Science.gov

Sample records for involved field radiotherapy

  1. Involved-field radiotherapy for esophageal squamous cell carcinoma: theory and practice.

    PubMed

    Li, Minghuan; Zhang, Xiaoli; Zhao, Fen; Luo, Yijun; Kong, Li; Yu, Jinming

    2016-01-01

    Esophageal carcinoma (EC) is characterized by a high rate of lymph node metastasis and its spread pattern is not always predictable. Chemoradiotherapy has an important role in the treatment of EC in both the inoperable and the pre-operative settings. However, regarding the target volume for radiation, different clinical practices exist. Theoretically, in addition to the clinical target volume administered to the gross lesion, it might seem logical to deliver a certain dose to the uninvolved regional lymph node area at risk for microscopic disease. However, in practice, it is difficult because of the intolerance of normal tissue to radiotherapy (RT), particularly if all regions containing the cervical, mediastinal, and upper abdominal nodes are covered. To date, the use of elective nodal irradiation (ENI) is still controversial in the field of radiotherapy. Some investigators use involved-field radiotherapy (IFRT) in order to reduce treatment-related toxicities. It is thought that micrometastases can be controlled, to some extent, by chemotherapy and the abscopal effects of radiation. It is the presence of overtly involved lymph nodes rather than the micrometastatic nodes negatively affects survival in patients with EC. In another hand, lymph nodes stationed near primary tumors also receive considerable incidental irradiation doses that may contribute to the elimination of subclinical lesions. These data indicate that an irradiation volume covering only the gross tumor is appropriate. When using ENI or IFRT, very few patients experience solitary regional node failure and out-of-field lymph node failure is not common. Primary tumor recurrence and distant metastases, rather than regional lymph node failure, affect the overall survival in patients with EC. The available evidence indicates that the use of ENI seems to prevent or delay regional nodal relapse rather than improve survival. In a word, these data suggest that IFRT is feasible in EC patients. PMID:26846932

  2. Involved-field radiotherapy for patients in partial remission after chemotherapy for advanced Hodgkin's lymphoma

    SciTech Connect

    Aleman, Berthe M.P. . E-mail: b.aleman@nki.nl; Raemaekers, John M.M.; Tomisic, Radka; Baaijens, Margreet H.A.; Bortolus, Roberto; Lybeert, Marnix L.M.; Maazen, Richard W.M. van der; Girinsky, Theodore; Demeestere, Geertrui; Lugtenburg, Pieternella; Lievens, Yolande; Jong, Daphne de; Pinna, Antonella; Henry-Amar, Michel

    2007-01-01

    Purpose: The use of radiotherapy in patients with advanced Hodgkin's lymphoma (HL) is controversial. The purpose of this study was to describe the role of radiotherapy in patients with advanced HL who were in partial remission (PR) after chemotherapy. Methods: In a prospective randomized trial, patients <70 years old with previously untreated Stage III-IV HL were treated with six to eight cycles of mechlorethamine, vincristine, procarbazine, prednisone/doxorubicin, bleomycine, vinblastine hybrid chemotherapy. Patients in complete remission (CR) after chemotherapy were randomized between no further treatment and involved-field radiotherapy (IF-RT). Those in PR after six cycles received IF-RT (30 Gy to originally involved nodal areas and 18-24 Gy to extranodal sites with or without a boost). Results: Of 739 enrolled patients, 57% were in CR and 33% in PR after chemotherapy. The median follow-up was 7.8 years. Patients in PR had bulky mediastinal involvement significantly more often than did those in CR after chemotherapy. The 8-year event-free survival and overall survival rate for the 227 patients in PR who received IF-RT was 76% and 84%, respectively. These rates were not significantly different from those for CR patients who received IF-RT (73% and 78%) or for those in CR who did not receive IF-RT (77% and 85%). The incidence of second malignancies in patients in PR who were treated with IF-RT was similar to that in nonirradiated patients. Conclusion: Patients in PR after six cycles of mechlorethamine, vincristine, procarbazine, prednisone/doxorubicine, bleomycine, vinblastine treated with IF-RT had 8-year event-free survival and overall survival rates similar to those of patients in CR, suggesting a definite role for RT in these patients.

  3. Risk of Developing Cardiovascular Disease After Involved Node Radiotherapy Versus Mantle Field for Hodgkin Lymphoma

    SciTech Connect

    Maraldo, Maja V.; Brodin, Nils Patrik; Vogelius, Ivan R.; Aznar, Marianne C.; Munck af Rosenschoeld, Per; Petersen, Peter M.; Specht, Lena

    2012-07-15

    Purpose: Hodgkin lymphoma (HL) survivors are known to have increased cardiac mortality and morbidity. The risk of developing cardiovascular disease after involved node radiotherapy (INRT) is currently unresolved, inasmuch as present clinical data are derived from patients treated with the outdated mantle field (MF) technique. Methods and Materials: We included all adolescents and young adults with supradiaphragmatic, clinical Stage I-II HL treated at our institution from 2006 to 2010 (29 patients). All patients were treated with chemotherapy and INRT to 30 to 36 Gy. We then simulated a MF plan for each patient with a prescribed dose of 36 Gy. A logistic dose-response curve for the 25-year absolute excess risk of cardiovascular disease was derived and applied to each patient using the individual dose-volume histograms. Results: The mean doses to the heart, four heart valves, and coronary arteries were significantly lower for INRT than for MF treatment. However, the range in doses with INRT treatment was substantial, and for a subgroup of patients, with lymphoma below the fourth thoracic vertebrae, we estimated a 25-year absolute excess risk of any cardiac event of as much as 5.1%. Conclusions: Our study demonstrates a potential for individualizing treatment by selecting the patients for whom INRT provides sufficient cardiac protection for current technology; and a subgroup of patients, who still receive high cardiac doses, who would benefit from more advanced radiation technique.

  4. Impact of involved field radiotherapy in partial response after doxorubicin-based chemotherapy for advanced aggressive non-Hodgkin's lymphoma

    SciTech Connect

    Moser, Elizabeth C. . E-mail: e.c.moser@lumc.nl; Kluin-Nelemans, Hanneke C.; Carde, Patrice; Meerwaldt, Jacobus H.; Tirelli, Umberto; Aleman, Berthe M.P.; Baars, Joke; Thomas, Jose; Glabbeke, Martine van; Noordijk, Evert M.

    2006-11-15

    Purpose: Whether salvage therapy in patients with advanced aggressive non-Hodgkin's lymphoma (NHL) in partial remission (PR) should consist of radiotherapy or autologous stem-cell transplantation (ASCT) is debatable. We evaluated the impact of radiotherapy on outcome in PR patients treated in four successive European Organization for Research and Treatment of Cancer trials for aggressive NHL. Patients and Methods: Records of 974 patients (1980-1999) were reviewed regarding initial response, final outcome, and type and timing of salvage treatment. After 8 cycles of doxorubicin-based chemotherapy, 227 NHL patients were in PR and treated: 114 received involved field radiotherapy, 16 ASCT, 93 second-line chemotherapy, and 4 were operated. Overall survival (OS) and progression-free survival (PFS) after radiotherapy were estimated (Kaplan-Meier method) and compared with other treatments (log-rank). Impact on survival was evaluated by multivariate analysis (Cox proportional hazards model). Results: The median PFS in PR patients was 4.2 years and 48% remained progression-free at 5 years. Half of the PR patients converted to a complete remission. After conversion, survival was comparable to patients directly in complete remission. Radiotherapy resulted in better OS and PFS compared with other treatments, especially in patients with low to intermediate International Prognostic Index score, bulky disease, or nodal disease only. Correction by multivariate analysis for prognostic factors such as stage, bulky disease, and number of extranodal locations showed that radiotherapy was clearly the most significant factor affecting both OS and PFS. Conclusion: This retrospective analysis demonstrates that radiotherapy can be effective for patients in PR after fully dosed chemotherapy; assessment in a randomized trial (radiotherapy vs. ASCT) is justified.

  5. Low-Dose Involved-Field Radiotherapy as Alternative Treatment of Nodular Lymphocyte Predominance Hodgkin's Lymphoma

    SciTech Connect

    Haas, Rick L.M. Girinsky, Theo; Aleman, Berthe; Henry-Amar, Michel; Boer, Jan-Paul de; Jong, Daphne de

    2009-07-15

    Purpose: Nodular lymphocyte predominance Hodgkin's lymphoma is a very rare disease, characterized by an indolent clinical course, with sometimes very late relapses occurring in a minority of all patients. Considerable discussion is ongoing on the treatment of primary and relapsed disease. Patients and Methods: A group of 9 patients were irradiated to a dose of 4 Gy on involved areas only. Results: After a median follow-up of 37 months (range, 6-66), the overall response rate was 89%. Six patients had complete remission (67%), two had partial remission (22%), and one had stable disease (11%). Of 8 patients, 5 developed local relapse 9-57 months after radiotherapy. No toxicity was noted. Conclusion: In nodular lymphocyte predominance Hodgkin's lymphoma, low-dose radiotherapy provided excellent response rates and lasting remissions without significant toxicity.

  6. Dosimetric and Clinical Outcomes of Involved-Field Intensity-Modulated Radiotherapy After Chemotherapy for Early-Stage Hodgkin's Lymphoma With Mediastinal Involvement

    SciTech Connect

    Lu Ningning; Li Yexiong; Wu Runye; Zhang Ximei; Wang Weihu; Jin Jing; Song Yongwen; Fang Hui; Ren Hua; Wang Shulian; Liu Yueping; Liu Xinfan; Chen Bo; Dai Jianrong; Yu Zihao

    2012-09-01

    Purpose: To evaluate the dosimetric and clinical outcomes of involved-field intensity-modulated radiotherapy (IF-IMRT) for patients with early-stage Hodgkin's lymphoma (HL) with mediastinal involvement. Methods and Materials: Fifty-two patients with early-stage HL that involved the mediastinum were reviewed. Eight patients had Stage I disease, and 44 patients had Stage II disease. Twenty-three patients (44%) presented with a bulky mediastinum, whereas 42 patients (81%) had involvement of both the mediastinum and either cervical or axillary nodes. All patients received combination chemotherapy followed by IF-IMRT. The prescribed radiation dose was 30-40 Gy. The dose-volume histograms of the target volume and critical normal structures were evaluated. Results: The median mean dose to the primary involved regions (planning target volume, PTV1) and boost area (PTV2) was 37.5 Gy and 42.1 Gy, respectively. Only 0.4% and 1.3% of the PTV1 and 0.1% and 0.5% of the PTV2 received less than 90% and 95% of the prescribed dose, indicating excellent PTV coverage. The median mean lung dose and V20 to the lungs were 13.8 Gy and 25.9%, respectively. The 3-year overall survival, local control, and progression-free survival rates were 100%, 97.9%, and 96%, respectively. No Grade 4 or 5 acute or late toxicities were reported. Conclusions: Despite the large target volume, IF-IMRT gave excellent dose coverage and a favorable prognosis, with mild toxicity in patients with early-stage mediastinal HL.

  7. Use of CD-ROM-based tool for analyzing contouring variations in involved-field radiotherapy for Stage III NSCLC

    SciTech Connect

    Soernsen De Koste, John R. van . E-mail: j.vansornsendekoste@vumc.nl; Senan, Suresh; Underberg, Rene W.M.; Oei, Swie Swat; Elshove, Dionne; Slotman, Ben J.; Lagerwaard, Frank J.

    2005-10-01

    Background: Interclinician variability in defining target volumes is a problem in conformal radiotherapy. A CD-ROM-based contouring tool was used to conduct a dummy run in an international trial of involved-field chemoradiotherapy for Stage III non-small-cell lung cancer. Methods and Materials: The CT scan of an eligible patient was installed on an 'auto-run' CD-ROM incorporating a contouring program based on ImageJ for Windows, which runs on any personal computer equipped with a CD-ROM drive. This tool was initially piloted at four academic centers and was subsequently mailed, together with all relevant clinical, radiologic, and positron emission tomography findings, to all participating centers in the international trial. Clinicians were instructed to contour separate gross tumor volumes (GTVs) for the tumor and two enlarged nodes and a clinical target volume for the hilus. A reference 'consensus' target volume for each target was jointly generated by three other clinicians. Results: The data received from the four academic centers and 16 study participants were suitable for analysis. Data from one center was unsuitable for detailed analysis because the target volumes were contoured at 1.2-cm intervals. GTVs were available for a total of 21 tumors and 19 nodes, and 15 hilar clinical target volumes were available. The mean GTV of the primary tumor was 13.6 cm{sup 3} (SD, 5.2; median, 12.3; range, 8.3-26.9). The variation in the center of the mass relative to the mean center of the mass in the left-right, ventrodorsal, and craniocaudal axes was 1.5, 0.4, and 1.0 mm, respectively. The largest volume variation was observed for the right hilar clinical target volume (mean, 33.7 cm{sup 3}; SD, 31.2; median, 20.3; range, 4.8-109.9). Smaller variations were observed for the subcarinal node (mean, GTV, 1.9 cm{sup 3}; SD, 1.2; median, 1.7; range, 0.5-5.3), except caudally where the node was difficult to distinguish from the pericardium. The 'consensus' volumes for all

  8. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy.

    PubMed

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan; Kuo, Sung-Hsin

    2016-06-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward "field in field" intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  9. Dosimetric Comparison of Involved-Field Three-Dimensional Conformal Photon Radiotherapy and Breast-Sparing Proton Therapy for the Treatment of Hodgkin's Lymphoma in Female Pediatric Patients

    SciTech Connect

    Andolino, David L.; Hoene, Ted; Xiao, Lu; Buchsbaum, Jeffrey; Chang, Andrew L.

    2011-11-15

    Purpose: To assess the potential reduction in breast dose for young girls with Hodgkin's lymphoma (HL) treated with breast-sparing proton therapy (BS-PT) as compared with three-dimensional conformal involved-field photon radiotherapy (3D-CRT). Methods and Materials: The Clarian Health Cancer Registry was queried for female pediatric patients with the diagnosis of HL who received radiotherapy at the Indiana University Simon Cancer Center during 2006-2009. The original CT simulation images were obtained, and 3D-CRT and BS-PT plans delivering 21 Gy or cobalt gray equivalent (CGE) in 14 fractions were created for each patient. Dose-volume histogram data were collected for both 3D-CRT and BS-PT plans and compared by paired t test for correlated samples. Results: The cancer registry provided 10 female patients with Ann Arbor Stage II HL, aged 10-18 years at the time of treatment. Both mean and maximum breast dose were significantly less with BS-PT compared with 3D-CRT: 0.95 CGE vs. 4.70 Gy (p < 0.001) and 21.07 CGE vs. 23.11 Gy (p < 0.001), respectively. The volume of breast receiving 1.0 Gy/CGE and 5.0 Gy/CGE was also significantly less with BS-PT, 194 cm{sup 3} and 93 cm{sup 3}, respectively, compared with 790 cm{sup 3} and 360 cm{sup 3} with 3D-CRT (p = 0.009, 0.013). Conclusion: Breast-sparing proton therapy has the potential to reduce unnecessary breast dose in young girls with HL by as much as 80% relative to involved-field 3D-CRT.

  10. Complete response of myeloid sarcoma with cardiac involvement to radiotherapy

    PubMed Central

    Yang, Wen-Chi; Yao, Ming; Chen, Yu-Hsuan

    2016-01-01

    We present a rare case of intracardiac myeloid sarcoma (MS) of acute myeloid leukemia (AML) and who responds completely well to low-dose radiotherapy. This 19-year-old young man initially presented with AML and received standard chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT). However, he developed intracardiac isolated MS relapse with the presentation of exertional dyspnea and superior vena cava (SVC) syndrome 3 years later. He then received radiotherapy with 24 Gy at a 12 daily fractions using forward “field in field” intensity modulated radiotherapy technique. He dramatically had improved clinical symptoms, and complete remission was achieved one month after completing radiotherapy. Our result is in line with anecdotal case reports showed that radiotherapy with 15 Gy in 10 fractions or with 24 Gy in 12 fractions resulted in good response and less toxicity of 2 cases of MS with cardiac involvement. These results indicate that a modest radiotherapy dose, 24 Gy, achieves good local control of MS with cardiac involvement. PMID:27293853

  11. Predicted Risk of Radiation-Induced Cancers After Involved Field and Involved Node Radiotherapy With or Without Intensity Modulation for Early-Stage Hodgkin Lymphoma in Female Patients

    SciTech Connect

    Weber, Damien C.; Johanson, Safora; Peguret, Nicolas; Cozzi, Luca; Olsen, Dag R.

    2011-10-01

    Purpose: To assess the excess relative risk (ERR) of radiation-induced cancers (RIC) in female patients with Hodgkin lymphoma (HL) female patients treated with conformal (3DCRT), intensity modulated (IMRT), or volumetric modulated arc (RA) radiation therapy. Methods and Materials: Plans for 10 early-stage HL female patients were computed for 3DCRT, IMRT, and RA with involved field RT (IFRT) and involvednode RT (INRT) radiation fields. Organs at risk dose--volume histograms were computed and inter-compared for IFRT vs. INRT and 3DCRT vs. IMRT/RA, respectively. The ERR for cancer induction in breasts, lungs, and thyroid was estimated using both linear and nonlinear models. Results: The mean estimated ERR for breast, lung, and thyroid were significantly lower (p < 0.01) with INRT than with IFRT planning, regardless of the radiation delivery technique used, assuming a linear dose-risk relationship. We found that using the nonlinear model, the mean ERR values were significantly (p < 0.01) increased with IMRT or RA compared to those with 3DCRT planning for the breast, lung, and thyroid, using an IFRT paradigm. After INRT planning, IMRT or RA increased the risk of RIC for lung and thyroid only. Conclusions: In this comparative planning study, using a nonlinear dose--risk model, IMRT or RA increased the estimated risk of RIC for breast, lung, and thyroid for HL female patients. This study also suggests that INRT planning, compared to IFRT planning, may reduce the ERR of RIC when risk is predicted using a linear model. Observing the opposite effect, with a nonlinear model, however, questions the validity of these biologically parameterized models.

  12. Primary Mediastinal Large B-Cell Lymphoma: Results of Intensive Chemotherapy Regimens (MACOP-B/VACOP-B) Plus Involved Field Radiotherapy on 53 Patients. A Single Institution Experience

    SciTech Connect

    Mazzarotto, Renzo . E-mail: renzo.mazzarotto@unipd.it; Boso, Caterina; Vianello, Federica; Aversa, Maria Savina; Chiarion-Sileni, Vanna; Trentin, Livio; Zambello, Renato; Muzzio, Pier Carlo; Fiore, Davide; Sotti, Guido

    2007-07-01

    Purpose: The optimal therapy for primary mediastinal large B-cell lymphoma (PMLBCL) remains undefined. The superiority of intensive chemotherapy regimens (Methotrexate, Doxorubicin, Cyclophosphamide, Vincristine, Prednisone, Bleomycin [MACOP-B]/Etoposide, Doxorubicin, Cyclophosphamide, Vincristine, Prednisone, Bleomycin [VACOP-B]) over Cyclophosphamide, Doxorubicin, Vincristine, Prednisone (CHOP)-like chemotherapy is upheld by some authors. The role of radiotherapy is still debated. In the absence of randomized trials, we report clinical findings and treatment response in 53 consecutive patients treated with intensive chemotherapy and mediastinal involved-field radiation therapy (IFRT). Methods and Material: Fifty-three consecutive patients with PMLBCL were retrospectively analyzed. Planned treatment consisted of induction chemotherapy (I-CT; Prednisone, Methotrexate, Doxorubicin, Cyclophosphamide, Etoposide-Mechloroethamine, Vincristine, Procarbazine, Prednisone [ProMACE-MOPP] in the first 2 patients, MACOP-B in the next 11, and VACOP-B in the last 40) followed by IFRT. Planned treatment was concluded in 43 of 53 patients; in 10 patients, I-CT was not immediately followed by IFRT. Among these 10 patients, 6 received high-dose chemotherapy (HD-CT) followed by IFRT, 2 received HD-CT, and 2 received no further treatment. Results: After a median follow-up of 93.9 months (range, 6-195 months), 45 of 53 patients (84.9%) were alive without disease. Eight patients died: 7 of PMLBCL and 1 of toxicity during HD-CT. The 5-year disease-free survival (DFS) and overall survival rates were 93.42% and 86.6%, respectively. The response rates after I-CT were complete response (CR) in 20 (37.73%) and partial response (PR) in 30 (56.60%); 3 patients (5.66%) were considered nonresponders. Among patients in PR after chemotherapy, 92% obtained a CR after IFRT. Conclusions: Our report confirms the efficacy of intensive chemotherapy plus mediastinal IFRT. IFRT plays a pivotal role in

  13. MACOP-B and Involved-Field Radiotherapy Is an Effective and Safe Therapy for Primary Mediastinal Large B Cell Lymphoma

    SciTech Connect

    De Sanctis, Vitaliana; Finolezzi, Erica; Osti, Mattia Falchetto; Grapulin, Lavinia; Alfo, Marco; Pescarmona, Edoardo; Berardi, Francesca; Natalino, Fiammetta; Moleti, Maria Luisa; Di Rocco, Alice; Enrici, Riccardo Maurizi; Foa, Robin; Martelli, Maurizio

    2008-11-15

    Purpose: To report the clinical findings and long-term results of front-line, third-generation MACOP-B (methotrexate, doxorubicin, cyclophosphamide, vincristine, prednisone, and bleomycin) chemotherapy and mediastinal involved-field radiotherapy (IFRT) in 85 consecutive, previously untreated patients with primary mediastinal large B cell lymphoma (PMLBCL) diagnosed and managed at a single institution. Methods and Materials: Between 1991 and April 2004, 92 consecutive, untreated patients with PMLBCL were treated at our institution. The median age was 33 years (range, 15-61 years), 46 patients (50%) showed a mediastinal syndrome at onset; 52 patients (57%) showed a low/low-intermediate (0 to 1) and 40 patients (43%) an intermediate-high/high (2 to 3) International Prognostic Index (IPI) score. Eighty-five patients were treated with standard chemotherapy (MACOP-B), and 80 underwent mediastinal IFRT at a dose of 30-36 Gy. Results: After a MACOP-B regimen, the overall response rate was 87% and the partial response rate 9%. After chemotherapy, {sup 67}Ga scintigraphy/positron emission tomography results were positive in 43 of 52 patients (83%), whereas after IFRT 11 of 52 patients (21%) remained positive (p < 0.0001). After a median follow-up of 81 months (range, 2-196 months), progression or relapse was observed in 15 of 84 patients (18%). The projected 5-year overall survival and progression-free survival rates were 87% and 81%, respectively. The 5-year overall survival and progression-free survival rates were better for patients with an IPI of 0 to 1 than for those with an IPI of 2 to 3 (96% vs. 73% [p = 0.002] and 90% vs. 67% [p = 0.007], respectively). Conclusions: Combined-modality treatment with intensive chemotherapy plus mediastinal IFRT induces high response and lymphoma-free survival rates. Involved-field RT plays an important role in inducing negative results on {sup 67}Ga scintigraphy/positron emission tomography in patients responsive to chemotherapy.

  14. Does the Addition of Involved Field Radiotherapy to High-Dose Chemotherapy and Stem Cell Transplantation Improve Outcomes for Patients With Relapsed/Refractory Hodgkin Lymphoma?

    SciTech Connect

    Kahn, Shannon; Flowers, Christopher; Xu Zhiheng; Esiashvili, Natia

    2011-09-01

    Purpose: To evaluate the value of adding involved field radiotherapy (IFRT) to patients with relapsed/refractory Hodgkin lymphoma (HL) undergoing high-dose chemotherapy (HDCT) and stem cell transplantation (SCT). Methods and Materials: Ninety-two patients with relapsed/refractory HL undergoing HDCT and SCT from 1995 to 2008 were analyzed in a case-control design. Forty-six HL patients treated with IFRT within 2 months of SCT were matched to 46 HL patients who did not receive IFRT based on age, stage at relapse, timing of relapse, histology, and year of SCT. All were evaluated for response, survival, and toxicity with a median followup of 63.5 months. Results: There was a trend for better disease control in patients receiving IFRT. Specifically, 10/46 IFRT patients (22%) relapsed/progressed after SCT compared with 17/46 control patients (37%). Of the failures after IFRT, 70% were inside the radiation field, all in sites of bulky disease. In patients with nonbulky disease, IFRT also resulted in significantly improved outcomes (failure rate 6% vs. 33%, respectively). When stratified by disease bulk, the use of IFRT was found to significantly improve DFS (p = 0.032), but did not affect OS. In addition, IFRT and nonbulky disease were found to be positive prognostic indicators for DFS with hazard ratios of 0.357 (p = 0.032) and 0.383 (p = 0.034), respectively. Grade IV/V toxicities were significantly higher in the IFRT vs. non-IFRT group (28% vs. 2%; p < 0.001), observed only in patients receiving a busulfan-based conditioning regimen. Conclusion: Patients with refractory or relapsed HL undergoing HDCT and SCT have a high risk of relapse in sites of prior disease involvement, especially in sites of bulky disease. The use of IFRT is associated with a lower risk of disease progression in these sites; however bulky disease sites are still difficult to control. Toxicity risk is significant, particularly when busulfan-based conditioning is combined with IFRT, and alternative

  15. A prospective study of reduced-dose three-course CHOP followed by involved-field radiotherapy for patients 70 years old or more with localized aggressive non-Hodgkin's lymphoma

    SciTech Connect

    Shikama, Naoto . E-mail: shikama@hsp.md.shinshu-u.ac.jp; Oguchi, Masahiko; Isobe, Koichi; Nakamura, Katsumasa; Tamaki, Yoshio; Hasegawa, Masatoshi; Kodaira, Takeshi; Sasaki, Shigeru; Kagami, Yoshikazu

    2006-09-01

    Purpose: We conducted a multicenter prospective study to evaluate the efficacy and safety of reduced-dose three-course CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone) followed by involved-field radiotherapy for elderly patients with localized aggressive non-Hodgkin's lymphoma. The primary endpoint was compliance with the combined modality. Methods and Materials: This study included untreated patients, {>=}70 years old, with diffuse aggressive lymphoma, Stage IA or contiguous nonbulky Stage IIA. 80%-CHOP (cyclophosphamide 600 mg/m{sup 2}, doxorubicin 40 mg/m{sup 2}, vincristine 1.1 mg/m{sup 2}, and prednisolone at 80 mg/day for 5 days) was repeated every 3 weeks. After three cycles of chemotherapy, involved-field radiotherapy was performed with a radiation dose of 30-50 Gy in 15-28 fractions. Results: Twenty-four patients with a median age of 75 years (range, 70-84 years) were enrolled. The compliance rate of the protocol study was 87.5% (95% confidence interval [CI], 67.6-97.3). Three patients received only two cycles of chemotherapy because of toxicity or second neoplasm. There were no deaths caused by severe toxicity. The 3-year progression-free and overall survival rates were 83.1% (95% CI, 75.4-90.8) and 82.9% (95% CI, 75.1-90.6), respectively. Conclusion: Three-course 80%-CHOP followed by involved-field radiotherapy may be safe for administration to elderly patients over 70 years old. The next step is to evaluate three-course 80%-CHOP and rituximab followed by radiotherapy in elderly patients with localized disease.

  16. Involved-Node and Involved-Field Volumetric Modulated Arc vs. Fixed Beam Intensity-Modulated Radiotherapy for Female Patients With Early-Stage Supra-Diaphragmatic Hodgkin Lymphoma: A Comparative Planning Study

    SciTech Connect

    Weber, Damien C.; Peguret, Nicolas; Dipasquale, Giovanna; Cozzi, Luca

    2009-12-01

    Purpose: A comparative treatment planning study was performed to compare volumetric-modulated arc (RA) to conventional intensity modulated (IMRT) for involved-field (IFRT) and involved-node (INRT) radiotherapy for Hodgkin lymphoma (HL). Methods and Materials: Plans for 10 early-stage HL female patients were computed for RA and IMRT. First, the planning target volume (PTV) coverage and organs at risk (OAR) dose deposition was assessed between the two modalities. Second, the OAR (lung, breast, heart, thyroid, and submandibular gland) dose-volume histograms were computed and compared for IFRT and INRT, respectively. Results: For IFRT and INRT, PTV coverage was equally homogeneous with both RA and IMRT. By and large, the OAR irradiation with IFRT planning was not significantly different between RA and IMRT. For INRT, doses computed for RA were, however, usually lower than those with IMRT, particularly so for the lung, breast, and thyroid. Regardless of RA and IMRT modalities, a significant 20-50% decrease of the OAR computed mean doses was observed with INRT when compared with IFRT (Breast D{sub Mean} 1.5 +- 1.1 vs. 2.6 +- 1.7 Gy, p < 0.01 and 1.6 +- 1.1 vs. 2.9 +- 1.9 Gy, p < 0.01 for RA and IMRT, respectively). Conclusions: RA and IMRT results in similar level of dose homogeneity. With INRT but not IFRT planning, the computed doses to the PTV and OAR were usually higher and lower with RA when compared to IMRT. Regardless of the treatment modality, INRT when compared with IFRT planning led to a significant decrease in OAR doses, particularly so for the breast and heart.

  17. Stage I/II follicular lymphoma: spread of bcl-2/IgH+ cells in blood and bone marrow from primary site of disease and possibility of clearance after involved field radiotherapy.

    PubMed

    Pulsoni, Alessandro; Starza, Irene Della; Frattarelli, Natalia; Ghia, Emanuela; Carlotti, Emanuela; Cavalieri, Elena; Matturro, Angela; Tempera, Settimio; Rambaldi, Alessandro; Foà, Robin

    2007-05-01

    Stage I/IIA follicular lymphoma (FL) is considered a localised disease that can be adequately treated with radiotherapy alone. Bone marrow (BM) and peripheral blood (PB) involvement in FL was investigated by polymerase chain reaction (PCR) in a series of 24 consecutive patients with histologically revised diagnosis and treated with involved field radiotherapy. Despite the limited stage, Bcl-2/IgH+ cells were found at diagnosis in PB and/or BM of 16 patients (66.6%). After treatment, in 9/15 Bcl-2/IgH positive evaluable patients, a disappearance of Bcl-2/IgH+ cells was observed, which persisted after a median follow-up of 43.5 months (range 11-70) in all but one patient. Quantitative PCR demonstrated the feasibility of clearing PB and BM Bcl-2+ cells after local irradiation of the primary site of the disease only when the basal number of lymphoma cells was <1:100 000. Patients with Bcl-2/IgH+ cells at diagnosis or after treatment had a higher likelihood of relapse. Thus, despite a negative BM biopsy, the majority of localised FL Bcl-2/IgH+ cells were found in the PB and BM. Lymphoma cells can reversibly spread from the affected lymph node to PB and BM and, in a proportion of cases, durably disappear after irradiation. The possibility of a persistent lymphoma cell clearance is proportional to the amount of cells detected at presentation by quantitative PCR. PMID:17408460

  18. Efficacy of abbreviated Stanford V chemotherapy and involved-field radiotherapy in early-stage Hodgkin lymphoma: mature results of the G4 trial†

    PubMed Central

    Advani, R. H.; Hoppe, R. T.; Baer, D.; Mason, J.; Warnke, R.; Allen, J.; Daadi, S.; Rosenberg, S. A.; Horning, S. J.

    2013-01-01

    Introduction To assess the efficacy of an abbreviated Stanford V regimen in patients with early-stage Hodgkin lymphoma (HL). Patients and methods Patients with untreated nonbulky stage I–IIA supradiaphragmatic HL were eligible for the G4 study. Stanford V chemotherapy was administered for 8 weeks followed by radiation therapy (RT) 30 Gy to involved fields (IF). Freedom from progression (FFP), disease-specific survival (DSS) and overall survival (OS) were estimated. Results All 87 enrolled patients completed the abbreviated regimen. At a median follow-up of 10 years, FFP, DSS and OS are 94%, 99% and 94%, respectively. Therapy was well tolerated with no treatment-related deaths. Conclusions Mature results of the abbreviated Stanford V regimen in nonbulky early-stage HL are excellent and comparable to the results from other contemporary therapies. PMID:23136225

  19. A Phase I Study of Chemoradiotherapy With Use of Involved-Field Conformal Radiotherapy and Accelerated Hyperfractionation for Stage III Non-Small Cell Lung Cancer: WJTOG 3305

    SciTech Connect

    Tada, Takuhito; Chiba, Yasutaka; Tsujino, Kayoko; Fukuda, Haruyuki; Nishimura, Yasumasa; Kokubo, Masaki; Negoro, Shunichi; Kudoh, Shinzoh; Fukuoka, Masahiro; Nakagawa, Kazuhiko; Nakanishi, Yoichi

    2012-05-01

    Purpose: A Phase I study to determine a recommended dose of thoracic radiotherapy using accelerated hyperfractionation for unresectable non-small-cell lung cancer was conducted. Methods and Materials: Patients with unresectable Stage III non-small-cell lung cancer were treated intravenously with carboplatin (area under the concentration curve 2) and paclitaxel (40 mg/m{sup 2}) on Days 1, 8, 15, and 22 with concurrent twice-daily thoracic radiotherapy (1.5 Gy per fraction) beginning on Day 1 followed by two cycles of consolidation chemotherapy using carboplatin (area under the concentration curve 5) and paclitaxel (200 mg/m{sup 2}). Total doses were 54 Gy in 36 fractions, 60 Gy in 40 fractions, 66 Gy in 44 fractions, and 72 Gy in 48 fractions at Levels 1 to 4. The dose-limiting toxicity, defined as Grade {>=}4 esophagitis and neutropenic fever and Grade {>=}3 other nonhematologic toxicities, was monitored for 90 days. Results: Of 26 patients enrolled, 22 patients were assessable for response and toxicity. When 4 patients entered Level 4, enrollment was closed to avoid severe late toxicities. Dose-limiting toxicities occurred in 3 patients. They were Grade 3 neuropathy at Level 1 and Level 3 and Grade 3 infection at Level 1. However, the maximum tolerated dose was not reached. The median survival time was 28.6 months for all patients. Conclusions: The maximum tolerated dose was not reached, although the dose of radiation was escalated to 72 Gy in 48 fractions. However, a dose of 66 Gy in 44 fractions was adopted for this study because late toxicity data were insufficient.

  20. Mild Toxicity and Favorable Prognosis of High-Dose and Extended Involved-Field Intensity-Modulated Radiotherapy for Patients With Early-Stage Nasal NK/T-Cell Lymphoma

    SciTech Connect

    Wang Hua; Li Yexiong; Wang Weihu; Jin Jing; Dai Jianrong; Wang Shulian; Liu Yueping; Song Yongwen; Wang Zhaoyang; Liu Qingfeng; Fang Hui; Qi Shunan; Liu Xinfan; Yu Zihao

    2012-03-01

    Purpose: The value of intensity-modulated radiotherapy (IMRT) for early-stage nasal NK/T-cell lymphoma has not been previously reported. The aim of the present study was to assess the dosimetric parameters, toxicity, and treatment outcomes of patients with nasal NK/T-cell lymphoma. Methods and Materials: Between 2003 and 2008, 42 patients with early-stage nasal NK/T-cell lymphoma underwent definitive high-dose and extended involved-field IMRT with or without combination chemotherapy. The median radiation dose to the primary tumor was 50 Gy. The dose-volume histograms of the target volume and critical normal structures were evaluated in all patients. The locoregional control, overall survival, and progression-free survival were calculated using the Kaplan-Meier method. Results: The average mean dose delivered to the planning target volume was 55.5 Gy. Only 1.3% and 2.5% of the planning target volume received <90% and 95% of the prescribed dose, respectively, indicating excellent planning target volume coverage. The mean dose and average dose to the parotid glands was 15 Gy and 14 Gy, respectively. With a median follow-up time of 27 months, the 2-year locoregional control, overall survival, and progression-free survivalrate was 93%, 78%, and 74%, respectively. No Grade 4 or 5 acute or late toxicity was reported. Conclusions: High-dose and extended involved-field IMRT for patients with early-stage nasal NK/T-cell lymphoma showed favorable locoregional control, overall survival, and progression-free survival, with mild toxicity. The dose constraints of IMRT for the parotid glands can be limited to <20 Gy in these patients.

  1. Intensity-modulated radiotherapy for lymphoma involving the mediastinum

    SciTech Connect

    Goodman, Karyn A.; Toner, Sean; Hunt, Margie; Wu, Elisa J.; Yahalom, Joachim . E-mail: yahalomj@mskcc.org

    2005-05-01

    Purpose: To determine the feasibility, potential advantage, and indications for intensity-modulated radiotherapy (IMRT) in the treatment of Hodgkin's lymphoma or non-Hodgkin's lymphoma involving excessively large mediastinal disease volumes or requiring repeat RT. Methods and materials: Sixteen patients with Hodgkin's lymphoma (n = 11) or non-Hodgkin's lymphoma (n = 5) undergoing primary radiotherapy or repeat RT delivered via an IMRT plan were studied. The indications for using an IMRT plan were previous mediastinal RT (n = 5) or extremely large mediastinal treatment volumes (n 11). For each patient, IMRT, conventional parallel-opposed (AP-PA), and three-dimensional conformal (3D-CRT) plans were designed using 6-MV X-rays to deliver doses ranging from 18 to 45 Gy (median, 36 Gy). The plans were compared with regard to dose-volume parameters. The IMRT/AP-PA and IMRT/3D-CRT ratios were calculated for each parameter. Results: For all patients, the mean lung dose was reduced using IMRT, on average, by 12% compared with AP-PA and 14% compared with 3D-CRT. The planning target volume coverage was also improved using IMRT compared with AP-PA but was not different from the planning target volume coverage obtained with 3D-CRT. Conclusion: In selected patients with Hodgkin's lymphoma and non-Hodgkin's lymphoma involving the mediastinum, IMRT provides improved planning target volume coverage and reduces pulmonary toxicity parameters. It is feasible for RT of large treatment volumes and allows repeat RT of relapsed disease without exceeding cord tolerance. Additional follow-up is necessary to determine whether improvements in dose delivery affect long-term morbidity and disease control.

  2. Stereotactic radiotherapy for malignancies involving the trigeminal and facial nerves.

    PubMed

    Cuneo, K C; Zagar, T M; Brizel, D M; Yoo, D S; Hoang, J K; Chang, Z; Wang, Z; Yin, F F; Das, S K; Green, S; Ready, N; Bhatti, M T; Kaylie, D M; Becker, A; Sampson, J H; Kirkpatrick, J P

    2012-06-01

    Involvement of a cranial nerve caries a poor prognosis for many malignancies. Recurrent or residual disease in the trigeminal or facial nerve after primary therapy poses a challenge due to the location of the nerve in the skull base, the proximity to the brain, brainstem, cavernous sinus, and optic apparatus and the resulting complex geometry. Surgical resection caries a high risk of morbidity and is often not an option for these patients. Stereotactic radiosurgery and radiotherapy are potential treatment options for patients with cancer involving the trigeminal or facial nerve. These techniques can deliver high doses of radiation to complex volumes while sparing adjacent critical structures. In the current study, seven cases of cancer involving the trigeminal or facial nerve are presented. These patients had unresectable recurrent or residual disease after definitive local therapy. Each patient was treated with stereotactic radiation therapy using a linear accelerator based system. A multidisciplinary approach including neuroradiology and surgical oncology was used to delineate target volumes. Treatment was well tolerated with no acute grade 3 or higher toxicity. One patient who was reirradiated experienced cerebral radionecrosis with mild symptoms. Four of the seven patients treated had no evidence of disease after a median follow up of 12 months (range 2-24 months). A dosimetric analysis was performed to compare intensity modulated fractionated stereotactic radiation therapy (IM-FSRT) to a 3D conformal technique. The dose to 90% (D90) of the brainstem was lower with the IM-FSRT plan by a mean of 13.5 Gy. The D95 to the ipsilateral optic nerve was also reduced with IM-FSRT by 12.2 Gy and the D95 for the optic chiasm was lower with FSRT by 16.3 Gy. Treatment of malignancies involving a cranial nerve requires a multidisciplinary approach. Use of an IM-FSRT technique with a micro-multileaf collimator resulted in a lower dose to the brainstem, optic nerves and chiasm

  3. Involved-Node Radiotherapy and Modern Radiation Treatment Techniques in Patients With Hodgkin Lymphoma

    SciTech Connect

    Paumier, Amaury; Ghalibafian, Mithra; Beaudre, Anne; Ferreira, Ivaldo; Pichenot, Charlotte; Messai, Taha; Lessard, Nathalie Athalie; Lefkopoulos, Dimitri; Girinsky, Theodore

    2011-05-01

    Purpose: To assess the clinical outcome of the involved-node radiotherapy (INRT) concept using modern radiation treatments (intensity-modulated radiotherapy [IMRT]or deep-inspiration breath-hold radiotherapy [DIBH) in patients with localized supradiaphragmatic Hodgkin lymphoma. Methods and Materials: All but 2 patients had early-stage Hodgkin lymphoma, and they were treated with chemotherapy prior to irradiation. Radiation treatments were delivered using the INRT concept according to European Organization for Research and Treatment of Cancer guidelines. IMRT was performed with the patient free-breathing. For the adapted breath-hold technique, a spirometer dedicated to DIBH radiotherapy was used. Three-dimensional conformal radiotherapy was performed with those patients. Results: Fifty patients with Hodgkin lymphoma (48 patients with primary Hodgkin lymphoma, 1 patient with recurrent disease, and 1 patient with refractory disease) entered the study from January 2003 to August 2008. Thirty-two patients were treated with IMRT, and 18 patients were treated with the DIBH technique. The median age was 28 years (range, 17-62 years). Thirty-four (68%) patients had stage I - (I-IIA) IIA disease, and 16 (32%) patients had stage I - (I-IIB) IIB disease. All but 3 patients received three to six cycles of adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD). The median radiation doses to patients treated with IMRT and DIBH were, respectively, 40 Gy (range, 21.6-40 Gy) and 30.6 Gy (range, 19.8-40 Gy). Protection of various organs at risk was satisfactory. Median follow-up was 53.4 months (range, 19.1-93 months). The 5-year progression-free and overall survival rates for the whole population were 92% (95% confidence interval [CI], 80%-97%) and 94% (95% CI, 75%-98%), respectively. Recurrences occurred in 4 patients: 2 patients had in-field relapses, and 2 patients had visceral recurrences. Grade 3 acute lung toxicity (transient pneumonitis) occurred in 1 case. Conclusions

  4. Long term outcome of localized aggressive non-Hodgkin lymphoma treated with a short weekly chemotherapy regimen (doxorubicin, cyclophosphamide, bleomycin, vincristine, and prednisone) and involved field radiotherapy: result of a Gruppo Italiano Multiregionale per lo Studio dei Linfomi e Leucenie (GIMURELL) study.

    PubMed

    Cabras, Maria Giuseppina; Mamusa, Angela Maria; Vitolo, Umberto; Freilone R, Roberto; Dessalvi, Paolo; Orsucci, Lorella; Tonso, Anna; Levis, Alessandro; Liberati, Marina; Lay, Giancarlo; Angelucci, Emanuele

    2009-09-01

    Recently, management of limited stage diffuse large cell lymphoma (DLCL) is trending toward a low intensity chemotherapy approach. Since 1993 we have used a brief weekly (6 weeks) chemotherapy scheme (Doxorubicin, Cyclophosphamide, Bleomycin, Vincristine, and Prednisone = ACOP-B) followed by involved field radiotherapy in 207 consecutive patients with well defined localized DLCL without age limit (median 57 years, range 18-85). Treatment was completed as designed in 183 of 207 patients (88%). One hundred and ninety-nine patients (96%) achieved complete remission. At a median follow-up of 66 months 170 patients are alive (82%), 168 of them free of disease. Twenty-nine patients experienced relapse after achieving a complete remission. Kaplan-Meier, risk of relapse was 24% after 13 years. Thirty (14.5%) patients have died, 14 (6.8%) due to lymphoma progression, one due to regimen toxicity and 15 (7.2%) from other causes while remaining in complete remission. The probability of overall survival and event free survival at 13 years was 78% (95% CI 70-87%) and 63% (95% CI 50-75), respectively. Crude rate of secondary malignancy was 5.26 /1000 person-years. The ACOP-B regimen plus involved field radiotherapy is well tolerated both short and long term and is an effective chemotherapy scheme for very well defined limited stage aggressive non-Hodgkin lymphomas in all age categories. PMID:19579074

  5. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  6. Radiotherapy-induced gut toxicity: Involvement of matrix metalloproteinases and the intestinal microvasculature.

    PubMed

    Stansborough, Romany L; Al-Dasooqi, Noor; Bateman, Emma H; Keefe, Dorothy M K; Gibson, Rachel J

    2016-05-01

    Purpose To review the literature surrounding the involvement of the endothelium and matrix metalloproteinases (MMP) in radiotherapy-induced gut toxicity (RIGT) and further elucidate its complex pathobiology. Results RIGT involves damage to the gastrointestinal mucosa and is associated with diarrhoea, pain, and rectal bleeding depending on the area of exposure. The mechanisms underpinning RIGT are complex and have not yet been elucidated. Members of the MMP family, particularly MMP-2 and -9, have recently been identified as being key markers in RIGT and chemotherapy-induced gut toxicity (CIGT). Furthermore, the microvasculature has long been implicated in the development of toxicities following both chemotherapy and radiotherapy, however, the mechanisms behind this are yet to be explored. Conclusions It is proposed that matrix metalloproteinases are key regulators of endothelial mediators, and may play a key role in inducing damage to intestinal microvasculature following radiotherapy. PMID:26917115

  7. Radiotherapy for Early Mediastinal Hodgkin Lymphoma According to the German Hodgkin Study Group (GHSG): The Roles of Intensity-Modulated Radiotherapy and Involved-Node Radiotherapy

    SciTech Connect

    Koeck, Julia; Abo-Madyan, Yasser; Lohr, Frank; Stieler, Florian; Kriz, Jan; Mueller, Rolf-Peter; Wenz, Frederik; Eich, Hans Theodor

    2012-05-01

    Purpose: Cure rates of early Hodgkin lymphoma (HL) are high, and avoidance of late complications and second malignancies have become increasingly important. This comparative treatment planning study analyzes to what extent target volume reduction to involved-node (IN) and intensity-modulated (IM) radiotherapy (RT), compared with involved-field (IF) and three-dimensional (3D) RT, can reduce doses to organs at risk (OAR). Methods and Materials: Based on 20 computed tomography (CT) datasets of patients with early unfavorable mediastinal HL, we created treatment plans for 3D-RT and IMRT for both the IF and IN according to the guidelines of the German Hodgkin Study Group (GHSG). As OAR, we defined heart, lung, breasts, and spinal cord. Dose-volume histograms (DVHs) were evaluated for planning target volumes (PTVs) and OAR. Results: Average IF-PTV and IN-PTV were 1705 cm{sup 3} and 1015 cm{sup 3}, respectively. Mean doses to the PTVs were almost identical for all plans. For IF-PTV/IN-PTV, conformity was better with IMRT and homogeneity was better with 3D-RT. Mean doses to the heart (17.94/9.19 Gy for 3D-RT and 13.76/7.42 Gy for IMRT) and spinal cord (23.93/13.78 Gy for 3D-RT and 19.16/11.55 Gy for IMRT) were reduced by IMRT, whereas mean doses to lung (10.62/8.57 Gy for 3D-RT and 12.77/9.64 Gy for IMRT) and breasts (left 4.37/3.42 Gy for 3D-RT and 6.04/4.59 Gy for IMRT, and right 2.30/1.63 Gy for 3D-RT and 5.37/3.53 Gy for IMRT) were increased. Volume exposed to high doses was smaller for IMRT, whereas volume exposed to low doses was smaller for 3D-RT. Pronounced benefits of IMRT were observed for patients with lymph nodes anterior to the heart. IN-RT achieved substantially better values than IF-RT for almost all OAR parameters, i.e., dose reduction of 20% to 50%, regardless of radiation technique. Conclusions: Reduction of target volume to IN most effectively improves OAR sparing, but is still considered investigational. For the time being, IMRT should be considered for

  8. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy

    SciTech Connect

    Qi, X. Sharon; Liu, Tian X.; Liu, Arthur K.; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y. Angie

    2014-10-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed-field

  9. Bone involvement in young patients with non-Hodgkin's lymphoma: efficacy of chemotherapy without local radiotherapy.

    PubMed

    Haddy, T B; Keenan, A M; Jaffe, E S; Magrath, I T

    1988-10-01

    Of 95 young non-Hodgkin's lymphoma patients entered consecutively on the National Cancer Institute (NCI) Protocol 7704, 26 (27.4%) had involvement of one or more bones. The mean age of these 26 patients was 16.6 years, and the male to female ratio was 3.3:1. Tumor histology included undifferentiated Burkitt's lymphoma in 12, undifferentiated non-Burkitt's lymphoma in two, undifferentiated, unspecified lymphoma in one, diffuse large cell lymphoma in three, and lymphoblastic lymphoma in eight patients. Most had extensive disease; two patients had isolated bone lesions, one had lesions of two bones without involvement of other tissues, and 23 had either multiple bone lesions or single bone lesions with involvement of other tissues. Eight of the 26 patients had bone marrow involvement. Of a subgroup of 12 patients with jaw disease, 11 had undifferentiated lymphoma and one had diffuse large cell lymphoma. Only one had primary a jaw tumor, with two quadrants of the jaw involved. All 26 patients were treated with chemotherapy; only two received radiotherapy initially for bone lesions. Predicted survival of the 26 patients at 5 years is 53.2%. The 12 patients who remain disease free have a mean survival of 62.1 months (range, 22 to 100 months). Our results call into question the role of radiotherapy in the treatment of bone lesions in non-Hodgkin's lymphoma. PMID:3167201

  10. How to identify rectal sub-regions likely involved in rectal bleeding in prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Dréan, G.; Acosta, O.; Ospina, J. D.; Voisin, C.; Rigaud, B.; Simon, A.; Haigron, P.; de Crevoisier, R.

    2013-11-01

    Nowadays, the de nition of patient-speci c constraints in prostate cancer radiotherapy planning are solely based on dose-volume histogram (DVH) parameters. Nevertheless those DVH models lack of spatial accuracy since they do not use the complete 3D information of the dose distribution. The goal of the study was to propose an automatic work ow to de ne patient-speci c rectal sub-regions (RSR) involved in rectal bleeding (RB) in case of prostate cancer radiotherapy. A multi-atlas database spanning the large rectal shape variability was built from a population of 116 individuals. Non-rigid registration followed by voxel-wise statistical analysis on those templates allowed nding RSR likely correlated with RB (from a learning cohort of 63 patients). To de ne patient-speci c RSR, weighted atlas-based segmentation with a vote was then applied to 30 test patients. Results show the potentiality of the method to be used for patient-speci c planning of intensity modulated radiotherapy (IMRT).

  11. Radiotherapy.

    PubMed

    Adamietz, Irenaus A

    2010-01-01

    The intrathoracic growth of the tumor causes several severe symptoms as cough, dyspnea, chest pain, hemoptysis, hoarseness, anorexia/nausea, and dysphagia. In patients with manifest or threatening symptoms radiotherapy (RT) as an effective measure should be implemented into the management concept. Palliative RT radiotherapy prefers short hypofractionated schemas (e.g. 10 x 3 Gy, 4 x 5 Gy, 2 x 8 Gy, 1 x 10 Gy). Careful radiation planning supports the precision of palliative RT and reduces significantly the complication rate. A good response and prolonged palliation effects (6-12 months) can be achieved in many cases. However, the minimum biologically equivalent dose should not be less than 35 Gy. RT produces a good outcome in all types of metastases of lung carcinoma. In emergencies like VCSS or spinal cord compression RT should be initiated immediately. The selection of the optimal therapy for locally advanced lung carcinoma with malignant airway obstruction is difficult. Both brachytherapy and percutaneous irradiation are effective, however published results including local a sum of response, functionality and life quality demonstrates more benefit by percutaneous RT. Due to different physical properties of these two methods the combination of brachytherapy and external beam irradiation may be advantageous. PMID:19955803

  12. Evaluation of the field-in-field technique with lung blocks for breast tangential radiotherapy.

    PubMed

    Tanaka, Hidekazu; Hayashi, Shinya; Kajiura, Yuichi; Kitahara, Masashi; Matsuyama, Katsuya; Kanematsu, Masayuki; Hoshi, Hiroaki

    2015-08-01

    Several studies have reported the advantages of the field-in-field (FIF) technique in breast radiotherapy, including dose reduction in the lungs by using lung field blocks. We evaluated the FIF technique with lung blocks for breast tangential radiotherapy. Sixteen patients underwent free breathing (FB) computed tomography (CT), followed by two CT procedures performed during breath hold after light inhalation (IN) and light exhalation (EX). Three radiotherapy plans were created using the FIF technique based on the FB-CT images: one without lung blocks (LB0) and two with lung blocks whose monitor units (MUs) were 5 (LB5) and 10 (LB10), respectively. These plans were copied to the IN-CT and EX-CT images. V20Gy, V30Gy, and V40Gy of the ipsilateral lung and V100%, V95%, and the mean dose (Dmean) to the planning target volume (PTV) were analyzed. The extent of changes in these parameters on the IN-plan and EX-plan compared with the FB-plan was evaluated. V20Gy, V30Gy, and V40Gy were significantly smaller for FB-LB5 and FB-LB10 than for FB-LB0; similar results were obtained for the IN-plan and EX-plan. V100%, V95%, and Dmean were also significant smaller for FB-LB5 and FB-LB10 than for FB-LB0. The extent of changes in V20Gy, V30Gy, and V40Gy on the IN-plan and EX-plan compared with the FB-plan was not statistically significant. Lung blocks were useful for dose reduction in the lung and a simultaneous PTV decrease. This technique should not be applied in the general population. PMID:26412879

  13. Evaluation of the field-in-field technique with lung blocks for breast tangential radiotherapy

    PubMed Central

    Tanaka, Hidekazu; Hayashi, Shinya; Kajiura, Yuichi; Kitahara, Masashi; Matsuyama, Katsuya; Kanematsu, Masayuki; Hoshi, Hiroaki

    2015-01-01

    ABSTRACT Several studies have reported the advantages of the field-in-field (FIF) technique in breast radiotherapy, including dose reduction in the lungs by using lung field blocks. We evaluated the FIF technique with lung blocks for breast tangential radiotherapy. Sixteen patients underwent free breathing (FB) computed tomography (CT), followed by two CT procedures performed during breath hold after light inhalation (IN) and light exhalation (EX). Three radiotherapy plans were created using the FIF technique based on the FB-CT images: one without lung blocks (LB0) and two with lung blocks whose monitor units (MUs) were 5 (LB5) and 10 (LB10), respectively. These plans were copied to the IN-CT and EX-CT images. V20Gy, V30Gy, and V40Gy of the ipsilateral lung and V100%, V95%, and the mean dose (Dmean) to the planning target volume (PTV) were analyzed. The extent of changes in these parameters on the IN-plan and EX-plan compared with the FB-plan was evaluated. V20Gy, V30Gy, and V40Gy were significantly smaller for FB-LB5 and FB-LB10 than for FB-LB0; similar results were obtained for the IN-plan and EX-plan. V100%, V95%, and Dmean were also significant smaller for FB-LB5 and FB-LB10 than for FB-LB0. The extent of changes in V20Gy, V30Gy, and V40Gy on the IN-plan and EX-plan compared with the FB-plan was not statistically significant. Lung blocks were useful for dose reduction in the lung and a simultaneous PTV decrease. This technique should not be applied in the general population. PMID:26412879

  14. A Dosimetric Evaluation of Conventional Helmet Field Irradiation Versus Two-Field Intensity-Modulated Radiotherapy Technique

    SciTech Connect

    Yu, James B.; Shiao, Stephen L.; Knisely, Jonathan . E-mail: jonathan.knisely@yale.edu

    2007-06-01

    Purpose: To compare dosimetric differences between conventional two-beam helmet field irradiation (external beam radiotherapy, EBRT) of the brain and a two-field intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: Ten patients who received helmet field irradiation at our institution were selected for study. External beam radiotherapy portals were planned per usual practice. Intensity-modulated radiotherapy fields were created using the identical field angles as the EBRT portals. Each brain was fully contoured along with the spinal cord to the bottom of the C2 vertebral body. This volume was then expanded symmetrically by 0.5 cm to construct the planning target volume. An IMRT plan was constructed using uniform optimization constraints. For both techniques, the nominal prescribed dose was 3,000 cGy in 10 fractions of 300 cGy using 6-MV photons. Comparative dose-volume histograms were generated for each patient and analyzed. Results: Intensity-modulated radiotherapy improved dose uniformity over EBRT for whole brain radiotherapy. The mean percentage of brain receiving >105% of dose was reduced from 29.3% with EBRT to 0.03% with IMRT. The mean maximum dose was reduced from 3,378 cGy (113%) for EBRT to 3,162 cGy (105%) with IMRT. The mean percent volume receiving at least 98% of the prescribed dose was 99.5% for the conventional technique and 100% for IMRT. Conclusions: Intensity-modulated radiotherapy reduces dose inhomogeneity, particularly for the midline frontal lobe structures where hot spots occur with conventional two-field EBRT. More study needs to be done addressing the clinical implications of optimizing dose uniformity and its effect on long-term cognitive function in selected long-lived patients.

  15. MR-guided breast radiotherapy: feasibility and magnetic-field impact on skin dose

    NASA Astrophysics Data System (ADS)

    van Heijst, Tristan C. F.; den Hartogh, Mariska D.; Lagendijk, Jan J. W.; Desirée van den Bongard, H. J. G.; van Asselen, Bram

    2013-09-01

    The UMC Utrecht MRI/linac (MRL) design provides image guidance with high soft-tissue contrast, directly during radiotherapy (RT). Breast cancer patients are a potential group to benefit from better guidance in the MRL. However, due to the electron return effect, the skin dose can be increased in presence of a magnetic field. Since large skin areas are generally involved in breast RT, the purpose of this study is to investigate the effects on the skin dose, for whole-breast irradiation (WBI) and accelerated partial-breast irradiation (APBI). In ten patients with early-stage breast cancer, targets and organs at risk (OARs) were delineated on postoperative CT scans co-registered with MRI. The OARs included the skin, comprising the first 5 mm of ipsilateral-breast tissue, plus extensions. Three intensity-modulated RT techniques were considered (2× WBI, 1× APBI). Individual beam geometries were used for all patients. Specially developed MRL treatment-planning software was used. Acceptable plans were generated for 0 T, 0.35 T and 1.5 T, using a class solution. The skin dose was augmented in WBI in the presence of a magnetic field, which is a potential drawback, whereas in APBI the induced effects were negligible. This opens possibilities for developing MR-guided partial-breast treatments in the MRL.

  16. Adjuvant paclitaxel and carboplatin chemotherapy with involved field radiation in advanced endometrial cancer: A sequential approach

    SciTech Connect

    Lupe, Krystine; Kwon, Janice . E-mail: Janice.kwon@lhsc.on.ca; D'Souza, David; Gawlik, Christine; Stitt, Larry; Whiston, Frances; Nascu, Patricia; Wong, Eugene; Carey, Mark S.

    2007-01-01

    Purpose: To determine the feasibility of adjuvant paclitaxel and carboplatin chemotherapy interposed with involved field radiotherapy for women with advanced endometrial cancer. Methods and Materials: This was a prospective cohort study of women with Stage III and IV endometrial cancer. Adjuvant therapy consisted of 4 cycles of paclitaxel (175 mg/m{sup 2}) and carboplatin (350 mg/m{sup 2}) every 3 weeks, followed sequentially by external beam radiotherapy (RT) to the pelvis (45 Gy), followed by an additional two cycles of chemotherapy. Para-aortic RT and/or HDR vault brachytherapy (BT) were added at the discretion of the treating physician. Results: Thirty-three patients (median age, 63 years) received treatment between April 2002 and June 2005. Median follow-up was 21 months. Stage distribution was as follows: IIIA (21%), IIIC (70%), IVB (9%). Combination chemotherapy was successfully administered to 30 patients (91%) and 25 patients (76%), before and after RT respectively. Nine patients (27%) experienced acute Grade 3 or 4 chemotherapy toxicities. All patients completed pelvic RT; 19 (58%) received standard 4-field RT and 14 (42%) received intensity-modulated radiotherapy. Ten (30%) received extended field radiation. Four patients (12%) experienced acute Grade 3 or 4 RT toxicities. Six (18%) patients developed chronic RT toxicity. There were no treatment-related deaths. Two-year disease-free and overall survival rates were both 55%. There was only one pelvic relapse (3%). Conclusions: Adjuvant treatment with combination chemotherapy interposed with involved field radiation in advanced endometrial cancer was well tolerated. This protocol may be suitable for further evaluation in a clinical trial.

  17. Prognostic Value of Prevertebral Space Involvement in Nasopharyngeal Carcinoma Based on Intensity-Modulated Radiotherapy

    SciTech Connect

    Zhou Guanqun; Mao YanPing; Chen Lei; Li Wenfei; Liu Lizhi; Sun Ying; Chen Yong; Tian Li; Lin Aihua; Li Li; and others

    2012-03-01

    Purpose: To investigate the prognostic significance of prevertebral space involvement (PSI) in patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: A retrospective review of data from 506 biopsy-proven, nonmetastatic NPCs was performed. Patients underwent magnetic resonance imaging examinations and received IMRT as their primary treatment. Results: In this series, 161 NPC patients (31.8%) had PSI. Parapharyngeal space (p < 0.001), skull base (p < 0.001), and paranasal sinuses (p = 0.009) were associated with PSI after multivariate analysis. The 4-year overall survival (OS), local relapse-free survival (LRFS), distant metastasis-free survival (DMFS) for NPC patients with and without PSI was 69.1% and 89.2% (p < 0.0001), 83.9% and 96.4% (p < 0.0001), and 71.6% and 89.6% (p < 0.0001), respectively. Multivariate analysis identified PSI as an independent negative prognostic factor for both OS (HR = 1.478-4.380; p = 0.001) and DMFS (HR = 1.389-4.174; p = 0.002). Patients with PSI had similar survival rates in OS and DMFS (p = 0.241 and p = 0.493, respectively) to that of T4 disease, while the differences between PSI and T3 disease in both OS and DMFS were distinctly significant (p = 0.029 and p = 0.029, respectively). Conclusions: For NPC patients treated with IMRT, PSI was found to be an independent prognostic factor for both OS and DMFS. It seems reasonable that PSI should be classified as a T4 disease on the basis of the current American Joint Committee on Cancer staging classification criteria.

  18. Pancreatic Neuroendocrine Tumors With Involved Surgical Margins: Prognostic Factors and the Role of Adjuvant Radiotherapy

    SciTech Connect

    Arvold, Nils D.; Willett, Christopher G.; Fernandez-del Castillo, Carlos; Ryan, David P.; Ferrone, Cristina R.; Clark, Jeffrey W.; Blaszkowsky, Lawrence S.; Deshpande, Vikram; Niemierko, Andrzej; Allen, Jill N.; Kwak, Eunice L.; Wadlow, Raymond C.; Zhu, Andrew X.; Warshaw, Andrew L.; Hong, Theodore S.

    2012-07-01

    Purpose: Pancreatic neuroendocrine tumors (pNET) are rare neoplasms associated with poor outcomes without resection, and involved surgical margins are associated with a worse prognosis. The role of adjuvant radiotherapy (RT) in these patients has not been characterized. Methods and Materials: We retrospectively evaluated 46 consecutive patients with positive or close (<1 mm) margins after pNET resection, treated from 1983 to 2010, 16 of whom received adjuvant RT. Median RT dose was 50.4 Gy in 1.8-Gy fractions; half the patients received concurrent chemotherapy with 5-fluorouracil or capecitabine. No patients received adjuvant chemotherapy. Cox multivariate analysis (MVA) was used to analyze factors associated with overall survival (OS). Results: Median age at diagnosis was 56 years, and 52% of patients were female. Median tumor size was 38 mm, 57% of patients were node-positive, and 11% had a resected solitary liver metastasis. Patients who received RT were more likely to have larger tumors (median, 54 mm vs. 30 mm, respectively, p = 0.002) and node positivity (81% vs. 33%, respectively, p = 0.002) than those not receiving RT. Median follow-up was 39 months. Actuarial 5-year OS was 62% (95% confidence interval [CI], 41%-77%). In the group that did not receive RT, 3 patients (10%) experienced local recurrence (LR) and 5 patients (18%) developed new distant metastases, while in the RT group, 1 patient (6%) experienced LR and 5 patients (38%) developed distant metastases. Of all recurrences, 29% were LR. On MVA, male gender (adjusted hazard ratio [AHR] = 3.81; 95% CI, 1.21-11.92; p = 0.02) and increasing tumor size (AHR = 1.02; 95% CI, 1.01-1.04; p = 0.007) were associated with decreased OS. Conclusions: Long-term survival is common among patients with involved-margin pNET. Despite significantly worse pathologic features among patients receiving adjuvant RT, rates of LR between groups were similar, suggesting that RT might aid local control, and merits further

  19. [Radiotherapy of skin cancers].

    PubMed

    Hennequin, C; Rio, E; Mahé, M-A

    2016-09-01

    The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomised trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and occurring in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumours (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radiotherapy (50 to 56Gy) for Merckel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules. PMID:27522189

  20. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    SciTech Connect

    Datta, T.; Yin Ming; Vargas, Jose

    2004-02-04

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kaehler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  1. Involved-Field, Low-Dose Chemoradiotherapy for Early-Stage Anal Carcinoma

    SciTech Connect

    Hatfield, Paul; Cooper, Rachel; Sebag-Montefiore, David

    2008-02-01

    Purpose: To report the results of patients with early-stage anal cancer treated using a low-dose, reduced-volume, involved-field chemoradiotherapy protocol. Methods and Materials: Between June 2000 and June 2006, 21 patients were treated with external beam radiotherapy (30 Gy in 15 fractions within 3 weeks) and concurrent chemotherapy (bolus mitomycin-C 12 mg/m{sup 2} on Day 1 to a maximum of 20 mg followed by infusion 5-fluorouracil 1,000 mg/m{sup 2}/24 h on Days 1-4). Of the 21 patients, 18 underwent small-volume, involved-field radiotherapy and 3 were treated with anteroposterior-posteroanterior parallel-opposed pelvic fields. Of the 21 patients, 17 had had lesions that were excised with close (<1 mm) or involved margins, 1 had had microinvasive disease on biopsy, and 3 had had macroscopic tumor <2 cm in diameter (T1). All were considered to have Stage N0 disease radiologically. Results: After a median follow-up of 42 months, only 1 patient (4.7%) had experienced local recurrence and has remained disease free after local excision. No distant recurrences or deaths occurred. Only 1 patient could not complete treatment (because of Grade 3 gastrointestinal toxicity). Grade 3-4 hematologic toxicity occurred in only 2 patients (9.5%). No significant late toxicity was identified. Conclusion: The results of our study have shown that for patients with anal carcinoma who have residual microscopic or very-small-volume disease, a policy of low-dose, reduced-volume, involved-field chemoradiotherapy produces excellent local control and disease-free survival, with low rates of acute and late toxicity.

  2. Progressive Muscle Atrophy and Weakness After Treatment by Mantle Field Radiotherapy in Hodgkin Lymphoma Survivors

    SciTech Connect

    Leeuwen-Segarceanu, Elena M. van; Dorresteijn, Lucille D.A.; Pillen, Sigrid; Biesma, Douwe H.; Vogels, Oscar J.M.; Alfen, Nens van

    2012-02-01

    Purpose: To describe the damage to the muscles and propose a pathophysiologic mechanism for muscle atrophy and weakness after mantle field radiotherapy in Hodgkin lymphoma (HL) survivors. Methods and Materials: We examined 12 patients treated by mantle field radiotherapy between 1969 and 1998. Besides evaluation of their symptoms, the following tests were performed: dynamometry; ultrasound of the sternocleidomastoid, biceps, and antebrachial flexor muscles; and needle electromyography of the neck, deltoid, and ultrasonographically affected arm muscles. Results: Ten patients (83%) experienced neck complaints, mostly pain and muscle weakness. On clinical examination, neck flexors were more often affected than neck extensors. On ultrasound, the sternocleidomastoid was severely atrophic in 8 patients, but abnormal echo intensity was seen in only 3 patients. Electromyography of the neck muscles showed mostly myogenic changes, whereas the deltoid, biceps, and antebrachial flexor muscles seemed to have mostly neurogenic damage. Conclusions: Many patients previously treated by mantle field radiotherapy develop severe atrophy and weakness of the neck muscles. Neck muscles within the radiation field show mostly myogenic damage, and muscles outside the mantle field show mostly neurogenic damage. The discrepancy between echo intensity and atrophy suggests that muscle damage is most likely caused by an extrinsic factor such as progressive microvascular fibrosis. This is also presumed to cause damage to nerves within the radiated field, resulting in neurogenic damage of the deltoid and arm muscles.

  3. A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy

    SciTech Connect

    Moon, Seong Kwon; Kim, Yeon Sil; Kim, Soo Young; Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min

    2011-10-01

    The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

  4. Radiotherapy Treatment Plans With RapidArc for Prostate Cancer Involving Seminal Vesicles and Lymph Nodes

    SciTech Connect

    Yoo, Sua; Wu, Q. Jackie; Lee, W. Robert; Yin Fangfang

    2010-03-01

    Purpose: Dosimetric results and treatment delivery efficiency of RapidArc plans to those of conventional intensity-modulated radiotherapy (IMRT) plans were compared using the Eclipse treatment planning system for high-risk prostate cancer. Materials and Methods: This study included 10 patients. The primary planning target volume (PTV{sub P}) contained prostate, seminal vesicles, and pelvic lymph nodes with a margin. The boost PTV (PTV{sub B}) contained prostate and seminal vesicles with a margin. The total prescription dose was 75.6 Gy (46.8 Gy to PTV{sub P} and an additional 28.8 Gy to PTV{sub B}; 1.8 Gy/fraction). Three plans were generated for each PTV: Multiple-field IMRT, one-arc RapidArc (1ARC), and two-arc RapidArc (2ARC). Results: In the primary IMRT with PTV{sub P}, average mean doses to bladder, rectum and small bowel were lower by 5.9%, 7.7% and 4.3%, respectively, than in the primary 1ARC and by 3.6%, 4.8% and 3.1%, respectively, than in the primary 2ARC. In the boost IMRT with PTV{sub B}, average mean doses to bladder and rectum were lower by 2.6% and 4.8% than with the boost 1ARC and were higher by 0.6% and 0.2% than with the boost 2ARC. Integral doses were 7% to 9% higher with RapidArc than with IMRT for both primary and boost plans. Treatment delivery time was reduced by 2-7 minutes using RapidArc. Conclusion: For PTVs including prostate, seminal vesicles, and lymph nodes, IMRT performed better in dose sparing for bladder, rectum, and small bowel than did RapidArc. For PTVs including prostate and seminal vesicles, RapidArc with two arcs provided plans comparable to those for IMRT. The treatment delivery is more efficient with RapidArc.

