hashim, I B; Resurreccion, A V; McWatters, K H

    1995-08-01

    A simulated supermarket setting (SSS) test was conducted to determine whether consumers (n = 126) would purchase irradiated poultry products, and the effects of marketing strategies on consumer purchase of irradiated poultry products. Consumer preference for irradiated poultry was likewise determined using a home-use test. A slide program was the most effective educational strategy in changing consumers' purchase behavior. The number of participants who purchased irradiated boneless, skinless breasts and irradiated thighs after the educational program increased significantly from 59.5 and 61.9% to 83.3 and 85.7% for the breasts and thighs, respectively. Using a label or poster did not increase the number of participants who bought irradiated poultry products. About 84% of the participants consider it either "somewhat necessary" or "very necessary" to irradiate raw chicken and would like all chicken that was served in restaurants or fast food places to be irradiated. Fifty-eight percent of the participants would always buy irradiated chicken if available, and an additional 27% would buy it sometimes. About 44% of the participants were willing to pay the same price for irradiated chicken as for nonirradiated. About 42% of participants were willing to pay 5% or more than what they were currently paying for nonirradiated chicken. Seventy-three percent or more of consumers who participated in the home-use test (n = 74) gave the color, appearance, and aroma of the raw poultry products a minimum rating of 7 (= like moderately). After consumers participated in a home-use test, 84 and 88% selected irradiated thighs and breasts, respectively, over nonirradiated in a second SSS test. PMID:7479506

  20. Antitumor Immunity Induced after α Irradiation123

    PubMed Central

    Gorin, Jean-Baptiste; Ménager, Jérémie; Gouard, Sébastien; Maurel, Catherine; Guilloux, Yannick; Faivre-Chauvet, Alain; Morgenstern, Alfred; Bruchertseifer, Frank; Chérel, Michel; Davodeau, François; Gaschet, Joëlle

    2014-01-01

    Radioimmunotherapy (RIT) is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue), and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 (213Bi) irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that 213Bi-treated MC-38 cells release “danger signals” and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells. PMID:24862758

  1. ESR Study on Irradiated Ascorbic Acid Single Crystal

    SciTech Connect

    Tuner, H.; Korkmaz, M.

    2007-04-23

    Food irradiation is a 'cold' process for preserving food and has been established as a safe and effective method of food processing and preservation after more than five decades of research and development. The small temperature increase, absence of residue and effectiveness of treatment of pre-packed food are the main advantages. In food industry, ascorbic acid and its derivatives are frequently used as antioxidant agents. However, irradiation is expected to produces changes in the molecules of food components and of course in the molecules of the agents added as preservation agents such as ascorbic acid. These changes in the molecular structures could cause decreases in the antioxidant actions of these agents. Therefore, the radiation resistance of these agents must be known to determine the amount of radiation dose to be delivered. Electron spin resonance (ESR) is one of the leading methods for identification of intermediates produced after irradiation. ESR spectrum of irradiated solid powder of ascorbic acid is fairly complex and determinations of involved radical species are difficult. In the present work, single crystals of ascorbic acid irradiated by gamma radiation are used to determine molecular structures of radiation induced radicalic species and four radicalic species related in pair with P21 crystal symmetry are found to be responsible from experimental ESR spectrum of gamma irradiated single crystal of ascorbic acid.

  2. Involved Node Radiation Therapy: An Effective Alternative in Early-Stage Hodgkin Lymphoma

    SciTech Connect

    Maraldo, Maja V.; Aznar, Marianne C.; Vogelius, Ivan R.; Petersen, Peter M.; Specht, Lena

    2013-03-15

    Purpose: The involved node radiation therapy (INRT) strategy was introduced for patients with Hodgkin lymphoma (HL) to reduce the risk of late effects. With INRT, only the originally involved lymph nodes are irradiated. We present treatment outcome in a retrospective analysis using this strategy in a cohort of 97 clinical stage I-II HL patients. Methods and Materials: Patients were staged with positron emission tomography/computed tomography scans, treated with adriamycin, bleomycin, vinblastine, and dacarbazine chemotherapy, and given INRT (prechemotherapy involved nodes to 30 Gy, residual masses to 36 Gy). Patients attended regular follow-up visits until 5 years after therapy. Results: The 4-year freedom from disease progression was 96.4% (95% confidence interval: 92.4%-100.4%), median follow-up of 50 months (range: 4-71 months). Three relapses occurred: 2 within the previous radiation field, and 1 in a previously uninvolved region. The 4-year overall survival was 94% (95% confidence interval: 88.8%-99.1%), median follow-up of 58 months (range: 4-91 months). Early radiation therapy toxicity was limited to grade 1 (23.4%) and grade 2 (13.8%). During follow-up, 8 patients died, none from HL, 7 malignancies were diagnosed, and 5 patients developed heart disease. Conclusions: INRT offers excellent tumor control and represents an effective alternative to more extended radiation therapy in the combined modality treatment for early-stage HL.

  3. Clinical and immunologic effects of fractionated total lymphoid irradiation in refractory rheumatoid arthritis

    SciTech Connect

    Trentham, D.E.; Belli, J.A.; Anderson, R.J.; Buckley, J.A.; Goetzl, E.J.; David, J.R.; Austen, K.F.

    1981-10-22

    Ten patients with refractory rheumatoid arthritis were given 3000 rad of fractionated total lymphoid irradiation in an uncontrolled therapeutic trial. Total lymphoid irradiation was associated with objective evidence of considerable clinical improvement in eight patients and with reduced blood lymphocyte counts in all 10. On completion of irradiation, there was an abrogation of lymphocyte reactivity in vitro in the patients with clinical responses, but abnormal antibody activities characteristic of rheumatoid arthritis and normal components of humoral immunity were not suppressed. Partial recrudescence of arthritis occurred shortly after a year after the completion of irradiation and was paralleled by a restitution of lymphocyte concentrations and responsiveness to mitogens to levels similar to those observed before irradiation. These data provide further evidence of T-cell involvement in the pathogenesis of rheumatoid arthritis and demonstrate that total lymphoid irradiation can induce temporary relief, but they do not ascertain whether the natural history of this disease was altered.

  4. Clinical and immunologic effects of fractionated total lymphoid irradiation in refractory rheumatoid arthritis

    SciTech Connect

    Trentham, D.E.; Belli, J.A.Anderson, R.J.; Buckley, J.A.; Goetzl, E.J.; David, J.R.; Austen, K.F.