  5. Water-equivalent dosimeter array for small-field external beam radiotherapy

    SciTech Connect

    Archambault, Louis; Beddar, A. Sam; Gingras, Luc; Lacroix, Frederic; Roy, Rene; Beaulieu, Luc

    2007-05-15

    With the increasing complexity of dose patterns external beam radiotherapy, there is a great need for new types of dosimeters. We studied the first prototype of a new dosimeter array consisting of water-equivalent plastic scintillating fibers for dose measurement in external beam radiotherapy. We found that this array allows precise, rapid dose evaluation of small photon fields. Starting with a dosimeter system constructed with a single scintillating fiber coupled to a clear optical fiber and read using a charge coupled device camera, we looked at the dosimeter's spatial resolution under small radiation fields and angular dependence. Afterward, we analyzed the camera's light collection to determine the maximum array size that could be built. Finally, we developed a prototype made of ten scintillating fiber detectors to study the behavior and precision of this system in simple dosimetric situations. The scintillation detector showed no measurable angular dependence. Comparison of the scintillation detector and a small-volume ion chamber showed agreement except for 1x1 and 0.5x5.0 cm{sup 2} fields where the output factor measured by the scintillator was higher. The actual field of view of the camera could accept more than 4000 scintillating fiber detectors simultaneously. Evaluation of the dose profile and depth dose curve using a prototype with ten scintillating fiber detectors showed precise, rapid dose evaluation even with placement of more than 75 optical fibers in the field to simulate what would happen in a larger array. We concluded that this scintillating fiber dosimeter array is a valuable tool for dose measurement in external beam radiotherapy. It possesses the qualities necessary to evaluate small and irregular fields with various incident angles such as those encountered in intensity-modulated radiotherapy, radiosurgery, and tomotherapy.

  6. Assessment of Extended-Field Radiotherapy for Stage IIIC Endometrial Cancer Using Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, and Helical Tomotherapy

    SciTech Connect

    Lian Jidong Mackenzie, Marc; Joseph, Kurian; Pervez, Nadeem; Dundas, George; Urtasun, Raul; Pearcey, Robert

    2008-03-01

    Purpose: To perform a dosimetric comparison of three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and helical tomotherapy (HT) plans for pelvic and para-aortic RT in postoperative endometrial cancer patients; and to evaluate the integral dose (ID) received by critical structures within the radiation fields. Methods and Materials: We selected 10 patients with Stage IIIC endometrial cancer. For each patient, three plans were created with 3D-CRT, IMRT, and HT. The IMRT and HT plans were both optimized to keep the mean dose to the planning target volume (PTV) the same as that with 3D-CRT. The dosimetry and ID for the critical structures were compared. A paired two-tailed Student t test was used for data analysis. Results: Compared with the 3D-CRT plans, the IMRT plans resulted in lower IDs in the organs at risk (OARs), ranging from -3.49% to -17.59%. The HT plans showed a similar result except that the ID for the bowel increased 0.27%. The IMRT and HT plans both increased the IDs to normal tissue (see and text for definition), pelvic bone, and spine (range, 3.31-19.7%). The IMRT and HT dosimetry showed superior PTV coverage and better OAR sparing than the 3D-CRT dosimetry. Compared directly with IMRT, HT showed similar PTV coverage, lower Ids, and a decreased dose to most OARs. Conclusion: Intensity-modulated RT and HT appear to achieve excellent PTV coverage and better sparing of OARs, but at the expense of increased IDs to normal tissue and skeleton. HT allows for additional improvement in dosimetry and sparing of most OARs.

  7. Clinical Applications of Geometrical Field Matching in Radiotherapy Based on a New Analytical Solution

    SciTech Connect

    Hernandez, Victor; Arenas, Meritxell; Pons, Ferran; Sempau, Josep

    2011-07-01

    A new analytical formalism has been published recently that provides all the parameters necessary for geometrical field matching in radiotherapy. The present work applies the general expressions for craniospinal irradiation, breast irradiation with a supraclavicular half-field, and breast irradiation with a supraclavicular full-field. We also explore the formalism as a tool to analyze and compare different techniques. Field matching is achieved by imposing both parallelism and coincidence between the side planes of adjacent fields. The rotation angles and either the field aperture for a certain isocenter position or the isocenter coordinates for a given field aperture are supplied. All of the already known exact solutions are reproduced. New expressions for the field aperture and for the isocenter coordinates, which were not previously available, are also computed. If tangential fields at a fixed source-to-skin distance are used together with a supraclavicular full-field, different apertures for each tangential field are required to achieve a correct match. If an isocentric technique for the tangential fields or a supraclavicular half-field is used, this complication is avoided. The breast technique with the supraclavicular half-field is recommended, because it presents several advantages with respect to the supraclavicular full-field. This formalism provides a useful tool in cases where matching of adjacent fields is necessary.

  8. Consideration of the radiation dose delivered away from the treatment field to patients in radiotherapy

    PubMed Central

    Taylor, Michael L.; Kron, Tomas

    2011-01-01

    Radiation delivery to cancer patients for radiotherapy is invariably accompanied by unwanted radiation to other parts of the patient’s body. Traditionally, considerable effort has been made to calculate and measure the radiation dose to the target as well as to nearby critical structures. Only recently has attention been focused also on the relatively low doses that exist far from the primary radiation beams. In several clinical scenarios, such doses have been associated with cardiac toxicity as well as an increased risk of secondary cancer induction. Out-of-field dose is a result of leakage and scatter and generally difficult to predict accurately. The present review aims to present existing data, from measurements and calculations, and discuss its implications for radiotherapy. PMID:21731221

  9. [The control of radiation protection in the field of radiotherapy by the French Nuclear Safety Authority (ASN)].

    PubMed

    Godet, J-L

    2007-11-01

    During the last months, several incidents at radiotherapy services occurred in France; one of these accidents led to the death of several patients or required further heavy surgical acts. In this context, ASN (Autorité de sûreté nucléaire) issued an experimental guide for the notification of radiation protection events and achieved, in dialogue with professional organisations, a new scale intended to facilitate public information on radiotherapy incidents. ASN is also fully involved in the preparation of the action plan managed by the Health ministry in order to improve the safety of treatment in radiotherapy. PMID:17962062

  10. Three-dimensional customized bolus for intensity-modulated radiotherapy in a patient with Kimura's disease involving the auricle.

    PubMed

    Park, J W; Yea, J W

    2016-05-01

    In radiotherapy, a commercial bolus often does not provide a suitable fit over irregular surfaces. To address this issue, we fabricated a customized bolus using 3D printing technology. The aim of our study was to evaluate the application of this 3D-printed bolus in a clinical setting. The patient was a 45-year-old man with recurrent Kimura's disease involving the auricle, receiving radiotherapy in our oncology department. A customized bolus, 5mm in thickness, was fabricated based on reconstruction of computed tomography (CT) images. The bolus was printed on a Dimension 1200 series SST 3D printer. Repeat CT-based simulation indicated an acceptable fit of the 3D-printed bolus to the target region, with a maximum air gap of less than 5mm at the tragus. Most of the surface area of the target region was covered by the 95% isodose line. The plan with the 3D-printed bolus improved target coverage compared to that without a bolus. And the plan with the 3D-printed bolus yielded comparable results to those with the paraffin wax bolus. In conclusion, a customized bolus using a 3D printer was successfully applied to an irregular surface. PMID:27020714

  11. Inquiry-Based Field Studies Involving Teacher-Scientist Collaboration.

    ERIC Educational Resources Information Center

    Odom, Arthur Louis

    2001-01-01

    Describes a collaborative professional development program, Inquiry-Based Field Studies Involving Teacher-Scientist Collaboration, that uses scientist-teacher teams to improve teachers' understanding of scientific inquiry. Reports that the project allowed teachers to develop a deeper understanding on the nature of science. (Author/YDS)

  12. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    NASA Astrophysics Data System (ADS)

    Raaijmakers, A. J. E.; Raaymakers, B. W.; Lagendijk, J. J. W.

    2008-02-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  13. Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

    PubMed Central

    Shin, Youngseob; Jung, In-Hye; Kwak, Jungwon

    2015-01-01

    Purpose Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field. PMID:26484306

  14. Follow-up Thallium-201 scintigraphy after mantle field radiotherapy for Hodgkin's disease

    SciTech Connect

    Pierga, J.Y.; Girinski, T.; Henry-Amar, M. ); Maunoury, C.; Valette, H.; Tchernia, G.; Desgrez, A. ); Socie, G. Hopital St Louis, Paris ); Cosset, J.M. Institut Curie, Paris )

    1993-04-02

    Assessment of the long-term cardiac effects of mediastinal radiotherapy for Hodgkin's disease, by Thallium scintigraphy. 32 patients (14 males and 18 females) who underwent mantle field radiotherapy for Hodgkin's disease were included in this study. Twenty patients received 4 fractions of 2.5 Gy per week and 12, five fraction of 2 Gy per week, delivered on alternate days. All the patients, except three, performed exercise testing electrocardiogram and Thallium-201 tomoscintigraphy. The average time interval from completion of treatment to the study was 7 years (range 3--13 years). No patients had clinical symptoms of cardiac disease. Mean age at the time of the study was 35 years (range 23--48 years). Two electrocardiograms revealed left bundle branch block and the patients were excluded from the study. Only one out of 27 exercise electrocardiograms was abnormal in a patient with mitral valve prolapse, who was also excluded from the study. Twenty-six scintigraphies were evaluable. Twenty-two (85%) were clearly abnormal with partial or complete redistribution on delayed images. The anterior region was affected in 19 of these cases (86%). Four explorations were undoubtedly normal. Coronary angiography was not performed for ethical reasons in these asymptomatic patients. Despite possible false positive tests, the high rate of abnormality (85%) in this small series is striking. These preliminary data justify larger studies and a close long-term follow-up of these patients. 24 refs., 1 fig., 2 tabs.

  15. Radiation Field Design and Patterns of Locoregional Recurrence Following Definitive Radiotherapy for Breast Cancer

    SciTech Connect

    Chen, Susie A.; Schuster, David M.; Mister, Donna; Liu Tian; Godette, Karen; Torres, Mylin A.

    2013-02-01

    Purpose: Locoregional control is associated with breast cancer-specific and overall survival in select women with breast cancer. Although several patient, tumor, and treatment characteristics have been shown to contribute to locoregional recurrence (LRR), studies evaluating factors related to radiotherapy (XRT) technique have been limited. We investigated the relationship between LRR location and XRT fields and dose delivered to the primary breast cancer in women experiencing subsequent locoregional relapse. Methods and Materials: We identified 21 women who were previously treated definitively with surgery and XRT for breast cancer. All patients developed biopsy-result proven LRR and presented to Emory University Hospital between 2004 and 2010 for treatment. Computed tomography (CT) simulation scans with XRT dose files for the initial breast cancer were fused with {sup 18}F-labeled fluorodeoxyglucose positron emission tomography (FDG PET)/CT images in DICOM (Digital Imaging and Communications in Medicine) format identifying the LRR. Each LRR was categorized as in-field, defined as {>=}95% of the LRR volume receiving {>=}95% of the prescribed whole-breast dose; marginal, defined as LRR at the field edge and/or not receiving {>=}95% of the prescribed dose to {>=}95% of the volume; or out-of-field, that is, LRR intentionally not treated with the original XRT plan. Results: Of the 24 identified LRRs (3 patients experienced two LRRs), 3 were in-field, 9 were marginal, and 12 were out-of-field. Two of the 3 in-field LRRs were marginal misses of the additional boost XRT dose. Out-of-field LRRs consisted of six supraclavicular and six internal mammary nodal recurrences. Conclusions: Most LRRs in our study occurred in areas not fully covered by the prescribed XRT dose or were purposely excluded from the original XRT fields. Our data suggest that XRT technique, field design, and dose play a critical role in preventing LRR in women with breast cancer.

  16. Dosimetry and field matching for radiotherapy to the breast and superclavicular fossa

    NASA Astrophysics Data System (ADS)

    Winfield, Elizabeth

    Radiotherapy for early breast cancer aims to achieve local disease control and decrease loco-regional recurrence rates. Treatment may be directed to breast or chest wall alone or, include regional lymph nodes. When using tangential fields to treat the breast a separate anterior field directed to the axilla and supraclavicular fossa (SCF) is needed to treat nodal areas. The complex geometry of this region necessitates matching of adjacent radiation fields in three dimensions. The potential exists for zones of overdosage or underdosage along the match line. Cosmetic results may be compromised if treatment fields are not accurately aligned. Techniques for field matching vary between centres in the UK. A study of dosimetry across the match line region using different techniques, as reported in the multi-centre START Trial Quality Assurance (QA) programme, was undertaken. A custom-made anthropomorphic phantom was designed to assess dose distribution in three dimensions using film dosimetry. Methods with varying degrees of complexity were employed to match tangential and SCF beams. Various techniques combined half beam blocking and machine rotations to achieve geometric alignment. Matching of asymmetric beams allowed a single isocentre technique to be used. Where field matching was not undertaken a gap between tangential and SCF fields was employed. Results demonstrated differences between techniques in addition to variations within the same technique between different centres. Geometric alignment techniques produced more homogenous dose distributions in the match region than gap techniques or those techniques not correcting for field divergence. For this multi-centre assessment of match plane techniques film dosimetry used in conjunction with a breast shaped phantom provided relative dose information. This study has highlighted the difficulties of matching treatment fields to achieve homogenous dose distribution through the region of the match plane and the degree of

  17. Proton Radiotherapy: The Biological Effect of Treating Alternating Subsets of Fields for Different Treatment Fractions

    SciTech Connect

    Engelsman, Martijn; DeLaney, Thomas F.; Hong, Theodore S.

    2011-02-01

    Purpose: Common practice in proton radiotherapy is to deliver a subset of all fields in the treatment plan on any given treatment day. We investigate using biological modeling if the resulting variation in daily dose to normal tissues has a relevant detrimental biological effect. Methods and Materials: For four patient groups, the cumulative normalized total dose (NTD) was determined for normal tissues (OARs) of each patient using the clinically delivered fractionation schedule (FS{sub clin}), and for hypothetical fractionation schedules delivering all fields every day (FS{sub all}) or only a single field each day (FS{sub single}). Cumulative three-dimensional NTD distributions were summarized using the generalized equivalent uniform dose (gEUD) model. Results: For the skull base/cervical spine chordoma group, the largest effect is a 4-Gy increase in gEUD of the chiasm when treating only a subset of fields on any day. For lung cancer and pancreatic cancer patients, the variation in the gEUD of normal tissues is <0.2 Gy. For the prostate group, FS{sub clin} increases the gEUD of the femoral heads by 9 Gy compared with FS{sub all}. Use of FS{sub single} resulted in the highest NTD to normal tissues for any patient. FS{sub all} resulted in an integral NTD to the patient that is on average 5% lower than FS{sub clin} and 10% lower than FS{sub single}. Conclusion: The effects of field set of the day treatment delivery depend on the tumor site and number of fields treated each day. Modeling these effects may be important for accurate risk assessment.

  18. The Impact of Radiotherapy Fields in the Treatment of Patients With Choroid Plexus Carcinoma

    SciTech Connect

    Mazloom, Ali; Wolff, Johannes E.; Paulino, Arnold C.

    2010-09-01

    Purpose: To perform a comprehensive literature review and analysis of cases dealing with choroid plexus carcinoma (CPC) to determine the optimal radiotherapy (RT) treatment field. Methods and Materials: A PubMed search of English language articles from 1979 to 2008 was performed, yielding 33 articles with 56 patients who had available data regarding RT treatment field. The median age at diagnosis was 2.7 years (range, 1 month-53 years). Of 54 patients with data regarding type of surgery, 21 (38.9%) had complete resection. Chemotherapy was delivered to 27 (48%) as part of initial therapy. The RT treatment volume was the craniospinal axis in 38 (68%), whole brain in 9 (16%), and tumor/tumor bed in 9 (16%). Median follow-up for surviving patients was 40 months. Results: The 5-year overall survival and progression-free survival (PFS) rates were 59.5% and 37.2%, respectively. Complete resection (p = 0.035) and use of craniospinal irradiation (CSI; p = 0.025) were found to positively affect PFS. The 5-year PFS for patients who had CSI vs. whole brain and tumor/tumor bed RT were 44.2% and 15.3%. For the 19 patients who relapsed, 9 (47%) had a recurrence in the RT field, 6 (32%) had a recurrence outside the RT field, and 4 (21%) had a recurrence inside and outside the irradiated field. Conclusion: Patients with CPC who received CSI had better PFS compared with those receiving less than CSI. This study supports the use of CSI in the multimodality management of patients with CPC.

  19. Sparkling Geomagnetic Field: Involving Schools in Geomagnetic Research

    NASA Astrophysics Data System (ADS)

    Bailey, Rachel; Leonhardt, Roman; Leichter, Barbara

    2014-05-01

    Solar activity will be reaching a maximum in 2013/2014 as the sun reaches the end of its cycle, bringing with it an opportunity to study in greater detail the effect of solar wind or "space weather" on our planet's magnetic field. Heightened solar activity leads to a larger amount of clouds of energetic particles bombarding the Earth. Although the Earth's magnetic field shields us from most of these particles, the field becomes distorted and compacted by the solar wind, which leads to magnetic storms that we detect from the surface. These storms cause aurorae at higher latitudes and can lead to widespread disruption of communication and navigation equipment all over the Earth when sufficiently strong. This project, "Sparkling Geomagnetic Field," is a part of Austria's Sparkling Science programme, which aims to involve schools in active scientific research to encourage interest in science from a young age. Researchers from the Central Institute for Meteorology and Geodynamics (ZAMG) in Vienna have worked hand-in-hand with three schools across Austria to set up regional geomagnetic stations consisting of state-of-the-art scalar and vector magnetometers to monitor the effects of the solar wind on the geomagnetic field. The students have been an active part of the research team from the beginning, first searching for a suitable location to set up the stations as well as later overseeing the continued running of the equipment and analysing the data output. Through this project the students will gain experience in contemporary scientific methods: data processing and analysis, field work, as well as equipment setup and upkeep. A total of three stations have been established with schools in Innsbruck, Tamsweg and Graz at roughly equal distances across Austria to run alongside the already active station in the Conrad Observatory near Vienna. Data acquisition runs through a data logger and software developed to deliver data in near realtime. This network allows for

  20. Early Clinical Outcome With Concurrent Chemotherapy and Extended-Field, Intensity-Modulated Radiotherapy for Cervical Cancer

    SciTech Connect

    Beriwal, Sushil . E-mail: beriwals@upmc.edu; Gan, Gregory N.; Heron, Dwight E.; Selvaraj, Raj N.; Kim, Hayeon; Lalonde, Ron; Kelley, Joseph L.; Edwards, Robert P.

    2007-05-01

    Purpose: To assess the early clinical outcomes with concurrent cisplatin and extended-field intensity-modulated radiotherapy (EF-IMRT) for carcinoma of the cervix. Methods and Materials: Thirty-six patients with Stage IB2-IVA cervical cancer treated with EF-IMRT were evaluated. The pelvic lymph nodes were involved in 19 patients, and of these 19 patients, 10 also had para-aortic nodal disease. The treatment volume included the cervix, uterus, parametria, presacral space, upper vagina, and pelvic, common iliac, and para-aortic nodes to the superior border of L1. Patients were assessed for acute toxicities according to the National Cancer Institute Common Toxicity Criteria for Adverse Events, version 3.0. All late toxicities were scored with the Radiation Therapy Oncology Group late toxicity score. Results: All patients completed the prescribed course of EF-IMRT. All but 2 patients received brachytherapy. Median length of treatment was 53 days. The median follow-up was 18 months. Acute Grade {>=}3 gastrointestinal, genitourinary, and myelotoxicity were seen in 1, 1, and 10 patients, respectively. Thirty-four patients had complete response to treatment. Of these 34 patients, 11 developed recurrences. The first site of recurrence was in-field in 2 patients (pelvis in 1, pelvis and para-aortic in 1) and distant in 9 patients. The 2-year actuarial locoregional control, disease-free survival, overall survival, and Grade {>=}3 toxicity rates for the entire cohort were 80%, 51%, 65%, and 10%, respectively. Conclusion: Extended-field IMRT with concurrent chemotherapy was tolerated well, with acceptable acute and early late toxicities. The locoregional control rate was good, with distant metastases being the predominant mode of failure. We are continuing to accrue a larger number of patients and longer follow-up data to further extend our initial observations with this approach.

  1. Field classes: key to involve and attract students to soils

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole; Cardoso, Irene Maria; da Silva Lopes, Angelica

    2015-04-01

    Soil genesis is a subject taught to students of Agrarian Sciences and Geography at the Federal University of Viçosa in Minas Gerais, Brazil. Each semester 200 to 250 students inscribe for it. It is organized as the first 60 hours course on soils for 1st and 2nd year's students. The course has a distinct pedagogical approach, which is based on Paulo Freire's education principles, known as socio constructivism. In such approach, learning environments and materials are prepared to stimulate dialogues and exchange of knowledge between students themselves, strengthening that their role is crucial to their own learning. During the course, students have different types of practical classes: indoors, in a class room or at the Earth Sciences museum and outdoors, in the field. In the class room they have the opportunity to handle materials -minerals, rocks, soils and maps-, follow demonstrations and perform small experiments. The classes given in the museum intend a broadening of the subjects approached in theoretical and practical classes. In the field classes the students are organized in small groups with the task to investigate soil formation by observation and description of geology, landscape, land use, soil expositions and some of the soil properties. Attracting students to soils involves looking at meanings and perceptions related to soils they bring with themselves and follow this up to sensitize and create awareness about their importance. With this aim, it is also included, as part of the evaluation, a final voluntary presentation that many of the students do. The presentation can be a song, a poem, a sketch or whatever they propose and create. Many of the presentations bring topics related to the new perception about soils they get during the semester and to ideas or questions raised in the field classes. A survey with the students showed that field classes are by far the preferred classes and they are considered more dynamic. Since students have less and less

  2. Whole-Field Simultaneous Integrated-Boost Intensity-Modulated Radiotherapy for Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Wong, Frank C.S.; Ng, Alice W.Y.; Lee, Victor H.F.; Lui, Collin M.M.; Yuen, K.-K.; Sze, W.-K.; Leung, T.-W.; Tung, Stewart Y.

    2010-01-15

    Purpose: To retrospectively review the outcomes of our patients with newly diagnosed nondisseminated nasopharyngeal carcinoma treated with intensity-modulated radiotherapy using a whole-field simultaneous integrated-boost technique. Methods and Materials: A total of 175 patients treated with WF-SIB between mid-2004 and 2005 were eligible for study inclusion. The distribution of disease by stage was Stage IA in 10.9%, Stage IIA in 2.3%, Stage IIB in 21.7%, Stage III in 41.1%, Stage IVA in 14.9%, and Stage IVB in 9.1%. Of the 175 patients, 2 (1.2%), 10 (5.7%), and 163 (93.1%) had World Health Organization type I, II, and III histologic features, respectively. We prescribed 70 Gy, 60 Gy, and 54 Gy delivered in 33 fractions within 6.5 weeks at the periphery of three planning target volumes (PTV; PTV70, PTV60, and PTV54, respectively). Of the 175 patients, 46 with early T-stage disease received a brachytherapy boost, and 127 with advanced local or regional disease received chemotherapy. Results: The median follow-up period was 34 months. The overall 3-year local failure-free survival, regional failure-free survival, distant failure-free survival, and overall survival rate was 93.6%, 93.3%, 86.6%, and 87.2%, respectively. Cox regression analysis showed Stage N2-N3 disease (p = .029) and PTV (p = .024) to be independent factors predicting a greater risk of distant failure and poor overall survival, respectively. Grade 3 acute mucositis/pharyngitis occurred in 23.4% of patients, and Stage T4 disease was the only significant predictor of mucositis/pharyngitis (p = .021). Conclusion: Whole-field simultaneous integrated-boost intensity-modulated radiotherapy with a dose >70 Gy achieved excellent locoregional control, without an excess incidence of severe, acute mucositis/pharyngitis, in the present study. Strategies for using such highly conformal treatment for patients with a large tumor and late N-stage disease are potential areas of investigation for future studies.

  3. Breast dosimetry in transverse and longitudinal field MRI-Linac radiotherapy systems

    SciTech Connect

    Mahdavi, S. R.; Esmaeeli, A. D.; Pouladian, M.; Sardari, D.; Bagheri, S.; Monfared, A. S.

    2015-02-15

    Purpose: In the framework of developing the integration of a MRI-Linac system, configurations of MRI-Linac units were simulated in order to improve the dose distribution in tangential breast radiotherapy using transverse and longitudinal magnetic field geometries of Lorentz force for both medial and lateral tangential fields. Methods: In this work, the GEANT4 Monte Carlo (MC) code was utilized to compare dose distributions in breast radiotherapy for Linac-MR systems in the transverse and longitudinal geometries within humanoid phantoms across a range of magnetic field strengths of 0.5 and 1.5 T. The dose increment due to scattering from the coils was investigated for both geometries as well. Computed tomography images of two patients were used for MC simulations. One patient had intact breast while the other was mastectomized. In the simulations, planning and methods of chest wall irradiation were similar to the actual clinical planning. Results: In a longitudinal geometry, the magnetic field is shown to restrict the lateral spread of secondary electrons to the lung, heart, and contralateral organs, which reduced the mean dose of the ipsilateral lung and heart by means of 17.2% and 6% at 1.5 T, respectively. The transverse configuration exhibits a significant increase in tissue interface effects, which increased dose buildup in the entrance regions of the lateral and medial tangent beams to the planning target volume (PTV) and improved dose homogeneity within the PTV. The improved relative average homogeneity index for two patients to the PTV at magnetic field strength of 1.5 T with respect to no magnetic field case evaluated was 11.79% and 34.45% in the LRBP and TRBP geometries, respectively. In both geometries, the simulations show significant mean dose reductions in the contralateral breast and chest wall skin, respectively, by a mean of 16.6% and 24.9% at 0.5 T and 17.2% and 28.1% at 1.5 T in the transverse geometry, and 10.56% and 14.6% at 0.5 T and 11.3% and

  4. Involved-Field Radiation Therapy for Locoregionally Recurrent Ovarian Cancer

    PubMed Central

    Brown, Aaron P.; Jhingran, Anuja; Klopp, Ann H.; Schmeler, Kathleen M.; Ramirez, Pedro T.; Eifel, Patricia J.

    2015-01-01

    Objective To evaluate the effectiveness of definitive involved-field radiation therapy (IFRT) for selected patients with locoregionally-recurrent ovarian cancer. Methods We retrospectively reviewed records of 102 epithelial ovarian cancer patients treated with definitive IFRT (≥45 Gy). IFRT was directed to localized nodal (49%) and extranodal (51%) recurrences. Results The median time from diagnosis to IFRT was 36 months (range, 1–311), and the median follow-up after IFRT was 37 months (range, 1–123). Patients received a median of three chemotherapy courses before IFRT (range, 0–9). Five-year overall (OS) and progression-free survival (PFS) rates after IFRT were 40% and 24% respectively; the 5-year in-field disease control rate was 71%. Thirty-five patients (35%) had no evidence of disease at a median of 38 months after IFRT (range, 7–122), including 25 continuously without disease for a median of 61 months (range, 17–122) and 10 with salvage treatment following disease recurrence, disease-free for a median of 39 months after salvage treatment (range, 7–92). Eight clear cell carcinoma patients had higher 5-year OS (88% versus 37%; p=0.05) and PFS (75% versus 20%; p=0.01) rates than other patients. Patients sensitive to initial platinum chemotherapy had a higher 5-year OS rate than platinum-resistant patients (43% versus 27%, p=0.03). Patients who required chemotherapy for recurrence after IFRT often benefitted from longer chemotherapy-free intervals after than before IFRT. Conclusions Definitive IFRT can yield excellent local control, protracted disease-free intervals, and even cures in carefully selected patients. RT should be considered a tool in the curative management of locoregionally-recurrent ovarian cancer. PMID:23648467

  5. Coplanar intensity-modulated radiotherapy class solution for patients with prostate cancer with bilateral hip prostheses with and without nodal involvement

    SciTech Connect

    Lee, Young K.; McVey, Gerard P.; South, Chris P.; Dearnaley, David P.

    2013-07-01

    Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beam angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm{sup 3}) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V{sub 50} {sub Gy} objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.

  6. Parent and Community Involvement. Field Review Edition. Teacher's Manual.

    ERIC Educational Resources Information Center

    Decker, Larry E.; And Others

    The role of the classroom teacher in the success of parent and community involvement efforts in American public schools is this document's focus. Because schools need to discover new ways to foster parental and community involvement in education, this document outlines a new perspective concerning parental and community involvement that…

  7. SU-E-T-98: Dependence of Radiotherapy Couch Transmission Factors On Field Size and Couch-Isocenter Distance

    SciTech Connect

    Benhabib, S; Duan, J; Wu, X; Cardan, R; Shen, S; Huang, M; Popple, R; Brezovich, I

    2014-06-01

    Purpose: The dosimetric effect of the treatment couch is non-negligible in today's radiotherapy treatment. To accurately include couch in dose calculation, we investigated the dependence of couch transmission factors on field size and couch-isocenter distance. Methods: Couch transmission factors for Varian Exact Couch were determined by taking the ratios of ionization of a posterior-anterior beam with and without the couch in the beam path. Measurements were performed at the isocenter using a PTW cylindrical ionization chamber (Model 31030) with an Aluminum buildup cap of 1.1 cm thick for the 6 MV photon beam. Ionization readings for beam sizes ranging from 2 × 2 cm2 to 40 × 40 cm2 were taken. Transmission factors for couch-isocenter distances ranging from 3 cm to 20 cm were also investigated. Results: The couch transmission factors increased with the field size approximately in an exponential manner. For the field sizes that we tested, the transmission factor ranged from 0.976 to 0.992 for couch-isocenter distance of 3 cm. The transmission factor was also monotonically dependent on couch-isocenter separation distance, but in a lighter magnitude. For the tested couch heights, the transmission factor ranged from 0.974 – 0.972 for 2 × 2 cm2 field size and 0.992 – 0.986 for 40 × 40 cm2 field size. The dependence on couch-isocenter distance is stronger for larger field size. Conclusions: The transmission factor of a radiotherapy treatment couch increases with field size of the radiation beam and its distance from the isocenter. Such characterization of the couch transmission factor helps improve the accuracy of couch modeling for radiotherapy treatment planning.

  8. Regional lymph node radiotherapy in breast cancer: single anterior supraclavicular field vs. two anterior and posterior opposed supraclavicular fields

    PubMed Central

    Houshyari, Mohammad; Kashi, Amir Shahram Yousefi; Varaki, Sakineh Soleimani; Rakhsha, Afshin; Blookat, Eftekhar Rajab

    2015-01-01

    Background: The treatment of lymph nodes engaged in breast cancer with radiotherapy leads to improved locoregional control and enhanced survival rates in patients after surgery. The aim of this study was to compare two treatment techniques, namely single anterior posterior (AP) supraclavicular field with plan depth and two anterior and posterior opposed (AP/PA) supraclavicular fields. In the study, we also examined the relationships between the depth of supraclavicular lymph nodes (SCLNs) and the diameter of the wall of the chest and body mass index (BMI). Methods: Forty patients with breast cancer were analyzed using computed tomography (CT) scans. In planning target volume (PTV), the SCLNs and axillary lymph nodes (AXLNs) were contoured, and, with the attention to PTV, supraclavicular (SC) depth was measured. The dosage that reached the aforementioned lymph nodes and the level of hot spots were investigated using two treatment methods, i.e., 1) AP/PA and 2) AP with three-dimensional (3D) planning. Each of these methods was analyzed using the program Isogray for the 6 MV compact accelerator, and the diameter of the wall of the chest was measured using the CT scan at the center of the SC field. Results: Placing the plan such that 95% of the target volume with 95% or greater of the prescribed dose of 50 Gy (V95) had ≥95% concordance in both treatment techniques. According to the PTV, the depth of SCLNs and the diameter of the wall of the chest were 3–7 and 12–21cm, respectively. Regression analysis showed that the mean SC depth (the mean Plan depth) and the mean diameter of the wall of the chest were related directly to BMI (p<0.0001, adjusted R2=0.67) and (p<0.0001, adjusted R2=0.71), respectively. Conclusion: The AP/PA treatment technique was a more suitable choice of treatment than the AP field, especially for overweight and obese breast cancer patients. However, in the AP/PA technique, the use of a single-photon, low energy (6 MV) caused more hot spots

  9. Whole brain radiotherapy plus simultaneous in-field boost with image guided intensity-modulated radiotherapy for brain metastases of non-small cell lung cancer

    PubMed Central

    2014-01-01

    Background Whole brain radiotherapy (WBRT) plus sequential focal radiation boost is a commonly used therapeutic strategy for patients with brain metastases. However, recent reports on WBRT plus simultaneous in-field boost (SIB) also showed promising outcomes. The objective of present study is to retrospectively evaluate the efficacy and toxicities of WBRT plus SIB with image guided intensity-modulated radiotherapy (IG-IMRT) for inoperable brain metastases of NSCLC. Methods Twenty-nine NSCLC patients with 87 inoperable brain metastases were included in this retrospective study. All patients received WBRT at a dose of 40 Gy/20 f, and SIB boost with IG-IMRT at a dose of 20 Gy/5 f concurrent with WBRT in the fourth week. Prior to each fraction of IG-IMRT boost, on-line positioning verification and correction were used to ensure that the set-up errors were within 2 mm by cone beam computed tomography in all patients. Results The one-year intracranial control rate, local brain failure rate, and distant brain failure rate were 62.9%, 13.8%, and 19.2%, respectively. The two-year intracranial control rate, local brain failure rate, and distant brain failure rate were 42.5%, 30.9%, and 36.4%, respectively. Both median intracranial progression-free survival and median survival were 10 months. Six-month, one-year, and two-year survival rates were 65.5%, 41.4%, and 13.8%, corresponding to 62.1%, 41.4%, and 10.3% of intracranial progression-free survival rates. Patients with Score Index for Radiosurgery in Brain Metastases (SIR) >5, number of intracranial lesions <3, and history of EGFR-TKI treatment had better survival. Three lesions (3.45%) demonstrated radiation necrosis after radiotherapy. Grades 2 and 3 cognitive impairment with grade 2 radiation leukoencephalopathy were observed in 4 (13.8%) and 4 (13.8%) patients. No dosimetric parameters were found to be associated with these late toxicities. Patients received EGFR-TKI treatment had higher incidence of grades 2–3

  10. The Impact of Extent and Location of Mediastinal Lymph Node Involvement on Survival in Stage III Non-Small Cell Lung Cancer Patients Treated With Definitive Radiotherapy

    SciTech Connect

    Fernandes, Annemarie T.; Mitra, Nandita; Xanthopoulos, Eric; Evans, Tracey; Stevenson, James; Langer, Corey; Kucharczuk, John C.; Lin, Lilie; Rengan, Ramesh

    2012-05-01

    Purpose: Several surgical series have identified subcarinal, contralateral, and multilevel nodal involvement as predictors of poor overall survival in patients with Stage III non-small-cell lung cancer (NSCLC) treated with definitive resection. This retrospective study evaluates the impact of extent and location of mediastinal lymph node (LN) involvement on survival in patients with Stage III NSCLC treated with definitive radiotherapy. Methods and Materials: We analyzed 106 consecutive patients with T1-4 N2-3 Stage III NSCLC treated with definitive radiotherapy at University of Pennsylvania between January 2003 and February 2009. For this analysis, mediastinal LN stations were divided into four mutually exclusive groups: supraclavicular, ipsilateral mediastinum, contralateral mediastinum, and subcarinal. Patients' conditions were then analyzed according to the extent of involvement and location of mediastinal LN stations. Results: The majority (88%) of patients received sequential or concurrent chemotherapy. The median follow-up time for survivors was 32.6 months. By multivariable Cox modeling, chemotherapy use (hazard ratio [HR]: 0.21 [95% confidence interval (CI): 0.07-0.63]) was associated with improved overall survival. Increasing primary tumor [18F]-fluoro-2-deoxy-glucose avidity (HR: 1.11 [CI: 1.06-1.19]), and subcarinal involvement (HR: 2.29 [CI: 1.11-4.73]) were significant negative predictors of overall survival. On univariate analysis, contralateral nodal involvement (HR: 0.70 [CI: 0.33-1.47]), supraclavicular nodal involvement (HR: 0.78 [CI: 0.38-1.67]), multilevel nodal involvement (HR: 0.97 [CI: 0.58-1.61]), and tumor size (HR: 1.04 [CI: 0.94-1.14]) did not predict for overall survival. Patients with subcarinal involvement also had lower rates of 2-year nodal control (51.2% vs. 74.9%, p = 0.047) and 2-year distant control (28.4% vs. 61.2%, p = 0.043). Conclusions: These data suggest that the factors that determine oncologic outcome in Stage III NSCLC

  11. Patterns of Failure and Treatment-Related Toxicity in Advanced Cervical Cancer Patients Treated Using Extended Field Radiotherapy With Curative Intent

    SciTech Connect

    Rajasooriyar, Chrishanthi; Van Dyk, Sylvia; Bernshaw, David; Kondalsamy-Chennakesavan, Srinivas; Barkati, Maroie; Narayan, Kailash

    2011-06-01

    Purpose: The purpose of this study was to evaluate the patterns of failure and overall survival (OS) and disease-free survival (DFS) rates in cervical cancer patients who had metastatic disease in common iliac or para-aortic lymph nodes and were treated with curative intent, using extended field radiotherapy (EFRT). Methods and Materials: This was a retrospective study involving 39 patients treated from January 1996 to June 2007, using EFRT with concurrent chemotherapy and intracavitary brachytherapy. EFRT consisted of 45 Gy in 1.8-Gy fractions. Radiation to involved nodes was boosted to a total dose of 50.4 to 54 Gy. Primary tumor radiation was boosted to a dose of 80 Gy using brachytherapy. Results: Overall, 30 patients (77%) have relapsed. The 5-year OS rate was 26% (95% confidence interval [CI], 11-44). The 5-year DFS rate was 19.4% (95% CI, 8-35). Only 3 patients (7.5%) experienced treatment failure exclusively within the treatment field, and 2 patients underwent salvage treatment. Grade 3 to 4 acute bone marrow and gastrointestinal toxicities were observed in 10 (26%) and 7 (18%) patients, respectively. Conclusions: Concurrent chemotherapy and EFRT treatment was well tolerated. Most patients showed failure at multiple sites and outside the treatment field. Only 3/39 patients had failures exclusively within the treatment field, and 2 underwent salvage treatment.

  12. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    PubMed Central

    Schreiber, Eric C.; Chang, Sha X.

    2012-01-01

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Conclusions: Monte Carlo simulations demonstrate

  13. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    SciTech Connect

    Schreiber, Eric C.; Chang, Sha X.

    2012-08-15

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 {mu}m at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 {mu}m. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 {mu}m. Conclusions: Monte Carlo simulations

  14. Extended field intensity-modulated radiotherapy plus concurrent nedaplatin treatment in cervical cancer

    PubMed Central

    LIU, YUNQIN; YU, JINMING; QIAN, LITING; ZHANG, HONGYAN; MA, JUN

    2016-01-01

    The present study assessed the efficacy and toxicity of definitive extended-field intensity-modulated radiotherapy (EF-IMRT) plus concurrent chemotherapy in cervical cancer. A total of 48 patients with cervical cancer received the planning target volume between 39.6 and 50.4 Gy in 1.8–2.0 Gy daily fractions, while the enlarged pelvic and/or para-aortic nodes were treated with a total dose of 55–60 Gy in 2.0–2.4 Gy daily fractions using simultaneous integrated boost-IMRT. All patients underwent high dose-rate brachytherapy. Concurrent to EF-IMRT, nedaplatin was administered weekly at a median dose of 30 mg/m2 (range, 25–40 mg/m2) for 5 weeks with a total of 150 mg/m2. Of the 48 patients, 46 patients exhibited initial complete responses and 2 patients had partial responses, with a response rate of 100%. After 4–24 months of treatment, 12 patients (27.08%) had local and/or distant failure and 39 patients (81.25%) were alive at the last follow-up. The 12-month overall survival (OS) and disease-free survival (DFS) were 87.5 and 75.8%, respectively, while the 24-month OS and DFS were 69.7 and 49.7%, respectively. Grade ≥3 acute neutropenia and thrombcytopenia occurred in 20 (41.7%) and 4 (8.3%) patients, respectively, while 2 patients (4.2%) developed grade ≥3 diarrhea and 2 (4.2%) had grade ≥3 late toxicities. However, no patients exhibited grade ≥3 vomiting. Thus, concurrent nedaplatin chemotherapy with definitive EF-IMRT was effective and relatively safe for treating patients with cervical cancer. Furthermore, EF-IMRT was able to deliver ≤60 Gy to enlarged para-aortic and/or pelvic nodes using simultaneous integrated boost without increased acute and late gastrointestinal toxicity. PMID:27123128

  15. Out-of-field organ doses and associated radiogenic risks from para-aortic radiotherapy for testicular seminoma

    SciTech Connect

    Mazonakis, Michalis Berris, Theocharis; Damilakis, John; Varveris, Charalambos; Lyraraki, Efrossyni

    2014-05-15

    Purpose: The aims of this study were to (a) calculate the radiation dose to out-of-field organs from radiotherapy for stage I testicular seminoma and (b) estimate the associated radiogenic risks. Methods: Monte Carlo methodology was employed to model radiation therapy with typical anteroposterior and posteroanterior para-aortic fields on an anthropomorphic phantom simulating an average adult. The radiation dose received by all main and remaining organs that defined by the ICRP publication 103 and excluded from the treatment volume was calculated. The effect of field dimensions on each organ dose was determined. Additional therapy simulations were generated by introducing shielding blocks to protect the kidneys from primary radiation. The gonadal dose was employed to assess the risk of heritable effects for irradiated male patients of reproductive potential. The lifetime attributable risks (LAR) of radiotherapy-induced cancer were estimated using gender- and organ-specific risk coefficients for patient ages of 20, 30, 40, and 50 years old. The risk values were compared with the respective nominal risks. Results: Para-aortic irradiation to 20 Gy resulted in out-of-field organ doses of 5.0–538.6 mGy. Blocked field treatment led to a dose change up to 28%. The mean organ dose variation by increasing or decreasing the applied field dimensions was 18.7% ± 3.9% and 20.8% ± 4.5%, respectively. The out-of-field photon doses increased the lifetime intrinsic risk of developing thyroid, lung, bladder, prostate, and esophageal cancer by (0.1–1.4)%, (0.4–1.1)%, (2.5–5.4)%, (0.2–0.4)%, and (6.4–9.2)%, respectively, depending upon the patient age at exposure and the field size employed. A low risk for heritable effects of less than 0.029% was found compared with the natural incidence of these defects. Conclusions: Testicular cancer survivors are subjected to an increased risk for the induction of bladder and esophageal cancer following para-aortic radiotherapy. The

  16. Improvement of dose distribution in breast radiotherapy using a reversible transverse magnetic field Linac-MR unit

    SciTech Connect

    Esmaeeli, A. D.; Mahdavi, S. R.; Pouladian, M.; Bagheri, S.; Monfared, A. S.

    2014-01-15

    Purpose: To investigate the improvement in dose distribution in tangential breast radiotherapy using a reversible transverse magnetic field that maintains the same direction of Lorentz force between two fields. The investigation has a potential application in future Linac-MR units. Methods: Computed tomography images of four patients and magnetic fields of 0.25–1.5 Tesla (T) were used for Monte Carlo simulation. Two patients had intact breast while the other two had mastectomy. Simulations of planning and chest wall irradiation were similar to the actual clinical process. The direction of superior-inferior magnetic field for the medial treatment beam was reversed for the lateral beam. Results: For the ipsilateral lung and heart mean doses were reduced by a mean (range) of 45.8% (27.6%–58.6%) and 26.0% (20.2%–38.9%), respectively, depending on various treatment plan setups. The mean V{sub 20} for ipsilateral lung was reduced by 55.0% (43.6%–77.3%). In addition acceptable results were shown after simulation of 0.25 T magnetic field demonstrated in dose-volume reductions of the heart, ipsilateral lung, and noninvolved skin. Conclusions: Applying a reversible magnetic field during breast radiotherapy, not only reduces the dose to the lung and heart but also produces a sharp drop dose volume histogram for planning target volume, because of bending of the path of secondary charged particles toward the chest wall by the Lorentz force. The simulations have shown that use of the magnetic field at 1.5 T is not feasible for clinical applications due to the increase of ipsilateral chest wall skin dose in comparison to the conventional planning while 0.25 T is suitable for all patients due to dose reduction to the chest wall skin.

  17. A dosimetric analysis of volumetric-modulated arc radiotherapy with jaw width restriction vs 7 field intensity-modulated radiotherapy for definitive treatment of cervical cancer

    PubMed Central

    Huang, B; Fang, Z; Huang, Y; Lin, P

    2014-01-01

    Objective: Radiation therapy treatment planning was performed to compare the dosimetric difference between volumetric-modulated arc radiotherapy (RapidArc™ v. 10; Varian® Medical Systems, Palo Alto, CA) and 7-field intensity-modulated radiotherapy (7f-IMRT) in the definitive treatment of cervical cancer. Methods: 13 patients with cervical cancer were enrolled in this study. Planning target volume (PTV) 50 and PTV60 were prescribed at a dose of 50 and 60 Gy in 28 fractions, respectively. The dose to the PTV60 was delivered as a simultaneous integrated boost to the pelvic lymph nodes. Owing to the mechanical limitation of the multileaf collimator in which the maximum displacement was limited to 15 cm, two types of RapidArc with different jaw width restrictions (15 and 20–23 cm) were investigated to evaluate their dosimetric differences. The RapidArc plan type with dosimetric superiority was then compared against the 7f-IMRT on the target coverage, sparing of the organs at risk (OARs), monitor units, treatment time and delivery accuracy to determine whether RapidArc is beneficial for the treatment of cervical cancer. Results: The 15-cm jaw width restriction had better performance compared with the restrictions that were longer than 15 cm in the sparing of the OARs. The 15-cm RapidArc spared the OARs, that is, the bladder, rectum, small intestine, femoral heads and bones, and improved treatment efficiency compared with 7f-IMRT. Both techniques delivered a high quality-assurance passing rate (>90%) according to the Γ3mm,3% criterion. Conclusion: RapidArc with a 15-cm jaw width restriction spares the OARs and improves treatment efficiency in cervical cancer compared with 7f-IMRT. Advances in knowledge: This study describes the dosimetric superiority of RapidArc with a 15-cm jaw width restriction and explores the feasibility of using RapidArc for the definitive treatment of cervical cancer. PMID:24834477

  18. Successful Salvage Radiotherapy for a Chemo-refractory, Non-resectable, Undifferentiated Pleomorphic Sarcoma Lung Metastasis with Pericardial Involvement: A Case Report.

    PubMed

    Al-Hajri, Thuraya; Chan, Jessica; Caudrelier, Jean-Michel

    2016-01-01

    We report a case of an undifferentiated pleomorphic sarcoma in a 73-year-old female, with a solitary lung metastasis involving the pericardium that progressed on first-line chemotherapy. Partial removal of the lesion was achieved after lingular segmentectomy, which required en-bloc pericardial resection due to deep pericardial invasion. However, the residual disease significantly grew despite second-line chemotherapy, and the tumor became unresectable due to near encasement of the left anterior descending coronary artery. Therefore, we opted for a salvage radical dose of intensity-modulated radiotherapy (60Gy in 25 fractions) to the pericardial lesion. No acute side effects were observed, and after three years of follow-up, good local control has been achieved with no significant late effects observed. This case suggests that radical radiotherapy using IMRT could be considered to treat sarcomatous pericardial lesions in patients who do not respond to chemotherapy and who are inoperable or non-resectable. PMID:26918213

  19. Quality Assurance in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Mckenzie, Alan

    A common feature of the Radiotherapy Centres where there have been major accidents involving incorrect radiotherapy treatment is that they did not operate good Quality Assurance systems. A Quality Assurance system is sometimes called a Quality Management system, and it is designed to give assurance that quality standards are being met. One of the "spin offs" from operating a Quality Management system is that it reduces the likelihood of a radiotherapy accident. A detailed account of how to set up a quality system in radiotherapy has been given in an ESTRO booklet.2

  20. Development of Automated Image Analysis Tools for Verification of Radiotherapy Field Accuracy with AN Electronic Portal Imaging Device.

    NASA Astrophysics Data System (ADS)

    Dong, Lei

    1995-01-01

    The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5^ circ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1^ circ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross -correlation technique were

  1. Highly effective local control and palliation of mantle cell lymphoma with involved-field radiation therapy (IFRT)

    SciTech Connect

    Rosenbluth, Benjamin D. . E-mail: rosenblb@mskcc.org; Yahalom, Joachim

    2006-07-15

    Purpose: Although radiosensitivity of mantle cell lymphoma (MCL) has been demonstrated in vitro, radiotherapy is rarely employed in treatment of MCL. We studied clinical responses of MCL patients treated with involved-field radiation therapy (IFRT) predominantly for local control and/or palliation. Methods and Materials: A total of 21 consecutive patients (38 sites) treated with IFRT for MCL were retrospectively analyzed. Median age was 68. Seventeen patients had Stage IV/relapsed disease, 1 had Stage II, and 3 had Stage I disease. Most patients received prior chemotherapy, with an average of two combinations per patient. Mean number of sites treated per patient was two. Mean total dose was 30 Gy. Results: Mean follow-up was 13 months. Overall local response rate was 100%. Complete response was obtained in 64% of the sites and partial response in 36%. Average time to response was 20 days. Twenty-eight sites had a response before radiation therapy was complete. Of 16 sites associated with pre-IFRT pain or discomfort, 15 exhibited post-IFRT relief. Thirteen sites (34%) exhibited local progression, with a median time to progression of 10 months, and an average response duration of 9 months. Five patients experienced Grade II radiation-related toxicity. No Grade III toxicity was reported. Twelve-month overall survival for patients receiving IFRT was 55%. Conclusions: Radiotherapy provided effective and lasting local responses in MCL patients and was associated with minimal toxicity. Radiation doses required for most lesions were relatively low and responses were noticed early in the course of treatment. Radiation therapy should be considered early in the course of relapsing, refractory, or localized MCL.

  2. A prospective comparison of acute intestinal toxicity following whole pelvic versus small field intensity-modulated radiotherapy for prostate cancer

    PubMed Central

    Kim, Yeon Joo; Park, Jin-hong; Yun, In-Ha; Kim, Young Seok

    2016-01-01

    Purpose To compare the acute intestinal toxicity of whole pelvic (WP) and small field (SF) intensity-modulated radiotherapy (IMRT) for prostate cancer using dosimetric and metabolic parameters as well as clinical findings. Methods Patients who received IMRT in either a definitive or postoperative setting were prospectively enrolled. Target volume and organs at risk including intestinal cavity (IC) were delineated in every patient by a single physician. The IC volume that received a 10–50 Gy dose at 5-Gy intervals (V10–V50) and the percentage of irradiated volume as a fraction of total IC volume were calculated. Plasma citrulline levels, as an objective biological marker, were checked at three time points: baseline and after exposure to 30 Gy and 60 Gy. Results Of the 41 patients, only six experienced grade 1 acute intestinal toxicity. Although all dose–volume parameters were significantly worse following WP than SF IMRT, there was no statistically significant relationship between these dosimetric parameters and clinical symptoms. Plasma citrulline levels did not show a serial decrease by radiotherapy volume difference (WP versus SF) and were not relevant to the irradiated doses. Conclusion Given that WP had comparable acute intestinal toxicities to those associated with SF, WP IMRT appears to be a feasible approach for the treatment of prostate cancer despite dosimetric disadvantages. PMID:27022287

  3. SU-E-T-596: Axillary Nodes Radiotherapy Boost Field Dosimetric Impact Study: Oblique Field and Field Optimization in 3D Conventional Breast Cancer Radiation Treatment

    SciTech Connect

    Su, M; Sura, S

    2014-06-01

    Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sums (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing.

  4. Cardiac Side-effects From Breast Cancer Radiotherapy.

    PubMed

    Taylor, C W; Kirby, A M

    2015-11-01

    Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. PMID:26133462

  5. Teachers as Secondary Players: Involvement in Field Trips to Natural Environments

    NASA Astrophysics Data System (ADS)

    Alon, Nirit Lavie; Tal, Tali

    2016-07-01

    This study focused on field trips to natural environments where the teacher plays a secondary role alongside a professional guide. We investigated teachers' and field trip guides' views of the teacher's role, the teacher's actual function on the field trip, and the relationship between them. We observed field trips, interviewed teachers and guides, and administered questionnaires. We found different levels of teacher involvement, ranging from mainly supervising and giving technical help, to high involvement especially in the cognitive domain and sometimes in the social domain. Analysis of students' self-reported outcomes showed that the more students believe their teachers are involved, the higher the self-reported learning outcomes.

  6. Magnetic confinement of electron and photon radiotherapy dose: A Monte Carlo simulation with a nonuniform longitudinal magnetic field

    SciTech Connect

    Chen Yu; Bielajew, Alex F.; Litzenberg, Dale W.; Moran, Jean M.; Becchetti, Frederick D.

    2005-12-15

    It recently has been shown experimentally that the focusing provided by a longitudinal nonuniform high magnetic field can significantly improve electron beam dose profiles. This could permit precise targeting of tumors near critical areas and minimize the radiation dose to surrounding healthy tissue. The experimental results together with Monte Carlo simulations suggest that the magnetic confinement of electron radiotherapy beams may provide an alternative to proton or heavy ion radiation therapy in some cases. In the present work, the external magnetic field capability of the Monte Carlo code PENELOPE was utilized by providing a subroutine that modeled the actual field produced by the solenoid magnet used in the experimental studies. The magnetic field in our simulation covered the region from the vacuum exit window to the phantom including surrounding air. In a longitudinal nonuniform magnetic field, it is observed that the electron dose can be focused in both the transverse and longitudinal directions. The measured dose profiles of the electron beam are generally reproduced in the Monte Carlo simulations to within a few percent in the region of interest provided that the geometry and the energy of the incident electron beam are accurately known. Comparisons for the photon beam dose profiles with and without the magnetic field are also made. The experimental results are qualitatively reproduced in the simulation. Our simulation shows that the excessive dose at the beam entrance is due to the magnetic field trapping and focusing scattered secondary electrons that were produced in the air by the incident photon beam. The simulations also show that the electron dose profile can be manipulated by the appropriate control of the beam energy together with the strength and displacement of the longitudinal magnetic field.

  7. Comparison of IGRT Registration Strategies for Optimal Coverage of Primary Lung Tumors and Involved Nodes Based on Multiple Four-Dimensional CT Scans Obtained Throughout the Radiotherapy Course

    SciTech Connect

    Mohammed, Nasiruddin; Kestin, Larry; Grills, Inga; Shah, Chirag; Glide-Hurst, Carri; Yan, Di; Ionascu, Dan

    2012-03-15

    Purpose: To investigate the impact of primary tumor and involved lymph node (LN) geometry (centroid, shape, volume) on internal target volume (ITV) throughout treatment for locally advanced non-small cell lung cancer using weekly four-dimensional computed tomography (4DCT). Methods and Materials: Eleven patients with advanced non-small cell lung cancer were treated using image-guided radiotherapy with acquisition of weekly 10-Phase 4DCTs (n = 51). Initial ITV was based on planning 4DCT. Master-ITV incorporated target geometry across the entire treatment (all 4DCTs). Geographic miss was defined as the % Master-ITV positioned outside of the initial planning ITV after registration is complete. Registration strategies considered were bony (B), primary tumor soft tissue alone (T), and registration based on primary tumor and involved LNs (T{sub L}N). Results: The % geographic miss for the primary tumor, mediastinal, and hilar lymph nodes based on each registration strategy were (1) B: 30%, 30%, 30%; (2) T: 21%, 40%, 36%; and (3) T{sub L}N: 26%, 26%, 27%. Mean geographic expansions to encompass 100% of the primary tumor and involved LNs were 1.2 {+-} 0.7 cm and 0.8 {+-} 0.3 cm, respectively, for B and T{sub L}N. Primary and involved LN expansions were 0.7 {+-} 0.5 cm and 1.1 {+-} 0.5 cm for T. Conclusion: T is best for solitary targets. When treatments include primary tumor and LNs, B and T{sub L}N provide more comprehensive geographic coverage. We have identified high % geographic miss when considering multiple registration strategies. The dosimetric implications are the subject of future study.

  8. Number and Location of Positive Nodes, Postoperative Radiotherapy, and Survival After Esophagectomy With Three-Field Lymph Node Dissection for Thoracic Esophageal Squamous Cell Carcinoma

    SciTech Connect

    Chen Junqiang; Pan Jianji; Zheng Xiongwei; Zhu Kunshou; Li Jiancheng; Chen Mingqiang; Wang Jiezhong; Liao Zhongxing

    2012-01-01

    Purpose: To analyze influences of the number and location of positive lymph nodes and postoperative radiotherapy on survival for patients with thoracic esophageal squamous cell carcinoma (TE-SCC) treated with radical esophagectomy with three-field lymphadenectomy. Methods and Materials: A total of 945 patients underwent radical esophagectomy plus three-field lymph node dissection for node-positive TE-SCC at Fujian Provincial Tumor Hospital between January 1993 and March 2007. Five hundred ninety patients received surgery only (S group), and 355 patients received surgery, followed 3 to 4 weeks later by postoperative radiotherapy (S+R group) to a median total dose of 50 Gy in 25 fractions. We assessed potential associations among patient-, tumor-, and treatment-related factors and overall survival. Results: Five-year overall survival rates were 32.8% for the entire group, 29.6% for the S group, and 38.0% for the S+R group (p = 0.001 for S vs. S+R). Treatment with postoperative radiotherapy was particularly beneficial for patients with {>=}3 positive nodes and for those with metastasis in the upper (supraclavicular and upper mediastinal) region or both the upper and lower (mediastinal and abdominal) regions (p < 0.05). Postoperative radiotherapy was also associated with lower recurrence rates in the supraclavicular and upper and middle mediastinal regions (p < 0.05). Sex, primary tumor length, number of positive nodes, pathological T category, and postoperative radiotherapy were all independent predictors of survival. Conclusions: Postoperative radiotherapy was associated with better survival for patients with node-positive TE-SCC, particularly those with three or more positive nodes and positive nodes in the supraclavicular and superior mediastinal regions.

  9. Toward automatic field selection and planning using Monte Carlo-based direct aperture optimization in modulated electron radiotherapy

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew; DeBlois, François; Seuntjens, Jan

    2010-08-01

    Modulated electron radiotherapy (MERT) has been proven to produce optimal plans for shallow tumors. This study investigates automated approaches to the field determination process in generating optimal MERT plans for few-leaf electron collimator (FLEC)-based MERT, by generating a large database of pre-calculated beamlets stored as phase-space files. Beamlets can be used in an overlapping feathered pattern to reduce the effect of abutting fields, which can contribute to dose inhomogeneities within the target. Beamlet dose calculation was performed by Monte Carlo (MC) simulations prior to direct aperture optimization (DAO). The second part of the study examines a preliminary clinical comparison between FLEC-based MERT and helical TomoTherapy. A MERT plan for spinal irradiation was not able to conform to the PTV dose constraints as closely as the TomoTherapy plan, although the TomoTherapy plan was taken as is, i.e. not Monte Carlo re-calculated. Despite the remaining gradients in the PTV, the MERT plan was superior in reducing the low-dose bath typical of TomoTherapy plans. In conclusion, the FLEC-based MERT planning techniques developed within the study produced promising MERT plans with minimal user input. The phase-space database reduces the MC calculation time and the feathered field pattern improves target homogeneity. With further investigations, FLEC-based MERT will find an important niche in clinical radiation therapy.

  10. Definitive extended field intensity-modulated radiotherapy and concurrent cisplatin chemosensitization in the treatment of IB2-IIIB cervical cancer

    PubMed Central

    Zhang, Guangyu; He, Fangfang; Fu, Chunli; Zhang, Youzhong; Yang, Qiuan; Wang, Jianbo

    2014-01-01

    Objective To assess the toxicity of delivering extended field intensity-modulated radiotherapy (EF-IMRT) and concurrent cisplatin chemotherapy for locally advanced cervical carcinoma. Methods Forty-five patients who underwent EF-IMRT and concurrent cisplatin chemotherapy for the treatment of stage IB2 to IIIB cervical cancer were retrospectively reviewed. The clinical target volume included all areas of gross and potentially microscopic disease and regional lymph node regions. All patients underwent high-dose-rate brachytherapy. The acute and late toxicity were scored using the Common Terminology Criteria for Adverse Events and the Radiation Therapy Oncology Group late radiation morbidity scoring criteria, respectively. Results The median follow-up was 28 months (range, 5 to 62 months). Forty-two patients had a complete response, and three had a persistent disease. Of those 42 patients, 15 patients (35.7%) had recurrence. The regions of recurrence were in-field in 2 patients and out-field in 13 patients. Acute grade ≥3 gastrointestinal, genitourinary and hematologic toxicity occurred in 3, 1, and 9 patients, respectively. Three patients (6.7%) suffered from late grade 3 toxicities. Seven patients experienced ovarian transposition, 5 of those patients (71%) maintained ovarian function. Thirty-eight patients (84.4%) were alive at the last follow-up. Conclusion Concurrent cisplatin chemotherapy with EF-IMRT was safe. The acute and late toxicities are acceptable. EF-IMRT provides an opportunity to preserve endocrine function for patients with ovarian transposition. PMID:24459576

  11. A practical and theoretical definition of very small field size for radiotherapy output factor measurements

    SciTech Connect

    Charles, P. H. Crowe, S. B.; Langton, C. M.; Trapp, J. V.; Cranmer-Sargison, G.; Thwaites, D. I.; Kairn, T.; Knight, R. T.; Kenny, J.

    2014-04-15

    Purpose: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods: A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. Results: According to the practical definition established in this project, field sizes ≤15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤12 mm. Source occlusion also caused a large change in OPF for field sizes ≤8 mm. Based on the results of this study, field sizes ≤12 mm were considered to be theoretically very small for 6

  12. A general analytical solution to the geometrical problem of field matching in radiotherapy

    SciTech Connect

    Hernandez, V.; Arenas, M.; Pons, F.; Sempau, J.

    2009-09-15

    Purpose: Several authors studied the problem of geometrical matching of fields produced by medical linear accelerators. However, a general solution has yet to be published. Currently available solutions are based on parallelism arguments. This study provides a general solution, considering not only parallelism but also field sizes. Methods: A fixed field with arbitrary field size, gantry, collimator, and couch angle is considered, and another field with a fixed gantry angle is matched to it. A single reference system attached to the treatment couch is used, and two approaches are followed. In the first approach, fixed field sizes are assumed and parallelism of the adjacent field-side planes is imposed. In the second approach, fixed isocenter positions are considered and both parallelism and coincidence between field-side planes are required. Results: When fixed field sizes are assumed, rotation angles are obtained; however, the isocenters may need to be shifted to make side planes coincident and therefore achieve a proper match. When fixed isocenter positions are considered, solutions for all parameters, including the field size, are obtained and an exact geometrical match is achieved. Conclusions: General expressions to the field-matching problem are found for the two approaches followed, fixed field sizes, and fixed isocenter positions. These results can be applied to any treatment technique and can easily be implemented in modern treatment planning systems.

  13. Quality assurance for radiotherapy in prostate cancer: Point dose measurements in intensity modulated fields with large dose gradients

    SciTech Connect

    Escude, Lluis . E-mail: lluis.escude@gmx.net; Linero, Dolors; Molla, Meritxell; Miralbell, Raymond

    2006-11-15

    Purpose: We aimed to evaluate an optimization algorithm designed to find the most favorable points to position an ionization chamber (IC) for quality assurance dose measurements of patients treated for prostate cancer with intensity-modulated radiotherapy (IMRT) and fields up to 10 cm x 10 cm. Methods and Materials: Three cylindrical ICs (PTW, Freiburg, Germany) were used with volumes of 0.6 cc, 0.125 cc, and 0.015 cc. Dose measurements were made in a plastic phantom (PMMA) at 287 optimized points. An algorithm was designed to search for points with the lowest dose gradient. Measurements were made also at 39 nonoptimized points. Results were normalized to a reference homogeneous field introducing a dose ratio factor, which allowed us to compare measured vs. calculated values as percentile dose ratio factor deviations {delta}F (%). A tolerance range of {delta}F (%) of {+-}3% was considered. Results: Half of the {delta}F (%) values obtained at nonoptimized points were outside the acceptable range. Values at optimized points were widely spread for the largest IC (i.e., 60% of the results outside the tolerance range), whereas for the two small-volume ICs, only 14.6% of the results were outside the tolerance interval. No differences were observed when comparing the two small ICs. Conclusions: The presented optimization algorithm is a useful tool to determine the best IC in-field position for optimal dose measurement conditions. A good agreement between calculated and measured doses can be obtained by positioning small volume chambers at carefully selected points in the field. Large chambers may be unreliable even in optimized points for IMRT fields {<=}10 cm x 10 cm.

  14. Electric-field enhanced performance in catalysis and solid-state devices involving gases

    SciTech Connect

    Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin

    2015-05-19

    Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.

  15. Treatment of early clinically staged Hodgkin's disease with a combination of ABVD chemotherapy plus limited field radiotherapy.

    PubMed

    Karmiris, T D; Grigoriou, E; Tsantekidou, M; Spanou, E; Mihalakeas, H; Baltadakis, J; Apostolidis, J; Pagoni, M; Karakasis, D; Bakiri, M; Mitsouli, C; Harhalakis, N; Nikiforakis, E

    2003-09-01

    The current management of early stage Hodgkin's disease (HD) is usually based on clinical staging, combined modality therapy and the use of less toxic chemotherapy regimens. This approach entails high cure rates, while ensures less long term toxicity with avoidance of laparotomy. The aim of this study was to assess the efficacy of a brief course of Adriamycin, Bleomycin, Vinblastine, Dacarbazine (ABVD) chemotherapy followed by limited field radiotherapy (RT) in favorable clinical stage (CS) I and IIA HD. Forty patients, aged 17-68 (median 34) years, with favorable CS I and IIA HD, without bulky mediastinal disease, have been treated with 4-6 (median 4) cycles of ABVD plus limited field RT. Twenty seven (67%) patients received 4 cycles of chemotherapy, while 13 received 5-6 cycles. Thirty five (87%) patients received limited field RT with dose 24-36 Gy and five (13%) received extended field with 36-46 Gy. All patients responded completely to chemotherapy. One patient experienced a relapse two months after the end of therapy. All patients are alive; 39 in continuous complete remission. With a median follow-up period of 44 months (range 18-101) the actuarial overall and progress free survival was 100 and 97% at 5 years. We did not observe any case of secondary leukemia or solid tumor. Pulmonary toxicity was mild in cases of mediastinal irradiation. Considering the short follow-up time and the small number of patients, the combination of a brief course of ABVD plus regional RT is a very efficacious treatment of favorable CS I and IIA HD with mild toxicity. However, long term survival data are needed, which could give confident answers regarding the risk of late therapy related complications, particularly second malignancies. PMID:14565654

  16. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation

    SciTech Connect

    Yang, Y. M.; Geurts, M.; Smilowitz, J. B.; Bednarz, B. P.; Sterpin, E.

    2015-02-15

    Purpose: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy{sup ®} Treatment System plans under varying degrees of rotational beamlet symmetry. Methods: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code GEANT4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. Results: The authors demonstrate the ability to reproduce the clinical dose–volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. Conclusions: This study demonstrated that the effect of external magnetic fields can

  17. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation

    PubMed Central

    Yang, Y. M.; Geurts, M.; Smilowitz, J. B.; Sterpin, E.; Bednarz, B. P.

    2015-01-01

    Purpose: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy® Treatment System plans under varying degrees of rotational beamlet symmetry. Methods: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code geant4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. Results: The authors demonstrate the ability to reproduce the clinical dose–volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. Conclusions: This study demonstrated that the effect of external magnetic fields can be

  18. Experimental assessment of out-of-field dose components in high energy electron beams used in external beam radiotherapy.

    PubMed

    M Alabdoaburas, Mohamad; Mege, Jean-Pierre; Chavaudra, Jean; Vũ Bezin, Jérémi; Veres, Atilla; De Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2015-01-01

    The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects. PMID:26699572

  19. Dosimetric Comparison Between Intensity-Modulated with Coplanar Field and 3D Conformal Radiotherapy with Noncoplanar Field for Postocular Invasion Tumor

    SciTech Connect

    Tu Wenyong; Liu Lu Zeng Jun; Yin Weidong; Li Yun

    2010-07-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 deg., 30-45 deg., 240-270 deg., and 310-335 deg. degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D{sub max} and D{sub min} dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed.