    1981-10-01

    Ten patients with refractory rheumatoid arthritis were given 3000 rad of fractionated total lymphoid irradiation in an uncontrolled therapeutic trial. Total lymphoid irradiation was associated with objective evidence of considerable clinical improvement in eight patients and with reduced blood lymphocyte counts in all 10. On completion of irradiation, there was an abrogation of lymphocyte reactivity in vitro in the patients with clinical responses, but abnormal antibody activities characteristic of rheumatoid arthritis and normal components of humoral immunity were not suppressed. Partial recrudescence of arthritis occurred shortly before a year after the completion of irradiation and was paralleled by a restitution of lymphocyte concentrations and responsiveness to mitogens to levels similar to those observed before irradiation. These data provide further evidence of T-cell involvement in the pathogenesis of rheumatoid arthritis and demonstrate that total lymphoid irradiation can induce temporary relief, but they do not ascertain whether the natural history of this disease was altered.

  5. Microvessel reactivity changes in light-diode irradiation of blood (470 to 980 nm)

    NASA Astrophysics Data System (ADS)

    Petrishchev, Nikolai N.; Yantareva, Ludmila I.

    1998-01-01

    The effects of distant light diode irradiation with various spectrums of the trunk vessels on reactivity of microvessels in the small intestine mesentery treated with threshold doses of norepinephrine (NoE) are compared. The character of changes in reactivity of microvessels to NoE was found to depend on the wave length and irradiation dose. Ultraviolet irradiation (470 nm, 0.03 J/sm2) was noticed to increase reactivity of the vessels to NoE (vasoconstriction increase). In green light irradiation (540 nm, 0.3 J/sm2 sm2) no changes in reactivity were observed. Red light irradiation (670 nm, 2.0 J/sm2), infrared particular (980 nm, 1.0 J/sm2), lowered reactivity to NoE. Thus, noninvasive light-diode irradiation of the blood results in different systemic changes of endothelial dependent reactivity of microcirculation due to specify of photochemical processes involved.

  6. Food Irradiation for Produce Safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A research priority for the produce industry is the development of an effective, safe and commercially applicable kill step. Irradiation is a nonthermal process that has been shown to inactivate human pathogens from fruits and vegetables. Irradiation treatment at 1.0 kGy can reduce the surface popul...

  7. Phytosanitary irradiation in south Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irradiation has the potential to solve phytosanitary problems related to trade in south Asia. In general, it is the phytosanitary treatment most tolerated by fresh agricultural commodities. Irradiation technology is available in some countries of the region but is only used for phytosanitary purpos...

  8. Passive navigation using image irradiance tracking

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Sridhar, B.

    1989-01-01

    Rotorcraft operating at low altitudes require navigational schemes for locating the terrain and obstacles. Due to the covert nature of missions to be accomplished, a passive navigation scheme is desirable. This paper describes the development of a passive navigation scheme combining image sequences from a vehicle mounted camera with vehicle motion variables. Geometric properties of perspective projection together with an image irradiance tracking scheme at each pixel are used to determine the range to various objects within the field-of-view. Derivation of the numerical algorithm and simulation results are given. Other applications of the proposed approach include navigation for autonomous planetary rovers and telerobots.

  9. Total skin electron irradiation techniques: a review

    PubMed Central

    Milecki, Piotr; Skórska, Małgorzata; Fundowicz, Dorota

    2013-01-01

    Total skin electron irradiation (TSEI) has been employed as one of the methods of mycosis fungoides treatment since the mid-twentieth century. In order to improve the effects and limit the complications following radiotherapy, a number of varieties of the TSEI method, frequently differing in the implementation mode have been developed. The paper provides a systematic review of the different varieties of TSEI. The discussed differences concerned especially: (i) technological requirements and geometric conditions, (ii) the alignment of the patient, (iii) the number of treatment fields, and (iv) dose fractionation scheme. PMID:24278046

  10. Cardiac involvement in hemochromatosis.

    PubMed

    Gulati, Vinay; Harikrishnan, Prakash; Palaniswamy, Chandrasekar; Aronow, Wilbert S; Jain, Diwakar; Frishman, William H

    2014-01-01

    Cardiac hemochromatosis or primary iron-overload cardiomyopathy is an important and potentially preventable cause of heart failure. This is initially characterized by diastolic dysfunction and arrhythmias and in later stages by dilated cardiomyopathy. Diagnosis of iron overload is established by elevated transferrin saturation (>55%) and elevated serum ferritin (>300 ng/mL). Genetic testing for mutations in the HFE (high iron) gene and other proteins, such as hemojuvelin, transferrin receptor, and ferroportin, should be performed if secondary causes of iron overload are ruled out. Patients should undergo comprehensive 2D and Doppler echocardiography to evaluate their systolic and diastolic function. Newer modalities like strain imaging and speckle-tracking echocardiography hold promise for earlier detection of cardiac involvement. Cardiac magnetic resonance imaging with measurement of T2* relaxation times can help quantify myocardial iron overload. In addition to its value in diagnosis of cardiac iron overload, response to iron reduction therapy can be assessed by serial imaging. Therapeutic phlebotomy and iron chelation are the cornerstones of therapy. The average survival is less than a year in untreated patients with severe cardiac impairment. However, if treated early and aggressively, the survival rate approaches that of the regular heart failure population. PMID:24503941

  11. Radiation damage studies performed at the Calliope gamma irradiation plant at ENEA, Italy)

    NASA Astrophysics Data System (ADS)

    Baccaro, S.; Cemmi, A.

    2011-09-01

    The Calliope plant, a pool-type irradiation facility located at the Research Centre ENEA-Casaccia (Rome), is equipped with the 60Co γ source in a high-volume shielded cell. Calliope facility is involved in radiation processing research on materials (polymers and optical components) and on devices to be used in hostile radiation environment such as nuclear plants, aerospace experiments and High Energy Physics experiments. The aim of this work is to give an overall picture of the activity we are carrying on at our laboratories with a mention to the possible applications in the field of scintillators and glasses, like doping effect to induce radiation resistance in scintillators, glasses for safe nuclear fuel disposal, suitable substitute oxides which can replace PbO in the preparation of lead-free glasses complying environmental regulations.

  12. Pallet irradiators for food processing

    NASA Astrophysics Data System (ADS)

    McKinnon, R. G.; Chu, R. D. H.