  20. A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution

    SciTech Connect

    Uilkema, Sander Heide, Uulke van der; Sonke, Jan-Jakob; Triest, Baukelien van; Nijkamp, Jasper; Moreau, Michel

    2015-12-15

    Purpose: MRI guidance during radiotherapy has the potential to enable more accurate dose delivery, optimizing the balance between local control and treatment related toxicity. However, the presence of a permanent magnetic field influences the dose delivery, especially around air cavities. Here, electrons are able to return to the surface through which they entered the air cavity (electron return effect, ERE) locally resulting in dose hot- and cold-spots. Where RT of rectal cancer patients might benefit from MRI guidance for margin reduction, air cavities in and around the target volume are frequently present. The purpose of this research is to evaluate the impact of the presence of a 1.5 T transverse magnetic field on dose delivery in patients with rectal cancer. Methods: Ten patients treated with 5 × 5 Gy RT having large changes in pelvic air content were selected out of a cohort of 33 patients. On the planning CT, a 1.5 T, 6 MV, 7-field intensity modulated radiotherapy (IMRT) plan was created. This plan was subsequently recalculated on daily CT scans. For each daily CT, the CTV V{sub 95%} and V{sub 107%} and bowel area V{sub 5Gy}, V{sub 10Gy}, V{sub 15Gy}, V{sub 20Gy}, and V{sub 25Gy} were calculated to evaluate the changes in dose distribution from fraction to fraction. For comparison, the authors repeated this procedure for the 0 T situation. To study the effect of changing air cavities separate from other anatomical changes, the authors also generated artificial air cavities in the CTV of one patient (2 and 5 cm diameter), in the high dose gradient region (2 cm), and in the low dose area (2 cm). Treatment plans were optimized without and with each simulated air cavity. For appearing and disappearing air cavities, the CTV V{sub 95%} and V{sub 107%} were evaluated. The authors also evaluated the ERE separate from attenuation changes locally around appearing gas pockets. Results: For the ten patients, at 1.5 T, the V{sub 95%} was influenced by both appearing and

  1. Twice-Weekly Hypofractionated Intensity-Modulated Radiotherapy for Localized Prostate Cancer With Low-Risk Nodal Involvement: Toxicity and Outcome From a Dose Escalation Pilot Study

    SciTech Connect

    Zilli, Thomas; Jorcano, Sandra; Rouzaud, Michel; Dipasquale, Giovanna; Nouet, Philippe; Toscas, Jose Ignacio; Casanova, Nathalie; Wang, Hui; Escude, Lluis; Molla, Meritxell; Linero, Dolors; Weber, Damien C.; Miralbell, Raymond

    2011-10-01

    Purpose: To evaluate the toxicity and preliminary outcome of patients with localized prostate cancer treated with twice-weekly hypofractionated intensity-modulated radiotherapy (IMRT). Methods and Materials: Between 2003 and 2006, 82 prostate cancer patients with a nodal involvement risk {<=}20% (Roach index) have been treated to the prostate with or without seminal vesicles with 56 Gy (4 Gy/fraction twice weekly) and an overall treatment time of 6.5 weeks. Acute and late genitourinary (GU) and gastrointestinal (GI) toxicities were scored according to the Radiation Therapy Oncology Group (RTOG) grading system. Median follow-up was 48 months (range, 9-67 months). Results: All patients completed the treatment without interruptions. No patient presented with Grade {>=}3 acute GU or GI toxicity. Of the patients, 4% presented with Grade 2 GU or GI persistent acute toxicity 6 weeks after treatment completion. The estimated 4-year probability of Grade {>=}2 late GU and GI toxicity-free survival were 94.2% {+-} 2.9% and 96.1% {+-} 2.2%, respectively. One patient presented with Grade 3 GI and another patient with Grade 4 GU late toxicity, which were transitory in both cases. The 4-year actuarial biochemical relapse-free survival was 91.3% {+-} 5.9%, 76.4% {+-} 8.8%, and 77.5% {+-} 8.9% for low-, intermediate-, and high-risk groups, respectively. Conclusions: In patients with localized prostate cancer, acute and late toxicity were minimal after dose-escalation administering twice-weekly 4 Gy to a total dose of 56 Gy, with IMRT. Further prospective trials are warranted to further assess the best fractionation schemes for these patients.

  2. Radiation-induced second malignancies after involved-node radiotherapy with deep-inspiration breath-hold technique for early stage Hodgkin Lymphoma: a dosimetric study

    PubMed Central

    2014-01-01

    Background To estimate the risk of radiation induced second cancers after radiotherapy using deep-inspiration breath-hold (DI) technique with three-dimensional conformal (3DCRT) and volumetric arc therapy (VMAT) for patients with Hodgkin’s lymphoma (HL). Methods Early-stage HL with mediastinal and supraclavicular involvement was studied using an Alderson phantom. A whole body CT was performed and all tissues were delineated. The clinical target volumes and planning target volumes (PTV) were determined according to the German Hodgkin study group guidelines. Free-breathing (FB) technique and DI technique were simulated by different safety margins for the PTV definition. In both cases, 30 Gy in 15 fractions was prescribed. Second cancer risk was estimated for various tissues with a second cancer model including fractionation. Results When compared with FB-3DCRT, estimated relative life time attributable risk (LAR) of cancer induction after DI-3DCRT was 0.86, 0.76, 0.94 and 0.92 for breast, lung, esophagus and stomach, respectively. With DI-VMAT, the corresponding values were 2.05, 1.29, 1.01, 0.93, respectively. For breast cancer, the LAR observed with DI-VMAT was not substantially distinguishable from the LAR computed for mantle RT with an administered dose of 40 Gy. Conclusions This study suggests that DI may reduce the LAR of secondary cancers of all OARs and may be a valuable technique when using 3DCRT. Conversely, VMAT may increase substantially the LAR and should be cautiously implemented in clinical practice. PMID:24548307

  3. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    SciTech Connect

    Barrera, M. T. Barros, H.; Pino, F.; Sajo-Bohus, L.; Dávila, J.

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  4. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    NASA Astrophysics Data System (ADS)

    Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.

    2015-07-01

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  5. Electron contamination and build-up doses in conformal radiotherapy fields.

    PubMed

    Hounsell, A R; Wilkinson, J M

    1999-01-01

    The dose in the build-up region depends upon the primary photon beam, backscattered radiation from the patient and contamination radiation from outside the patient. In this paper, a model based on measured data is proposed which allows the build-up dose for arbitrarily shaped treatment fields to be determined. The dose in the build-up region is assumed to comprise a primary photon component and a contamination component that is a function of the field size and shape. This contamination component, for modelling purposes, is subdivided into contributions that correspond to elements of 1 cm by 1 cm cross-sectional area at the plane of the isocentre. The magnitude of these components has been obtained by fitting measured data to an exponential function. The exponent was found to vary linearly with depth for energies between 4 MV and 20 MV. The coefficient decreased linearly with depth at 4, 6 and 8 MV, but exhibited a broad build-up region at 20 MV. The primary component, in the build-up region, could be approximated by a 100 - (100 - PSD) e(-mu d) function, where PSD is the primary surface dose. The values obtained during the fitting procedure were used to calculate dose in the build-up region for arbitrarily shaped fields. Good agreement was found in each case. PMID:10071874

  6. Analysis of a teleportation scheme involving cavity field states in a linear superposition of Fock states

    NASA Astrophysics Data System (ADS)

    Carvalho, C. R.; Guerra, E. S.; Jalbert, Ginette

    2008-04-01

    We analyse a teleportation scheme of cavity field states. The experimental sketch discussed makes use of cavity quantum electrodynamics involving the interaction of Rydberg atoms with superconducting (micromaser) cavities as well as with classical microwave (Ramsey) cavities. In our scheme the Ramsey cavities and the atoms play the role of auxiliary systems used to teleport a field state, which is formed by a linear superposition of vacuum |∅> and the one-photon state |1>, from a micromaser cavity to another.

  7. SU-E-J-198: Out-Of-Field Dose and Surface Dose Measurements of MRI-Guided Cobalt-60 Radiotherapy

    SciTech Connect

    Lamb, J; Agazaryan, N; Cao, M; Low, D; Thomas, D; Yang, Y

    2015-06-15

    Purpose: To measure quantities of dosimetric interest in an MRI-guided cobalt radiotherapy machine that was recently introduced to clinical use. Methods: Out-of-field dose due to photon scatter and leakage was measured using an ion chamber and solid water slabs mimicking a human body. Surface dose was measured by irradiating stacks of radiochromic film and extrapolating to zero thickness. Electron out-of-field dose was characterized using solid water slabs and radiochromic film. Results: For some phantom geometries, up to 50% of Dmax was observed up to 10 cm laterally from the edge of the beam. The maximum penetration was between 1 and 2 mm in solid water, indicating an electron energy not greater than approximately 0.4 MeV. Out-of-field dose from photon scatter measured at 1 cm depth in solid water was found to fall to less than 10% of Dmax at a distance of 1.2 cm from the edge of a 10.5 × 10.5 cm field, and less that 1% of Dmax at a distance of 10 cm from field edge. Surface dose was measured to be 8% of Dmax. Conclusion: Surface dose and out-of-field dose from the MRIguided cobalt radiotherapy machine was measured and found to be within acceptable limits. Electron out-of-field dose, an effect unique to MRI-guided radiotherapy and presumed to arise from low-energy electrons trapped by the Lorentz force, was quantified. Dr. Low is a member of the scientific advisory board of ViewRay, Inc.

  8. Dosimetric comparison between intensity-modulated radiotherapy and RapidArc with single arc and dual arc for malignant glioma involving the parietal lobe

    PubMed Central

    YUAN, JUN; LEI, MINGJUN; YANG, ZHEN; FU, JUN; HUO, LEI; HONG, JIDONG

    2016-01-01

    The aim of the present study was to evaluate the difference in treatment plan quality, monitor units (MUs) per fraction and dosimetric parameters between IMRT (intensity-modulated radiotherapy) and RapidArc with single arc (RA1) and dual arc (RA2) for malignant glioma involving the parietal lobe. Treatment plans for IMRT and RA1 and RA2 were prepared for 10 patients with malignant gliomas involving the parietal lobe. The Wilcoxon matched-pair signed-rank test was used to compare the plan quality, monitor units and dosimetric parameters between IMRT and RA1 and RA2 through dose-volume histograms. Dnear-max (D2%) to the left lens, right lens and left optical nerve in RA1 were less compared with those in IMRT; D2% to the right lens and right optic nerve in RA2 were less compared with those in IMRT. D2% to the optic chiasma in RA2 was small compared with that in RA1. The median dose (D50%) to the right lens and right optic nerve in RA1 and RA2 was less compared with the identical parameters in IMRT, and D50% to the brain stem in RA2 was less compared with that in RA1. The volume receiving at least 45 Gy (V45) or V50 in normal brain tissue (whole brain minus the planning target volume 2; B-P) in RA1 was less compared with that in IMRT. V30, V35, V40, V45, or V50 in B-P in RA2 was less compared with that in IMRT. The MUs per fraction in RA1 and RA2 were significantly less compared with those in IMRT. All differences with a P-value<0.05 were considered to be significantly different. In conclusion, RA1 and RA2 markedly reduced the MUs per fraction, and spared partial organs at risk and B-P compared with IMRT. PMID:27330795

  9. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  10. Field-in-field plan does not improve the dosimetric outcome compared with the wedged beams plan for breast cancer radiotherapy

    SciTech Connect

    Sun, Li-Min; Meng, Fan-Yun; Yang, Tsung-Han; Tsao, Min-Jen

    2014-04-01

    To evaluate and compare the dosimetry of field-in-field (FIF) and wedged beams (WB) techniques for patients with breast cancer receiving adjuvant radiotherapy after conservative surgery. A total of 89 patients with breast cancer participated in this study. Each patient received a computed tomography–based treatment plan with opposed tangential fields. Two planning techniques (FIF and WB) were generated for each patient by using the Pinnacle treatment-planning system. Three indices, the homogeneity index (HI), conformity index (CI), and uniformity index (UI), as well as maximum dose (D{sub max}), median dose (D{sub 50}), number of portals, monitor unit (MU), and lung volume at 20 Gy (lung{sub 20}) were used for comparison. The mean values tested using a t-test indicated that the WB technique had a significantly lower HI (p < 0.0001), a significantly higher CI (p < 0.0001), and a significantly higher D{sub 50} (p = 0.0002) than did the FIF technique. The FIF technique had a significantly higher D{sub max} compared with the WB technique, but lung{sub 20} did not exhibit a significant difference. By contrast, the FIF technique had a significantly higher UI and a significantly lower MU compared with the WB technique, but a significantly higher number of portals were found in the FIF technique. The FIF technique did not demonstrate superior dosimetric results. The WB technique had a significantly lower HI, higher CI, lower D{sub max}, and lower number of portals; but the FIF technique had a significantly higher UI and lower MU.

  11. Long-Term Follow-Up of Dose-Adapted and Reduced-Field Radiotherapy With or Without Chemotherapy for Central Nervous System Germinoma

    SciTech Connect

    Jensen, Ashley W.; Issa Laack, Nadia N.; Buckner, Jan C.; Schomberg, Paula J.; Wetmore, Cynthia J.; Brown, Paul D.

    2010-08-01

    Purpose: To update our institutional experience with neoadjuvant chemotherapy and minimized radiotherapy vs. radiation monotherapy for intracranial germinoma. Methods and Materials: We retrospectively reviewed records of 59 patients with diagnosis of primary intracranial germinoma between 1977 and 2007. Treatment was irradiation alone or neoadjuvant platinum-based chemotherapy and local irradiation (initial tumor plus margin) for patients with localized complete response and reduced-dose craniospinal irradiation for others. Results: For the chemoradiotherapy group (n = 28), median follow-up was 7 years. No patient died. The freedom from progression (FFP) rate was 88% at 5 years and 80% at 10 years. In 4 patients, disease recurred 1.1 to 6.8 years after diagnosis. All were young male patients who received 30.6 Gy to local fields after complete response to chemotherapy. The FFP rate was 88% for local irradiation vs. 100% for more extensive fields (p = .06). For the radiotherapy-alone group (n = 31), median follow-up was 15 years. Overall and disease-free survival rates were 93% and 93% at 5 years and 90% and 87% at 15 years. In 5 patients, disease recurred 1.1 to 4.9 years after diagnosis. Most patients in this group were young men 18 to 23 years of age with suprasellar primary disease treated with about 50 Gy to local fields. The FFP rate was 44% for local irradiation vs. 100% for more extensive fields (p < .01). Conclusions: The addition of neoadjuvant chemotherapy to local-field radiotherapy reduced central nervous system cancer recurrence when high-risk patients were excluded by thorough pretreatment staging. There was trend toward improved central nervous system tumor control when larger fields (whole brain, whole ventricle, or craniospinal axis) were used.

  12. Clinical Trial of Prophylactic Extended-Field Carbon-Ion Radiotherapy for Locally Advanced Uterine Cervical Cancer (Protocol 0508)

    PubMed Central

    Wakatsuki, Masaru; Kato, Shingo; Kiyohara, Hiroki; Ohno, Tatsuya; Karasawa, Kumiko; Tamaki, Tomoaki; Ando, Ken; Tsujii, Hirohiko; Nakano, Takashi; Kamada, Tadashi; Shozu, Makio

    2015-01-01

    To evaluate the efficacy and the toxicity of prophylactic extended-field carbon-ion radiotherapy (C-ion RT, Protocol 0508) for locally advanced squamous cell carcinoma of the uterine cervix in phase I / II clinical trial. Between May 2006 and January 2012, 26 patients of Protocol 0508 were treated with C-ion RT. The numbers of patients with stage IIB, IIIB, and IVA disease were 13, 11, and 2, respectively. Twenty patients had pelvic lymph node metastases. Median tumor size was 6.1 cm (range, 4.0–10.0 cm). The treatment consisted of extended-field irradiation of 39.0 gray equivalents (GyE) in 13 fractions, and additional 15.0 GyE in 5 fractions was given to the gross tumor volume (GTV) and surrounding tissues. With regard to local boost, 18.0 GyE in 2 fractions was given to GTV only. Total dose to the cervical tumor was 72.0 GyE over 20 fractions. The median follow-up period was 37 months. Twenty-one patients had grade 1 or 2 acute gastrointestinal toxicity, but all patients completed the treatment on schedule. There were no grade 3 or higher late complications, with 8 patients having grade 1 or 2 toxicities, 1 had grade 2 gastrointestinal toxicity and 2 had grade 2 genitourinary toxicity. Four patients (15.4%) developed local recurrence, and 8 patients (30.8%) had distant metastases. The 2-year local control rate, progression-free survival rate and overall survival rate were 83.6%, 61.5% and 73.1%, respectively. There were no severe acute or late complications in this trial. Prophylactic extended-field C-ion RT for locally advanced squamous cell carcinoma of the uterine cervix was a safe treatment. Although the number of patients in this study was small, the results support further investigations to confirm the therapeutic efficacy and to avoid or reduce toxicity. Trial Registration UMIN-CTR UMIN000016169 PMID:25993047

  13. Limited Chemotherapy and Shrinking Field Radiotherapy for Osteolymphoma (Primary Bone Lymphoma): Results From the Trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 Prospective Trial;Bone; Lymphoma; Radiotherapy; Chemotherapy; Clinical trial

    SciTech Connect

    Christie, David; Dear, Keith; Le, Thai; Barton, Michael; Wirth, Andrew; Porter, David; Roos, Daniel; Pratt, Gary

    2011-07-15

    Purpose: To establish benchmark outcomes for combined modality treatment to be used in future prospective studies of osteolymphoma (primary bone lymphoma). Methods and Materials: In 1999, the Trans-Tasman Radiation Oncology Group (TROG) invited the Australasian Leukemia and Lymphoma Group (ALLG) to collaborate on a prospective study of limited chemotherapy and radiotherapy for osteolymphoma. The treatment was designed to maintain efficacy but limit the risk of subsequent pathological fractures. Patient assessment included both functional imaging and isotope bone scanning. Treatment included three cycles of CHOP chemotherapy and radiation to a dose of 45 Gy in 25 fractions using a shrinking field technique. Results: The trial closed because of slow accrual after 33 patients had been entered. Accrual was noted to slow down after Rituximab became readily available in Australia. After a median follow-up of 4.3 years, the five-year overall survival and local control rates are estimated at 90% and 72% respectively. Three patients had fractures at presentation that persisted after treatment, one with recurrent lymphoma. Conclusions: Relatively high rates of survival were achieved but the number of local failures suggests that the dose of radiotherapy should remain higher than it is for other types of lymphoma. Disability after treatment due to pathological fracture was not seen.

  14. Estimating the Magnitude and Field-Size Dependence of Radiotherapy-Induced Mortality and Tumor Control After Postoperative Radiotherapy For Non-Small-Cell Lung Cancer: Calculations From Clinical Trials

    SciTech Connect

    Miles, Edward F. . E-mail: edward.miles@duke.edu; Kelsey, Chris R.; Kirkpatrick, John P.; Marks, Lawrence B.

    2007-07-15

    Purpose: To create, on the basis of available data, a mathematical model to describe the tumor stage- and field size-dependent risks/benefits of postoperative radiotherapy (PORT) for non-small-cell lung cancer (NSCLC), and to assess whether this simple model can accurately describe the reported changes in overall survival. Methods and Materials: The increase in overall survival afforded by PORT is assumed equal to the increase in cancer-specific survival minus the rate of RT-induced mortality. The increase in cancer-specific survival is the product of the probabilities of (residual local disease) x (sterilization of residual disease with PORT) x (absence of metastatic disease). Data were extracted from the literature to estimate these probabilities. Different models were considered to relate the RT-induced mortality to field size. Results: The rate of RT-induced mortality seems to be proportional to the cube of the field size. When these mortality rates are included in the model, the predicted changes in overall survival approximate the literature values. Conclusion: Clinical data can be explained by a simple model that suggests that RT-induced mortality is strongly dependent on field size and at least partly offsets the benefit afforded by PORT. Smaller RT fields, tailored to treat the areas most at risk for recurrence, provide the highest therapeutic ratio. The data used do not reflect the impact of chemotherapy, which will reduce the rate of distant metastases and enhance the efficacy of RT.

  15. Out-of-field neutron and leakage photon exposures and the associated risk of second cancers in high-energy photon radiotherapy: current status.

    PubMed

    Takam, R; Bezak, E; Marcu, L G; Yeoh, E

    2011-10-01

    Determination and understanding of out-of-field neutron and photon doses in accelerator-based radiotherapy is an important issue since linear accelerators operating at high energies (>10 MV) produce secondary radiations that irradiate parts of the patient's anatomy distal to the target region, potentially resulting in detrimental health effects. This paper provides a compilation of data (technical and clinical) reported in the literature on the measurement and Monte Carlo simulations of peripheral neutron and photon doses produced from high-energy medical linear accelerators and the reported risk and/or incidence of second primary cancer of tissues distal to the target volume. Information in the tables facilitates easier identification of (1) the various methods and measurement techniques used to determine the out-of-field neutron and photon radiations, (2) reported linac-dependent out-of-field doses, and (3) the risk/incidence of second cancers after radiotherapy due to classic and modern treatment methods. Regardless of the measurement technique and type of accelerator, the neutron dose equivalent per unit photon dose ranges from as low as 0.1 mSv/Gy to as high as 20.4 mSv/Gy. This radiation dose potentially contributes to the induction of second primary cancer in normal tissues outside the treated area. PMID:21756083

  16. Involved site radiation therapy for the treatment of early-stage Hodgkin lymphoma in adolescents and young adults

    PubMed Central

    Portlock, Carol S

    2016-01-01

    Radiation therapy technology has permitted the development of new treatment planning techniques. Involved field, involved node, and involved site radiotherapy fields are discussed and compared. Indications for and implications of combined modality therapy are examined, particularly as pertinent to the adolescent and young adult population. PMID:26767184

  17. Involved-field irradiation in definitive chemoradiotherapy for T4 squamous cell carcinoma of the esophagus

    PubMed Central

    Li, M.; Zhao, F.; Zhang, X.; Shi, F.; Zhu, H.; Han, A.; Zhang, Y.; Kong, L.; Yu, J.

    2016-01-01

    Objectives Definitive concurrent chemoradiotherapy (ccrt) is currently a therapeutic option for locally advanced esophageal cancer. However, clinical practice differs with respect to the target volume for irradiation. The purpose of the present study was to analyze failure patterns and survival, and to determine the feasibility of using involved-field irradiation (ifi) with concurrent chemotherapy for T4 squamous cell carcinoma (scc) of the esophagus. Methods Between January 2003 and January 2013, 56 patients with clinical T4M0 scc of the esophagus received ccrt using ifi. The radiation field included the primary tumour and clinically involved lymph nodes. Target volumes and sites of failure were analyzed, as were treatment-related toxicity and survival time. Results In this 56-patient cohort, 13 patients (23.2%) achieved a complete response, and 21 (37.5%) achieved a partial response, for a total response rate of 60.7%. The major toxicities experienced were leucocytopenia and esophagitis, with 14 patients (25.0%) experiencing grade 3 toxicities. At a median follow-up of 34 months, 48 patients (85.7%) had experienced failure: 39 (69.6%) in-field, 7 (12.5%) elective nodal, and 19 (33.9%) distant. Only 1 patient (1.8%) experienced isolated elective nodal failure. The 1-, 2-, and 3-year survival rates were 39.3%, 21.4%, and 12.5% respectively. Conclusions For patients with T4M0 scc of the esophagus, definitive ccrt using ifi resulted in an acceptable rate of isolated elective nodal failure and an overall survival comparable to that achieved with elective nodal irradiation. A limited radiation therapy target volume, including only clinically involved lesions, would therefore be a feasible choice for this patient subgroup. PMID:27122981

  18. Optimal field-splitting algorithm in intensity-modulated radiotherapy: Evaluations using head-and-neck and female pelvic IMRT cases

    SciTech Connect

    Dou, Xin; Kim, Yusung; Bayouth, John E.; Buatti, John M.; Wu, Xiaodong

    2013-04-01

    To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, and dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.

  19. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  20. SU-E-T-272: Radiation Damage Comparison Between Intensity Modulated Radiotherapy and Field-In-Field Technique in Breast Cancer Treatments

    SciTech Connect

    Ai, H; Zhang, H

    2014-06-01

    Purpose: To compare normal tissue complications between IMRT and FIF treatment in breast cancer. Methods: 16 patients treated with IMRT plan and 20 patients treated with FIF plan were evaluated in this study. Both kinds of plans were generated using Eclipse treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The plans were reviewed and approved by radiation oncologist. The average survival fraction (SF) for three different normal tissue cells of each concerned structure can be calculated from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Equivalent uniform doses (EUD) for corresponding normal tissues of each structure were calculated. Results: The EUDs of the lungs, heart, healthy breast and spinal cord with both IMRT and FIF treatments were calculated. Considering the average value of all IMRT plans, the lung of treated side absorbed 16.0% of dosage prescribed to the tumor if the radiosensitivity of the lung is similar to the radiosensitive cell line. For moderately radiosensitive and radio-resistant lung tissue, the average EUDs can be 18.9% and 22.4% of prescription. In contrast, patients treated with FIF plans were delivered 6.0%, 7.5% and 10.3% of prescribed dose for radiosensitive, moderately radiosensitive and radio-resistant lung tissue, respectively. Comparing heart EUDs between IMRT and FIF plans, average absorbed doses in IMRT treatment were 7.7%, 8.7% and 9.7% of prescription for three types of heart normal tissue cell lines while FIF treatments delivered only 1.3%, 1.5% and 1.6% of prescription dose. For the other organs, the results were similar. Conclusion: The results indicated that breast cancer treatment using IMRT technique had more normal tissue damage than FIF treatment. FIF demonstrated

  1. Intraoperative radiotherapy: the Japanese experience. [Betatron

    SciTech Connect

    Abe, M.; Takahashi, M.

    1981-07-01

    Clinical results of intraoperative radiotherapy (IOR) which have been obtained since 1964 in Japan were reviewed. In this radiotherapy a cancerocidal dose can be delivered safely to the lesions, since critical organs are shifted from the field so that the lesions may be exposed directly to radiation. Intraoperative radiotherapy has spread in Japan and the number of institutions in which this radiotherapy is performed has continued to increase to a total of 26 in 1979. The total number of patients treated was 717. It has been demonstrated that intraoperative radiotherapy has definite effects on locally advanced abdominal neoplasms and unresectable radioresistant tumors.

  2. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  3. Regional Nodal Involvement and Patterns of Spread Along In-Transit Pathways in Children With Rhabdomyosarcoma of the Extremity: A Report From the Children's Oncology Group;Rhabdomyosarcoma; Regional failure; In-transit nodes; Radiotherapy; Extremity

    SciTech Connect

    La, Trang H.; Wolden, Suzanne L.; Rodeberg, David A.; Hawkins, Douglas S.; Anderson, James R.; Donaldson, Sarah S.

    2011-07-15

    Purpose: To evaluate the incidence and prognostic factors for regional failure, with attention to the in-transit pathways of spread, in children with nonmetastatic rhabdomyosarcoma of the extremity. Methods and Materials: The Intergroup rhabdomyosarcoma studies III, IV-Pilot, and IV enrolled 226 children with rhabdomyosarcoma of the extremity. Failure at the in-transit (epitrochlear/brachial and popliteal) and proximal (axillary/infraclavicular and inguinal/femoral) lymph nodes was evaluated. The median follow-up for the surviving patients was 10.4 years. Results: Of the 226 children, 55 (24%) had clinical or pathologic evidence of either in-transit and/or proximal lymph node involvement at diagnosis. The actuarial 5-year risk of regional failure was 12%. The prognostic factors for poor regional control were female gender and lymph node involvement at diagnosis. In the 116 patients with a distal extremity primary tumor, 5% had in-transit lymph node involvement at diagnosis. The estimated 5-year incidences of in-transit and proximal nodal failure was 12% and 8%, respectively. The in-transit failure rate was 0% for patients who underwent radiotherapy and/or underwent lymph node sampling of the in-transit nodal site but was 15% for those who did not (p = .07). However, the 5-year event-free survival rate did not differ between these two groups (64% vs. 55%, respectively, p = .47). Conclusion: The high incidence of regional involvement necessitates aggressive identification and treatment of regional lymph nodes in patients with rhabdomyosarcoma of the extremity. In patients with distal extremity tumors, in-transit failures were as common as failures in more proximal regional sites. Patients who underwent complete lymph node staging with appropriate radiotherapy to the in-transit nodal site, if indicated, were at a slightly lower risk of in-transit failure.

  4. Three-Dimensional Magnetic Field Line Reconnection involving Magnetic Flux Ropes (Invited)

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; van Compernolle, B.; Lawrence, E.; Vincena, S. T.

    2010-12-01

    We report on two experiments in which three dimensional magnetic field line reconnection plays a role. Magnetic field line reconnection is a processes in which the magnetic field energy is converted to particle energy and heating accompanied by changes in the magnetic topology. In the first experiment two magnetic flux ropes are generated from initially adjacent pulsed current channels in a background magnetoplasma in the LAPD device at UCLA. The currents exert mutual jXB forces causing them to twist about each other and merge. The currents are not static but move towards or away from each other in time. In addition the currents are observed to filament after merging. Volumetric space-time data show multiple reconnection sites with time-dependent locations. The quasi-separatrix layer (QSL) is a narrow region between the flux ropes. Two field lines on either side of the QSL will have closely spaced foot-points at on end of the flux ropes, but a very different separation at the other end. Outside the QSL, neighboring field lines do not diverge. The QSL has been measured, for the first time in this experiment [1] and its three dimensional development will be shown in movies made from the data. A system involving the reconnection of three flux ropes will also be presented. Three flux ropes are generated by drawing currents through apertures in a carbon shield located in front of a 10 cm diameter cathode immersed in the background magnetoplasma. The currents are observed to twist about themselves, writhe about each other and thrash about due to kink the kink instability. Multiple reconnection regions (which are three dimensional) and a complex QSL are observed. The magnetic helicity is evaluated from volumetric data in both cases and its rate of change is used to estimate the plasma resistivity. These measurements lead one to suspect that magnetic field line reconnection is not an independent topic, which can be studied in isolation, but part of the phenomena associated

  5. Exterior field of slowly and rapidly rotating neutron stars: Rehabilitating spacetime metrics involving hyperextreme objects

    NASA Astrophysics Data System (ADS)

    Manko, V. S.; Ruiz, E.

    2016-05-01

    The 4-parameter exact solution presumably describing the exterior gravitational field of a generic neutron star is presented in a concise explicit form defined by only three potentials. In the equatorial plane, the metric functions of the solution are found to be given by particularly simple expressions that make them very suitable for the use in concrete applications. Following Pappas and Apostolatos, we perform a comparison of the multipole structure of the solution with the multipole moments of the known physically realistic Berti-Stergioulas numerical models of neutron stars to argue that the hyperextreme sectors of the solution are not less (but are possibly even more) important for the correct description of rapidly rotating neutron stars than the subextreme sector involving exclusively the black-hole constituents. We have also worked out in explicit form an exact analog of the well-known Hartle-Thorne approximate metric.

  6. Second neoplasms following radiotherapy or chemotherapy for cancer

    SciTech Connect

    Penn, I.

    1982-02-01

    While radiotherapy and antineoplastic chemotherapy often control malignancies they may, paradoxically, cause new cancers to develop as long-term complications. Although almost any type of neoplasm can occur, radiation-induced malignancies are most likely to affect the myelopoietic tissues and the thyroid gland. The former tissues are also most frequently involved by chemotherapy. The combination of intensive radiotherapy and intensive chemotherapy is particularly leukemogenic. Acute myeloid leukemia has occurred with increased frequency following treatment of Hodgkin's disease, non-Hodgkin's lymphoma, multiple myeloma, ovarian cancer, polycythemia vera, carcinoma of the thyroid gland, and carcinoma of the breast. Radiation-induced malignancies usually occur in the field of irradiation. Tumors developing in an irradiated field include a substantial number of soft tissue sarcomas or osteosarcomas. There is a 20-fold increase of second cancers following treatment of childhood malignancies, mostly sarcomas of bone and soft tissues, but including leukemia, and carcinomas of the thyroid gland, skin, and breast. The latent period between radiotherapy and the appearance of a second cancer ranges from 2 years to several decades, often being 10-15 years. With chemotherapy the mean latent period is shorter, approximately 4 years. The mechanism of oncogenesis by radiotherapy or chemotherapy is poorly understood and probably involves a complex interplay of somatic mutation, co-oncogenic effects, depression of host immunity, stimulation of cellular proliferation, and genetic susceptibility.

  7. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    PubMed

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  8. Radiotherapy for ocular tumours.

    PubMed

    Stannard, C; Sauerwein, W; Maree, G; Lecuona, K

    2013-02-01

    Ocular tumours present a therapeutic challenge because of the sensitive tissues involved and the necessity to destroy the tumour while minimising visual loss. Radiotherapy (RT) is one of several modalites used apart from surgery, laser, cryotherapy, and chemotherapy. Both external beam RT (EBRT) and brachytherapy are used. Tumours of the bulbar conjunctiva, squamous carcinoma and malignant melanoma, can be treated with a radioactive plaque: strontium-90, ruthenium-106 (Ru-106), or iodine-125 (I-125), after excision. If the tumour involves the fornix or tarsal conjunctiva, proton therapy can treat the conjunctiva and spare most of the eye. Alternatively, an I-125 interstitial implant can be used with shielding of the cornea and lens. Conjunctival mucosal-associated lymphoid tissue lymphoma can be treated with an anterior electron field with lens shielding and 25-30 Gray (Gy) in 2 Gy fractions. Discrete retinoblastoma (RB), too large for cryotherapy or thermolaser, or recurrent after these modalities, can be treated with plaque therapy, I-125, or Ru-106. For large RB, multiple tumours, or vitreous seeds the whole eye can be treated with an I-125 applicator, sparing the bony orbit, or with EBRT, under anaesthetic, using X-rays or proton therapy with vacuum contact lenses to fix the eyes in the required position. Post-enucleated orbits at risk for recurrent RB can be treated with an I-125 implant with shielding to reduce the dose to the bony orbit. Uveal malignant melanomas can be treated with plaque or proton therapy with excellent local control. Preservation of vision will depend on the initial size and location of the tumour. PMID:23174750

  9. Radiotherapy for ocular tumours

    PubMed Central

    Stannard, C; Sauerwein, W; Maree, G; Lecuona, K

    2013-01-01

    Ocular tumours present a therapeutic challenge because of the sensitive tissues involved and the necessity to destroy the tumour while minimising visual loss. Radiotherapy (RT) is one of several modalites used apart from surgery, laser, cryotherapy, and chemotherapy. Both external beam RT (EBRT) and brachytherapy are used. Tumours of the bulbar conjunctiva, squamous carcinoma and malignant melanoma, can be treated with a radioactive plaque: strontium-90, ruthenium-106 (Ru-106), or iodine-125 (I-125), after excision. If the tumour involves the fornix or tarsal conjunctiva, proton therapy can treat the conjunctiva and spare most of the eye. Alternatively, an I-125 interstitial implant can be used with shielding of the cornea and lens. Conjunctival mucosal-associated lymphoid tissue lymphoma can be treated with an anterior electron field with lens shielding and 25–30 Gray (Gy) in 2 Gy fractions. Discrete retinoblastoma (RB), too large for cryotherapy or thermolaser, or recurrent after these modalities, can be treated with plaque therapy, I-125, or Ru-106. For large RB, multiple tumours, or vitreous seeds the whole eye can be treated with an I-125 applicator, sparing the bony orbit, or with EBRT, under anaesthetic, using X-rays or proton therapy with vacuum contact lenses to fix the eyes in the required position. Post-enucleated orbits at risk for recurrent RB can be treated with an I-125 implant with shielding to reduce the dose to the bony orbit. Uveal malignant melanomas can be treated with plaque or proton therapy with excellent local control. Preservation of vision will depend on the initial size and location of the tumour. PMID:23174750

  10. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  11. Indications for Salivary Gland Radiotherapy.

    PubMed

    Thomson, David J; Slevin, Nick J; Mendenhall, William M

    2016-01-01

    There is an established role for post-operative radiotherapy in the treatment of benign and malignant salivary gland tumours. For benign disease, the addition of radiotherapy improves local tumour control in cases with incomplete excision, involved surgical margins or multi-focal disease recurrence. After capsule rupture or spillage alone, surveillance should usually be advised. For malignant disease, post-operative radiotherapy is recommended for an advanced tumour stage, high-grade tumour, perineural or lympho-vascular invasion, close or positive resection margins, extra-parotid extension or lymph node involvement. The main benefit is increased loco-regional tumour control, although this may translate into a modest improvement in survival. The possible late side effects of parotid bed irradiation include skin changes, chronic otitis externa, sensorineural hearing loss, osteoradionecrosis and secondary malignancy. Severe complications are rare, but patients should be counselled carefully about the risks. Primary radiotherapy is unlikely to be curative and is reserved to cases in which resection would cause unacceptable functional or cosmetic morbidity or would likely result in subtotal resection (R2) or to patients with distant metastases to gain local tumour control. There are provisional data on the use of charged particle radiotherapy in this setting. Some patients may benefit from synchronous chemotherapy with radiotherapy, but this group is not defined, and data from comparative prospective studies are required before routine clinical use of this treatment. PMID:27093301

  12. Clinical, dosimetric, and radiographic correlation of radiation injury involving the brainstem and the medial temporal lobes following stereotactic radiotherapy for neoplasms of central skull base.

    PubMed

    Schipani, Stefano; Jain, Rajan; Shah, Keyur; Rock, Jack P; Movsas, Benjamin; Rosenblum, Mark; Ryu, Samuel

    2010-06-01

    Stereotactic Radiotherapy (SRT) is more commonly used for skull base tumors in conjunction with the technical development of radiation intensity modulation. Purpose of this study is to correlate clinical and radiographic characteristics of delayed radiation injury (RI) occurring around central skull base following SRT with SRT dosimetric data. Total of six patients were identified to have developed RI in the vicinity of SRT target volume out of 141 patients who received SRT in he center or near-center of the skull base. The images and medical records were retrospectively reviewed. The analysis was performed for RI location, time of development, imaging and clinical characteristics and evolution of RI and correlated with SRT dosimetric analysis using image fusion with follow-up MRI scans. Mean follow-up time was 24 +/- 9 months. During the follow-up period, twelve sites of RI were found in 6 patients. They were clinically symptomatic in 4/6 patients (66.6%) at median 12.5 months after SRT. Mean time interval between SRT and detection of RI was 9 +/- 3, 18.5 +/- 5, and 13.5 months for brainstem, temporal lobe, and cerebellum/labyrinth lesions, respectively. All RI lesions were included in the region of high SRT doses. After steroid and symptomatic treatment, 50% of RI lesions showed complete response, and 40% showed partial response. RI can occur around the skull base because of irregular shape of target tumor, its close proximity to normal brain parenchyma, and inhomogeneity of dose distribution. Brainstem lesions occurred earlier than temporal lobe RI. The majority of the RI lesions, not mixed with the tumor in this study, showed radiographic and clinical improvement with steroid and symptomatic treatments. PMID:20376551

  13. Involvement of Difference in Decrease of Hemoglobin Level in Poor Prognosis of Stage I and II Nasopharyngeal Carcinoma: Implication in Outcome of Radiotherapy

    SciTech Connect

    Gao Jin; Tao Yalan; Li Guo; Yi Wei; Xia Yunfei

    2012-03-15

    Purpose: To investigate the effect of hemoglobin (Hb) concentration and the difference in its decrease during treatment on outcome of radiotherapy (RT) alone for patients with Stage I and II nasopharyngeal carcinoma. Methods and Materials: A total of 572 patients with Stage I-II nasopharyngeal carcinoma with RT alone between January 2001 and December 2004 were retrospectively analyzed. Patient characteristics, tumor variables, and Hb level, including pre-RT Hb, mid-RT Hb, and dynamic change of Hb between pre- and post- RT and its difference in decrease ( White-Up-Pointing-Small-Triangle Hb) were subjected to univariate and multivariable analysis to identify factors that predict disease-specific survival (DSS), local regional recurrence-free survival (LRFS), and metastases-free survival (MFS). Results: The 5-year DSS was poorer in the Hb continuous decrease group than in the Hb noncontinuous decrease group (84% vs. 89%; p = 0.008). There was poorer 5-year DSS in patients with White-Up-Pointing-Small-Triangle Hb of >11.5 g/L than in those with White-Up-Pointing-Small-Triangle Hb of {<=}11.5 g/L (82% vs. 89%; p = 0.001), and poorer LRFS (79% vs. 83%; p = 0.035). Univariate and multivariate analysis showed that Hb decrease difference with greater than 11.5 g/L was an independent prognostic factor for DSS and LRFS. Conclusions: The difference in decrease of Hb level during the course of radiation treatment appeared as a poor prognostic factor in Stage I and II nasopharyngeal carcinoma patients.

  14. Risk of a Second Malignant Neoplasm After Cancer in Childhood Treated With Radiotherapy: Correlation With the Integral Dose Restricted to the Irradiated Fields

    SciTech Connect

    Nguyen, France Rubino, Carole; Guerin, Sylvie; Diallo, Ibrahima; Samand, Akthar; Hawkins, Mike; Oberlin, Odile; Lefkopoulos, Dimitri; De Vathaire, Florent

    2008-03-01

    Purpose: After successful treatment of cancers in childhood, the occurrence of second malignant neoplasm (SMN) came to the fore. Few studies have considered the relationship between the radiation dose received and the risk of developing an SMN. To take into account the heterogeneity of the dose distribution so as to evaluate the overall risk of an SMN after a childhood cancer, we therefore focused on the integral dose restricted to the irradiated fields. Methods and Materials: The study was performed in a cohort of 4,401 patients who were 3-year survivors of all types of childhood cancer treated between 1947 and 1986 in France and Great Britain. For each patient, the integral dose was estimated for the volume inside the beam edges. Results: We found a significant dose-response relationship between the overall risk of an SMN and the estimated integral dose. The excess relative risk for each incremental unit of the integral dose was only 0.008 in a linear model and 0.017 when a negative exponential term was considered, when adjusted for chemotherapy. The risk of SMN occurrence was 2.6 times higher in the case of irradiation. However among patients who had received radiotherapy, only those who had received the highest integral dose actually had a higher risk. Conclusions: The integral dose in our study cannot be considered as a good predictor of later risks. However other studies with the same study design are obviously needed to evaluate the use of the integral dose as a tool for decision making concerning different radiotherapy techniques.

  15. Radiation dose to the lymph drainage area in esophageal cancer with involved-field irradiation

    PubMed Central

    SHEN, WENBIN; GAO, HONGMEI; ZHU, SHUCHAI; LI, YOUMEI; LI, JUAN; LIU, ZHIKUN; SU, JINWEI

    2016-01-01

    The aim of this study was to quantify the radiation dose to the corresponding lymph drainage area in esophageal cancer using three-dimensional conformal radiation therapy (3D-CRT) with involvED-field IRradiation (IFI) and to analyze associated factors. A retrospective analysis oF 81 patients with esophageal cancer was conducted. According to the location of the lesions, the lymph drainage area was delineated and the dosimetric parameters were calculated. The 1-, 3-, 5- and 8-year survival rates of the patients were 67.90, 33.33, 20.99 and 11.11%, respectively. Based on the dose-volume histogram in the treatment plan, we calculated the volume percentage of the planning target volume including clinically positive lymph nodes (PTV-N) receiving radiation doses of 30, 35, 40, 45 and 50 Gy (VPTV-N30-50). The median values of VPTV-N30-50 were 73, 70, 67, 64 and 58%, respectively. The prescribed dose size exhibited no correlation with VPTV-N30-35, but did exhibit a significant correlation with VPTV-N40-50; the radiation field was not correlated with VPTV-N30-45, but exhibited a significant correlation with VPTV-N50; The length of the lesion on esophageal barium meal X-ray and the PTV were significantly correlated with VPTV-N30–50. The analysis of variance revealed that the VPTV-NX value in the upper thoracic segment was higher compared with that in the middle and lower thoracic segments; VPTV-N30-35 values differed significantly according to the different locations of the lesions, whereas VPTV-N40-50 values exhibited no significant differences. The value of VPTV-NX exerted no significant effect on long-term patient survival. Therefore, the corresponding lymph drainage area of esophageal cancer IS subjected to a certain Radiation dose when patients undergo 3D-CRT with IFI, which may play a role in the prevention of regional nodal metastasis. However, this hypothesis requires confirmation by further clinical studies. PMID:26870295

  16. Para-aortic and pelvic extended-field radiotherapy for advanced-stage uterine cancer: dosimetric and toxicity comparison between the four-field box and intensity-modulated techniques

    PubMed Central

    Rabinovich, A.; Bernard, L.; Ramanakumar, A.V.; Stroian, G.; Gotlieb, W.H.; Lau, S.; Bahoric, B.

    2015-01-01

    Background In patients with advanced-stage endometrial carcinoma (eca), extended-field radiotherapy (efrt) is traditionally delivered by the 3-dimensional conformal (3d-crt) 4-field box technique. In recent years, the use of intensity-modulated radiotherapy (imrt) in gynecologic cancers has increased. We compared the delivery of efrt by the 3d-crt and contemporary imrt techniques. Methods After surgical staging and adjuvant chemotherapy in 38 eca patients, efrt was delivered by either imrt or 3d-crt. Doses to the organs at risk, side effects, and outcomes were compared between the techniques. Results Of the 38 eca patients, 33 were stage iiic, and 5 were stage ivb. In the imrt group, maximal doses to rectum, small intestine, and bladder were significantly higher, and mean dose to bladder was lower (p < 0.0001). Most acute gastrointestinal, genitourinary, and hematologic side effects were grade i or ii and were comparable between the groups. In long-term follow-up, only grade 1 cystitis at 3 months was statistically higher in the imrt patients. No grade iii or iv gastrointestinal or genitourinary toxicities were observed. No statistically significant differences in overall and disease-free survival or recurrence rates were observed between the techniques. Conclusions In advanced eca patients, imrt is a safe and effective technique for delivering efrt to the pelvis and para-aortic region, and it is comparable to the 3d-crt 4-field box technique in both side effects and efficacy. For centres in which imrt is not readily available, 3d-crt is a valid alternative. PMID:26715873

  17. Experimental determination of field factors ([Formula: see text]) for small radiotherapy beams using the daisy chain correction method.

    PubMed

    Lárraga-Gutiérrez, José Manuel

    2015-08-01

    Recently, Alfonso et al proposed a new formalism for the dosimetry of small and non-standard fields. The proposed new formalism is strongly based on the calculation of detector-specific beam correction factors by Monte Carlo simulation methods, which accounts for the difference in the response of the detector between the small and the machine specific reference field. The correct calculation of the detector-specific beam correction factors demands an accurate knowledge of the linear accelerator, detector geometry and composition materials. The present work shows that the field factors in water may be determined experimentally using the daisy chain correction method down to a field size of 1 cm × 1 cm for a specific set of detectors. The detectors studied were: three mini-ionization chambers (PTW-31014, PTW-31006, IBA-CC01), three silicon-based diodes (PTW-60018, IBA-SFD and IBA-PFD) and one synthetic diamond detector (PTW-60019). Monte Carlo simulations and experimental measurements were performed for a 6 MV photon beam at 10 cm depth in water with a source-to-axis distance of 100 cm. The results show that the differences between the experimental and Monte Carlo calculated field factors are less than 0.5%-with the exception of the IBA-PFD-for field sizes between 1.5 cm × 1.5 cm and 5 cm × 5 cm. For the 1 cm × 1 cm field size, the differences are within 2%. By using the daisy chain correction method, it is possible to determine measured field factors in water. The results suggest that the daisy chain correction method is not suitable for measurements performed with the IBA-PFD detector. The latter is due to the presence of tungsten powder in the detector encapsulation material. The use of Monte Carlo calculated [Formula: see text] is encouraged for field sizes less than or equal to 1 cm × 1 cm for the dosimeters used in this work. PMID:26161448

  18. Consumer Involvement in Evaluation and Quality Assurance Efforts: Review of Current Efforts in the Field of Developmental Disabilities.

    ERIC Educational Resources Information Center

    Ashline, Melissa

    This review of the professional and programmatic literature in the field of developmental disabilities focuses on ways in which individuals with developmental disabilities and their families are becoming increasingly involved in program evaluation and quality assurance efforts. Three major movements are having an impact on this activity: state and…

  19. Field deployment of a scope for growth assay involving Gammarus pulex, a freshwater benthic invertebrate

    SciTech Connect

    Maltby, L.; Naylor, C.; Calow, P. )

    1990-06-01

    Scope for growth (SfG) is a measure of the energy balance of an animal (i.e., the difference between energy intake and metabolic output). The SfG of marine invertebrates, particularly the mussel Mytilus edulis, has been successfully used as the basis of a field bioassay to detect a range of stresses both natural (temperature, food, salinity) and anthropogenic (hydrocarbons, sewage sludge). SfG of the freshwater amphipod Gammarus pulex was found to be a sensitive indicator of stress under laboratory conditions and here we describe the field deployment of this technique and present data from three field trials. In every case, SfG was reduced at the downstream polluted site compared with that at an upstream reference site. This reduction in SfG was the result of a decrease in energy intake (absorption) rather than an increase in energy expenditure (respiration).

  20. Neural field simulator: two-dimensional spatio-temporal dynamics involving finite transmission speed

    PubMed Central

    Nichols, Eric J.; Hutt, Axel

    2015-01-01

    Neural Field models (NFM) play an important role in the understanding of neural population dynamics on a mesoscopic spatial and temporal scale. Their numerical simulation is an essential element in the analysis of their spatio-temporal dynamics. The simulation tool described in this work considers scalar spatially homogeneous neural fields taking into account a finite axonal transmission speed and synaptic temporal derivatives of first and second order. A text-based interface offers complete control of field parameters and several approaches are used to accelerate simulations. A graphical output utilizes video hardware acceleration to display running output with reduced computational hindrance compared to simulators that are exclusively software-based. Diverse applications of the tool demonstrate breather oscillations, static and dynamic Turing patterns and activity spreading with finite propagation speed. The simulator is open source to allow tailoring of code and this is presented with an extension use case. PMID:26539105

  1. [Antalgic radiotherapy in lumbosacral carcinomatous neuropathies].

    PubMed

    Russi, E G; Gaeta, M; Pergolizzi, S; Settineri, N; Frosina, P; De Renzis, C

    1994-06-01

    Lumbosacral carcinomatous neuropathy (LCN) may be caused by infiltration or compression of the lumbosacral plexi and nerves from intrapelvic or paraaortic neoplasms. The authors submitted 23 patients complaining of LCN with CT documented intrapelvic or paraaortic tumors to palliative radiotherapy. Megavoltage external beam irradiation was administered using a 6-MV linear accelerator. Treatment field sizes ranged from 56 cm2 to 235 cm2 (mean: 150.54 cm2) and encompassed only the site where the disease involved the lumbosacral plexus or its branches. > or = 3 Gy/day fractions were used. Twenty-one of 22 assessable patients (95.4%) obtained LCN pain relief; 19 (86.3%) obtained complete LCN pain relief. The median time to pain progression (TPP) was 150 days (range: 39-510 days). The median survival was 165 days. Seven patients were LCN pain-free at death. Two patients are alive and LCN pain-free. The remaining 12 patients had recurrent LCN pain: four of them were reirradiated at the site of previous neuropathy and only two had partial relief again. The authors conclude that it is advisable to submit to palliative radiotherapy the inoperable disseminated and/or recurrent cancer patients complaining of LCN, to use large fractions not to occupy the extant time of their already short life-expectancy, and to design small fields to avoid acute side-effects. PMID:7518934

  2. The Impact of Field Trips and Family Involvement on Mental Models of the Desert Environment

    ERIC Educational Resources Information Center

    Judson, Eugene

    2011-01-01

    This study examined the mental models of the desert environment held by fourth- and seventh-grade students in the USA and whether those mental models could be affected by: (1) classroom field trips to a desert riparian preserve, and (2) interaction with family members at the same preserve. Results generally indicated that students in this study…

  3. High-Dose Conformal Radiotherapy for Patients With Stage III Non-Small-Cell Lung Carcinoma

    SciTech Connect

    Nakayama, Hidetsugu; Satoh, Hiroaki; Kurishima, Koichi; Ishikawa, Hiroichi; Tokuuye, Koichi

    2010-11-01

    Purpose: To determine the effectiveness of high-dose conformal radiotherapy to the involved field for patients with Stage III non-small-cell lung cancer (NSCLC). Methods and Materials: Between May 1999 and April 2006, a total of 100 consecutive patients with inoperable Stage IIIA or IIIB NSCLC with a performance score of 0 to 2 and treatment by radical radiotherapy combined with chemotherapy were included. Up to August 2002, 33 patients underwent conventional radiotherapy of 56 Gy to 66 Gy using anteroposterior opposite ports to the primary tumor and elective lymph nodes (conventional group). After September 2002, the remaining 67 patients underwent high-dose radiotherapy of 66 Gy to 84 Gy to the involved volume with three-dimensional (3-D) conformal radiotherapy (conformal group). Results: The median survival was 13.2 months (95% confidence interval [CI], 7.5-18.5 months) in the conventional group and 17.3 months (95% CI, 10.7- 24.0 months) in the conformal group. The overall survival at 3 years were 9.1% (95% CI, -0.7-18.9%) in the conventional group and 31.0% (95% CI, 18.9-43.1%) in the conformal group; the conformal group had a significantly better overall survival (p < 0.05). The radiotherapy method (hazard ratio = 0.55, p < 0.05) and performance status (hazard ratio = 1.48, p < 0.05) were shown to be statistically significant independent prognostic factors. Conclusions: Based on the practical experience reported here, 3-D conformal radiotherapy allowed dose escalation without excessive toxicity, and may improve overall survival rates for patients with Stage III NSCLC.

  4. Kidney-Sparing Methods for Extended-Field Intensity-Modulated Radiotherapy (EF-IMRT) in Cervical Carcinoma Treatment.

    PubMed

    Kunogi, Hiroaki; Yamaguchi, Nanae; Terao, Yasuhisa; Sasai, Keisuke

    2016-01-01

    Coplanar extended-field intensity-modulated radiation therapy (EF-IMRT) targeting the whole-pelvic and para-aortic lymph nodes in patients with advanced cervical cancer results in impaired creatinine clearance. An improvement in renal function cannot be expected unless low-dose (approximately 10 Gy) kidney exposure is reduced. The dosimetric method should be considered during EF-IMRT planning to further reduce low-dose exposure to the kidneys. To assess the usefulness of non-coplanar EF-IMRT with kidney-avoiding beams to spare the kidneys during cervical carcinoma treatment in dosimetric analysis between non-coplanar and coplanar EF-IMRT, we compared the doses of the target organ and organs at risk, including the kidney, in 10 consecutive patients. To estimate the influence of EFRT on renal dysfunction, creatinine clearance values after treatment were also examined in 18 consecutive patients. Of these 18 patients, 10 patients who were included in the dosimetric analysis underwent extended field radiation therapy (EFRT) with concurrent chemotherapy, and eight patients underwent whole-pelvis radiation therapy with concurrent chemotherapy to treat cervical carcinoma between April 2012 and March 2015 at our institution. In the dosimetric analysis, non-coplanar EF-IMRT was effective at reducing low-dose (approximately 10 Gy) exposure to the kidneys, thus maintaining target coverage and sparing other organs at risk, such as the small bowel, rectum, and bladder, compared with coplanar EF-IMRT. Renal function in all 10 patients who underwent EFRT, including coplanar EF-IMRT (with kidney irradiation), was low after treatment, and differed significantly from that of the eight patients who underwent WPRT (no kidney irradiation) 6 months after the first day of treatment (P = 0.005). In conclusion, non-coplanar EF-IMRT should be considered in patients with advanced cervical cancer, particularly in patients with a long life expectancy or with pre-existing renal dysfunction. PMID

  5. Kidney-Sparing Methods for Extended-Field Intensity-Modulated Radiotherapy (EF-IMRT) in Cervical Carcinoma Treatment

    PubMed Central

    Kunogi, Hiroaki; Yamaguchi, Nanae; Terao, Yasuhisa; Sasai, Keisuke

    2016-01-01

    Coplanar extended-field intensity-modulated radiation therapy (EF-IMRT) targeting the whole-pelvic and para-aortic lymph nodes in patients with advanced cervical cancer results in impaired creatinine clearance. An improvement in renal function cannot be expected unless low-dose (approximately 10 Gy) kidney exposure is reduced. The dosimetric method should be considered during EF-IMRT planning to further reduce low-dose exposure to the kidneys. To assess the usefulness of non-coplanar EF-IMRT with kidney-avoiding beams to spare the kidneys during cervical carcinoma treatment in dosimetric analysis between non-coplanar and coplanar EF-IMRT, we compared the doses of the target organ and organs at risk, including the kidney, in 10 consecutive patients. To estimate the influence of EFRT on renal dysfunction, creatinine clearance values after treatment were also examined in 18 consecutive patients. Of these 18 patients, 10 patients who were included in the dosimetric analysis underwent extended field radiation therapy (EFRT) with concurrent chemotherapy, and eight patients underwent whole-pelvis radiation therapy with concurrent chemotherapy to treat cervical carcinoma between April 2012 and March 2015 at our institution. In the dosimetric analysis, non-coplanar EF-IMRT was effective at reducing low-dose (approximately 10 Gy) exposure to the kidneys, thus maintaining target coverage and sparing other organs at risk, such as the small bowel, rectum, and bladder, compared with coplanar EF-IMRT. Renal function in all 10 patients who underwent EFRT, including coplanar EF-IMRT (with kidney irradiation), was low after treatment, and differed significantly from that of the eight patients who underwent WPRT (no kidney irradiation) 6 months after the first day of treatment (P = 0.005). In conclusion, non-coplanar EF-IMRT should be considered in patients with advanced cervical cancer, particularly in patients with a long life expectancy or with pre-existing renal dysfunction. PMID

  6. Radiotherapy for Head and Neck Cancer

    PubMed Central

    Yeh, Shyh-An

    2010-01-01

    Treatment for patients with head and neck cancer requires a multidisciplinary approach. Radiotherapy is employed as a primary treatment or as an adjuvant to surgery. Each specific subsite dictates the appropriate radiotherapy techniques, fields, dose, and fractionation scheme. Quality of life is also an important issue in the management of head and neck cancer. The radiation-related complications have a tremendous impact on the quality of life. Modern radiotherapy techniques, such as intensity-modulated radiotherapy and image-guided radiotherapy, can offer precise radiation delivery and reduce the dose to the surrounding normal tissues without compromise of target coverage. In the future, efforts should be made in the exploration of novel strategies to improve treatment outcome in patients with head and neck cancer. PMID:22550433

  7. Details of out-field regional recurrence after involved-field irradiation with concurrent chemotherapy for locally advanced esophageal squamous cell carcinoma

    PubMed Central

    Zhang, Xiaoli; Yu, Jinming; Li, Minghuan; Zhu, Hui

    2016-01-01

    Background The purpose of this study was to describe the patterns of out-field regional recurrence after involved-field irradiation (IFI) in definitive concurrent chemoradiotherapy (CCRT) for locally advanced esophageal squamous cell carcinoma (LA-ESCC) and identify the possible risk factors. Patients and methods Eighty patients with LA-ESCC who received CCRT with IFI between January 2003 and January 2009 at the Shandong Cancer Hospital were recruited and analyzed. Imaging scans demonstrating first sites of failure were compared with original computed tomography-based radiation treatment plans, and failure patterns were defined as in-field, outfield regional (failures in initially uninvolved regional nodes), and distant failures. Results After a median follow-up time of 52.6 months, 24 patients had evidence of out-field regional failure, 43 patients had evidence of in-field failure, and 33 patients had the evidence of distant failure. Multivariate analysis revealed that out-field regional failure was associated with clinical tumor status (T4 vs T1–3, odds ratio [OR] =6.547, P=0.002), tumor length (>8 cm vs ≤8 cm, OR =4.130, P=0.036), response to CCRT (complete response vs no complete response, OR =2.646, P=0.035), and in-field failure (no in-field failure vs in-field failure, OR =1.32, P=0.016). Survival analyses indicated that, compared to in-field failure or distant failure alone group, out-field regional failure alone group tended to have longer overall (P=0.006) and progression-free survival (P=0.164). Conclusion Our data suggested that the predominant failure pattern after IFI was not out-field regional failure, which also did not influence survival significantly, and that out-field regional failure did not shorten the time to disease recurrence, which also did not influence survival significantly. In addition, out-field regional failure was likely to appear later than in-field and distant failures. The relatively advanced local disease followed by poor

  8. Consolidation Radiotherapy in Primary Central Nervous System Lymphomas: Impact on Outcome of Different Fields and Doses in Patients in Complete Remission After Upfront Chemotherapy

    SciTech Connect

    Ferreri, Andres Jose Maria; Verona, Chiara; Politi, Letterio Salvatore; Chiara, Anna; Perna, Lucia; Villa, Eugenio; Reni, Michele

    2011-05-01

    Purpose: Avoidance radiotherapy or reduction of irradiation doses in patients with primary central nervous system lymphoma (PCNSL) in complete remission (CR) after high-dose methotrexate (HD-MTX)-based chemotherapy has been proposed to minimize the neurotoxicity risk. Nevertheless, no study has focused on the survival impact of radiation parameters, as far as we know, and the optimal radiation schedule remains to be defined. Methods and Materials: The impact on outcome and neurologic performance of different radiation fields and doses was assessed in 33 patients with PCNSL who achieved CR after MTX-containing chemotherapy and were referred to consolidation whole-brain irradiation (WBRT). Patterns of relapse were analyzed on computed tomography-guided treatment planning, and neurologic impairment was assessed by the Mini Mental Status Examination. Results: At a median follow-up of 50 months, 21 patients are relapse-free (5-year failure-free survival [FFS], 51%). WBRT doses {>=}40 Gy were not associated with improved disease control in comparison with a WBRT dose of 30 to 36 Gy (relapse rate, 46% vs. 30%; 5-year FFS, 51% vs. 50%; p = 0.26). Disease control was not significantly different between patients irradiated to the tumor bed with 45 to 54 Gy or with 36 to 44 Gy, with a 5-year FFS of 35% and 44% (p = 0.43), respectively. Twenty patients are alive (5-year overall survival, 54%); WB and tumor bed doses did not have an impact on survival. Impairment as assessed by the Mini Mental Status Examination was significantly more common in patients treated with a WBRT dose {>=}40 Gy. Conclusion: Consolidation with WBRT 36 Gy is advisable in patients with PCNSL in CR after HD-MTX-based chemotherapy. Higher doses do not change the outcome and could increase the risk of neurotoxicity.

  9. Field detection capability of immunochemical assays during criminal investigations involving the use of TNT.

    PubMed

    Romolo, Francesco Saverio; Ferri, Elida; Mirasoli, Mara; D'Elia, Marcello; Ripani, Luigi; Peluso, Giuseppe; Risoluti, Roberta; Maiolini, Elisabetta; Girotti, Stefano

    2015-01-01

    The capability to collect timely information about the substances employed on-site at a crime scene is of fundamental importance during scientific investigations in crimes involving the use of explosives. TNT (2,4,6-trinitrotoluene) is one of the most employed explosives in the 20th century. Despite the growing use of improvised explosives, criminal use and access to TNT is not expected to decrease. Immunoassays are simple and selective analytical tests able to detect molecules and their immunoreactions can occur in portable formats for use on-site. This work demonstrates the application of three immunochemical assays capable of detecting TNT to typical forensic samples from experimental tests: an indirect competitive ELISA with chemiluminescent detection (CL-ELISA), a colorimetric lateral flow immunoassay (LFIA) based on colloidal gold nanoparticles label, and a chemiluminescent-LFIA (CL-LFIA). Under optimised working conditions, the LOD of the colorimetric LFIA and CL-LFIA were 1 μg mL(-1) and 0.05 μg mL(-1), respectively. The total analysis time for LFIAs was 15 min. ELISA proved to be a very effective laboratory approach, showing very good sensitivity (LOD of 0.4 ng mL(-1)) and good reproducibility (CV value about 7%). Samples tested included various materials involved in controlled explosions of improvised explosive devices (IEDs), as well as hand swabs collected after TNT handling tests. In the first group of tests, targets covered with six different materials (metal, plastic, cardboard, carpet fabric, wood and adhesive tape) were fixed on top of wooden poles (180 cm high). Samples of soil from the explosion area and different materials covering the targets were collected after each explosion and analysed. In the second group of tests, hand swabs were collected with and without hand washing after volunteers simulated the manipulation of small charges of TNT. The small amount of solution required for each assay allows for several analyses. Results of

  10. Clinical quality standards for radiotherapy

    PubMed Central

    2012-01-01

    Aim of the study The technological progress that is currently being witnessed in the areas of diagnostic imaging, treatment planning systems and therapeutic equipment has caused radiotherapy to become a high-tech and interdisciplinary domain involving staff of various backgrounds. This allows steady improvement in therapy results, but at the same time makes the diagnostic, imaging and therapeutic processes more complex and complicated, requiring every stage of those processes to be planned, organized, controlled and improved so as to assure high quality of services provided. The aim of this paper is to present clinical quality standards for radiotherapy as developed by the author. Material and methods In order to develop the quality standards, a comparative analysis was performed between European and Polish legal acts adopted in the period of 1980-2006 and the universal industrial ISO 9001:2008 standard, defining requirements for quality management systems, and relevant articles published in 1984-2009 were reviewed, including applicable guidelines and recommendations of American, international, European and Polish bodies, such as the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy & Oncology (ESTRO), the International Atomic Energy Agency (IAEA), and the Organisation of European Cancer Institutes (OECI) on quality assurance and management in radiotherapy. Results As a result, 352 quality standards for radiotherapy were developed and categorized into the following three groups: 1 – organizational standards; 2 – physico-technical standards and 3 – clinical standards. Conclusion Proposed clinical quality standards for radiotherapy can be used by any institution using ionizing radiation for medical purposes. However, standards are of value only if they are implemented, reviewed, audited and improved, and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:23788854

  11. Role of FDG-PET in the Definition of Involved-Field Radiation Therapy and Management for Pediatric Hodgkin's Lymphoma

    SciTech Connect

    Lang Robertson, Virginia; Anderson, Cynthia S.; Keller, Frank G.; Halkar, Raghuveer; Goodman, Michael; Marcus, Robert B.; Esiashvili, Natia

    2011-06-01

    Purpose: To evaluate positron emission tomography-computed tomography (PET-CT) influences in involved-field radiation therapy (IFRT) field design in pediatric Hodgkin's lymphoma (HL). Materials and Methods: From June 2003 to February 2008, 30 pediatric HL patients were treated at Children's Healthcare of Atlanta (CHOA) and Emory University Department of Radiation Oncology with both chemotherapy and IFRT. Diagnostic contrast-enhanced CT and PET-CT were coregistered using image fusion software. Both were reviewed for all potential sites of involvement and correlated to determine concordance and discordance. They were used in IFRT planning to determine the influence of PET-CT on target volumes and field design. Results: There were 546 regions analyzed by both PET and CT modalities. Image sets were concordant in 468 regions and discordant in 78, yielding 86% concordance overall. Analysis by weighted {kappa} statistic showed 'intermediate to good' fit overall and for nodal sites, but 'poor' agreement for extranodal sites. If discordant, a site was most likely PET+/CT-. Integration of PET information caused a change in staging in 15 (50%) patients, 7 upstaged and 8 downstaged. The IFRT volumes were adjusted on the basis of initial PET-CT finding in 21 (70%) patients, with 32 sites added and 15 excluded. There were four relapses, only one outside IFRT fields, but all were successfully salvaged. Conclusion: PET-CT represents an important tool in the management of pediatric patients with HL and has a substantial influence on both initial staging and radiation treatment target definition and field design.

  12. SU-E-T-592: Relationship Between Dose of Distribution and Area of Segment Fields Among Different Intensity-Modulated Radiotherapy Planning in Cervix Cancer

    SciTech Connect

    Qiu, R; Wang, Y; Cao, Y; Zhang, R; Shang, K; Chi, Z

    2014-06-01

    Purpose: In premise of uninfluenced to dose distribution of tumor target and organ at risk(OAR) in cervical cancer,area of segment fields was changed to increase efficacy and optimize treatment method by designing different plan of intensity modulated radiotherapy(IMRT). Methods: 12 cases of cervical cancer were confirmed in pathology and treated with step and shoot IMRT. Dose of PTV was 50Gy/25fractions. Every patient was designed 9 treatment plans of IMRT by Pinnacle 8.0m planning system,each plan was used with 9 beams of uniform distribution and fixing incidence direction(200°,240°,280°,320°,0°,40°,80°,120°and 160°respectively),and designed for delivery on Elekta Synergy linear accelerator. All plans were optimized with the direct machine parameter optimization(DMPO) algorithm using the same set of optimization objectives. Number of maximum segment field was defined at 80 and minimum MU in each segment was 5MU,and minimal segment area was 2*1cm{sup 2},2*2cm{sup 2},3*3cm{sup 2},4*4cm{sup 2},5*5cm{sup 2},6*6cm{sup 2},7*7cm{sup 2},8*8cm{sup 2}and 9*9cm{sup 2},respectively.Coverage,homogeneity and conformity of PTV,sparing of OAR, MU and number of segment were compared. Results: In this group, mean volume of PTV was 916.8±228.7 cm{sup 3}. Compared with the area of minimal segment field increased from 2*1cm{sup 2} to 9*9 cm{sup 2},the number of mean MU was decreased from 1405±170 to 490±47 and the number of segment field was reduced from 76±4 to 39±7 respectively(p<0.05). When the limit of minimal segment area was increased from 2*1cm{sup 2} to 7*7 cm{sup 2},dose distribution of PTV,OAR,CI,HI and V{sub 2} {sub 3} were not different (p>0.05),but when the minimal segment area was 8*8 cm{sup 2} and 9*9 cm{sup 2},they were changed compared with 7*7 cm{sup 2} and below(p<0.05). Conclusion: The minimal segment field of IMRT plan designed by Pinnacle 8.0m planning system in cervical carcinoma should be enlarge reasonably and minimal segment area of 7*7 cm

  13. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change.

    PubMed

    Zhu, Yefei; Wang, Chunlei; Chen, Xiaowu; Guan, Guijun

    2016-07-01

    We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf's role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels. PMID:27230579

  14. Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: A planning comparison study

    SciTech Connect

    Sakanaka, Katsuyuki; Mizowaki, Takashi; Sato, Sayaka; Ogura, Kengo; Hiraoka, Masahiro

    2013-07-01

    This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor units were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.

  15. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  16. Conformal Radiotherapy Facilitates the Delivery of Concurrent Chemotherapy and Radiotherapy: A Case of Primitive Neuroectodermal Tumour of the Chest Wall

    PubMed Central

    Twyman, N.; Earl, H. M.; Burnet, N. G.

    2000-01-01

    We illustrate the principle of conformal radiotherapy by discussing the case of a patient with a primitive neuroectodermal tumour of the chest wall. Recent advances in radiotherapy planning enable precise localization of the planning target volume (PTV) and normal organs at risk of irradiation. Customized blocks are subsequently designed to produce a treatment field that ‘conforms’ to the PTV. The use of conformal radiotherapy (CRT) in this case facilitated the delivery of concurrent chemotherapy and radiotherapy by significantly reducing the volume of red marrow irradiated.The lack of acute and late toxicities was attributed to optimal exclusion of normal tissues from the treatment field, made possible by CRT. PMID:18521292

  17. Morbidity and survival patterns in patients after radical hysterectomy and postoperative adjuvant pelvic radiotherapy

    SciTech Connect

    Fiorica, J.V.; Roberts, W.S.; Greenberg, H.; Hoffman, M.S.; LaPolla, J.P.; Cavanagh, D. )

    1990-03-01

    Morbidity and survival patterns were reviewed in 50 patients who underwent radical hysterectomy, pelvic lymphadenectomy, and adjuvant postoperative pelvic radiotherapy for invasive cervical cancer. Ninety percent of the patients were FIGO stage IB, and 10% were clinical stage IIA or IIB. Indications for adjuvant radiotherapy included pelvic lymph node metastasis, large volume, deep stromal penetration, lower uterine segment involvement, or capillary space involvement. Seventy-two percent of the patients had multiple high-risk factors. An average of 4700 cGy of whole-pelvis radiotherapy was administered. Ten percent of the patients suffered major gastrointestinal complications, 14% minor gastrointestinal morbidity, 12% minor genitourinary complications, one patient a lymphocyst, and one patient lymphedema. Of the five patients with major gastrointestinal morbidity, all occurred within 12 months of treatment. Three patients required intestinal bypass surgery for distal ileal obstructions and all are currently doing well and free of disease. All of the patients who developed recurrent disease had multiple, high-risk factors. The median time of recurrence was 12 months. All patients recurred within the radiated field. Actuarial survival was 90% and disease-free survival 87% at 70 months. It is our opinion that the morbidity of postoperative pelvic radiotherapy is acceptable, and benefit may be gained in such a high-risk patient population.

  18. Rapid field identification of subjects involved in firearm-related crimes based on electroanalysis coupled with advanced chemometric data treatment.

    PubMed

    Cetó, Xavier; O'Mahony, Aoife M; Samek, Izabela A; Windmiller, Joshua R; del Valle, Manel; Wang, Joseph

    2012-12-01

    We demonstrate a novel system for the detection and discrimination of varying levels of exposure to gunshot residue from subjects in various control scenarios. Our aim is to address the key challenge of minimizing the false positive identification of individuals suspected of discharging a firearm. The chemometric treatment of voltammetric data from different controls using Canonical Variate Analysis (CVA) provides several distinct clusters for each scenario examined. Multiple samples were taken from subjects in controlled tests such as secondary contact with gunshot residue (GSR), loading a firearm, and postdischarge of a firearm. These controls were examined at both bare carbon and gold-modified screen-printed electrodes using different sampling methods: the 'swipe' method with integrated sampling and electroanalysis and a more traditional acid-assisted q-tip swabbing method. The electroanalytical fingerprint of each sample was examined using square-wave voltammetry; the resulting data were preprocessed with Fast Fourier Transform (FFT), followed by CVA treatment. High levels of discrimination were thus achieved in each case over 3 classes of samples (reflecting different levels of involvement), achieving maximum accuracy, sensitivity, and specificity values of 100% employing the leave-one-out validation method. Further validation with the 'jack-knife' technique was performed, and the resulting values were in good agreement with the former method. Additionally, samples from subjects in daily contact with relevant metallic constituents were analyzed to assess possible false positives. This system may serve as a potential method for a portable, field-deployable system aimed at rapidly identifying a subject who has loaded or discharged a firearm to verify involvement in a crime, hence providing law enforcement personnel with an invaluable forensic tool in the field. PMID:23121395

  19. [Radiotherapy for Thyroid Cancer].

    PubMed

    Jingu, Keiichi; Maruoka, Shin; Umezawa, Rei; Takahashi, Noriyoshi

    2015-06-01

    Radioactive 131I therapy for differentiated thyroid cancer has been used since the 1940s and is an established and effective treatment. In contrast, external beam radiotherapy (EBRT) was considered to be effective for achieving local control but not for prolonging survival. Although clinicians were hesitant to administer EBRT owing to the potential radiation-induced adverse effects of 2 dimensional (2D)-radiotherapy until 2000, it is expected that adverse effects will be reduced and treatment efficacy improved through the introduction of more advanced techniques for delivering radiation (eg, 3D-radiotherapy and intensity modulated radiotherapy [IMRT]). The prognosis of undifferentiated thyroid cancer is known to be extremely bad, although in very rare cases, multimodality therapy (total or subtotal resection, chemotherapy, and radiotherapy) has allowed long-term survival. Here, we report the preliminary results of using hypofractionated radiotherapy for undifferentiated thyroid cancer in our institution. PMID:26199238

  20. Technical advances in external radiotherapy for hepatocellular carcinoma

    PubMed Central

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-01-01

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  1. Technical advances in external radiotherapy for hepatocellular carcinoma.

    PubMed

    Park, Shin-Hyung; Kim, Jae-Chul; Kang, Min Kyu

    2016-08-28

    Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy. PMID:27621577

  2. Neutrons and charged particles in radiotherapy. Oncology overview

    SciTech Connect

    Not Available

    1984-10-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Neutrons and charged particles in radiotherapy of head and neck cancer; Neutrons and charged particles in radiotherapy of central nervous system cancer; Neutrons and charged particles in radiotherapy of digestive cancer; Neutrons and charged particles in radiotherapy of gynecologic cancer; Neutrons and charged particles in radiotherapy of musculoskeletal cancer; Neutrons and charged particles in radiotherapy of other organ site cancer; Neutrons and charged particles in radiotherapy of multiple site cancer; Neutrons and charged particles in radiotherapy--relative biological effectiveness; Neutrons and charged particles in radiotherapy--instrumentation and technology; Neutrons and charged particles in radiotherapy--reviews.

  3. Radiotherapy of Cervical Cancer.

    PubMed

    Vordermark, Dirk

    2016-01-01

    Curative-intent radical radiotherapy of cervical cancer consists of external-beam radiotherapy, brachytherapy, and concomitant chemotherapy with cisplatin. For each element, new developments aim to improve tumor control rates or treatment tolerance. Intensity-modulated radiotherapy (IMRT) has been shown to reduce gastrointestinal toxicity and can be used to selectively increase the radiotherapy dose. Individualized, image-guided brachytherapy enables better adaptation of high-dose volumes to the tumor extension. Intensification of concomitant or sequential systemic therapy is under evaluation. PMID:27614991

  4. Radiotherapy Treatment Planning for Testicular Seminoma

    SciTech Connect

    Wilder, Richard B.; Buyyounouski, Mark K.; Efstathiou, Jason A.; Beard, Clair J.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapy based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).

  5. Planning National Radiotherapy Services

    PubMed Central

    Rosenblatt, Eduardo

    2014-01-01

    Countries, states, and island nations often need forward planning of their radiotherapy services driven by different motives. Countries without radiotherapy services sponsor patients to receive radiotherapy abroad. They often engage professionals for a feasibility study in order to establish whether it would be more cost-beneficial to establish a radiotherapy facility. Countries where radiotherapy services have developed without any central planning, find themselves in situations where many of the available centers are private and thus inaccessible for a majority of patients with limited resources. Government may decide to plan ahead when a significant exodus of cancer patients travel to another country for treatment, thus exposing the failure of the country to provide this medical service for its citizens. In developed countries, the trigger has been the existence of highly visible waiting lists for radiotherapy revealing a shortage of radiotherapy equipment. This paper suggests that there should be a systematic and comprehensive process of long-term planning of radiotherapy services at the national level, taking into account the regulatory infrastructure for radiation protection, planning of centers, equipment, staff, education programs, quality assurance, and sustainability aspects. Realistic budgetary and cost considerations must also be part of the project proposal or business plan. PMID:25505730

  6. 3.4 Radiotherapy

    NASA Astrophysics Data System (ADS)

    Kramer, H.-M.; Selbach, H.-J.; Vatnitsky, S.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '3.4 Radiotherapy' of the Chapter '3 Dosimetry in Diagnostic Radiology and Radiotherapy' with the contents:

  7. K-12 educator involvement in the Mars Pathfinder field trips in the Channeled Scabland of Washington and Idaho

    NASA Astrophysics Data System (ADS)

    Edgett, Kenneth S.

    2000-03-01

    In September 1995, thirteen K-12 educators were completely immersed in an activity in which they worked with engineers and scientists as they assessed potential hazards and previewed the possible geology of the site that had been selected for the July 1997 landing of Mars Pathfinder. This site, located in the Ares Vallis outflow channel on Mars, was expected to be quite similar to the terrain of the Channeled Scabland of Washington and Idaho. The 13 educators were tasked with bringing their first-hand experience back to their hometowns and sharing what they had learned with local students, colleagues, and families. In addition, the educators helped conduct public outreach and teacher-training activities in the towns encountered during the field trips. For a wider outreach, the trip activities were also documented for television and print media. For many of the 13 educators, their connection to the Mars mission continued for more than two years, and some remain involved with this type of activity today. For some, these events changed the course and/or outlook of their careers. These activities and events can serve as a model for others considering ways to connect educators, children, and communities to high-visibility geoscience research projects.

  8. ANDRILL: INVOLVING TEACHERS IN FIELD RESEARCH ENHANCES THE TRANSFER OF SCIENTIFIC KNOWLEDGE TO CLASSROOMS AND TO OTHER EDUCATORS

    NASA Astrophysics Data System (ADS)

    Cattadori, M.; Huffman, L. T.; Trummel, B.

    2009-12-01

    For most educators, the end of a field research experience is truly the beginning. From the knowledge gained and the excitement of living and working in a harsh environment like Antarctica, ARISE (ANDRILL Research Immersion for Science Educators) participants create enhanced learning experiences and resources for their students and for the professional development of other teachers. ANDRILL (Antarctic geological DRILLing) is an multi-national and interdisciplinary research project involving Italy, Germany , New Zealand, and USA. The core concept of its Education and Public Outreach Program is to embed educators as integral members on the science research teams, allowing them to participate in every phase of the mission. Their primary goal is to develop effective and innovative educational approaches for the communication of the scientific and technical aspects of the drilling program. ANDRILL has developed an exemplary teacher research experience model that differs from most by supporting a collaborative team of international educators rather than just one teacher. During the first two years of drilling projects, 2006 and 2007, ANDRILL took 16 educators from 4 countries to Antarctica. From those experiences, a growing collaborative network of polar science educators is nurtured, many valuable resources and examples of professional development have been created, and lessons have been learned and evaluated for future teacher research immersion experiences. An Italian ARISE participant and ANDRILL’s Education and Outreach Coordinator will present how ARISE has been at the core of developing transformational programs and resources in both countries including: [1] Flexhibit, a digital series of climate change materials designed for informal and formal learning environments that have been translated into Italian, German, French, Arabic, Spanish, and New Zealand English, (2) C2S2: Climate Change Student Summits, which provide professional development and resources for

  9. Low-Dose Palliative Radiotherapy for Cutaneous B- and T-Cell Lymphomas

    SciTech Connect

    Neelis, Karen J. Schimmel, Erik C.; Vermeer, Maarten H.; Senff, Nancy J.; Willemze, Rein; Noordijk, Evert M.

    2009-05-01

    Purpose: To determine the efficacy of low-dose palliative radiotherapy for both low-grade malignant cutaneous B-cell lymphomas (CBCLs) and cutaneous T-cell lymphomas (mycosis fungoides). Methods and Materials: A total of 18 patients with low-grade CBCL (10 primary cutaneous marginal zone B-cell and 8 primary cutaneous follicle center lymphomas) with 44 symptomatic plaques and tumors underwent low-dose (4 Gy in two fractions) local radiotherapy. A total of 31 patients with mycosis fungoides were treated at 82 symptomatic sites, initially with 4 Gy and later with 8 Gy in two fractions. Results: The complete response rate for CBCL lesions was 72%. Of the 44 B-cell lymphoma lesions, 13 were re-treated to the same site after a median of 6.3 months because of persistent (n = 8) or recurrent (n = 5) symptomatic disease. Of the mycosis fungoides patients treated with 4 Gy in two fractions (17 lesions), 70% failed to respond. Increasing the dose to 8 Gy in two fractions yielded a complete response rate of 92% (60 of 65 lesions). The patients in whom low-dose radiotherapy failed were retreated with 20 Gy in eight fractions. Conclusion: Our results have demonstrated that low-dose involved-field radiotherapy induces a high response rate in both CBCL and cutaneous T-cell lymphoma lesions without any toxicity. Therefore, this treatment is now our standard palliative treatment. At progression, it is safe and feasible to apply greater radiation doses.

  10. Data-driven Markov models and their application in the evaluation of adverse events in radiotherapy.

    PubMed

    Abler, Daniel; Kanellopoulos, Vassiliki; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken

    2013-07-01

    Decision-making processes in medicine rely increasingly on modelling and simulation techniques; they are especially useful when combining evidence from multiple sources. Markov models are frequently used to synthesize the available evidence for such simulation studies, by describing disease and treatment progress, as well as associated factors such as the treatment's effects on a patient's life and the costs to society. When the same decision problem is investigated by multiple stakeholders, differing modelling assumptions are often applied, making synthesis and interpretation of the results difficult. This paper proposes a standardized approach towards the creation of Markov models. It introduces the notion of 'general Markov models', providing a common definition of the Markov models that underlie many similar decision problems, and develops a language for their specification. We demonstrate the application of this language by developing a general Markov model for adverse event analysis in radiotherapy and argue that the proposed method can automate the creation of Markov models from existing data. The approach has the potential to support the radiotherapy community in conducting systematic analyses involving predictive modelling of existing and upcoming radiotherapy data. We expect it to facilitate the application of modelling techniques in medical decision problems beyond the field of radiotherapy, and to improve the comparability of their results. PMID:23824126

  11. Osteoradionecrosis of the Ribs following Breast Radiotherapy

    PubMed Central

    Nicholls, Luke; Gorayski, Peter; Harvey, Jennifer

    2015-01-01

    Introduction Osteoradionecrosis (ORN) of the chest wall is a rare complication after whole-breast radiotherapy (RT). Herein, we report a case of ORN involving the underlying ribs following adjuvant whole-breast RT using standard fractionation and conduct a review of the literature. Case Report A previously well 43-year-old female with right-sided, early-stage, node-negative breast cancer was treated with breast-conserving surgery. She subsequently underwent adjuvant whole-breast RT receiving 50 Gy in 25 fractions over 5 weeks using standard tangential photon fields with 6 MV photons followed by an electron boost of 10 Gy in 5 fractions according to International Commission on Radiation Units (ICRU) requirements. Eleven months after RT, the patient developed right lateral chest wall pain, with magnetic resonance imaging (MRI) demonstrating two fractures involving the underlying right fifth and sixth ribs associated with fatty marrow changes in the second to sixth ribs, thus raising the possibility of ORN. Treatments including hyperbaric oxygen, pentoxifylline and vitamin E were used with symptomatic improvements. There was demonstrable resolution on follow-up MRI at 2.5 years. Conclusion The incidence of ORN utilising modern RT techniques and standard fractionation is rare. Numerous treatments are available, with variable response rates. Emerging evidence of predictive gene profiling to estimate the risk of radiation sensitivity may assist in individualising preventative strategies to mitigate the risk of ORN. PMID:26351442

  12. Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol.

    PubMed

    Wilkins, Katie A; Bosch, Maurice; Haque, Tamanna; Teng, Nianjun; Poulter, Natalie S; Franklin-Tong, Vernonica E

    2015-03-01

    Self-incompatibility (SI) is an important genetically controlled mechanism to prevent inbreeding in higher plants. SI involves highly specific interactions during pollination, resulting in the rejection of incompatible (self) pollen. Programmed cell death (PCD) is an important mechanism for destroying cells in a precisely regulated manner. SI in field poppy (Papaver rhoeas) triggers PCD in incompatible pollen. During SI-induced PCD, we previously observed a major acidification of the pollen cytosol. Here, we present measurements of temporal alterations in cytosolic pH ([pH]cyt); they were surprisingly rapid, reaching pH 6.4 within 10 min of SI induction and stabilizing by 60 min at pH 5.5. By manipulating the [pH]cyt of the pollen tubes in vivo, we show that [pH]cyt acidification is an integral and essential event for SI-induced PCD. Here, we provide evidence showing the physiological relevance of the cytosolic acidification and identify key targets of this major physiological alteration. A small drop in [pH]cyt inhibits the activity of a soluble inorganic pyrophosphatase required for pollen tube growth. We also show that [pH]cyt acidification is necessary and sufficient for triggering several key hallmark features of the SI PCD signaling pathway, notably activation of a DEVDase/caspase-3-like activity and formation of SI-induced punctate actin foci. Importantly, the actin binding proteins Cyclase-Associated Protein and Actin-Depolymerizing Factor are identified as key downstream targets. Thus, we have shown the biological relevance of an extreme but physiologically relevant alteration in [pH]cyt and its effect on several components in the context of SI-induced events and PCD. PMID:25630437

  13. Towards using a Monolithic Active Pixel Sensor for in vivo beam monitoring of Intensity Modulated Radiotherapy

    NASA Astrophysics Data System (ADS)

    Page, R. F.; Abbott, N. L.; Davies, J.; Dyke, E. L.; Randles, H. J.; Velthuis, J. J.; Fletcher, S.; Gregory, S. D.; Hall, C.; John, A.; Lawrence, H.; Stevens, P. H.; Hugtenburg, R. P.; Tunbridge, V.

    2013-12-01

    The use of Intensity Modulated Radiotherapy (IMRT) for cancer treatments is entering wider use. These treatments involve using a complex configuration of field modifying components, known as Multileaf Collimators (MLC), to dynamically shape the beam. A treatment consists of a sequence of irregular shaped fields, which means real time monitoring and verification is essential. In the current framework the treatment plans are verified before the patient is treated, but not during. The aim of our collaboration is to monitor the treatment being given to the patient. This is achieved by placing a camera system using an ultra-thin Monolithic Active Pixel Sensor (MAPS) upstream of the patient.

  14. Molecular Imaging and Radiotherapy: Theranostics for Personalized Patient Management

    PubMed Central

    Velikyan, Irina

    2012-01-01

    This theme issue presents current achievements in the development of radioactive agents, pre-clinical and clinical molecular imaging, and radiotherapy in the context of theranostics in the field of oncology. PMID:22768022

  15. Involved Field Radiation After Autologous Stem Cell Transplant for Diffuse Large B-Cell Lymphoma in the Rituximab Era

    SciTech Connect

    Biswas, Tithi; Dhakal, Sughosh; Chen Rui; Hyrien, Ollivier; Bernstein, Steven; Friedberg, Jonathan W.; Fisher, Richard I.; Liesveld, Jane; Phillips, Gordon; Constine, Louis S.

    2010-05-01

    Purpose: For patients with recurrent or refractory large B-cell non-Hodgkin's lymphoma, high-dose chemotherapy and autologous stem cell transplant (ASCT) is the treatment of choice. We evaluated the role of involved field radiation therapy (IFRT) post-ASCT for patients initially induced with cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP) or, more recently, rituximab-CHOP (R-CHOP). Materials and Methods: Between May 1992 and April 2005, 176 patients underwent ASCT for recurrent or refractory large B-cell non-Hodgkin's lymphoma; 164 patients were evaluable for endpoint analysis. Fifty percent of the CHOP group (n = 131), and 39% of the R-CHOP group (n = 33), received IFRT. Follow-up from the time of transplant was a median/mean of 1.7/3 years (range, 0.03-13 years). Results: The 5-year overall survival (OS) and disease-specific survival (DSS) improved with IFRT in both the R-CHOP (p = 0.006 and 0.02, respectively) and CHOP (p = 0.02 and p = 0.04, respectively) groups. IFRT was associated with a 10% (p = 0.17) reduction in local failure, alone or with a distant site. On univariate analysis, IFRT was associated with superior OS (hazard ratio [HR] = 0.50 [95% CI 0.32, 0.78]; p = 0.002) and DSS (HR = 0.53 [95% CI 0.33, 0.86]; p = 0.009). Presence of B symptoms was adverse (p = 0.03). On multivariate analysis, only IFRT was associated with significant improvement in OS (HR = 0.35 [0.18, 0.68]; p = 0.002) and DSS (HR = 0.39 [95% CI 0.18, 0.84]; p = 0.01). Conclusions: Recognizing that positive and negative patient selection bias exists for the use of IFRT post-ASCT, patients initially treated with CHOP or R-CHOP and who undergo ASCT for recurrent or refractory disease may benefit from subsequent IFRT presumably due to enhanced local control that can translate into a survival advantage.

  16. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  17. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2014-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  18. A systematic review of antiproton radiotherapy

    NASA Astrophysics Data System (ADS)

    Bittner, Martin-Immanuel; Grosu, Anca-Ligia; Wiedenmann, Nicole; Wilkens, Jan

    2013-01-01

    Antiprotons have been proposed as possible particles for radiotherapy; over the past years, the renewed interest in the potential biomedical relevance led to an increased research activity. It is the aim of this review to deliver a comprehensive overview regarding the evidence accumulated so far, analysing the background and depicting the current status of antiprotons in radiotherapy. A literature search has been conducted, including major scientific and commercial databases. All articles and a number of relevant conference abstracts published in the respective field have been included in this systematic review. The physical basis of antiproton radiotherapy is complex; however, the characterisation of the energy deposition profile supports its potential use in radiotherapy. Also the dosimetry improved considerably over the past few years. Regarding the biological properties, data on the effects on cells are presented; however, definite conclusions regarding the relative biological effectiveness cannot be made at the moment and radiobiological evidence of enhanced effectiveness remains scarce. In addition, there is new evidence supporting the potential imaging properties, for example for online dose verification. Clinical settings which might profit from the use of antiprotons have been further tracked. Judging from the evidence available so far, clinical constellations requiring optimal sparing in the entrance region of the beam and re-irradiations might profit most from antiproton radiotherapy. While several open questions remain to be answered, first steps towards a thorough characterisation of this interesting modality have been made.

  19. Radiotherapy for stage I seminoma of the testis: Organ equivalent dose to partially in-field structures and second cancer risk estimates on the basis of a mechanistic, bell-shaped, and plateau model

    SciTech Connect

    Mazonakis, Michalis Damilakis, John; Varveris, Charalambos; Lyraraki, Efrossyni

    2015-11-15

    Purpose: The aim of the current study was to (a) calculate the organ equivalent dose (OED) and (b) estimate the associated second cancer risk to partially in-field critical structures from adjuvant radiotherapy for stage I seminoma of the testis on the basis of three different nonlinear risk models. Methods: Three-dimensional plans were created for twelve patients who underwent a treatment planning computed tomography of the abdomen. The plans for irradiation of seminoma consisted of para-aortic anteroposterior and posteroanterior fields giving 20 Gy to the target site with 6 MV photons. The OED of stomach, colon, liver, pancreas, and kidneys, that were partially included in the treatment volume, was calculated using differential dose–volume histograms. The mechanistic, bell-shaped, and plateau models were employed for these calculations provided that organ-specific parameters were available for the subsequent assessment of the excess absolute risk (EAR) for second cancer development. The estimated organ-specific lifetime risks were compared with the respective nominal intrinsic probabilities for cancer induction. Results: The mean OED, which was calculated from the patients’ treatment plans, varied from 0.54 to 6.61 Gy by the partially in-field organ of interest and the model used for dosimetric calculations. The difference between the OED of liver derived from the mechanistic model with those from the bell-shaped and plateau models was less than 1.8%. An even smaller deviation of 1.0% was observed for colon. For the rest organs of interest, the differences between the OED values obtained by the examined models varied from 8.6% to 50.0%. The EAR for stomach, colon, liver, pancreas, and kidney cancer induction at an age of 70 yr because of treatment of a typical 39-yr-old individual was up to 4.24, 11.39, 0.91, 3.04, and 0.14 per 10 000 persons-yr, respectively. Patient’s irradiation was found to elevate the lifetime intrinsic risks by 8.3%–63.0% depending

  20. Use of a Conventional Low Neck Field (LNF) and Intensity-Modulated Radiotherapy (IMRT): No Clinical Detriment of IMRT to an Anterior LNF During the Treatment of Head-and Neck-Cancer

    SciTech Connect

    Turaka, Aruna; Li Tianyu; Nicolaou, Nicos; Lango, Miriam N.; Burtness, Barbara; Horwitz, Eric M.; Ridge, John A.; Feigenberg, Steven J.

    2011-01-01

    Purpose: To determine differences in clinical outcomes using intensity-modulated radiotherapy (IMRT) or a standard low neck field (LNF) to treat low neck. Methods and Materials: This is a retrospective, single-institution study. Ninety-one patients with squamous cell carcinoma of the head and neck were treated with curative intent. According to physician preference, some patients were treated with LNF (Planning Target Volume 3) field using a single anterior photon field matched to the IMRT field. Field junctions were not feathered. The endpoints were time to failure and use of a percutaneous endoscopic gastrostomy (PEG) tube (as a surrogate of laryngeal edema causing aspiration), and analysis was done with {chi}{sup 2} and log-rank tests. Results: Median follow-up was 21 months (range, 2-89 months). Median age was 60 years. Thirty-seven patients (41%) were treated with LNF, 84% were Stage III or IV. A PEG tube was required in 30%, as opposed to 33% without the use of LNF. Node 2 or 3 neck disease was treated more commonly without LNF (38% vs. 24%, p = 0.009). Failures occurred in 12 patients (13%). Only 1 patient treated with LNF failed regionally, 4.5 cm above the match line. The 3-year disease-free survival rate was 87% and 79% with LNF and without LNF, respectively (p = 0.2), and the 3-year LR failure rate was 4% and 21%, respectively (p = 0.04). Conclusions: Using LNF to treat the low neck did not increase the risk of regional failure 'in early T and early N diseases' or decrease PEG tube requirements.

  1. Reconstruction of Organ Dose for External Radiotherapy Patients in Retrospective Epidemiologic Studies

    PubMed Central

    Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jongoh; Lee, Choonsik

    2015-01-01

    Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1% and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the Eclipse system directly to a Monte Carlo transport code, X-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10-year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the Eclipse and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to

  2. Reconstruction of organ dose for external radiotherapy patients in retrospective epidemiologic studies.

    PubMed

    Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik

    2015-03-21

    Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10 year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support

  3. Reconstruction of organ dose for external radiotherapy patients in retrospective epidemiologic studies

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik

    2015-03-01

    Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10 year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support

  4. [Radiotherapy of larynx cancers].

    PubMed

    Pointreau, Y; Lafond, C; Legouté, F; Trémolières, P; Servagi-Vernat, S; Giraud, P; Maingon, P; Calais, G; Lapeyre, M

    2016-09-01

    Intensity-modulated radiotherapy is the gold standard in the treatment of larynx cancers (except T1 glottic tumour). Early T1 and T2 tumours may be treated by exclusive radiation or surgery. For tumours requiring total laryngectomy (T2 or T3), induction chemotherapy followed by exclusive radiotherapy or concurrent chemoradiotherapy is possible. For T4 tumour, surgery must be proposed. The treatment of lymph nodes is based on the initial treatment of the primary tumour. In non-surgical procedure, in case of sequential radiotherapy, the curative dose is 70Gy and the prophylactic dose is 50Gy. An integrated simultaneous boost radiotherapy is allowed (70Gy in 2Gy per fraction and 56Gy in 1.8Gy per fraction or 70Gy in 2.12Gy per fraction). Postoperatively, radiotherapy is used in locally advanced cancer with dose levels based on pathologic criteria (66Gy for R1 resection, 50 to 54Gy for complete resection). Volume delineation was based on guidelines. PMID:27521037

  5. Radiotherapy of malignant melanoma

    SciTech Connect

    Cooper, J.S.

    1985-04-01

    The role of radiotherapy in the treatment of malignant melanoma is limited, and surgery generally forms the mainstay of medical practice. However, there are some circumstances in which radiotherapy should be considered the treatment of choice. Symptomatic metastatic lesions in bone or brain can effectively be palliated in a substantial proportion of instances. At the current stage of our knowledge, conventionally fractionated treatment of such lesions forms the standard against which other treatments should be measured. In contrast, metastatic lesions to skin or lymph nodes that do not overlie critical normal structures probably are better treated by high-dose-per-fraction techniques. Radiotherapy may play a definitive role in the treatment of lentigo maligna. The precise optimal energy of the beam to be used remains to be defined. Slightly more penetrating radiation appears to be required for lentigo maligna melanomas. Here, too, the optimal energy remains to be defined. The treatment of nonlentigenous melanomas primarily by radiotherapy is unproved in my opinion. Certainly, the data from the Princess Margaret Hospital is exciting, but I believe it must be corroborated by a well-designed trial before it can be accepted without question. Future directions in treatment of malignant melanoma are likely to include further trials of unconventional fractionation and the use of radiosensitizing agents in conjunction with radiotherapy. The time for dermatologists and radiation therapists to cooperate in such studies is at hand.

  6. Enhancing radiotherapy through a greater understanding of homologous recombination

    PubMed Central

    Barker, Christopher A.; Powell, Simon N.

    2016-01-01

    Radiotherapy for the treatment of cancer can cause a wide range of cellular effects, the most biologically potent of which is the double strand break in DNA. The process of repairing DNA double strand breaks involves one of two major mechanisms: non-homologous end-joining or homologous recombination. In this review, we review the molecular mechanisms of homologous recombination, in particular as it relates to the repair of DNA damage from ionizing radiation. We also present specific situations where homologous recombination may be dysfunctional in human cancers, and how this functional abnormality can be recognized. We also discuss the therapeutic opportunities that can be exploited based on deficiencies in homologous recombination at various steps in the DNA repair pathway. Side-by-side with these potential therapeutic opportunities, we review the contemporary clinical trials in which strategies to exploit these defects in homologous recombination can be enhanced by the use of radiotherapy in conjunction with biologically-targeted agents. We conclude that the field of radiation oncology has only scratched the surface of a potentially highly efficacious therapeutic strategy. PMID:20832019

  7. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations. PMID:16177516

  8. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  9. [Prostate cancer external beam radiotherapy].

    PubMed

    de Crevoisier, R; Pommier, P; Latorzeff, I; Chapet, O; Chauvet, B; Hennequin, C

    2016-09-01

    The prostate external beam radiotherapy techniques are described, when irradiating the prostate or after prostatectomy, with and without pelvic lymph nodes. The following parts are presented: indications of radiotherapy, total dose and fractionation, planning CT image acquisition, volume of interest delineation (target volumes and organs at risk) and margins, Intensity modulated radiotherapy planning and corresponding dose-volume constraints, and finally Image guided radiotherapy. PMID:27516051

  10. Radiotherapy of inoperable lung cancer

    SciTech Connect

    Namer, M.; Lalanne, C.M.; Boublil, J.L.; Hery, M.; Chauvel, P.; Verschoore, J.; Aubanel, J.M.; Bruneton, J.N.

    1980-08-01

    Evaluation of loco-regional results obtained by radiotherapy for 31 patients with inoperable epidermoid lung cancer revealed objective remission (over 50%) in only 25% of patients. These results emphasize the limited effectiveness of radiotherapy in such cases and point out the need for increased research in radiotherapy techniques if survival rates are to be improved.

  11. [Radiotherapy for brain metastases].

    PubMed

    Latorzeff, I; Antoni, D; Gaudaire-Josset, S; Feuvret, L; Tallet-Richard, A; Truc, G; Noël, G

    2016-09-01

    Radiotherapy for brain metastases has become more multifaceted. Indeed, with the improvement of the patient's life expectancy, side effects must be undeniably avoided and the retreatments or multiple treatments are common. The cognitive side effects should be warned and the most modern techniques of radiation therapy are used regularly to reach this goal. The new classifications of patients with brain metastases help guiding treatment more appropriately. Stereotactic radiotherapy has supplanted whole brain radiation therapy both for patients with metastases in place and for those who underwent surgery. Hippocampus protection is possible with intensity-modulated radiotherapy. Its relevance in terms of cognitive functioning should be more clearly demonstrated but the requirement, for using it, is increasingly strong. While addressing patients in palliative phase, the treatment of brain metastases is one of the localisations where technical thinking is the most challenging. PMID:27523410

  12. [Radiotherapy in Europe].

    PubMed

    Verheij, M; Slotman, B J

    2016-01-01

    Radiotherapy plays an important part in the curing of cancer patients and is an effective treatment for tumour-related symptoms. However, in many countries the level of access to this treatment modality is unacceptably low due to shortage of infrastructure, modern apparatus and trained staff. In Europe it is mainly the Eastern European countries that are behind in the provision of and accessibility to radiotherapy. Worldwide investment to narrow the gap would put an end to these undesirable differences. In addition, these investments would deliver economic benefits, especially in low-to-middle income countries. In this article, on the basis of a number of recently published reports, we discuss the differences that exist in the geographical spread of radiotherapy departments and the availability of apparatus within Europe. In conclusion we also take a short look at the Dutch situation. PMID:27334085

  13. Radiotherapy for lung cancer

    SciTech Connect

    Bleehen, N.M.; Cox, J.D.

    1985-05-01

    The role of radiation therapy in the management of lung cancer was reviewed at a workshop held in Cambridge, England, in June 1984. It was concluded that there was a continuing role for radiation therapy in the primary management of small cell lung cancer, including the loco-regional treatment for patients with limited disease. Radical radiotherapy for patients with non-small cell carcinoma could be curative for a proportion of patients with limited disease. Careful planning and quality control was essential. Palliative radiotherapy provided useful treatment for many other patients. Other related aspects of treatment are also presented.

  14. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions

    PubMed Central

    Carroll, Valerie; Demoin, Dustin W.; Hoffman, Timothy J; Jurisson, Silvia S

    2013-01-01

    Summary Radiometals play an important role in diagnostic and therapeutic radiopharmaceuticals. This field of radiochemistry is multidisciplinary, involving radiometal production, separation of the radiometal from its target, chelate design for complexing the radiometal in a biologically stable environment, specific targeting of the radiometal to its in vivo site, and nuclear imaging and/or radiotherapy applications of the resultant radiopharmaceutical. The critical importance of inorganic chemistry in the design and application of radiometal-containing imaging and therapy agents is described from a historical perspective to future directions. PMID:25382874

  15. ASSOCIATION BETWEEN RADIOTHERAPY VS NO RADIOTHERAPY BASED ON EARLY RESPONSE TO VAMP CHEMOTHERAPY AND SURVIVAL AMONG CHILDREN WITH FAVORABLE RISK HODGKIN LYMPHOMA

    PubMed Central

    Metzger, Monika L.; Weinstein, Howard J.; Hudson, Melissa M.; Billett, Amy L.; Larsen, Eric C.; Friedmann, Alison; Howard, Scott C.; Donaldson, Sarah S.; Krasin, Matthew J.; Kun, Larry E.; Marcus, Karen J.; Yock, Torunn I.; Tarbell, Nancy; Billups, Catherine A.; Wu, Jianrong; Link, Michael P.

    2012-01-01

    Context Maintaining excellent cure rates in pediatric Hodgkin lymphoma while minimizing toxicity. Objective To evaluate the efficacy of 4 cycles of vinblastine, Adriamycin, methotrexate, and prednisone (VAMP) in patients with favorable risk Hodgkin lymphoma who achieve a complete response after 2 cycles and do not receive radiotherapy. Design, Setting, and Patients Multi-institutional, unblinded, non-randomized single group phase II clinical trial to assess the need for radiotherapy based on early response to chemotherapy. Eighty-eight eligible patients with Hodgkin lymphoma stage I and II (< 3 nodal sites, no B symptoms, mediastinal bulk, or extranodal extension) enrolled between March 3, 2000 through December 9, 2008. Data frozen March 12, 2012. Interventions Patients who achieved a complete response (n=47) after 2 cycles received no radiotherapy, and those with less than complete response (n=41) were given 25.5 Gy involved field radiotherapy. Main Outcome Measures 2-year event-free survival was the primary outcome measure. A 2-year event-free survival of greater than 90% was desired, and 80% was considered to be unacceptably low. Results Two-year event-free survival was 90.8% (95% CI, 84.7% – 96.9%); for patients who did not require radiotherapy it was 89.4% (95% CI, 80.8% – 98%), compared with 92.5% (95% CI, 84.5% – 100%) for those who did (P=0.61). Most common acute side effects were neuropathic pain (2% of patients), nausea/vomiting (3% of patients), neutropenia (32% of cycles), and febrile neutropenia (2% of patients). Nine patients (10%) were hospitalized 11 times (3% of cycles) for febrile neutropenia or non-neutropenic infection. Long term side effects after radiotherapy were asymptomatic compensated hypothyroidism in 9 patients (10%), osteonecrosis and moderate osteopenia in 2 patients each, subclinical pulmonary dysfunction in 12 patients (26%) and asymptomatic left ventricular dysfunction in 4 patients (5%). No second malignant neoplasms were

  16. Using sediment transport and river restoration to link research and education, and promote K-12 female involvement in STEM fields

    NASA Astrophysics Data System (ADS)

    Yager, E. M.; Bradley-Eitel, K.

    2011-12-01

    The focus of this CAREER award is to better understand and predict the mechanics of sediment transport, to link research and education through courses and shared field sites, and to increase female interest in STEM fields. To accomplish the education component of this proposal we have focused on the following three activities: 1) a Keystone course on the scientific method, 2) a Women Outside with Science (WOWS) camp and 3) a permanent field site for research and education on river processes. In the Keystone Course, students investigated the impact of roughness addition, in sediment-starved river reaches (e.g. downstream of dams), on the retention of gravel used for spawning. They developed research questions and hypotheses, designed and conducted a set of scaled laboratory flume experiments, analyzed their data and wrote a draft manuscript of their results. Student feedback was overwhelmingly positive on the merits of this course, which included hands-on learning of the following: basic sediment transport and fluvial geomorphology, applied statistics, laboratory methods, and scientific writing skills. Students sometimes struggled when flume experiments did not progress as planned, and in the analysis and interpretation of complex data. Some of the students in the course have reanalyzed data, conducted additional experiments and are currently rewriting the manuscript for submission to a peer-reviewed journal. Such a course fundamentally links research and teaching, and provides an introduction to research for advanced undergraduates or beginning graduate students. We have also run one summer WOWS camp, which was a ten day camping and inquiry based research experience for 20 female junior-high and high-school students. The girls studied climate change and water related issues, worked on a restoration project on the Little Salmon River, met with a fish biologist and did fish habitat surveys and studied water quality along the North Fork of the Payette River while on a

  17. The long term follow-up of early stage follicular lymphoma treated with radiotherapy, chemotherapy or combined modality treatment.

    PubMed

    Sancho, Juan-Manuel; García, Olga; Mercadal, Santiago; Pomares, Helena; Fernández-Alvarez, Rubén; González-Barca, Eva; Tapia, Gustavo; González-García, Esther; Moreno, Miriam; Domingo-Domènech, Eva; Sorigué, Marc; Navarro, José-Tomás; Motlló, Cristina; Fernández-de-Sevilla, Alberto; Feliu, Evarist; Ribera, Josep-Maria

    2015-08-01

    Local (involved-field or recently involved-site) radiotherapy is the standard therapy in limited-stage follicular lymphoma (FL). We retrospectively analyzed the value of chemotherapy in 130 patients with limited-stage FL (46 treated with radiotherapy alone [RT group], 30 with radiotherapy plus chemotherapy [COMBINED group] and 43 with chemotherapy alone [CHEMO group], 11 were managed with observation). Ninety-six percent of patients responded (RT 98%, COMBINED 100%, CHEMO 91%, p=0.179), and 37% (40/107) of patients in complete response relapsed (RT 42%, COMBINED 27%, CHEMO 41%, p=0.371). Progression-free survival (PFS) and overall survival (OS) probabilities at 10 years were similar in RT, COMBINED and CHEMO patients (PFS 41%, 61% and 39% [p=0.167], and OS 77%, 81% and 72% [p=0.821], respectively), while the COMBINED group showed a trend to better time-to-progression (TTP 43%, 72% and 47% [p=0.055]). On multivariate analysis, only a FLIPI score ≥2 showed a trend to influence PFS (HR 2.1 [95% confidence interval 0.9-4.6], p=0.067), and OS (HR 2.4 [0.9-6.5], p=0.084), while patients treated with radiotherapy plus chemotherapy (COMBINED group) showed a significantly better TTP compared with those receiving only RT (HR 0.3 [0.1-0.8], p=0.024). In our study no benefit was observed in survival with the use of systemic therapy compared with local radiotherapy. PMID:26122511

  18. Proton beam radiotherapy of iris melanoma

    SciTech Connect

    Damato, Bertil . E-mail: Bertil@damato.co.uk; Kacperek, Andrzej; Chopra, Mona; Sheen, Martin A.; Campbell, Ian R.; Errington, R. Douglas

    2005-09-01

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control.

  19. Graduate student involvement with designing inquiry-based Earth science field projects for the secondary-level classroom

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Scherf, L.; Ward, S.; Cady, P.; Bromley, J.; Varner, R. K.; Froburg, E.

    2008-12-01

    In a secondary-level Earth System Science (ESS) curriculum, the most authentic learning is achieved through the inquiry-based application of real-world research methods in the context of modern understanding of the interconnected components of the Earth System (e.g. lithosphere, hydrosphere, atmosphere, and biosphere). Following the intensive ESST-1 summer institute at UNH, during which teachers enhance their ESS content knowledge via interactions with UNH faculty, staff, and graduate students, each participating teacher is paired with one graduate student fellow for the duration of the school year. This graduate fellow provides a continuing link between the secondary-level school teaching environment and university resources, facilitating the implementation of new content knowledge and current scientific research methodology into the classroom setting. According to the National Science Education Standards (1), scientific inquiry is the central strategy for teaching science. "In successful science classrooms, teachers and students collaborate in the pursuit of ideas... Students formulate questions and devise ways to answer them, they collect data and decide how to represent it, they organize data to generate knowledge, and they test the reliability of the knowledge they have generated. As they proceed, students explain and justify their work to themselves and to one another, learn to cope with problems such as the limitations of equipment, and react to challenges posed by the teacher and by classmates." To speak to these goals, an ongoing local wetland field study has been conceptualized and implemented in three example classrooms (seventh grade general science, ninth grade physical science and tenth grade biology) in two school systems (Oyster River Middle School in Durham, NH and Berlin High School in Berlin, NH). These field studies were conducted using authentic scientific equipment to collect data, including a Li-Cor 840 infrared CO2 analyzer and handmade

  20. Biological dose volume histograms during conformal hypofractionated accelerated radiotherapy for prostate cancer

    SciTech Connect

    Koukourakis, Michael I.; Abatzoglou, Ioannis; Touloupidis, Stavros; Manavis, Ioannis

    2007-01-15

    Radiobiological data suggest that prostate cancer has a low {alpha}/{beta} ratio. Large radiotherapy fractions may, therefore, prove more efficacious than standard radiotherapy, while radiotherapy acceleration should further improve control rates. This study describes the radiobiology of a conformal hypofractionated accelerated radiotherapy scheme for the treatment of high risk prostate cancer. Anteroposterior fields to the pelvis deliver a daily dose of 2.7 Gy, while lateral fields confined to the prostate and seminal vesicles deliver an additional daily dose of 0.7 Gy. Radiotherapy is accomplished within 19 days (15 fractions). Dose volume histograms, calculated for tissue specific {alpha}/{beta} ratios and time factors, predict a high biological dose to the prostate and seminal vesicles (77-93 Gy). The biological dose to normal pelvic tissues is maintained at standard levels. Radiobiological dosimetry suggests that, using hypofractionated and accelerated radiotherapy, high biological radiation dose can be given to the prostate without overdosing normal tissues.

  1. Factors involved in sustained use of point-of-use water disinfection methods: a field study from Flores Island, Indonesia.

    PubMed

    Roma, E; Bond, T; Jeffrey, P

    2014-09-01

    Many scientific studies have suggested that point-of-use water treatment can improve water quality and reduce the risk of infectious diseases. Despite the ease of use and relatively low cost of such methods, experience shows the potential benefits derived from provision of such systems depend on recipients' acceptance of the technology and its sustained use. To date, few contributions have addressed the problem of user experience in the post-implementation phase. This can diagnose challenges, which undermine system longevity and its sustained use. A qualitative evaluation of two household water treatment systems, solar disinfection (SODIS) and chlorine tablets (Aquatabs), in three villages was conducted by using a diagnostic tool focusing on technology performance and experience. Cross-sectional surveys and in-depth interviews were used to investigate perceptions of involved stakeholders (users, implementers and local government). Results prove that economic and functional factors were significant in using SODIS, whilst perceptions of economic, taste and odour components were important in Aquatabs use. Conclusions relate to closing the gap between factors that technology implementers and users perceive as key to the sustained deployment of point-of-use disinfection technologies. PMID:25252361

  2. Modification of hydrological properties in a fine textured soil following field application of pelletized biochar: investigation of the mechanism involved.

    NASA Astrophysics Data System (ADS)

    Costanza Andrenelli, Maria; Mocali, Stefano; Pellegrini, Sergio; Vignozzi, Nadia

    2016-04-01

    The application of pelletized biochar is seldom employed in field, and its effect on soil hydrological behaviour scarcely investigated. Biochar is usually added in powdered or granular form to improve the homogeneity of distribution, meanwhile favouring its interaction with soil matrix. In this study we evaluated the possibility of applying pelletized biochar as soil conditioner to enhance, during a single cropping season, the hydrological behaviour of a silty clay loam soil prone to structure degradation. For that purpose, the water retention curves (WRCs) were determined on undisturbed soil samples (0-15 cm) three months after the addition, at the rate of 14 Mg ha‑1, of two differently pyrolyzed biochars (B1 and B2). Starting from the WRCs the pore size distribution was determined. The gravimetric water content at both field capacity (-10 kPa) and wilting point (-1,500 kPa) was also measured on biochar samples to assess their available water capacity (AWC). In both the treatments, soil bulk density (BD) was significantly lower compared to control, apparently as direct consequence of the addition of low density pellets. Actually, excluding the intrinsic biochar porosity from soil bulk density calculation, BD values of the treated soils remain lower of around 10% over control. Such findings suggest that a modification of soil structural characteristics might have been induced by pellet addition. Data of the WRCs indicate a significant increase of transmission (500-50 micron), storage (50-0.5 micron) and AWC pores (30-0.2 micron) in the amended soils. The two biochars affected the AWC by direct pore contribution, but the extent of such effect was related to the biochar type: the tested pelletized biomass seems to have positive effects provided that the pyrolysis temperature does not exceed 800°C, as in the case of B1. The overall hydrological improvement might be correlated to both the inherent biochar retention capacity and a merely mechanical process of

  3. Volumetric-modulated arc therapy (RapidArc) vs. conventional fixed-field intensity-modulated radiotherapy for {sup 18}F-FDG-PET-guided dose escalation in oropharyngeal cancer: A planning study

    SciTech Connect

    Teoh, May; Beveridge, Sabeena; Wood, Katie; Whitaker, Stephen; Adams, Elizabeth; Rickard, Donna; Jordan, Tom; Nisbet, Andrew; Clark, Catharine H.

    2013-04-01

    Fluorine-18-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET)–guided focal dose escalation in oropharyngeal cancer may potentially improve local control. We evaluated the feasibility of this approach using volumetric-modulated arc therapy (RapidArc) and compared these plans with fixed-field intensity-modulated radiotherapy (IMRT) focal dose escalation plans. Materials and methods: An initial study of 20 patients compared RapidArc with fixed-field IMRT using standard dose prescriptions. From this cohort, 10 were included in a dose escalation planning study. Dose escalation was applied to {sup 18}F-FDG-PET–positive regions in the primary tumor at dose levels of 5% (DL1), 10% (DL2), and 15% (DL3) above standard radical dose (65 Gy in 30 fractions). Fixed-field IMRT and double-arc RapidArc plans were generated for each dataset. Dose-volume histograms were used for plan evaluation and comparison. The Paddick conformity index (CI{sub Paddick}) and monitor units (MU) for each plan were recorded and compared. Both IMRT and RapidArc produced clinically acceptable plans and achieved planning objectives for target volumes. Dose conformity was significantly better in the RapidArc plans, with lower CI{sub Paddick} scores in both primary (PTV1) and elective (PTV2) planning target volumes (largest difference in PTV1 at DL3; 0.81 ± 0.03 [RapidArc] vs. 0.77 ± 0.07 [IMRT], p = 0.04). Maximum dose constraints for spinal cord and brainstem were not exceeded in both RapidArc and IMRT plans, but mean doses were higher with RapidArc (by 2.7 ± 1 Gy for spinal cord and 1.9 ± 1 Gy for brainstem). Contralateral parotid mean dose was lower with RapidArc, which was statistically significant at DL1 (29.0 vs. 29.9 Gy, p = 0.01) and DL2 (29.3 vs. 30.3 Gy, p = 0.03). MU were reduced by 39.8–49.2% with RapidArc (largest difference at DL3, 641 ± 94 vs. 1261 ± 118, p < 0.01). {sup 18}F-FDG-PET–guided focal dose escalation in oropharyngeal cancer is feasible with Rapid

  4. Neck muscle atrophy and soft-tissue fibrosis after neck dissection and postoperative radiotherapy for oral cancer

    PubMed Central

    Kim, Jinu; Shin, Eun Seow; Kim, Jeong Eon; Yoon, Sang Pil

    2015-01-01

    Late complications of head and neck cancer survivors include neck muscle atrophy and soft-tissue fibrosis. We present an autopsy case of neck muscle atrophy and soft-tissue fibrosis (sternocleidomastoid, omohyoid, digastric, sternohyoid, sternothyroid, and platysma muscles) within the radiation field after modified radical neck dissection type I and postoperative radiotherapy for floor of mouth cancer. A 70-year-old man underwent primary tumor resection of the left floor of mouth, left marginal mandibulectomy, left modified radical neck dissection type I, and reconstruction with a radial forearm free flap. The patient received adjuvant radiotherapy. The dose to the primary tumor bed and involved neck nodes was 63 Gy in 35 fractions over 7 weeks. Areas of subclinical disease (left lower neck) received 50 Gy in 25 fractions over 5 weeks. Adjuvant chemotherapy was not administered. PMID:26756035

  5. Effects of Setup Errors and Shape Changes on Breast Radiotherapy

    SciTech Connect

    Mourik, Anke van; Kranen, Simon van; Hollander, Suzanne den; Sonke, Jan-Jakob; Herk, Marcel van; Vliet-Vroegindeweij, Corine van

    2011-04-01

    Purpose: The purpose of the present study was to quantify the robustness of the dose distributions from three whole-breast radiotherapy (RT) techniques involving different levels of intensity modulation against whole patient setup inaccuracies and breast shape changes. Methods and Materials: For 19 patients (one computed tomography scan and five cone beam computed tomography scans each), three treatment plans were made (wedge, simple intensity-modulated RT [IMRT], and full IMRT). For each treatment plan, four dose distributions were calculated. The first dose distribution was the original plan. The other three included the effects of patient setup errors (rigid displacement of the bony anatomy) or breast errors (e.g., rotations and shape changes of the breast with respect to the bony anatomy), or both, and were obtained through deformable image registration and dose accumulation. Subsequently, the effects of the plan type and error sources on target volume coverage, mean lung dose, and excess dose were determined. Results: Systematic errors of 1-2 mm and random errors of 2-3 mm (standard deviation) were observed for both patient- and breast-related errors. Planning techniques involving glancing fields (wedge and simple IMRT) were primarily affected by patient errors ({approx}6% loss of coverage near the dorsal field edge and {approx}2% near the skin). In contrast, plan deterioration due to breast errors was primarily observed in planning techniques without glancing fields (full IMRT, {approx}2% loss of coverage near the dorsal field edge and {approx}4% near the skin). Conclusion: The influences of patient and breast errors on the dose distributions are comparable in magnitude for whole breast RT plans, including glancing open fields, rendering simple IMRT the preferred technique. Dose distributions from planning techniques without glancing open fields were more seriously affected by shape changes of the breast, demanding specific attention in partial breast

  6. [How to maximize skin care during radiotherapy?].

    PubMed

    Fromantin, I; Lesport, G; Le Mée, M

    2015-10-01

    No consensual guidelines exist regarding the management of early effects of radiotherapy. But preventive and curative care strategies could be adapted in the aim to delay erythema, limit complications and improve patients' comfort. Prevention involves encouraging patients to take care of their skin, avoid moisture, frictions, sun exposition and dry soap. When these rules seem insufficient, products (dressings, solution, or cream) could be prescribed, according to the individual risk of each patient. Preventive measures are accentuated when radiodermatitis appears and/or topics indicated for wound healing could be applied. Care (education, dressing, observation) needs a multidisciplinary approach. Improvements of radiotherapy treatments (methods, techniques) have been the most effective evolution on radiodermatitis. PMID:26344433

  7. Esophageal perforation during or after conformal radiotherapy for esophageal carcinoma

    PubMed Central

    Chen, Hai-yan; Ma, Xiu-mei; Ye, Ming; Hou, Yan-li; Xie, Hua-Ying; Bai, Yong-rui

    2014-01-01

    The aim of this study was to analyze the risk factors and prognosis for patients with esophageal perforation occurring during or after radiotherapy for esophageal carcinoma. We retrospectively analyzed 322 patients with esophageal carcinoma. These patients received radiotherapy for unresectable esophageal tumors, residual tumors after operation, or local recurrence. Of these, 12 had radiotherapy to the esophagus before being admitted, 68 patients had concurrent chemoradiotherapy (CRT), and 18 patients had esophageal perforation after RT (5.8%). Covered self-expandable metallic stents were placed in 11 patients. Two patients continued RT after stenting and control of infection; one of these suffered a new perforation, and the other had a massive hemorrhage. The median overall survival was 2 months (0–3 months) compared with 17 months in the non-perforation group. In univariate analysis, the Karnofsky performance status (KPS) being ≤70, age younger than 60, T4 stage, a second course of radiotherapy to the esophagus, extracapsular lymph nodes (LN) involving the esophagus, a total dose >100 Gy (biologically effective dose−10), and CRT were risk factors for perforation. In multivariate analysis, age younger than 60, extracapsular LN involving the esophagus, T4 stage, and a second course of radiotherapy to the esophagus were risk factors. In conclusion, patients with T4 stage, extracapsular LN involving the esophagus, and those receiving a second course of RT should be given particular care to avoid perforation. The prognosis after perforation was poor. PMID:24914102

  8. [Exchange of medical imaging and data information in radiotherapy: needs, methods and current limits].

    PubMed

    Manens, J P

    1997-01-01

    Extension of the image network within radiotherapy departments provides the technical infrastructure which is made necessary by the rapid evolution of techniques in the field of diagnosis and treatment in radiotherapy. The system is aimed at managing the whole set of data (textual data and images) that are needed for planning and control of treatments. The radiotherapy network addresses two objectives: managing both the information necessary for treatment planning (target volumes definition, planning dosimetry) and the control of all parameters involved during the patient's treatment under the treatment unit. The major challenge is to improve the quality of treatment. Multimodal imaging is a major advance as it allows the use of new dosimetry and simulation techniques. The need for standards to exchange medical imaging information is now recognized by all the institutions and a majority of users and manufacturers. It is widely accepted that the lack of standard has been one of the fundamental obstacles in the deployment of operational "Picture Archiving Communication Systems". The International Standard Organisation Open System Interconnection model is the standard reference mode used to describe network protocols. The network is based on the Ethernet and TCP/IP protocol that provides the means to interconnect imaging devices and workstations dedicated to specific image processing or machines used in radiotherapy. The network uses Ethernet cabled on twisted-pair (10 BaseT) or optical fibres in a star-shaped physical layout. Dicom V3.0 supports fundamental network interactions: transfer of images (computerized tomography magnetic resonance imaging query and retrieve of images), printing on network attached cameras, support of HIS/RIS related interfacing and image management. The supplement to the Dicom standard, Dicom RT, specifies five data objects known in Dicom as Information Object Definition for relevant radiotherapy. Dicom RT objects can provide a mean for

  9. Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies

    SciTech Connect

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki; Matsui, Yuki; Matsushita, Kaoru; Yamashita, Haruo; Numano, Masumi; Sakae, Takeji; Terunuma, Toshiyuki; Nishio, Teiji; Kohno, Ryosuke; Akagi, Takashi

    2008-11-15

    Secondary neutron ambient dose equivalents per the treatment absorbed dose in passive carbon-ion and proton radiotherapies were measured using a rem meter, WENDI-II at two carbon-ion radiotherapy facilities and four proton radiotherapy facilities in Japan. Our measured results showed that (1) neutron ambient dose equivalent in carbon-ion radiotherapy is lower than that in proton radiotherapy, and (2) the difference to the measured neutron ambient dose equivalents among the facilities is within a factor of 3 depending on the operational beam setting used at the facility and the arrangement of the beam line, regardless of the method for making a laterally uniform irradiation field: the double scattering method or the single-ring wobbling method. The reoptimization of the beam line in passive particle radiotherapy is an effective way to reduce the risk of secondary cancer because installing an adjustable precollimator and designing the beam line devices with consideration of their material, thickness and location, etc., can significantly reduce the neutron exposure. It was also found that the neutron ambient dose equivalent in passive particle radiotherapy is equal to or less than that in the photon radiotherapy. This result means that not only scanning particle radiotherapy but also passive particle radiotherapy can provide reduced exposure to normal tissues around the target volume without an accompanied increase in total body dose.

  10. Combination Short-Course Preoperative Irradiation, Surgical Resection, and Reduced-Field High-Dose Postoperative Irradiation in the Treatment of Tumors Involving the Bone

    SciTech Connect

    Wagner, Timothy D. Kobayashi, Wendy; Dean, Susan; Goldberg, Saveli I.; Kirsch, David G.; Suit, Herman D.; Hornicek, Francis J.; Pedlow, Francis X.; Raskin, Kevin A.; Springfield, Dempsey S.; Yoon, Sam S.; Gebhardt, Marc C.; Mankin, Henry J.; DeLaney, Thomas F.

    2009-01-01

    Purpose: To assess the feasibility and outcomes of combination short-course preoperative radiation, resection, and reduced-field (tumor bed without operative field coverage) high-dose postoperative radiation for patients with solid tumors mainly involving the spine and pelvis. Methods and Materials: Between 1982 and 2006, a total of 48 patients were treated using this treatment strategy for solid tumors involving bone. Radiation treatments used both photons and protons. Results: Of those treated, 52% had chordoma, 31% had chondrosarcoma, 8% had osteosarcoma, and 4% had Ewing's sarcoma, with 71% involving the pelvis/sacrum and 21% elsewhere in the spine. Median preoperative dose was 20 Gy, with a median of 50.4 Gy postoperatively. With 31.8-month median follow-up, the 5-year overall survival (OS) rate is 65%; 5-year disease-free survival (DFS) rate, 53.8%; and 5-year local control (LC) rate, 72%. There were no significant differences in OS, DFS, and LC according to histologic characteristics. Between primary and recurrent disease, there was no significant difference in OS rates (74.4% vs. 51.4%, respectively; p = 0.128), in contrast to DFS (71.5% vs. 18.3%; p = 0.0014) and LC rates (88.9% vs. 30.9%; p = 0.0011) favoring primary disease. After resection, 10 patients experienced delayed wound healing that did not significantly impact on OS, DFS, or LC. Conclusion: This approach is promising for patients with bone sarcomas in which resection will likely yield close/positive margins. It appears to inhibit tumor seeding with an acceptable rate of wound-healing complications. Dose escalation is accomplished without high-dose preoperative radiation (likely associated with higher rates of acute wound healing delays) or large-field postoperative radiation only (likely associated with late normal tissue toxicity). The LC and DFS rates are substantially better for patients with primary than recurrent sarcomas.

  11. Radiotherapy equipment--purchase or lease?

    PubMed

    Nisbet, A; Ward, A

    2001-08-01

    Against a background of increasing demand for radiotherapy equipment, this study was undertaken to investigate options for equipment procurement, in particular to compare purchase with lease. The perceived advantages of lease are that equipment can be acquired within budget and cashflow constraints, with relatively low amounts of cash leaving the NHS in the first year, avoiding the necessity of capitalizing the equipment and providing protection against the risk of obsolescence associated with high technology equipment. The perceived disadvantages of leasing are that the Trust does not own the equipment, leasing can be more expensive in revenue terms, the tender process is extended and there may be lease conditions to be met, which may be costly and/or restrictive. There are also a number of technical considerations involved in the leasing of radiotherapy equipment that influence the financial analysis and practical operation of the radiotherapy service. The technical considerations include servicing and planned preventative maintenance, upgrades, spare parts, subsequent purchase of "add ons", modification of equipment, research and development work, commencement of the lease period, return of equipment at the end of the lease period and negotiations at the end of the lease period. A study from Raigmore Hospital, Inverness is described, which involves the procurement of new, state-of-the-art radiotherapy equipment. This provides an overview of the procurement process, including a summary of the advantages and disadvantages of leasing, with the figures from the financial analysis presented and explained. In addition, a detailed description is given of the technical considerations to be taken into account in the financial analysis and negotiation of any lease contract. PMID:11511499

  12. A comparative dosimetric study of volumetric-modulated arc therapy vs. fixed field intensity-modulated radiotherapy in postoperative irradiation of stage IB-IIA high-risk cervical cancer

    PubMed Central

    QIAO, LILI; CHENG, JIAN; LIANG, NING; XIE, JIAN; LUO, HUI; ZHANG, JIANDONG

    2016-01-01

    The aim of the present study was to compare the dosimetry features of volumetric-modulated arc therapy (VMAT) and fixed field intensity-modulated radiotherapy (f-IMRT) in postoperative irradiation of stage IB-IIA high-risk cervical cancer. Fifteen patients exhibiting stage IB-IIA high-risk cervical cancer, who had been treated with postoperative adjuvant concurrent radiochemotherapy, were selected. The clinical target volume (CTV) and organs at risk (OARs) were delineated according to contrast computed tomography images. The planning target volume (PTV) was subsequently produced by using 1 cm uniform expansion of the CTV. The treatment plans were intended to deliver 50 Gy in 25 fractions. The OARs that were contoured included the bladder, rectum, small bowel and femoral heads. Dose volume histograms were used to evaluate the dose distribution in the PTV and OARs. VMAT and f-IMRT treatment plans resulted in similar dose coverage of the PTV. VMAT was superior to f-IMRT in conformity (P<0.05), and resulted in a reduction of OARs irradiated at high dose levels (V40 and V50) compared with f-IMRT (P<0.05), particularly for the bladder. However, the doses of low levels (V10 and V20) delivered to OARs with f-IMRT were slightly reduced compared with VMAT (P<0.05). For ambilateral femoral heads, VMAT demonstrated improved sparing compared with f-IMRT, with regard to D5 (P<0.05). Furthermore, VMAT treatment plans revealed a significant reduction in monitor units (MU) and treatment time. VMAT techniques exhibited similar PTV coverage compared with f-IMRT. At doses of high levels delivered to OARs, VMAT demonstrated improved sparing compared with f-IMRT, particularly for the bladder, while significantly reducing treatment time and MU number. PMID:26893675

  13. Second cancers following radiotherapy for cancer

    SciTech Connect

    Curtis, R.E.

    1997-03-01

    The study of second cancer risk after radiotherapy provides a unique opportunity to study carcinogenesis since large groups of humans are deliberately exposed to substantial doses of radiation in order to cure disease. Detailed radiotherapy records for cancer patients allow precise quantification of organ dose, and population-based cancer registries are frequently available to provide access to large groups of patients who are closely followed for long periods. Moreover, cancer patients treated with surgery alone (no radiation) are frequently available to serve as a non-irradiated comparison group. New information can be provided on relatively insensitive organs, and low dose exposures in the range of scientific interest are received by organs outside the radiation treatment fields. This paper will review several recently completed studies that characterize the risk of radiation-induced second cancers. Emphasis will be given to studies providing new information on the dose-response relationship of radiation-induced leukemia, breast cancer and lung cancer.

  14. Dosimetric Study of Current Treatment Options for Radiotherapy in Retinoblastoma

    SciTech Connect

    Eldebawy, Eman; Parker, William; Abdel Rahman, Wamied; Freeman, Carolyn R.

    2012-03-01

    Purpose: To determine the best treatment technique for patients with retinoblastoma requiring radiotherapy to the whole eye. Methods and Materials: Treatment plans for 3 patients with retinoblastoma were developed using 10 radiotherapy techniques including electron beams, photon beam wedge pair (WP), photon beam three-dimensional conformal radiotherapy (3D-CRT), fixed gantry intensity-modulated radiotherapy (IMRT), photon volumetric arc therapy (VMAT), fractionated stereotactic radiotherapy, and helical tomotherapy (HT). Dose-volume analyses were carried out for each technique. Results: All techniques provided similar target coverage; conformity was highest for VMAT, nine-field (9F) IMRT, and HT (conformity index [CI] = 1.3) and lowest for the WP and two electron techniques (CI = 1.8). The electron techniques had the highest planning target volume dose gradient (131% of maximum dose received [D{sub max}]), and the CRT techniques had the lowest (103% D{sub max}) gradient. The volume receiving at least 20 Gy (V{sub 20Gy}) for the ipsilateral bony orbit was lowest for the VMAT and HT techniques (56%) and highest for the CRT techniques (90%). Generally, the electron beam techniques were superior in terms of brain sparing and delivered approximately one-third of the integral dose of the photon techniques. Conclusions: Inverse planned image-guided radiotherapy delivered using HT or VMAT gives better conformity index, improved orbital bone and brain sparing, and a lower integral dose than other techniques.

  15. Adjuvant radiotherapy for cutaneous melanoma: Comparing hypofractionation to conventional fractionation

    SciTech Connect

    Chang, Daniel T.; Amdur, Robert J.; Morris, Christopher G. M.S.; Mendenhall, William M. . E-mail: mendewil@shands.ufl.edu

    2006-11-15

    Purpose: To examine locoregional control after adjuvant radiotherapy (RT) for cutaneous melanoma and compare outcomes between conventional fractionation and hypofractionation. Methods and Materials: Between January 1980 and June 2004, 56 patients with high-risk disease were treated with adjuvant RT. Indications for RT included: recurrent disease, cervical lymph node involvement, lymph nodes >3 cm, more than three lymph nodes involved, extracapsular extension, gross residual disease, close or positive margins, or satellitosis. Hypofractionation was used in 41 patients (73%) and conventional fractionation was used in 15 patients (27%). Results: The median age was 61 years (21->90). The median follow-up among living patients was 4.4 years (range, 0.6-14.4 years). The primary site was located in the head and neck in 49 patients (87%) and below the clavicles in 7 patients (13%). There were 7 in-field locoregional failures (12%), 3 out-of-field regional failures (5%), and 24 (43%) distant failures. The 5-year in-field locoregional control (ifLRC) and freedom from distant metastases (FFDM) rates were 87% and 43%, respectively. The 5-year cause-specific (CSS) and overall survival (OS) was 57% and 46%, respectively. The only factor associated with ifLRC was satellitosis (p = 0.0002). Nodal involvement was the only factor associated with FFDM (p = 0.0007), CSS (p = 0.0065), and OS (p = 0.016). Two patients (4%) who experienced severe late complications, osteoradionecrosis of the temporal bone and radiation plexopathy, and both received hypofractionation (5%). Conclusions: Although surgery and adjuvant RT provides excellent locoregional control, distant metastases remain the major cause of mortality. Hypofractionation and conventional fractionation are equally efficacious.

  16. [Stereotactic radiotherapy in brain metastases].

    PubMed

    Dhermain, F; Reyns, N; Colin, P; Métellus, P; Mornex, F; Noël, G

    2015-02-01

    Stereotactic radiotherapy of brain metastases is increasingly proposed after polydisciplinary debates among experts. Its definition and modalities of prescription, indications and clinical interest regarding the balance between efficacy versus toxicity need to be discussed. Stereotactic radiotherapy is a 'high precision' irradiation technique (within 1mm), using different machines (with invasive contention or frameless, photons X or gamma) delivering high doses (4 to 25Gy) in a limited number of fractions (usually 1 to 5, ten maximum) with a high dose gradient. Dose prescription will depend on materials, dose constraints to organs at risk varying with fractionation. Stereotactic radiotherapy may be proposed: (1) in combination with whole brain radiotherapy with the goal of increasing (modestly) overall survival of patients with a good performance status, 1 to 3 brain metastases and a controlled extracranial disease; (2) for recurrence of 1-3 brain metastases after whole brain radiotherapy; (3) after complete resection of a large and/or symptomatic brain metastases; (4) after diagnosis of 3-5 asymptomatic new or progressing brain metastases during systemic therapy, with the aim of delaying whole brain radiotherapy (avoiding its potential neurotoxicity) and maintaining a high focal control rate. Only a strict follow-up with clinical and MRI every 3 months will permit to deliver iterative stereotactic radiotherapies without jeopardizing survival. Simultaneous delivering of stereotactic radiotherapy with targeted medicines should be carefully discussed. PMID:25640215

  17. Role of Radiotherapy and Newer Techniques in the Treatment of GI Cancers.

    PubMed

    Hajj, Carla; Goodman, Karyn A

    2015-06-01

    The role of radiotherapy in multidisciplinary treatment of GI malignancies is well established. Recent advances in imaging as well as radiotherapy planning and delivery techniques have made it possible to target tumors more accurately while sparing normal tissues. Intensity-modulated radiotherapy is an advanced method of delivering radiation using cutting-edge technology to manipulate beams of radiation. The role of intensity-modulated radiotherapy is growing for many GI malignancies, such as cancers of the stomach, pancreas, esophagus, liver, and anus. Stereotactic body radiotherapy is an emerging treatment option for some GI tumors such as locally advanced pancreatic cancer and primary or metastatic tumors of the liver. Stereotactic body radiotherapy requires a high degree of confidence in tumor location and subcentimeter accuracy of the delivered dose. New image-guided techniques have been developed to overcome setup uncertainties at the time of treatment, including real-time imaging on the linear accelerator. Modern imaging techniques have also allowed for more accurate pretreatment staging and delineation of the primary tumor and involved sites. In particular, magnetic resonance imaging and positron emission tomography scans can be particularly useful in radiotherapy planning and assessing treatment response. Molecular biomarkers are being investigated as predictors of response to radiotherapy with the intent of ultimately moving toward using genomic and proteomic determinants of therapeutic strategies. The role of all of these new approaches in the radiotherapeutic management of GI cancers and the evolving role of radiotherapy in these tumor sites will be highlighted in this review. PMID:25918298

  18. Surgery Followed by Radiotherapy Versus Radiotherapy Alone for Metastatic Spinal Cord Compression From Unfavorable Tumors

    SciTech Connect

    Rades, Dirk; Huttenlocher, Stefan; Bajrovic, Amira; Karstens, Johann H.; Adamietz, Irenaeus A.; Kazic, Nadja; Rudat, Volker; Schild, Steven E.