    This paper looks at the various design concepts for the irradiation processing of food products, with particular emphasis on handling the products on pallets. Pallets appear to offer the most attractive method for handling foods from many considerations. Products are transported on pallets. Warehouse space is commonly designed for pallet storage and, if products are already palletized before and after irradiation, then labour could be saved by irradiating on pallets. This is also an advantage for equipment operation since a larger carrier volume means lower operation speeds. Different pallet irradiator design concepts are examined and their suitability for several applications are discussed. For example, low product holdup for fast turn around will be a consideration for those operating an irradiation "service" business; others may require a very large source where efficiency is the primary requirement and this will not be consistent with low holdup. The radiation performance characteristics and processing costs of these machines are discussed.

  13. Long term outcome of localized aggressive non-Hodgkin lymphoma treated with a short weekly chemotherapy regimen (doxorubicin, cyclophosphamide, bleomycin, vincristine, and prednisone) and involved field radiotherapy: result of a Gruppo Italiano Multiregionale per lo Studio dei Linfomi e Leucenie (GIMURELL) study.

    PubMed

    Cabras, Maria Giuseppina; Mamusa, Angela Maria; Vitolo, Umberto; Freilone R, Roberto; Dessalvi, Paolo; Orsucci, Lorella; Tonso, Anna; Levis, Alessandro; Liberati, Marina; Lay, Giancarlo; Angelucci, Emanuele

    2009-09-01

    Recently, management of limited stage diffuse large cell lymphoma (DLCL) is trending toward a low intensity chemotherapy approach. Since 1993 we have used a brief weekly (6 weeks) chemotherapy scheme (Doxorubicin, Cyclophosphamide, Bleomycin, Vincristine, and Prednisone = ACOP-B) followed by involved field radiotherapy in 207 consecutive patients with well defined localized DLCL without age limit (median 57 years, range 18-85). Treatment was completed as designed in 183 of 207 patients (88%). One hundred and ninety-nine patients (96%) achieved complete remission. At a median follow-up of 66 months 170 patients are alive (82%), 168 of them free of disease. Twenty-nine patients experienced relapse after achieving a complete remission. Kaplan-Meier, risk of relapse was 24% after 13 years. Thirty (14.5%) patients have died, 14 (6.8%) due to lymphoma progression, one due to regimen toxicity and 15 (7.2%) from other causes while remaining in complete remission. The probability of overall survival and event free survival at 13 years was 78% (95% CI 70-87%) and 63% (95% CI 50-75), respectively. Crude rate of secondary malignancy was 5.26 /1000 person-years. The ACOP-B regimen plus involved field radiotherapy is well tolerated both short and long term and is an effective chemotherapy scheme for very well defined limited stage aggressive non-Hodgkin lymphomas in all age categories. PMID:19579074

  14. Applying Employee Involvement in Schools.

    ERIC Educational Resources Information Center

    Mohrman, Susan Albers; And Others

    1992-01-01

    The applicability of employee-involvement approaches to the management of schools is explored, describing three approaches (parallel-suggestion involvement, job involvement, and high involvement). Design issues (technology; organizational structure; leadership; organizational boundaries, customer definition, and relation to stakeholder; measures;…

  15. Multidrug toxicity involving sumatriptan.

    PubMed

    Knittel, Jessica L; Vorce, Shawn P; Levine, Barry; Hughes, Rhome L; Bosy, Thomas Z

    2015-01-01

    A multidrug fatality involving sumatriptan is reported. Sumatriptan is a tryptamine derivative that acts at 5-HT(1B/1D) receptors and is used for the treatment of migraines. The decedent was a 21-year-old white female found dead in bed by her spouse. No signs of physical trauma were observed and a large number of prescription medications were discovered at the scene. Toxicological analysis of the central blood revealed sumatriptan at a concentration of 1.03 mg/L. Following therapeutic dosing guidelines, sumatriptan concentrations do not exceed 0.095 mg/L. Sumatriptan was isolated by solid-phase extraction and analyzed using liquid chromatography-tandem mass spectrometry in multiple reaction monitoring mode. A tissue distribution study was completed with the following concentrations measured: 0.61 mg/L in femoral blood, 0.56 mg/L in iliac blood, 5.01 mg/L in urine, 0.51 mg/kg in liver, 3.66 mg/kg in kidney, 0.09 mg/kg in heart, 0.32 mg/kg in spleen, 0.01 mg/kg in brain, 15.99 mg/kg in lung and 78.54 mg/45 mL in the stomach contents. Carisoprodol, meprobamate, fluoxetine, doxylamine, orphenadrine, dextromethorphan and hydroxyzine were also present in the blood at the following concentrations: 3.35, 2.36, 0.63, 0.19, 0.06, 0.55 and 0.16 mg/L. The medical examiner ruled the cause of death as acute mixed drug toxicity and the manner of death as accident. PMID:25324526

  16. Irradiation applications in vegetables and fruits: a review.

    PubMed

    Arvanitoyannis, Ioannis S; Stratakos, Alexandros Ch; Tsarouhas, Panagiotis

    2009-05-01

    There is an increasing trend both in advanced countries and many developing countries to centrally process fresh fruits and vegetables, properly packaged, for distribution and marketing. Irradiation technology proved to be effective in reducing post-harvest losses, and controlling the stored product insects and the microorganisms. Gamma irradiation was employed to restrain potato sprouting and kill pests in grain. Irradiation proved to be extremely beneficial in terms of prolonging the fruit and vegetable shelf life by 3-5 times. In order not to expose fruits and vegetables to high irradiation doses another approach is to use the "hurdle technology," that is to apply more than one technology toward better quality and longer shelf life. This review summarizes a) all the obtained results in this field (either irradiation on its own or in conjunction with other technologies) on fruits and vegetables in 11 figures and eight (8) very comprehensive tables, and b) provides an insight in the various methods (EPR, TL, Comet assay among others) for detection of irradiated foods. PMID:19399670

  17. The incident solar irradiance at the sea surface

    NASA Technical Reports Server (NTRS)

    Van Tran, AN; Collins, Donald J.

    1990-01-01

    Computations have been performed of the incident spectral irradiance at the sea surface using LOWTRAN-7 as the basis to describe the incident scalar and vector irradiance in terms of the true solar zenith angle and the nominal visibility in the atmosphere. These computations have been used to describe the contributions to the incident irradiance from the direct and the sky components of the total irradiance and the average cosine of the sky component as a measure of the radiance distribution of the sky for varying atmospheric conditions. Comparisons of the computations from LOWTRAN-7 have been made with the results from other models, and with data obtained from field measurements, and excellent agreement has been obtained for the daily profiles of the vector and scalar irradiance at the surface. These computations have been used to provide a description of the irradiance at the sea surface for use in the analysis of remotely sensed data based on information on the radiative transfer through the atmosphere above the sea surface.