    2011-12-01

    Purpose: Despite a previously published randomized trial, controversy exists regarding the benefit of adding surgery to radiotherapy for metastatic spinal cord compression (MSCC). It is thought that patients with MSCC from relatively radioresistant tumors or tumors associated with poor functional outcome after radiotherapy alone may benefit from surgery. This study focuses on these tumors. Methods and Materials: Data from 67 patients receiving surgery plus radiotherapy (S+RT) were matched to 134 patients (1:2) receiving radiotherapy alone (RT). Groups were matched for 10 factors and compared for motor function, ambulatory status, local control, and survival. Additional separate matched-pair analyses were performed for patients receiving direct decompressive surgery plus stabilization of involved vertebrae (DDSS) and patients receiving laminectomy (LE). Results: Improvement of motor function occurred in 22% of patients after S+RT and 16% after RT (p = 0.25). Posttreatment ambulatory rates were 67% and 61%, respectively (p = 0.68). Of nonambulatory patients, 29% and 19% (p = 0.53) regained ambulatory status. One-year local control rates were 85% and 89% (p = 0.87). One-year survival rates were 38% and 24% (p = 0.20). The matched-pair analysis of patients receiving LE showed no significant differences between both therapies. In the matched-pair analysis of patients receiving DDSS, improvement of motor function occurred more often after DDSS+RT than RT (28% vs. 19%, p = 0.024). Posttreatment ambulatory rates were 86% and 67% (p = 0.30); 45% and 18% of patients regained ambulatory status (p = 0.29). Conclusions: Patients with MSCC from an unfavorable primary tumor appeared to benefit from DDSS but not LE when added to radiotherapy in terms of improved functional outcome.

  19. Leukemia Cutis of the Face, Scalp, and Neck Treated with Non-coplanar Split Field Volumetric Modulated Arc Therapy: A Case Report

    PubMed Central

    Alite, Fiori; Steber, Jennifer; Emami, Bahman; Surucu, Murat

    2015-01-01

    Malignancies with a superficial involvement of the scalp present a unique technical challenge for radiation treatment planning. As an example of this, leukemic infiltration of the superficial skin as the only presentation of the disease is a rare entity. For such cases, radiation oncologists have typically treated with 3D conformal radiotherapy with matched electron fields, a technique that can lead to significant dose inhomogeneity. In this report, we describe the case of a patient with leukemia cutis with a superficial involvement of the scalp, face, and shoulders that was treated with volumetric modulated arc radiotherapy, with an impressive clinical response.  PMID:26848419

  20. Response of lymphangiectasis to radiotherapy. [X-ray

    SciTech Connect

    Kurczynski, E.; Horwitz, S.J.

    1981-07-15

    A 14-year-old girl with lymphangiectasis of the skull causing rapid extensive destruction of the left orbit, zygoma, mandible, sphenoid, and occiput underwent radiotherapy with 2000 rad to the entire skull, mandible, and upper cervical vertebrae. Three years later, progression of the disease has ceased, and the involved bone is slowly remineralizing.

  1. Whole body radiotherapy: A TBI-guideline

    PubMed Central

    Quast, Ulrich

    2006-01-01

    Total Body Irradiation (TBI) is one main component in the interdisciplinary treatment of widely disseminated malignancies predominantly of haematopoietic diseases. Combined with intensive chemotherapy, TBI enables myeloablative high dose therapy and immuno-ablative conditioning treatment prior to subsequent transplantation of haematopoietic stem cells: bone marrow stem cells or peripheral blood progenitor stem cells. Jointly prepared by DEGRO and DGMP, the German Society of Radio-Oncology, and the German Association of Medical Physicists, this DEGRO/DGMP-Leitlinie Ganzkoerper-Strahlenbehandlung - DEGRO/DGMP Guideline Whole Body Radiotherapy, summarises the concepts, principles, facts and common methods of Total Body Irradiation and poses a set of recommendations for reliable and successful application of high dose large-field radiotherapy as essential part of this interdisciplinary, multi-modality treatment concept. The guideline is geared towards radio-oncologists, medical physicists, haematooncolo-gists, and all contributing to Whole Body Radiotherapy. To guide centres intending to start or actualise TBI criteria are included. The relevant treatment parameters are defined and a sample of a form is given for reporting TBI to international registries. PMID:21206634

  2. Cellular signalling effects in high precision radiotherapy

    NASA Astrophysics Data System (ADS)

    McMahon, Stephen J.; McGarry, Conor K.; Butterworth, Karl T.; Jain, Suneil; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2015-06-01

    Radiotherapy is commonly planned on the basis of physical dose received by the tumour and surrounding normal tissue, with margins added to address the possibility of geometric miss. However, recent experimental evidence suggests that intercellular signalling results in a given cell’s survival also depending on the dose received by neighbouring cells. A model of radiation-induced cell killing and signalling was used to analyse how this effect depends on dose and margin choices. Effective Uniform Doses were calculated for model tumours in both idealised cases with no delivery uncertainty and more realistic cases incorporating geometric uncertainty. In highly conformal irradiation, a lack of signalling from outside the target leads to reduced target cell killing, equivalent to under-dosing by up to 10% compared to large uniform fields. This effect is significantly reduced when higher doses per fraction are considered, both increasing the level of cell killing and reducing margin sensitivity. These effects may limit the achievable biological precision of techniques such as stereotactic radiotherapy even in the absence of geometric uncertainties, although it is predicted that larger fraction sizes reduce the relative contribution of cell signalling driven effects. These observations may contribute to understanding the efficacy of hypo-fractionated radiotherapy.

  3. Multimedia educational services in stereotactic radiotherapy.

    PubMed

    Bazioglou, M; Theodorou, K; Kappas, C

    1999-01-01

    The computer-based learning methods in medicine have been well established as stand-alone learning systems. Recently, these systems were enriched with the use of telematics technology to provide distance learning capabilities. Stereotactic radiotherapy is one of the most representative advanced radiotherapy techniques. Due to the multidisciplinary character of the technique and the rapid evolution of technology implemented, the demands in training have increased. The potential of interactive multimedia and Internet technologies for the achievement of distance learning capabilities in this domain are investigated. The realization of a computer-based educational program in stereotactic radiotherapy in a multimedia format is a new application in the computer-aided distance learning field. The system is built according to a client and server architecture, based on the Internet infrastructure, and composed of server nodes. The impact of the system may be described in terms of: time and transportation costs saving, flexibility in training (scheduling, rate and subject selection), online communication and interaction with experts, cost effective access to material (delivery or access by a large number of users and revision of the material by avoiding high costs of computer-based training systems and database development). PMID:10394345

  4. The interrelationship of research in the laboratory and the field to assess hydration status and determine mechanisms involved in water regulation during physical activity.

    PubMed

    Stachenfeld, Nina S

    2014-05-01

    Changes in skin blood and sweating are the primary mechanisms for heat loss in humans. A hot, humid environment concomitant with dehydration limits the ability to increase skin blood flow for the purpose of transferring heat from the body core to skin surface and evaporate sweat to maintain core temperature within safe limits during exercise. Adequate hydration improves thermoregulation by maintaining blood volume to support skin blood flow and sweating. Humans rely on fluid intake to maintain total body water and blood volume, and have developed complex mechanisms to sense changes in the amount and composition of fluid in the body. This paper addresses the interrelationship of research in the laboratory and the field to assess hydration status involved in body water and temperature regulation during exercise. In the controlled setting of a research laboratory, investigators are able to investigate the contributions of volume and tonicity of fluid in the plasma to body water and temperature regulation during exercise and recovery. For example, laboratory studies have shown that tonicity in a rehydration beverage maintains the thirst mechanism (and stimulates drinking), and contributes to the ongoing stimulation of renal fluid retention hormones, ultimately leading to a more complete rehydration. Research in the field cannot control the environment precisely, but these studies provide a natural, 'real-life' setting to study fluid and temperature regulation during exercise. The conditions encountered in the field are closest to the environment during competition, and data collected in the field can have an immediate impact on performance and safety during exercise. There is an important synergy between these two methods of collecting data that support performance and protect athletes from harm during training and improve performance during competition. PMID:24791921

  5. Unilateral Radiotherapy for the Treatment of Tonsil Cancer

    SciTech Connect

    Chronowski, Gregory M.; Garden, Adam S.; Morrison, William H.; Frank, Steven J.; Schwartz, David L.; Shah, Shalin J.; Beadle, Beth M.; Gunn, G. Brandon; Kupferman, Michael E.; Ang, Kian K.; Rosenthal, David I.

    2012-05-01

    Purpose: To assess, through a retrospective review, clinical outcomes of patients with squamous cell carcinoma of the tonsil treated at the M. D. Anderson Cancer Center with unilateral radiotherapy techniques that irradiate the involved tonsil region and ipsilateral neck only. Methods and Materials: Of 901 patients with newly diagnosed squamous cell carcinoma of the tonsil treated with radiotherapy at our institution, we identified 102 that were treated using unilateral radiotherapy techniques. All patients had their primary site of disease restricted to the tonsillar fossa or anterior pillar, with <1 cm involvement of the soft palate. Patients had TX (n = 17 patients), T1 (n = 52), or T2 (n = 33) disease, with Nx (n = 3), N0 (n = 33), N1 (n = 23), N2a (n = 21), or N2b (n = 22) neck disease. Results: Sixty-one patients (60%) underwent diagnostic tonsillectomy before radiotherapy. Twenty-seven patients (26%) underwent excision of a cervical lymph node or neck dissection before radiotherapy. Median follow-up for surviving patients was 38 months. Locoregional control at the primary site and ipsilateral neck was 100%. Two patients experienced contralateral nodal recurrence (2%). The 5-year overall survival and disease-free survival rates were 95% and 96%, respectively. The 5-year freedom from contralateral nodal recurrence rate was 96%. Nine patients required feeding tubes during therapy. Of the 2 patients with contralateral recurrence, 1 experienced an isolated neck recurrence and was salvaged with contralateral neck dissection only and remains alive and free of disease. The other patient presented with a contralateral base of tongue tumor and involved cervical lymph node, which may have represented a second primary tumor, and died of disease. Conclusions: Unilateral radiotherapy for patients with TX-T2, N0-N2b primary tonsil carcinoma results in high rates of disease control, with low rates of contralateral nodal failure and a low incidence of acute toxicity

  6. Imaging in radiotherapy

    NASA Astrophysics Data System (ADS)

    Calandrino, R.; Del Maschio, A.; Cattaneo, G. M.; Castiglioni, I.

    2009-09-01

    The diagnostic methodologies used for the radiotherapy planning have undergone great developments in the last 30 years. Since the 1980s, after the introduction of the CT scanner, the modality for the planning moved beyond the planar 2D assessment to approach a real and more realistic volumetric 3D definition. Consequently the dose distribution, previously obtained by means of an overly simple approximation, became increasingly complex, better tailoring the true shape of the tumour. The final therapeutic improvement has been obtained by a parallel increase in the complexity of the irradiating units: the Linacs for therapy have, in fact, been equipped with a full accessory set capable to modulate the fluence (IMRT) and to check the correct target position continuously during the therapy session (IMRT-IGRT). The multimodal diagnostic approach, which integrates diagnostic information, from images of the patient taken with CT, NMR, PET and US, further improves the data for a biological and topological optimization of the radiotherapy plan and consequently of the dose distribution in the Planning Target Volume. Proteomic and genomic analysis will be the next step in tumour diagnosis. These methods will provide the planners with further information, for a true personalization of the treatment regimen and the assessment of the predictive essays for each tumour and each patient.

  7. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation.

    PubMed

    Zhang, Ke K; Xiang, Menglan; Zhou, Lun; Liu, Jielin; Curry, Nathan; Heine Suñer, Damian; Garcia-Pavia, Pablo; Zhang, Xiaohua; Wang, Qin; Xie, Linglin

    2016-03-15

    Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation. We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny. PMID:26744331

  8. A binary AxB1-x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Yin, Shu; Xue, Dongfeng

    2014-12-01

    A new ``combinatorial transition-metal cation pseudocapacitor'' was demonstrated by designing combinatorial transition-metal cation pseudocapacitors with binary AxB1-x salt electrodes involving manganese, iron, cobalt, and nickel cations in an alkaline aqueous electrolyte. Binary multi-valence cations were crystallized in the colloidal state through an in situ coprecipitation under an electric field. These electroactive colloids absorbed by carbon black and the PVDF matrix are highly redox-reactive with high specific capacitance values, where the specific electrode configuration can create short ion diffusion paths to enable fast and reversible Faradaic reactions. This work shows huge promise for developing high-performance electrical energy storage systems via designing the colloidal state of electroactive cations. Multiple redox cations in the colloidal state can show high redox activities, making them more suitable for potential application in pseudocapacitor systems.A new ``combinatorial transition-metal cation pseudocapacitor'' was demonstrated by designing combinatorial transition-metal cation pseudocapacitors with binary AxB1-x salt electrodes involving manganese, iron, cobalt, and nickel cations in an alkaline aqueous electrolyte. Binary multi-valence cations were crystallized in the colloidal state through an in situ coprecipitation under an electric field. These electroactive colloids absorbed by carbon black and the PVDF matrix are highly redox-reactive with high specific capacitance values, where the specific electrode configuration can create short ion diffusion paths to enable fast and reversible Faradaic reactions. This work shows huge promise for developing high-performance electrical energy storage systems via designing the colloidal state of electroactive cations. Multiple redox cations in the colloidal state can show high redox activities, making them more suitable for potential application in pseudocapacitor systems. Electronic supplementary

  9. Genetics and genomics of radiotherapy toxicity: towards prediction

    PubMed Central

    2011-01-01

    Radiotherapy is involved in many curative treatments of cancer; millions of survivors live with the consequences of treatment, and toxicity in a minority limits the radiation doses that can be safely prescribed to the majority. Radiogenomics is the whole genome application of radiogenetics, which studies the influence of genetic variation on radiation response. Work in the area focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation, which is important for effective, safe treatment. In this review, we highlight recent advances in radiotherapy and discuss results from four genome-wide studies of radiotoxicity. PMID:21861849

  10. Evaluation of intra- and inter-fraction motion in breast radiotherapy using electronic portal cine imaging.

    PubMed

    Kron, T; Lee, C; Perera, F; Yu, E

    2004-10-01

    Breast irradiation is one of the most challenging problems in radiotherapy due to the complex shape of the target volume, proximity of radiation sensitive normal structures and breathing motion. It was the aim of the present study to use electronic portal imaging (EPI) during treatment to determine intra- and inter-fraction motion in patients undergoing radiotherapy and to correlate the magnitude of motion with patient specific parameters. EPI cine images were acquired from the medial tangential fields of twenty radiotherapy patients on a minimum of 5 days each over the course of their treatment. The treatments were administered using 10 MV X-rays and dynamic wedges on a Varian Clinac 2100CD linear accelerator. Depending on the incident dose and the angle of the wedge, between 4 and 16 images could be acquired in one session using an EPI device based on liquid ionization chambers (Varian). The border between lung and chest-wall could be easily detected in all images and quantitative measurements were taken for the amount of lung in the field and the distance of the breast tissue from the field edges. Inter-fraction variability was found to be about twice as large as intra-fraction variability. The largest variability was detected in cranio/caudal direction (intra-fraction: 1.3 +/- 0.4 mm; inter-fraction: 2.6 +/- 1.3 mm) while the lung involvement varied by 1.1 +/- 0.2 mm and 1.8 +/- 0.6 mm intra- and inter-fraction, respectively. This indicates that the effect of breathing motion on the amount of radiated lung was not of major concern in the patients studied. Of other patient specific parameters such as body weight, breast separation, field size and location of the target, only increasing age was significantly correlated with larger inter-fraction motion. Acquisition of EPI cine loops proved to be a quick and easy technique to establish the amount of patient movement during breast radiotherapy. The relatively small variability found in the present pilot study

  11. Sequential DICE combined with l-asparaginase chemotherapy followed by involved field radiation in newly diagnosed, stage IE to IIE, nasal and extranodal NK/T-cell lymphoma.

    PubMed

    Dong, Li-Hua; Zhang, Li-Juan; Wang, Wen-Jia; Lei, Wen; Sun, Xing; Du, Jian-Wei; Gao, Xue; Li, Gang-Ping; Li, Yu-Fu

    2016-07-01

    Extranodal natural killer (NK)/T-cell lymphoma is an aggressive lymphoid tumor. Optimal treatment strategies have not yet been fully defined. To explore a more effective treatment, we conducted sequential chemoradiotherapy (SCRT) and evaluated the safety and efficacy. Seventy-eight patients (51 males, 27 females) were analyzed. The complete response (CR) rate was higher for patients in the SCRT group (90.9%) than in the radiotherapy group (77.8%; p = 0.124). The relapse rate (RR) and death rate (DR) were lower in the SCRT group (RR: 6.7% vs 33.3%, p < 0.001; DR: 15.2% vs. 55.6%, p < 0.001). Progression-free survival (PFS) and overall survival (OS) rates of 5 years after diagnosis were significantly higher for patients in the SCRT group (PFS: 89%; OS: 82%) than in the radiotherapy group (PFS: 49%, p < 0.001; OS: 49%, p < 0.001). Treatment-related adverse events were more common in the SCRT group. However, the adverse events were controlled. PMID:26726970

  12. Ichthyosiform scaling secondary to megavoltage radiotherapy

    SciTech Connect

    Ross, E.V. )

    1991-07-01

    Acquired ichthyosis is a rare dermatosis associated with a number of malignancies. Side effects seen on the skin secondary to megavoltage radiotherapy are uncommon but may include fine dry desquamation and tanning. The authors present a case of ichthyosiform scaling limited to the radiation fields in a patient treated for brain metastases of a primary small cell lung carcinoma. The reader is reminded that side effects of megavoltage treatment do occur on the skin. A brief review of these effects is included. 5 references.

  13. Dynamic targeting image-guided radiotherapy

    SciTech Connect

    Huntzinger, Calvin; Munro, Peter; Johnson, Scott; Miettinen, Mika; Zankowski, Corey; Ahlstrom, Greg; Glettig, Reto; Filliberti, Reto; Kaissl, Wolfgang; Kamber, Martin; Amstutz, Martin; Bouchet, Lionel; Klebanov, Dan; Mostafavi, Hassan; Stark, Richard

    2006-07-01

    Volumetric imaging and planning for 3-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) have highlighted the need to the oncology community to better understand the geometric uncertainties inherent in the radiotherapy delivery process, including setup error (interfraction) as well as organ motion during treatment (intrafraction). This has ushered in the development of emerging technologies and clinical processes, collectively referred to as image-guided radiotherapy (IGRT). The goal of IGRT is to provide the tools needed to manage both inter- and intrafraction motion to improve the accuracy of treatment delivery. Like IMRT, IGRT is a process involving all steps in the radiotherapy treatment process, including patient immobilization, computed tomogaphy (CT) simulation, treatment planning, plan verification, patient setup verification and correction, delivery, and quality assurance. The technology and capability of the Dynamic Targeting{sup TM} IGRT system developed by Varian Medical Systems is presented. The core of this system is a Clinac (registered) or Trilogy{sup TM} accelerator equipped with a gantry-mounted imaging system known as the On-Board Imager{sup TM} (OBI). This includes a kilovoltage (kV) x-ray source, an amorphous silicon kV digital image detector, and 2 robotic arms that independently position the kV source and imager orthogonal to the treatment beam. A similar robotic arm positions the PortalVision{sup TM} megavoltage (MV) portal digital image detector, allowing both to be used in concert. The system is designed to support a variety of imaging modalities. The following applications and how they fit in the overall clinical process are described: kV and MV planar radiographic imaging for patient repositioning, kV volumetric cone beam CT imaging for patient repositioning, and kV planar fluoroscopic imaging for gating verification. Achieving image-guided motion management throughout the radiation oncology process

  14. Bilateral Rhegmatogenous Retinal Detachment during External Beam Radiotherapy.

    PubMed

    Hidaka, Takako; Chuman, Hideki; Nao-I, Nobuhisa

    2016-01-01

    Herein, we report a case of nontraumatic bilateral rhegmatogenous retinal detachment (RRD) during external beam radiotherapy for nonocular tumor, presented as an observational case study in conjunction with a review of the relevant literature. A 65-year-old male was referred to our hospital due to bilateral RRD. He underwent a biopsy for a tumor of the left frontal lobe 4 months prior to presentation, and the tumor had been diagnosed as primary central nerve system B-cell type lymphoma. He received chemotherapy and external beam radiotherapy for 1 month. There were no traumatic episodes. Bilateral retinal detachment occurred during a series of radiotherapies. Simultaneous nontraumatic bilateral retinal detachment is rare. The effects of radiotherapy on ocular functionality, particularly in cases involving retinal adhesion and vitreous contraction, may include RRD. Thus, it is necessary to closely monitor the eyes of patients undergoing radiotherapy, particularly those undergoing surgery for retinal detachment and those with a history of photocoagulation for retinal tears, a relevant family history, or risk factors known to be associated with RRD. PMID:27462261

  15. Bilateral Rhegmatogenous Retinal Detachment during External Beam Radiotherapy

    PubMed Central

    Hidaka, Takako; Chuman, Hideki; Nao-i, Nobuhisa

    2016-01-01

    Herein, we report a case of nontraumatic bilateral rhegmatogenous retinal detachment (RRD) during external beam radiotherapy for nonocular tumor, presented as an observational case study in conjunction with a review of the relevant literature. A 65-year-old male was referred to our hospital due to bilateral RRD. He underwent a biopsy for a tumor of the left frontal lobe 4 months prior to presentation, and the tumor had been diagnosed as primary central nerve system B-cell type lymphoma. He received chemotherapy and external beam radiotherapy for 1 month. There were no traumatic episodes. Bilateral retinal detachment occurred during a series of radiotherapies. Simultaneous nontraumatic bilateral retinal detachment is rare. The effects of radiotherapy on ocular functionality, particularly in cases involving retinal adhesion and vitreous contraction, may include RRD. Thus, it is necessary to closely monitor the eyes of patients undergoing radiotherapy, particularly those undergoing surgery for retinal detachment and those with a history of photocoagulation for retinal tears, a relevant family history, or risk factors known to be associated with RRD. PMID:27462261

  16. [Hepatic tumors and radiotherapy].

    PubMed

    Rio, E; Mornex, F; Peiffert, D; Huertas, A

    2016-09-01

    Recent technological developments led to develop the concept of focused liver radiation therapy. We must distinguish primary and secondary tumors as the indications are restricted and must be discussed as an alternative to surgical or medical treatments. For hepatocellular carcinoma 5 to 10cm (or more), a conformational radiation with or without intensity modulation is performed. Stereotactic body radiotherapy (SBRT) is being evaluated and is increasingly proposed as an alternative to radiofrequency ablative treatment for primary or secondary tumors (typically less than 5cm). Tumor (and liver) movements induced by respiratory motions must be taken into account. Strict dosimetric criteria must be met with particular attention to the dose-volume histograms to liver and the hollow organs, including cases of SBRT. PMID:27521035

  17. Radiotherapy planning using MRI

    NASA Astrophysics Data System (ADS)

    Schmidt, Maria A.; Payne, Geoffrey S.

    2015-11-01

    The use of magnetic resonance imaging (MRI) in radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimized, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT.

  18. Gangliogliomas involving the optic chiasm.

    PubMed

    Liu, G T; Galetta, S L; Rorke, L B; Bilaniuk, L T; Vojta, D D; Molloy, P T; Phillips, P C; Needle, M; Duhaime, A C; Sutton, L N; Volpe, N J

    1996-06-01

    We report three patients with gangliogliomas involving the optic chiasm via distinct mechanisms. The ganglioglioma in one patient likely originated in the temporal lobe and spread medially to involve the chiasm, and diffuse spinal cord dissemination also occurred. Chiasmal involvement in this manner and dissemination at presentation are unusual for gangliogliomas. The tumor in a second patient was intrinsic to the hypothalmus and chiasm, while in the third patient, it involved both optic tracts, and a cyst compressed the chiasm laterally. Two patients developed severe bilateral visual loss, while the other had a stable bitemporal hemianopsia. Two patients received radiotherapy, but one continued to lose vision. Although gangliogliomas rarely involve chiasm, the mechanisms by which they produce chiasmal visual loss may be diverse, and the long-term visual prognosis is variable. PMID:8649567

  19. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    SciTech Connect

    Massillon-JL, G.

    2010-12-07

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  20. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    NASA Astrophysics Data System (ADS)

    Massillon-JL, G.

    2010-12-01

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  1. Low-Dose Involved-Field Radiation in the Treatment of Non-Hodgkin Lymphoma: Predictors of Response and Treatment Failure

    SciTech Connect

    Russo, Andrea L.; Chen, Yu-Hui; Martin, Neil E.; Vinjamoori, Anant; Luthy, Sarah K.; Freedman, Arnold; Michaelson, Evan M.; Silver, Barbara; Mauch, Peter M.; Ng, Andrea K.

    2013-05-01

    Purpose: To investigate clinical and pathologic factors significant in predicting local response and time to further treatment after low-dose involved-field radiation therapy (LD-IFRT) for non-Hodgkin lymphoma (NHL). Methods and Materials: Records of NHL patients treated at a single institution between April 2004 and September 2011 were retrospectively reviewed. Low-dose involved-field radiation therapy was given as 4 Gy in 2 fractions over 2 consecutive days. Treatment response and disease control were determined by radiographic studies and/or physical examination. A generalized estimating equation model was used to assess the effect of tumor and patient characteristics on disease response. A Cox proportional hazards regression model was used to assess time to further treatment. Results: We treated a total of 187 sites in 127 patients with LD-IFRT. Histologies included 66% follicular, 9% chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma, 10% marginal zone, 6% mantle cell lymphoma (MCL), and 8% other. Median follow-up time was 23.4 months (range, 0.03-92.2 months). The complete response, partial response, and overall response rates were 57%, 25%, and 82%, respectively. A CLL histology was associated with a lower response rate (odds ratio 0.2, 95% confidence interval 0.1-0.5, P=.02). Tumor size, site, age at diagnosis, and prior systemic therapy were not associated with response. The median time to first recurrence was 13.6 months. Those with CLL and age ≤50 years at diagnosis had a shorter time to further treatment for local failures (hazard ratio [HR] 3.63, P=.01 and HR 5.50, P=.02, respectively). Those with CLL and MCL had a shorter time to further treatment for distant failures (HR 11.1 and 16.3, respectively, P<.0001). Conclusions: High local response rates were achieved with LD-IFRT across most histologies. Chronic lymphocytic leukemia and MCL histologies and age ≤50 years at diagnosis had a shorter time to further treatment after LD-IFRT.

  2. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations

    PubMed Central

    Vernet, Marine; Quentin, Romain; Chanes, Lorena; Mitsumasu, Andres; Valero-Cabré, Antoni

    2014-01-01

    The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed. PMID:25202241

  3. The potential of radiotherapy to enhance the efficacy of renal cell carcinoma therapy

    PubMed Central

    De Wolf, Katrien; Vermaelen, Karim; De Meerleer, Gert; Lambrecht, Bart N; Ost, Piet

    2015-01-01

    Renal cell carcinoma (RCC) is an immunogenic tumor, but uses several immune-suppressive mechanisms to shift the balance from tumor immune response toward tumor growth. Although RCC has traditionally been considered to be radiation resistant, recent evidence suggests that hypofractionated radiotherapy contributes to systemic antitumor immunity. Because the efficacy of antitumor immune responses depends on the complex balance between diverse immune cells and progressing tumor cells, radiotherapy alone is unlikely to induce persistent antitumor immunity. Therefore, the combination of radiotherapy with drugs having synergistic immunomodulatory properties holds great promise with the optimal timing and sequence of modalities depending on the agent used. We highlight the immunomodulatory properties of targeted therapies, such as tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (VEGF) neutralizing antibodies, and will suggest a combination schedule with radiotherapy based on the available literature. We also address the combination of radiotherapy with innovative treatments in the field of immunotherapy. PMID:26464810

  4. Modeling the risk of secondary malignancies after radiotherapy.

    PubMed

    Schneider, Uwe

    2011-01-01

    In developed countries, more than half of all cancer patients receive radiotherapy at some stage in the management of their disease. However, a radiation-induced secondary malignancy can be the price of success if the primary cancer is cured or at least controlled. Therefore, there is increasing concern regarding radiation-related second cancer risks in long-term radiotherapy survivors and a corresponding need to be able to predict cancer risks at high radiation doses. Of particular interest are second cancer risk estimates for new radiation treatment modalities such as intensity modulated radiotherapy, intensity modulated arc-therapy, proton and heavy ion radiotherapy. The long term risks from such modern radiotherapy treatment techniques have not yet been determined and are unlikely to become apparent for many years, due to the long latency time for solid tumor induction. Most information on the dose-response of radiation-induced cancer is derived from data on the A-bomb survivors who were exposed to γ-rays and neutrons. Since, for radiation protection purposes, the dose span of main interest is between zero and one Gy, the analysis of the A-bomb survivors is usually focused on this range. With increasing cure rates, estimates of cancer risk for doses larger than one Gy are becoming more important for radiotherapy patients. Therefore in this review, emphasis was placed on doses relevant for radiotherapy with respect to radiation induced solid cancer. Simple radiation protection models should be used only with extreme care for risk estimates in radiotherapy, since they are developed exclusively for low dose. When applied to scatter radiation, such models can predict only a fraction of observed second malignancies. Better semi-empirical models include the effect of dose fractionation and represent the dose-response relationships more accurately. The involved uncertainties are still huge for most of the organs and tissues. A major reason for this is that the

  5. CHOP-VP16 chemotherapy and involved field irradiation for high grade non-Hodgkin's lymphomas: a phase II multicentre study.

    PubMed Central

    Köppler, H.; Pflüger, K. H.; Eschenbach, I.; Pfab, R.; Lennert, K.; Wellens, W.; Schmidt, M.; Gassel, W. D.; Kolb, T.; Hässler, R.

    1989-01-01

    Sixty previously untreated patients with high grade non-Hodgkin's lymphomas stages II-IV received cyclophosphamide 750 mg m2 i.v., doxorubicin 50 mg m2 i.v., and vincristine 2 mg i.v. on day 1, prednisolone 100 mg p.o. on days 1-5 and etoposide 100 mg m2 i.v. on days 3-5 (CHOP-VP16). After four courses an involved field irradiation with a total dose of 25 Gy was employed and followed by two additional courses of CHOP-VP16. The overall response rate was 93%, with 49 patients (82%) achieving a complete remission (CR). Seven patients had a partial response and four patients showed no response. During a median follow-up period of 55 months, 22 of the 49 patients with CR relapsed, seven of them achieving a second complete remission with the same drug regimen. A maintained complete remission of up to 68 months was seen in 55% of all patients initially achieving CR. The median survival is 43 months. Mean side-effects of this drug regimen were alopecia (89%), nausea/vomiting (76%) and leukopenia (61%). No therapy-related deaths were seen. The results of this study demonstrate that this combined modality treatment produces high complete remission rates and that more than half of these patients achieve long-term disease-free survival. PMID:2679846

  6. Neurobehavioral and neurometabolic (SPECT) correlates of paranormal information: involvement of the right hemisphere and its sensitivity to weak complex magnetic fields.

    PubMed

    Roll, W G; Persinger, M A; Webster, D L; Tiller, S G; Cook, C M

    2002-02-01

    Experiments were designed to help elucidate the neurophysiological correlates for the experiences reported by Sean Harribance. For most of his life he has routinely experienced "flashes of images" of objects that were hidden and of accurate personal information concerning people with whom he was not familiar. The specificity of details for target pictures of people was correlated positively with the proportion of occipital alpha activity. Results from a complete neuropsychological assessment, Single Photon Emission Computed Tomography (SPECT), and screening electroencephalography suggested that his experiences were associated with increased activity within the parietal lobe and occipital regions of the right hemisphere. Sensed presences (subjectively localized to his left side) were evoked when weak, magnetic fields, whose temporal structure simulated long-term potentiation in the hippocampus, were applied over his right temporoparietal lobes. These results suggest that the phenomena attributed to paranormal or "extrasensory" processes are correlated quantitatively with morphological and functional anomalies involving the right parietotemporal cortices (or its thalamic inputs) and the hippocampal formation. PMID:12325407

  7. Systematic Endobronchial Ultrasound-guided Mediastinal Staging Versus Positron Emission Tomography for Comprehensive Mediastinal Staging in NSCLC Before Radical Radiotherapy of Non-small Cell Lung Cancer: A Pilot Study.

    PubMed

    Steinfort, Daniel P; Siva, Shankar; Leong, Tracy L; Rose, Morgan; Herath, Dishan; Antippa, Phillip; Ball, David L; Irving, Louis B

    2016-02-01

    Despite known limitations of positron emission tomography (PET) for mediastinal staging of non-small cell lung cancer (NSCLC), radiation treatment fields are generally based on PET-identified disease extent. However, no studies have examined the accuracy of FDG-PET/CT on a per-node basis in patients being considered for curative-intent radiotherapy in NSCLC.In a prospective trial, patients with NSCLC being considered for definitive thoracic radiotherapy (± systemic chemotherapy) underwent minimally invasive systematic mediastinal evaluation with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) following noninvasive staging with integrated PET-CT.Thirty patients underwent EBUS-TBNA, with TBNA performed from a mean 2.5 lymph node (LN) stations per patient (median 3, range 1-5). Discordant findings between PET-CT and EBUS-TBNA were observed in 10 patients (33%, 95% CI 19%-51%). PET-occult LN metastases were demonstrated by EBUS in 4 patients, whereas a lesser extent of mediastinal involvement, compared with FDG-PET, was demonstrated by EBUS in 6 patients, including 2 patients downstaged from cN3 to pN2. LNs upstaged by EBUS were significantly smaller than nodes downstaged by EBUS, 7.5 mm (range 7-9) versus 12 mm (range 6-21), P = 0.005.A significant proportion of patients considered for definitive radiotherapy (+/-chemotherapy) undergoing systematic mediastinal evaluation with EBUS-TBNA in this study have an extent of mediastinal NSCLC involvement discordant with that indicated by PET-CT. Systematic EBUS-TBNA may aid in defining the extent of mediastinal involvement in NSCLC patients undergoing radiotherapy. Systematic EBUS-TBNA has the potential to contribute significantly to radiotherapy planning and delivery, by either identifying occult nodal metastases, or demonstrating FDG-avid LNs to be disease-free. PMID:26937894

  8. Quality of Radiotherapy Reporting in Randomized Controlled Trials of Hodgkin's Lymphoma and Non-Hodgkin's Lymphoma: A Systematic Review

    SciTech Connect

    Bekelman, Justin E. Yahalom, Joachim

    2009-02-01

    Purpose: Standards for the reporting of radiotherapy details in randomized controlled trials (RCTs) are lacking. Although radiotherapy (RT) is an important component of curative therapy for Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), we postulated that RT reporting may be inadequate in Phase III HL and NHL trials. Methods and Materials: We searched PubMed and the Cochrane registry for reports of RCTs involving RT and either HL or NHL published between 1998 and 2007. We screened 133 titles and abstracts to identify relevant studies. We included a total of 61 reports. We assessed these reports for the presence of six quality measures: target volume, radiation dose, fractionation, radiation prescription, quality assurance (QA) process use, and adherence to QA (i.e., reporting of major or minor deviations). Results: Of 61 reports, 23 (38%) described the target volume. Of the 42 reports involving involved-field RT alone, only 8 (19%) adequately described the target volume. The radiation dose and fractionation was described in most reports (54 reports [89%] and 39 reports [64%], respectively). Thirteen reports specified the RT prescription point (21%). Only 12 reports (20%) described using a RT QA process, and 7 reports (11%) described adherence to the QA process. Conclusion: Reporting of RT in HL and NHL RCTs is deficient. Because the interpretation, replication, and application of RCT results depend on adequate description and QA of therapeutic interventions, consensus standards for RT reporting should be developed and integrated into the peer-review process.

  9. Integrating Geriatric Assessment into Decision-Making after Prostatectomy: Adjuvant Radiotherapy, Salvage Radiotherapy, or None?

    PubMed Central

    Goineau, Aurore; d’Aillières, Bénédicte; de Decker, Laure; Supiot, Stéphane

    2015-01-01

    Despite current advancements in the field, management of older prostate cancer patients still remains a big challenge for Geriatric Oncology. The International Society of Geriatric Oncology (ISGO) has recently updated its recommendations in this area, and these have been widely adopted, notably by the European Association of Urology. This article outlines the principles that should be observed in the management of elderly patients who have recently undergone prostatectomy for malignancy or with a biochemical relapse following prostatectomy. Further therapeutic intervention should not be considered in those patients who are classified as frail in the geriatric assessment. In patients presenting better health conditions, salvage radiotherapy is to be preferred to adjuvant radiotherapy, which is only indicated in certain exceptional cases. Radiotherapy of the operative bed presents a higher risk to the elderly. Additionally, hormone therapy clearly shows higher side effects in older patients and therefore it should not be administered to asymptomatic patients. We propose a decision tree based on the ISGO recommendations, with specific modifications for patients in biochemical relapse. PMID:26528437

  10. Stereotactic Body Radiotherapy for Lesions of the Spine and Paraspinal Regions

    SciTech Connect

    Nelson, John W.; Yoo, David S.; Sampson, John H.; Isaacs, Robert E.; Larrier, Nicole A.; Marks, Lawrence B.; Yin Fangfang; Wu, Q. Jackie; Wang Zhiheng; Kirkpatrick, John P.

    2009-04-01

    Purpose: To describe our experience and clinical strategy for stereotactic body radiotherapy (SBRT) of spinal lesions. Methods and Materials: Thirty-two patients with 33 spinal lesions underwent computed tomography-based simulation while free breathing. Gross/clinical target volumes included involved portions of the vertebral body and paravertebral/epidural tumor. Planning target volume (PTV) expansion was 6 mm axially and 3 mm radially; the cord was excluded from the PTV. Biologic equivalent dose was calculated using the linear quadratic model with {alpha}/{beta} = 3 Gy. Treatment was linear accelerator based with on-board imaging; dose was adjusted to maintain cord dose within tolerance. Survival, local control, pain, and neurologic status were monitored. Results: Twenty-one patients are alive at 1 year (median survival, 14 months). Median follow-up is 6 months for all patients (7 months for survivors). Mean previous radiotherapy dose to 22 patients was 35 Gy, and median interval was 17 months. Renal (31%), breast, and lung (19% each) were the most common histologic sites. Three SBRT fractions (range, one to four fractions) of 7 Gy (range, 5-16 Gy) were delivered. Median cord and target biologic equivalent doses were 70 Gy{sub 3} and 34.3 Gy{sub 10}, respectively. Thirteen patients reported complete and 17 patients reported partial pain relief at 1 month. There were four failures (mean, 5.8 months) with magnetic resonance imaging evidence of in-field progression. No dosimetric parameters predictive of failure were identified. No treatment-related toxicity was seen. Conclusions: Spinal SBRT is effective in the palliative/re-treatment setting. Volume expansion must ensure optimal PTV coverage while avoiding spinal cord toxicity. The long-term safety of spinal SBRT and the applicability of the linear-quadratic model in this setting remain to be determined, particularly the time-adjusted impact of prior radiotherapy.

  11. [Adaptive radiotherapy in routine: The radiation oncologist's point of view].

    PubMed

    Henriques de Figueiredo, B; Petit, A; Sargos, P; Kantor, G; Pouypoudat, C; Saut, O; Zacharatou, C; Antoine, M

    2015-10-01

    Adaptive radiotherapy is defined as all processes leading to the modification of a treatment plan on the basis of patient-specific variations observed during the course of a treatment. This concept is currently of particular relevance due to the development of onboard volumetric imaging systems, which allow for daily viewing of variations in both tumour and organs at risk in terms of position, shape or volume. However, its application in routine clinical practice is limited due to the demanding nature of the processes involved (re-delineation and replanning) and increased dependence on available human resources. Even if "online" strategies, based on deformable image registration (DIR) algorithms, could lead to a reduction in both work and calculation time, for the moment their use is limited to the research field due to uncertainties surrounding the validity of results gathered. Other strategies without DIR can be used as "offline" or "hybrid offline-online" strategies that seem to offer a compromise between time consumption and therapeutic gain for the patient. PMID:26337475

  12. [Postoperative radiotherapy of prostate cancer].

    PubMed

    Guérif, S; Latorzeff, I; Lagrange, J-L; Hennequin, C; Supiot, S; Garcia, A; François, P; Soulié, M; Richaud, P; Salomon, L

    2014-10-01

    Between 10 and 40% of patients who have undergone a radical prostatectomy may have a biologic recurrence. Local or distant failure represents the possible patterns of relapse. Patients at high-risk for local relapse have extraprostatic disease, positive surgical margins or seminal vesicles infiltration or high Gleason score at pathology. Three phase-III randomized clinical trials have shown that, for these patients, adjuvant irradiation reduces the risk of tumoral progression without higher toxicity. Salvage radiotherapy for late relapse allows a disease control in 60-70% of the cases. Several research in order to improve the therapeutic ratio of the radiotherapy after prostatectomy are evaluate in the French Groupe d'Étude des Tumeurs Urogénitales (Gétug) and of the French association of urology (Afu). The Gétug-Afu 17 trial will provide answers to the question of the optimal moment for postoperative radiotherapy for pT3-4 R1 pN0 Nx patients, with the objective of comparing an immediate treatment to a differed early treatment initiated at biological recurrence. The Gétug-Afu 22 questions the place of a short hormonetherapy combined with image-guided, intensity-modulated radiotherapy (IMRT) in adjuvant situation for a detectable prostate specific antigen (PSA). The implementation of a multicenter quality control within the Gétug-Afu in order to harmonize a modern postoperative radiotherapy will allow the development of a dose escalation IMRT after surgery. PMID:25195116

  13. Small animal radiotherapy research platforms

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  14. A maximum-entropy method for the planning of conformal radiotherapy.

    PubMed

    Wu, X; Zhu, Y

    2001-11-01

    The maximum entropy method (MEM) is a powerful inverse analysis technique that is used in many fields of science and engineering to perform tasks such as image reconstruction and processing of nuclear magnetic resonance signals. Unlike other methods, MEM naturally incorporates a priori knowledge of the problem into the optimized cost function. This feature is especially important in radiotherapy planning, because some knowledge is usually available about the stage of tumor development and about the prescription doses, including some dose constraints to the surrounding normal organs. Inverse planning is inherently consistent with the ability of MEM to estimate parameters inversely. In this investigation, an entropy function determines the homogeneity of dose distribution in the planning target volume; a least-squares function is added to the maximum entropy function as a constraint to measure the quality of reconstructed doses in organs at risk; and an iterative Newton-Ralphson algorithm searches for the optimization solution. Here we provide two examples that validate this application of MEM and the results were compared with manual plans. Although the examples involve conformal radiotherapy, we think MEM can be adopted to optimize intensity-modulated radiation therapy. PMID:11764028

  15. Liver-Directed Radiotherapy for Hepatocellular Carcinoma

    PubMed Central

    Keane, Florence K.; Wo, Jennifer Y.; Zhu, Andrew X.; Hong, Theodore S.

    2016-01-01

    Background The incidence of hepatocellular carcinoma (HCC) continues to increase world-wide. Many patients present with advanced disease with extensive local tumor or vascular invasion and are not candidates for traditionally curative therapies such as orthotopic liver transplantation (OLT) or resection. Radiotherapy (RT) was historically limited by its inability to deliver a tumoricidal dose; however, modern RT techniques have prompted renewed interest in the use of liver-directed RT to treat patients with primary hepatic malignancies. Summary The aim of this review was to discuss the use of external beam RT in the treatment of HCC, with particular focus on the use of stereotactic body radiotherapy (SBRT). We review the intricacies of SBRT treatment planning and delivery. Liver-directed RT involves accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. We also summarize the published data on liver-directed RT, and demonstrate that it is associated with excellent local control and survival rates, particularly in patients who are not candidates for OLT or resection. Key Messages Modern liver-directed RT is safe and effective for the treatment of HCC, particularly in patients who are not candidates for OLT or resection. Liver-directed RT, including SBRT, depends on accurate target identification, precise and reproducible patient immobilization, and assessment of target and organ motion. Further prospective studies are needed to fully delineate the role of liver-directed RT in the treatment of HCC. PMID:27493895

  16. Predicting toxicity in radiotherapy for prostate cancer.

    PubMed

    Landoni, Valeria; Fiorino, Claudio; Cozzarini, Cesare; Sanguineti, Giuseppe; Valdagni, Riccardo; Rancati, Tiziana

    2016-03-01

    This comprehensive review addresses most organs at risk involved in planning optimization for prostate cancer. It can be considered an update of a previous educational review that was published in 2009 (Fiorino et al., 2009). The literature was reviewed based on PubMed and MEDLINE database searches (from January 2009 up to September 2015), including papers in press; for each section/subsection, key title words were used and possibly combined with other more general key-words (such as radiotherapy, dose-volume effects, NTCP, DVH, and predictive model). Publications generally dealing with toxicity without any association with dose-volume effects or correlations with clinical risk factors were disregarded, being outside the aim of the review. A focus was on external beam radiotherapy, including post-prostatectomy, with conventional fractionation or moderate hypofractionation (<4Gy/fraction); extreme hypofractionation is the topic of another paper in this special issue. Gastrointestinal and urinary toxicity are the most investigated endpoints, with quantitative data published in the last 5years suggesting both a dose-response relationship and the existence of a number of clinical/patient related risk factors acting as dose-response modifiers. Some results on erectile dysfunction, bowel toxicity and hematological toxicity are also presented. PMID:27068274

  17. Unilateral Cervical Polyneuropathies following Concurrent Bortezomib, Cetuximab, and Radiotherapy for Head and Neck Cancer

    PubMed Central

    Elghouche, Alhasan; Shokri, Tom; Qin, Yewen; Wargo, Susannah; Citrin, Deborah; Van Waes, Carter

    2016-01-01

    We report a constellation of cervical polyneuropathies in a patient treated with concurrent bortezomib, cetuximab, and cisplatin alongside intensity modulated radiotherapy for carcinoma of the tonsil with neck metastasis. The described deficits include brachial plexopathy, cervical sensory neuropathy, and oculosympathetic, recurrent laryngeal, and phrenic nerve palsies within the ipsilateral radiation field. Radiation neuropathy involving the brachial plexus is typically associated with treatment of breast or lung cancer; however, increased awareness of this entity in the context of investigational agents with potential neuropathic effects in head and neck cancer has recently emerged. With this report, we highlight radiation neuropathy in the setting of investigational therapy for head and neck cancer, particularly since these sequelae may present years after therapy and entail significant and often irreversible morbidity. PMID:27088023

  18. Fractionated beam radiotherapy is a special case of continuous beam radiotherapy when irradiation time is small.

    PubMed

    Biswas, Jayanta; Rajguru, Tapan K; Choudhury, Krishnangshu B; Dutta, Sumita; Sharma, Shyam; Sarkar, Aniruddha

    2013-01-01

    Fractionated beam radiotherapy, in other terms, external beam radiotherapy (EBRT) and continuous beam radiotherapy or Brachytherapy are two modes of radiotherapy techniques. Although in many ways, they appear to be different, radiobiologically, with the help of mathematics, it can be proved that the biological effective dose (BED) of EBRT is similar to BED of Brachytherapy, when irradiation time is small. Here an attempt is made to correlate these two predominant modes of radiotherapy techniques. PMID:24125964

  19. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  20. Voice following radiotherapy.

    PubMed

    Stoicheff, M L

    1975-04-01

    This study was undertaken to provide information on the voice of patients following radiotherapy for glottic cancer. Part I presents findings from questionnaires returned by 227 of 235 patients successfully irradiated for glottic cancer from 1960 through 1971. Part II presents preliminary findings on the speaking fundamental frequencies of 22 irradiated patients. Normal to near-normal voice was reported by 83 percent of the 227 patients; however, 80 percent did indicate persisting vocal difficulties such as fatiguing of voice with much usage, inability to sing, reduced loudness, hoarse voice quality and inability to shout. Amount of talking during treatments appeared to affect length of time for voice to recover following treatments in those cases where it took from nine to 26 weeks; also, with increasing years since treatment, patients rated their voices more favorably. Smoking habits following treatments improved significantly with only 27 percent smoking heavily as compared with 65 percent prior to radiation therapy. No correlation was found between smoking (during or after treatments) and vocal ratings or between smoking and length of time for voice to recover. There was no relationship found between reported vocal ratings and stage of the disease. Data on mean speaking fundamental frequency seem to indicate a trend toward lower frequencies in irradiated patients as compared with normals. A trend was also noted in both irradidated and control groups for lower speaking fundamental frequencies in heavy smokers compared with non-smokers or previous smokers. These trends would indicate some vocal cord thickening or edema in irradiated patients and in heavy smokers. It is suggested that the study of irradiated patients' voices before, during and following treatments by means of audio, aerodynamic and acoustic instrumentation would yield additional information of diagnostic value on recovery of laryngeal function. It is also suggested that the voice pathologist could

  1. Evaluation of different in vitro assays of inherent sensitivity as predictors of radiotherapy response

    SciTech Connect

    Schwartz, J.L. Chicago Univ., IL . Medical Center); Beckett, M.A.; Mustafi, R.; Weichselbaum, R.R. . Medical Center); Vaughan, A.T.M. . Stritch School of Medicine)

    1991-01-01

    The inherent sensitivity of cells within a tumor plays an important role in the response of the tumor to radiotherapy. Clonogenic assays show that cells established from in-field radiotherapy failures are significantly more resistant to radiation than cell lines established from pre-treatment samples. Clonogenic assays fail to predict tumor response to radiotherapy, however. The failure might be due to the small sample size in this study, or the complicating factors of staging, surgery, and chemotherapy, and/or in vivo selection by radiotherapy for resistant tumor cells. In vitro selection for resistant cell lines does not appear to be a complicating factor. Nonclonogenic assays such as those that measure DNA strand break rejoining rates (filter elution, pulse-field gel electrophoresis) or chromosome structure (flow cytometric analysis) show promise as alternative rapid assays of radiation sensitivity and possibly tumor response. 16 refs., 2 figs.

  2. Significance of Cox-2 expression in rectal cancers with or without preoperative radiotherapy

    SciTech Connect

    Pachkoria, Ketevan; Zhang Hong; Adell, Gunnar; Jarlsfelt, Ingvar; Sun Xiaofeng . E-mail: xiao-feng.sun@ibk.liu.se

    2005-11-01

    Purpose: Radiotherapy has reduced local recurrence of rectal cancers, but the result is not satisfactory. Further biologic factors are needed to identify patients for more effective radiotherapy. Our aims were to investigate the relationship of cyclooxygenase-2 (Cox-2) expression to radiotherapy, and clinicopathologic/biologic variables in rectal cancers with or without radiotherapy. Methods and Materials: Cox-2 expression was immunohistochemically examined in distal normal mucosa (n = 28), in adjacent normal mucosa (n = 107), in primary cancer (n = 138), lymph node metastasis (n = 30), and biopsy (n = 85). The patients participated in a rectal cancer trial of preoperative radiotherapy. Results: Cox-2 expression was increased in primary tumor compared with normal mucosa (p < 0.0001), but there was no significant change between primary tumor and metastasis. Cox-2 positivity was or tended to be related to more p53 and Ki-67 expression, and less apoptosis (p {<=} 0.05). In Cox-2-negative cases of either biopsy (p = 0.01) or surgical samples (p = 0.02), radiotherapy was related to less frequency of local recurrence, but this was not the case in Cox-2-positive cases. Conclusion: Cox-2 expression seemed to be an early event involved in rectal cancer development. Radiotherapy might reduce a rate of local recurrence in the patients with Cox-2 weakly stained tumors, but not in those with Cox-2 strongly stained tumors.

  3. Radiotherapy. Gazing at the crystal ball of European radiotherapy.

    PubMed

    Overgaard, Jens

    2015-01-01

    Although radiotherapy is a key component of cancer treatment, provision of this modality is not immune to limits placed on health-care expenditure. Recent studies suggest European radiation oncology resources will generally be insufficient to meet future, and in some cases current, needs. This challenge and how it might be addressed is discussed herein. PMID:25421280

  4. Second primary tumors following radiotherapy for childhood cancer

    SciTech Connect

    Hawkins, M.M. )

    1990-11-01

    Among a cohort of 9,279 survivors of childhood neoplasms other than retinoblastoma treated in Britain before 1980, the cumulative risk of a second primary tumor (SPT) by 25 years from 3-year survival was 3.7%. This corresponds to about five times the number expected from rates of cancer occurring in the general population. In the absence of both radiotherapy and chemotherapy, there was four times the expected number of subsequent cancers. The risk of an SPT associated with radiotherapy but not chemotherapy and both radiotherapy and chemotherapy were 6 and 9 times that expected, respectively. There is evidence that radiotherapy was involved in the development of many of the SPT's observed. However, case-control investigations are required to examine the relationship between relative risk of an SPT and therapy in detail. Secondary leukemia appears to occur more frequently among more recently diagnosed children with cancer. It is important to continue to monitor the occurrence of SPT's with a view to identifying the least carcinogenic therapies that are consistent with not compromising survival prospects.

  5. Technical Advances and Pitfalls in Head and Neck Radiotherapy

    PubMed Central

    Parvathaneni, Upendra; Laramore, George E.; Liao, Jay J.

    2012-01-01

    Intensity Modulated Radiotherapy (IMRT) is the standard of care in the treatment of head and neck squamous cell carcinomas (HNSCC) based on level 1 evidence. Technical advances in radiotherapy have revolutionized the treatment of HNSCC, with the most tangible gain being a reduction in long term morbidity. However, these benefits come with a serious and sobering price. Today, there is a greater chance of missing the target/tumor due to uncertainties in target volume definition by the clinician that is demanded by the highly conformal planning process involved with IMRT. Unless this is urgently addressed, our patients would be better served with the historically practiced non conformal radiotherapy, than IMRT which promises lesser morbidity. Image guided radiotherapy (IGRT) ensures the level of set up accuracy warranted to deliver a highly conformal treatment plan and should be utilized with IMRT, where feasible. Proton therapy has a theoretical physical advantage over photon therapy due to a lack of “exit dose”. However, clinical data supporting the routine use of this technology for HNSCC are currently sparse. The purpose of this article is to review the literature, discuss the salient issues and make recommendations that address the gaps in knowledge. PMID:22701482

  6. [CyberKnife robotic stereotactic radiotherapy: technical aspects and medical indications].

    PubMed

    Bondiau, P-Y; Bénézery, K; Beckendorf, V; Peiffert, D; Gérard, J-P; Mirabel, X; Noël, A; Marchesi, V; Lacornerie, T; Dubus, F; Sarrazin, T; Herault, J; Marcié, S; Angellier, G; Lartigau, E

    2007-11-01

    In 2006, 3 sites have been selected by the Institut national of cancer (Lille, Nancy et Nice) to evaluate a radiotherapy robot, the CyberKnife. This machine, able to track mobile tumours in real time, gives new possibilities in the field of extra cranial stereotactic radiotherapy. Functionalities and medico economical issues of the machine will be evaluated during 2 years on the 3 sites. PMID:18029216

  7. [Which rules apply to hypofractionated radiotherapy?].

    PubMed

    Supiot, S; Clément-Colmou, K; Paris, F; Corre, I; Chiavassa, S; Delpon, G

    2015-10-01

    Hypofractionated radiotherapy is now more widely prescribed due to improved targeting techniques (intensity modulated radiotherapy, image-guided radiotherapy and stereotactic radiotherapy). Low dose hypofractionated radiotherapy is routinely administered mostly for palliative purposes. High or very high dose hypofractionated irradiation must be delivered according to very strict procedures since every minor deviation can lead to major changes in dose delivery to the tumor volume and organs at risk. Thus, each stage of the processing must be carefully monitored starting from the limitations and the choice of the hypofractionation technique, tumour contouring and dose constraints prescription, planning and finally dose calculation and patient positioning verification. PMID:26321647

  8. Assessment of function and quality of life in a phase II multi-institutional clinical trial of fractionated simultaneous in-field boost radiotherapy for patients with 1-3 metastases.

    PubMed

    Bauman, Glenn; Yartsev, Slav; Roberge, David; MacRae, Robert; Roa, Wilson; Panet-Raymond, Valerie; Masucci, Laura; Yaremko, Brian; D'Souza, David; Palma, David; Sexton, Tracy; Yu, Edward; Pantarotto, Jason R; Ahmad, Belal; Fisher, Barbara; Dar, A Rashid; Lambert, Carole; Pond, Gregory; Stitt, Larry; Tay, Keng Yeow; Rodrigues, George

    2016-07-01

    We examined functional outcomes and quality of life of whole brain radiotherapy (WBRT) with integrated fractionated stereotactic radiotherapy boost (FSRT) for brain metastases treatment. Eighty seven people with 1-3 brain metastases (54/87 lung primary, 42/87 single brain metastases) were enrolled on this Phase II trial of WBRT (30 Gy/10) + simultaneous FSRT, (60 Gy/10). Median overall follow-up and survival was 5.4 months, 6 month actuarial intra-lesional control was 78 %; only 1 patient exhibited grade 4 toxicity (worsened seizures); most treatment related toxicity was grade 1 or 2; 2/87 patients demonstrated asymptomatic radiation necrosis on follow-up imaging. Mean (Min-Max) baseline KPS, Mini Mental Status Exam (MMSE) and FACT-BR quality of life were 83 (70-100), 28 (21-30) and 143 (98-153). Lower baseline MMSE (but not KPS or FACT-Br) was associated with worse survival after adjusting for age, number of metastases, primary and extra-cranial disease status. Crude rates of deterioration (>10 points decrease from baseline for KPS and FACT-Br, MMSE fall to <27) ranged from 26 to 38 % for KPS, 32-59 % for FACT-Br and 0-16 % for MMSE depending on the time-point assessed with higher rates generally noted at earlier time points (≤6 months post-treatment). Using a linear mixed models analysis, significant declines from baseline were noted for KPS and FACT-Br (largest effects at 6 weeks to 3 months) with no significant change in MMSE. The effects on function and quality of life of this integrated treatment of WBRT + simultaneous FSRT were similar to other published series combining WBRT + radiosurgery. PMID:27084705

  9. Endorectal MRI assessment of local relapse after surgery for prostate cancer: A model to define treatment field guidelines for adjuvant radiotherapy in patients at high risk for local failure

    SciTech Connect

    Miralbell, Raymond . E-mail: Raymond.Miralbell@hcuge.ch; Vees, Hansjoerg; Lozano, Joan; Khan, Haleem; Molla, Meritxell; Hidalgo, Alberto; Linero, Dolors; Rouzaud, Michel

    2007-02-01

    Purpose: To assess the role of endorectal magnetic resonance imaging (MRI) in defining local relapse after radical prostatectomy for prostate cancer to help to reassess the clinical target volume (CTV) for adjuvant postprostatectomy radiotherapy. Methods and Materials: Sixty patients undergoing an endorectal MRI before salvage radiotherapy were selected. Spatial coordinates of the relapses were assessed using two reference points: the inferior border of the pubic symphysis (point 1) and the urethro-vesical anastomosis (point 2). Every lesion on MRI was delineated on the planning computed tomography and center of mass coordinates were plotted in two separate diagrams (along the x, y, and z axes) with the urethro-vesical anastomosis as the coordinate origin. An 'ideal' CTV was constructed, centered at a point defined by the mathematical means of each of the three coordinates with dimensions defined as twice 2 standard deviations in each of the three axes. The dosimetric impact of the new CTV definition was evaluated in six adjuvantly treated patients. Results: The ideal CTV center of mass was located at coordinates 0 (x), -5 (y), and -3 (z) mm with SDs of 6 (x), 6 (y), and 9 (z) mm, respectively. The CTV size was 24 (x) x 24 (y) x 36 (z) mm. Significant rectal sparing was observed with the new CTV. Conclusions: A CTV with an approximately cylindrical shape ({approx}4 x 3 cm) centered 5 mm posterior and 3 mm inferior to the urethro-vesical anastomosis was defined. Such CTV may reduce the irradiation of normal nontarget tissue in the pelvis potentially improving treatment tolerance.

  10. Conformal Radiotherapy in the Treatment of Advanced Juvenile Nasopharyngeal Angiofibroma With Intracranial Extension: An Institutional Experience

    SciTech Connect

    Chakraborty, Santam; Ghoshal, Sushmita; Patil, Vijay Maruti; Oinam, Arun Singh; Sharma, Suresh C.

    2011-08-01

    Purpose: To describe the results of conformal radiotherapy in advanced juvenile nasopharyngeal angiofibroma in a tertiary care institution. Methods and Materials: Retrospective chart review was conducted for 8 patients treated with conformal radiotherapy between 2006 and 2009. The median follow-up was 17 months. All patients had Stage IIIB disease with intracranial extension. Radiotherapy was considered as treatment because patients were deemed inoperable owing to extensive intracranial/intraorbital extension or proximity to optic nerve. All but 1 patient were treated with intensity-modulated radiotherapy using seven coplanar fields. Median (range) dose prescribed was 39.6 (30-46) Gy. Actuarial analysis of local control and descriptive analysis of toxicity profile was conducted. Results: Despite the large and complex target volume (median planning target volume, 292 cm{sup 3}), intensity-modulated radiotherapy achieved conformal dose distributions (median van't Reit index, 0.66). Significant sparing of the surrounding organs at risk was obtained. No significant Grade 3/4 toxicities were experienced during or after treatment. Actual local control at 2 years was 87.5%. One patient died 1 month after radiotherapy secondary to massive epistaxis. The remaining 7 patients had progressive resolution of disease and were symptom-free at last follow-up. Persistent rhinitis was the only significant toxicity, seen in 1 patient. Conclusions: Conformal radiotherapy results in good local control with minimal acute and late side effects in juvenile nasopharyngeal angiofibromas, even in the presence of advanced disease.

  11. Radiotherapy T1 glottic carcinoma

    SciTech Connect

    Zablow, A.I.; Erba, P.S.; Sanfillippo, L.J.

    1989-11-01

    From 1970 to 1985, curative radiotherapy was administered to 63 patients with stage I carcinoma of the true vocal cords. Precision radiotherapeutic technique yields cure rates comparable to surgical results. Good voice quality was preserved in a high percentage of patients.

  12. Pancreatic cancer: chemotherapy and radiotherapy

    PubMed Central

    Andrén-Sandberg, Åke

    2011-01-01

    Pancreatic cancer in many cases appears in a non-curatively resectable stage when the diagnosis is made. Palliative treatment become an option in the patients with advanced stage. The present article reviewed chemotherapy and radiotherapy in various advanced stage of pancreatic cancer. PMID:22540056

  13. Preoperative radiotherapy for colorectal cancer.

    PubMed Central

    Higgins, G A; Conn, J H; Jordan, P H; Humphrey, E W; Roswit, B; Keehn, R J

    1975-01-01

    In a prospective randomized trial, 700 patients with a confirmed histological diagnosis of adenocarcinoma of the rectum or rectosigmoid were randomized to receive radiotherapy prior to operation (2000 to 2500 rads in two weeks) or surgery alone. Five year observed survival in the 453 patients on whom "curative" resection was possible was 48.5% in the X-ray treated group compared with 38.8% in controls, while in the 305 having low lying lesions requiring abdominoperineal resection, survival in the treated group was 46.9% compared with 34.3% in controls. Although suggestive of a treatment benefit, neither is considered statistically significant. Histologically positive lymph nodes were found in 41.2% of the control group and in only 27.8% of the patients receiving radiotherapy. Reveiw of all patients who died during the study shows a consistently lower death rate from cancer in the radiotherapy group. Although this study suggests a treatment benefit from preoperative radiotherapy, further studies now in progress by this group and others are necessary to determine the optimal dose regimen. PMID:805571

  14. Xeroderma pigmentosum and medulloblastoma: chromosomal damage to lymphocytes during radiotherapy

    SciTech Connect

    Gianneli, F.; Avery, J.; Polani, P.E.; Terrell, C.; Giammusso, V.

    1981-10-01

    The effects of radiotherapy on a patient with xeroderma pigmentosum (XP) of complementation group C and medulloblastoma are reported. His lymphocytes showed no x-ray-induced chromatid damage, but unstable chromosomal aberrations increased throughout the course of radiotherapy as observed also in two other children (patients 2 and 3) with a similar tumor. Such damage was more dependent on spinal than cranial irradiation, lowest in the XP patient and highest in patient 3. Interindividual differences seemed largely due to the relative volume of body irradiated, but the damage in patient 3 remained relatively high even after accounting for such a factor. A maximum of 36, 68, and 77% of lymphocytes had aberrations in the XP and patients 2 and 3, respectively, but chromosomal damage did not show a Poisson distribution and indicated admixture of irradiated and nonirradiated cells. The relative frequency of the irradiated cells was estimated and seemed proportional to the ratios of the average irradiated field to the total body area. The XP patient showed no preferential loss of highly damaged cells and seemed not to suffer excessive chromosomal damage; he had a normal clinical response to and a favorable outcome of radiotherapy. These findings reduce anxiety on the use of radiotherapy in XP patients or at least in those of group C.

  15. Treatment outcome of postoperative radiotherapy for retroperitoneal sarcoma

    PubMed Central

    Lee, Hyun Jin; Kwon, Tae-Won; Yook, Jeong Hwan; Kim, Song-Cheol; Han, Duck-Jong; Kim, Choung-Soo; Ahn, Hanjong; Chang, Heung Moon; Ahn, Jin-Hee; Jwa, Eun Jin; Lee, Sang-Wook; Kim, Jong Hoon; Choi, Eun Kyung; Shin, Seong Soo; Ahn, Seung Do

    2011-01-01

    Purpose To evaluate the treatment outcome and prognostic factor after postoperative radiotherapy in retroperitoneal sarcoma. Materials and Methods Forty patients were treated with surgical resection and postoperative radiotherapy for retroperitoneal sarcoma from August 1990 to August 2008. Treatment volume was judged by the location of initial tumor and surgical field, and 45-50 Gy of radiation was basically delivered and additional dose was considered to the high-risk area. Results The median follow-up period was 41.4 months (range, 3.9 to 140.6 months). The 5-year overall survival (OS) was 51.8% and disease free survival was 31.5%. The 5-year locoregional recurrence free survival was 61.9% and distant metastasis free survival was 50.6%. In univariate analysis, histologic type (p = 0.006) was the strongest prognostic factor for the OS and histologic grade (p = 0.044) or resection margin (p = 0.032) had also effect on the OS. Histologic type (p = 0.004) was unique significant prognostic factor for the actuarial local control. Conclusion Retroperitoneal sarcoma still remains as a poor prognostic disease despite the combined modality treatment including surgery and postoperative radiotherapy. Selective dose-escalation of radiotherapy or combination of effective chemotherapeutic agent must be considered to improve the treatment result especially for the histopathologic type showing poor prognosis. PMID:22984679

  16. Investigation of photon beam models in heterogeneous media of modern radiotherapy.

    PubMed

    Ding, W; Johnston, P N; Wong, T P Y; Bubb, I F

    2004-06-01

    This study investigates the performance of photon beam models in dose calculations involving heterogeneous media in modern radiotherapy. Three dose calculation algorithms implemented in the CMS FOCUS treatment planning system have been assessed and validated using ionization chambers, thermoluminescent dosimeters (TLDs) and film. The algorithms include the multigrid superposition (MGS) algorithm, fast Fourier Transform Convolution (FFTC) algorithm and Clarkson algorithm. Heterogeneous phantoms used in the study consist of air cavities, lung analogue and an anthropomorphic phantom. Depth dose distributions along the central beam axis for 6 MV and 10 MV photon beams with field sizes of 5 cm x 5 cm and 10 cm x 10 cm were measured in the air cavity phantoms and lung analogue phantom. Point dose measurements were performed in the anthropomorphic phantom. Calculated results with three dose calculation algorithms were compared with measured results. In the air cavity phantoms, the maximum dose differences between the algorithms and the measurements were found at the distal surface of the air cavity with a 10 MV photon beam and a 5 cm x 5 cm field size. The differences were 3.8%. 24.9% and 27.7% for the MGS. FFTC and Clarkson algorithms. respectively. Experimental measurements of secondary electron build-up range beyond the air cavity showed an increase with decreasing field size, increasing energy and increasing air cavity thickness. The maximum dose differences in the lung analogue with 5 cm x 5 cm field size were found to be 0.3%. 4.9% and 6.9% for the MGS. FFTC and Clarkson algorithms with a 6 MV photon beam and 0.4%. 6.3% and 9.1% with a 10 MV photon beam, respectively. In the anthropomorphic phantom, the dose differences between calculations using the MGS algorithm and measurements with TLD rods were less than +/-4.5% for 6 MV and 10 MV photon beams with 10 cm x 10 cm field size and 6 MV photon beam with 5 cm x 5 cm field size, and within +/-7.5% for 10 MV with 5 cm

  17. Long-Term Outcomes of Radiotherapy for Pituitary Adenomas

    SciTech Connect

    Snead, Felicia E. Amdur, Robert J. M.D.; Morris, Christopher G. M.S.; Mendenhall, William M.

    2008-07-15

    Purpose: To evaluate long-term local control and toxicity for pituitary adenomas treated with fractionated radiotherapy (RT). Methods and Materials: The records of 100 patients with pituitary adenomas treated between 1983 and 2003 were retrospectively reviewed. Thirty-one patients had hormone-secreting tumors; 69 patients were treated with surgery and postoperative RT. Median follow-up was 6.7 years (range, 0.6-20.2 years) for all patients and 6.2 years (range, 2-20.2 years) for living patients. The mean dose delivered was 45 Gy (range, 43-50.4 Gy). Results: The 10-year actuarial local control rates for nonsecreting and secreting adenomas were 98% and 73%, respectively (p 0.0015). Actuarial 10-year cause-specific survival (CSS) rates were 95% and 88%, and overall survival rates were 66% and 79% for nonsecreting and secreting adenomas, respectively. Involvement of the sphenoid sinus was found to be significantly associated with decreased 10-year CSS (p = 0.0453). When compared with the two- or three-field techniques, stereotactic RT was associated with improved CSS (p = 0.0775). CSS was not significantly associated with hormone excretion, extent of surgery, or whether RT was administrated postoperatively or for salvage after a postsurgical recurrence. New cases of hypopituitarism occurred in 35 patients. One patient experienced vision loss, and one patient developed a post-treatment glioma. Conclusions: This is one of the most mature series in the literature that documents excellent results with fractionated RT for pituitary adenoma. We recommend 45 Gy at 1.8 Gy per fraction using stereotactic noncoplanar fields.

  18. Radiotherapy and chemoradiation after surgery for early cervical cancer

    PubMed Central

    Rogers, Linda; Siu, Shing Shun N; Luesley, David; Bryant, Andrew; Dickinson, Heather O

    2014-01-01

    Background This is an updated version of the original Cochrane review first published in Issue 4, 2009. There is an ongoing debate about the indications for, and value of, adjuvant pelvic radiotherapy after radical surgery in women with early cervical cancer. Certain combinations of pathological risk factors are thought to represent sufficient risk for recurrence, that they justify the use of postoperative pelvic radiotherapy, though this has never been shown to improve overall survival, and use of more than one type of treatment (surgery and radiotherapy) increases the risks of side effects and complications. Objectives To evaluate the effectiveness and safety of adjuvant therapies (radiotherapy, chemotherapy followed by radiotherapy, chemoradiation) after radical hysterectomy for early-stage cervical cancer (FIGO stages IB1, IB2 or IIA). Search methods For the original review, we searched the Cochrane Central Register of Controlled Trials (CENTRAL), Issue 4, 2008. The Cochrane Gynaecological Cancer Group Trials Register, MEDLINE (January 1950 to November 2008), EMBASE (1950 to November 2008). We also searched registers of clinical trials, abstracts of scientific meetings, reference lists of included studies and contacted experts in the field. For this update, we extended the database searches to September 2011 and searched the MetaRegister for ongoing trials. Selection criteria Randomised controlled trials (RCTs) that compared adjuvant therapies (radiotherapy, chemotherapy followed by radiotherapy, or chemoradiation) with no radiotherapy or chemoradiation, in women with a confirmed histological diagnosis of early cervical cancer who had undergone radical hysterectomy and dissection of the pelvic lymph nodes. Data collection and analysis Two review authors independently abstracted data and assessed risk of bias. Information on grade 3 and 4 adverse events was collected from the trials. Results were pooled using random-effects meta-analyses. Main results Two RCTs

  19. Parent Involvement.

    ERIC Educational Resources Information Center

    LaCrosse, Ed

    The paper discusses the rationale and guidelines for parent involvement in HCEEP (Handicapped Children's Early Education Program) projects. Ways of assessing parents' needs are reviewed, as are four types of services to meet the identified needs: parent education, direct participation, parent counseling, and parent provided programs. Materials and…

  20. Prospective multicenter study of combined treatment with chemotherapy and radiotherapy in breast cancer women with the rare clinical scenario of ipsilateral supraclavicular node recurrence without distant metastases

    SciTech Connect

    Pergolizzi, Stefano . E-mail: Stefano.Pergolizzi@unime.it; Adamo, Vincenzo; Russi, Elvio; Santacaterina, Anna; Maisano, Roberto; Numico, Gianmauro; Palazzolo, Carmela; Ferrau, Francesco; Settineri, Nicola; Altavilla, Giuseppe; Girlando, Andrea; Spadaro, Pietro; Cascinu, Stefano

    2006-05-01

    Purpose: To evaluate the role of chemotherapy combined with curative radiotherapy in breast cancer patients who presented with recurrent ipsilateral supraclavicular lymph node metastases (ISLM) without 'nonregional disease,' we designed an observational study performed prospectively. Patients and Methods: Forty-four consecutive patients with ISLM from breast cancer as part of recurrent regional disease without distant metastases were included in this study. All patients received chemotherapy with doxorubicin-based schema or paclitaxel for six courses and curative radiotherapy (60 Gy/30 fractions of 2 Gy/5 days a week). An 'involved field' radiation was delivered during the interval between the third and fourth chemotherapy course; hormonal therapy was given based on receptor status. Results: The rate of overall clinical response after chemotherapy and radiotherapy was 94.9%. Median time to progression and overall survival were 28 and 40 months, respectively; the 5-year actuarial overall survival and disease-free survival rates were 35% (95% confidence interval, 19-51) and 20% (95% confidence interval, 6-34), respectively. Conclusion: A curative course of intravenous chemotherapy and radical irradiation is feasible in patients with ISLM. All patients presenting recurrence in supraclavicular nodes should be treated with definitive locoregional treatments and systemic therapy because the outcomes are better than might be historically assumed.

  1. Palliative radiotherapy: current status and future directions.

    PubMed

    Sharma, Sonam; Hertan, Lauren; Jones, Joshua

    2014-12-01

    For nearly 100 years, palliative radiotherapy has been a time-efficient, effective treatment for patients with metastatic or advanced cancer in any area where local tumors are causing symptoms. Short courses including a single fraction of radiotherapy may be effective for symptom relief with minimal side effects and maximization of convenience for patient and family. With recent advances in imaging, surgery, and other local therapies as well as systemic cancer therapies, palliative radiotherapy has been used frequently in patients who may not yet have symptoms of advanced or metastatic cancer. In this setting, more prolonged radiotherapy courses and advanced radiotherapy techniques including intensity-modulated radiotherapy (IMRT) or stereotactic radiotherapy (SRT) may be useful in obtaining local control and durable palliative responses. This review will explore the use of radiotherapy across the spectrum of patients with advanced and metastatic cancer and delineate an updated, rational approach for the use of palliative radiotherapy that incorporates symptoms, prognosis, and other factors into the delivery of palliative radiotherapy. PMID:25499634

  2. Organ-specific radiation-induced cancer risk estimates due to radiotherapy for benign pigmented villonodular synovitis

    NASA Astrophysics Data System (ADS)

    Mazonakis, Michalis; Tzedakis, Antonis; Lyraraki, Efrossyni; Damilakis, John

    2016-09-01

    Pigmented villonodular synovitis (PVNS) is a benign disease affecting synovial membranes of young and middle-aged adults. The aggressive treatment of this disorder often involves external-beam irradiation. This study was motivated by the lack of data relating to the radiation exposure of healthy tissues and radiotherapy-induced cancer risk. Monte Carlo methodology was employed to simulate a patient’s irradiation for PVNS in the knee and hip joints with a 6 MV photon beam. The average radiation dose received by twenty-two out-of-field critical organs of the human body was calculated. These calculations were combined with the appropriate organ-, age- and gender-specific risk coefficients of the BEIR-VII model to estimate the lifetime probability of cancer development. The risk for carcinogenesis to colon, which was partly included in the treatment fields used for hip irradiation, was determined with a non-linear mechanistic model and differential dose-volume histograms obtained by CT-based 3D radiotherapy planning. Risk assessments were compared with the nominal lifetime intrinsic risk (LIR) values. Knee irradiation to 36 Gy resulted in out-of-field organ doses of 0.2–24.6 mGy. The corresponding range from hip radiotherapy was 1.2–455.1 mGy whereas the organ equivalent dose for the colon was up to 654.9 mGy. The organ-specific cancer risks from knee irradiation for PVNS were found to be inconsequential since they were at least 161.5 times lower than the LIRs irrespective of the patient’s age and gender. The bladder and colon cancer risk from radiotherapy in the hip joint was up to 3.2 and 6.6 times smaller than the LIR, respectively. These cancer risks may slightly elevate the nominal incidence rates and they should not be ignored during the patient’s treatment planning and follow-up. The probabilities for developing any other solid tumor were more than 20 times lower than the LIRs and, therefore, they may be considered as small.

  3. Organ-specific radiation-induced cancer risk estimates due to radiotherapy for benign pigmented villonodular synovitis.

    PubMed

    Mazonakis, Michalis; Tzedakis, Antonis; Lyraraki, Efrossyni; Damilakis, John

    2016-09-01

    Pigmented villonodular synovitis (PVNS) is a benign disease affecting synovial membranes of young and middle-aged adults. The aggressive treatment of this disorder often involves external-beam irradiation. This study was motivated by the lack of data relating to the radiation exposure of healthy tissues and radiotherapy-induced cancer risk. Monte Carlo methodology was employed to simulate a patient's irradiation for PVNS in the knee and hip joints with a 6 MV photon beam. The average radiation dose received by twenty-two out-of-field critical organs of the human body was calculated. These calculations were combined with the appropriate organ-, age- and gender-specific risk coefficients of the BEIR-VII model to estimate the lifetime probability of cancer development. The risk for carcinogenesis to colon, which was partly included in the treatment fields used for hip irradiation, was determined with a non-linear mechanistic model and differential dose-volume histograms obtained by CT-based 3D radiotherapy planning. Risk assessments were compared with the nominal lifetime intrinsic risk (LIR) values. Knee irradiation to 36 Gy resulted in out-of-field organ doses of 0.2-24.6 mGy. The corresponding range from hip radiotherapy was 1.2-455.1 mGy whereas the organ equivalent dose for the colon was up to 654.9 mGy. The organ-specific cancer risks from knee irradiation for PVNS were found to be inconsequential since they were at least 161.5 times lower than the LIRs irrespective of the patient's age and gender. The bladder and colon cancer risk from radiotherapy in the hip joint was up to 3.2 and 6.6 times smaller than the LIR, respectively. These cancer risks may slightly elevate the nominal incidence rates and they should not be ignored during the patient's treatment planning and follow-up. The probabilities for developing any other solid tumor were more than 20 times lower than the LIRs and, therefore, they may be considered as small. PMID:27499236

  4. Toxic Epidermal Necrolysis in Polymedicated Patient Treated With Radiotherapy

    PubMed Central

    Pérez-Calderón, Remedios; Corrales-Vargas, Silvia; Jiménez-Ferrera, Gloria; Rodríguez-Nevado, Isabel; Díaz-Delgado, Mario

    2015-01-01

    Temozolomide is an oral alkylating agent indicated for the treatment of patients with glioblastoma multiforme concomitantly with radiotherapy and subsequently as monotherapy treatment. We report the case of a patient who developed toxic epidermal necrolysis (TEN) while she was being treated with chemoradiotherapy and several drugs. Cutaneous tests were performed with the drugs involved with negative result. Although the occurrence of TEN contraindicates suspected drug readministration, we based the decision to perform the controlled administration of temozolomide on the following reasons: (1) the poor prognosis of the underlying disease, (2) the lack of therapeutic alternatives, (3) the suspicion that other drugs taken by the patient simultaneously may be responsible (as anticonvulsants and trimethoprim sulfamethoxazole [TMP-SMX]), and (4) temozolomide was the first choice for treating the patient's disease. The administration of a cumulative dose of 60 mg of temozolomide caused a slight skin reaction. Given this result, we conducted controlled administration of other drugs involved. Dexamethasone, codeine, omeprazole and levetiracetam were well tolerated. However, TMP-SMX produced a similar reaction to that caused by temozolomide. In conclusion, we present the first case of TEN induced by temozolomide and TMP-SMX associated with cranial radiotherapy confirmed by controlled administration. Radiotherapy in combination with these drugs could have favored TEN, as some authors have postulated, but we cannot prove this. PMID:25729629

  5. Magnetic field effects on electron transfer reactions involving sextet-spin ( S = 5/2) intermediates generated on photoexcitation of a Cr(III)-porphyrin complex

    NASA Astrophysics Data System (ADS)

    Mori, Yukie; Hoshino, Mikio; Hayashi, Hisaharu

    The excited trip-sextet ( 6 T 1 ) state of chloro-(3-methylimidazol)-( meso -tetraphenylporphyrinato) chromium(III) (Cr III P) is quenched by 1,1 '-dibenzyl-4,4 '-bipyridinium (BV 2+ ) in acetonitrile through electron transfer to give 5 (Cr III P .+ ) and 2 BV .+ . The intermediate is a geminate ion pair in the sextet (Sx) state 6 [ 5 (Cr III P .+ ) 2 BV .+ ], which decays through either the escape from a solvent cage to give the free ions or the spin conversion to the quartet (Qa) state followed by back electron transfer. The free ion yield ( ΦFI ) increased with increasing magnetic field from 0 to 4 T and then slightly decreased from 4 T to 10 T. These magnetic field effects are explained as follows. Under low fields where the Zeeman splitting of the spin sublevels is lower than or comparable with the electron spin dipole-dipole interaction within 5 (Cr III P .+ ), this interaction effectively induces the Sx ⇔Qa conversion of [ 5 (Cr III P .+ ) 2 BV + ] to result in low ΦFI values. Under high fields where the Zeeman splitting is larger than the dipole-dipole interaction, the Sx Qa conversion is decreased with increasing field to cause higher ΦFI values. The slight decrease in ΦFI above 4 T may be due to the Δg mechanism.

  6. TOPICAL REVIEW: Anatomical imaging for radiotherapy

    NASA Astrophysics Data System (ADS)

    Evans, Philip M.

    2008-06-01

    scans is taken on different days. Both allow planning to account for variability intrinsic to the patient. Treatment verification has been carried out using a variety of technologies including: MV portal imaging, kV portal/fluoroscopy, MVCT, conebeam kVCT, ultrasound and optical surface imaging. The various methods have their pros and cons. The four x-ray methods involve an extra radiation dose to normal tissue. The portal methods may not generally be used to visualize soft tissue, consequently they are often used in conjunction with implanted fiducial markers. The two CT-based methods allow measurement of inter-fraction variation only. Ultrasound allows soft-tissue measurement with zero dose but requires skilled interpretation, and there is evidence of systematic differences between ultrasound and other data sources, perhaps due to the effects of the probe pressure. Optical imaging also involves zero dose but requires good correlation between the target and the external measurement and thus is often used in conjunction with an x-ray method. The use of anatomical imaging in radiotherapy allows treatment uncertainties to be determined. These include errors between the mean position at treatment and that at planning (the systematic error) and the day-to-day variation in treatment set-up (the random error). Positional variations may also be categorized in terms of inter- and intra-fraction errors. Various empirical treatment margin formulae and intervention approaches exist to determine the optimum strategies for treatment in the presence of these known errors. Other methods exist to try to minimize error margins drastically including the currently available breath-hold techniques and the tracking methods which are largely in development. This paper will review anatomical imaging techniques in radiotherapy and how they are used to boost the therapeutic benefit of the treatment.

  7. Stereotactic body radiotherapy: current strategies and future development

    PubMed Central

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  8. Stereotactic body radiotherapy: current strategies and future development.

    PubMed

    Tsang, Maverick W K

    2016-07-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  9. Standard-Fractionated Radiotherapy for Optic Nerve Sheath Meningioma: Visual Outcome Is Predicted by Mean Eye Dose

    SciTech Connect

    Abouaf, Lucie; Girard, Nicolas; Lefort, Thibaud; D'hombres, Anne; Tilikete, Caroline; Vighetto, Alain; Mornex, Francoise

    2012-03-01

    Purpose: Radiotherapy has shown its efficacy in controlling optic nerve sheath meningiomas (ONSM) tumor growth while allowing visual acuity to improve or stabilize. However, radiation-induced toxicity may ultimately jeopardize the functional benefit. The purpose of this study was to identify predictive factors of poor visual outcome in patients receiving radiotherapy for ONSM. Methods and Materials: We conducted an extensive analysis of 10 patients with ONSM with regard to clinical, radiologic, and dosimetric aspects. All patients were treated with conformal radiotherapy and subsequently underwent biannual neuroophthalmologic and imaging assessments. Pretreatment and posttreatment values of visual acuity and visual field were compared with Wilcoxon's signed rank test. Results: Visual acuity values significantly improved after radiotherapy. After a median follow-up time of 51 months, 6 patients had improved visual acuity, 4 patients had improved visual field, 1 patient was in stable condition, and 1 patient had deteriorated visual acuity and visual field. Tumor control rate was 100% at magnetic resonance imaging assessment. Visual acuity deterioration after radiotherapy was related to radiation-induced retinopathy in 2 patients and radiation-induced mature cataract in 1 patient. Study of radiotherapy parameters showed that the mean eye dose was significantly higher in those 3 patients who had deteriorated vision. Conclusions: Our study confirms that radiotherapy is efficient in treating ONSM. Long-term visual outcome may be compromised by radiation-induced side effects. Mean eye dose has to be considered as a limiting constraint in treatment planning.

  10. Intraoperative radiotherapy for breast cancer

    PubMed Central

    Williams, Norman R.; Pigott, Katharine H.; Brew-Graves, Chris

    2014-01-01

    Intra-operative radiotherapy (IORT) as a treatment for breast cancer is a relatively new technique that is designed to be a replacement for whole breast external beam radiotherapy (EBRT) in selected women suitable for breast-conserving therapy. This article reviews twelve reasons for the use of the technique, with a particular emphasis on targeted intra-operative radiotherapy (TARGIT) which uses X-rays generated from a portable device within the operating theatre immediately after the breast tumour (and surrounding margin of healthy tissue) has been removed. The delivery of a single fraction of radiotherapy directly to the tumour bed at the time of surgery, with the capability of adding EBRT at a later date if required (risk-adaptive technique) is discussed in light of recent results from a large multinational randomised controlled trial comparing TARGIT with EBRT. The technique avoids irradiation of normal tissues such as skin, heart, lungs, ribs and spine, and has been shown to improve cosmetic outcome when compared with EBRT. Beneficial aspects to both institutional and societal economics are discussed, together with evidence demonstrating excellent patient satisfaction and quality of life. There is a discussion of the published evidence regarding the use of IORT twice in the same breast (for new primary cancers) and in patients who would never be considered for EBRT because of their special circumstances (such as the frail, the elderly, or those with collagen vascular disease). Finally, there is a discussion of the role of the TARGIT Academy in developing and sustaining high standards in the use of the technique. PMID:25083504

  11. [Palliative Radiotherapy for Bone Metastases].

    PubMed

    Nagakura, Hisayasu

    2015-11-01

    Bone metastasis is associated with many symptoms such as bone pain, pathological fracture, and spinal cord compression. Especially, pain secondary to bone metastases is a serious problem in many patients with metastatic cancer. Radiotherapy can provide remarkable pain relief, reduce the requirement for analgesic drugs, and prevent pathological fracture or spinal cord compression with few complications in most patients. Many randomized controlled trials have shown equivalent extent of pain relief between single-fraction and multiple-fraction regimens. Reirradiation of painful bone metastases is effective for palliation of pain in non-responders or patients with recurrent pain after an initial satisfactory response to a previous radiation therapy. Systemic administration of radioisotopes is an important palliative care option for painful multifocal bone metastases detected on nuclear imaging; however, the application of this option depends on the histologic features of the tumor and distribution of the metastases. Metastatic spinal cord compression is the most frequent oncologic emergency and necessitates timely and appropriate treatment. External beam radiotherapy is commonly used for the treatment of metastatic spinal cord compression. Surgical decompression and stabilization should be considered for metastatic spinal cord compression or pathological fracture in select patients. Postoperative radiotherapy should be administered to patients who have undergone surgical intervention for bone metastases. For patients at a high risk for oncologic emergency, optimal prophylactic management is highly recommended. PMID:26602393

  12. Adjuvant Radiotherapy for Gastric Cancer: A Dosimetric Comparison of 3-Dimensional Conformal Radiotherapy, Tomotherapy (registered) and Conventional Intensity Modulated Radiotherapy Treatment Plans

    SciTech Connect

    Dahele, Max; Skinner, Matthew; Schultz, Brenda; Cardoso, Marlene; Bell, Chris; Ung, Yee C.

    2010-07-01

    Some patients with gastric cancer benefit from post-operative chemo-radiotherapy, but adequately irradiating the planning target volume (PTV) whilst avoiding organs at risk (OAR) can be difficult. We evaluate 3-dimensional conformal radiotherapy (CRT), conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy (TT). TT, 2 and 5-field (F) CRT and IMRT treatment plans with the same PTV coverage were generated for 5 patients and compared. Median values are reported. The volume of left/right kidney receiving at least 20Gy (V20) was 57/51% and 51/60% for 2 and 5F-CRT, and 28/14% for TT and 27/19% for IMRT. The volume of liver receiving at least 30Gy (V30) was 45% and 62% for 2 and 5F-CRT, and 37% for TT and 35% for IMRT. With TT, 98% of the PTV received 95-105% of the prescribed dose, compared with 45%, 34% and 28% for 2F-CRT, 5F-CRT and IMRT respectively. Using conventional metrics, conventional IMRT can achieve comparable PTV coverage and OAR sparing to TT, but at the expense of PTV dose heterogeneity. Both irradiate large volumes of normal tissue to low doses. Additional studies are needed to demonstrate the clinical impact of these technologies.

  13. A review of recently published radiotherapy treatment guidelines for bone metastases: Contrasts or convergence?

    PubMed Central

    Lutz, Stephen; Chow, Edward

    2012-01-01

    Bone metastases are a common manifestation of malignancy, and external beam radiotherapy (EBRT) effectively and safely palliates the pain caused by this clinical circumstance. The myriad of EBRT dosing schemes and complexities involved with coordinating radiotherapy with other interventions necessitated the need for bone metastases treatment guidelines. Here we compare and contrast the bone metastases radiotherapy treatment guidelines recently published by the American Society for Radiation Oncology (ASTRO) and the American College of Radiology (ACR). These evaluations acknowledge current controversies in treatment approaches, they evaluate the nuances of ASTRO and ACR task force decision-making regarding standard approaches to care, and they project the upcoming research results that may clarify approaches to palliative radiotherapy for bone metastases. The results of these two dedicated radiotherapy guidelines are compared to the brief mentions of radiotherapy for bone metastases in the National Comprehensive Cancer Network (NCCN) guidelines. Finally, the paper describes how treatment guidelines may influence patterns of care and reimbursement by their use as quality measures by groups such as the National Quality Forum (NQF). PMID:26909250

  14. Stereotactic fractionated radiotherapy for the treatment of benign meningiomas

    SciTech Connect

    Candish, Charles; McKenzie, Michael . E-mail: mmckenzi@bccancer.bc.edu; Clark, Brenda G.; Ma, Roy; Lee, Richard; Vollans, Emily; Robar, James; Gete, Ermias; Martin, Monty

    2006-11-15

    Purpose: To assess the use of stereotactic fractionated radiotherapy (SRT) for the treatment of meningiomas. Methods and Materials: Between April 1999 and October 2004, 38 patients underwent SRT. Of 34 patients (36 tumors) assessed, the median age was 53 years. The indication was primary treatment in 26 cases (no histology) and postoperative in 10 cases. The most common sites were cavernous sinus (17), optic nerve (6), and cerebellopontine angle (5). The median gross target volume and planning target volume were 8.9 cm{sup 3} and 18.9 cm{sup 3}, respectively. Stereotactic treatment was delivered with 6-MV photons with static conformal fields (custom-made blocks, 9 patients, and micromultileaf collimator, 25 patients). Median number of fields was six. The median dose prescribed was 50 Gy (range, 45-50.4 Gy) in 28 fractions. The median homogeneity and conformality indices were 1.1 and 1.79, respectively. Results: Treatment was well tolerated. Median follow-up was 26 months with 100% progression-free survival. One patient developed an area of possible radionecrosis related to previous radiotherapy, and 2 men developed mild hypogonadism necessitating testosterone replacement. The vision of 5 of 6 patients with optic pathway meningiomas improved or remained static. Conclusions: Stereotactic fractionated radiotherapy for the treatment of meningiomas is practical, and with early follow-up, seems to be effective.

  15. Dosimetric Evaluation of Different Intensity-Modulated Radiotherapy Techniques for Breast Cancer After Conservative Surgery.

    PubMed

    Zhang, Fuli; Wang, Yadi; Xu, Weidong; Jiang, Huayong; Liu, Qingzhi; Gao, Junmao; Yao, Bo; Hou, Jun; He, Heliang

    2015-10-01

    Intensity-modulated radiotherapy (IMRT) potentially leads to a more favorite dose distribution compared to 3-dimensional or conventional tangential radiotherapy (RT) for breast cancer after conservative surgery or mastectomy. The aim of this study was to compare dosimetric parameters of the planning target volume (PTV) and organs at risk (OARs) among helical tomotherapy (HT), inverse-planned IMRT (IP-IMRT), and forward-planned field in field (FP-FIF) IMRT techniques after breast-conserving surgery. Computed tomography scans from 20 patients (12 left sided and 8 right sided) previously treated with T1N0 carcinoma were selected for this dosimetric planning study. We designed HT, IP-IMRT, and FP-FIF plans for each patient. Plans were compared according to dose-volume histogram analysis in terms of PTV homogeneity and conformity indices (HI and CI) as well as OARs dose and volume parameters. Both HI and CI of the PTV showed statistically significant difference among IP-IMRT, FP-FIF, and HT with those of HT were best (P < .05). Compared to FP-FIF, IP-IMRT showed smaller exposed volumes of ipsilateral lung, heart, contralateral lung, and breast, while HT indicated smaller exposed volumes of ipsilateral lung but larger exposed volumes of contralateral lung and breast as well as heart. In addition, HT demonstrated an increase in exposed volume of ipsilateral lung (except for fraction of lung volume receiving >30 Gy and 20 Gy), heart, contralateral lung, and breast compared with IP-IMRT. For breast cancer radiotherapy (RT) after conservative surgery, HT provides better dose homogeneity and conformity of PTV compared to IP-IMRT and FP-FIF techniques, especially for patients with supraclavicular lymph nodes involved. Meanwhile, HT decreases the OAR volumes receiving higher doses with an increase in the volumes receiving low doses, which is known to lead to an increased rate of radiation-induced secondary malignancies. Hence, composite factors including dosimetric advantage

  16. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    SciTech Connect

    Vogelius, Ivan S.; Westerly, David C.; Cannon, George M.; Mackie, Thomas R.; Mehta, Minesh P.; Sugie, Chikao; Bentzen, Soren M.

    2011-07-01

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeled as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.

  17. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  18. Characterization by restriction fragment length polymorphism and sequence analysis of field and vaccine strains of infectious laryngotracheitis virus involved in severe outbreaks.

    PubMed

    Chacon, Jorge Luis; Mizuma, Matheus Y; Piantino Ferreira, Antonio J

    2010-12-01

    At the end of 2002 and throughout 2003, there was a severe outbreak of infectious laryngotracheitis (ILT) in an intensive production area of commercial hens in the Sao Paulo State of Brazil. ILT virus was isolated from 28 flocks, and 21 isolates were genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using four genes and eight restriction enzymes, and by partial sequencing of the infected cell protein 4 (ICP4) and thymidine kinase (TK) genes. Three groups resulted from the combinations of PCR-RFLP patterns: 19 field isolates formed Group I, and the remaining two isolates together with the chicken embryo origin (CEO) vaccine strains formed Group II. Group III comprised the tissue-culture origin (TCO) vaccine strain by itself. The PCR-RFLP results agreed with the sequencing results of two ICP4 gene fragments. The ICP4 gene sequence analysis showed that the 19 field isolates classified into Group I by RFLP-PCR were identical among themselves, but were different to the TCO and CEO vaccines. The two Group II isolates could not be distinguished from one of the CEO vaccines. The nucleotide and amino acid sequence analyses discriminated between the Brazilian and non-Brazilian isolates, as well as between the TCO and CEO vaccines. Sequence analysis of the TK gene enabled classification of the field isolates (Group I) as virulent and non-vaccine. This work shows that the severe ILT outbreak was caused by a highly virulent, non-vaccine strain. PMID:21154050

  19. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James R.

    2002-04-30

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  20. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    SciTech Connect

    Venhuizen, James Robert

    2002-04-01

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  1. Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review

    PubMed Central

    Kalogeridi, Maria-Aggeliki; Zygogianni, Anna; Kyrgias, George; Kouvaris, John; Chatziioannou, Sofia; Kelekis, Nikolaos; Kouloulias, Vassilis

    2015-01-01

    Many patients with hepatocellular carcinoma (HCC) present with advanced disease, not amenable to curative therapies such as surgery, transplantation or radiofrequency ablation. Treatment options for this group of patients include transarterial chemoembolization (TACE) and radiation therapy. Especially TACE, delivering a highly concentrated dose of chemotherapy to tumor cells while minimizing systemic toxicity of chemotherapy, has given favorable results on local control and survival. Radiotherapy, as a therapeutic modality of internal radiation therapy with radioisotopes, has also achieved efficacious tumor control in advanced disease. On the contrary, the role of external beam radiotherapy for HCC has been limited in the past, due to the low tolerance of surrounding normal liver parenchyma. However, technological innovations in the field of radiotherapy treatment planning and delivery, have provided the means of delivering radical doses to the tumor, while sparing normal tissues. Advanced and highly conformal radiotherapy approaches such as stereotactic body radiotherapy and proton therapy, evaluated for efficacy and safety for HCC, report encouraging results. In this review, we present the role of radiotherapy in hepatocellular carcinoma patients not suitable for radical treatment. PMID:25625001

  2. Development of online quality assurance automation tool "SmartQC" for radiotherapy clinics

    NASA Astrophysics Data System (ADS)

    Zaks, Daniel

    Radiotherapy has existed as a clinical medical procedure since as early as 1900, and has become an essential component of modern hospitals. It is predicted that, sometime between the years 2010 and 2020, the number of patients receiving radiation therapy during their initial treatment is expected to rise by 22% from 470,000 per year to 575,000 per year Due to the potential for harm in radiotherapy, quality assurance is an essential element at every stage of modern clinical workflow. The quality and use of time in QA procedures and checks is an important issue that has significant impact on both practice and research in the field of radiotherapy. This thesis documents the results of development and results of tools addressing that question. While the motivation for radiotherapy QA is principally about improving quality of patient care, and developing radiotherapy research tools, we also discuss the relevance of QA to radiotherapy malpractice lawsuits and related financial costs. We show that in the treatment plan check performed by the medical physicist---also known as the second check or physics check---a substantial fraction (~33%) of the average time is spent on non-physics related analysis. We also demonstrate the development and implementation of a web-based system, referred to as PlanTracker within this thesis, to track the status of the plan. This thesis concludes with further developments being considered as an outgrowth of this system.

  3. Evaluation of target dose based on water-equivalent thickness in external beam radiotherapy

    PubMed Central

    Moghaddam, Behnaz Ghanbar; Vahabi-Moghaddam, Masoud; Sadremomtaz, Alireza

    2013-01-01

    In vivo dosimetry was carried out for 152 patients receiving external beam radiotherapy and the treatment sites were divided into two main groups: Thorax, Abdomen, and Pelvic (120 fields) and Head and Neck (52 fields). Combined entrance and exit dose measurements were performed using LiF: Mg, Cu, P thermoluminescent dosimeters (TLDs). Water-equivalent (effective) thicknesses and target dose were evaluated using dose transmission data. The ratio of measured to expected value for each quantity was considered as an indicator for the accuracy of the parameter. The average ratio of the entrance dose was evaluated as 1.01 ± 0.07. In the diameter measurement, the mean ratio of effective depth divided by the contour depth is 1.00 ± 0.13 that shows a wide distribution which reflects the influence of contour inaccuracies as well as tissue inhomogeneities. At the target level, the mean ratio of measured to the prescribed dose is 1.00 ± 0.07. According to our findings, the difference between effective depth and patient depth has a direct relation to target dose discrepancies. There are some inevitable sources which may cause the difference. Evaluation and application of effective diameter in treatment calculations would lead to a more reliable target dose, especially for fields which involve Thorax, Abdomen, and Pelvic. PMID:23532059

  4. Osteomyelits of the pubic bone with vesicocutaneous - vesicovaginal fistula: A delayed complication of post-cervical cancer radiotherapy.

    PubMed

    Salunke, Abhijeet Ashok; Nambi, Gurunathampalayam Ilango; Manoharan, Arumugam

    2014-01-01

    Vagino-vesico-cutaneous fistula is a rare condition characterised by continuous dribbling of urine and secondary infection of the involved areas with poor self-esteem. Osteomyelitis is delayed complication of radiotherapy treatment for cervical cancer. Treatment of these conditions is a challenging entity especially after previous surgery and irradiation. We present a case of vesicocutaneous - vesico vaginal fistula with osteomyelits of the right pubic bone which was a late complication of post-cervical cancer radiotherapy. PMID:24970977

  5. Intensity-Modulated Proton Therapy for Elective Nodal Irradiation and Involved-Field Radiation in the Definitive Treatment of Locally Advanced Non-Small Cell Lung Cancer: A Dosimetric Study

    PubMed Central

    Kesarwala, Aparna H.; Ko, Christine J.; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E.; O’Meara, William P.; Simone, Charles B.; Rengan, Ramesh

    2015-01-01

    Background Photon involved-field radiation therapy (IFRT), the standard for locally advanced non-small cell lung cancer (LA-NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Given the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. Materials and Methods IMPT IFRT plans were generated to the same total dose of 66.6–72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 CGE to elective nodal (EN) planning treatment volumes (PTV) plus 24 CGE to involved field (IF)-PTVs. Results Proton IFRT and ENI both improved D95 involved field (IF)-PTV coverage by 4% (p<0.01) compared to photon IFRT. All evaluated dosimetric parameters improved significantly with both proton plans. Lung V20 and mean lung dose decreased 18% (p<0.01) and 36% (p<0.01), respectively, with proton IFRT and 11% (p=0.03) and 26% (p<0.01) with ENI. Mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all p<0.01). Conclusions This study demonstrates the feasibility of IMPT for LA-NSCLC ENI. Potential decreased toxicity indicates IMPT could allow ENI while maintaining a favorable therapeutic ratio compared to photon IFRT. PMID:25604729

  6. Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Cole, Aidan J.; McGarry, Conor K.; Butterworth, Karl T.; McMahon, Stephen J.; Hounsell, Alan R.; Prise, Kevin M.; O'Sullivan, Joe M.

    2013-12-01

    Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p < 0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p < 0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.

  7. A Small Physiological Electric Field Mediated Responses of Extravillous Trophoblasts Derived from HTR8/SVneo Cells: Involvement of Activation of Focal Adhesion Kinase Signaling

    PubMed Central

    Zhang, Juan; Ren, Rongmei; Luo, Xuefeng; Fan, Ping; Liu, Xinghui; Liang, Shanshan; Ma, Lei; Yu, Ping; Bai, Huai

    2014-01-01

    Moderate invasion of trophoblast cells into endometrium is essential for the placental development and normal pregnancy. Electric field (EF)-induced effects on cellular behaviors have been observed in many cell types. This study was to investigate the effect of physiological direct current EF (dc EF) on cellular responses such as elongation, orientation and motility of trophoblast cells. Immortalized first trimester extravillous trophoblast cells (HTR-8/SVneo) were exposed to the dc EF at physiological magnitude. Cell images were recorded and analyzed by image analyzer. Cell lysates were used to detect protein expression by Western blot. Cultured in the dc EFs the cells showed elongation, orientation and enhanced migration rate compared with non-EF stimulated cells at field strengths of 100 mV/mm to 200 mV/mm. EF exposure increased focal adhesion kinase (FAK) phosphorylation in a time-dependent manner and increased expression levels of MMP-2. Pharmacological inhibition of FAK impaired the EF-induced responses including motility and abrogated the elevation of MMP-2 expression. However, the expression levels of integrins like integrin α1, α5, αV and β1 were not affected by EF stimulation. Our results demonstrate the importance of FAK activation in migration/motility of trophobalst cells driven by EFs. In addition, it raises the feasibility of using applied EFs to promote placentation through effects on trophoblast cells. PMID:24643246

  8. Involvement of protein kinase C in the modulation of morphine-induced analgesia and the inhibitory effects of exposure to 60-hz magnetic fields in the land snail, Cepaea nemoralis

    SciTech Connect

    Kavaliers, M.; Ossenkopp, K.P. )

    1990-02-26

    One of the more consistent and dramatic effects of exposure to magnetic fields is the attenuation of morphine-induced analgesia. Results of previous studies have implicated alterations in calcium channel functioning and Ca{sup ++} flux in the mediation of these effects. It is generally accepted that Ca{sup ++}-activated-phospholipid-dependent protein kinase (Protein kinase C; PKC) plays an important role in relaying trans-membrane signaling in diverse Ca{sup ++} dependent cellular processes. In experiment 1 we observed that morphine-induced analgesia in the land snail, Cepaea nemoralis, as measured by the latency of an avoidance behavior to a warmed surface, was reduced by the PKC activator, SC-9, and was enhanced by the PKC inhibitors, H-7 and H-9. In contrast, HA-10004, a potent inhibitor of other protein kinases, but only a very weak inhibitor of PKC, had no effect on morphine-induced analgesia. In experiment 2 exposure of snails for 30 minutes to a 1.0 gauss (rms) 60-Hz magnetic field reduced morphine-induced analgesia. This inhibitory effect of the magnetic field was reduced by the PKC inhibitors, H-7 and H-9, and was augmented by the PKC activator SC-9. These results suggest that: (i) PKC is involved in the modulation of morphine-induced analgesia and, (ii) the inhibitory effects of magnetic fields involve PKC.

  9. Innovative radiotherapy of sarcoma: Proton beam radiation.

    PubMed

    DeLaney, Thomas F; Haas, Rick L M

    2016-07-01

    This review on proton beam radiotherapy (PBT) focusses on an historical overview, cost-effectiveness, techniques, acute and late toxicities and clinical results of PBT for sarcoma patients. PBT has gained its place among the armamentarium of modern radiotherapy techniques. For selected patients, it can be cost-effective. PMID:27258968

  10. Microcystic adnexal carcinoma following radiotherapy in childhood

    SciTech Connect

    Borenstein, A.; Seidman, D.S.; Trau, H.; Tsur, H. )

    1991-04-01

    A 36-year-old man was treated by radiotherapy for tinea capitis many years before discovery of microcystic adnexal carcinoma (MAC). Because of patient's refusal of any surgical intervention, we were able to follow the natural course of this tumor for 13 years. This case emphasizes the typical slow development of (MAC). The implication of the association of MAC and radiotherapy are discussed.

  11. Involvement of membrane proteins and ion channels on the self-rotation of human cells in a non-rotating AC electric field.

    PubMed

    Vaillier, Clarisse; Honegger, Thibault; Kermarrec, Frédérique; Gidrol, Xavier; Peyrade, David

    2015-05-01

    Dielectrophoresis is a force that has been exploited in microsystems for label-free characterization and separation of cells, when their electrical signature is known. However, the polarization effect of cells at the transmembrane protein level is not well established. In this work, we have use the self-rotation effect of cells in a non-rotating field, known as the "Quincke effect," in order to measure the maximum rotation frequency (frotmax ) of different cell populations when modifying the composition of their membrane. We investigated the influence of active ionic transportation of membrane protein concentration on frotmax of HEK cells. Our results show that ionic transportation is responsible for the reduction of conductivity within the cytoplasm, which results in higher frotmax . However, the influence of the concentration of proteins in the membrane, achieved by silencing gene expression in cancer cells, changes significantly frotmax , which is not explained by the changes of ionic conductivity within the cell. PMID:25808576

  12. A comparative study on the risk of second primary cancers in out-of-field organs associated with radiotherapy of localized prostate carcinoma using Monte Carlo-based accelerator and patient models

    SciTech Connect

    Bednarz, Bryan; Athar, Basit; Xu, X. George

    2010-05-15

    Purpose: A physician's decision regarding an ideal treatment approach (i.e., radiation, surgery, and/or hormonal) for prostate carcinoma is traditionally based on a variety of metrics. One of these metrics is the risk of radiation-induced second primary cancer following radiation treatments. The aim of this study was to investigate the significance of second cancer risks in out-of-field organs from 3D-CRT and IMRT treatments of prostate carcinoma compared to baseline cancer risks in these organs. Methods: Monte Carlo simulations were performed using a detailed medical linear accelerator model and an anatomically realistic adult male whole-body phantom. A four-field box treatment, a four-field box treatment plus a six-field boost, and a seven-field IMRT treatment were simulated. Using BEIR VII risk models, the age-dependent lifetime attributable risks to various organs outside the primary beam with a known predilection for cancer were calculated using organ-averaged equivalent doses. Results: The four-field box treatment had the lowest treatment-related second primary cancer risks to organs outside the primary beam ranging from 7.3x10{sup -9} to 2.54x10{sup -5}%/MU depending on the patients age at exposure and second primary cancer site. The risks to organs outside the primary beam from the four-field box and six-field boost and the seven-field IMRT were nearly equivalent. The risks from the four-field box and six-field boost ranged from 1.39x10{sup -8} to 1.80x10{sup -5}%/MU, and from the seven-field IMRT ranged from 1.60x10{sup -9} to 1.35x10{sup -5}%/MU. The second cancer risks in all organs considered from each plan were below the baseline risks. Conclusions: The treatment-related second cancer risks in organs outside the primary beam due to 3D-CRT and IMRT is small. New risk assessment techniques need to be investigated to address the concern of radiation-induced second cancers from prostate treatments, particularly focusing on risks to organs inside the

  13. Successful radiotherapy of facial angiosarcoma.

    PubMed

    Gkalpakiotis, S; Arenberger, P; Vohradnikova, O; Arenbergerova, M

    2008-11-01

    Cutaneous angiosarcoma of the face and scalp is a rare malignant vascular tumor that affects mostly Caucasian elderly males. At present, connections concerning the etiology of this neoplasm with radiation therapy, exposure to environmental carcinogens and chronic lymphedema have been described. Due to the difficult histologic evaluation, high local recurrence and tendency to early metastasing, angiosarcoma poses generally a very poor prognosis. We report the case of an 80-year-old patient who experienced successful removal of large, exophytic growing angiosarcoma of the face achieved with radiotherapy with long-term relapse-free survival. PMID:18986458

  14. Patterns of Failure and Toxicity after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Schoenfeld, Gordon O.; Amdur, Robert J.; Morris, Christopher G.; Li, Jonathan G.; Hinerman, Russell W.; Mendenhall, William M.

    2008-06-01

    Purpose: To determine the outcome of patients treated with intensity-modulated radiotherapy (IMRT) for head and neck cancer. Methods and Materials: We reviewed the charts of 100 consecutive patients treated with IMRT for squamous cell carcinoma of the oropharynx (64%), nasopharynx (16%), hypopharynx (14%), and larynx (6%). Most patients were treated with a concomitant boost schedule to 72 Gy. Of the 100 patients, 54 (54%) received adjuvant chemotherapy, mostly concurrent cisplatin. The dosimetry plans for patients with either locoregional failure or Grade 4-5 complications were reviewed and fused over the computed tomography images corresponding with the location of the event. Marginal failures were defined as those that occurred at a region of high-dose falloff, where conventional fields would have provided better coverage. Results: The median follow-up of living patients was 3.1 years (range, 1-5.2 years). The 3-year rate of local control, locoregional control, freedom from relapse, cause-specific survival, and overall survival for all patients was 89%, 87%, 72%, 78%, and 71%, respectively. The 3-year rate of freedom from relapse, cause-specific survival, and overall survival for the 64 oropharynx patients was 86%, 92%, and 84%, respectively. Of the 10 local failures, 2 occurred at the margin of the high-dose planning target volume. Both regional failures occurred within the planning target volume. No locoregional failures occurred outside the planning target volume. Of the 100 patients, 8 and 5 had Grade 4 and 5 complications from treatment, respectively. All patients with Grade 5 complications had received adjuvant chemotherapy. No attempt was made to discriminate between the complications from IMRT and other aspects of the patients' treatment. Conclusion: Intensity-modulated radiotherapy did not compromise the outcome compared with what we have achieved with conventional techniques. The 2 cases of recurrence in the high-dose gradient region highlight the

  15. Randomized Clinical Trial to Assess the Efficacy of Radiotherapy in Primary Mediastinal Large B-Lymphoma

    SciTech Connect

    Aviles, Agustin; Neri, Natividad; Fernandez, Raul; Huerta-Guzman, Judith; Nambo, Maria J.

    2012-07-15

    Purpose: We developed a controlled clinical trial to assess the efficacy and toxicity of adjuvant-involved field radiotherapy (IFRT) in patients with primary mediastinal B-cell lymphoma that achieved complete response after the patients were treated with cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP-14). Methods and Materials: Between January 2001 and June 2004, 124 consecutive patients who were in complete remission after dose dense chemotherapy and rituximab administration (R-CHOP14) were randomly assigned to received IFRT (30 Gy). Sixty-three patients received IFR, and 61 patients did not (control group). Results: The study aimed to include 182 patients in each arm but was closed prematurely because in a security analysis (June 2004), progression and early relapse were more frequent in patients that did not received IFRT. Patients were followed until March 2009, at which point actuarial curves at 10 years showed that progression free-survival was 72% in patients who received IFR and 20% in the control group (p < 0.001), overall survival was 72% and 31%, respectively (p < 0.001). Acute toxicity was mild and well tolerated. Discussion: Adjuvant radiotherapy to sites of bulky disease was the only difference to have an improvement in outcome in our patients; the use of rituximab during induction did not improve complete response rates and did affect overall survival; patients who received rituximab but not IFRT had a worse prognosis. Conclusions: The use of IFRT in patients with primary mediastinal B-cell lymphoma who achieved complete response remain as the best treatment available, even in patients that received rituximab during induction.

  16. Selecting radiotherapy dose distributions by means of constrained optimization problems.

    PubMed

    Alfonso, J C L; Buttazzo, G; García-Archilla, B; Herrero, M A; Núñez, L

    2014-05-01

    The main steps in planning radiotherapy consist in selecting for any patient diagnosed with a solid tumor (i) a prescribed radiation dose on the tumor, (ii) bounds on the radiation side effects on nearby organs at risk and (iii) a fractionation scheme specifying the number and frequency of therapeutic sessions during treatment. The goal of any radiotherapy treatment is to deliver on the tumor a radiation dose as close as possible to that selected in (i), while at the same time conforming to the constraints prescribed in (ii). To this day, considerable uncertainties remain concerning the best manner in which such issues should be addressed. In particular, the choice of a prescription radiation dose is mostly based on clinical experience accumulated on the particular type of tumor considered, without any direct reference to quantitative radiobiological assessment. Interestingly, mathematical models for the effect of radiation on biological matter have existed for quite some time, and are widely acknowledged by clinicians. However, the difficulty to obtain accurate in vivo measurements of the radiobiological parameters involved has severely restricted their direct application in current clinical practice.In this work, we first propose a mathematical model to select radiation dose distributions as solutions (minimizers) of suitable variational problems, under the assumption that key radiobiological parameters for tumors and organs at risk involved are known. Second, by analyzing the dependence of such solutions on the parameters involved, we then discuss the manner in which the use of those minimizers can improve current decision-making processes to select clinical dosimetries when (as is generally the case) only partial information on model radiosensitivity parameters is available. A comparison of the proposed radiation dose distributions with those actually delivered in a number of clinical cases strongly suggests that solutions of our mathematical model can be

  17. Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels

    PubMed Central

    Buckner, Carly A.; Buckner, Alison L.; Koren, Stan A.; Persinger, Michael A.; Lafrenie, Robert M.

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca2+ influx which could be blocked by inhibitors of voltage-gated T-type Ca2+ channels. Blocking Ca2+ uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca2+ influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy. PMID:25875081

  18. Definitive radiotherapy of prostatic cancer: the Norwegian Radium Hospital's experience (1976-1982)

    SciTech Connect

    Telhaug, R.; Fossa, S.D.O.; Ous, S.

    1987-01-01

    During the years 1976 to 1982 definitive curatively aimed radiotherapy to the primary tumor was given to 53 patients with prostatic cancer confined to the true pelvis (T0, 2; T1-2, 19; T3, 24; T4, 8; N0, 18; N+, 2; Nx, 33); all patients were of the Mo-category. The pelvic lymph nodes received a total dose of 2 Gy X 25 by means of an anterior and posterior radiation field. The prostatic gland was irradiated by an additional booster dose of 2 Gy X 10 given to a perineal field. Twenty-four patients have relapsed after their prostatic radiotherapy, only three of them within the irradiated area. For the patients with T0-T2 tumors, the 5-year crude survival was 69%, whereas it was only 37% for patients with T3 tumors. Thirty-five patients developed intestinal (26 patients) and/or urogenital (23 patients) radiation side effects. In three patients a colostomy had to be performed owing to rectal stricture or fistula. The poor survival after radiotherapy in the present series is probably due to a high incidence of unrecognized pelvic lymph node metastases. In the future only prostatic cancer patients without pelvic lymph node spread will be considered candidates for definitive radiotherapy. An optimal radiation technique is mandatory in order to avoid major radiotherapy-induced toxicity.

  19. Experimental determination of field factors (\\Omega _{{{Q}_{\\text{clin}}},{{Q}_{\\text{msr}}}}^{{{f}_{\\text{clin}}},{{f}_{\\text{msr}}}} ) for small radiotherapy beams using the daisy chain correction method

    NASA Astrophysics Data System (ADS)

    Lárraga-Gutiérrez, José Manuel

    2015-08-01

    Recently, Alfonso et al proposed a new formalism for the dosimetry of small and non-standard fields. The proposed new formalism is strongly based on the calculation of detector-specific beam correction factors by Monte Carlo simulation methods, which accounts for the difference in the response of the detector between the small and the machine specific reference field. The correct calculation of the detector-specific beam correction factors demands an accurate knowledge of the linear accelerator, detector geometry and composition materials. The present work shows that the field factors in water may be determined experimentally using the daisy chain correction method down to a field size of 1 cm  ×  1 cm for a specific set of detectors. The detectors studied were: three mini-ionization chambers (PTW-31014, PTW-31006, IBA-CC01), three silicon-based diodes (PTW-60018, IBA-SFD and IBA-PFD) and one synthetic diamond detector (PTW-60019). Monte Carlo simulations and experimental measurements were performed for a 6 MV photon beam at 10 cm depth in water with a source-to-axis distance of 100 cm. The results show that the differences between the experimental and Monte Carlo calculated field factors are less than 0.5%—with the exception of the IBA-PFD—for field sizes between 1.5 cm  ×  1.5 cm and 5 cm  ×  5 cm. For the 1 cm  ×  1 cm field size, the differences are within 2%. By using the daisy chain correction method, it is possible to determine measured field factors in water. The results suggest that the daisy chain correction method is not suitable for measurements performed with the IBA-PFD detector. The latter is due to the presence of tungsten powder in the detector encapsulation material. The use of Monte Carlo calculated k{{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}} is encouraged for field sizes less than or equal to 1 cm  ×  1 cm for the dosimeters used in this work.

  20. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  1. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  2. Data required for testicular dose calculation during radiotherapy of seminoma

    SciTech Connect

    Mazonakis, Michalis; Kokona, Georgiana; Varveris, Haralambos; Damilakis, John; Gourtsoyiannis, Nicholas

    2006-07-15

    The purpose of this study was to provide the required data for the direct calculation of testicular dose resulting from radiotherapy in patients with seminoma. Paraortic (PA) treatment fields and dog-leg (DL) portals including paraortic and ipsilateral pelvic nodes were simulated on a male anthropomorphic phantom equipped with an artificial testicle. Anterior and posterior irradiations were performed for five different PA and DL field dimensions. Dose measurements were carried out using a calibrated ionization chamber. The dependence of testicular dose upon the distance separating the testicle from the treatment volume and upon the tissue thickness at the entrance point of the beam was investigated. A clamshell lead shield was used to reduce testicular dose. The scattered dose to testicle was measured in nine patients using thermoluminescent dosimeters. Phantom and patient exposures were generated with a 6 MV x-ray beam. Linear and nonlinear regression analysis was employed to obtain formulas describing the relation between the radiation dose to an unshielded and/or shielded testicle with the field size and the distance from the inferior field edge. Correction factors showing the variation of testicular dose with the patient thickness along beam axis were found. Bland-Altman statistical analysis showed that testicular dose obtained by the proposed calculation method may differ from the measured dose value by less than 25%. The current study presents a method providing reasonable estimations of testicular dose for individual patients undergoing PA or DL radiotherapy.

  3. Radiotherapy in benign orbital disease. II: Ophthalmic Graves' disease and orbital histiocytosis X.

    PubMed Central

    Harnett, A. N.; Doughty, D.; Hirst, A.; Plowman, P. N.

    1988-01-01

    Ophthalmic Graves' disease and histiocytosis X involving the orbit are occasionally refractory to treatment, so that vision may be threatened. In these situations megavoltage external beam radiotherapy should be employed, and the indications for this treatment are discussed. A highly accurate technique is described, using precise planning with information obtained from high definition CT scans, a complete patient head shell for immobilisation, and modern megavoltage radiotherapy treatment machines. As a result the dose to the lens is minimised (to a maximum of 10% of the prescribed dose), and late morbidity will be small. Two cases are described to illustrate this procedure and the response to treatment. Images PMID:3259894

  4. Stereotactic Body Radiotherapy for Oligometastatic Lung Tumors

    SciTech Connect

    Norihisa, Yoshiki; Nagata, Yasushi Takayama, Kenji; Matsuo, Yukinori; Sakamoto, Takashi; Sakamoto, Masato; Mizowaki, Takashi; Yano, Shinsuke; Hiraoka, Masahiro

    2008-10-01

    Purpose: Since 1998, we have treated primary and oligometastatic lung tumors with stereotactic body radiotherapy (SBRT). The term 'oligometastasis' is used to indicate a small number of metastases limited to an organ. We evaluated our clinical experience of SBRT for oligometastatic lung tumors. Methods and Materials: A total of 34 patients with oligometastatic lung tumors were included in this study. The primary involved organs were the lung (n = 15), colorectum (n = 9), head and neck (n = 5), kidney (n = 3), breast (n = 1), and bone (n = 1). Five to seven, noncoplanar, static 6-MV photon beams were used to deliver 48 Gy (n = 18) or 60 Gy (n = 16) at the isocenter, with 12 Gy/fraction within 4-18 days (median, 12 days). Results: The overall survival rate, local relapse-free rate, and progression-free rate at 2 years was 84.3%, 90.0%, and 34.8%, respectively. No local progression was observed in tumors irradiated with 60 Gy. SBRT-related pulmonary toxicities were observed in 4 (12%) Grade 2 cases and 1 (3%) Grade 3 case. Patients with a longer disease-free interval had a greater overall survival rate. Conclusion: The clinical result of SBRT for oligometastatic lung tumors in our institute was comparable to that after surgical metastasectomy; thus, SBRT could be an effective treatment of pulmonary oligometastases.

  5. Automated radiotherapy treatment plan integrity verification

    SciTech Connect

    Yang Deshan; Moore, Kevin L.

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  6. Early versus delayed postoperative radiotherapy for treatment of low-grade gliomas

    PubMed Central

    Sarmiento, J Manuel; Venteicher, Andrew S; Patil, Chirag G

    2015-01-01

    Background In most people with low-grade gliomas (LGG), the primary treatment regimen remains a combination of surgery followed by postoperative radiotherapy. However, the optimal timing of radiotherapy is controversial. It is unclear whether to use radiotherapy in the early postoperative period, or whether radiotherapy should be delayed until tumour progression occurs. Objectives To assess the effects of early postoperative radiotherapy versus radiotherapy delayed until tumour progression for low-grade intracranial gliomas in people who had initial biopsy or surgical resection. Search methods We searched up to September 2014 the following electronic databases: the Cochrane Register of Controlled Trials (CENTRAL, Issue 8, 2014), MEDLINE (1948 to Aug week 3, 2014), and EMBASE (1980 to Aug week 3, 2014) to identify trials for inclusion in this Cochrane review. Selection criteria We included randomised controlled trials (RCTs) that compared early versus delayed radiotherapy following biopsy or surgical resection for the treatment of people with newly diagnosed intracranial LGG (astrocytoma, oligodendroglioma, mixed oligoastrocytoma, astroblastoma, xanthoastrocytoma, or ganglioglioma). Radiotherapy may include conformal external beam radiotherapy (EBRT) with linear accelerator or cobalt-60 sources, intensity-modulated radiotherapy (IMRT), or stereotactic radiosurgery (SRS). Data collection and analysis Three review authors independently assessed the trials for inclusion and risk of bias, and extracted study data. We resolved any differences between review authors by discussion. Adverse effects were also extracted from the study report. We performed meta-analyses using a random-effects model with inverse variance weighting. Main results We included one large, multi-institutional, prospective RCT, involving 311 participants; the risk of bias in this study was unclear. This study found that early postoperative radiotherapy is associated with an increase in time to

  7. The predicted relative risk of premature ovarian failure for three radiotherapy modalities in a girl receiving craniospinal irradiation

    NASA Astrophysics Data System (ADS)

    Pérez-Andújar, A.; Newhauser, W. D.; Taddei, P. J.; Mahajan, A.; Howell, R. M.

    2013-05-01

    In girls and young women, irradiation of the ovaries can reduce the number of viable ovarian primordial follicles, which may lead to premature ovarian failure (POF) and subsequently to sterility. One strategy to minimize this late effect is to reduce the radiation dose to the ovaries. A primary means of reducing dose is to choose a radiotherapy technique that avoids irradiating nearby normal tissue; however, the relative risk of POF (RRPOF) due to the various therapeutic options has not been assessed. This study compared the predicted RRPOF after craniospinal proton radiotherapy, conventional photon radiotherapy (CRT) and intensity-modulated photon radiotherapy (IMRT). We calculated the equivalent dose delivered to the ovaries of an 11-year-old girl from therapeutic and stray radiation. We then predicted the percentage of ovarian primordial follicles killed by radiation and used this as a measure of the RRPOF; we also calculated the ratio of the relative risk of POF (RRRPOF) among the three radiotherapies. Proton radiotherapy had a lower RRPOF than either of the other two types. We also tested the sensitivity of the RRRPOF between photon and proton therapies to the anatomic position of the ovaries, i.e., proximity to the treatment field (2 ≤ RRRPOF ≤ 10). We found that CRT and IMRT have higher risks of POF than passive-scattering proton radiotherapy (PRT) does, regardless of uncertainties in the ovarian location. Overall, PRT represents a lower RRPOF over the two other modalities.

  8. Personnel radiation dose considerations in the use of an integrated PET-CT scanner for radiotherapy treatment planning.

    PubMed

    Carson, K J; Young, V A L; Cosgrove, V P; Jarritt, P H; Hounsell, A R

    2009-11-01

    The acquisition of radiotherapy planning scans on positron emission tomography (PET)-CT scanners requires the involvement of radiotherapy radiographers. This study assessed the radiation dose received by these radiographers during this process. Radiotherapy planning (18)F-fluorodeoxyglucose ((18)F-FDG) PET-CT scans were acquired for 28 non-small cell lung cancer patients. In order to minimise the radiation dose received, a two-stage process was used in which the most time-consuming part of the set-up was performed before the patient received their (18)F-FDG injection. Throughout this process, the radiographers wore electronic personal dosemeters and recorded the doses received at different stages of the process. The mean total radiation dose received by a radiotherapy radiographer was 5.1+/-2.6 microSv per patient. The use of the two-stage process reduced the time spent in close proximity to the patient by approximately a factor of four. The two-stage process was effective in keeping radiation dose to a minimum. The use of a pre-injection set-up session reduces the radiation dose to the radiotherapy radiographers because of their involvement in PET-CT radiotherapy treatment planning scans by approximately a factor of three. PMID:19332513

  9. Freedom From Local and Regional Failure of Contralateral Neck With Ipsilateral Neck Radiotherapy for Node-Positive Tonsil Cancer: Results of a Prospective Management Approach

    SciTech Connect

    Rusthoven, Kyle E. Raben, David; Schneider, Charles; Witt, Robert; Sammons, Sarah; Raben, Adam

    2009-08-01

    Purpose: To review the outcomes of a prospective management approach using ipsilateral neck radiotherapy in the treatment of node-positive squamous cell carcinoma of the tonsil with a well-lateralized primary lesion. Methods and Materials: Between August 2003 and June 2007, 20 patients who presented with squamous cell carcinoma of the tonsil, without involvement of the base of the tongue or midline soft palate, and with Stage N1-N2b disease were prospectively treated with radiotherapy to the primary site and ipsilateral neck. In addition, 18 patients received concurrent chemotherapy. The actuarial freedom from contralateral nodal and in-field progression was determined. Acute and late toxicity were prospectively evaluated using the National Cancer Institute Common Terminology Criteria for Adverse Events, version 3, and Radiation Therapy Oncology Group criteria. Results: The nodal disease was Stage N1 in 4 patients, N2a in 3 patients, and N2b in 13 patients. At a median follow-up 19 months (range, 12-40), no in-field or contralateral nodal recurrences had been observed. The 2-year freedom from distant metastasis rate was 87.4%. The actuarial 2-year disease-free and overall survival rates were both 79.5%. Late Radiation Therapy Oncology Group grade 2 xerostomia occurred in 1 patient (5%). No late Grade 3 or greater toxicity was observed. No patient was feeding tube dependent at their last follow-up visit. Conclusion: In carefully selected patients with node-positive, lateralized tonsillar cancer, treatment of the ipsilateral neck and primary site does not appear to increase the risk of contralateral nodal failure and reduces late morbidity compared with historical controls. Although the outcomes with ipsilateral radiotherapy in the present series were promising, these findings require longer follow-up and validation in a larger patient cohort.

  10. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy

    SciTech Connect

    Nabavizadeh, Nima Simeonova, Anna O.; Waller, Joseph G.; Romer, Jeanna L.; Monaco, Debra L.; Elliott, David A.; Tanyi, James A.; Fuss, Martin; Thomas, Charles R.; Holland, John M.

    2014-10-01

    Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.

  11. Radiotherapy in Ewing tumors of the vertebrae: Treatment results and local relapse analysis of the Chess 81/86 and EICESS 92 trials

    SciTech Connect

    Schuck, Andreas . E-mail: schuck@uni-muenster.de; Ahrens, Susanne; Schorlemer, Ines von; Kuhlen, Michaela; Paulussen, Michael; Hunold, Andrea; Gosheger, Georg; Winkelmann, Winfried; Dunst, Juergen; Willich, Normann; Juergens, Heribert

    2005-12-01

    Purpose: Treatment results in patients with Ewing tumors of the vertebrae enrolled in the Cooperative Ewing's Sarcoma Study (CESS) 81, 86, and the European Intergroup Cooperative Ewing's Sarcoma Study (EICESS) 92 trials were analyzed with special emphasis on radiation-associated factors. Patients and Methods: A retrospective analysis was performed on 116 patients with primary tumors of the cervical, thoracic, or lumbar vertebrae treated between 1981 and 1999. Furthermore, a relapse analysis was done on those patients who underwent radiotherapy and subsequently had a local recurrence. Results: A total of 64.6% of the patients received definitive radiotherapy; 27.5% of patients had surgery and radiotherapy. Only 4 patients (3.4%) underwent definitive surgery. Twenty-seven patients presented with metastases at diagnosis. 22.4% of the total group developed a local relapse. Among the subgroup with definitive radiotherapy, local recurrence was seen in 17 of 75 patients (22.6%). Event-free survival and survival at 5 years were 47% and 58%, respectively. Of the 14 evaluable patients with a local relapse after radiotherapy, 13 were in-field. No correlation between radiation dose and local control could be found. Conclusion: Surgery with wide resection margins is rarely possible. The results after definitive radiotherapy in vertebral tumors are comparable to those of other tumor sites when definitive radiotherapy is given. Nearly all local relapses after radiotherapy are in-field.

  12. Radiotherapy in patients with cardiac pacemakers.

    PubMed

    Last, A

    1998-01-01

    Patients with permanent cardiac pacemakers occasionally require radiotherapy. Therapeutic irradiation may cause pacemakers to malfunction due to the effects of ionizing radiation or electromagnetic interference. Modern pacemakers, using complementary metal oxide semiconductor (CMOS) circuitry, differ from older bipolar semiconductor devices both in their sensitivity to damage and the types of malfunction observed. The mechanisms and types of radiotherapy-induced pacemaker malfunction are described and in vitro and in vivo studies of pacemaker irradiation are reviewed. Some simple precautions are recommended during the planning and administration of radiotherapy to minimize the risk of harm to patients with pacemakers. PMID:9534692

  13. Concurrent radiotherapy and intrathecal methotrexate for treating leptomeningeal metastasis from solid tumors with adverse prognostic factors: A prospective and single-arm study.

    PubMed

    Pan, Zhenyu; Yang, Guozi; He, Hua; Zhao, Gang; Yuan, Tingting; Li, Yu; Shi, Weiyan; Gao, Pengxiang; Dong, Lihua; Li, Yunqian

    2016-10-15

    The prognosis of leptomeningeal metastasis (LM) from solid tumors is extremely poor, especially for patients with adverse prognostic factors. In this phase II clinical trial, we evaluated the efficacy and safety of intrathecal chemotherapy (IC) combined with concomitant involved-field radiotherapy (IF-RT) for treating LM from solid tumors with adverse prognostic factors. Fifty-nine patients with LM from various solid tumors were enrolled between May 2010 and December 2014. Concurrent therapy consisted of concomitant IC (methotrexate 12.5-15 mg and dexamethasone 5 mg, weekly) and IF-RT (whole brain and/or spinal canal RT, 40 Gy/20f). For patients with low Karnofsky performance status (KPS) score and radiotherapy intolerance, induction IC (1-3 times) was given before concurrent therapy. Thirty-eight patients (64.4%) received subsequent treatments. All patients were followed up at least 6 months after LM diagnosis or until death. Primary endpoint evaluated was clinical response rate. Secondary endpoints were overall survival (OS) and safety. The pathological types included lung cancer (n = 42), breast cancer (n = 11) and others (n = 6). Median KPS score was 40 (range 20-70). Fifty-one patients (86.4%) completed concurrent therapy. The overall response rate was 86.4% (51/59). OS ranged from 0.4 to 36.7 months (median 6.5 months), and 1-year-survival rate was 21.3%. Treatment-related adverse events mainly included acute meningitis, chronic-delayed encephalopathy, radiculitis, myelosuppression and mucositis. Twelve patients (20.3%) had grade III-V toxic reactions. We concluded that IC combined with concomitant IF-RT, with significant efficacy and acceptable toxicity, may be an optimal therapeutic option for treatment of LM from solid tumors with adverse prognostic factors. LM, in which cancer cells spread to membranes enveloping the brain and spinal cord, is a devastating complication of solid cancers. Existing LM therapies center on IC. In this prospective

  14. Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, F.; Domingo, C.; Gómez, F.; Sánchez-Nieto, B.; Muñiz, J. L.; García-Fusté, M. J.; Expósito, M. R.; Barquero, R.; Hartmann, G.; Terrón, J. A.; Pena, J.; Méndez, R.; Gutiérrez, F.; Guerre, F. X.; Roselló, J.; Núñez, L.; Brualla-González, L.; Manchado, F.; Lorente, A.; Gallego, E.; Capote, R.; Planes, D.; Lagares, J. I.; González-Soto, X.; Sansaloni, F.; Colmenares, R.; Amgarou, K.; Morales, E.; Bedogni, R.; Cano, J. P.; Fernández, F.

    2012-10-01

    Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.

  15. Case study thoracic radiotherapy in an elderly patient with pacemaker: The issue of pacing leads

    SciTech Connect

    Kirova, Youlia M.; Menard, Jean; Chargari, Cyrus; Mazal, Alejandro; Kirov, Krassen

    2012-07-01

    To assess clinical outcome of patients with pacemaker treated with thoracic radiation therapy for T8-T9 paravertebral chloroma. A 92-year-old male patient with chloroma presenting as paravertebral painful and compressive (T8-T9) mass was referred for radiotherapy in the Department of Radiation Oncology, Institut Curie. The patient presented with cardiac dysfunction and a permanent pacemaker that had been implanted prior. The decision of Multidisciplinary Meeting was to deliver 30 Gy in 10 fractions for reducing the symptoms and controlling the tumor growth. The patient received a total dose of 30 Gy in 10 fractions using 4-field conformal radiotherapy with 20-MV photons. The dose to pacemaker was 0.1 Gy but a part of the pacing leads was in the irradiation fields. The patient was treated the first time in the presence of his radiation oncologist and an intensive care unit doctor. Moreover, the function of his pacemaker was monitored during the entire radiotherapy course. No change in pacemaker function was observed during any of the radiotherapy fractions. The radiotherapy was very well tolerated without any side effects. The function of the pacemaker was checked before and after the radiotherapy treatment by the cardiologist and no pacemaker dysfunction was observed. Although updated guidelines are needed with acceptable dose criteria for implantable cardiac devices, it is possible to treat patients with these devices and parts encroaching on the radiation field. This case report shows we were able to safely treat our patient through a multidisciplinary approach, monitoring the patient during each step of the treatment.

  16. Mechanical and dosimetric quality control for computer controlled radiotherapy treatment equipment.

    PubMed

    Thompson, A V; Lam, K L; Balter, J M; McShan, D L; Martel, M K; Weaver, T A; Fraass, B A; Ten Haken, R K

    1995-05-01

    Modern computer controlled radiotherapy treatment equipment offers the possibility of delivering complex, multiple field treatments with minimal operator intervention, thus making multiple field conformal therapy practical. Conventional quality control programs are inadequate for this new technology, so new quality control procedures are needed. A reasonably fast, sensitive, and complete daily quality control program has been developed in our clinic that includes nearly automated mechanical as well as dosimetric tests. Automated delivery of these quality control fields is performed by the control system of the MM50 racetrack microtron, directed by the CCRS sequence processor [D. L. McShan and B. A. Fraass, Proceedings of the XIth International Conference on the use of computers in Radiation Therapy, 20-24 March 1994, Manchester, U.K. (North Western Medical Physics Department, Manchester, U.K., 1994), pp. 210-211], which controls the treatment process. The mechanical tests involve multiple irradiations of a single film to check the accuracy and reproducibility of the computer controlled setup of gantry and collimator angles, table orientation, collimator jaws, and multileaf collimator shape. The dosimetric tests, which involve multiple irradiations of an array of ionization chambers in a commercial dose detector (Keithly model 90100 Tracker System) rigidly attached to the head of the treatment gantry, check the output and symmetry of the treatment unit as a function of gantry and collimator angle and other parameters. For each of the dosimetric tests, readings from the five ionization chambers are automatically read out, stored, and analyzed by the computer, along with the geometric parameters of the treatment unit for that beam.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7643792

  17. [Stereotactically targeted radiotherapy of cerebral arteriovenous malformations].