  18. Magnetization and susceptibility of ion-irradiated granular magnetite films

    SciTech Connect

    Jiang, W.; McCloy, J. S.; Lea, A. S.; Sundararajan, J. A.; Yao, Q.; Qiang, Y.

    2011-04-01

    Porous granular films of magnetite (Fe{sub 3}O{sub 4}) with grains of {approx}3 nm in size were prepared using a state-of-the-art nanocluster deposition system. The films are initially superparamagnetic but become magnetized following Si{sup 2+} ion irradiation. A significant increase in the grain size and a dramatic change in the microstructure are observed. There are dipolar interactions between the nanoparticles in both the unirradiated and irradiated films. The in-phase alternating current magnetic susceptibility of the unirradiated film shows a blocking temperature of {approx}150 K, depending on frequency. A broadened Verwey transition for the irradiated film occurs at {approx}75 K, above which the susceptibility exhibits unusual behavior: a nearly linear decrease with decreasing temperature. There are irreversible domain rotations in the irradiated film during zero-field cooling and warming cycles between 10 and 300 K. The observed behavior of the irradiated granular films is quite distinct from that of metallic nanostructures after irradiation, and is due to the dramatic change in microstructures.

  19. Field ecology, fungal sex and food contamination involving Aspergillus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several species within the genus Aspergillus are capable of producing a myriad of toxic secondary metabolites, with aflatoxin being of most concern. These fungi happen to colonize important agricultural commodities, thereby having the potential to contaminate our food with carcinogenic aflatoxins. P...

  20. Effect of heavy noble gas ion irradiation on terahertz emission efficiency of InP (100) and (111) crystal planes

    NASA Astrophysics Data System (ADS)

    Radhanpura, K.; Lewis, R. A.; Sirbu, L.; Enachi, M.; Tiginyanu, I. M.; Skuratov, V. A.

    2014-09-01

    Emission of terahertz (THz) electromagnetic radiation from heavily-doped (5 × 1018 cm-3) (100) and (111) InP bulk materials and nanoporous honeycomb membranes, irradiated with heavy noble gas (Kr and Xe) ions, is presented. Irradiating samples with Kr or Xe improves THz emission efficiency. For (111) samples, as for unirradiated samples, the irradiated porous structures generate more THz radiation than their bulk counterparts. On the other hand, in contrast to unirradiated (100) samples, the irradiated (100) samples show a decrease in THz emission with porosity. We attribute this behaviour to changes in the local electric field due to the combined effect of the irradiation and nanoporosity.

  1. Doping of Bi2Te3 using electron irradiation

    NASA Astrophysics Data System (ADS)

    Rischau, C. W.; Leridon, B.; Fauqué, B.; Metayer, V.; van der Beek, C. J.

    2013-11-01

    Electron irradiation is investigated as a way to dope the topological insulator Bi2Te3. For this, p-type Bi2Te3 single crystals have been irradiated with 2.5 MeV electrons at room temperature and electrical measurements have been performed in situ as well as ex situ in magnetic fields up to 14 T. The defects created by irradiation act as electron donors, allowing the compensation of the initial hole-type conductivity of the material as well as the conversion of the conductivity from p to n type. The changes in carrier concentration are investigated using the Hall effect and Shubnikov-de Haas (SdH) oscillations, clearly observable in the p-type samples before irradiation, but also after the irradiation-induced conversion of the conductivity to n type. The SdH patterns observed for the magnetic field along the trigonal axis can be entirely explained assuming the contributions of only one valence and one conduction band, respectively, and Zeeman splitting of the orbital levels.

  2. Prevention of hypothyroidism related to mantle irradiation for Hodgkin's disease: Preparative phantom study

    SciTech Connect

    Marcial-Vega, V.A.; Order, S.E.; Lastner, G.; Cole, P.D.; LaFrance, N.; O'Neill, M. )

    1990-03-01

    To decrease the incidence of hypothyroidism related to mantle irradiation for Hodgkin's disease, we initiated a study designed to protect the thyroid gland using a phantom. A thyroid phantom was filled with technetium-99m. The thyroid phantom was placed inside of its corresponding anterior neck position in a whole body phantom. An anterior scintiscan of the head and neck region demonstrated the radioactivity in the simulated thyroid. A mantle port included a focused block that would shield the thyroid from the anterior port. The phantom was exposed (4 MeV) to 180 cGy (AP-PA) at midplane with lithium fluoride dosimeters in the position of the thyroid. The thyroid received an average of 12 cGy from the anterior field and 48 cGy from the posterior field for a total of 60 cGy per treatment or 30% of the prescribed dose. A complete mantle field course of radiation of 4000 cGy would lead to a thyroid dose of 1200 cGy at a daily fractional dose of 60 cGy. We elected not to block the thyroid from the posterior field to prevent shielding and potential underdosage of involved nodal sites. The present study suggests a method of safe and effective thyroid shielding which needs to be tested clinically to determine whether it would reduce the incidence of chemical and clinical hypothyroidism or simply extend the period until occurrence.

  3. Acute microwave irradiation and cataract formation in rabbits and monkeys.

    PubMed

    Kramar, P; Harris, C; Emery, A F; Guy, A W

    1978-09-01

    Rabbits and monkeys were irradiated in the near field of a cavity-backed 2450 MHz resonant slot radiator, to determine the cataractogenic threshold. Rabbits developed cataracts at incident "apparent" power densities of 180 mW/cm2 (E2/120 pi, where E=rms/electric field strength). Monkeys sustained facial burns, but no lens damage, even at incident "apparent" power densities of 500 mW/cm2. These results were substantiated by computer thermal models. PMID:108401

  4. Nanoindentation on ion irradiated steels

    NASA Astrophysics Data System (ADS)

    Hosemann, P.; Vieh, C.; Greco, R. R.; Kabra, S.; Valdez, J. A.; Cappiello, M. J.; Maloy, S. A.

    2009-06-01

    Radiation induced mechanical property changes can cause major difficulties in designing systems operating in a radiation environment. Investigating these mechanical property changes in an irradiation environment is a costly and time consuming activity. Ion beam accelerator experiments have the advantage of allowing relatively fast and inexpensive materials irradiations without activating the sample but do in general not allow large beam penetration depth into the sample. In this study, the ferritic/martensitic steel HT-9 was processed and heat treated to produce one specimen with a large grained ferritic microstructure and further heat treated to form a second specimen with a fine tempered martensitic lath structure and exposed to an ion beam and tested after irradiation using nanoindentation to investigate the irradiation induced changes in mechanical properties. It is shown that the HT-9 in the ferritic heat treatment is more susceptible to irradiation hardening than HT-9 after the tempered martensitic heat treatment. Also at an irradiation temperature above 550 °C no detectable hardness increase due to irradiation was detected. The results are also compared to data from the literature gained from the fast flux test facility.

  5. Early Effects of Whole-Body 56Fe Irradiation on Hippocampal Function in C57BL/6J Mice

    PubMed Central

    Haley, Gwendolen E.; Yeiser, Lauren; Olsen, Reid H. J.; Davis, Matthew J.; Johnson, Lance A.; Raber, Jacob

    2014-01-01

    Relatively little is known about early irradiation effects on hippocampal function in wild-type mice. In this study, the effects of 56Fe irradiation on hippocampal function were assessed starting 2 weeks after whole-body irradiation. Compared to sham irradiation, radiation impaired novel object recognition in female and male C57BL/6J wild-type mice. There were no effects of irradiation on contextual fear conditioning or spatial memory retention in the water maze. It is possible that oxidative damage might contribute to radiation-induced cognitive changes. Therefore, hippocampal and cortical levels of 3-nitrotyrosine (3NT) and lipid peroxidation, measures of oxidative damage were assessed. There were no effects of irradiation on these measures of oxidative damage. As 56Fe irradiation can increase reactive oxygen species (ROS) levels, which may contribute to the impairments in novel object recognition, the effects of the antioxidant alpha-lipoic acid (ALA) on cognition following sham irradiation and irradiation were also assessed. ALA did not prevent radiation-induced impairments in novel object recognition and impaired spatial memory retention of sham-irradiated and irradiated mice in the probe trial after the first day of hidden platform training in the water maze. Thus, the novel object recognition test is particularly sensitive to detect early cognitive effects of 56Fe irradiation through a mechanism unlikely involving ROS or oxidative damage. PMID:23510274

  6. New facility for post irradiation examination of neutron irradiated beryllium

    SciTech Connect

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  7. AFIP-4 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs

    2012-01-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE)1,2. The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  8. AFIP-4 Irradiation Summary Report

    SciTech Connect

    Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs

    2011-09-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE). The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  9. Localized dose delivering by ion beam irradiation for experimental trial of establishing brain necrosis model.

    PubMed

    Takata, Takushi; Kondo, Natsuko; Sakurai, Yoshinori; Tanaka, Hiroki; Hasegawa, Takashi; Kume, Kyo; Suzuki, Minoru

    2015-11-01

    Localized dose delivery techniques to establish a brain radiation necrosis model are described. An irradiation field was designed by using accelerated protons or helium ions with a spread-out Bragg peak. Measurement of the designed field confirmed that a high dose can be confined to a local volume of an animal brain. The irradiation techniques described here are very useful for establishing a necrosis model without existence of extraneous complications. PMID:26454176

  10. SU-C-BRB-01: Development of Dynamic Gimbaled X-Ray Head Swing Irradiation Technique

    SciTech Connect

    Ono, T; Miyabe, Y; Yokota, K; Akimoto, M; Mukumoto, N; Ishihara, Y; Nakamura, M; Mizowaki, T; Hiraoka, M; Takahashi, K

    2015-06-15

    Purpose: The Vero4DRT has a unique gimbaled x-ray head with rotating around orthogonal two axes. The purpose of this study was to develop a new irradiation technique using the dynamic gimbaled x-ray head swing function. Methods: The Vero4DRT has maximum field size of 150Χ150 mm2. The expanded irradiation field (expanded-field) for the longitudinal direction which is vertical to the MLC sliding direction, was created by the MLC motion and the gimbaled x-ray head rotation. The gimbaled x-ray head was rotated ± 35 mm, and the expanded-field size was set as 150Χ220 mm2. To irradiate uniform dose distribution, the diamond-shaped radiation field was created and continuously moved for the longitudinal direction. It was achieved by combination of opening and closing of the MLC and gimbal swing rotation. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 100 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expanded-field irradiation technique was applied to virtual wedge irradiation. Wedged beam was acquired with the delta–shaped radiation field. 150Χ 220 mm2 fields with 15, 30, 45, and 60 degree wedge were examined. The wedge angles were measured with irradiated film and compared with assumed wedge angles. Results: The field size, penumbra, flatness and symmetry of the expanded-field were 150.0 mm, 8.1–8.4 mm, 2.8% and −0.8% for the lateral direction and 220.1 mm, 6.3–6.4 mm, 3.2% and −0.4% for the longitudinal direction at 100 mm depth. The measured wedge angles were 15.1, 30.2, 45.2 and 60.2 degrees. The differences between assumed and measured angles were within 0.2 degrees. Conclusion: A new technique of the gimbal swing irradiation was developed. To extend applied targets, especially for whole breast irradiation, the expanded-field and virtual wedge irradiations would be effective.

  11. Characterization of biodegradable polymers irradiated with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Salguero, N. G.; del Grosso, M. F.; Durán, H.; Peruzzo, P. J.; Amalvy, J. I.; Arbeitman, C. R.; García Bermúdez, G.

    2012-02-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly- L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  12. Effects of impurities on one-dimensional migration of interstitial clusters in iron under electron irradiation

    SciTech Connect

    Satoh, Y.; Matsui, H.; Hamaoka, T.

    2008-03-01

    One-dimensional (1D) migration of small interstitial-type dislocation loops was studied for Fe specimens of different purities at room temperature under electron irradiation using a high-voltage electron microscope. Most 1D migration appeared as discrete jumps (stepwise positional changes) at irregular intervals, and sometimes involved back and forth motion between certain points. The distribution of jump distances extended to over 100 nm in high-purity specimens; it was less than 30 nm in low-purity specimens. Jump frequency was almost proportional to electron beam intensity and was on the same order as the rate of atomic displacement by electron irradiation. Molecular dynamics simulation suggested the suppression of 1D migration of an interstitial cluster (7i) by an oversized solute Cu atom located in the dilatational strain field of the cluster. We proposed that the 1D jump process occurs in the following sequence: (1) interstitial clusters are in a stationary state due to trapping effect by impurity atoms, (2) incident electrons hit and displace impurity atom to cause detrapping, (3) liberated clusters cause fast 1D migration at low activation energy, and (4) the cluster is trapped again by another impurity. Experimental results were analyzed and discussed in terms of the proposed model.