    PubMed

    Kimmig, B; Engenhart, R; Wowra, B; Höver, K H; Marin-Grez, M; Sturm, V

    1989-09-01

    A report is given about radiotherapy in 41 patients suffering from cerebral vessel anomalies. A modified linear accelerator was used in a moving field technique with multiple pendulum planes to apply single doses between 8 and 28 Gy by means of stereotaxis into the angiographically determined target volume. The medium follow-up is 23 months. The latency of radiogenic effects is between one and two years. Radiological controls with an interval of more than 18 months after therapy are available in 17 out of 41 patients. Angiographic investigation showed complete obliterations of pathological vessels in six out of these patients and partial obliterations in six patients; five patients remained unchanged. There were no acute complications. Seven patients presented neurological deficiencies with a latency of 6 to 12 months, however, in all cases but one they regressed completely. Even taking into consideration the small number of patients and the short time of observation, a comparison with the results of other radiotherapeutical proceedings allows to draw the conclusion that the presented technique of stereotaxic convergent-beam irradiation represents a relatively simple, reliable and, in case of precise indication, efficient method for the therapy of cerebral arteriovenous malformations. PMID:2678547

  18. Second cancers following radiotherapy for cervical cancer

    SciTech Connect

    Kleinerman, R.A.; Curtis, R.E.; Boice, J.D. Jr.; Flannery, J.T.; Fraumeni, J.F. Jr.

    1982-11-01

    Incidence of second primary cancers was evaluated in 7,127 women with invasive cancer of the cervix uteri, diagnosed between 1935 and 1978, and followed up to 38 years (average, 8.9 yr) in Connecticut. Among 5,997 women treated with radiation, 449 developed second primary cancers compared with 313 expected (relative risk . 1.4) on the basis of rates from the Connecticut Tumor Registry. Excess incidence was noticeable 15 years or more after radiotherapy and attributed mostly to cancers of sites in or near the radiation field, especially the bladder, kidneys, rectum, corpus uteri, and ovaries. No excess was found for these sites among the 1,130 nonirradiated women. The ratio of observed to expected cancers for these sites did not vary appreciably by age at irradiation. The data suggested that high-dose pelvic irradiation was associated with increase in cancers of the bladder, kidneys, rectum, ovaries, corpus uteri, and non-Hodgkin's lymphoma but, apparently, not leukemia, Hodgkin's disease, breast cancer, or colon cancer.

  19. [Dystrophy and necrosis following radiotherapy for maxillary cancer (author's transl)].

    PubMed

    Bertoin, P; Dutou, L; Lacroze, M; Bailly, C

    1979-01-01

    About 10% of patients developed severe sequelae following radiotherapy, which had been associated with surgical treatment, even though they were, or appeared to be cured. Complications affected the skin and soft tissues (causing skin retraction, loss of substance, and sometimes trismus) and bone (necrosis required surgical treatment, and when there was associated cutaneous dystrophy, resulted in exposure of the bone and severe functional and esthetic problems). A critical study of the radiotherapeutic techniques used suggests that the dose given should be reduced, the fields modified, and Cobalt used in preference to electrons in most cases. PMID:288159

  20. The emerging role of radiotherapy for desmoplastic melanoma and implications for future research.

    PubMed

    Oliver, Daniel E; Patel, Kirtesh R; Parker, Douglas; Delman, Keith A; Lawson, David H; Kudchadkar, Ragini R; Khan, Mohammad K

    2015-04-01

    The National Comprehensive Cancer Network (NCCN) 2014 guidelines are unclear about the role of radiotherapy in the management of desmoplastic melanoma. The guidelines specify that radiotherapy can be 'considered' for select patients with desmoplastic melanoma with narrow surgical margins. Patient selection criteria, including margins, are not well defined, causing considerable differences in practice patterns across the country. There are also several conflicting reports about the role of radiotherapy in improving postsurgical outcomes when other adverse pathological risks factors, such as increased Clark level, head and neck involvement, perineural invasion, positive margins, or recurrent disease, are also present. Recent data provide further clarification and insights into the role of radiotherapy. Thus, in light of the NCCN guidelines and the recently published series, we critically review the role of radiotherapy for desmoplastic melanoma. In our review, we highlight the published risk factors that predict for increased risk of recurrence after surgery. We also provide a comparison of surgical and radiation outcomes data, and then address areas for further research. PMID:25588202

  1. Radiotherapy for Rectal Cancer Is Associated With Reduced Serum Testosterone and Increased FSH and LH

    SciTech Connect

    Bruheim, Kjersti Svartberg, Johan; Carlsen, Erik; Dueland, Svein; Haug, Egil; Skovlund, Eva; Tveit, Kjell Magne; Guren, Marianne G.

    2008-03-01

    Purpose: It is known that scattered radiation to the testes during pelvic radiotherapy can affect fertility, but there is little knowledge on its effects on male sex hormones. The aim of this study was to determine whether radiotherapy for rectal cancer affects testosterone production. Methods and Materials: All male patients who had received adjuvant radiotherapy for rectal cancer from 1993 to 2003 were identified from the Norwegian Rectal Cancer Registry. Patients treated with surgery alone were randomly selected from the same registry as control subjects. Serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and sex hormone binding globulin (SHBG) were analyzed, and free testosterone was calculated (N = 290). Information about the radiotherapy treatment was collected from the patient hospital charts. Results: Serum FSH was 3 times higher in the radiotherapy group than in the control group (median, 18.8 vs. 6.3 IU/L, p <0.001), and serum LH was 1.7 times higher (median, 7.5 vs. 4.5 IU/l, p <0.001). In the radiotherapy group, 27% of patients had testosterone levels below the reference range (8-35 nmol/L), compared with 10% of the nonirradiated patients (p <0.001). Irradiated patients had lower serum testosterone (mean, 11.1 vs. 13.4 nmol/L, p <0.001) and lower calculated free testosterone (mean, 214 vs. 235 pmol/L, p <0.05) than control subjects. Total testosterone, calculated free testosterone, and gonadotropins were related to the distance from the bony pelvic structures to the caudal field edge. Conclusions: Increased serum levels of gonadotropins and subnormal serum levels of testosterone indicate that curative radiotherapy for rectal cancer can result in permanent testicular dysfunction.

  2. Planning tools for modulated electron radiotherapy

    SciTech Connect

    Surucu, Murat; Klein, Eric E.; Mamalui-Hunter, Maria; Mansur, David B.; Low, Daniel A.

    2010-05-15

    Purpose: To develop tools to plan modulated electron radiotherapy (MERT) and to compare the MERT plans to conventional or intensity modulated radiotherapy (IMRT) treatment plans. Methods: Monte Carlo dose calculations of electron fields shaped with the inherent photon multileaf collimators (MLCs) were investigated in this study. Treatment plans for four postmastectomy breast cancer patients were generated using MERT. The distances from the patient skin surfaces to the distal planning target volume surfaces were computed along the beam axis direction to determine the physical depth. Electron beam energies were selected to provide target coverage at these depths and energy bins were generated. A custom built MERT treatment planning graphical user interface (MERTgui) was used to shape the electron bins into deliverable electron segments. Monte Carlo dose distribution simulations were performed using the MLC-defined segments generated from the MERTgui. A custom built superposition gui was used to combine doses for each segment using relative weights and final MERT treatment plans were compared to the conventional or IMRT treatment plans. In addition, a demonstration of combined MERT and IMRT treatment plans was performed. Results: The MERT treatment plans provided acceptable target organ coverage in all cases. Relative to 3D conventional or IMRT treatment plans, the MERT plans predicted lower heart doses in all cases; average of the heart D{sub 20} of all plans was reduced from 14.1 to 3.3 Gy. The contralateral breast and contralateral lung doses decreased substantially with MERT planning compared to IMRT (on average, contralateral breast heart D{sub 20} was reduced from 8.7 to 0.7 Gy and contralateral lung D{sub 20} was reduced from 8.4 to 1.2 Gy with MERT). Ipsilateral lung D{sub 20} was lower with MERT than with the conventional plans (44.6 vs 29.2 Gy with MERT), but greater when compared against IMRT treatment plans (25.4 vs 28.9 Gy with MERT). A MERT and IMRT

  3. [Radiotherapy of benign intracranial tumors].

    PubMed

    Delannes, M; Latorzeff, I; Chand, M E; Huchet, A; Dupin, C; Colin, P

    2016-09-01

    Most of the benign intracranial tumors are meningiomas, vestibular schwannomas, pituitary adenomas, craniopharyngiomas, and glomus tumors. Some of them grow very slowly, and can be observed without specific treatment, especially if they are asymptomatic. Symptomatic or growing tumors are treated by surgery, which is the reference treatment. When surgery is not possible, due to the location of the lesion, or general conditions, radiotherapy can be applied, as it is if there is a postoperative growing residual tumor, or a local relapse. Indications have to be discussed in polydisciplinary meetings, with precise evaluation of the benefit and risks of the treatments. The techniques to be used are the most modern ones, as multimodal imaging and image-guided radiation therapy. Stereotactic treatments, using fractionated or single doses depending on the size or the location of the tumors, are commonly realized, to avoid as much a possible the occurrence of late side effects. PMID:27523417

  4. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  5. Radiotherapy is Important for Local Control at Primary and Metastatic Sites in Pediatric Rhabdomyosarcoma

    PubMed Central

    Abish, Sharon; Mitchell, David; Freeman, Carolyn

    2015-01-01

    Purpose: The current recommended practice for pediatric patients with metastatic rhabdomyosarcoma includes full-dose radiotherapy to each metastatic site. We wished to question this practice, which can cause side-effects and is often logistically challenging, by studying the pattern of failure in our pediatric and teenage patient population. Methods and Materials: Our institution’s cancer registry was queried for patients diagnosed with rhabdomyosarcoma aged 18 or less from January 1990 until January 2014. Twenty-nine patients were found and, of these, six had metastatic disease. Five of the six were treated with standard chemotherapy together with radiotherapy to the primary and metastatic sites with doses and fractionation according to the site. Progression-free survival was calculated from the end of radiotherapy until radiological or pathological evidence of disease progression or death. Results: Median age was 13 years (range: 12-18). Three were girls. All had alveolar histology and unfavorable primary sites. Twelve metastatic sites were treated with radiotherapy. Doses used were 41.4 - 50.4 Gy in 1.8 Gy fractions for most sites, and 15 Gy in 1.5 Gy fractions for whole lung radiotherapy. The median number of sites treated per patient was two (range: 1 - 6). Median time to progression was 10.1 months (range: 1.9 - 15.7). Local control was 100% for all metastatic sites. Median overall survival (OS) was 31.8 months (range: 20.4 – 95.4 months). Three patients developed progressive disease outside the treated field. One patient died from a secondary hematological malignancy without evidence of disease progression. One patient remains progression-free at 88.6 months post-radiotherapy. Conclusions: Radiotherapy to metastatic disease sites prevented in-field progression in all five patients with metastatic alveolar rhabdomyosarcoma. However, failure at sites outside of the radiotherapy volume occurred in three of five of patients and overall survival was very

  6. Radiotherapy for Pancreatic Neuroendocrine Tumors

    SciTech Connect

    Contessa, Joseph N.; Griffith, Kent A.; Wolff, Elizabeth; Ensminger, William; Zalupski, Mark; Ben-Josef, Edgar

    2009-11-15

    Purpose: Pancreatic neuroendocrine tumors (PNTs) are rare malignant neoplasms considered to be resistant to radiotherapy (RT), although data on efficacy are scarce. We reviewed our institutional experience to further delineate the role of RT for patients with PNTs. Methods and Materials: Between 1986 and 2006, 36 patients with PNTs were treated with RT to 49 sites. Of these 36 patients, 23 had radiographic follow-up data, which were used to determine the tumor response rate and freedom from local progression. Long-term toxicity was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events. Results: The overall response rate to RT was 39% (13% complete response, 26% partial response, 56% stable disease, and 4% progressive disease). A significant difference in the freedom from local progression between the groups receiving either greater than or less than the median 2 Gy/fraction biologically equivalent dose of 49.6 Gy was found, with all radiographic progression occurring in patients who had received <=32 Gy. The actuarial 3-year local freedom from progression rate was 49%. Palliation was achieved in 90% of patients, with either improvement or resolution of symptoms after RT. Of 35 patients, 33 had metastatic disease at their referral for RT, and the median overall survival for this patient population was 2 years. Three long-term Grade 3 or greater toxicities were recorded. Conclusion: RT is an effective modality for achieving local control in patients with PNTs. RT produces high rates of symptomatic palliation and freedom from local progression. Prospective trials of radiotherapy for PNTs are warranted.

  7. The Evolving Role of Radiotherapy in Early Stage Hodgkin’s Lymphoma

    PubMed Central

    Ricardi, Umberto; Filippi, Andrea Riccardo; Piva, Cristina; Franco, Pierfrancesco

    2014-01-01

    Radiation therapy has a key role in the combined modality treatment of early-stage Hodgkin’s Lymphoma (HL). Nevertheless, late toxicity still remains an issue. A modern approach in HL radiotherapy includes lower doses and smaller fields, together with the implementation of sophisticated and dedicated delivery techniques. Aim of the present review is to discuss the current role of radiotherapy and its potential future developments, with a focus on major clinical trials, technological advances and their repercussion in the clinical management of HL patients. PMID:24959332

  8. Imaging Instrumentation and Techniques for Precision Radiotherapy

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Parodi, Katia; Thieke, Christian; Thieke, Christian

    Over the last decade, several technological advances have considerably improved the achievable precision of dose delivery in radiation therapy. Clinical exploitation of the superior tumor-dose conformality offered by modern radiotherapy techniques like intensity-modulated radiotherapy and ion beam therapy requires morphological and functional assessment of the tumor during the entire therapy chain from treatment planning to beam application and treatment response evaluation. This chapter will address the main rationale and role of imaging in state-of-the-art external beam radiotherapy. Moreover, it will present the status of novel imaging instrumentation and techniques being nowadays introduced in clinical use or still under development for image guidance and, ultimately, dose guidance of precision radiotherapy.

  9. Heavy particle radiotherapy: prospects and pitfalls

    SciTech Connect

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed. (ACR)

  10. [Radiotherapy of carcinoma of the salivary glands].

    PubMed

    Servagi-Vernat, S; Tochet, F

    2016-09-01

    Indication, doses, and technique of radiotherapy for salivary glands carcinoma are presented, and the contribution of neutrons and carbon ions. The recommendations for delineation of the target volumes and organs at risk are detailed. PMID:27521038

  11. Intraoperative Radiotherapy in Childhood Malignant Astrocytoma

    PubMed Central

    Rana, Sohail R.; Haddy, Theresa B.; Ashayeri, Ebrahim; Goldson, Alfred L.

    1984-01-01

    A 12-year-old black male patient with glioblastoma multiforme was treated with intraoperative radiotherapy followed by conventional external beam radiation and chemotherapy. The authors' clinical experience with these therapeutic measures is discussed. PMID:6330375

  12. Esophageal Stenosis Associated With Tumor Regression in Radiotherapy for Esophageal Cancer: Frequency and Prediction

    SciTech Connect

    Atsumi, Kazushige; Shioyama, Yoshiyuki; Arimura, Hidetaka; Terashima, Kotaro; Matsuki, Takaomi; Ohga, Saiji; Yoshitake, Tadamasa; Nonoshita, Takeshi; Tsurumaru, Daisuke; Ohnishi, Kayoko; Asai, Kaori; Matsumoto, Keiji; Nakamura, Katsumasa; Honda, Hiroshi

    2012-04-01

    Purpose: To determine clinical factors for predicting the frequency and severity of esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer. Methods and Materials: The study group consisted of 109 patients with esophageal cancer of T1-4 and Stage I-III who were treated with definitive radiotherapy and achieved a complete response of their primary lesion at Kyushu University Hospital between January 1998 and December 2007. Esophageal stenosis was evaluated using esophagographic images within 3 months after completion of radiotherapy. We investigated the correlation between esophageal stenosis after radiotherapy and each of the clinical factors with regard to tumors and therapy. For validation of the correlative factors for esophageal stenosis, an artificial neural network was used to predict the esophageal stenotic ratio. Results: Esophageal stenosis tended to be more severe and more frequent in T3-4 cases than in T1-2 cases. Esophageal stenosis in cases with full circumference involvement tended to be more severe and more frequent than that in cases without full circumference involvement. Increases in wall thickness tended to be associated with increases in esophageal stenosis severity and frequency. In the multivariate analysis, T stage, extent of involved circumference, and wall thickness of the tumor region were significantly correlated to esophageal stenosis (p = 0.031, p < 0.0001, and p = 0.0011, respectively). The esophageal stenotic ratio predicted by the artificial neural network, which learned these three factors, was significantly correlated to the actual observed stenotic ratio, with a correlation coefficient of 0.864 (p < 0.001). Conclusion: Our study suggested that T stage, extent of involved circumference, and esophageal wall thickness of the tumor region were useful to predict the frequency and severity of esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer.

  13. Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer

    SciTech Connect

    Koukourakis, Michael I.

    2015-05-29

    Introduction: Radiotherapy is an equivalent alternative or complement to radical prostatectomy, with high therapeutic efficacy. High risk patients, however, experience high relapse rates, so that research on radio-sensitization is the most evident route to improve curability of this common disease. Materials and methods: In the current study we investigated the autophagic activity in a series of patients with localized prostate tumors treated with radical radiotherapy, using the LC3A and the LAMP2a proteins as markers of autophagosome and lysosome cellular content, respectively. The role of autophagy on prostate cancer cell line resistance to radiation was also examined. Results: Using confocal microscopy on tissue biopsies, we showed that prostate cancer cells have, overall, high levels of LC3A and low levels of LAMP2a compared to normal prostate glands. Tumors with a ‘highLC3A/lowLAMP2a’ phenotype, suggestive of intensified lysosomal consumption, had a significantly poorer biochemical relapse free survival. The PC3 radioresistant cell line sustained remarkably its autophagic flux ability after radiation, while the DU145 radiosensitive one experiences a prolonged blockage of the autophagic process. This was assessed with aggresome accumulation detection and LC3A/LAMP2a double immunofluorescence, as well as with sequestrosome/p62 protein detection. By silencing the LC3A or LAMP2a expression, both cell lines became more sensitive to escalated doses of radiation. Conclusions: High base line autophagy activity and cell ability to sustain functional autophagy define resistance of prostate cancer cells to radiotherapy. This can be reversed by blocking up-regulated components of the autophagy pathway, which may prove of importance in the field of clinical radiotherapy. - Highlights: • High LC3A and low LAMP2a levels is a frequent expression pattern of prostate carcinoma. • This pattern of intensified autophagic flux relates with high relapse rates after

  14. Multi-energy imagers for a radiotherapy treatment environment

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; Liu, Langechuan; Liang, Albert K.; El-Mohri, Youcef; Zhao, Qihua; Koniczek, Martin; Jiang, Hao

    2015-03-01

    Over the last ~15 years, the central goal in external beam radiotherapy of maximizing dose to the tumor while minimizing dose to surrounding normal tissues has been greatly facilitated by the development and clinical implementation of many innovations. These include megavoltage active matrix flat-panel imagers (MV AMFPIs) designed to image the treatment beam, and separate kilovoltage (kV) AMFPIs and x-ray sources designed to provide high-contrast projection and cone-beam CT images in the treatment room. While these systems provide clinically valuable information, a variety of advantages would accrue through introduction of the capability to produce clinically useful, high quality imaging information at multiple energies (e.g., kV and MV) from a single detector along the treatment beam direction. One possible approach for achieving this goal involves substitution of the x-ray converters used in conventional MV AMFPIs with thick, segmented crystalline scintillators designed for dual-energy operation, coupled with the addition of x-ray imaging beams that contain a significant diagnostic component. A second approach involves introduction of a large area, monolithic array of photon counting pixels with multiple energy thresholds and event counters, which could provide multi-spectral views of the treatment beam with improved contrast. In this paper, the motivations behind, and the merits of each approach are described. In addition, prospects for such dual-energy imagers and photon counting array designs are discussed in the context of the radiotherapy environment.

  15. Blisters - an unusual effect during radiotherapy.

    PubMed

    Höller, U; Schubert, T; Budach, V; Trefzer, U; Beyer, M

    2013-11-01

    The skin reaction to radiation is regularly monitored in order to detect enhanced radiosensitivity of the patient, unexpected interactions (e.g. with drugs) or any inadvertent overdosage. It is important to distinguish secondary disease from radiation reaction to provide adequate treatment and to avoid unnecessary discontinuation of radiotherapy. A case of bullous eruption or blisters during radiotherapy of the breast is presented. Differential diagnoses bullous pemphigoid, pemphigus vulgaris, and bullous impetigo are discussed and treatment described. PMID:24158604

  16. Experimental chemotherapy and radiotherapy to paratesticular rhabdomyosarcoma

    SciTech Connect

    Motoyama, T.; Watanabe, H.; Watanabe, T.; Yamamoto, T.

    1989-01-01

    Experimental chemotherapy and radiotherapy were tried in transplanted tumors derived from a paratesticular embryonal rhabdomyosarcoma. There was no significant difference on the therapeutic effect between a combination chemotherapy composed of vincristine, actinomycin D and cyclophosphamide, so-called VAC regimen, and a single therapy of radiation. However, morphologic analyses suggest that VAC is effective in embryonal rhabdomyosarcomas in which undifferentiated rhabdomyoblasts predominate, while radiotherapy is preferable for those containing variously differentiated rhabdomyoblasts.

  17. Current role of modern radiotherapy techniques in the management of breast cancer

    PubMed Central

    Ozyigit, Gokhan; Gultekin, Melis

    2014-01-01

    Breast cancer is the most common type of malignancy in females. Advances in systemic therapies and radiotherapy (RT) provided long survival rates in breast cancer patients. RT has a major role in the management of breast cancer. During the past 15 years several developments took place in the field of imaging and irradiation techniques, intensity modulated RT, hypofractionation and partial-breast irradiation. Currently, improvements in the RT technology allow us a subsequent decrease in the treatment-related complications such as fibrosis and long-term cardiac toxicity while improving the loco-regional control rates and cosmetic results. Thus, it is crucial that modern radiotherapy techniques should be carried out with maximum care and efficiency. Several randomized trials provided evidence for the feasibility of modern radiotherapy techniques in the management of breast cancer. However, the role of modern radiotherapy techniques in the management of breast cancer will continue to be defined by the mature results of randomized trials. Current review will provide an up-to-date evidence based data on the role of modern radiotherapy techniques in the management of breast cancer. PMID:25114857

  18. Sci—Fri PM: Dosimetry—02: A Nested Neutron Spectrometer to Measure Neutron Spectra in Radiotherapy

    SciTech Connect

    Maglieri, R; Seuntjens, J; Kildea, J; Licea, A

    2014-08-15

    During high-energy radiotherapy treatments, neutrons are produced in the head of the linac through photonuclear interactions. This has been a concern for many years as photoneutrons contribute to the accepted, yet unwanted, out-of-field doses that pose an iatrogenic risk to patients and an occupational risk to personnel. Presently, in-room neutron measurements are difficult and time-consuming and have traditionally been carried out using Bonner spheres with activation foils and TLDs. In this work, a new detector, the Nested Neutron Spectrometer (NNS) is tested for use in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional Bonner spheres. The NNS, operated in current mode, was used to measure the dose equivalent, average energy and energy spectrum at several positions in a radiotherapy bunker. The average energy and spectra were compared to Monte Carlo simulations while the dose equivalent was compared to bubble detector measurements. The average energies, as measured by the NNS and Monte Carlo simulations, differed by approximately 30% across the bunker. Measurements of the dose equivalent using the NNS and the bubble detectors agreed within 50% in the maze and less than 10% close to the linac head. Apart from some discrepancies at thermal energies, we also found reasonable agreement between NNS-measured and Monte Carlo-simulated spectra at a number of locations within our radiotherapy bunker. Our results demonstrate that the NNS is a suitable detector to be used in high dose-rate radiotherapy environments.

  19. Synergistic anti-tumor effects of zoledronic acid and radiotherapy against metastatic hepatocellular carcinoma.

    PubMed

    Morii, Kazuhiko; Aoyama, Yuhki; Nakamura, Shinichiro; Okushin, Hiroaki

    2015-01-01

    A 72-year-old man with advanced hepatocellular carcinoma and decompensated hepatitis C virus-related cirrhosis suffered from a metastatic femoral fracture. After undergoing radiotherapy, he was only treated with supportive care, except for the administration of zoledronic acid (ZA). Thereafter, the initially elevated serum α-fetoprotein and des-gamma carboxyprothrombin levels declined to within the normal ranges. Hepatic and metastatic adrenal tumors, distant from the radiation field, exhibited a surprising regression. ZA is known to inhibit the activity of osteoclasts, bone-residential macrophages, and has been reported to have a direct anti-tumor effect. ZA may adjust the immunological milieu in tumor microenvironments by inhibiting the tumor-associated macrophages. Because radiotherapy can enhance the presentation of tumor-associated antigens, ZA and radiotherapy may exert synergistic anti-tumor effects. PMID:26466697

  20. CERR: a computational environment for radiotherapy research.

    PubMed

    Deasy, Joseph O; Blanco, Angel I; Clark, Vanessa H

    2003-05-01

    A software environment is described, called the computational environment for radiotherapy research (CERR, pronounced "sir"). CERR partially addresses four broad needs in treatment planning research: (a) it provides a convenient and powerful software environment to develop and prototype treatment planning concepts, (b) it serves as a software integration environment to combine treatment planning software written in multiple languages (MATLAB, FORTRAN, C/C++, JAVA, etc.), together with treatment plan information (computed tomography scans, outlined structures, dose distributions, digital films, etc.), (c) it provides the ability to extract treatment plans from disparate planning systems using the widely available AAPM/RTOG archiving mechanism, and (d) it provides a convenient and powerful tool for sharing and reproducing treatment planning research results. The functional components currently being distributed, including source code, include: (1) an import program which converts the widely available AAPM/RTOG treatment planning format into a MATLAB cell-array data object, facilitating manipulation; (2) viewers which display axial, coronal, and sagittal computed tomography images, structure contours, digital films, and isodose lines or dose colorwash, (3) a suite of contouring tools to edit and/or create anatomical structures, (4) dose-volume and dose-surface histogram calculation and display tools, and (5) various predefined commands. CERR allows the user to retrieve any AAPM/RTOG key word information about the treatment plan archive. The code is relatively self-describing, because it relies on MATLAB structure field name definitions based on the AAPM/RTOG standard. New structure field names can be added dynamically or permanently. New components of arbitrary data type can be stored and accessed without disturbing system operation. CERR has been applied to aid research in dose-volume-outcome modeling, Monte Carlo dose calculation, and treatment planning optimization

  1. Radiotherapy for Vestibular Schwannomas: A Critical Review

    SciTech Connect

    Murphy, Erin S.; Suh, John H.

    2011-03-15

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation to >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.

  2. [Prophylactic axillary radiotherapy for breast cancer].

    PubMed

    Rivera, S; Louvel, G; Rivin Del Campo, E; Boros, A; Oueslati, H; Deutsch, É

    2015-06-01

    Adjuvant radiotherapy, after breast conserving surgery or mastectomy for breast cancer, improves overall survival while decreasing the risk of recurrence. However, prophylactic postoperative radiotherapy of locoregional lymph nodes for breast cancer, particularly of the axillary region, is still controversial since the benefits and the risks due to axillary irradiation have not been well defined. To begin with, when performing conformal radiotherapy, volume definition is crucial for the analysis of the risk-benefit balance of any radiation treatment. Definition and contouring of the axillary lymph node region is discussed in this work, as per the recommendations of the European Society for Radiotherapy and Oncology (ESTRO). Axillary recurrences are rare, and the recent trend leads toward less aggressive surgery with regard to the axilla. In this literature review we present the data that lead us to avoid adjuvant axillary radiotherapy in pN0, pN0i+ and pN1mi patients even without axillary clearance and to perform it in some other situations. Finally, we propose an update about the potential toxicity of adjuvant axillary irradiation, which is essential for therapeutic decision-making based on current evidence, and to guide us in the evolution of our techniques and indications of axillary radiotherapy. PMID:26044178

  3. Magnetic field effects on the energy deposition spectra of MV photon radiation.

    PubMed

    Kirkby, C; Stanescu, T; Fallone, B G

    2009-01-21

    Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%. PMID:19088391

  4. Low-cost commercial glass beads as dosimeters in radiotherapy

    NASA Astrophysics Data System (ADS)

    Jafari, S. M.; Bradley, D. A.; Gouldstone, C. A.; Sharpe, P. H. G.; Alalawi, A.; Jordan, T. J.; Clark, C. H.; Nisbet, A.; Spyrou, N. M.

    2014-04-01

    Recent developments in advanced radiotherapy techniques using small field photon beams, require small detectors to determine the delivered dose in steep dose gradient fields. Commercially available glass jewellery beads exhibit thermoluminescent properties and have the potential to be used as dosimeters in radiotherapy due to their small size (<5 mm), low cost, reusability and inert nature. This study investigated the dosimetric characteristics of glass beads. The beads were irradiated by 6 MV photons using a medical linear-accelerator and 60Co gamma rays over doses ranging from 1 to 2500 cGy. A thermoluminescence (TL) system and an electron paramagnetic resonance (EPR) system were employed for read out. Both the TL and EPR studies demonstrated a radiation-induced signal, the sensitivity of which varied with bead colour. White coloured beads proved to be the most sensitive for both systems. The smallest and therefore least sensitive bead sizes allowed measurement of doses of 1 cGy using the TL system while that for the EPR system was approximately 1000 cGy. The fading rate was found to be 10% 30 days after irradiation with both readout systems. The dose response is linear with measured dose over the dose range 1 to 2500 cGy, with an R2 correlation coefficient of greater than 0.999. The batch-to-batch reproducibility of a set of dosimeters after a single irradiation was found to be 3% (1 SD). The reproducibility of individual dosimeters was found to be 1.7%. No measurable angular dependence was found (results agreed within 1%). Dose rate response was found to agree within 1% for dose rates of 100 to 600 cGy/min. These results demonstrate the potential use of glass beads as TL dosimeters over the dose range commonly applied in radiotherapy.

  5. Radiation Pneumonitis After Conventional Radiotherapy For Breast Cancer: A Prospective Study

    PubMed Central

    Isiah, Rajesh; Subhashini, J; Backianathan, Selvamani; Thangakunam, Balamugesh; Christopher, Devasagayam J

    2015-01-01

    Background Loco-regional radiotherapy is an important treatment modality in breast cancer and radiation pneumonitis (RP) is one of the early toxicities. Aim To study the occurrence, correlation of RP with patient and radiotherapy related factors and the effects on pulmonary function following conventional radiotherapy in breast cancer. Settings and Design Prospective study, from a tertiary hospital in a developing country. Materials and Methods Prospective analysis of clinical symptoms, pulmonary function and radiologic changes was done prior to and 12 weeks after adjuvant radiotherapy (n=46). Statistical analysis was done using SPSS version 10 software. Results Radiological and clinical RP was seen in 45.65% (n=21) and 19.56% (n=9) respectively. RP was significantly higher with age >50 years (OR 4.4), chest wall irradiation with electrons, (electrons 83.3% vs cobalt60 32.4%, p=0.02) and supraclavicular field treatment with 6 MV photons (p= 0.011). There was significant relationship between Inferior Lung Distance (ILD) and RP (p=0.013). The fall in Total Lung Capacity (TLC) was significantly more in those with RP (p=0.02). Conclusion Clinical RP occurs in almost one-fifth of breast cancer patients treated with conventional radiotherapy. Chest wall irradiation with electrons, supraclavicular field irradiation with 6 MV photons, higher ILD and age >50 years was associated with increased RP. The pulmonary function parameter most affected was TLC. The factors associated with increased RP should be considered when adjuvant radiotherapy is planned to minimize its likelihood and intervene appropriately. PMID:26393189

  6. Voluntary Breath-hold Technique for Reducing Heart Dose in Left Breast Radiotherapy

    PubMed Central

    Bartlett, Frederick R.; Colgan, Ruth M.; Donovan, Ellen M.; Carr, Karen; Landeg, Steven; Clements, Nicola; McNair, Helen A.; Locke, Imogen; Evans, Philip M.; Haviland, Joanne S.; Yarnold, John R.; Kirby, Anna M.

    2014-01-01

    Breath-holding techniques reduce the amount of radiation received by cardiac structures during tangential-field left breast radiotherapy. With these techniques, patients hold their breath while radiotherapy is delivered, pushing the heart down and away from the radiotherapy field. Despite clear dosimetric benefits, these techniques are not yet in widespread use. One reason for this is that commercially available solutions require specialist equipment, necessitating not only significant capital investment, but often also incurring ongoing costs such as a need for daily disposable mouthpieces. The voluntary breath-hold technique described here does not require any additional specialist equipment. All breath-holding techniques require a surrogate to monitor breath-hold consistency and whether breath-hold is maintained. Voluntary breath-hold uses the distance moved by the anterior and lateral reference marks (tattoos) away from the treatment room lasers in breath-hold to monitor consistency at CT-planning and treatment setup. Light fields are then used to monitor breath-hold consistency prior to and during radiotherapy delivery. PMID:25046661

  7. Cytogenetic effects of radiotherapy. Breakpoint distribution in induced chromosome aberrations

    SciTech Connect

    Barrios, L.; Miro, R.; Caballin, M.R.; Fuster, C.; Guedea, F.; Subias, A.; Egozcue, J. )

    1989-08-01

    A total of 660 breakpoints were identified in the chromosome aberrations detected in lymphocytes from cancer patients after radiotherapy. The results show that chromosomes 1, 3, and 7 were significantly more affected than other chromosomes by ionizing radiation in vivo. Chromosome arms 1p, 1q, 7q, and 11p were also significantly more affected. Some bands also showed a special sensitivity to radiation, and band 1q32 was the most affected. This band is proposed as a hot point for the clastogenic effect of ionizing radiation. A significant clustering of breakpoints in G bands was also found, especially at the telomeres, as previously described by other authors. Clustering of breakpoints was also observed in bands where fragile sites, protooncogenes, breakpoints involved in chromosomal cancer rearrangements, and breakpoints involved in chromosomal evolution of the Hominoidea are located.

  8. Combining radiotherapy and angiogenesis inhibitors: Clinical trial design

    SciTech Connect

    Citrin, Deborah . E-mail: citrind@mail.nih.gov; Menard, Cynthia; Camphausen, Kevin

    2006-01-01

    Radiotherapy (RT) plays a vital role in the multimodality treatment of cancer. Recent advances in RT have primarily involved improvements in dose delivery. Future improvements in tumor control and disease outcomes will likely involve the combination of RT with targeted therapies. Preclinical evaluations of angiogenesis inhibitors in combination with RT have yielded promising results with increased tumor 'cure.' It remains to be seen whether these improvements in tumor control in the laboratory will translate into improved outcomes in the clinic. Multiple differences between these agents and cytotoxic chemotherapy must be taken into account when designing clinical trials evaluating their effectiveness in combination with RT. We discuss important considerations for designing clinical trials of angiogenesis inhibitors with RT.

  9. Modality comparison for small animal radiotherapy: A simulation study

    PubMed Central

    Bazalova, Magdalena; Nelson, Geoff; Noll, John M.; Graves, Edward E.

    2014-01-01

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCT scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by

  10. Modality comparison for small animal radiotherapy: A simulation study

    SciTech Connect

    Bazalova, Magdalena Nelson, Geoff; Noll, John M.; Graves, Edward E.

    2014-01-15

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCT scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by

  11. Matching Intensity-Modulated Radiation Therapy to an Anterior Low Neck Field

    SciTech Connect

    Amdur, Robert J. Liu, Chihray; Li, Jonathan; Mendenhall, William; Hinerman, Russell

    2007-10-01

    When using intensity-modulated radiation therapy (IMRT) to treat head and neck cancer with the primary site above the level of the larynx, there are two basic options for the low neck lymphatics: to treat the entire neck with IMRT, or to match the IMRT plan to a conventional anterior 'low neck' field. In view of the potential advantages of using a conventional low neck field, it is important to look for ways to minimize or manage the problems of matching IMRT to a conventional radiotherapy field. Treating the low neck with a single anterior field and the standard larynx block decreases the dose to the larynx and often results in a superior IMRT plan at the primary site. The purpose of this article is to review the most applicable studies and to discuss our experience with implementing a technique that involves moving the position of the superior border of the low neck field several times during a single treatment fraction.

  12. Radiotherapy Issues in Elderly Breast Cancer Patients

    PubMed Central

    Kunkler, Ian

    2012-01-01

    Summary Breast cancer in the elderly is a rising health care challenge. Under-treatment is common. While the proportion of older patients receiving adjuvant radiotherapy (RT) is rising, the proportion undergoing breast-conserving surgery without irradiation has also risen. The evidence base for loco-regional treatment is limited, reflecting the historical exclusion of older patients from randomised trials. The 2011 Oxford overview shows that the risk of first recurrence is halved in all age groups by adjuvant RT after breast-conserving surgery, although the absolute benefit in older ‘low-risk’ patients is small. There is level 1 evidence that a breast boost after breast-conserving surgery and whole-breast irradiation reduces local recurrence in older as in younger women, although in the former the absolute reduction is modest. Partial breast irradiation (external beam or intraoperative or postoperative brachytherapy) is potentially an attractive option for older patients, but the evidence base is insufficient to recommend it routinely. Similarly, shortened (hypofractionated) dose fraction schedules may be more convenient for older patients and are supported by level 1 evidence. There remains uncertainty about whether there is a subgroup of older low-risk patients in whom postoperative RT can be omitted after breast-conserving surgery. Biomarkers of ‘low risk’ are needed to refine the selection of patients for the omission of adjuvant RT. The role of postmastectomy irradiation is well established for ‘high-risk’ patients but uncertain in the intermediate-risk category of patients with 1–3 involved axillary nodes or node-negative patients with other risk factors where its role is investigational. PMID:24715826

  13. Dosimetric Advantage of Intensity-Modulated Radiotherapy for Whole Ventricles in the Treatment of Localized Intracranial Germinoma

    SciTech Connect

    Sakanaka, Katsuyuki; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-02-01

    Purpose: To investigate the dosimetric advantage of intensity-modulated radiotherapy (IMRT) for whole ventricles (WV) in patients with a localized intracranial germinoma receiving induction chemotherapy. Methods and Materials: Data from 12 consecutive patients with localized intracranial germinomas who received induction chemotherapy and radiotherapy were used. Four-field coplanar three-dimensional conformal radiotherapy (3D-CRT) and seven-field coplanar IMRT plans were created. In both plans, 24 Gy was prescribed in 12 fractions for the planning target volume (PTV) involving WV and tumor bed. In IMRT planning, optimization was conducted to reduce the doses to the organs at risk (OARs) as much as possible, keeping the minimum dose equivalent to that of 3D-CRT. The 3D-CRT and IMRT plans were compared in terms of the dose-volume statistics for target coverage and the OARs. Results: IMRT significantly increased the percentage volume of the PTV receiving 24 Gy compared with 3D-CRT (93.5% vs. 84.8%; p = 0.007), while keeping target homogeneity equivalent to 3D-CRT (p = 0.869). The absolute percentage reduction in the irradiated volume of the normal brain receiving 100%, 75%, 50%, and 25% of 24 Gy ranged from 0.7% to 16.0% in IMRT compared with 3D-CRT (p < 0.001). No significant difference was observed in the volume of the normal brain receiving 10% and 5% of 24 Gy between IMRT and 3D-CRT. Conformation number was significantly improved in IMRT (p < 0.001). For other OARs, the mean dose to the cochlea was reduced significantly in IMRT by 22.3% of 24 Gy compared with 3D-CRT (p < 0.001). Conclusions: Compared with 3D-CRT, IMRT for WV improved the target coverage and reduced the irradiated volume of the normal brain in patients with intracranial germinomas receiving induction chemotherapy. IMRT for WV with induction chemotherapy could reduce the late side effects from cranial irradiation without compromising control of the tumor.

  14. Fast neutron radiotherapy: For equal or for better

    SciTech Connect

    Broerse, J.J.; Battermann, J.J.

    1981-11-01

    The renewed application of fast neutrons in clinical radiotherapy has been stimulated by fundamental radiobiological findings. The biological effects of high LET radiation, including fast neutrons, are different from those obtained with x rays in at least three respects: the oxygen enhancement ratio, the sensitivity of cells at different phases of the cell cycle, and the contribution of sublethal damage to cell reproductive death. Furthermore, wide variations in relative biological effectiveness (RBE) have been observed for different tumors and normal tissues. Measurements of volume changes in human pulmonary metastases indicate that the RBE for slowly growing tumors which are generally well-differentiated is higher than that for poorly differentiated lesions. Six thousand patients have now been treated with fast neutron beams. The results of the clinical applications vary according to the method of application and to the type of cancer involved: treatment of inoperable malignancies of the salivary gland is very encouraging; the therapeutic gain is rather small for bladder and rectal cancers, soft tissue sarcomas and advanced carcinomas of the cervix; the responses of brain tumors are very disappointing. Most neutron radiotherapy applications have been less than optimal because of inadequate physical and technical conditions. Despite these difficulties, some interesting clinical data have become available. Due to the technical shortcomings, the possible advantages of fast neutrons are probably underestimated for many tumor sites. Well-designed clinical trials, preferably performed with high energy cyclotrons in clinical environments, will provide a decisive answer to the question of the usefulness of the new radiation modality. Key words: fast neutrons, radiotherapy, radiobiology

  15. Effect of radiotherapy on the interpretation of routine follow-up mammography after conservative breast surgery: a randomized study.

    PubMed Central

    Holli, K.; Saaristo, R.; Isola, J.; Hyöty, M.; Hakama, M.

    1998-01-01

    Radiotherapy after conservative surgery causes fat necrosis, fibrosis, skin thickening and other parenchymal distortion of the breast. The interpretation of a mammogram of the irradiated breast may therefore be difficult. We studied the effect of radiotherapy on the interpretation of the routine mammography used in the follow-up of breast cancer patients. A total of 144 low-risk breast cancer patients were randomized to radiotherapy or to no further treatment after conservative surgery. The first routine follow-up mammography was performed 18 months after surgery and every 18 months after that. The number of mammography examinations was estimated per patient and per follow-up year. The number of extra diagnostic tests and the occurrence of positive findings were assessed per mammography session and per follow-up year. Further diagnostic tests prompted by difficulties in interpreting the mammogram were performed to an extent of 0.19 per mammography examination in the radiotherapy group and of 0.15 in the non-radiotherapy group, i.e. 1.3 times more often. Findings that turned out to be negative at confirmation were 2.0 times (P< 0.05) more common in the radiotherapy group. These false-positive findings were more common in the radiotherapy group than in the surgery group and only shortly after treatment. Mammography is more difficult to interpret after radiotherapy than after conservative surgery alone, especially shortly after treatment, and more often involves extra diagnostic tests and findings that will be negative at confirmation. PMID:9716041

  16. SU-C-17A-07: The Development of An MR Accelerator-Enabled Planning-To-Delivery Technique for Stereotactic Palliative Radiotherapy Treatment of Spinal Metastases

    SciTech Connect

    Hoogcarspel, S J; Kontaxis, C; Velden, J M van der; Bol, G H; Vulpen, M van; Lagendijk, J J W; Raaymakers, B W

    2014-06-01

    Purpose: To develop an MR accelerator-enabled online planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases. The technical challenges include; automated stereotactic treatment planning, online MR-based dose calculation and MR guidance during treatment. Methods: Using the CT data of 20 patients previously treated at our institution, a class solution for automated treatment planning for spinal bone metastases was created. For accurate dose simulation right before treatment, we fused geometrically correct online MR data with pretreatment CT data of the target volume (TV). For target tracking during treatment, a dynamic T2-weighted TSE MR sequence was developed. An in house developed GPU based IMRT optimization and dose calculation algorithm was used for fast treatment planning and simulation. An automatically generated treatment plan developed with this treatment planning system was irradiated on a clinical 6 MV linear accelerator and evaluated using a Delta4 dosimeter. Results: The automated treatment planning method yielded clinically viable plans for all patients. The MR-CT fusion based dose calculation accuracy was within 2% as compared to calculations performed with original CT data. The dynamic T2-weighted TSE MR Sequence was able to provide an update of the anatomical location of the TV every 10 seconds. Dose calculation and optimization of the automatically generated treatment plans using only one GPU took on average 8 minutes. The Delta4 measurement of the irradiated plan agreed with the dose calculation with a 3%/3mm gamma pass rate of 86.4%. Conclusions: The development of an MR accelerator-enabled planning-todelivery technique for stereotactic palliative radiotherapy treatment of spinal metastases was presented. Future work will involve developing an intrafraction motion adaptation strategy, MR-only dose calculation, radiotherapy quality-assurance in a magnetic field, and streamlining the entire treatment

  17. Modelling and simulation of radiotherapy

    NASA Astrophysics Data System (ADS)

    Kirkby, Norman F.

    2007-02-01

    In this paper, models are described which have been developed to model both the way in which a population of cells respond to radiation and the way in which a population of patients respond to radiotherapy to assist the conduct of clinical trials in silico. Population balance techniques have been used to simulate the age distribution of tumour cells in the cell cycle. Sensitivity to radiation is not constant round the cell cycle and a single fraction of radiation changes the age distribution. Careful timing of further fractions of radiation can be used to maximize the damage delivered to the tumour while minimizing damage to normal tissue. However, tumour modelling does not necessarily predict patient outcome. A separate model has been established to predict the course of a brain cancer called glioblastoma multiforme (GBM). The model considers the growth of the tumour and its effect on the normal brain. A simple representation is included of the health status of the patient and hence the type of treatment offered. It is concluded that although these and similar models have a long way yet to be developed, they are beginning to have an impact on the development of clinical practice.

  18. Sequential Chemotherapy and Radiotherapy in the Sandwich Method for Advanced Endometrial Cancer

    PubMed Central

    Gao, Huiqiao; Zhang, Zhenyu

    2015-01-01

    Abstract Endometrial cancer is one of the most common gynecological malignancies and the standard treatment modality has not been established. To assess the efficacy and tolerability of a sandwich method consisted of chemotherapy followed by involved field irradiation and additional chemotherapy for the treatment of advanced endometrial cancer. The Medline, Embase, Cochrane, and China National Knowledge Infrastructure (CNKI) Library were searched to identify the relevant literature published between 1970 and September 2014. A meta-analysis was performed to evaluate progression-free survival (PFS), overall survival (OS), and toxicity. A total of 5 articles were subjected to this meta-analysis. The pooled 3-year PFS and OS of patients with advanced endometrial cancer treated with the “sandwich” method was 68% (95% CI: 0.60–0.77) with no heterogeneity (I2 = 0.00%, P = 0.77) among the studies and 75% (95% CI: 0.61–0.89) with significant heterogeneity (I2 = 71.8%, P = 0.01), respectively. Pooled analysis of toxicity was not performed because of the substantial heterogeneity. Sequential chemotherapy and radiotherapy in the sandwich method is both efficacious and well tolerated. Large-scale randomized controlled trials (RCTs) are necessary in the future. PMID:25906095

  19. Patterns of Regional Recurrence After Definitive Radiotherapy for Cervical Cancer

    SciTech Connect

    Beadle, Beth M.; Jhingran, Anuja; Yom, Sue S.; Ramirez, Pedro T.; Eifel, Patricia J.

    2010-04-15

    Purpose: To determine the patterns of regional recurrence in patients treated with definitive radiotherapy (RT) for cervical cancer. Methods and Materials: The records of 198 patients treated with definitive RT for cervical cancer between 1980 and 2000 who experienced a regional recurrence without a central or distal vaginal recurrence were reviewed. All patients received a combination of external-beam RT and intracavitary brachytherapy. In the 180 patients with a documented location of regional recurrence, the relationship between the recurrence and the radiation fields was determined. Results: The median time to regional recurrence was 13 months (range, 2-85 months). Of the 180 patients who had an evaluable regional recurrence, 119 (66%) had a component of marginal failure; 71 patients recurred above-the-field, 2 patients occurred in the inguinal nodes, and 2 patients recurred above-the-field and in the inguinal nodes. In addition, 105 patients (58%) had a component of in-field failure; 59 patients recurred in-field only, 39 patients recurred in-field and above-the-field, 2 patients recurred in-field, above-the-field, and in the inguinal nodes, and 5 patients recurred in-field and in the inguinal nodes. The median survival after regional recurrence was 8 months (range, 0-194 months). Conclusions: Most regional recurrences after definitive RT for cervical cancer include a component of marginal failure, usually immediately superior to the radiation field. These recurrences suggest a deficiency in target volume. Recurrences also occur in-field, suggesting a deficiency in dose. Developments in pretreatment staging, field delineation, dose escalation, and posttreatment surveillance may help to improve outcome in these patients.

  20. Current advances in radiotherapy of head and neck malignancies.

    PubMed

    Roopashri, G; Baig, Muqeet

    2013-12-01

    Necessity is the mother of all inventions. This is also true in case of cancer therapy. With increasing incidence of head and neck malignancies, remarkable developments have been made towards cancer development and treatment which continues to be a major challenge. Approximately fifty percent of all cancer patients receive radiotherapy which contributes towards forty percent of curative treatment for cancer. New developments in radiation oncology have helped to improve outlook for patients and find more effective treatment. With the advent of new technologies, radiotherapy seems to be promising in patients with head and neck malignancies these advancements include Altered fractionation, Three-dimensional conformal radiotherapy, Intensity-modulated radiotherapy, Image Guided Radiotherapy, Stereotactic radiation, Charged-particle radiotherapy, and Intraoperative radiotherapy. How to cite this article: Roopashri G, Baig M. Current advances in radiotherapy of head and neck malignancies. J Int Oral Health 2013; 5(6):119-23 . PMID:24453456

  1. Navigated marker placement for motion compensation in radiotherapy

    NASA Astrophysics Data System (ADS)

    Winterstein, A.; März, K.; Franz, A. M.; Hafezi, M.; Fard, N.; Sterzing, F.; Mehrabi, A.; Maier-Hein, L.

    2015-03-01

    Radiotherapy is frequently used to treat unoperated or partially resected tumors. Tumor movement, e.g. caused by respiration, is a major challenge in this context. Markers can be implanted around the tumor prior to radiation therapy for accurate tracking of tumor movement. However, accurate placement of these markers while keeping a secure margin around the target and while taking into account critical structures is a difficult task. Computer-assisted needle insertion has been an active field of research in the past decades. However, the challenge of navigated marker placement for motion compensated radiotherapy has not yet been addressed. This work presents a system to support marker implantation for radiotherapy under consideration of safety margins and optimal marker configuration. It is designed to allow placement of markers both percutaneously and during an open liver surgery. To this end, we adapted the previously proposed EchoTrack system which integrates ultrasound (US) imaging and electromagnetic (EM) tracking in a single mobile modality. The potential of our new marker insertion concept was evaluated in a phantom study by inserting sets of three markers around dedicated targets (n=22) simultaneously spacing the markers evenly around the target as well as placing the markers in a defined distance to the target. In all cases the markers were successfully placed in a configuration fulfilling the predefined criteria. This includes a minimum distance of 18.9 ± 2.4 mm between marker and tumor as well as a divergence of 2.1 ± 1.5 mm from the planned marker positions. We conclude that our system has high potential to facilitate the placement of markers in suitable configurations for surgeons without extensive experience in needle punctions as high quality configurations were obtained even by medical non-experts.

  2. Adjuvant Radiotherapy Outcome of Stage I Testicular Seminoma: A Single Institution Study

    PubMed Central

    Lee, Hayoon; Kim, Jun Won; Hong, Sung Joon; Yang, Seung Choul; Choi, Young Deuk; Rha, Koon Ho

    2015-01-01

    Purpose To analyze treatment outcome and side effects of adjuvant radiotherapy using radiotherapy fields and doses which have evolved over the last two decades in a single institution. Materials and Methods Forty-one patients received radiotherapy after orchiectomy from 1996 to 2007. At our institution, the treatment field for stage I seminoma has changed from dog-leg (DL) field prior to 2003 to paraaortic (PA) field after 2003. Fifteen patients were treated with the classic fractionation scheme of 25.5 Gy at 1.5 Gy per fraction. Other patients had been treated with modified schedules of 25.05 Gy at 1.67 Gy per fraction (n=15) and 25.2 Gy at 1.8 Gy per fraction (n=11). Results With a median follow-up of 112 months, the 5-year and 10-year survival rates were 100% and 96%, respectively, and 5-year and 10-year relapse-free survival rates were both 97.1%. No in-field recurrence occurred. Contralateral seminoma occurred in one patient 5 years after treatment. No grade III-IV acute toxicity occurred. An increased rate of grade 1-2 acute hematologic toxicity was found in patients with longer overall treatment times due to 1.5 Gy per fraction. The rate of grade 2 acute gastrointestinal toxicity was significantly higher with DL field than with PA field and also higher in the 1.8-Gy group than in the 1.5-Gy and 1.67-Gy groups. Conclusion Patients with stage I seminoma were safely treated with PA-only radiotherapy with no pelvic failure. Optimal fractionation schedule needs to be explored further in order to minimize treatment-related toxicity. PMID:25510743

  3. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    SciTech Connect

    Rosenthal, David I.; Fuller, Clifton D.; Barker, Jerry L.; Mason, Bryan M.S.; Garcia, John A. C.; Lewin, Jan S.; Holsinger, F. Christopher; Stasney, C. Richard; Frank, Steven J.; Schwartz, David L.; Morrison, William H.; Garden, Adam S.; Ang, K. Kian

    2010-06-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapy consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.

  4. Postoperative Intensity-Modulated Radiotherapy in Low-Risk Endometrial Cancers: Final Results of a Phase I Study

    SciTech Connect

    Macchia, Gabriella; Cilla, Savino M.P.; Ferrandina, Gabriella; Padula, Gilbert D.A.; Deodato, Francesco; Digesu, Cinzia; Caravatta, Luciana; Picardi, Vincenzo; Corrado, Giacomo; Piermattei, Angelo; Valentini, Vincenzo; Cellini, Numa; Scambia, Giovanni; Morganti, Alessio Giuseppe

    2010-04-15

    Purpose: To determine the maximum tolerated dose of short-course radiotherapy (intensity-modulated radiotherapy technique) to the upper two thirds of the vagina in endometrial cancers with low risk of local recurrence. Patients and Methods: A Phase I clinical trial was performed. Eligible patients had low-risk resected primary endometrial adenocarcinomas. Radiotherapy was delivered in 5 fractions over 1 week. The planning target volume was the clinical target volume plus 5 mm. The clinical target volume was defined as the upper two thirds of the vagina as evidenced at CT simulation by a vaginal radio-opaque device. The planning target volume was irradiated by a seven-field intensity-modulated radiotherapy technique, planned by the Plato Sunrise inverse planning system. A first cohort of 6 patients received 25 Gy (5-Gy fractions), and a subsequent cohort received 30 Gy (6-Gy fractions). The Common Toxicity Criteria scale, version 3.0, was used to score toxicity. Results: Twelve patients with endometrial cancer were enrolled. Median age was 58 years (range, 49-74 years). Pathologic stage was IB (83.3%) and IC (16.7%). Median tumor size was 30 mm (range, 15-50 mm). All patients completed the prescribed radiotherapy. No patient experienced a dose-limiting toxicity at the first level, and the radiotherapy dose was escalated from 25 to 30 Gy. No patients at the second dose level experienced dose-limiting toxicity. The most common Grade 2 toxicity was gastrointestinal, which was tolerable and manageable. Conclusions: The maximum tolerated dose of short-course radiotherapy was 30 Gy at 6 Gy per fraction. On the basis of this result, we are conducting a Phase II study with radiotherapy delivered at 30 Gy.

  5. Threshold dose for peripheral neuropathy following intraoperative radiotherapy (IORT) in a large animal model

    SciTech Connect

    Kinsella, T.J.; DeLuca, A.M.; Barnes, M.; Anderson, W.; Terrill, R.; Sindelar, W.F. )

    1991-04-01

    Radiation injury to peripheral nerve is a dose-limiting toxicity in the clinical application of intraoperative radiotherapy, particularly for pelvic and retroperitoneal tumors. Intraoperative radiotherapy-related peripheral neuropathy in humans receiving doses of 20-25 Gy is manifested as a mixed motor-sensory deficit beginning 6-9 months following treatment. In a previous experimental study of intraoperative radiotherapy-related neuropathy of the lumbro-sacral plexus, an approximate inverse linear relationship was reported between the intraoperative dose (20-75 Gy range) and the time to onset of hind limb paresis (1-12 mos following intraoperative radiotherapy). The principal histological lesion in irradiated nerve was loss of large nerve fibers and perineural fibrosis without significant vascular injury. Similar histological changes in irradiated nerves were found in humans. To assess peripheral nerve injury to lower doses of intraoperative radiotherapy in this same large animal model, groups of four adult American Foxhounds received doses of 10, 15, or 20 Gy to the right lumbro-sacral plexus and sciatic nerve using 9 MeV electrons. The left lumbro-sacral plexus and sciatic nerve were excluded from the intraoperative field to allow each animal to serve as its own control. Following treatment, a complete neurological exam, electromyogram, and nerve conduction studies were performed monthly for 1 year. Monthly neurological exams were performed in years 2 and 3 whereas electromyogram and nerve conduction studies were performed every 3 months during this follow-up period. With follow-up of greater than or equal to 42 months, no dog receiving 10 or 15 Gy IORT shows any clinical or laboratory evidence of peripheral nerve injury. However, all four dogs receiving 20 Gy developed right hind limb paresis at 8, 9, 9, and 12 mos following intraoperative radiotherapy.

  6. A dose comparison of proton radiotherapy and photon radiotherapy for pediatric brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Cho, J. H.

    2014-12-01

    The purpose of this study was to investigate the effectiveness of photon radiotherapy and to compare the dose of treatment planning between proton radiotherapy and 3D conformal radiation therapy (3D-CRT) for pediatric brain tumor patients. This study was conducted in five pediatric brain tumor patients who underwent craniospinal irradiation treatment from October 2013 to April 2014 in the hospital. The study compared organs at risk (OARs) by assessing the dose distribution of normal tissue from the proton plan and 3D-CRT. Furthermore, this study assessed the treatment plans by looking at the homogeneity index (HI) and conformity index (CI). As a result, the study revealed OARs due to the small volume proton radiotherapy dose distribution in the normal tissue. Also, by comparing HI and CI between the 3D-CRT and proton radiotherapy plan, the study found that the dose of proton radiotherapy plan was homogenized. When conducting 3D-CRT and proton radiotherapy in a dose-volume histogram comparison, the dose of distribution turned out to be low. Consequently, proton radiotherapy is used for protecting the normal tissue, and is used in tumor tissue as a homogenized dose for effective treatment.

  7. [Image-guided radiotherapy and partial delegation to radiotherapy technicians: Clermont-Ferrand experience].

    PubMed

    Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M

    2013-10-01

    The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. PMID:24011600

  8. Prevention of accidental exposure in radiotherapy: the risk matrix approach.

    PubMed

    Vilaragut, J J; Duménigo, C; Delgado, J M; Morales, J; McDonnell, J D; Ferro, R; Ortiz López, P; Ramírez, M L; Pérez Mulas, A; Papadopulos, S; Gonçalves, M; López Morones, R; Sánchez Cayuela, C; Cascajo Castresana, A; Somoano, F; Álvarez, C; Guillén, A; Rodríguez, M; Pereira, P P; Nader, A

    2013-02-01

    Knowledge and lessons from past accidental exposures in radiotherapy are very helpful in finding safety provisions to prevent recurrence. Disseminating lessons is necessary but not sufficient. There may be additional latent risks for other accidental exposures, which have not been reported or have not occurred, but are possible and may occur in the future if not identified, analyzed, and prevented by safety provisions. Proactive methods are available for anticipating and quantifying risk from potential event sequences. In this work, proactive methods, successfully used in industry, have been adapted and used in radiotherapy. Risk matrix is a tool that can be used in individual hospitals to classify event sequences in levels of risk. As with any anticipative method, the risk matrix involves a systematic search for potential risks; that is, any situation that can cause an accidental exposure. The method contributes new insights: The application of the risk matrix approach has identified that another group of less catastrophic but still severe single-patient events may have a higher probability, resulting in higher risk. The use of the risk matrix approach for safety assessment in individual hospitals would provide an opportunity for self-evaluation and managing the safety measures that are most suitable to the hospital's own conditions. PMID:23274816

  9. Influence of secondary neutrons induced by proton radiotherapy for cancer patients with implantable cardioverter defibrillators

    PubMed Central

    2012-01-01

    Background Although proton radiotherapy is a promising new approach for cancer patients, functional interference is a concern for patients with implantable cardioverter defibrillators (ICDs). The purpose of this study was to clarify the influence of secondary neutrons induced by proton radiotherapy on ICDs. Methods The experimental set-up simulated proton radiotherapy for a patient with an ICD. Four new ICDs were placed 0.3 cm laterally and 3 cm distally outside the radiation field in order to evaluate the influence of secondary neutrons. The cumulative in-field radiation dose was 107 Gy over 10 sessions of irradiation with a dose rate of 2 Gy/min and a field size of 10 × 10 cm2. After each radiation fraction, interference with the ICD by the therapy was analyzed by an ICD programmer. The dose distributions of secondary neutrons were estimated by Monte-Carlo simulation. Results The frequency of the power-on reset, the most serious soft error where the programmed pacing mode changes temporarily to a safety back-up mode, was 1 per approximately 50 Gy. The total number of soft errors logged in all devices was 29, which was a rate of 1 soft error per approximately 15 Gy. No permanent device malfunctions were detected. The calculated dose of secondary neutrons per 1 Gy proton dose in the phantom was approximately 1.3-8.9 mSv/Gy. Conclusions With the present experimental settings, the probability was approximately 1 power-on reset per 50 Gy, which was below the dose level (60-80 Gy) generally used in proton radiotherapy. Further quantitative analysis in various settings is needed to establish guidelines regarding proton radiotherapy for cancer patients with ICDs. PMID:22284700

  10. Carotid dosimetry for T1 glottic cancer radiotherapy

    PubMed Central

    Lim, C C; Whitehurst, P; Thomson, D; Ho, K F; Lowe, M; Sykes, A; Lee, LW; Yap, B; Slevin, N

    2014-01-01

    Objective: Radiotherapy for T1 glottic cancer is commonly delivered using a lateral parallel opposed pair of megavoltage photon fields. There is increasing reported evidence of cerebrovascular events due to radiation-induced carotid stenosis. An alternative field arrangement is to use an anterior oblique technique. This study compares the carotid dosimetry between the two techniques and reviews the evidence for the risk of radiation-induced vascular events. Methods: The radiotherapy plans of 10 patients with T1 glottic cancer treated with an anterior oblique technique were examined for carotid dose. Alternative plans were then created using a parallel opposed pair of fields and the dose to the carotids compared. All patients received 50 Gy in 16 fractions treating once daily, for 5 days in a week. Results: The average of the mean dose to the carotids with the anterior oblique technique was 21 Gy compared with 37 Gy using the lateral parallel opposed pair arrangement (p < 0.0001). Conclusion: An anterior oblique field arrangement for the treatment of T1 glottic cancer results in a significantly lower radiation dose to the carotid arteries, which may be clinically important in terms of reducing the risk of cerebrovascular events in long-term survivors. Advances in knowledge: Although the anterior oblique technique for treating early glottic cancers is well described, and it is predictable that the dose received by the carotid arteries should be lower with this technique, to our knowledge this is the first study to quantify that reduction in dose with a series of patients. PMID:24628251

  11. Experience with carbon ion radiotherapy at GSI

    NASA Astrophysics Data System (ADS)

    Jäkel, O.; Schulz-Ertner, D.; Karger, C. P.; Heeg, P.; Debus, J.

    2005-12-01

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  12. Respiration gated radiotherapy treatment: a technical study

    NASA Astrophysics Data System (ADS)

    Kubo, Hideo D.; Hill, Bruce C.

    1996-01-01

    In order to optimize external-beam conformal radiotherapy, patient movement during treatment must be minimized. For treatment on the upper torso, the target organs are known to move substantially due to patient respiration. This paper deals with the technical aspects of gating the radiotherapy beam synchronously with respiration: the optimal respiration monitoring system, measurements of organ displacement and linear accelerator gating. Several respiration sensors including a thermistor, a thermocouple, a strain gauge and a pneumotachograph were examined to find the optimal sensor. The magnitude of breast, chest wall and lung motion were determined using playback of fluoroscopic x-ray images recorded on a VCR during routine radiotherapy simulation. Total dose, beam symmetry and beam uniformity were examined to determine any effects on the Varian 2100C linear accelerator due to gating.

  13. Differences in breast tissue oxygenation following radiotherapy.

    PubMed

    Dornfeld, Ken; Gessert, Charles E; Renier, Colleen M; McNaney, David D; Urias, Rodolfo E; Knowles, Denise M; Beauduy, Jean L; Widell, Sherry L; McDonald, Bonita L

    2011-08-01

    Tissue perfusion and oxygenation changes following radiotherapy may result from and/or contribute to the toxicity of treatment. Breast tissue oxygenation levels were determined in the treated and non-treated breast 1 year after radiotherapy for breast conserving treatment. Transcutaneous oxygenation varied between subjects in both treated and non-treated breast. Subjects without diabetes mellitus (n=16) had an average oxygenation level of 64.8 ± 19.9mmHg in the irradiated breast and an average of 72.3 ± 18.1mmHg (p=0.018) at the corresponding location in the control breast. Patients with diabetes (n=4) showed a different oxygenation pattern, with lower oxygenation levels in control tissue and no decrease in the irradiated breast. This study suggests oxygenation levels in normal tissues vary between patients and may respond differently after radiotherapy. PMID:21356563

  14. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  15. Rationale for intraoperative radiotherapy in glioblastoma.

    PubMed

    Giordano, Frank A; Wenz, Frederik; Petrecca, Kevin

    2016-09-01

    Glioblastoma is the most common and aggressive adult primary brain cancer. Despite multimodal therapy, it is associated with a survival of less than two years. Greater than 85% of recurrences occur within the original area of surgery and radiotherapy, suggesting a potential for improved local treatments. In addition to cancer cell invasion beyond surgical margins, a plethora of postinjury pro-proliferative stimuli are released from local healing brain, which both protect and nourish remaining cancer cells. This review compiles preclinical and clinical evidence for a dedicated treatment of both residual cancer cells and regional microenvironment using intraoperative radiotherapy (IORT). PMID:26824195

  16. Subacute Cutaneous Lupus Erythematosus Triggered by Radiotherapy

    PubMed Central

    Kolm, I.; Pawlik, E.; Eggmann, N.; Kamarachev, J.; Kerl, K.; French, L.E.; Hofbauer, G.F.L.

    2013-01-01

    Background The origin of collagen autoimmune diseases is not fully understood. Some studies postulate a mechanism of molecular mimicry or heterologous immunity following viral infections triggering autoimmunity. Apart from infections, other exogenous factors such as visible light or X-rays have been reported to incite autoimmunity. Case Report We report a case of histologically and serologically confirmed subacute lupus erythematosus (SCLE) following radiotherapy for breast cancer. Discussion The close temporal and spatial correlation between radiotherapy and onset of SCLE in this patient suggests that an autoimmune reaction may have been triggered locally by functionally altering the immune system and breaking self-tolerance. PMID:24019776

  17. Remote delayed recurrence of craniopharyngioma after radiotherapy.

    PubMed

    Balasubramaniam, Chidambaram; Mohan, Santosh Rao; Subramaniam, K

    2015-01-01

    The aim was to present a rare case of recurrent craniopharyngioma remote from the primary site of origin. A young girl was operated for sellar region craniopharyngioma. For a small residual tumor, she underwent radiotherapy. Follow-up imaging did not reveal any residual tumor or recurrence. Surveillance magnetic resonance imaging after 5 years revealed a recurrence in the right Sylvian fissure. This tumor was totally excised. Recurrence of craniopharyngioma is well-known, but recurrence at a site remote from the original site after radiotherapy is extremely rare. One such case is being presented. PMID:25878741

  18. Remote delayed recurrence of craniopharyngioma after radiotherapy

    PubMed Central

    Balasubramaniam, Chidambaram; Mohan, Santosh Rao; Subramaniam, K.

    2015-01-01

    The aim was to present a rare case of recurrent craniopharyngioma remote from the primary site of origin. A young girl was operated for sellar region craniopharyngioma. For a small residual tumor, she underwent radiotherapy. Follow-up imaging did not reveal any residual tumor or recurrence. Surveillance magnetic resonance imaging after 5 years revealed a recurrence in the right Sylvian fissure. This tumor was totally excised. Recurrence of craniopharyngioma is well-known, but recurrence at a site remote from the original site after radiotherapy is extremely rare. One such case is being presented. PMID:25878741

  19. Time to demand dosimetry for molecular radiotherapy?

    PubMed Central

    Guy, M J

    2015-01-01

    Molecular radiotherapy (MRT) has been used clinically for around 75 years. Despite this long history of clinical use, there is no established dosimetry practice for calculating the absorbed dose delivered to tumour targets or to organs at risk. As a result, treatment protocols have often evolved based on experience with relatively small numbers of patients, each receiving a similar administered activity but, potentially, widely varying doses. This is in stark contrast to modern external-beam radiotherapy practice. This commentary describes some of the barriers to MRT dosimetry and gives some opinions on the way forward. PMID:25571916

  20. Radiotherapy for Patients With Metastases to the Spinal Column: A Review of 603 Patients at Shizuoka Cancer Center Hospital

    SciTech Connect

    Mizumoto, Masashi; Harada, Hideyuki; Asakura, Hirofumi; Hashimoto, Takayuki; Furutani, Kazuhisa; Hashii, Haruko; Murata, Hideki; Takagi, Tatsuya; Katagiri, Hirohisa; Takahashi, Mitsuru; Nishimura, Tetsuo

    2011-01-01

    Purpose: Long- and short-course radiotherapy have similar outcomes in the treatment of spinal metastases. Long-course radiotherapy is recommended for patients with good predicted survival to reduce the risk of in-field recurrence, whereas short-course radiotherapy is used for those with poor predicted survival. Therefore, prediction of prognosis and local control is required for selecting the optimal course of radiotherapy. Methods and Materials: The subjects were 603 patients with spinal metastases who received radiotherapy at the Shizuoka Cancer Center Hospital between September 2002 and February 2007. Factors associated with survival and local control were retrospectively investigated by multivariate analyses. Local recurrence was defined as regrowth within the irradiated field or exacerbation of symptoms such as pain and motor deficits. Results: Of the 603 patients, 555 (92%) were followed for 12 months or until death. The survival rates after 6, 12, and 24 months were 50%, 32%, and 19%, respectively, with a median survival of 6.2 months. The median survival periods after long- and short-course radiotherapy were 7.9 and 1.8 months, respectively. In multivariate analysis, primary tumor site, good performance status, absence of previous chemotherapy, absence of visceral metastasis, single bone metastasis, younger age, and nonhypercalcemia were associated with good survival. The local control rates after 6, 12, and 24 months were 91%, 79%, and 69%, respectively, and non-mass-type tumor, breast cancer, and absence of previous chemotherapy were predictors of good local control. Conclusions: Identification of factors associated with good local control and survival may allow selection of an optimal radiotherapy schedule for patients with spinal metastases.