  13. Energy spectra of primary knock-on atoms under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Marian, J.; Sublet, J.-Ch.

    2015-12-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main "measure" of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared.

  14. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; Tobiska, W. Kent; Schrijver, Carolus J.; Webb, David F.; Warren, Harry

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  15. Field Surveys of Amphibian Populations.

    ERIC Educational Resources Information Center

    Brodman, Robert

    2000-01-01

    Describes a course on amphibian research for environmental science majors. Involves students in field studies and introduces them to investigative research. Evaluates the course. (Contains 19 references.) (YDS)

  16. The effect of neutron irradiation on the properties of AlGaAs/GaAs laser diodes

    NASA Technical Reports Server (NTRS)

    Barnes, C. E.; Heflinger, D.; Reel, R.

    1990-01-01

    The effects of neutron irradiation on several properties of both single and multiple stripe laser diodes have been examined. Prior to fast neutron irradiation, total light output as a function of laser current, threshold current, near-field pattern, far-field pattern, and laser output wavelength spectra were measured at room temperature. These measurements were then repeated at intermittent neutron fluence levels. It was observed that the threshold current increased with neutron fluence for all devices examined. In contrast, neutron irradiation had only an indirect effect on the remainder of the laser diode properties in that the higher currents required for operation after irradiation caused variations in these properties.

  17. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  18. Generic phytosanitary irradiation treatments

    NASA Astrophysics Data System (ADS)

    Hallman, Guy J.

    2012-07-01

    The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zealand, 300 Gy for all arthropods on mango shipped from Australia to Malaysia, 350 Gy for all arthropods on lychee shipped from Australia to New Zealand and 400 Gy for all hosts of insects other than pupae and adult Lepidoptera shipped to the United States. Efforts to develop additional generic PI treatments and reduce the dose for the 400 Gy treatment are ongoing with a broad based 5-year, 12-nation cooperative research project coordinated by the joint Food and Agricultural Organization/International Atomic Energy Agency Program on Nuclear Techniques in Food and Agriculture. Key groups identified for further development of generic PI treatments are Lepidoptera (eggs and larvae), mealybugs and scale insects. A dose of 250 Gy may suffice for these three groups plus others, such as thrips, weevils and whiteflies.

  19. Low energy argon ion irradiation surface effects on triglycine sulfate

    NASA Astrophysics Data System (ADS)

    Aragó, Carmen; Plaza, José L.; Marqués, Manuel I.; Gonzalo, Julio A.

    2013-09-01

    An experimental study of the effects of low energy (1-2 keV) argon ion (Ar+) irradiation on Triglycine Sulfate (TGS) has been performed. Ferroelectric parameters, such as the Curie temperature TC determined from the dielectric constant peaks ɛ(T), or the remnant polarization Pr, and coercive field Ec, obtained from the hysteresis loops, show interesting differences between samples irradiated in ferroelectric and paraelectric phases, respectively. The radiation damage seems to be superficial, as observed by AFM microscope, and the surface alteration in both phases becomes eventually notorious when the radiation dosage increases.

  20. Technique for Robotic Stereotactic Irradiation of Choroidal Melanoma

    PubMed Central

    Béliveau-Nadeau, Dominic; Callejo, Sonia

    2016-01-01

    Radiotherapy has a long history in the organ-sparing management of choroidal melanoma. Joining plaque radiotherapy and proton irradiation, stereotactic robotic photon irradiation is a new tool in the radiation oncologist’s armamentarium for ocular tumors. The non-coplanar fields with steep dose gradients are well suited to spare uninvolved retina, anterior chamber, and the optic nerve. In our practice, it is the preferred treatment for melanomas that are non-amenable to standard plaque brachytherapy. Since late 2010, we have treated more than 40 patients with our robotic linear accelerator. This case-based technical note outlines the technique used at the University of Montreal, Montreal, Canada. PMID:27226942

  1. The Principal and Community Involvement.

    ERIC Educational Resources Information Center

    Carnes, Leslie L.

    1983-01-01

    Describes an effective community education program for Pearl High School in Nashville (TN) that involved the consideration of five factors (community involvement, personal needs, organizational needs, perceptions, and expectations) in a successful effort to unify the school. (SB)

  2. Predicting Thermal Conductivity Evolution of Polycrystalline Materials Under Irradiation Using Multiscale Approach

    SciTech Connect

    Li, Dongsheng; Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2012-03-01

    A multiscale methodology was developed to predict the evolution of thermal conductivity of polycrystalline fuel under irradiation. In the mesoscale level, phase field model was used to predict the evolution of gas bubble microstructure. Generation of gas atoms and vacancies were taken into consideration. In the macroscopic scale, a statistical continuum mechanics model was applied to predict the anisotropic thermal conductivity evolution during irradiation. Microstructure predicted by phase field model was fed into statistical continuum mechanics model to predict properties and behavior. Influence of irradiation intensity, exposition time and morphology were investigated. This approach provides a deep understanding on microstructure evolution and property prediction from a basic scientific viewpoint.

  3. Irradiation pretreatment for coal desulfurization

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.

  4. Irradiation of Northwest agricultural products

    SciTech Connect

    Eakin, D.E.; Tingey, G.L.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect control procedures are developed and followed. Due to the recognized potential benefits of irradiation, Pacific Northwest Laboratory (PNL) is conducting this program to evaluate the benefits of using irradiation on Northwest agricultural products under the US Department of Energy (DOE) Defense Byproducts Production and Utilization Program. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  5. Does the earth's magnetic field influence climate?

    NASA Astrophysics Data System (ADS)

    Courtillot, V.; Fluteau, F.; Gallet, Y.; Le Mouel, J.

    2007-05-01

    The main agents which are invoked are solar variability, changes in atmospheric greenhouse gas content, or internal variability of the coupled ocean-atmosphere system. Evidences for connections between climate and magnetic field variations have received less attention and will be reviewed. On the 10-100yr timescale, that of recent secular variation, there appears to be a rather good correlation between decadal changes in amplitude of geomagnetic variations of external origin, solar irradiance and global temperature. The correlation applies until the 1980's, suggesting that solar irradiance may be a key forcing function of climate until then, when the correlation breaks and (anomalous?) warming may emerge from the signal (this is the subject of separate, ongoing work). Indeed, only solar flux of energy and particles can jointly explain such parallel variations in temperature and external magnetic field. On the 100-5000yr timescale, that of historical and archeomagnetic change, intriguing features are the recently proposed archeomagnetic jerks, i.e. fairly abrupt (~100 yr long) geomagnetic field variations found at irregular intervals over the past few millennia, using the archeological record from Europe to the Middle East. These seem to correlate with significant climatic events in the eastern North Atlantic region. A proposed mechanism involves variations in the geometry of the geomagnetic field (f.i. tilt of the dipole to lower latitudes), resulting in enhanced cosmic-ray induced nucleation of clouds. On the 103-106 yr timescale, that of excursions and reversals, evidence for correlations in field intensity changes, excursions and reversals, which invoke Milankovic forcing in the core, either directly or through changes in ice distribution and moments of inertia of the Earth, is proposed but is still rather tenuous. In conclusion, no forcing factor, be it changes in CO2 concentration in the atmosphere or changes in cosmic ray flux modulated by solar activity and

  6. Families Get Involved! Learning Partners.

    ERIC Educational Resources Information Center

    Office of Educational Research and Improvement (ED), Washington, DC. Media and Information Services.

    Noting that families who are involved in their children's education make a difference in their child's performance, this two-page information sheet encourages families to get involved by listing the benefits of family involvement on one side and the ways adult family members can help in the school on the other. As a result of family participation:…

  7. Measuring Involvement with Social Issues.

    ERIC Educational Resources Information Center

    Nowak, Glen J.; Salmon, Charles T.

    A study applied research concepts from consumer product involvement to test a model for research on involvement with social issues. Issue involvement was defined as the state or level of perceived importance and/or interest evoked by a stimulus (issue) within a specific situation. Attitudes on four social issues--abortion, pornography, the…

  8. Critical current density and vortex dynamics in pristine and proton-irradiated (Ba, K)Fe2As2

    NASA Astrophysics Data System (ADS)

    Taen, Toshihiro; Ohori, Takahiro; Ohtake, Fumiaki; Tamegai, Tsuyoshi; Kihou, Kunihiro; Ishida, Shigeyuki; Eisaki, Hiroshi; Kitamura, Hisashi

    2013-11-01

    Magnetization and flux creep in pristine and 3 MeV proton-irradiated BaKFeAs single crystals with a dose of 5.3×1016 cm are measured. Both the pristine and irradiated samples show sharp superconducting transitions, demonstrating the homogeneity of the sample. The sharp central peak in the pristine sample becomes broader after the irradiation. Commonly observed fish-tail effects in iron-based superconductors disappear in the highly disordered sample after the irradiation. The normalized relaxation rate shows a large field dependence in the pristine sample, while it is weakly field dependent in the proton irradiated sample. The dip structure around zero-field is attributed to either the self-field effect or individual pinning.

  9. Consumer attitudes toward irradiated food

    SciTech Connect

    Conley, S.

    1994-12-31

    Throughout history, new methods of food preservation have been met with skepticism and fear. Such processes as pasteurization and canning were denounced as being dangerous, detrimental to nutrients, or an excuse for dirty products. Now comes irradiation, and activists argue against this new process for the same reasons. Publicly, the perception is that consumers, distrustful of nuclear power, will never buy or accept irradiated food.

  10. Slag recycling of irradiated vanadium

    SciTech Connect

    Gorman, P.K.

    1995-04-05

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

  11. Irradiation Induced Creep of Graphite

    SciTech Connect

    Burchell, Timothy D; Murty, Prof K.L.; Eapen, Dr. Jacob

    2010-01-01

    The current status of graphite irradiation induced creep strain prediction is reviewed and the major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multi-scales is highlighted.

  12. Calculating Irradiance For Photosynthesis In The Ocean

    NASA Technical Reports Server (NTRS)

    Collins, Donald J.; Davis, Curtiss O.; Booth, C. Rockwell; Kiefer, Dale A.; Stallings, Casson

    1990-01-01

    Mathematical model predicts available and usable irradiances. Yields estimates of irradiance available for photosynthesis (Epar) and irradiance usable for photosynthesis (Epur) as functions of depth in ocean. Describes Epur and Epar in terms of spectral parameters measured remotely (from satellites or airplanes). These irradiances useful in studies of photosynthetic productivity of phytoplankton in euphotic layer.

  13. Optical properties of irradiated imidazolium based room temperature ionic liquids: new microscopic insights into the radiation induced mutations.

    PubMed

    Guleria, Apurav; Singh, Ajay K; Adhikari, Soumyakanti

    2015-04-28

    Considering the future perspectives of room temperature ionic liquids (RTILs) in areas involving high radiation fields (such as the nuclear fuel cycle and space applications), it is essential to probe and have a microscopic understanding of the radiation induced perturbations in the molecular structures and the intrinsic bonding interactions existing in the ILs. Herein, a focused investigation concerning the photophysical behavior of post-irradiated FAP (fluoroalkyl phosphate) imidazolium ILs revealed considerable rearrangements and bonding realignments of the ionic moieties in the ILs on irradiation, however, their physicochemical properties do not change significantly even at high absorbed doses. Most interestingly, the well-established excitation wavelength dependent fluorescence (FL) behavior of the ILs was considerably perturbed on irradiation and this is attributed to the radiation induced decoupling of pre-existing different associated structures of ions, and the subsequent formation of oligomers and other species containing multiple bond order groups. This was further substantiated by vibrational studies, where peaks appearing in the range 1600-1800 cm(-1) indicated the formation of double bonded products. Furthermore, for the hydroxyl functionalized (in the alkyl side chain of the imidazolium cation) IL, a blue shift in the O-H stretching frequency was observed for the -OH group H-bonded to the FAP anion (νOH···[FAP](-)), while a red shift was observed for the H-bonded -OH groups in the cationic clusters. The FL lifetime values were found to increase with irradiation, which clearly indicates the enhancement in the rigidity level in the vicinity of the ions, thereby hindering the non-radiative decay processes. Such studies could contribute to the fundamental understanding of the radiation driven perturbations in the structure-property relationships, which eventually affect the radiolytic degradation pathways and the product distribution in RTILs. PMID

  14. Study of deep level characteristics in the neutrons irradiated Si structures by combining pulsed and steady-state spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Kalendra, V.; Ceponis, T.; Uleckas, A.; Tekorius, A.; Vaitkus, J.; Velicka, A.