  1. Quantitative comparison of delineated structure shape in radiotherapy

    NASA Astrophysics Data System (ADS)

    Price, G. J.; Moore, C. J.

    2006-03-01

    There has been an influx of imaging and treatment technologies into cancer radiotherapy over the past fifteen years. The result is that radiation fields can now be accurately shaped to target disease delineated on pre-treatment planning scans whilst sparing critical healthy structures. Two well known problems remain causes for concern. The first is inter- and intra-observer variability in planning scan delineations, the second is the motion and deformation of a tumour and interacting adjacent organs during the course of radiotherapy which compromise the planned targeting regime. To be able to properly address these problems, and hence accurately shape the margins of error used to account for them, an intuitive and quantitative system of describing this variability must be used. This paper discusses a method of automatically creating correspondence points over similar non-polar delineation volumes, via spherical parameterisation, so that their shape variability can be analysed as a set of independent one dimensional statistical problems. The importance of 'pole' selection to initial parameterisation and hence ease of optimisation is highlighted, the use of sparse anatomical landmarks rather than spherical harmonic expansion for establishing point correspondence discussed, and point variability mapping introduced. A case study is presented to illustrate the method. A group of observers were asked to delineate a rectum on a series of time-of-treatment Cone Beam CT scans over a patient's fractionation schedule. The overall observer variability was calculated using the above method and the significance of the organ motion over time evaluated.

  2. In vivo skin dose measurement in breast conformal radiotherapy

    PubMed Central

    Soleymanifard, Shokouhozaman; Noghreiyan, Atefeh Vejdani; Ghorbani, Mahdi; Jamali, Farideh; Davenport, David

    2016-01-01

    Aim of the study Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. Material and methods Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100) and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. Results Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV) was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution. PMID:27358592

  3. 3D image guidance in radiotherapy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Ebert, Matthias; Groh, Burkhard A.; Partridge, Mike; Hesse, Bernd M.; Bortfeld, Thomas

    2001-07-01

    Currently, one major research field in radiotheraphy is focused on patient setup verification and on detection of organ motion and deformation. A phantom study is performed to demonstrate the feasibility of image guidance in radiotherapy. Patient setup errors are simulated with a humanoid phantom, which is imaged using a linear accelerator and a therapy simulator to address megavoltage and kilovoltage (kV) computed tomography (CT), respectively. Projections are recorded by a flat panel imager. The various data sets of the humanoid phantom are compared by mutual information matching. The CT investigations show that the spatial resolution is better than 1.6 mm for high contrast objects. The uncertainties remaining after mutual information matching are found to be less than 1 mm for translations and 1 degree(s) for rotations. The phantom study indicates that the detection of patient setup errors as well as organ motion or deformation is possible with a high accuracy, especially if a kV X-ray tube could be attached to the linear accelerator. The presented method allows sophisticated quality assurance of beam delivery in each fraction and may even enable the use of new concepts of adaptive radiotherapy.

  4. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors.

    PubMed

    Rao, Wei; Deng, Zhong-Shan; Liu, Jing

    2010-01-01

    Therapeutic hyperthermia is a procedure that involves heating tissues to a higher temperature level, typically ranging from 41 degrees C to 45 degrees C. Its combination with radiotherapy and/or chemotherapy has been performed for many years, with remarkable success in treating advanced and recurrent cancers. The current hyperthermia strategies generally include local, regional, and whole-body hyperthermia, which can be implemented by many heating methods, such as microwave, radiofrequency, laser, and ultrasound. There are several hyperthermic treatment modalities in conjunction with radiotherapy/chemotherapy. Numerous studies have attempted to explain the mechanisms of thermosensitization from radiation and chemotherapy; however, a generalized standard for determining an optimal hyperthermia modality combined with radiotherapy/chemotherapy has not been established, so more research is needed. Fortunately, phase II/III clinical trials have demonstrated that hyperthermia combination therapy is beneficial for local tumor control and survival in patients with high-risk tumors of different types. The aim of this article is to present a comprehensive review of the latest advances in tumor hyperthermia combined with radiotherapy and/ or chemotherapy. We specifically focus on synergistic cellular and molecular mechanisms, thermal dose, treatment sequence, monitoring and imaging, and clinical outcomes of the combination therapy. The role of nanoparticles in sensitization during radio-/chemotherapy is also evaluated. Finally, research challenges and future trends in the related areas are presented. PMID:21175406

  5. Langerhans cell histiocytosis with multiple spinal involvement.

    PubMed

    Jiang, Liang; Liu, Xiao Guang; Zhong, Wo Quan; Ma, Qing Jun; Wei, Feng; Yuan, Hui Shu; Dang, Geng Ting; Liu, Zhong Jun

    2011-11-01

    To stress the clinical and radiologic presentation and treatment outcome of Langerhans cell histiocytosis (LCH) with multiple spinal involvements. A total of 42 cases with spinal LCH were reviewed in our hospital and 5 had multifocal spinal lesions. Multiple spinal LCH has been reported in 50 cases in the literature. All cases including ours were analyzed concerning age, sex, clinical and radiologic presentation, therapy and outcome. Of our five cases, three had neurological symptom, four soft tissue involvement and three had posterior arch extension. Compiling data from the eight largest case series of the spinal LCH reveals that 27.2% multiple vertebrae lesions. In these 55 cases, there were 26 female and 29 male with the mean age of 7.4 years (range 0.2-37). A total of 182 vertebrae were involved including 28.0% in the cervical spine, 47.8% in thoracic and 24.2% in the lumbar spine. Extraspinal LCH lesion was documented in 54.2% cases, visceral involvement in 31.1% and vertebra plana in 50% cases. Paravertebral and epidural extension were not documented in most cases. Pathological diagnosis was achieved in 47 cases including 8 open spine biopsy. The treatment strategy varied depending on different hospitals. One patient died, two had recurrence and the others had no evidence of the disease with an average of 7.2 years (range 1-21) of follow-up. Asymptomatic spinal lesions could be simply observed with or without bracing and chemotherapy is justified for multiple lesions. Surgical decompression should be reserved for the uncommon cases in which neurologic compromise does not respond to radiotherapy or progresses too rapidly for radiotherapy. PMID:20496040

  6. Aneurysmal bone cyst of the sphenoid with orbital involvement.

    PubMed Central

    Hunter, J. V.; Yokoyama, C.; Moseley, I. F.; Wright, J. E.

    1990-01-01

    We present a case of aneurysmal bone cyst involving the roof of the orbit and sphenoid bone, with plain film, computed tomography, and magnetic resonance imaging findings. The natural history and treatment depend on the presence of associated abnormalities such as fibrous dysplasia or a giant cell tumour. In this case the lesion was solitary and was successfully removed, so that possible complications from radiotherapy were avoided. Images PMID:2202437

  7. Radiotherapy in the management of early breast cancer

    SciTech Connect

    Wang, Wei

    2013-03-15

    Radiotherapy is an indispensible part of the management of all stages of breast cancer. In this article, the common indications for radiotherapy in the management of early breast cancer (stages 0, I, and II) are reviewed, including whole-breast radiotherapy as part of breast-conserving treatment for early invasive breast cancer and pre-invasive disease of ductal carcinoma in situ, post-mastectomy radiotherapy, locoregional radiotherapy, and partial breast irradiation. Key clinical studies that underpin our current practice are discussed briefly.

  8. [Current situation and future prospects of radiotherapy for malignant gliomas].

    PubMed

    Terahara, Atsuro

    2013-10-01

    Prognosis of malignant gliomas remains poor, although adjuvant radiotherapy increases survival time. To improve treatment outcomes, high-precision radiotherapy techniques such as three-dimensional conformal radiotherapy, stereotactic irradiation, intensity modulated radiotherapy, and charged particle radiotherapy have been developed for dose distribution optimization and dose escalation. Improvements in clinical outcomes with these new treatment strategies have been reported; however, the efficacy of these treatment strategies has not yet been verified in randomized trials. Further development of radiation delivery techniques, including boron neutron capture therapy, and ways of achieving more adequate target volume delineation using modern multimodality imaging technology are currently being intensively investigated to further improve patient outcomes. PMID:24105051

  9. Radiotherapy Alone With Curative Intent in Patients With Stage I Extranodal Nasal-Type NK/T-Cell Lymphoma

    SciTech Connect

    Li Yexiong; Wang Hua; Jin Jing; Wang Weihu; Liu Qingfeng; Song Yongwen; Wang Zhaoyang; Qi Shunan; Wang Shulian; Liu Yueping; Liu Xinfan; Yu Zihao

    2012-04-01

    Purpose: This study aims to evaluate the outcome and pattern of failure in a large cohort of patients with Stage I NK/T-cell lymphoma of the upper aerodigestive tract treated with radiotherapy alone. Methods and Materials: The pathological diagnosis was confirmed using standard criteria. All patients were treated with high-dose extended-field radiotherapy alone. The median dose was 50 Gy. The primary tumor was located in the nasal cavity (n = 80), Waldeyer ring (n = 5), or oral cavity (n = 2). Results: The overall response to radiotherapy was achieved in 85 of 87 (97.7%) patients, with a complete response rate of 95.4% and a partial response rate of 2.3%. The 5-year overall survival, progression-free survival, and local control rates for all patients were 80%, 69%, and 93%, respectively. Twenty patients (23%) had disease progression or relapse. Of these, 15 patients (17%) developed systemic extranodal disseminations, whereas only 4 (5%) patients had local relapse and 4 (5%) patients had lymph node relapse. Conclusions: Our study suggests that high-dose extended-field radiotherapy alone is a curative therapy and shows favorable clinical outcome in patients with Stage I disease. With the high possibility of local control and primary failure of systemic dissemination, the integration of optimal radiotherapy with more effective systematic therapy is warranted to bring additional improvement to the outcome for these patients.

  10. Assessment and Minimization of Contralateral Breast Dose for Conventional and Intensity Modulated Breast Radiotherapy

    SciTech Connect

    Burmeister, Jay Alvarado, Nicole; Way, Sarah; McDermott, Patrick; Bossenberger, Todd; Jaenisch, Harriett; Patel, Rajiv; Washington, Tara

    2008-04-01

    Breast radiotherapy is associated with an increased risk of contralateral breast cancer (CBC) in women under age 45 at the time of treatment. This risk increases with increasing absorbed dose to the contralateral breast. The use of intensity modulated radiotherapy (IMRT) is expected to substantially reduce the dose to the contralateral breast by eliminating scattered radiation from physical beam modifiers. The absorbed dose to the contralateral breast was measured for 5 common radiotherapy techniques, including paired 15 deg. wedges, lateral 30 deg. wedge only, custom-designed physical compensators, aperture based (field-within-field) IMRT with segments chosen by the planner, and inverse planned IMRT with segments chosen by a leaf sequencing algorithm after dose volume histogram (DVH)-based fluence map optimization. Further reduction in contralateral breast dose through the use of lead shielding was also investigated. While shielding was observed to have the most profound impact on surface dose, the radiotherapy technique proved to be most important in determining internal dose. Paired wedges or compensators result in the highest contralateral breast doses (nearly 10% of the prescription dose on the medial surface), while use of IMRT or removal of the medial wedge results in significantly lower doses. Aperture-based IMRT results in the lowest internal doses, primarily due to the decrease in the number of monitor units required and the associated reduction in leakage dose. The use of aperture-based IMRT reduced the average dose to the contralateral breast by greater than 50% in comparison to wedges or compensators. Combined use of IMRT and 1/8-inch-thick lead shielding reduced the dose to the interior and surface of the contralateral breast by roughly 60% and 85%, respectively. This reduction may warrant the use of IMRT for younger patients who have a statistically significant risk of contralateral breast cancer associated with breast radiotherapy.

  11. Approximating convex Pareto surfaces in multiobjective radiotherapy planning

    SciTech Connect

    Craft, David L.; Halabi, Tarek F.; Shih, Helen A.; Bortfeld, Thomas R.

    2006-09-15

    Radiotherapy planning involves inherent tradeoffs: the primary mission, to treat the tumor with a high, uniform dose, is in conflict with normal tissue sparing. We seek to understand these tradeoffs on a case-to-case basis, by computing for each patient a database of Pareto optimal plans. A treatment plan is Pareto optimal if there does not exist another plan which is better in every measurable dimension. The set of all such plans is called the Pareto optimal surface. This article presents an algorithm for computing well distributed points on the (convex) Pareto optimal surface of a multiobjective programming problem. The algorithm is applied to intensity-modulated radiation therapy inverse planning problems, and results of a prostate case and a skull base case are presented, in three and four dimensions, investigating tradeoffs between tumor coverage and critical organ sparing.

  12. Targeted radiotherapy of bone malignancies.

    PubMed

    Jansen, David R; Krijger, Gerard C; Kolar, Zvonimir I; Zonnenberg, Bernard A; Zeevaart, Jan Rijn

    2010-12-01

    and (68)Ga. The current status in the development and application of internal radiotherapy for the palliative treatment of bone pain will be discussed, summarizing the progress made and challenges encountered in the process to realizing an effective drug candidate. PMID:21034411

  13. Hypofractionated Radiotherapy and Stereotactic Boost with Concurrent and Adjuvant Temozolamide for Glioblastoma in Good Performance Status Elderly Patients – Early Results of a Phase II Trial

    PubMed Central

    Floyd, Scott R.; Kasper, Ekkehard M.; Uhlmann, Erik J.; Fonkem, Ekokobe; Wong, Eric T.; Mahadevan, Anand

    2012-01-01

    Glioblastoma Multiforme (GBM) is an aggressive primary brain neoplasm with dismal prognosis. Based on successful phase III trials, 60 Gy involved-field radiotherapy in 30 fractions over 6 weeks [Standard radiation therapy (RT)] with concurrent and adjuvant temozolomide is currently the standard of care. In this disease, age and Karnofsky Performance Status (KPS) are the most important prognostic factors. For elderly patients, clinical trials comparing standard RT with radiotherapy abbreviated to 40 Gy in 15 fractions over 3 weeks demonstrated similar outcomes, indicating shortened radiotherapy may be an appropriate option for elderly patients. However, these trials did not include temozolomide chemotherapy, and included patients with poor KPS, possibly obscuring benefits of more aggressive treatment for some elderly patients. We conducted a prospective Phase II trial to examine the efficacy of a hypofractionated radiation course followed by a stereotactic boost with concurrent and adjuvant temozolomide chemotherapy in elderly patients with good performance status. In this study, patients 65 years and older with a KPS > 70 and histologically confirmed GBM received 40 Gy in 15 fractions with 3D conformal technique followed by a 1–3 fraction stereotactic boost to the enhancing tumor. All patients also received concurrent and adjuvant temozolomide. Patients were evaluated 1 month post-treatment and every 2 months thereafter. Between 2007 and 2010, 20 patients (9 males and 11 females) were enrolled in this study. The median age was 75.4 years (range 65–87 years). At a median follow-up of 11 months (range 7–32 months), 12 patients progressed and 5 are alive. The median progression free survival was 11 months and the median overall survival was 13 months. There was no additional toxicity. These results indicate that elderly patients with good KPS can achieve outcomes comparable to the current standard of care using an abbreviated

  14. Phase I/II Clinical Trial of Carbon Ion Radiotherapy for Malignant Gliomas: Combined X-Ray Radiotherapy, Chemotherapy, and Carbon Ion Radiotherapy

    SciTech Connect

    Mizoe, Jun-Etsu Tsujii, Hirohiko; Hasegawa, Azusa D.D.S.; Yanagi, Tsuyoshi; Takagi, Ryo D.D.S.; Kamada, Tadashi; Tsuji, Hiroshi; Takakura, Kintomo

    2007-10-01

    Purpose: To report the results of a Phase I/II clinical trial for patients with malignant gliomas, treated with combined X-ray radiotherapy (XRT), chemotherapy, and carbon ion radiotherapy (CRT). Methods and Materials: Between October 1994 and February 2002, 48 patients with histologically confirmed malignant gliomas (16 anaplastic astrocytoma (AA) and 32 glioblastoma multiforme (GBM) were enrolled in a Phase I/II clinical study. The treatment involved the application of 50 Gy/25 fractions/5 weeks of XRT, followed by CRT at 8 fractions/2 weeks. Nimustine hydrochloride (ACNU) were administered at a dose of 100 mg/m{sup 2} concurrently in weeks 1, 4, or 5 of XRT. The carbon ion dose was increased from 16.8 to 24.8 Gray equivalent (GyE) in 10% incremental steps (16.8, 18.4, 20.0, 22.4, and 24.8 GyE, respectively). Results: There was no Grade 3 or higher acute reaction in the brain. The late reactions included four cases of Grade 2 brain morbidity and four cases of Grade 2 brain reaction among 48 cases. The median survival time (MST) of AA patients was 35 months and that of GBM patients 17 months (p = 0.0035). The median progression-free survival and MST of GBM showed 4 and 7 months for the low-dose group, 7 and 19 months for the middle-dose group, and 14 and 26 months for the high-dose group. Conclusion: The results of combined therapy using XRT, ACNU chemotherapy, and CRT showed the potential efficacy of CRT for malignant gliomas in terms of the improved survival rate in those patients who received higher carbon doses.

  15. Second Cancers After Fractionated Radiotherapy: Stochastic Population Dynamics Effects

    NASA Technical Reports Server (NTRS)

    Sachs, Rainer K.; Shuryak, Igor; Brenner, David; Fakir, Hatim; Hahnfeldt, Philip

    2007-01-01

    When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique insights into human carcinogenesis, since the therapy involves administering well characterized doses of a well studied carcinogen, followed by long-term monitoring. In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent cell repopulation by proliferation can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/proliferation (IIP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic cell population dynamics approach. To analyze ifradiation-initiated pre-malignant clones become extinct before full repopulation can occur, we here give a stochastic version of this I I model. Combining Monte Carlo simulations with standard solutions for time-inhomogeneous birth-death equations, we show that repeated cycles of inactivation and repopulation, as occur during fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance >> mean, even when pre-malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: a) initiated, pre-malignant cells can have a growth advantage during repopulation, not just during the longer tumor latency period that follows; b) weekend

  16. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  17. Results of radiotherapy for Peyronie's disease

    SciTech Connect

    Niewald, Marcus . E-mail: ramnie@uniklinikum-saarland.de; Wenzlawowicz, Knut v.; Fleckenstein, Jochen; Wisser, Lothar; Derouet, Harry; Ruebe, Christian

    2006-01-01

    Purpose: To retrospectively review the results of radiotherapy for Peyronie's disease. Patients and Methods: In the time interval 1983-2000, 154 patients in our clinic were irradiated for Peyronie's disease. Of those, 101 had at least one complete follow-up data set and are the subject of this study. In the majority of patients, penis deviation was between 30 and 50{sup o}, there were one or two indurated foci with a diameter between 5 and 15 mm. Pain was recorded in 48/92 patients. Seventy-two of the 101 patients received radiotherapy with a total dose of 30 Gy, and 25 received 36 Gy in daily fractions of 2.0 Gy. The remaining patients received the following dosage: 34 Gy (1 patient), 38-40 Gy (3 patients). Mean duration of follow-up was 5 years. Results: The best results ever at any time during follow-up were an improvement of deviation in 47%, reduction of number of foci in 32%, reduction of size of foci in 49%, and less induration in 52%. Approximately 50% reported pain relief after radiotherapy. There were 28 patients with mild acute dermatitis and only 4 patients with mild urethritis. There were no long-term side effects. Conclusion: Our results compare well with those of other studies in the literature. In our patient cohort, radiotherapy was an effective therapy option with only very rare and mild side effects.

  18. Radiotherapy for breast cancer and erythrokeratodermia variabilis.

    PubMed

    Pernin, V; Kirova, Y; Campana, F

    2014-12-01

    We report the first case report indicating that locoregional radiotherapy provide acceptable early and late toxicities in patient with erythrokeratodermia variabilis after 2 years of follow-up. However, preclinical data showing radiation-induced tumor genesis in case of deficiency of some connexins point out the need of a careful surveillance of these patients. PMID:25306447

  19. The Role of Radiotherapy in Acromegaly.

    PubMed

    Hannon, Mark J; Barkan, Ariel L; Drake, William M

    2016-01-01

    Radiotherapy has, historically, played a central role in the management of acromegaly, and the last 30 years have seen substantial improvements in the technology used in the delivery of radiation therapy. More recently, the introduction of highly targeted radiotherapy, or 'radiosurgery', has further increased the therapeutic options available in the management of secretory pituitary tumors. Despite these developments, improvements in primary surgical outcomes, an increase in the range and effectiveness of medical therapy options, and long-term safety concerns have combined to dictate that, although still deployed in selected cases, the use of radiotherapy in the management of acromegaly has declined steadily over the past 2 decades. In this article, we review some of the main studies that have documented the efficacy of pituitary radiotherapy on growth hormone hypersecretion and summarize the data around its potential deleterious effects, including hypopituitarism, cranial nerve damage, and the development of radiation-related intracerebral tumors. We also give practical recommendations to guide its future use in patients with acromegaly, generally, as a third-line intervention after neurosurgical intervention in combination with various medical therapy options. PMID:26088716

  20. Pharyngo-cutaneous fistulae after laryngectomy. Influence of previous radiotherapy and prophylactic metronidazole

    SciTech Connect

    Johansen, L.V.; Overgaard, J.; Elbrond, O.

    1988-02-15

    The development of a pharyngocutaneous fistulae is a major complication after total laryngectomy. In Denmark radiotherapy is the primary treatment for all laryngeal carcinomas. Based on the experience with conventional daily irradiation, a split-course radiation schedule was introduced in 1978. The charts of 106 consecutive patients laryngectomized for recurrence in the years 1975 to 1984 were examined. Thirty-four patients developed a fistula. An evaluation of the different radiotherapy schedules used during this period allowed a dose-response curve to be constructed. It showed a pronounced increase of fistulae with high doses of radiotherapy. Split-course radiotherapy caused a rise in late complications and did not improve tumor control. Large field sizes increased the number of fistulae. High-dose fractions showed a surprisingly high incidence of late complications. Prophylactic metronidazole (introduced in 1980) resulted in a highly significant decrease in the frequency of postoperative fistulae. Patients in whom fistula formed were hospitalized for an average of 54 days, patients without, for 22 days.

  1. Effect of radiotherapy on the levels of secretory immunoglobulin A against indigenous and virulent streptococci.

    PubMed

    Himi, T; Kukuminato, Y; Kita, H; Yoshioka, I; Kataura, A

    1997-11-01

    It is well known that the frequency of upper respiratory infection is clinically increased after radiotherapy of the head and neck region. This study found higher antibacterial secretory immunoglobulin A (S-IgA) activity against three indigenous streptococci (Streptococcus mitis, S. salivarius, and S. sanguis I) and S. pneumoniae in patients who had undergone radiation therapy of the head and neck region than in control subjects. This showed no relation to the extent of the radiation field. Compared with before radiotherapy, the S-IgA titer against S. pneumoniae and its ratio to the activities against the indigenous streptococci were significantly higher in patients with fully irradiated major salivary glands. These results indicated that the radiotherapy promoted the antigen-specific S-IgA production of virulent streptococci in most patients with head and neck cancer, even more than 6 months after radiotherapy. The resulting altered balance in the S-IgA system of normal indigenous streptococci may also impair the ability to maintain the stable bacterial interference between normal indigenous and virulent streptococci in the oropharyngeal cavity. PMID:9374163

  2. Hypofractionated radiotherapy for medically inoperable stage I non‐small cell lung cancer

    PubMed Central

    Jiang, Wei; Wang, Jian‐Yang; Wang, Jing‐Bo; Liang, Jun; Hui, Zhou‐Guang; Wang, Xiao‐Zhen; Zhou, Zong‐Mei

    2015-01-01

    Abstract Background To investigate the clinical outcomes and toxicity of hypofractionated radiotherapy for medically inoperable stage I non‐small cell lung cancer (NSCLC). Methods Patients treated with radiotherapy at a dose of 4–6 Gy per fraction using fixed‐field intensity modulated radiotherapy (IMRT) or volumetric‐modulated arc therapy (VMAT) at our hospital from June 2005 to December 2013 were analyzed. The total prescription doses ranged from 50–78 Gy with 4–6 Gy per fraction. The median follow‐up period was 24 months. Results A total of 65 patients with stage I NSCLC were analyzed, including 43 primary NSCLC patients and 22 patients with recurrent or second primary NSCLC. An objective response (complete or partial response) was achieved at six months in 84.6% of patients. The three‐year local control rate was 90.8%. Kaplan–Meier estimates of local failure‐free, progression‐free, overall, and cancer‐specific survival rates at three years were 90.3%, 64.3%, 68.9%, and 88.8%, respectively. The rate of symptomatic radiation pneumonitis was 16.9%, and no grade 4–5 toxicity was observed. Conclusion Favorable local control and outcome was achieved with hypofractionated radiotherapy in patients with inoperable stage I NSCLC with acceptable toxicity. The most common schedule of 6 Gy × 12 fractions may be a promising regimen, and a prospective study is in process. PMID:27148414

  3. Three-Dimensional Analysis of Recurrence Patterns in Rectal Cancer: The Cranial Border in Hypofractionated Preoperative Radiotherapy Can Be Lowered

    SciTech Connect

    Nijkamp, Jasper; Kusters, Miranda; Beets-Tan, Regina G.H.; Martijn, Hendrik; Beets, Geerard L.; Velde, Cornelis J.H. van de; Marijnen, Corrie A.M.

    2011-05-01

    Purpose: The aim of this study was to determine whether and where the radiotherapy (RT) clinical target volume (CTV) could be reduced in short-course preoperative treatment of rectal cancer patients. Methods and Materials: Patients treated in the Dutch total mesorectal excision trial, with a local recurrence were analyzed. For 94 (25 who underwent radiation therapy 69 who did not) of 114 patients with a local recurrence, the location of the recurrence was placed in a three-dimensionalthree (3D) model. The data in the 3D model were correlated to the clinical trial data to distinguish a group of patients eligible for CTV reduction. Effects of CTV reduction on dose to the small bowel was tested retrospectively in a dataset of 8 patients with three-field conformal plans and intensity-modulated RT (IMRT). Results: The use of preoperative RT mainly reduces anastomotic, lateral, and perineal recurrences. In patients without primary nodal involvement, no recurrences were found cranially of the S2-S3 interspace, irrespective of the delivery of RT. In patients without primary nodal involvement and a negative circumferential resection margin (CRM), only one recurrence was found cranial to the S2-S3 interspace. With a cranially reduced CTV to the S2-S3 interspace, over 60% reduction in absolute small bowel exposure at dose levels from 15 to 35 Gy could be achieved with three-field conventional RT, increasing to 80% when IMRT is also added. Conclusions: The cranial border of the CTV can safely be lowered for patients without expected nodal or CRM involvement, yielding a significant reduction of dose to the small bowel. Therefore, a significant reduction of acute and late toxicity can be expected.

  4. MO-B-18C-01: Proton Therapy II: Proton Stereotactic Radiotherapy

    SciTech Connect

    Winey, B; Daartz, J

    2014-06-15

    Proton stereotactic radiotherapy shares fundamental principles with general proton therapy physics, specifically range uncertainties and broad beam measurement techniques. Significant differences emerge when treating with smaller field sizes that suffer lateral disequilibrium and when fractions are reduced. This session will explore the history and scope of proton stereotactic radiotherapy in clinical practice. Uncertainties and treatment planning methods specific to stereotactic treatments will be discussed. The session will include an overview of the physical properties of small proton fields and resulting needs for accurate measurements and modeling of dose distributions for radiosurgery treatment planning. Learning Objectives: Understand the clinical rationale for proton radiosurgery. Understand the similarities and differences from general proton therapy. Understand the similarities and differences from photon stereotactic radiosurgery. Understand the basic physics and clinical physics methods for measuring and commissioning a radiosurgery program.

  5. Pelvic Nodal Radiotherapy in Patients With Unfavorable Intermediate and High-Risk Prostate Cancer: Evidence, Rationale, and Future Directions

    SciTech Connect

    Morikawa, Lisa K.; Roach, Mack

    2011-05-01

    Over the past 15 years, there have been three major advances in the use of external beam radiotherapy in the management of men with clinically localized prostate made. They include: (1) image guided (IG) three-dimensional conformal/intensity modulated radiotherapy; (2) radiation dose escalation; and (3) androgen deprivation therapy. To date only the last of these three advances have been shown to improve overall survival. The presence of occult pelvic nodal involvement could explain the failure of increased conformality and dose escalation to prolong survival, because the men who appear to be at the greatest risk of death from clinically localized prostate cancer are those who are likely to have lymph node metastases. This review discusses the evidence for prophylactic pelvic nodal radiotherapy, including the key trials and controversies surrounding this issue.

  6. Diffuse Osteoradionecrosis of Temporal Bone as a Late Complication of Adjuvant Radiotherapy to Parotid Bed: A Case Report

    PubMed Central

    Abraham, Sisha Liz; Iype, Elizabeth Mathew; Jagan, Vijay

    2014-01-01

    Localized osteoradionecrosis of bony external auditory canal has been described as a late complication of external beam radiotherapy which is delivered to parotid bed after surgical resection of parotid malignancies. Diffuse osteoradionecrosis of temporal bone is rarely seen in such a setting and it is usually caused by resection of part of the bone for surgical clearance, followed by post-operative radiotherapy.This condition warrants aggressive treatment, in order to avoid potentially life threatening intracranial complications. In this report, we are presenting an uncommon case of extensive osteoradionecrosis which involved the entire temporal bone, in a patient who was treated for mucoepidermoid carcinoma of parotid twelve years ago, with total conservative parotidectomy and adjuvant radiotherapy. PMID:24995229

  7. Correlation Between Acute and Late Toxicity in 973 Prostate Cancer Patients Treated With Three-Dimensional Conformal External Beam Radiotherapy

    SciTech Connect

    Jereczek-Fossa, Barbara A.; Zerini, Dario; Fodor, Cristiana

    2010-09-01

    Purpose: To analyze the correlation between acute and late injury in 973 prostate cancer patients treated with radiotherapy and to evaluate the effect of patient-, tumor-, and treatment-related variables on toxicity. Methods and Materials: Of the 973 patients, 542 and 431 received definitive or postprostatectomy radiotherapy, respectively. Three-dimensional conformal radiotherapy included a six-field technique and two-dynamic arc therapy. Toxicity was classified according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. The correlation between acute and late toxicity (incidence and severity) was assessed. Results: Multivariate analysis showed that age {<=}65 years (p = .06) and use of the three-dimensional, six-field technique (p <.0001) correlated significantly with greater acute rectal toxicity. The three-dimensional, six-field technique (p = .0002), dose >70 Gy (p = .014), and radiotherapy duration (p = .05) correlated with greater acute urinary toxicity. Acute rectal toxicity (p <.0001) was the only factor that correlated with late rectal injury on multivariate analysis. Late urinary toxicity correlated with acute urinary events (p <.0001) and was inversely related to the use of salvage radiotherapy (p = .018). A highly significant correlation was found between the incidence of acute and late events for both rectal (p <.001) and urinary (p <.001) reactions. The severity of acute toxicity (Grade 2 or greater) was predictive for the severity of late toxicity for both rectal and urinary events (p <.001). Conclusion: The results of our study have shown that the risk of acute reactions depends on both patient-related (age) and treatment-related (dose, technique) factors. Acute toxicity was an independent significant predictor of late toxicity. These findings might help to predict and prevent late radiotherapy-induced complications.

  8. Stereotactic radiotherapy of meningiomas compressing optical pathways

    SciTech Connect

    Hamm, Klaus-Detlef . E-mail: khamm@erfurt.helios-kliniken.de; Henzel, Martin; Gross, Markus W.; Surber, Gunnar; Kleinert, Gabriele; Engenhart-Cabillic, Rita

    2006-11-15

    Purpose: Microsurgical resection is usually the treatment of choice for meningiomas, especially for those that compress the optical pathways. However, in many cases of skull-base meningiomas a high risk of neurological deficits and recurrences exist in cases where the complete tumor removal was not possible. In such cases (fractionated) stereotactic radiotherapy (SRT) can offer an alternative treatment option. We evaluated the local control rate, symptomatology, and toxicity. Patients and Methods: Between 1997 and 2003, 183 patients with skull-base meningiomas were treated with SRT, among them were 65 patients with meningiomas that compressed optical pathways (64 benign, 1 atypical). Of these 65 cases, 20 were treated with SRT only, 27 were subtotally resected before SRT, and 18 underwent multiple tumor resections before SRT. We investigated the results until 2005, with a median follow-up of 45 months (range, 22-83 months). The tumor volume (TV = gross tumor volume) ranged from 0.61 to 90.20 cc (mean, 18.9 cc). Because of the risk of new visual disturbances, the dose per fraction was either 2 or 1.8 Gy for all patients, to a total dose of 50 to 60 Gy. Results: The overall survival and the progression-free survival rates for 5 years were assessed to 100% in this patient group. To date, no progression for these meningiomas have been observed. Quantitatively, tumor shrinkage of more than 20%, or more than 2 mm in diameter, was proved in 35 of the 65 cases after SRT. In 29 of the 65 patients, at least 1 of the symptoms improved. On application of the Common Toxicity Criteria (CTC), acute toxicity (Grade 3) was seen in 1 case (worsening of conjunctivitis). Another 2 patients developed late toxicity by LENT-SOMA score, 1 x Grade 1 and 1 x Grade 3 (field of vision loss). Conclusion: As a low-risk and effective treatment option for tumor control, SRT with 1.8 to 2.0 Gy per fraction can also be recommended in case of meningiomas that compress optical pathways. An

  9. MCNP simulation of a Theratron 780 radiotherapy unit.

    PubMed

    Miró, R; Soler, J; Gallardo, S; Campayo, J M; Díez, S; Verdú, G

    2005-01-01

    A Theratron 780 (MDS Nordion) 60Co radiotherapy unit has been simulated with the Monte Carlo code MCNP. The unit has been realistically modelled: the cylindrical source capsule and its housing, the rectangular collimator system, both the primary and secondary jaws and the air gaps between the components. Different collimator openings, ranging from 5 x 5 cm2 to 20 x 20 cm2 (narrow and broad beams) at a source-surface distance equal to 80 cm have been used during the study. In the present work, we have calculated spectra as a function of field size. A study of the variation of the electron contamination of the 60Co beam has also been performed. PMID:16604598

  10. Can immunostimulatory agents enhance the abscopal effect of radiotherapy?

    PubMed

    Levy, Antonin; Chargari, Cyrus; Marabelle, Aurelien; Perfettini, Jean-Luc; Magné, Nicolas; Deutsch, Eric

    2016-07-01

    Ionising radiation (IR) may harm cancer cells through a rare indirect out-of-field phenomenon described as the abscopal effect. Increasing evidence demonstrates that radiotherapy could be capable of generating tumour-specific immune responses. On the other hand, effects of IR also include inhibitory immune signals on the tumour microenvironment. Following these observations, and in the context of newly available immunostimulatory agents in metastatic cancers (anti-cytotoxic T lymphocyte-associated antigen 4 and programmed cell death protein-1 or -ligand 1 [PD1 or PDL-1]), there is a remarkable potential for synergistic combinations of IR with such agents that act through the reactivation of immune surveillance. Here, we present and discuss the pre-clinical and clinical rationale supporting the enhancement of the abscopal effect of IR on the blockade of immune checkpoints and discuss the evolving potential of immunoradiotherapy. PMID:27200491

  11. Comparison of EBT and EBT3 RadioChromic Film Usage in Parotid Cancer Radiotherapy

    PubMed Central

    Bahreyni Toossi, M.T.; Khorshidi, F.; Ghorbani, M.; Mohamadian, N.; Davenport, D.

    2016-01-01

    Background EBT and EBT3 radioChromic films have been used in radiotherapy dosimetry for years. Objective The aim of the current study is to compare EBT and EBT3 radioChromic films in dosimetry of radiotherapy fields for treatment of parotid cancer. Methods Calibrations of EBT and EBT3 films were performed with identical setups using a 6 MV photon beam of a Siemens Primus linac. Skin dose was measured at different points in the right anterior oblique (RAO) and right posterior oblique (RPO) fields by EBT and EBT3 films on a RANDO phantom. Results While dosimetry was performed with the same conditions for the two film types for calibration and in phantom in parotid cancer radiotherapy, the measured net optical density (NOD) in EBT film was found to be higher than that from EBT3 film. The minimum difference between these two films under calibration conditions was about 2.9% (for 0.2 Gy) with a maximum difference of 35.5% (for 0.5 Gy). In the therapeutic fields of parotid cancer radiotherapy at different points, the measured dose from EBT film was higher than the EBT3 film. In these fields the minimum and maximum measured dose differences were 16.0% and 25.5%, respectively. Conclusion EBT film demonstrates higher NOD than EBT3 film. This effect may be related to the higher sensitivity of EBT film over EBT3 film. However, the obtained dose differences between these two films in low dose range can be due to the differences in fitting functions applied following the calibration process. PMID:27026949

  12. Phosphatidylinositol 3-kinase CB association with preoperative radiotherapy response in rectal adenocarcinoma

    PubMed Central

    Yu, Wei-Dong; Peng, Yi-Fan; Pan, Hong-Da; Wang, Lin; Li, Kun; Gu, Jin

    2014-01-01

    AIM: To examine the correlation of phosphatidylinositol 3-kinase (PIK3) CB expression with preoperative radiotherapy response in patients with stage II/III rectal adenocarcinoma. METHODS: PIK3CB immunoexpression was retrospectively assessed in pretreatment biopsies from 208 patients with clinical stage II/III rectal adenocarcinoma, who underwent radical surgery after 30-Gy/10-fraction preoperative radiotherapy. The relation between PIK3CB expression and tumor regression grade, clinicopathological characteristics, and survival time was statistically analyzed. Western blotting and in vitro clonogenic formation assay were used to detect PIK3CB expression in four colorectal cancer cell lines (HCT116, HT29, LoVo, and LS174T) treated with 6-Gy ionizing radiation. Pharmacological assays were used to evaluate the therapeutic relevance of TGX-221 (a PIK3CB-specific inhibitor) in the four colorectal cancer cell lines. RESULTS: Immunohistochemical staining indicated that PIK3CB was more abundant in rectal adenocarcinoma tissues with poor response to preoperative radiotherapy. High expression of PIK3CB was closely correlated with tumor height (P < 0.05), ypT stage (P < 0.05), and high-degree tumor regression grade (P < 0.001). High expression of PIK3CB was a potential prognostic factor for local recurrence-free survival (P < 0.05) and metastasis-free survival (P < 0.05). High expression of PIK3CB was also associated with poor therapeutic response and adverse outcomes in rectal adenocarcinoma patients treated with 30-Gy/10-fraction preoperative radiotherapy. In vitro, PIK3CB expression was upregulated in all four colorectal cancer cell lines concurrently treated with 6-Gy ionizing radiation, and the PIK3CB-specific inhibitor TGX-221 effectively inhibited the clonogenic formation of these four colorectal cancer cell lines. CONCLUSION: PIK3CB is critically involved in response to preoperative radiotherapy and may serve as a novel target for therapeutic intervention. PMID:25473181

  13. Systemic Lupus Erythematosus, Radiotherapy, and the Risk of Acute and Chronic Toxicity: The Mayo Clinic Experience

    SciTech Connect

    Pinn, Melva E.; Gold, Douglas G. M.; Petersen, Ivy A.; Osborn, Thomas G.; Brown, Paul D.; Miller, Robert C.

    2008-06-01

    Purpose: To determine the acute and chronic toxic effects of radiotherapy in patients with systemic lupus erythematosus (SLE). Methods and Materials: Medical records of 21 consecutive patients with SLE, who had received 34 courses of external beam radiotherapy and one low-dose-rate prostate implant, were retrospectively reviewed. Patients with discoid lupus erythematosus were excluded. Results: Median survival was 2.3 years and median follow-up 5.6 years. Eight (42%) of 19 patients evaluable for acute toxicity during radiotherapy experienced acute toxicity of Grade 1 or greater, and 4 (21%) had acute toxicity of Grade 3 or greater. The 5- and 10-year incidence of chronic toxicity of Grade 1 or greater was 45% (95% confidence interval [CI], 22-72%) and 56% (95% CI, 28-81%), respectively. The 5- and 10-year incidence of chronic toxicity of Grade 3 or greater was 28% (95% CI, 18-60%) and 40% (95% CI, 16-72%), respectively. Univariate analysis showed that chronic toxicity of Grade 1 or greater correlated with SLE renal involvement (p < 0.006) and possibly with the presence of five or more American Rheumatism Association criteria (p < 0.053). Chronic toxicity of Grade 3 or greater correlated with an absence of photosensitivity (p < 0.02), absence of arthritis (p < 0.03), and presence of a malar rash (p < 0.04). Conclusions: The risk of acute and chronic toxicity in patients with SLE who received radiotherapy was moderate but was not prohibitive of the use of radiotherapy. Patients with more advanced SLE may be at increased risk for chronic toxicity.

  14. Radiotherapy infrastructure and human resources in Europe - present status and its implications for 2020.

    PubMed

    Datta, Niloy Ranjan; Samiei, Massoud; Bodis, Stephan

    2014-10-01

    Radiotherapy (RT) is required for nearly half of the newly diagnosed cancer patients. To optimise the quality and availability of RT, guidelines have been proposed by European Society for Radiotherapy and Oncology-QUAntification of Radiation Therapy Infrastructure And Staffing Needs (ESTRO-QUARTS) and the International Atomic Energy Agency (IAEA). This study evaluates the present status of RT capacity in Europe and the projected needs by 2020 as per these recommendations. Thirty-nine of the 53 countries, listed in Europe by the UN Statistical Division, whose cancer incidences, teletherapy and human resources were available in the Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN), International Agency for Research on Cancer (IARC) and DIrectory of RAdiotherapy Centres (DIRAC) (IAEA) databases were evaluated. A total of 3550 teletherapy units (TRT), 7017 radiation oncologists (RO), 3685 medical physicists (MP) and 12,788 radiotherapy technologists (RTT) are presently available for the 3.44 million new cancer cases reported annually in these countries. The present infrastructure and human resources in RT are estimated to provide RT access to 74.3% of the patients requiring RT. The current capacity in TRT, RO, MP and RTT when compared with recommended guidelines has a deficit of 25.6%, 18.3%, 22.7% and 10.6%, respectively. Thus, to respond to requirements by 2020, the existing capacity needs to be augmented by an additional 1698 TRTs, 2429 ROs, 1563 MPs and 2956 RTTs. With an imminent rise in cancer incidence, multifaceted strategic planning at national and international levels within a coordinated comprehensive cancer control programme is highly desirable to give adequate access to all patients who require radiotherapy across Europe. Specific steps to address this issue at national and continental levels involving all major stakeholders are proposed. PMID:25085229

  15. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  16. Limited-field radiation for bifocal germinoma

    SciTech Connect

    Lafay-Cousin, Lucie . E-mail: lucie.lafay-cousin@sickkids.ca; Millar, Barbara-Ann; Mabbott, Donald; Spiegler, Brenda; Drake, Jim; Bartels, Ute; Huang, Annie; Bouffet, Eric

    2006-06-01

    Purpose: To report the incidence, characteristics, treatment, and outcomes of bifocal germinomas treated with chemotherapy followed by focal radiation. Methods and Materials: This was a retrospective review. Inclusion criteria included radiologic diagnosis of bifocal germinoma involving the pineal and neurohypophyseal region, no evidence of dissemination on spinal MRI, negative results from cerebrospinal fluid cytologic evaluation, and negative tumor markers. Results: Between 1995 and 2004, 6 patients (5 male, 1 female; median age, 12.8 years) fulfilled the inclusion criteria. All had symptoms of diabetes insipidus at presentation. On MRI, 4 patients had a pineal and suprasellar mass, and 2 had a pineal mass associated with abnormal neurohypophyseal enhancement. All patients received chemotherapy followed by limited-field radiation and achieved complete remission after chemotherapy. The radiation field involved the whole ventricular system (range, 2,400-4,000 cGy) with or without a boost to the primary lesions. All patients remain in complete remission at a median follow-up of 48.1 months (range, 9-73.4 months). Conclusions: This experience suggests that bifocal germinoma can be considered a locoregional rather than a metastatic disease. Chemotherapy and focal radiotherapy might be sufficient to provide excellent outcomes. Staging refinement with new diagnostic tools will likely increase the incidence of the entity.

  17. Consensus statement on palliative lung radiotherapy: third international consensus workshop on palliative radiotherapy and symptom control.

    PubMed

    Rodrigues, George; Macbeth, Fergus; Burmeister, Bryan; Kelly, Karie-Lynn; Bezjak, Andrea; Langer, Corey; Hahn, Carol; Movsas, Benjamin

    2012-01-01

    The purpose of this work is to disseminate a consensus statement on palliative radiotherapy (RT) of lung cancer created in conjunction with the Third International Lung Cancer Consensus Workshop. The palliative lung RT workshop committee agreed on 5 questions relating to (1) patient selection, (2) thoracic external-beam radiation therapy (XRT) fractionation, (3) endobronchial brachytherapy (EBB), (4) concurrent chemotherapy (CC), and (5) palliative endpoint definitions. A PubMed search for primary/cross-referenced practice guidelines, consensus statements, meta-analyses, and/or systematic reviews was conducted. Final consensus statements were created after review and discussion of the available evidence. The following summary statements reflect the consensus of the international working group. 1. Key factors involved in the decision to deliver palliative RT include performance status, tumor stage, pulmonary function, XRT volume, symptomatology, weight loss, and patient preference. 2. Palliative thoracic XRT is generally indicated for patients with stage IV disease with current/impending symptoms and for patients with stage III disease treated for palliative intent. 3. There is no evidence to routinely recommend EBB alone or in conjunction with other palliative maneuvers in the initial palliative management of endobronchial obstruction resulting from lung cancer. 4. There is currently no evidence to routinely recommend CC with palliative-intent RT. 5. Standard assessment of symptoms and health-related quality of life (QOL) using validated questionnaires should be carried out in palliative RT lung cancer trials. Despite an expanding literature, continued prospective randomized investigations to better define the role of XRT, EBB, and CC in the context of thoracic palliation of patients with lung cancer is needed. PMID:21729656

  18. Tally and geometry definition influence on the computing time in radiotherapy treatment planning with MCNP Monte Carlo code.

    PubMed

    Juste, B; Miro, R; Gallardo, S; Santos, A; Verdu, G

    2006-01-01

    The present work has simulated the photon and electron transport in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle), version 5. In order to become computationally more efficient in view of taking part in the practical field of radiotherapy treatment planning, this work is focused mainly on the analysis of dose results and on the required computing time of different tallies applied in the model to speed up calculations. PMID:17946330

  19. Intensity-modulated radiotherapy for neoadjuvant treatment of gastric cancer

    SciTech Connect

    Knab, Brian; Rash, Carla; Farrey, Karl; Jani, Ashesh B. . E-mail: jani@rover.uchicago.edu

    2006-01-01

    Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range (<10 Gy) in comparison to the AP/PA plan; however, the IMRT plan irradiated a smaller liver volume within the higher dose region (>10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits

  20. Evidence-based estimates of the demand for radiotherapy.

    PubMed

    Delaney, G P; Barton, M B

    2015-02-01

    There are different methods that may be used to estimate the future demand for radiotherapy services in a population ranging from expert opinion through to complex modelling techniques. This manuscript describes the use of evidence-based treatment guidelines to determine indications for radiotherapy. It also uses epidemiological data to estimate the proportion of the population who have attributes that suggest a benefit from radiotherapy in order to calculate the overall proportion of a population of new cases of cancer who appropriately could be recommended to undergo radiotherapy. Evidence-based methods are transparent and adaptable to different populations but require extensive information about the indications for radiotherapy and the proportion of cancer cases with those indications in the population. In 2003 this method produced an estimate that 52.4% of patients with a registered cancer-type had an indication for radiotherapy. The model was updated in 2012 because of changes in cancer incidence, stage distributions and indications for radiotherapy. The new estimate of the optimal radiotherapy utilisation rate was 48.3%. The decrease was due to changes in the relative frequency of cancer types and some changes in indications for radiotherapy. Actual rates of radiotherapy utilisation in most populations still fall well below this benchmark. PMID:25455408

  1. Hypothalamic, pituitary and thyroid dysfunction after radiotherapy to the head and neck

    SciTech Connect

    Samaan, N.A.; Vieto, R.; Schultz, P.N.; Maor, M.; Meoz, R.T.; Sampiere, V.A.; Cangir, A.; Ried, H.L.; Jesse, R.H. Jr.

    1982-11-01

    One hundred-ten patients who had nasopharyngeal cancer and paranasal sinus tumors and were free of the primary disease were studied one to 26 years following radiotherapy. There were 70 males and 40 females ranging in age from 4 to 75 years, with a mean age of 36.5 years. During therapy both the hypothalamus and the anterior pituitary gland were in the field of irradiation. The radiation dose to the hypothalamus and the anterior pituitary gland was estimated to be 400 to 7500 rad with a median dose of 5618 rad to the anterior pituitary gland and a median dose of 5000 rad to the hypothalamus. We found evidence of endocrine deficiencies in 91 of the 110 patients studied. Seventy-six patients showed evidence of one or more hypothalamic lesions and 43 patients showed evidence of primary pituitary deficiency. Forty of the 66 patients who received radiotherapy to the neck for treatment or prevention of lymph node metastasis showed evidence of primary hypothyroidism. The range of the dose to the thyroid area was 3000 to 8800 rad with a median of 5000 rad. One young adult woman who developed galactorrhea and amenorrhea 2 years following radiotherapy showed a high serum prolactin level, but had normal anterior pituitary function and sella turcica. She regained her menses and had a normal pregnancy and delivery following bromocriptine therapy. These results indicate that endocrine deficiencies after radiotherapy for tumors of the head and neck are common and should be detected early and treated. Long-term follow-up of these patients is indicated since complications may appear after the completion of radiotherapy.

  2. Conservative surgery followed by radical radiotherapy in the management of stage I carcinoma of the breast

    SciTech Connect

    Baeza, M.R.; Arraztoa, J.; Sole, J.; Rodriguez, R.

    1982-10-01

    Since October 1976, the treatment policy in our Radiotherapy Center for Stage I carcinoma of the breast has been excision of the tumor mass, when it was cosmetically suitable, followed by irradiation to the breast and peripheral lymphatics. Eighty-three patients were admitted between October 1976 and March 1980. They underwent local excision of the tumor and then received 5000 rad in 5 weeks to the breast, supraclavicular, axillary and internal mammary chain lymph nodes. Each field was treated every day. A boost was then given to the scar, bringing the dose up to 6500 rad, calculated at maximum tumor depth, depending upon the size of the tumor prior to surgery. Cosmetic results were quite good, and the local control rate at 54 months is 98%. The survival with no evidence of disease (NED) at 54 months (acturarial) is 83%. There have been 10 failures: 8 distant, 1 local (in axilla, controlled by surgery, actually NED), and 1 local and distant (scar and brain). Both failures were found with 12 months after treatment, and 8/10 of the failures within 24 months. Twenty-one out of 83 patients have had complications (25.3%); of these, 28.8% were surgical and the remainder resulted from radiotherapy after surgery, either from radiotherapy alone or from combination of treatments. Of the total of 21 complications 18 were mild and 3 were serious. Of those 3 serious complications (3.6%), 2 were a result of radiotherapy, and one because an ill-advised axillary dissection prior to radiotherapy gave a negative axilla and a serious arm edema and painful shoulder. This was the worst complication in the total of 83 patients. These results compare favorably with the results achieved in the same Hospital with radical surgery as far as local tumor control and survival with no evidence of disease (NED) is concerned.

  3. Impact of Incidental Irradiation on Clinically Uninvolved Nodal Regions in Patients With Advanced Non-Small-Cell Lung Cancer Treated With Involved-Field Radiation Therapy: Does Incidental Irradiation Contribute to the Low Incidence of Elective Nodal Failure?

    SciTech Connect

    Kimura, Tomoki; Togami, Taro; Nishiyama, Yoshihiro; Ohkawa, Motoomi; Takashima, Hitoshi

    2010-06-01

    Purpose: To evaluate the incidental irradiation dose to elective nodal regions in the treatment of advanced non-small-cell lung cancer with involved-field radiation therapy (IF-RT) and the pattern of elective nodal failure (ENF). Methods and Materials: Fifty patients with advanced non-small-cell lung cancer, who received IF-RT at Kagawa University were enrolled. To evaluate the dose of incidental irradiation, we delineated nodal regions with a Japanese map and the American Thoracic Society map (levels 1-11) in each patient retrospectively and calculated the dose parameters such as mean dose, D95, and V95 (40 Gy as the prescribed dose of elective nodal irradiation). Results: Using the Japanese map, the median mean dose was more than 40 Gy in most of the nodal regions, except at levels 1, 3, and 7. In particular, each dosimetric parameter of level 1 was significantly lower than those at other levels, and each dosimetric parameter of levels 10 to 11 ipsilateral (11I) was significantly higher than those in other nodal regions. Using the American Thoracic Society map, basically, the results were similar to those of the Japanese map. ENF was observed in 4 patients (8%), five nodal regions, and no mean dose to the nodal region exceeded 40 Gy. On the Japanese map, each parameter of these five nodal region was significantly lower than those of the other nodal regions. Conclusions: These results show that a high dose of incidental irradiation may contribute to the low incidence of ENF in patients who have received IF-RT.

  4. Final Results of a Prospective Study Comparing the Local Control of Short-Course and Long-Course Radiotherapy for Metastatic Spinal Cord Compression

    SciTech Connect

    Rades, Dirk; Lange, Marisa; Veninga, Theo; Stalpers, Lukas J.A.; Bajrovic, Amira; Adamietz, Irenaeus A.; Rudat, Volker; Schild, Steven E.

    2011-02-01

    Purpose: Many patients with metastatic spinal cord compression (MSCC) live long enough to develop a recurrence in the irradiated spinal area. This is the first prospective study that has compared local control of different radiotherapy schedules for MSCC. Methods and Materials: A total of 265 patients treated with radiotherapy alone were included in this prospective nonrandomized study. The primary goal was to compare local control from short-course (1 x 8 Gy/5 x 4 Gy, n = 131) and long-course radiotherapy (10 x 3 Gy/15 x 2.5 Gy/20 x 2 Gy, n = 134). Secondary end points were motor function and survival. The analysis of local control (no MSCC recurrence in the irradiated spinal area) included the 224 patients with improvement or no change of motor deficits during radiotherapy. Eleven additional factors were evaluated for outcomes. Results: One-year local control was 61% after short-course and 81% after long-course radiotherapy (p = 0.005). On multivariate analysis (MVA), improved local control was associated with long-course radiotherapy (p = 0.018). Motor function improved in 37% after short-course and 39% after long-course radiotherapy (p = 0.95). Improved motor function was associated with better performance status (p = 0.015), favorable tumor type (p = 0.034), and slower development of motor deficits (p < 0.001). One-year survival rates were 23% after short-course and 30% after long-course radiotherapy (p = 0.28). On MVA, improved survival was associated with better performance status (p < 0.001), no visceral metastases (p < 0.001), involvement of only one to three vertebrae (p = 0.040), ambulatory status (p = 0.038), and bisphosphonate administration after radiotherapy (p < 0.001). Conclusions: Long-course radiotherapy was associated with better local control, similar functional outcome, and similar survival compared to short-course radiotherapy. Patients with a relatively favorable expected survival should receive long-course radiotherapy.

  5. Radiological protection in ion beam radiotherapy: practical guidance for clinical use of new technology.

    PubMed

    Yonekura, Y; Tsujii, H; Hopewell, J W; Ortiz López, P; Cosset, J-M; Paganetti, H; Montelius, A; Schardt, D; Jones, B; Nakamura, T

    2016-06-01

    Recently introduced technologies in radiotherapy have significantly improved the clinical outcome for patients. Ion beam radiotherapy, involving proton and carbon ion beams, provides excellent dose distributions in targeted tumours, with reduced doses to the surrounding normal tissues. However, careful treatment planning is required in order to maximise the treatment efficiency and minimise the dose to normal tissues. Radiation exposure from secondary neutrons and photons, particle fragments, and photons from activated materials should also be considered for radiological protection of the patient and medical staff. Appropriate maintenance is needed for the equipment and air in the treatment room, which may be activated by the particle beam and its secondary radiation. This new treatment requires complex procedures and careful adjustment of parameters for each patient. Therefore, education and training for the personnel involved in the procedure are essential for both effective treatment and patient protection. The International Commission on Radiological Protection (ICRP) has provided recommendations for radiological protection in ion beam radiotherapy in Publication 127 Medical staff should be aware of the possible risks resulting from inappropriate use and control of the equipment. They should also consider the necessary procedures for patient protection when new technologies are introduced into clinical practice. PMID:26980799

  6. Image-Guided Radiotherapy in Near Real Time With Intensity-Modulated Radiotherapy Megavoltage Treatment Beam Imaging

    SciTech Connect

    Mao Weihua Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing Lei; Solberg, Timothy

    2009-10-01

    Purpose: To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Methods and Materials: Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Results: Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. Conclusions: This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  7. Radiotherapy for testicular seminoma stage I: treatment results and long-term post-irradiation morbidity in 365 patients

    SciTech Connect

    Fossa, S.D.A.; Aass, N.; Kaalhus, O.

    1989-02-01

    After infradiaphragmatic radiotherapy the cancer-related 10 year survival was 99% in 365 patients with seminoma Stage I referred to the Norwegian Radium Hospital between 1970 and 1982. Thirteen patients relapsed, 11 of them within the first 3 years after treatment. Nine of the recurrent patients were cured by radiotherapy alone (4) or in combination with chemotherapy (5). There is no need to include the inguinal lymph nodes into the irradiation field or to give scrotal irradiation, not even to patients with tumor infiltration beyond the testicular tissue, or to those with prior scrotal or inguinal surgery. At least 1 year after radiotherapy moderate or more severe dyspepsia was observed in 16 patients. Nine patients developed a peptic ulcer. In general, there was no increased risk for development of a second non-germ cell cancer after radiotherapy. However, 4 patients developed a pulmonary cancer indicating a border-line significance of increased risk for this type of malignancy. (p:0.05). In conclusion, infradiaphragmatic radiotherapy remains the optimal routine treatment in seminoma patients with Stage I.

  8. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    NASA Astrophysics Data System (ADS)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  9. Adjuvant Radiotherapy with Three-Dimensional Conformal Radiotherapy of Lacrimal Gland Adenoid Cystic Carcinoma

    PubMed Central

    Roshan, Vikas; Mallick, Supriya; Chander, Subhash; Sen, Seema; Chawla, Bhavna

    2015-01-01

    Background & Aim Adenoid cystic carcinoma (ACC) of lacrimal gland is a rare tumour with aggressive behaviour. There is sparse data to address optimum therapy for such tumours. So, the present study was aimed at evaluating the role of adjuvant three dimensional conformal radiotherapy (3D-CRT) in cases of incomplete (R1) resection along with review of literature pertaining to management of lacrimal adenoid cystic carcinoma Materials and Methods We retrospectively reviewed the demographic and treatment data of 10 biopsy proven ACC of lacrimal gland patients, treated from December 2006 to June 2013. They were treated with radiotherapy following surgical resection. Eight patients underwent gross total excision of the tumour mass (enbloc excision) followed by conformal radiotherapy to a dose of 60 Gray/30fractions/ 6 weeks. Two patients with advanced disease were treated with palliative radiotherapy after biopsy. Results The median age was 32 years. There were equal numbers of male and female patients. The median duration of symptoms was 7 months. At a median follow up of 21 months, eight patients had no evidence of disease and had complete tumour response, two patients worsened, and one of the two had systemic failure with bone metastasis. Conclusion Despite a small sample size and short follow, enbloc surgical excision with adjuvant radiotherapy is well tolerated and shows good control in ACC of lacrimal gland. PMID:26557600

  10. The synergistic effects of traditional Chinese herbs and radiotherapy for cancer treatment

    PubMed Central

    JIA, LILI; MA, SHUMEI; HOU, XUE; WANG, XIN; QASED, ABU BAKER LAYTH; SUN, XUEFEI; LIANG, NAN; LI, HUICHENG; YI, HEQING; KONG, DEJUAN; LIU, XIAODONG; FAN, FEIYUE

    2013-01-01

    Traditional Chinese medicine (TCM) has been demonstrated to have potent cytotoxic activity against certain malignant tumors. Ionizing radiation (IR) is one of the most effective methods used in the clinical treatment of cancer. The drawback of a single formula is that it limits the treatment efficacy for cancer, while comprehensive strategies require additional theoretical support. However, a combination of different antitumor treatment modalities is advantageous in restricting the non-specific toxicity often observed with an extremely high dose of a single regimen. The induction of apoptotic cell death is a significant process in tumor cells following radiotherapy or chemotherapy, and resistance to these treatments has been linked to a low propensity for apoptosis. Autophagy is a response of cancer cells to IR or chemotherapy, and involves the prominent formation of autophagic vacuoles in the cytoplasm. In this review, the synergistic effects of TCM and radiotherapy are summarized and the underlying mechanisms are illustrated, providing new therapeutic strategies for cancer. PMID:23760551

  11. The Prospective Role of Plant Products in Radiotherapy of Cancer: A Current Overview

    PubMed Central

    Hazra, Banasri; Ghosh, Subhalakshmi; Kumar, Amit; Pandey, B. N.

    2012-01-01

    Treatment of cancer often requires exposure to radiation, which has several limitations involving non-specific toxicity toward normal cells, reducing the efficacy of treatment. Efforts are going on to find chemical compounds which would effectively offer protection to the normal tissues after radiation exposure during radiotherapy of cancer. In this regard, plant-derived compounds might serve as “leads” to design ideal radioprotectors/radiosensitizers. This article reviews some of the recent findings on prospective medicinal plants, phytochemicals, and their analogs, based on both in vitro and in vivo tumor models especially focused with relevance to cancer radiotherapy. Also, pertinent discussion has been presented on the molecular mechanism of apoptotic death in relation to the oxidative stress in cancer cells induced by some of these plant samples and their active constituents. PMID:22291649

  12. Stereotactic body radiotherapy for pancreatic cancer: recent progress and future directions.

    PubMed

    Myrehaug, Sten; Sahgal, Arjun; Russo, Suzanne M; Lo, Simon S; Rosati, Lauren M; Mayr, Nina A; Lock, Michael; Small, William; Dorth, Jennifer A; Ellis, Rodney J; Teh, Bin S; Herman, Joseph M

    2016-05-01

    Despite advances in surgical, medical, and radiation therapy for pancreatic cancer, the prognosis remains poor. At this time, the only chance for long-term survival is surgical resection. More challenging is the optimal management of unresectable locally advanced pancreatic cancer, which has historically been treated with concurrent chemoradiation or chemotherapy alone. However, the survival and local control benefit of conventional radiotherapy in addition to chemotherapy was unclear. More recently, stereotactic body radiotherapy (SBRT) is emerging as a viable approach to maximizing local tumor control with a tolerable side effect profile. SBRT achieves sharp dose fall-off facilitating safe delivery of highly focused radiation to the tumor over 1-5 days. Although the optimal regimen of pancreas SBRT has not yet been established, its short treatment course limits the delay of additional. Future directions involve prospective study of pancreas SBRT and exploration of biomarkers and imaging technology in order to adopt a personalized management paradigm. PMID:26999329

  13. Guidelines for delineation of lymphatic clinical target volumes for high conformal radiotherapy: head and neck region

    PubMed Central

    2011-01-01

    The success of radiotherapy depends on the accurate delineation of the clinical target volume. The delineation of the lymph node regions has most impact, especially for tumors in the head and neck region. The purpose of this article was the development an atlas for the delineation of the clinical target volume for patients, who should receive radiotherapy for a tumor of the head and neck region. Literature was reviewed for localisations of the adjacent lymph node regions and their lymph drain in dependence of the tumor entity. On this basis the lymph node regions were contoured on transversal CT slices. The probability for involvement was reviewed and a recommendation for the delineation of the CTV was generated. PMID:21854585

  14. Quantifying Interobserver Variation in Target Definition in Palliative Radiotherapy

    SciTech Connect

    Grabarz, Daniel; Panzarella, Tony; Bezjak, Andrea; Mclean, Michael; Elder, Christine; Wong, Rebecca K.S.

    2011-08-01

    Purpose: To describe the degree of interobserver and intraobserver variability in target and field definition when using three-dimensional (3D) volume- vs. two-dimensional (2D) field-based planning. Methods and Materials: Standardized case scenario and diagnostic imaging for 9 palliative cases (3 bone metastases, 3 palliative lung cancer, and 3 abdominal pelvis soft-tissue disease) were presented to 5 study radiation oncologists. After a decision on what the intended anatomic target should be, observers created two sets of treatment fields, first using a 2D field-based and then a 3D volume-based planning approach. Percent overlap, under-coverage, and over-coverage were used to describe interobserver and intraobserver variations in target definition. Results: The degree of interobserver variation for 2D and 3D planning was similar with a degree of overlap of 76% (range, 56%-85%) and 74% (range, 55%-88%), respectively. When comparing the treatment fields defined by the same observer using the two different planning methods, the mean degree of overlap was 78%; over-coverage, 22%; and under-coverage, 41%. There was statistically significantly more under-coverage when field-based planning was used for bone metastases (33%) vs. other anatomic sites (16%) (p = 0.02). In other words, 2D planning is more likely to result in geographic misses in bone metastases compared with other areas. Conclusions: In palliative radiotherapy clinically significant interobserver and intraobserver variation existed when using both field- and volume-based planning approaches. Strategies that would reduce this variability deserve further investigation.

  15. Review of photon and proton radiotherapy for skull base tumours.

    PubMed

    Fossati, Piero; Vavassori, Andrea; Deantonio, Letizia; Ferrara, Eleonora; Krengli, Marco; Orecchia, Roberto

    2016-01-01

    An extremely large variety of benign and malignant tumours occur at skull base; these tumour lesions are in the proximity to structures deputed to relevant physiologic functions, limiting extensive surgical approaches to this body district. Most recent progresses of surgery and radiotherapy have allowed to improve local control with acceptable rates of side effects. Various photon radiotherapy techniques are employed, including 3-dimensional conformal radiotherapy, intensity modulated radiotherapy (IMRT), stereotactic radiotherapy (SRT) and brachytherapy that is manly limited to the treatment of primary or recurrent nasopharyngeal carcinoma. Proton beam radiotherapy is also extensively used thanks to its physical characteristics. Our review, focusing in particular on meningioma, chordoma, and chondrosarcoma, suggests that proton therapy plays a major role in the treatment of malignant tumours whereas photon therapy still plays a relevant role in the treatment of benign tumour lesions. PMID:27330419

  16. Variations in Target Volume Definition for Postoperative Radiotherapy in Stage III Non-Small-Cell Lung Cancer: Analysis of an International Contouring Study

    SciTech Connect

    Spoelstra, Femke; Senan, Suresh; Le Pechoux, Cecile; Ishikura, Satoshi; Casas, Francesc; Ball, David; Price, Allan; De Ruysscher, Dirk; Soernsen de Koste, John R. van

    2010-03-15

    Purpose: Postoperative radiotherapy (PORT) in patients with completely resected non-small-cell lung cancer with mediastinal involvement is controversial because of the failure of earlier trials to demonstrate a survival benefit. Improved techniques may reduce toxicity, but the treatment fields used in routine practice have not been well studied. We studied routine target volumes used by international experts and evaluated the impact of a contouring protocol developed for a new prospective study, the Lung Adjuvant Radiotherapy Trial (Lung ART). Methods and Materials: Seventeen thoracic radiation oncologists were invited to contour their routine clinical target volumes (CTV) for 2 representative patients using a validated CD-ROM-based contouring program. Subsequently, the Lung ART study protocol was provided, and both cases were contoured again. Variations in target volumes and their dosimetric impact were analyzed. Results: Routine CTVs were received for each case from 10 clinicians, whereas six provided both routine and protocol CTVs for each case. Routine CTVs varied up to threefold between clinicians, but use of the Lung ART protocol significantly decreased variations. Routine CTVs in a postlobectomy patient resulted in V{sub 20} values ranging from 12.7% to 54.0%, and Lung ART protocol CTVs resulted in values of 20.6% to 29.2%. Similar results were seen for other toxicity parameters and in the postpneumectomy patient. With the exception of upper paratracheal nodes, protocol contouring improved coverage of the required nodal stations. Conclusion: Even among experts, significant interclinician variations are observed in PORT fields. Inasmuch as contouring variations can confound the interpretation of PORT results, mandatory quality assurance procedures have been incorporated into the current Lung ART study.

  17. Clinical Outcome in Posthysterectomy Cervical Cancer Patients Treated With Concurrent Cisplatin and Intensity-Modulated Pelvic Radiotherapy: Comparison With Conventional Radiotherapy

    SciTech Connect

    Chen, M.-F.; Tseng, C.-J.; Tseng, C.-C.; Kuo, Y.-C.; Yu, C.-Y.; Chen, W.-C. . E-mail: rto_chen@yahoo.com.tw

    2007-04-01

    Purpose: To assess local control and acute and chronic toxicity with intensity-modulated radiation therapy (IMRT) as adjuvant treatment of cervical cancer. Methods and Materials: Between April 2002 and February 2006, 68 patients at high risk of cervical cancer after hysterectomy were treated with adjuvant pelvic radiotherapy and concurrent chemotherapy. Adjuvant chemotherapy consisted of cisplatin (50 mg/m{sup