    2012-11-01

    The standard methods, such as capacitance deep level transient spectroscopy (C-DLTS) and thermally stimulated current (TSC) techniques are unsuitable for the analysis of heavily irradiated devices. In this work, therefore, several steady-state and pulsed techniques have been combined to comprehensively evaluate parameters of radiation defects and functional characteristics of the irradiated Si pin detectors. In order to understand defects created by radiation and evaluate their evolution with fluence, C-DLTS and TSC techniques have been employed to make a baseline identification of the radiation induced traps after irradiation with a rather small neutron fluence of 1012 cm-2. The steady-state photo-ionization spectroscopy (PIS) technique has been involved to correlate thermal- and photo- activation energies for definite radiation defects. A contactless technique for simultaneous measurements of the carrier lifetime and the parameters of deep levels based on microwave probed pulsed photo-conductivity (MW-PC) spectroscopy has been applied to correlate carrier capture cross-sections and densities of the identified different radiation defects. A technique for spectroscopy of deep levels in junction structures (BELIV) based on measurements of barrier capacitance charging current transient changes due to additional spectrally resolved pulsed illumination has been applied to evaluate the functional characteristics of the irradiated diodes. Pulsed spectroscopic measurements were implemented by combining the analysis of generation current and of barrier capacitance charging transients modified by a single fs pulse of illumination generated by an optical parametric oscillator of varied wavelength in the range from 0.5 to 10 μm. Several deep levels with activation energy in the range of 0.18-0.8 eV have been resolved from spectral analysis in the samples of Si grown by magnetic field applied Czochralski (MCz) technology.

  15. Cancer following medical irradiation.

    PubMed

    Boice, J D

    1981-03-01

    Several generalizations about radiation carcinogenesis can be made: 1) a single exposure is sufficient to elevate cancer incidence many years later: 2) radiation-induced cancer cannot be distinguished from naturally occurring cancer, i.e., there is not unique radiogenic cancer; 3) all cancers appear to be increased after irradiation with the exception of chronic lymphocytic leukemia, and possibly Hodgkin's disease, cervical cancer, and a few others; 4) the breast, thyroid, and bone marrow appear especially radiosensitive; 5) leukemia is the most prominent radiogenic tumor and shows a wave-like pattern of excess incidence over time, and the excess begins within two to four years, peaks about six to eight years, and decreases to normal levels about 25 years later; 6) solid tumors have a minimum latent period of about ten years, and for several cancers, the temporal pattern of incidence appears to follow the natural incidence, i.e., the cancers do not occur before the ages normally associated with increased incidence, implying that age-dependent factors influence the expression of disease; 7) age at exposure is perhaps the most important host factor influencing subsequent cancer risk; 8) the percentage increase in cancer incidence per rad is not the same for all cancers, i.e., some cancer of high natural incidence, e.g., colon, have low "relative risks" and some cancers of low natural incidence, e.g., thyroid, have high "relative risks;" 9) dose-effect curves are often linear, but curvilinearity is also observed and is possibly associated with the need for "two ionizing events" for transformation to occur at low doses, the influence of cell sterilization at moderate doses, the likelihood of "wasted" dose at high doses, and/or the influence of factors that effect the expression of disease. PMID:7237365

  16. Cancer following medical irradiation

    SciTech Connect

    Boice, J.D.

    1981-03-01

    Several generalizations about radiation carcinogenesis can be made: 1) a single exposure is sufficient to elevate cancer incidence many years later: 2) radiation-induced cancer cannot be distinguished from naturally occurring cancer, i.e., there is not unique radiogenic cancer; 3) all cancers appear to be increased after irradiation with the exception of chronic lymphocytic leukemia, and possibly Hodgkin's disease, cervical cancer, and a few others; 4) the breast, thyroid, and bone marrow appear especially radiosensitive; 5) leukemia is the most prominent radiogenic tumor and shows a wave-like pattern of excess incidence over time, and the excess begins within two to four years, peaks about six to eight years, and decreases to normal levels about 25 years later; 6) solid tumors have a minimum latent period of about ten years, and for several cancers, the temporal pattern of incidence appears to follow the natural incidence, i.e., the cancers do not occur before the ages normally associated with increased incidence, implying that age-dependent factors influence the expression of disease; 7) age at exposure is perhaps the most important host factor influencing subsequent cancer risk; 8) the percentage increase in cancer incidence per rad is not the same for all cancers, i.e., some cancer of high natural incidence, e.g., colon, have low ''relative risks'' and some cancers of low natural incidence, e.g., thyroid, have high ''relative risks;'' 9) dose-effect curves are often linear, but curvilinearity is also observed and is possibly associated with the need for ''two ionizing events'' for transformation to occur at low doses, the influence of cell sterilization at moderate doses, the likelihood of ''wasted'' dose at high doses, and/or the influence of factors that effect the expression of disease.

  17. Cancer following medical irradiation

    SciTech Connect

    Boice, J.D.

    1981-03-01

    Several generalizations about radiation carcinogenesis can be made: (1) a single exposure is sufficient to elevate cancer incidence many years later; (2) radiation-induced cancer cannot be distinguished from naturally occurring cancer, i.e., there is no unique radiogenic cancer; (3) all cancers appear to be increased after irradiation with the exception of chronic lymphocytic leukemia, and possibly Hodgkin's disease, cervical cancer, and a few others; (4) the breast, thyroid, and bone marrow appear especially radiosensitive; (5) leukemia is the most prominent radiogenic tumor and shows a wave-like pattern of excess incidence over time, and the excess begins within two to four years, peaks about six to eight years, and decreases to normal levels about 25 years later; (6) solid tumors have a minimum latent period of about ten years, and for several cancers, the temporal pattern of incidence appears to follow the natural incidence, i.e., the cancers do not occur before the ages normally associated with increased incidence, implying that age-dependent factors influence the expression of disease; (7) age at exposure is perhaps the most important host factor influencing subsequent cancer risk; (8) the percentage increase in cancer incidence per rad is not the same for all cancers, i.e., some cancers of high natural incidence, e.g., colon, have low relative risks and some cancers of low natural incidence, e.g., thyroid, have high relative risks; (9) dose-effect curves are often linear, but curvilinearity is also observed and is possibly associated with the need for two ionizing events for transformation to occur at low doses, the influence of cell sterilization at moderate doses, the likelihood of wasted dose at high doses, and/or the influence of factors that effect the expression of disease.

  18. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  19. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  20. Neutron and gamma irradiation effects on power semiconductor switches

    SciTech Connect

    Schwarze, G.E.; Frasca, A.J.

    1994-09-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.